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Abstract

Network applications are applications capable of selecting, at run-time, por-

tions of their code to execute at remote network locations. By executing remote

code in a restricted environment and providing convenient communication mech-

anisms within the application, network applications enable the implementation of

tasks that cannot be implemented using traditional techniques. Even existing ap-

plications can realize signi�cant performance improvements and reduced resource

consumption when redesigned as network applications.

By examining several application domains, we expose speci�c desirable ca-

pabilities of a software infrastructure to support network applications. These capa-

bilities entail a variety of interacting software development challenges for which we

recommend solutions.

The solutions are applied in the design and implementation of a network

application infrastructure, Jay, based on the Java language. Jay meets most of the

desired capabilities, particularly demonstrating a cohesive and expressive commu-

nication framework and an integrated yet simple security model.

In all, network applications combine the best qualities of intelligent networks,

active networks, and mobile agents into a single framework to provide a unique and

e�ective development environment.
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Chapter 1

Introduction

In its brief history, the Internet has seen apparently inexhaustible exponential

growth, driven partly by the ongoing supply of network technologies and partly

by the ongoing demand for richer applications. These applications have become

increasingly oriented towards user needs. Early applications such as Telnet and

FTP were designed as tools to accomplish another task rather than as an end in

themselves. More task-oriented applications of that time included Internet mail and

Usenet news for individual or group communication, but both are batch-oriented and

intentionally hide network activities from users; mail and news simply periodically

appears in a �le accessible through a user-oriented application.

As network technologies advanced, applications increasingly exposed users

to the network. Online multi-user games, interactive discussion forums, and the

World-Wide Web demonstrated the Internet's vagaries and limitations, resulting in

complaints about the \World-Wide Wait". Future applications promise further di-

rect use of networks for user tasks, such as video phones and electronic commerce. If

the current rapidly increasing size of the Internet and increasing disparity of band-

width is an indication of future patterns, then users can expect further problems.

Solutions to these problems are often well understood by system developers

and network operators, but require modi�cations to protocols entrenched by de
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jure standards. Sometimes a problem can be resolved by changing only a high-level

protocol used by a class of applications. This has been the case for HTTP/1.1 proxy

enhancements to enable sharing a single cache among multiple users [FGM+97], the

FTP REST command to resume transfers interrupted by system failure [PR85] and

S/MIME encryption to address network insecurity [DHR+98]. Even in this relatively

simple case, modi�cations can take years to complete and often become de facto

standards well before they are accepted by the Internet Engineering Task Force.

Where the modi�cations are demanded by only a small portion of the community,

the cost in time and organizational e�ort can be prohibitive.

In more complex cases, a solution can require modi�ed behavior within the

network or changes to low-level protocols, as is the case for quality of service guar-

antees, bandwidth reservation, multicast and mobility. Such changes consistently

span many years from the initial need to deployment and can require widespread

changes to network hardware.

This is not to disparage the value of standards, only to show that e�orts

to re
ect user and application needs in the network are slowed by the demands of

the standards process. What is desired is the ability for applications to include,

in the network, application-speci�c functionality in the form of application-speci�ed

code. Such a system would allow applications to customize network behavior to user

needs; a network that \understood" the user's task could more e�ciently respond,

to the bene�t of both the network and the user. Using this same architecture,

applications could perform tasks otherwise not possible, such as accessing resources

only available at a remote host. Applications capable of starting portions of their

code at remote hosts, or network applications, are the topic of this thesis.

1.1 Network Applications

A network application functions as a traditional application, but portions of its

data and code exist and execute on remote hosts. These application extensions may
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modify data, contain threads, and otherwise act as an application would, subject to

the security restrictions imposed by the remote environment.

Network applications exceed the abilities of traditional distributed systems

in a variety of respects because they do not require a priori arrangements to acco-

modate individual needs. Because network behavior can be modi�ed for individual

applications, users with particular needs are easily accommodated without large-

scale adaptation of the system. Similarly, applications requiring unique behavior of

the network or service can implement that behavior immediately. Finally, systems

requiring particular behavior embedded in the network can do so without modifying

low-level network protocols. In each case, network applications allow an immedi-

ate need to be �lled while allowing modi�cations to standards to continue or to be

delayed inde�nitely.

The additional functionality of network applications can be placed in three

categories:

� Data transformations: By using application-speci�c information, network

applications can �lter, compress, cache, pre-fetch, and otherwise transform

a data stream at appropriate network locations, reducing total network con-

sumption and decreasing latency.

� Remote resource access: E�cient or e�ective access to system services

and resources is sometimes available only locally. Examples include processing,

memory, network capacity, local disks, and specialized system services. An

application extension executing near the resource can act locally to accomplish

application-speci�c tasks.

� Network modi�cation: Where an application is restricted by existing

network behavior, properly located application extensions can alleviate the

restrictions. If e�ect, applications can modify low-level network behavior.

Demand for such increased 
exibility over traditional distributed systems
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comes from a variety of fronts. Wireless, mobile, and personal (hand-held) com-

puters are often distant from their home resources. Optimal use of often slow and

intermittently available network links requires a high degree of network e�ciency;

transferring many kilobytes of data to present only a small portion of it to the user

is unacceptable. Additionally, strains on limited processing, memory, and battery

capacity can be alleviated by o�oading resource-intensive tasks to a more powerful

�xed host.

Users of well-connected and resource-rich hosts can also bene�t. When these

hosts are distant from the services they wish to access, as is common for Web or

other remote database access, network limitations between the user and the service

may be a bottleneck. Similarly, network applications may gain performance bene�ts

by starting extensions on nearby resource-rich hosts. For widely distributed systems,

lower limits on latency imposed by the speed of light can be overcome by performing

�ltering and processing data remotely.

1.2 Overview

The goal of this thesis is to determine the e�ectiveness of a software infrastructure

to support network applications. We will show that use of a network application

infrastructure increases the e�ciency of certain applications and allows the imple-

mentation of applications that would otherwise be impossible. Through examples,

we will see that network applications can be implemented with a minimum of in-

convenience to the developer and without sacri�cing security considerations.

Chapter 2 describes speci�c uses and requirements of a network application

infrastructure. In Chapter 3, we look at Jay, a prototype infrastructure implementa-

tion, along with some sample Jay applications. Chapter 4 discusses systems related

to network applications and to Jay, and Chapter 5 concludes.
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Chapter 2

Network Applications

To this point we have described network applications loosely as applications capable

of loading, starting and communicating with application modules on remote hosts.

The need for network applications derives from need for applications to modify

network behavior, either at the end-points of communication or within the network.

The goals of network applications, then, is to ful�ll that need.

In this chapter, we will �rst adopt terms with which to speak of the com-

ponents of a network application infrastructure. Next, we will examine groups of

applications suitable for implementation as network applications, and speci�c sample

applications falling within those groups. Lastly, Section 2.3 will turn to the speci�c

requirements and capabilities of network applications, including the trade-o�s and

recommended choices.

2.1 Terms

A system supporting network applications can be easily divided into several com-

ponents, as illustrated in Figure 2.1. The remote portions of a network application

form one or more extensions. Each extension exists within a single extension envi-

ronment, a service running on a host capable of receiving and loading extensions.

5



Environment Host
Environment

User’s Host

Extension

Base

Network Application

Network
Communication

(a)

Extension

User A’s Host

Base Base

User C’s HostUser B’s Host

Extension

Environment

Environment Host

Traditional
Application

Extension

Traditional Application
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Network Communication
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Figure 2.1: Components of a network application infrastructure. Figure 2.1(a) shows

a single network application composed of a base and one extension. Figure 2.1(b)

shows two network applications, one with two extensions, and a traditional appli-

cation. Traditional applications are restricted to execute on a single host. These

diagrams each illustrate a simple infrastructure; both could be augmented by a

variety of useful capabilities.

Each environment may run multiple extensions, even from a single application, and

prevents extensions from maliciously or accidentally interfering with one another.

Typically, a single host supports one environment. A network application is com-

posed of a base running on a user's host and any extensions started by the base.

A network application infrastructure is a software system designed to support the

goals of network applications.

Within the framework of Figure 2.1, network applications and extension

environments have considerable 
exibility as mechanisms and policies are largely

unspeci�ed. An infrastructure is free to specify the technique for communication

within applications and between extensions, restrictions on the lifetime of an exten-

sion (particularly in the face of planned or unexpected disconnection from the base),

and the security and language issues surrounding remotely executed code. Many of

these choices are di�cult and dependent on application demands. The next section

will look at several classes of applications suited to implementation using extensions
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and their speci�c demands on the infrastructure.

2.2 Applications

Section 1.1 brie
y named three categories of tasks well suited to implementation as

network applications. This section expands on each of the three categories to demon-

strate that network applications are useful and necessary to solve many problems,

and to determine what demands applications place on the infrastructure.

2.2.1 Data Transformation

Applications typically transform data retrieved from services for display or pro-

cessing in an application-speci�c manner. The transformation often removes or

summarizes retrieved data, thereby reducing the information size, sometimes by

many factors. Performing the transformations near the information source, or sim-

ply closer to the information source than any network bottlenecks, decreases the

bandwidth requirements proportionally. These application-speci�c transformations

are well-suited to network applications, as it is inappropriate and impractical to

modify a service to account for all application needs. Similarly, a transformation

that would be widely useful simply may not be available from the service.

Suppose a wireless palm-top computer user wants to monitor dozens of stock

prices. Instead of downloading all the stock data in real time1, an application exten-

sion placed in the �xed network could monitor the data, sending only noti�cations of

important events across the slow, unreliable, intermittently available wireless link.

If only one in one-thousand data items collected from the server are of interest to

the user, bandwidth savings are of a similar magnitude.

\Distilling" Web images near the server reduces the size of the data by using

lossy compression, reducing the colors to a number the client can display, or sim-

ilar techniques. Distilled image data can be a factor of seven times smaller than

1This technique is used by Marimba Incorporated's Castanet software's Wall Street Web channel.
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the original with minimal loss of quality [FGC+97]. A host with a low-resolution

monochrome display may reduce data size by many factors without any apparent

loss in quality.

Existing protocols intended for use on a LAN are often ine�cient when used

in situations of high latency, low bandwidth, or poor connectivity. A network ap-

plication extension located near a remote server could communicate with the server

using a standard protocol and transmit the responses to the base using an optimized

custom protocol. For example, text data can often be signi�cantly compressed us-

ing simple compression schemes. An extension could compress data near a distant

NNRP News server to reduce bandwidth and latency. Combining compression with

batching and pre-fetching would result in further savings.

2.2.2 Remote Resource Access

The various hosts of a large network naturally o�er a diversity of services and

resources. General-purpose access to such services, however, is sometimes ine�cient

or impossible for code executing remotely. Application code executed on the host

o�ering the service avoids the need for general-purpose remote access, allowing for

access to services that could not be exported e�ectively as a traditional general-

purpose services on a WAN.

For example, an extension developed to respond to a remote condition can be

noti�ed and respond more quickly by executing at or near the monitored condition.

To extend the stock monitoring example above, the wireless palm-top computer

user could react to important changes in stock price immediately, avoiding any

network delays. Although the stock server could be modi�ed to perform such a

task, recognizing the variety of conditions applications may wish to respond to

would require considerable application-speci�c modi�cations.

Consider an intelligent agent that searches a database for records satisfying

a complex query. The agent may transfer megabytes of data in several transactions
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as the query is re�ned, a potentially very slow process on a WAN. By executing

near the database host, an extension could interact at LAN speeds and return only

the result to the base, greatly shortening the interaction time.

