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Abstract

We consider the problem of deciding whether a polygonal knot in 3-

dimensional Euclidean space is unknotted, capable of being continuously

deformed without self-intersection so that it lies in a plane. We show

that this problem, unknotting problem is in NP. We also consider the

problem, unknotting problem of determining whether two or more such

polygons can be split, or continuously deformed without self-intersection

so that they occupy both sides of a plane without intersecting it. We show

that it also is inNP. Finally, we show that the problem of determining the

genus of a polygonal knot (a generalization of the problem of determining

whether it is unknotted) is in PSPACE. We also give exponential worst-

case running time bounds for deterministic algorithms to solve each of

these problems. These algorithms are based on the use of normal surfaces

and decision procedures due to W. Haken, with recent extensions by W.

Jaco and J. L. Tollefson.
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1 Introduction

The problems dealt with in this paper might reasonably be called \computa-

tional topology"; that is, we study classical problems of topology (speci�cally,

the topology of 1-dimensional curves in 3-dimensional space) with the objective

of determining their computational complexity. One of the oldest and most

fundamental of such problems is that of determining whether a closed curve

embedded in space is unknotted (that is, whether it is capable of being contin-

uously deformed without self-intersection so that it lies in a plane). Topologists

study this problem at several levels, with varying meanings given to the terms

\embedded" and \deformed". The level that seems most appropriate for study-

ing computational questions is that which topologists call piecewise-linear. At

this level, a closed curve is embedded in space as a simple (non-self-intersecting)

polygon with �nitely many edges. Such an embedding is called a knot. (Oper-

ating at the piecewise-linear level excludes wild knots, such as those given by

certain polygons with in�nitely many edges which do not have nice neighbor-

hoods or thickenings.) More generally, one may study links. A link is a �nite

collection of simple polygons disjointly embedded in 3-dimensional space. The

individual polygons are called components of the link and a knot is a link with

one component.

A continuous deformation is required to be piecewise-linear; that is, it con-

sists of a �nite number of stages, during each of which every vertex of the

polygon moves linearly with time. From stage to stage the number of edges in

the polygon may increase (by subdivision of edges at the beginning of a stage)

or decrease (when cyclically consecutive edges become collinear at the end of a

stage). If the polygon remains simple throughout this process, the deformation

is called an isotopy between the initial and �nal knots. Knot isotopy de�nes an

equivalence relation, called equivalence of knots. It is easy to see that all knots

that lie in a single plane are equivalent; knots in this equivalence class are said

to be unknotted or trivial knots.

We may remark at this point that while it is \intuitively clear" that there

are non-trivial knots, it is not at all obvious how to prove this. Stillwell [37]

traces the mathematical notion of knot back to a paper of A. T. Vandermonde

in 1771; the �rst convincing proof of the non-triviality of a knot seems to be

due to Max Dehn [8] in 1910.

There are a great many alternative formulations of the notion of knot equiv-

alence. Here are some.

1. One can consider sequences of elementary moves, which are very simple

isotopies that move a single edge across a triangle to the opposite two

sides, or vice versa.

2. One can consider ambient isotopies that move not only the knot, but also

the space in which it is embedded, in a piecewise-linear way.

3. One can consider homeomorphisms (continuous bijections that have con-

tinuous inverses) that map the space to itself in a piecewise-linear way,
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are orientation preserving, and send one knot to the other.

One can also study knots or links by looking at their projections onto a generic

plane. In this way, a knot or link may be represented by a planar graph, called

a knot diagram or link diagram, in which all vertices (representing the crossings

of edges of the polygon) have degree four, and for which an indication is given

at each crossing of which edge goes \over" and which edge goes \under". This

gives an additional formulation of equivalence:

4. One may consider sequences of Reidemeister moves, which are simple

transformations on the diagram of a knot that leave the equivalence class

of the knot unchanged.

For more details on piecewise-linear topology, the various formulations of knot

and link equivalence, and many other aspects of knot theory, we recommend

the books [1], [6], [30]. An introduction to the notions of complexity which we

use can be found in [9],[41].

In order to study the computational complexity of knot and link problems,

we must agree on a �nite computational representation of a knot or link. There

are two natural representations: a polygonal representation in 3-dimensional

space, or a link diagram representing a 2-dimensional projection.

A polygonal representation of a link L consists of a set of simple polygons in

3-dimensional space described by listing the vertices of each polygon in order;

we assume that these vertices have rational coordinates. We can reduce to

the case of integer lattice point vertices by replacing L by a scaled multiple

mL for a suitable integer m. This does not change the equivalence class of

L. A particularly simple kind of polygonal representation uses only integer

lattice points as vertices and edges of unit length, so that the polygon is a

closed self-avoiding walk on the integer lattice; a sequence of moves (up, down,

north, south, east, west) that traverse the polygon, returning to the starting

point without visiting any other point twice. (This formulation was used by

Pippenger [27] and Sumners and Whittington [39] to show that \almost all"

long self-avoiding polygons are non-trivially knotted.) The size of a polygonal

representation L is the number of edges in L; its input length is the number of

bits needed to describe its vertices, in binary.