Resources other than distributed services may be naturally accessible only

locally. Memory, processing power, and special-purpose hardware fall into this cat-

egory. A hand-held host may be able to save battery power or improve response

time by running compute- or memory-intensive tasks on a more powerful host. Par-

ticularly resource-intensive programs could present little more than a user interface

on the hand-held host.

2.2.3 Network Modi�cation

Sometimes applications or distributed systems are limited by existing peculiarities

of network hardware or protocols. Extensions run at key network locations can aid

in overcoming such peculiarities.

For example, exchanges between two hosts can be ine�cient or impossible

because they use a di�erent underlying network. An internal corporate network

using only IPX may connect a single host to the Internet to act as a bridge. A

network application extension started on that host could communicate to its base

using IPX and to the Internet using TCP. A similar technique could be used to pass

outside a corporate �rewall.

A computer connected via a wireless link may become occasionally discon-

nected from the �xed network. In an infrastructure tolerant of disconnection, an

extension running on a wired host could preserve and continue a long-running com-

putation. For example, a long-running simulation could continue after an application

base intentionally or unintentionally disconnected.

Network protocols typically provide each host a view of the network tailored

to that host. An application with extensions running on several hosts can gain

a more global perspective and can aid in network monitoring and diagnosis. For

9



example, a monitoring application could start extensions on important network

nodes. On detecting a failed link or a network partition, the extensions could act to

restore connectivity from both sides of the failure.

As seen, a variety of tasks can be e�ectively implemented as network ap-

plications. Each application uses extensions di�erently and each exploits di�erent

capabilities of the infrastructure. The next section will look at these capabilities, as

well as recommended approaches and trade-o�s in an implementation.

2.3 Network Application Infrastructure Capabilities

A network application infrastructure must o�er considerable functionality to meet

the goals of network applications. We can separate this functionality into a set of

capabilities. Some capabilities are vital:

� module transmission,

� module reception, and

� communication.

Many applications demand other capabilities of the infrastructure:

� heterogeneity,

� remote resource access,

� performance,

� versioning,

� security,

� fault tolerance,

� concurrency control, and
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� development tools.

For each of these capabilities we look at alternatives for implementation and

potential con
icts in meeting the goals of network applications.

2.3.1 Module Transmission

Transmitting code is a crucial support function at the network application base.

A module is the semantic unit of code that can be transmitted alone, typically a

function, object-oriented class, or semantically related set of classes. An extension

may be composed of several modules. Module transmission includes obtaining the

code from the system, marshaling it, and transmitting it. While the mechanisms of

the steps are largely implementation-dependent, there is a more general question:

when should modules be selected and transmitted?

One technique for module selection is to require the application developer

indicate modules to transmit at compile-time. Although simple, a run-time error

will result if a necessary module is accidentally omitted.

The selection could be automated to include the transitive closure of modules

referenced by an initial module. However, even as the application starts, correctly

selecting the minimal set of required modules may be impossible. Where reference

to a module is conditional on run-time state, the module may be necessarily se-

lected but never referenced. Conversely, modules could be omitted in languages

that permit the name of referenced modules to depend on run-time state. For ex-

ample, in a language that references modules using a URL represented as a string,

predicting the value of the string as the application starts is generally impossible. A

conservative (but highly ine�cient) approach could automatically transfer all mod-

ules with names, but if modules can be named by URLs and located throughout

the network then a list of all module names may be unavailable and transmitting

all of them would be impractical. While automated selection may supplement the

previous technique in an e�ort to aid programmers, it is not reliable.
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Finally, modules may be requested from the base on demand at run-time

using a call-back mechanism. Unlike the two previous solutions, modules are trans-

mitted only if they are referenced, minimizing bandwidth use. Unfortunately, a naive

implementation incurs an extra round-trip delay on the critical execution path for

each module, a considerable penalty if latency is high and modules are numerous.

Further, if a module is required while the extension is disconnected from the base,

execution must be suspended.

2.3.2 Module Reception

The corresponding and equally important requirement of the extension environ-

ment is module reception. This includes unmarshaling, loading, linking, starting

and eventually unloading modules. These steps are conceptually straight-forward

and widely implemented in existing single-host application programming languages.

Extending these principles to the distributed network application setting introduces

several concerns.

Unmarshaling, loading, and linking present concerns to both heterogeneity

and security. Received code must be executable on a platform potentially di�erent

from that hosting the network application base. From a security perspective, it is

not su�cient to allow loaded code the same permissions as enjoyed by the base,

as is done for modules dynamically loaded into traditional applications. Instead,

security must be enforced according to the policies of the remote host, not the

policies of the base. Heterogeneity and security concerns are examined in more

detail in Sections 2.3.4 and 2.3.8, respectively.

Unloading modules is necessary to prevent monotonically increasing demands

on limited environment memory and other resources. Problems and solutions in

this area are largely comparable to those in traditional operating systems: resources

allocated to an extension are recorded and forcibly released by the operating system

when the extension completes. Of note is the need for a policy describing when to
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unload a module, given that extensions can naturally outlive their base and that

the status of the base may be unknown during a communication failure.

2.3.3 Communication

Communication in network application infrastructures is needed not only to transmit

modules, but to communicate between a base and its extensions. System-level inter-

process communication facilities are typically not adequate. Describing application

semantics in an asynchronous byte-oriented medium is too cumbersome to allow

the expressive application-level interaction expected between a base and extension.

Communication should �t comfortably with existing application semantics and allow

for both asynchronous and synchronous communication.

2.3.4 Heterogeneity

Network applications exist within a heterogeneous distributed environment. Bar-

ing very special needs, a homogeneous network application infrastructure would be

strongly limited in its ability to meet the goals of network applications.

In a heterogeneous network, modules must be transmitted in a platform-

independent form to preserve byte order, byte alignment, and other characteristics

of code and embedded data. The code must be in a representation that can be exe-

cuted by the remote environment. Responses to the need for platform-independent

executable code have included interpreting source code as in Tcl [Out94] and the

Bash command shell [NR98]; intermediate byte-code representations as in Java and

a variety of early Pascal compilers including the University of California, San Diego

P-Code [Nel79]; and \fat" or multi-architecture binaries containing native executa-

bles for multiple platforms as used by MacOS [Sta].
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2.3.5 Remote Resource Access

Access to resources and services at remote environments is a common task of network

applications. Desirable resources and services range from the common to the rare:

processing, memory, disks, and networks; special-purpose hardware such as a video

camera or robot; or location-speci�c software such as licensed libraries or multi-

user applications. The infrastructure should provide facilities for discovering and

accessing such resources.

At compile time, network applications should be deemed semantically valid

even if the resource does not exist locally. Strong type checking would require that

a description of the resource interface be available at compile-time, and that the

interface be veri�ed when an extension is dynamically linked.

Access and use of resources should be moderated either by the infrastructure

or the operating system. Resource allocation must be managed between extensions

and, where appropriate, between extensions and traditional applications competing

for the resources. Similarly, resources must be reclaimed by the infrastructure or

operating system even when an extension exits without explicitly releasing the re-

sources. If extensions execute as threads of a single long-lived environment process

then resource reclamation cannot simply be deferred until the environment exits.

The environment must reclaim resources as they are no longer required so they may

be allotted to other extensions.

2.3.6 Performance

In con
ict with many of the requirements of this section is the need for performance.

Network applications designed to improve performance over a similar traditional ap-

plication must recognize there is a run-time overhead in starting the network appli-

cation. That overhead must not exceed the performance gain. Network applications

designed for tasks that are otherwise impossible must be su�ciently e�cient to run

on potentially resource-poor clients.
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Some performance loss will be necessary for communication, heterogeneity,

resource management and security in a distributed environment. The infrastructure

must ensure the loss is minimal and tolerable.

2.3.7 Versioning

A single network application can execute code from a variety of sources: locally

within the base and in within the infrastructure, remotely within the extension

and within the environment, and possibly from other network sources. The varied

sources of code invites a clash between the versions of code used for development

(at compile-time) and the versions used to execute (at run-time).

Versioning allows such version variations to be detected or tolerated. In its

simplest form, this implies compatibility of newer versions of the infrastructure with

older applications (backward compatibility). In addition, executing a base and ex-

tension on di�erent versions of the infrastructure should be transparent. Ideally,

execution of an application on an infrastructure older than the version the applica-

tion was developed with should succeed so long as functionality introduced between

the two versions is not called on.

2.3.8 Security

The goal of security in traditional applications is to prevent accidental or malicious

damage to the system and to user information. Damage may come in the form of

unauthorized use or, where limited use is permitted, excessive use. Limits are placed

on resource use according to the veri�ed identity of the user or principal.

These same properties are desirable for network applications. A user of a

network application must not be able to access unauthorized resources or exceed

authorized resource consumption. Given the sample applications in Section 2.2,

it is inadequate for a network application environment to simply deny access to

users without local accounts. An environment located on the same host as a Web
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server may wish to allow known search engines to start extensions for the purpose

of indexing the Web server. Direct access to the �le hierarchy may be allowed to

facilitate thorough, e�cient indexing. Similarly, a multi-user game may wish to

allow any players, without authentication.

In many cases, it would be desirable to allow access to users selected by

another party. For example, a set of small wireless network access providers may

agree to allow all their subscribers access to any of their network application en-

vironments. Similarly, an anonymous FTP site wanting to allow access to anyone

identifying themselves may instead run a network application environment con�g-

ured to allow controlled �le access to any identi�ed user of any host.

Conceivably, an environment may wish to restrict access to users running

speci�c extensions known to the environment operators. To some extent, this de-

feats a considerable advantage of network applications: that the code is speci�ed

by the user. Even without this advantage, however, extensions may provide better

communication facilities and better security than traditional special-purpose ser-

vices.

Tailoring access restrictions to users requires user authentication. The envi-

ronment should not require passwords or other secret information be transmitted in

the clear across an insecure network. Since the environment may not be trusted by

the user, a still better system would avoid the exchange of con�dential information

during authentication.

The unique properties of network applications can require that con�dential

information used within an application be transmitted between the base and exten-

sion over the network. This presents a second, distinct border that must be secured,

as shown in Figure 2.2. Since the need for secure communication is common to many

network applications (as well as many traditional applications), including it in the

infrastructure or at lower layers is advisable. Implementors should take care to

avoid making communication within the application more cumbersome or reducing
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Figure 2.2: Three borders showing security concerns. (1) The environment should be

protected from interference by the extension. (2) Network communication should be

secure from eavesdroppers. (3) The extension should be protected from interference

by the environment.

the performance of the communication medium.

Finally, network applications necessitate that con�dential information stored

in an extension should not be accessible to the environment or to another exten-

sion in the same environment. This implies a third security border between the

application and the infrastructure, as shown in Figure 2.2. Further, the application

should be able to ensure the environment is correctly executing the extension code.

Unfortunately, both these capabilities present considerable challenges. Bennet Yee

suggests a separate veri�ably secure co-processor [Yee94]. [MvRSS96] recommends

running the computation on di�erent hosts. The results are compared and a voting

algorithm determines the correct output. Frank Hohl [Hoh98] considers refusing the

results of a computation at a remote host after the application has been exposed to

the host for a pre-determined amount of wall-clock time, with the thinking that an

attack against the computation must always exceed that time. A �nal alternative

would be to have the application transform encrypted data in its encrypted form.

Since no clear representation ever exists at the extension, the application runs no

risk of revealing the data. Further, if the encrypted result contained redundant in-

formation, the base could detect incorrect operation of the environment by detecting
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an invalid result. Unfortunately, performing an encrypted transformation without

revealing the contents is obviously complex.

2.3.9 Fault Tolerance

The distributed nature of network applications provides opportunity to loosen the

coupling of the components. Neither failure nor disconnection of an extension need

necessarily result in failure of the application. For a network monitoring tool that

reports when a host has failed, failure of an extension would be a normal condition.

For wireless and low-power hosts, unexpected temporary disconnection may be a

normal aspect of the network. The same distributed nature, however, increases the

likelihood some portion of the application will fail, emphasizing the need for robust

fault tolerance.

Some failures may be handled transparently to applications. More com-

monly, as in the two examples mentioned, the failure prevents the infrastructure

from o�ering a service, or forces the infrastructure to modify or withdraw a services

already in use. In such cases, the application should be noti�ed so that it may

respond accordingly. Where possible, the infrastructure should provide a default

failure policy suitable to a wide range of applications.

2.3.10 Concurrency Control

Network applications, as exempli�ed in Section 2.2, often require concurrency con-

trol due to their naturally multi-threaded implementations. Concurrency control

allows thread synchronization and protection of shared data structures. Because

concurrency control at a single host is a common feature of multi-threaded languages

and operating systems, implementation may be left to the underlying system or the

application developer. However, the infrastructure may extend the concurrency

control o�ered by the language or operating system, or provide concurrency control

between a base and its extensions as a form of implicit, structured communication.
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2.3.11 Development Tools

The di�culty of developing distributed software systems increases the need for de-

bugging capabilities. At compile-time, a strong type system enhances error detec-

tion. Interpreted languages can perform syntax and semantic checking similar to a

compiled language. At run-time, the debugger can support analysis of logical errors

causing system failure, livelock, deadlock, or other failure modes at either the base

or extension.

2.4 Summary

The goal of a network application infrastructure is to enable loading, starting, and

communicating with application modules at remote locations. These goals and the

de�nitions of Section 2.1 leave considerable lee-way for the implementation of an

infrastructure. We saw, however, that the target applications place numerous addi-

tional demands on the infrastructure. The capabilities an infrastructure must pro-

vide to meet these demands are also numerous and sometimes con
icting. Section 2.3

discussed the most important of these capabilities, exposed issues and con
icts, and

recommended solutions.

Having explored the needs of a network application infrastructure, we turn

to a prototype implementation, the Jay system. Jay incorporates all the compo-

nents and most of the capabilities discussed, highlighting expressive communication

facilities and security for the environment. Jay reveals practical issues in developing

an infrastructure, and provides a detailed basis to which we can compare similar

work.
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Chapter 3

The Jay System

3.1 Overview

The Jay system is a prototype implementation of a network application infras-

tructure. Jay demonstrates the practical e�ectiveness of network applications and

reveals implementation complexities that may challenge developers. It incorporates

all the components of the network application infrastructure, as well as most of the

capabilities of Section 2.3. It includes a complete Application Programmer's Inter-

face (API) and libraries. Jay and the examples presented here are written in the

Java language, version 1.2 [CW96]1.

This chapter �rst describes Jay as seen by the developer, then looks at the

internal operation of Jay. The next section evaluates Jay in terms of the capabilities

of network applications. Finally, we examine two sample applications using the Jay

infrastructure to accomplish realistic tasks.

1The current, Second Edition of this text discusses the Java Development Kit version 1.1. Future
editions are expected to cover version 1.2. While di�erences between the versions (especially in the
java.security package) are important to the implementation of Jay, a developer using Jay can
largely ignore these di�erences.
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3.2 Architecture

Jay is closely modeled after the network application infrastructure described in the

previous chapter and supports bases, extensions, and extension environments. Here

we look at each of these components and details of their implementation in the

Jay system. The components are demonstrated using a simple network application,

PrintDate. PrintDate starts an extension at a remote environment to retrieve the

current time, then prints that time on the local console. The application contains

two classes, the base class, PrintDateBase, listed in Figure 3.1 and the extension,

PrintDateExt, in Figure 3.2. For clarity, all error checking has been removed from

the PrintDate example.

3.2.1 The Jay Base

As shown in Figure 3.1, Jay bases are normal Java applications with a main()

function entry point. Jay bases �rst create an ExtensionSender object, as

in the PrintDate example. The ExtensionSender contains various parameters

and settings required before sending an extension to the environment. Print-

Date uses most of the default values and so interacts minimally with the

ExtensionSender. A Jay base then speci�es the class of the initial object with a call

to ExtensionSender.setInitClass() and sends that class and any it may reference

to the environment. The example sends only one class by calling addLocalClass().

Once initialized, the extension is started with a call to

ExtensionSender.startExtension(). Jay creates the extension and returns

a BaseServices object. This object primarily facilitates communication with the

extension through an asynchronous communication stream (a Java InputStream

and OutputStream pair). If the ReturnRemote setting of ExtensionSender is set,

the BaseServices also includes a Java Remote Method Invocation (RMI) reference

to allow synchronous, type-safe remote procedure calls to the extension.

Finally, the extension begins executing. The PrintDate example reads a Date
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import jay.base.*;

import java.io.ObjectInputStream;

import java.util.Date;

/**

* Starts an extension at a host and prints the date at that host.

* The first command-line argument is the remote host name.

*/

public class PrintDateBase

{

public static void main(String argv[])

{

// The first command-line arg is the remote host name.

String environHost = argv[0];

// The ExtensionSender sends the classes to the remote.

ExtensionSender sender = new ExtensionSender(environHost);

// The init class contains the entry point, start().

sender.setInitClass("PrintDateExt");

sender.addLocalClass("PrintDateExt");

// We don't need a reference to the init class; we'll use the socket.

sender.setReturnRemote(false);

// Start the init class.

BaseServices services = sender.startExtension();

// Expect a Date object from the socket.

ObjectInputStream in =

new ObjectInputStream(services.getInputStream());

// Read and print the Date.

Date remoteDate = (Date)in.readObject();

System.out.println("The date and time at " + environHost +

" is " + remoteDate.toString());

// Close the extension.

services.close();

}

}

Figure 3.1: The PrintDateBase class of the PrintDate application.
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import jay.env.*;

import java.io.ObjectOutputStream;

import java.util.Date;

public class PrintDateExt implements Extension

{

public void start(ExtensionServices services)

{

ObjectOutputStream out =

new ObjectOutputStream(services.getOutputStream());

out.writeObject(new Date());

}

}

Figure 3.2: The PrintDateExt class of the PrintDate application

object from the communication stream and prints its value to the console. Once

complete, the extension is closed with a call to BaseServices.close(), causing

resources allocated by the extension to be released, including the communication

resources and any threads active in the extension.

3.2.2 The Jay Extension Environment

The Jay extension environment accepts TCP socket connections for the purpose of

receiving and starting extensions. When a base connects, the environment accepts

commands which can be grouped into �ve categories:

Add classes The base can transfer classes on the connection or can specify a URL

from which classes can be retrieved. Either technique allows the transfer of the

byte-code of a single class or a complete Java Archive (JAR) [Fla97][Sun96]

�le containing multiple classes. Commands in this category may be used

repeatedly.

Select the initial class Each extension has an initial class, selected by the base,

which will be instantiated by Jay.
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Identify principals The base can identify any principals from whom the exten-

sion should derive permissions. After verifying the identify of the principal,

permissions are assigned according to the Java security policy database. En-

vironment security is described in detail in section 3.4.

Set connection parameters The Jay environment accepts two parame-

ters for an extension. First, the base can request a reference to the

extension's initial class. If it does (and if the initial class extends

java.rmi.UnicastRemoteObject, as required by the RMI libraries) then Jay

creates an RMI reference to the initial object and transmits it to the base

after the extension is created. Second, the base may request any network

connections be \disconnectable". Disconnectable network connections can be

temporarily disconnected during expected network outages.

Start the extension Starting the extension must be the last command issued by

a base. It creates the initial object by instantiating the initial class.

On starting the extension, if the initial class implements the

java.env.Extension interface, as does PrintDateExt, Jay creates a new

thread and calls the initial object's start() method. The single parameter, an

ExtensionServices, is similar to the BaseServices class. It o�ers access to an

asynchronous stream connection to the base, and an environment name space

shared by all the extensions of an environment to facilitate communication between

extensions.

When the base closes the extension, Jay allows the extension �ve seconds to

complete2 before stopping its initial thread and any other threads it created. At

that time, Jay's references to the initial object are removed to allow the extension

to be garbage collected.

2Five seconds is a compromise between allowing the extension a chance to complete and promptly
reclaiming resources. An environment creating and destroying many extensions per second would
likely prefer less time, while an environment running on a slow or overloaded machine may prefer
more time.
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3.2.3 The Jay Extension

An extension is created when the base calls BaseServices.startExtension() and

its start() method is invoked if it implements the java.env.Extension interface.

In the PrintDateExt class, the start()method immediately sends the current date

as an object through the stream connected to the base. On receiving the date, the

base closes the extension.

It is likely PrintDateExt.start() will complete execution before Jay de-

stroys its thread. However, because PrintDateExt executes no statements after

sending the date, completion is not necessary. In general, extensions should avoid

executing statements after notifying the base to exit to avoid the case where re-

maining statements may or may not execute.

3.3 Implementation

The implementation of Jay described here is largely complete. It is composed of four

Java packages, of which two contain utility classes used by Jay, but not required

to write a Jay application. The remaining two packages, jay.base and jay.env,

contain a total of only four public classes and interfaces.

Internally, Jay is written entirely in Java, without any platform-speci�c na-

tive libraries. Java was chosen for its inherent heterogeneity, its natural use of

dynamic linking, its ability to construct classes at run-time, its integrated and gran-

ular security API, its built-in Remote Method Invocation support, and several other

standard Java APIs such as re
ection, data collections, and weak references. Most

of these features do not exist in Java versions prior to version 1.2.

Although providing considerable support for Jay, Java's APIs are, at times,

lacking. Security, for example, allows untrusted code (in this case, extensions) to

consume all the memory and processing resources available to the environment.

Granting a class permission to write to a single �le allows that class to consume un-
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limited disk space. Although an administrator may prevent any permanent damage

to the system such as lost �les or unauthorized access to con�dential data, several

denial-of-service attacks are available to malicious code. The RMI libraries contain

similar short-comings. While simple applications using RMI are straight-forward,

more advanced developers of Java or Jay applications will �nd an understanding of

distributed garbage collection and Java's RMI stub compiler useful.

The bulk of Jay's code is concerned with moving and managing untrusted

code while providing integrated and expressive communication between a Jay base

and extension. The entirety of Jay is about 7500 lines of commented Java code.

Of that, roughly 1000 lines are speci�c to the jay.base package, roughly 1600

lines are in the jay.env package, and the remainder are in the two packages of

utility classes. While portions of Jay exhibit considerable conceptual complexity,

the most di�cult part of implementing Jay was managing what can become a highly

distributed system. A single environment must respond quickly and predictably to

the actions of potentially hundreds of extensions connected to as many hosts while

presenting a simple and consistent interface to each application developer. It is

the integration of the concepts used by Jay that make it a unique and interesting

implementation.

3.4 The Capabilities of Jay

As an implementation of a network application infrastructure, Jay can be judged

in terms of the capabilities described in Section 2.3. This section will revisit each

capability, examining the technique and extent of Jay's implementation. Many

of the features of Jay leverage facilities of the Java language, and these will be

noted as they become relevant. Where Jay's implementation does not incorporate a

capability of network applications we will look at suitable additions to Jay and their

complications. As appropriate, we will describe the API methods through which Jay

o�ers each capability. A complete list of methods discussed in this chapter appears
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Class or interface Methods

ExtensionSender setInitClass() addLocalClass()

addUrlCodebase() addLocalJar()

setReturnRemote() addClassAtUrl()

startExtension() addJarAtUrl()

BaseServices connect() getInputStream()

disconnect() manageDisconnectableSocket()

ExtensionServices addExport() getOutputStream()

getExport() makeDisconnectable()

removeExport()

Extension start()

Figure 3.3: Methods needed by a Jay application developer. ExtensionSender,

BaseServices, and ExtensionServices are classes while Extension is an interface.

Only the methods mentioned in this chapter are listed.

in Figure 3.3. The reader may wish to review the sample applications of Section 2.3

to consider how they would be implemented in Jay.

3.4.1 Module Transmission

Module transmission in Jay combines two of the techniques of Section 2.3.1. Spe-

ci�c extension classes can be pre-loaded before the extension starts or classes can

be loaded on-demand as the extension executes. Pre-loaded classes can be trans-

fered directly from the base with a call to ExtensionSender.addLocalClass(),

or from a URL with a call to ExtensionSender.addClassAtUrl(). Alternatively,

pre-loaded classes can be transfered as groups, compressed in a JAR �le, using the

ExtensionSender.addLocalJar() or ExtensionSender.addJarAtUrl() methods.

Classes cannot be transfered after the extension starts, except those loaded on-

demand.

Classes loaded on-demand are loaded as late as possible in execu-

tion. The base speci�es a URL pre�x to the environment with a call to

ExtensionSender.addUrlCodebase(). For each class required by an extension that

is neither a system class nor pre-loaded, Jay checks the existence of a URL com-
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posed of the URL pre�x concatenated with the usual class �le name. If the class

�le exists, it is loaded.

As detailed in Section 2.3.1, loading classes on-demand minimizes bandwidth

use but can delay execution. The technique used by Jay includes the advantages of

on-demand loading while avoiding some of the disadvantages. Because on-demand

classes are not loaded from the application base, there is no risk of stalling or failing

when the base is disconnected and the URL pre�x can refer to a host connected by

a faster network than the base. If a developer desires, classes can be loaded from

the base host using the HTTP (or other) protocol, at the risk of the class not being

available if the base becomes disconnected. If any class is not available at load-time,

Jay's class loader will throw a ClassNotFoundException.

3.4.2 Module Reception

Module reception involves unmarshaling, loading, linking, starting, and unloading

extensions. Java's platform-independent byte-code representation of classes provides

a convenient mechanism for managing these steps. Classes transfered individually

are received directly in byte-code form. Classes contained in a JAR �le are �rst

extracted and decompressed to derive their byte-code form. In either case, byte-

codes are stored until a class is needed, then are loaded and linked using Java's

SecureClassLoader. The SecureClassLoader is responsible for performing byte-

code veri�cation [GM96], a necessary �rst step in preventing loaded classes from per-

forming insecure operations, and for assigning security information to new classes.

For extensions that implement the jay.env.Extension interface, a thread

is created and used to call the start() method of the initial object. The thread

is stored by the environment and eventually destroyed (along with any threads it

created) once the connection to the base is closed. Releasing memory and other

resources held by the extension is left to the usual Java mechanisms: memory is

automatically garbage collected once the environment no longer refers to it, and
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resources held by objects using that memory are released when the object is de-

stroyed.

3.4.3 Communication

Communication within and between modules of a traditional application typically

takes the form of method calls (synchronous) or message passing (asynchronous).

These mechanisms are speci�cally designed to be expressive and convenient to the

developer: explicit marshaling, unmarshaling, and narrowing type conversions are

not necessary. Network applications should emulate these features, even for com-

munication between the base and extension.

Jay does not hinder existing communication facilities within the application

base or extension. Further, it facilitates expressive synchronous and asynchronous

communication between the base and extensions. Jay automatically supplies a TCP

socket as an InputStream and OutputStream pair connecting the base and each ex-

tension for asynchronous messaging. These may be used to transmit ASCII strings,

binary data, or entire object graphs using Java's object serialization facilities. In

addition, bases of extensions that subclass Java's UnicastRemoteObject class are

automatically supplied an RMI reference to the extension. This permits remote

procedure calls using the same syntax and comparable semantics as local proce-

dure calls (in some cases, pass-by-value is substituted for pass-by-reference [Far98,

p.74-75]). Type-safety is maintained whether RMI or object serialization is chosen.

Communication during Disconnection

Although Jay extends the facilities of traditional applications to network applica-

tions, the fact that the communication medium of network applications is much less

tightly coupled imposes additional communication demands. In particular, mobile

wireless hosts, an excellent application domain for network applications, can become

temporarily disconnected from the �xed network as they move among buildings or
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exhaust battery power. Jay permits bases to disconnect from their extensions tem-

porarily by calling BaseServices.disconnect(), passing the maximum duration

of the disconnection as the only parameter. The TCP sockets used for asyn-

chronous communication and for the RMI reference are closed until the base calls

BaseServices.connect(). Applications can cause any DisconnectableSocket

instance to be disconnected and reconnected by registering it with a call to

BaseServices.manageDisconnectableSocket(). Sockets used by RMI

references are made disconnectable and registered with a call to

ExtensionServices.makeDisconnectable(). If the base requests an RMI

reference to the initial object and it requests to be disconnectable, the RMI

reference is automatically made disconnectable and registered.

Although an application can best manage the necessary semantic changes due

to disconnection, Jay attempts to minimize the disruption in the case the applica-

tion does not. Asynchronous messages are bu�ered and delayed until reconnection,

allowing the base to continue execution. RMI calls may still be made, but will not

return until after reconnection.3 A base that performs no communication with a

disconnected extension is otherwise una�ected.

Jay bases must reconnect with a disconnected extension within the time

speci�ed on disconnection or the environment will assume the base has failed and

destroy the extension. Unexpected disconnection results in the extension being

closed and an exception being thrown to the base when the communication channel

is next used.

Communication between Extensions

Communication between extensions in an environment is enabled through a

name space supported by the environment for that purpose. Extensions can

3Even RMI calls that return void cannot return immediately. RMI semantics dictate that the
call has completed successfully without throwing an exception and that any side e�ects of the call
have occurred before the call returns.
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export to the name space an object reference and its name via a call to

ExtensionServices.addExport(). Removal is accomplished through the

ExtensionServices.removeExport() function. Extensions in the

same environment can obtain the exported reference by calling

ExtensionServices.getExport(), passing the reference name as the only

parameter. A reference already obtained by getExport() is not revoked by

removeExport().

By exporting a reference, an extension allows other extensions to call the

methods of the referenced object. Using this mechanism, extensions can e�ectively

\meet" in an environment for high-bandwidth, expressive communication. Since the

environment name space is accessible to all extensions in the environment, exported

objects will typically implement access restriction to allow access to only certain

users. Access can be controlled using the policy database of the environment, but

since those policies are likely not controlled by the exported extension, alternative

arrangements would be advisable.

Jay does not provide such alternatives, but extending the existing Java secu-

rity mechanisms to use the policy database on the base host would be e�ective. That

task is not trivial. The permissions available at a point of execution depends on the

execution stack, which is not transfered during an RMI method call. A normal RMI

method call to the base to query for permissions would not take into account the

execution stack at the extension. The extension would need to additionally transfer

the execution stack or comparable identifying information to the base, or the base

would need to transfer the security policy to the extension. Both of these solutions

would be able to use the standard Java security mechanisms only peripherally.

Communication and Security

To obtain references to exported objects, their class and the class of any object

to which they refer must be dynamically linked to the extension. Providing the
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extension's class loader with the byte-codes used by the exporter is not su�cient;

the class must be loaded by the exporter's class loader for Java's run-time type

checker to consider the classes equivalent. When an extension retrieves an exported

object, Jay automatically delegates the loading of any otherwise unknown classes

to the class loader of the exporter. A single extension may, by this mechanism,

delegate to multiple other class loaders, which may, in turn, delegate to still others.

An extension developer should ensure that byte-codes for classes of objects retrieved

through the environment are not added to the extension at load-time so they do not

supersede classes that would otherwise be loaded from a delegate. Similarly, classes

of objects created by the extension must be added when the extension is created to

prevent them from being satis�ed by a delegate class loader.

Vitek et al. [VST97] argue that communication between Jay extensions is

insecure since the extensions' object graphs necessarily intersect and \once object

graphs cease to be disjoint, security is a lost battle." Once an attacker gains access

to an object of another object graph, they argue, the remainder of the graph is

highly vulnerable to breaches of secrecy and integrity, masquerading, and denial

of service. In particular, \the problem is that method invocation knows nothing

about protection domains." They use Java as an example of an insecure language.

However, in Java version 1.2, permissions available to method calls across protection

domains is clear: brie
y, a thread may use the intersection of permissions available

to each of the classes appearing on the execution stack.

Still, Vitek et al. show that shared object graphs do present opportunities

for an attacker. Application developers unfamiliar with object-oriented program-

ming can accidentally expose con�dential information. Developers uncertain of the

security of their objects should consider exchanging only objects of built-in types,

objects that are immutable and declared �nal (i.e. cannot be subclassed), deep

copies of mutable objects, and objects that do not refer to other portions of the

extension.
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3.4.4 Heterogeneity

Jay draws its heterogeneity capabilities directly from Java. The transmitted class

byte-codes are in a platform-independent intermediate representation and can exe-

cute on any platform supporting the Java Virtual Machine (JVM). This currently

includes many Unix variants, Windows NT, Windows 95, and MacOS4. Jay envi-

ronments allow the JVM to optionally transform the byte-codes into a native form

to improve execution speed.

Jay may be viewed as homogeneous with respect to the language applications

may use. This limitation is partly true: Jay extensions must be implemented in Java

to achieve the heterogeneity and security requirements. However, Jay bases could

be implemented in any language if the necessary client libraries were written, losing

only the ability to perform RMI calls. The protocol between the Jay base and

extension is intentionally straight-forward and language-independent.

Jay does not permit the transmission of Java native libraries, libraries of

native code accessible directly from Java. Since such libraries are platform-speci�c,

transmission would defeat Jay's goal of heterogeneity. Further, native libraries ex-

ecute with fewer security controls than Java methods, introducing a considerable

security breach. Native libraries made accessible to the environment by the envi-

ronment host are accessible to extensions.

3.4.5 Remote Resource Access

Jay provides access to the network, �le, and printer resources of the environment

through the Java API, subject to the security policy.

Unusual resources not available through the standard Java API can also

be made available to extensions using either of two distinct techniques. The �rst

technique requires the system operator to create an extension capable of controlling

4Although Java version 1.2, required to use Jay, is available only for Solaris and Windows NT
at the time of writing, ports to other platforms are expected shortly.

33



the resource, load it into the environment with su�cient security privilege to access

the resource, and export an interface to the resource to the shared extensions name

space. Other extensions can import the interface to access the resource. The second

technique requires the system operator to add classes capable of controlling the

resources to the system classes available to all extensions. Both techniques allow

access to the resource to be controlled through the security policy. As well, both

require the classes or an interface to the classes be available at compile time to

allow strong type-checking. The resource itself need not be available. The �rst

technique integrates more smoothly with Jay, allowing the resource interface to be

loaded and unloaded while the environment continues to run. The second technique

is more familiar to long-time Java users. Using the second technique, the resource

availability can be changed only be restarting the environment, but any Java native

libraries needed to support the classes can also be installed at that time.

Resource allocation in Jay uses the normal procedures of the underlying

operating system, re
ecting any resource contention back to the extension. Resource

reclamation is largely managed by the object o�ering access to the resource (e.g. the

Socket object deletes unused sockets), with the exception of processor and memory

resources. Consumption of processing resources is stopped when the base exits by

stopping any threads belonging to the extension, and preventing any threads from

being created. Memory is reclaimed by Java's garbage collector when there are no

more local or remote references to it. Objects exported to the shared environment

name space should take particular care, since reference to the exported object can

outlive the exporting extension, allowing the service they o�er to be accessed after

the base exits. Although the environment returns strong references to exported

objects, it maintains only a weak reference internally; objects are collected if all

remaining references are weak references.
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3.4.6 Performance

Jay uses several techniques to minimize the amount of data and number of round

trips required to start an extension. A minimum of one and one half round trips

are required to start an extension after a socket connection is established with the

environment. First, the environment sends an identi�er and a nonce [CDK94, p.494]

to the base for the purpose of authentication. Next, the base sends a collection of

messages about the extensions, including any necessary class byte-codes. Concur-

rently, the environment responds to these messages. The �nal response indicates

the extension has started.

The only large message transmitted to the environment is the class byte-

codes. It is for this reason that Jay allows the byte-codes to be retrieved from

a URL located on a faster network than the base, and allows byte-codes to be

compressed in JAR �les for transmission5.

The largest message transmitted to the base is the remote reference. For

this reason, a base not requiring a remote reference can suppress its transmission.

Further, the remote reference is small compared to typical classes and compared to

the object it references. The implementation byte-codes for the remote reference

are not transmitted, as they are known to exist at the base.

The performance of Jay is not directly comparable to any existing sys-

tems since its functionality is somewhat di�erent than any other. For micro-

benchmarking, it is most comparable to mobile agent systems and distributed sys-

tems that can include functionality at various network locations. Application bench-

marks can be used to compare the performance of traditional implementations with

a network application implementation, recognizing the implementations will be quite

di�erent.

5JAR �les are created and compressed before the application starts, so the cost of compression
is not incurred at run-time. The full cost of decompression is incurred at the environment, but
decompression of JAR �les is less costly than compression and it is common for processing resources
to be more powerful at environments as compared to bases.
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We do not include performance measurements of other systems here. Instead,

we measure the time and bandwidth consumption of simple Jay operations to assist

future performance comparisons and to assist in understanding Jay's performance.

We look at three network applications:

� The minimal application, listed in Figures 3.4 and 3.5. It performs no function,

does not gain a thread from the environment, and does not return a remote

reference to the base.

� The threaded application. It is like the minimal extension, but implements

the jay.env.Extension interface and the start() method it requires.

� The remote reference application. It is like the minimal extension, but the

base requests a remote reference to the extension. As required, the base sends

stub and skeleton classes to the environment, along with an interface extending

java.rmi.Remote, but implementing no methods. The extension implements

the interface and subclasses java.rmi.server.UnicastRemoteObject.

For each application, we start and close one thousand extensions from a single

base, measuring the size of the extension, the average number of bytes transmitted

to the environment, the average number of bytes transmitted to the base, and the

average amount of elapsed wall-clock time per extension.

All tests were performed with the base on a 166 MHz Intel Pentium CPU and

the environment on a 200 MHz Intel Pentium Pro. Both machines ran Solaris 5.5.1

and the Java Development Kit version 1.2beta3 distributed by Sun Microsystems.

The two machines were connected by a 10 megabit per second (shared, but largely

idle) Ethernet network. To improve the reproducibility of the results, optimizations

were not used, including the optimizing compiler, native threads, or the just-in-time

compiler.

The results are shown in Figure 3.6. We see that implementing

jay.env.Extension, and thereby gaining a thread, has a minimal impact on perfor-
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import jay.base.*;

public class MinimalBase

{

static long totalTime;

// argv[0] is the host of the environment.

public static void main(String argv[])

throws Exception

{

for (int i = 0; i < 1000; i++)

{

long startTime = System.currentTimeMillis();

ExtensionSender sender = new ExtensionSender(argv[0]);

sender.addLocalClass("MinimalExt");

sender.setInitClass("MinimalExt");

sender.setReturnRemote(false);

sender.setDisconnectable(false);

BaseServices services = sender.startExtension();

services.close();

totalTime += System.currentTimeMillis()-startTime;

}

System.err.println("Average time to start and close an extension is " +

(totalTime/1000) + " ms");

System.exit(0);

}

}

Figure 3.4: The minimal network application base.

public class MinimalExt

{

}

Figure 3.5: The minimal network application extension.
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Minimal Threaded Remote Reference

Application Application Application

Extension size (bytes) 240 345 3060

Bytes transmitted 453 558 4123

to the environment

Bytes transmitted 106 106 696

to the base

Wall-clock time (ms) 80 81 309

Figure 3.6: Performance tests of Jay. All results are the average of one thousand

iterations. Byte counts include bytes transmitted on sockets created for RMI refer-

ences. The size of the remote reference extension includes the transfered skeleton,

stub, and interface.

mance. Requesting a reference to the extension, however, has considerable impact.

The larger extension size includes various classes required by the RMI libraries: a

remote procedure call stub and skeleton and an interface exported by the extension.

The addition bytes transfered and most of the additional wall-clock time is con-

sumed by the RMI libraries in creating and transmitting the remote reference, and

in creating a socket connection between the reference at the base and the referenced

extension. Still, for long-running extensions, the wall-clock time may be negligible

for all con�gurations. Developers should take care in selecting these features.

We also tested the amount of memory consumed by the infrastructure for

each extension by starting up to one thousand minimal extensions from a single

base in a single environment and monitoring the change in the size of the base and

environment processes. For both the base and the environment, the process size

increased roughly linearly with the number of extensions at a rate of 18960 bytes

and 73788 bytes per extension, respectively.

3.4.7 Versioning

Versioning allows a base, its extensions, and the network application infrastructure

used by each to be of di�erent versions. Jay relies on Java's dynamic linker to
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implement versioning in the environment. In Java, classes may be successfully dy-

namically linked against any class that implements the necessary methods. More

speci�cally, any class that contains the called methods with the same parameters

and return value (the method signature) is su�cient. Methods may be added or

removed from a class between versions, and method implementations may change;

the dynamic linker requires only that the referenced method signatures exist.

This allows extensions to run on versions of the environment other than the

version they were compiled against, so long as the methods called by the extension

exist. The environment need only avoid changing existing method signatures to

ensure backward compatibility. The disadvantage to this approach is that changes

in method behavior are not automatically detected by an application.

Similarly, the extension may be composed of classes di�erent than those

it was compiled against. If an extension is compiled against an old version of a

library, and loads the newer version of the library from a URL location at link-time,

the extension need not fail. Unfortunately, an extension linked against a known

version of Jay will run on a modi�ed environment without warning, whether that

modi�cation be bene�cent or malicious.

3.4.8 Security

Section 2.3 describes security on three fronts: protecting the environment and other

extensions from damage by an extension, protecting transmitted data from eaves-

droppers, and protecting the application from interference from the infrastructure.

The second and third of these are beyond the intended scope of Jay. Protecting

transmitted data is a general, well-recognized problem not speci�c to network ap-

plications. Protecting the applications presents enough challenges to justify a new

topic of research.

The �rst of these, protecting the system and users from an extension, is of

interest here. In Jay, extensions and their classes can be associated with princi-
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pals. Classes gain permissions according to these associations, the network location

from which their byte-codes originated, and the environment's security policy. This

scheme can be examined from two points of view: that of the network application

and that of the environment.

Security for the Application

On starting an extension, Jay allows any number of principals to identify and au-

thenticate themselves. All the classes of the extension gain the union of permissions

the environment would assign to the principals individually, or the default permis-

sion set if no principals are authenticated. In addition, classes transfered in JAR

�les may be digitally signed by one or more principals. Veri�ed signatures grant the

class the permissions available to those principals.

Authentication in Jay is performed using a public key [DH76] challenge/res-

ponse system to avoid transferring clear-text passwords over an insecure network or

to an untrusted environment. At the base, encrypted private keys are stored in a

database managed using Java's keytool application [Sun98]. To associate a prin-

cipal with an extension, an application calls ExtensionSender.addAuth(), passing

two parameters: the principal's alias in the database and the password required to

retrieve the private key. Jay encrypts a nonce selected by the environment using

the private key, and sends the result to the environment. If the environment is

able to decrypt the result using the principal's public key to recover the nonce, the

principal is authenticated. Neither the private key password nor the private key are

transmitted during this exchange.

Security for the Environment

On receiving an authentication request for a principal, Jay retrieves the correspond-

ing public key from the keytool database on the environment's host. If the retrieved

key correctly decrypts the nonce, all classes of the extension, whether previously re-
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grant signedBy "VanGogh",

codeBase "http://jay.abc.com/HostMonitor.class"

{

permission java.net.SocketPermission "*.abc.com:161",

"connect";

};

Figure 3.7: A sample Java security policy entry.

ceived or not yet transmitted, are treated as if signed by that principal. Speci�cally,

the classes gain any permissions assigned to that principal by the security policy.

The security policy is speci�ed using standard Java mechanisms [GMPS97];

typically, it is stored on the environment host in a �le shared by all other Java

applications. The policy assigns permissions (instances of Java's Permissions class)

to classes based on both the principals associated with the class and the source of

the class byte-codes, or code source. In Jay, the code source for classes loaded

from the network is the URL of the byte-codes or the JAR �les containing the

byte-codes. Byte-codes transfered from the base are said to have a code source

of \http://jay-transfer/"6, regardless of whether they are contained in a JAR

�le. As we will see shortly, this allows distinct permissions to be assigned to classes

loaded from a URL and classes transfered from the base.

Figure 3.7 shows a sample entry in the security policy database.

The entry grants permission to the class (in byte-code form) at

http://jay.abc.com/HostMonitor.class to create socket connections to

port 161 (a port reserved on the Internet for the Simple Network Management

Protocol, SNMP [CFSD90]) when loaded by \VanGogh". We can imagine this

would allow user VanGogh, the network manager of the abc.com domain, to start

an extension that monitors the hosts in the domain, reporting problems back to

VanGogh's wireless palmtop computer. Either the principal or code source can be

6Using a protocol of \jay" would be more sensible, but Java URL instances cannot be constructed
using an unknown protocol.
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omitted from a policy database entry, in which case the permissions are granted

regardless of the principal or code source, respectively. Where multiple policy

database entries match the code source and set of principals for a particular class,

the class gains the union of permissions granted by the matching entries. Java

security policy �le syntax is discussed in [Sun98].

Although assigning permissions to a particular class intended to be loaded as

an extension is permitted by Jay, it is akin to providing a particular service rather

than providing a platform for user applications. In Jay, it is more common to assign

permissions to a user and leave the selection of application code to that user. In

the example of Figure 3.7, it would have been more appropriate to allow VanGogh

to connect to SNMP ports regardless of the extension code source. VanGogh could

then use a host monitoring application of his choice without compromising security.

Principals need not have accounts on the environment host, they need only

be listed in the public key database. Currently, this implies the environment host

must know, a priori, of all principals and their public keys. The Java security

framework, however, is speci�cally designed to allow a more advanced public key

infrastructure, including widely trusted certi�cate authorities, to be dropped in place

of the current scheme. Jay would adopt the new scheme (or any other scheme used

by a host) without need for recompiling and would automatically incorporate keys

available from the certi�cate authorities.

Permissions listed in the policy database can grant granular access to speci�c

�les, directories, network end-points, and many other resources; or can broadly allow

access to all �les or complete network access. New permissions can be easily created,

allowing resources or other services o�ered by other extensions to be protected using

this same mechanism.

Notably absent from Java's security measures is the ability to limit processor

or memory resource consumption. Extensions are able to consume all the processing

and memory resources available to the environment. This same lack of control
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applies equally to all Java applications. Since the JVM provides little information

on processor or memory usage, and that only for the entire environment, restricting

these resources is not possible in Jay.

Also absent is the ability to authenticate principals listed in public key

databases maintained at other sites. This ability is required to implement the

sample security policies of Section 2.3.8, to wit, a group of wireless network ac-

cess providers wanting to allow all their subscribers use of any of their network

application environments, and an anonymous FTP site wanting to allow access to

any user authenticating in any domain. Adding this ability is a straight-forward

extension to Jay. Along with providing a signed nonce, users could optionally pro-

vide their public key contained in a certi�cate signed by a widely trusted certi�cate

authority [Bra97]. The public key would be used to authenticate the user and may

be added to the public key database.

3.4.9 Fault Tolerance

Fault tolerance in Jay is targeted less towards failure recovery than towards avoiding

and detecting failures. To avoid communication failure, bases may disconnect the

communication channel before an anticipated failure of the communication medium,

as described in Section 3.4.3. Detection of failures either in the communication

medium or the environment results in an exception being thrown in the base. The

Java compiler forces the base to handle the exception. A failure of the base results

in its extensions being closed.

No attempts are made in Jay to recover from a communication failure, al-

though such a feature would not be unreasonably di�cult to implement. A failure

of the communication medium could result in automatic disconnection of the ex-

tension. Jay would need to detect data lost during socket failure and retransmit

the data after reconnection. The application would need to manage unexpected

disconnection instead of managing unexpected failure.
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Similarly, sockets could be automatically reconnected when bu�ered data

needed to be transmitted and the communication medium was restored. Imple-

menting both automatic disconnection and reconnection would allow applications

to ignore unexpected disconnection entirely; an application anticipating data from

an extension would apparently pause during periods of disconnection. For many ap-

plications, unexpected delays of arbitrarily length are not acceptable, particularly

during user interaction or real-time monitoring. In that case, the infrastructure

would need to revert to the case without automatic disconnection: the application

should be noti�ed of the disconnection and manage it appropriately.

3.4.10 Concurrency Control

Java's concurrency control model attaches a lock for thread synchronization to ob-

jects. Both the object's methods and methods of other objects can use the lock

for synchronization. Because there is no built-in notion of distributed objects in

Java, synchronization within an object can always be performed locally; such lock

access need not be extended to work between the base and extension. Acquiring a

lock on another object, however, can involve objects at both the base and exten-

sion. Ideally, Java's usual mechanisms would be extended by Jay, but since Java's

synchronization primitives cannot be overridden by an application, Jay cannot do

so. Instead, synchronizing on a reference to a remote object acquires a lock on the

reference stub, not the referenced object.

One can imagine extending Jay to include concurrency control for the purpose

of consistency management between a base and extension. Objects could be repli-

cated and a transaction model, a locking protocol, or another form of synchroniza-

tion could ensure a desired level of consistency. Given the existing communication

capabilities of Jay and the thread synchronization available in Java, implementing

these techniques in Jay would be a lengthy but straight-forward exercise.
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3.4.11 Development Tools

The Java language is designed to enhance development and reduce errors by ensuring

compile- and run-time type-checking. Jay preserves these properties in RMI method

calls and object serialization between the base and extension.

Most notably lacking is a debugger for extensions. Such a debugger would re-

quire support from the JVM that is not currently provided. Although there are JVM

facilities for debugging applications remotely, they are tailored towards debugging

all the threads of a JVM rather than a subset.

3.5 Sample Network Applications

As a �nal test of the e�ectiveness and usability of network applications and the Jay

system, we will look at the implementation of two sample applications, Multi-Host

Ping and Lightcycles. Each is a simple application that demonstrates the e�ective

use of Jay to perform tasks that are not possible with traditional applications. In

addition, they stand as a testament to the completeness and extent of Jay's features.

3.5.1 Multi-Host Ping

The Multi-Host Ping application is intended to monitor network activity. It starts

extensions on a collection of hosts and measures network round-trip (ping) times

between all pairs of hosts. Ping times are reported back to the base where they are

displayed on a grid and recorded for display over time. The base also records for

display a history of ping times for all pairs of hosts.

In its steady state, the environment of each host displayed by the base runs

an extension. Each extension knows of all the other extensions and transmits ping

packets, UDP/IP packets containing two bytes of data, to them. Extensions listen on

a UDP port for incoming ping packets and return a two-byte UDP ping reply to the

sender. Ping packets are sent no more frequently than once each second and there
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Figure 3.8: The Multi-Host Ping application user interface. Network round-trip

(ping) times are shown in milliseconds from the host listed on the left to the host

listed on the top and back. The History windows shows past ping times for the

selected grid entry.

is never more than one outstanding packet to any host. If a ping reply is received

from a host within a �ve-second time-out period, the elapsed time between sending

and receiving is reported to the base. Ping replies arriving after the time-out period

or not at all are reported to the base as lost. Ping times are sent to the base using

Jay's asynchronous communication facility to avoid delays in transmitting further

packets. Sending and receiving UDP packets requires the following two permissions,

the second of which is granted by the default Java security policy:

� permission java.net.SocketPermission "*:1024-", "connect";

� permission java.net.SocketPermission "localhost:1024-",

"listen";

Figure 3.8 shows a screen image of Multi-Host Ping. The three hosts used

in this example, Baskerville, Rickards, and Marwood, are displayed on a grid. A

fourth host executes the base of the application. Each grid entry is the ping time in
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milliseconds between the host listed on the left to the host listed across the top. Ping

times are updated as they are received. For communication lines with symmetric

bandwidth and delay, we would expect ping times for each direction between two

hosts to be comparable. On the bottom of the screen is displayed a history of ping

times between the selected pair of hosts, Marwood and Rickards.

Reception can be temporarily interrupted if the user disconnects the base

from its extensions using the \Disconnect" button. During disconnection, the base

and extensions remain functional, but all reports are bu�ered at the extensions.

A \Connect" button replaces the \Disconnect" button during disconnection and

may be used to reconnect, at which time bu�ered reports are immediately 
ushed

to the base and the display is updated accordingly. Multi-Host Ping disconnects

for a maximum of sixty seconds. If the user fails to reconnect during this time

then each environment assumes the base has failed and destroys its extension. On

reconnection, the base will immediately detect the failure of all the extensions and

remove them from the display.

A user may use the \Add Host" button to start a new extension. The new

extension is created and returns to the base a UDP port number on which it will

re
ect ping packets. All other extensions are informed of the new host and its

UDP port. Jay's synchronous communication facility, the RMI reference, is used

when starting an extension to ensure the extension has fully started before other

extensions start sending ping packets to it.

The \Remove Host" button stops an existing extension. Other extensions

are informed of the impending removal so they may stop transmitting to that host,

and the extension is closed. Jay automatically stops the extension threads, thereby

allowing it to be garbage collected.

When an extension fails, either due to a failure in the network communica-

tion or a hardware failure of the environment host, attempts to read ping reports at

the base throw an exception. The base recognizes this exception and removes the
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extensions �rst from the display and then from the destination lists of the other ex-

tensions. If the environment survives the failure, either because the failure occurred

in the network or because of a software failure in the extension, the environment will

destroy the extension. Thus, unexpected failure always results in remote resources

being reclaimed.

The implementation of Multi-Host Ping o�ers a real example of the amount

of code required to manage extensions. In the base, the addHost() function

takes a host name as its only parameter, starts an extension on that host, up-

dates internal data structures, and noti�es other extensions of the new exten-

sion. The function is 84 lines in length. 24 lines of that function create the ex-

tension, of which roughly half are detailed error checking and nine are calls to

ExtensionSender.addLocalClass() (these nine lines would combine into a sin-

gle method call if the extension classes were placed in a JAR �le). The compiled

extension is contained in nine Java class �les, including the RMI stub, skeleton,

and remote interface for a total of 17936 bytes of class byte-codes. Contained in a

JAR �le, the byte-codes occupy 11662 bytes, but the current implementation ine�-

ciently transmits the classes individually for simplicity during development. In the

extension, only four lines speci�cally exist to allow the extension to run within an

environment. The application as a whole is 1446 lines, including the extension.

3.5.2 Lightcycles

Lightcycles is a game for four players at di�erent locations in the Internet. In the

game, each player controls the direction of their lightcycle, a constantly moving

point of light, leaving a trail in their wake. Players who guide their lightcycle across

a trail are removed from the game, and the last player in the game wins.
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The Game Server

The game server is a network application that exports a game interface into a remote

environment name space. Players join the game by starting a client extension in

the same environment, and retrieving the exported game server. Once four players

have joined the game, it begins.

During the game, the game server controls forward movement of the lightcy-

cles. The movement events of all players' lightcycles are queued. Client extensions

can request the next event in the queue, typically transmitting the events to their

base for display. They may also request the game server immediately turn their

own lightcycle to a new direction. The environment prevents client extensions from

interfering with the game server in any other way.

The Game Client

Each Lightcycles player starts a client that presents a square, white board with four

players of di�erent colors located in the center of each side. The client starts an

extension in the same environment as the game server and retrieves the exported

game. When the game starts, each player's lightcycle starts moving away from the

side. The player is then able to change the direction of travel using the keyboard

direction keys: up, down, left and right. The \simple" version of the client imme-

diately transmits the direction through the client extension directly to the game

server. Baring network latency, the lightcycle will immediately turn to the selected

direction. Figure 3.9 shows a game in progress.

Since the game server is located remotely from each client, there is potential

for network latency and jitter to interfere with the real-time activities. This can

make the game considerably more challenging for users with lower quality network

connections. To reveal the e�ects of delay in a controlled situation, users are able

to arti�cially introduce latency and jitter on their network link. Incoming packets,

mostly player position updates, are delayed accordingly, although the client thread
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Figure 3.9: The Lightcycles game client as seen by one of the players. The other

three players see similar displays.

does not block. Not surprisingly, increased delays worsen player performance.

To demonstrate the advantage of network application extensions, the Light-

cycles game can be used in \real-time" mode. To counteract latency, players using

real-time mode can pre-select a direction by holding the shift key while choosing a

direction. The pre-selected direction has no immediate impact, but is transmitted

to the client extension. The client extension continues to pass movement events to

the base. However, if the extension detects that the lightcycle will soon crash into

a trail, the extension immediately turns the lightcycle to the pre-selected direction.

There is no network latency in this process as all communication occurs within a

single environment.
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Lightcycles as a Network Application

A traditional implementation of the Lightcycles game server in the C language

would accept socket connections directly from clients. Clients would transmit their

direction selections to the server and the server would transmit player movements

to the client. By this means, clients could access the Lightcycles game, a software

resource, remotely.

The simple network application implementation of the Lightcycles client is

fundamentally comparable to the traditional implementation, and demonstrates how

a network application gains remote access to a resource, the Lightcycles game server.

The simple implementation has a few advantages over the traditional implementa-

tion. First, the interface to the game server has built-in type safety. Second, an

incorrectly implemented game server could not breach desired security constraints.

In the traditional implementation, an implementation error could allow unintended

access to system resources, as has been demonstrated by a variety of services imple-

mented using traditional techniques [Sta89]. In contrast, an implementation error

in the network application game server is still subject to the system security policy.

Comparable errors would appear in the security policy database, a much simpler de-

scription language than C; or in the Java security architecture, a much better tested

system than the Lightcycles game server. Unfortunately, these two advantages alone

do not justify the conceptual complexity of a network application infrastructure.

The simple client stands only as an example of using network applications to gain

remote access to a local resource, not as an e�ective use of network applications.

It is the real-time mode of the Lightcycles client that e�ectively demonstrates

the network application infrastructure. By making decisions within the environment,

the game client can react much more quickly to real-time changes than the simple

version. It is the ability of the user to extend the application to the environment that

allows user-programmable decisions to be made there, an advantage the traditional

implementation cannot o�er. Further, the intelligence of the extension is entirely

51



tailored by the user. It is easy to imagine game clients making much better decisions

than the client described here.

It is important to recognize that the simple and real-time network application

implementations do, in fact, extend the client application to the environment. The

division between client and server is not at the network, as with the traditional

implementation, but within the environment. It is the location of this division that

enables network applications to o�er what traditional applications cannot.

3.6 Summary

This chapter described the implementation of Jay, a network application infrastruc-

ture closely modeled after that described in Chapter 2. Jay provides a straight-

forward interface for creating, starting, and communicating with network applica-

tion extensions in remote environments. Jay implements most of the capabilities of

network applications, notably excepting development tools. Where network appli-

cations present complications above those of traditional applications, we have seen

how to address them with Jay. The sample applications of Section 3.5 stand as

evidence that the network application capabilities, and in particular the subset im-

plemented by Jay, allow the implementation of applications that perform tasks that

are di�cult or impossible to implement as traditional distributed applications.
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Chapter 4

Related Work

The ideas behind network applications draw on several similar areas. This chapter

will speci�cally discuss software agents, mobile code, active networks, mobile com-

puting, and intelligent networks. We will look at important projects in each area,

comparing them to the approach taken by network applications.

4.1 Mobile Software Agents

From a technical perspective, mobile software agents share many capabilities with

network applications. Both store data and run code remotely to incorporate func-

tionality into speci�c network locations. Both face issues of module transmission

and reception, heterogeneity, performance, and security. The solutions used in these

systems are often applicable to network applications.

The di�erences are primarily conceptual. Mobile agents do not have a base

or other \home"; they are independent entities responsible for their own existence.

Mobile agents are able to change their location while executing1. Suggested appli-

cations typically target �xed networks, although the capabilities of mobile agents

1To be precise, network applications do not forbid movement of extensions, however Jay does not
support it. Also, most mobile agent systems and other mobile code systems do not allow a thread
to move with the agent, but instead start a new thread at a known entry point after the agent
moves. Exceptions include Agent Tcl [Gra96] and the Emerald [JLHB88] mobile object system.
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make them almost as suitable as network applications in a wireless scenario. In

contrast, extensions are a part of a larger application, rooted by a base. Commu-

nication between base and extensions is cohesive and expressive, trust is implicit,

and threads may move easily between an extension and base. These conceptual

di�erences a�ect important design decisions in communication and other areas.

Knabe [Kna95] describes a mobile agent system implemented in

Facile [TLP+93], a variant of the ML [Pau96] language. Knabe's language and

infrastructure, collectively called MSA, implements many of the capabilities listed

in Section 2.3 as well as others suitable to mobile agents. Above the features pro-

vided by ML, the system includes:

� module selection and transmission. Referenced ML functions are determined

when the agent is compiled and transmitted entirely before the agent starts.

� four distinct code representations to facilitate heterogeneity: a high-level inter-

preted Lambda language, a platform-independent \middle CPS"2 byte-code

form, a \�nal CPS" form with a small amount of platform-speci�c structure,

and an optimized machine code form for transmission along with a platform-

independent representation.

� dynamic linking using proxy structures not unlike Java method signatures.

Among the network application capabilities one would expect in a mobile agent

system, only security and development tools are missing.

The Aglet Workbench (AWB) project at IBM's Tokyo Research Labora-

tory [KZ97] is a software agent infrastructure implemented in Java. Like Jay, AWB

draws on Java to implement several capabilities, including module transmission and

reception, communication, heterogeneity, remote resource access, performance, ver-

sioning, and security.

2The Continuation-Passing Style, or CPS, is an intermediate code representation described in
detail in [App91].
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The current Alpha 5c release of AWB is di�erent from Jay most notably

in module transmission and communication. Module transmission in AWB is per-

formed on-demand. Classes are transfered from the agent's or \aglet"'s starting

host when they are �rst referenced during execution. Aglet execution is necessarily

delayed when a new class is referenced, and an aglet must never be disconnected

from its starting host. AWB communication is performed using synchronous or

asynchronous messages queued by priority and order of receipt. Messages cannot

be type-checked at compile-time, and must be of a class known to both the sender

and receiver.

Perhaps the more striking di�erences between AWB and Jay are in the areas

of security and resource control. AWB security o�ers only two levels of trust, trusted

and untrusted, based entirely on whether the aglet was started locally or remotely.

Although aglets are associated with an owner, no attempt is made to authenticate

the owner and no permissions can be gained through this property. File, network,

property and other permissions can be set for both trusted and untrusted aglets. Re-

source reclamation in AWB is relatively limited. Aglet resources are never forcibly

reclaimed by the AWB, even if the user and host starting the aglet permanently

leaves the network. Further, aglets may travel to an unlimited number of hosts

during their lifetime. Fortunately, future releases of the AWB promise improved

security and resource control. [KLO97] describes a security model for aglets includ-

ing several principals responsible for an aglet, a highly 
exible security context, and

resource limitation and reclamation on a local and network-wide scale.

The third mobile agent system we will examine here, AgentTcl [Gra96], is

similar in capabilities to the AWB. Its implementation of those capabilities is dis-

tinct, largely because of the use of the Tcl [Out94] language and the SafeTcl ex-

tensions [LO95]. As an interpreted scripting language, Tcl is an excellent choice for

developing mobile agents. Since source code can be transmitted directly to remote

hosts for execution, module transmission and reception is simple and heterogeneity
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and versioning are inherent. For communication purposes, agents exist within a

network-wide hierarchical name space. Messages are passed using the agent's name

as the destination. Remote resource access is similar to Jay: \indirect" resources

are accessed through other agents that may enforce security controls of their choos-

ing. Security of \builtin" resources, categorized as wall-clock and CPU time, screen,

network, �le system, and external programs, is controlled by diverting insecure re-

quests through a resource manager. On starting, agents authenticate using a public

key system. Access is granted by the resource manager only if the authenticated

principal appears on the resource category access list.

The most unique aspects of AgentTcl are derived from the underlying Tcl

language. Tcl stores all variables as strings and data type is implied only by usage.

Semantic checking occurs at run-time and at the remote host. The lack of compile-

time checking increases the need for e�ective remote debugging tools, as is recognized

by the authors of AGDB [HK97], a debugger for AgentTcl. Finally, performance

su�ers in AgentTcl compared to the other code representations considered here.

While advocates have asserted that the tasks for which scripting languages are

best suited are rarely performance-oriented tasks, the authors of AgentTcl highlight

e�cient access to remote resources and information retrieval as suitable tasks for

agent systems.

The mobile agent systems above are a broad but small sampling of avail-

able systems. The once-popular commercial Telescript [Whi96] system by General

Magic, Inc. included a powerful security model and features for electronic commerce.

Tacoma [JvRSS95] o�ers fault tolerance in Tcl through the Horus [RBM96] toolkit.

More recent e�orts have made use of Java. Odyssey is a Java implementation by

General Magic incorporating concepts from Telescript. Mole [BHR97] is an early

and evolving Java implementation used to research security, performance, commu-

nication and other capabilities.

As exempli�ed above, mobile agent systems include many of the capabilities
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of network applications. As such, agent implementations o�er guidance in the imple-

mentation of a network application infrastructure. Network applications are distinct

in both the distributed state and the integrated, expressive communication between

the base and extension. In Jay, this manifests as the ease with which threads may

move between the base and extensions and the degree to which structured data can

be shared.

4.2 Mobile Code

The terms \mobile code" and \mobile object systems" have been used to character-

ize a variety of platforms. Here, mobile code refers to systems that enable a single

application to execute components at multiple network locations, as do network

application infrastructures. These systems emphasis the cohesion of an application

while allowing for distribution. As examples, we will look at the Emerald system

and the Rover toolkit.

The Emerald language and run-time system [JLHB88] enables general-pur-

pose object mobility. A collection of Emerald run-time environments act as peers.

Emerald applications start in one environment, but application objects may move

freely to other environments. Emerald objects are compiled to a byte-code form,

allowing for heterogeneity and module transmission and reception while maintaining

a degree of performance. Communication is by synchronous remote procedure calls,

syntactically and semantically indistinguishable from local procedure calls. Emerald

o�ers no security among peered environments; objects may move freely among peers

to execute in any environment without restriction. Network data is sent as clear

text and, like the other systems in this chapter, the application has no protection

from interference by the environment. The failure of application components can be

detected by applications, and immutable objects are automatically replicated. No

development tools exist for either local or remote objects.

The Rover toolkit [JTK97] speci�cally targets wireless mobile hosts. The mo-
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bile host may start a Rover application, written in Tcl, on the �xed network and im-

port replicas of selected application objects called RDOs. The replica presents a user

interface and communicates user operations to the application using queued remote

procedure calls (QRPCs). QRPCs are asynchronous, returning a promise [LS88] to

the application. Each sample application presented in [JTK97] requires C or C++

code to be installed at the client before the application can be imported. While this

limits general-purpose object mobility, Rover's target platform is strictly mobile

hosts.

Emerald, Rover, and Jay are conceptually similar as mobile code systems

even though a variety of their implementation details are distinct. Emerald o�ers

a general-purpose platform in which environments are peers. Rover models the

application executing on the �xed network, while the mobile host communicates

through object replicas. Jay starts the application �rst on the local or mobile

host and allows extensions to start remotely. All three emphasize a high degree of

cohesion within a distributed application. A key di�erence is that Jay addresses

security issues in executing untrusted application code at remote locations.

4.3 Active Networks

Active networks, as characterized by Tennenhouse et al. [TSS+96], are networks in

which \the routers or switches of the network perform customized computations on

the messages 
owing through them." Computations are customized by the appli-

cation to make \intelligent" choices at routers. Using active networks, applications

can extend existing router behavior to implement multicast packet delivery, reduce

jitter of multimedia data streams, or other special-purpose network functionality.

Each active network capsule is a network message containing a typically small

amount of application-speci�c code to be executed at some or all of the routers the

capsule passes through. The code normally executes without authentication in a

transient environment, although it may alter non-transient router state. System
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access is largely limited to network functions: testing packet and network state

and generating and forwarding packets. Other than the payload data, capsules

carry very little state, typically not more than a few parameters. Numerous active

network implementations exist; here we will examine two: Active IP and PLAN.

The Active IP system [WT96] incorporates an IP header option containing

Tcl code to be interpreted by selected specialized routers. Remote resource man-

agement, performance, and security are not major goals of the prototype. It allows

arbitrary code to be executed in a restricted Tcl interpreter without authentication,

although code size is limited by the maximum size of the IP option. It supplies a

simple library to access payload and router information and to generate new mes-

sages. In addition to the multicasting and jitter reduction examples recommended

at the start of this section, the authors of Active IP consider active networks a vi-

able replacement for mobile proxies, video gateways, and TCP snooping at wireless

base stations, as well as higher-level services such as Web proxies, �le caching, and

transcoding of images.

The Programming Language for Active Networks (PLAN) [HKM+98] is sim-

ilar in concept to Active IP, but strives for security and resource management.

PLAN programs run without authentication but are restricted from accessing sys-

tem services. Programs can be proven to terminate within a predictable number of

steps and are bounded in the number of routers they may visit. PLAN is designed

primarily for low-level network functions such as resource discovery and network

diagnosis.

Active IP and PLAN are typical active networks and allow easy comparison

to network applications. They share several capabilities with network applications

for the purpose of involving the network in a computation: module transmission

and reception, heterogeneity, remote resource management, performance, version-

ing and, to a limited degree, security. However, there are more di�erences than

similarities. Network applications use a (probably passive) network to install ex-
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tensions at remote hosts. Extensions perform user tasks at the application level,

sharing considerable application state with the base. Active networks function at

the network level: their capabilities emphasize brief decisions at routers to enhance

low-level network protocols. Code is associated with a packet rather than a con-

nection or stream and runs without authentication or access to general-purpose

operating system services.

4.4 Mobile Computing

The �eld of mobile computing looks at issues speci�c to mobile, resource-poor hosts.

While there is no distribution of code inherent in mobile computing, networked

mobile hosts make an excellent target platform for network applications because

their mobility necessarily increases their degree of network awareness. Looking

at problems and solutions in mobile computing gives insight into issues faced by

network applications on that platform. How well network applications address these

issues determines their utility on mobile hosts.

Satyanarayanan [Sat96] explains that mobile computing is not simply a spe-

cial case of low-bandwidth distributed computing, nor are the limitations on mobile

computing speci�c to current technology. He lists four constraints on mobility, each

of which is ameliorated by network applications.

� \Mobile elements are resource-poor compared to static elements." Using the

mobile host as a base, network application extensions allow mobile hosts to

draw on the resources of more powerful �xed (static) hosts.

� \Mobility is inherently hazardous." Mobile hosts are more easily destroyed

by being dropped or lost. Although network applications cannot prevent the

destruction of a mobile host, they encourage data to be safely stored remotely

by making access to remote storage possible.

� \Mobile connectivity is highly variable in performance and reliability." Mobile
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code placed at key network locations can use pre-fetching and caching to reduce

perceived variability. Infrastructures supporting disconnected operation allow

processing to continue even during network outages.

� \Mobile elements rely on a �nite energy source." By moving computation o�

a mobile host, power consumption is reduced.

Voelker and Bershad [VB94] explore mobility and the importance of location

to applications on mobile hosts. Under this topic, others have considered discov-

ery of resources as the mobile host moves to new network locations and sensitivity

to surrounding network characteristics. In general, network applications are not

expected to facilitate mobility per se, although a recognition of location and envi-

ronment would be useful at network extensions. In fact, network applications can be

seen to increase the complexity of mobility by introducing a cleavage plane [Dea98],

a place where one entity, the base, is mobile with respect to another, each extension.

In all, while network applications can aid mobile computing, there is still work

to be done to enable applications to react to changes in location and environment.

4.5 Intelligent Networks

Intelligent network software or \middleware" attempts to improve network perfor-

mance by placing network services at carefully selected network locations. Middle-

ware services can reduce network load, speed computation, and otherwise achieve

results not possible using end-to-end protocols.

The techniques used in intelligent networks and those used by network ap-

plications are fundamentally the same. Both place \intelligent" code oriented to

user needs at key network locations. In intelligent networks, unlike network appli-

cations, that code is selected by network operators and designed to e�ciently serve

large groups of users with similar needs. Network applications take a contrasting

approach: code is selected by the user to serve that user alone.
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The Squid Internet Object Cache [fANR] and CERN httpd [LNBL] cache

Web documents near clients to reduce latency and network tra�c. Correctly con-

�gured and serving an appropriate user base, these intelligent network services can

satisfy 55% of requests without consulting the Web [DMF97].

The TranSend system [FGBA96] translates between encodings of Web data.

Clients pass all requests through the TranSend server. The server ensures the data

returned to the client is of a minimum size and of a format suitable for the client,

typically passing it through lossy compression and conversion �lters tailored to the

client's hardware capabilities. Bandwidth (and consequent latency) savings of four

to ten times and higher are reported, depending on the �ltering performed.

The Large-Scale Internet Middleware [TOHO97] project at the Information

Sciences Institute proposes several intelligent network services. Two of these are

relevant here, both directed at reducing Web latency. The �rst, Lowlat, pre-fetches

Web documents referenced in a requested document, storing them in a nearby Web

cache. The second, the Multicast Web Tuner, causes Web servers to push documents

requested by one user to a set of known Web caches. Assuming documents requested

by one client will be requested by others, this will reduce latency.

In all the systems described above, the location of the service is crucial.

A Web cache serving too few users will achieve a very low hit rate, while a Web

cache distant from its users will o�er little latency reduction. Further, the most

desirable location is highly dependent on the client's particular situation. Consider

a TranSend server located distant from a client. If the server is used to reduce image

size and bandwidth requirements, there will be no saving in latency on requests to

Web servers near the client. Alternatively, if the server is used to convert images

from a format that cannot be displayed to a format that can, latency may be of

secondary importance to the client. The pre-fetching implemented by Lowlat can

de�nitely reduce latency. A client connected by a slow but largely idle wireless

network link will likely pre-fetch documents across the wireless link to achieve the
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greatest latency reduction. However, a client that is charged per byte crossing the

link may prefer to pre-fetch only to the remote end of the link to circumvent any

latency in the �xed network. In general, the needs of a client are dependent on

the client's situation and that situation is not easily accommodated by intelligent

network systems.

Intelligent networks, like network applications, enable code executing in the

network to enhance application performance. However, because intelligent networks

perform tasks selected by network operators, they are best suited to serving large

numbers of users. Users with speci�c or unique needs may �nd the o�ered services

to be non-optimal or desired services non-existent. Intelligent networks and network

applications, then, are not competing solutions but complementary solutions to a

single problem.

4.6 Summary

We have seen how network application infrastructures draw on concepts also used

in other areas to create a new architecture. Like intelligent networks, code executed

within the network, between the participants of a distributed system, can perform

tasks that cannot be accomplished at the edges of the system. Like mobile agents

and active networks, they allow applications to select code to be run remotely in

a secure environment. By combining code mobility, security, and several other

concepts exhibited by the systems described here, network applications o�er more

than the individual systems o�er collectively.
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Chapter 5

Conclusions

Traditional distributed applications typically followed a client/server model: clients

and servers run on di�erent machines communicating through an opaque network

\cloud" using a standardized protocol. Sometimes this simple model is inadequate

for an application, either because the does not satisfy the needs of a particular user

or application instance, or because the server does not o�er a particular service

desired by the application.

A network application infrastructure aims to meet the needs of such applica-

tions by extending application functionality into the network. Speci�cally, network

applications can start portions of their code at remote network locations as exten-

sions. Extensions operate as part of the application, but execute remotely.

5.1 Network Applications and Jay

By starting code at remote network locations, applications can perform certain tasks

more e�ciently, and certain applications can be implemented that would otherwise

be impossible using traditional distributed system techniques. Using network ap-

plications, e�ciency can be improved to the bene�t of both the network and the

user by monitoring data remotely and transmitting only important events to the
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base; by transforming an existing protocol into one more suited to the application

by compression, distillation, or other �ltering; or a variety of other techniques. In

addition to merely optimizing existing interactions, network applications enable oth-

erwise impossible tasks such as high-bandwidth, real-time interaction with a remote

resource; access to services available only locally on a remote host; protocol con-

version to an encrypted form or between network-level protocols at gateways; or

network monitoring and diagnosis from remote network locations.

These sample applications demand a variety of capabilities from the infras-

tructure. Besides the vital tasks of module transmission, module reception, and

communications a network application must allow for heterogeneity, remote resource

access, performance, versioning, security, fault tolerance, concurrency control, and

software development tools. Since a network application infrastructure must inte-

grate smoothly with existing facilities to allow a base and extension to communicate

easily, the implementation details of these capabilities depend highly on the existing

facilities. However, a variety of concerns are common to network application infras-

tructures and we have examined options and tradeo�s of their implementation.

The Jay system demonstrates a network application infrastructure incorpo-

rating most of the capabilities, with an emphasis on communication and security.

It is intended to reveal implementation complexities and, through sample applica-

tions, demonstrate the e�ectiveness of network applications. The Multi-Host Ping

and Lightcycles applications both demonstrate the use of a network application

infrastructure to accomplish tasks that cannot be implemented as traditional ap-

plications. Both run portions of their code remotely in a secure environment using

highly cohesive communication between the base and extensions to tightly integrate

application modules.
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5.2 Conclusions

Our examination of network applications and the prototype implementation, Jay,

shows that network applications meet the goals initially set forth. They are an e�ec-

tive technique for extending application functionality into the network in a secure

and cohesive manner. Jay shows that, in additional to making network applications

possible, an infrastructure can be designed to do so with minimal additional code

and minimal modi�cations to familiar design patterns. Jay applications can be writ-

ten in a fairly natural and intuitive form with only a few lines of additional code

to start an extension. Only time and experience can show whether the advantages

of the techniques presented here are su�cient to encourage their use, but the ideas

behind network applications o�er a new way to think about application design.

5.3 Future Work

This thesis presents the ideas of network applications and a prototype infrastructure.

Although the results are promising, there is room for further research. That research

should focus on revealing the advantages and shortcomings of network applications

through experimental implementations. First, Jay could be extended to improve the

functionality of certain capabilities. Communication between extensions currently

allows careless extension developers to introduce security vulnerabilities by uninten-

tionally exposing references to con�dential information. Vitek [VST97] suggests a

more secure alternative. Security could be integrated with a more complete public

key infrastructure [Bra97] to allow new principals to identify themselves. Standard

fault tolerance techniques could aid failure recovery, although such techniques are

often more easily and more e�ciently implemented by the application. Finally, a

debugger modeled after AgentTcl's AGDB would be an obvious addition to the

development tools. The resulting more complete infrastructure would allow more

complete testing of network applications.
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A second step in exploring the advantages of network applications would

be to implement more signi�cant applications, possibly on a large and widely dis-

tributed network of environments. Information monitoring and knowledge gathering

applications would �t naturally into the infrastructure, as would existing applica-

tions optimized to take advantage of the ability to change network behavior. Such

applications would undoubtedly reveal additional desirable capabilities.

Third, subjecting a well developed network application infrastructure to rig-

orous tests of speed and sensitivity to network properties would allow for further

optimization of the infrastructure. Micro-benchmarks measuring speci�c infrastruc-

ture operations would aid in �ne-tuning and help application developers to determine

a priori the cost and bene�ts of using the infrastructure. Application benchmarks

would o�er an overview of the performance of common sequences of operations. For

example, an application to synchronize directories on distinct hosts could be written

as a traditional application using an existing FTP server, as a network application

using the same FTP server but running an extension near the FTP server, and as a

network application with direct access to the �le system through the system API.

The speed, reliability and improved functionality of the network application would

be a valuable result.

In all, network applications successfully combine ideas from a collection of

related �elds to create a novel approach to distributed application development. At

the same time, the existing research leaves room for both re�nement and innovation.
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