A link diagram D is a planar graph with some extra labeling for crossings

that speci�es a (general position) two-dimensional projection of a link. A precise

de�nition is given in Section 3. The size of a link diagram is the number of

vertices in D.

These two representations are polynomial-time equivalent in the following

sense. Given a polygonal representation L one can �nd in polynomial time in

its input length a planar projection yielding a link diagram D; if L has n edges

then the graph D has at most O(n2) vertices. Conversely given a link diagram

D with n vertices and l components, one can compute in time polynomial in

n+ l a polygonal link L with O(n+ l) edges that has integer vertices and input

length O(n+ l) and which projects in the z-direction onto the link diagram D;

see Section 7.

3



In this paper we consider knots and links as represented by link diagrams and

take the crossing number as the measure of input size. We can now formulate

the computational problem of recognizing unknotted polygons as follows:

Problem: UNKNOTTING PROBLEM

Instance: A link diagram D.

Question: Is D a knot diagram that represents the trivial knot?

See Welsh [41]|[43] for more information on this problem. The main result

of this paper is the following.

Theorem 1.1 The unknotting problem is in NP.

The unknotting problem was shown to be decidable by Haken [10]; the

result was announced in 1954, and the proof published in 1961. From then

until now, we know of no strengthening of Haken's decision procedure to give

an explicit complexity bound. We present such a bound in Theorem 8.1.

We also study the splittability of links. A link is said to be splittable if it

can be continuously deformed (by a piecewise-linear isotopy so that one or more

curves of the link can be separated from one or more other curves by a plane

that does not itself intersect any of the curves. We note that this notion remains

unchanged if we replace \plane" by \sphere" in the de�nition. We formulate

the computational problem of recognizing splittable links as follows.

Problem: SPLITTING PROBLEM

Instance: A link diagram D.

Question: Is the link represented by D splittable?

The splitting problem was shown to be decidable by Haken [10] in 1961,

see also Schubert [34]. We establish the following result.

Theorem 1.2 The splitting problem is in NP.

Another generalization of the unknotting problem concerns the genus g(K)

of a knot K. This is an integer assoicated to each knot, which is invariant

under isotopy. It was de�ned by Seifert [36] in 1935; an informal account of

the de�nition follows. Given a knot K, consider the class S(K) of all orientable

spanning surfaces for K; that is, embedded orientable surfaces that have K as

their boundary. Seifert showed that this class is non-empty for any knot K.

We assume in this discussion that all surfaces are triangulated and embedded

in a piecewise-linear way. Up to piecewise-linear homeomorphism, an orientable

surface is characterized by the number of boundary curves and the number of

\handles", which is called the genus of the surface. The genus g(K) of the knot

K is de�ned to be the minimum genus of any surface in S(K). Seifert showed

that a trivial knot K is characterized by the condition g(K) = 0. Since an

orientable surface with one boundary curve and no handles is homeomorphic to

a disk, this means that a knot is trivial if and only if it has a spanning disk.
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The notion of genus gives us a natural generalization of the problem of

recognizing unknotted polygons; we formulate the problem of computing the

genus as a language-recognition problem in the usual way.

Problem: GENUS PROBLEM

Instance: A link diagram D and a natural number k.

Question: Does the link diagram D represent a knot K with g(K) � k?

Haken [10] also gave a decision procedure to determine the genus of a knot.

We establish the following result.

Theorem 1.3 The genus problem is in PSPACE.

In 1961 Schubert [34] extended Haken's methods to show the decidability

of the genus problem on an arbitrary compact 3-manifold with boundary.

(In this more general situation, it is necessary to �rst determine whether there

exists any orientable surface which has the given embedded knot as boundary,

and if so, determine the minimal genus.) Our analysis in principle extends to

this case.

We also obtain exponential worst case running time bounds for deterministic

algorithms to solve the above three problems. The input size n is measured by

the crossing measure of a link diagram. For the unknotting problem and the

splitting problem these algorithms run in time O(2cn) and space O(n log2 n)

on a Turing machine. We show that the genus g(K) for a knot K presented

as a knot diagram K can be computed in time O(2cn
2

) and space O(n2), on a

Turing machine.

The results in this paper were announced in the Proceedings of the 38th

Annual Symposium on Foundations of Computer Science in Miami Florida in

October, 1997 [13].

2 Historical Background

Recognizing whether two knots are equivalent has been one of the motivating

problems of knot theory. A great deal of e�ort has been devoted to a quest for

algorithms for recognizing the unknot, beginning with the work of Dehn [8] in

1910. Dehn's idea was to look at the fundamental group of the complement of

the knot, for which a �nite presentation in terms of generators and relations can

easily be obtained from a standard presentation of the knot. Dehn claimed that

a knot is trivial if and only if the corresponding group is in�nite cyclic. The

proof of what is still known as \Dehn's Lemma" had a gap, which remained until

�lled by Papakyriakopoulos in 1957 [26]. A consequence is the criterion that a

curve is knotted if and only if the fundamental group of its complement is non-

abelian. Dehn also posed the question of deciding whether a �nitely presented

group is isomorphic to the in�nite cyclic group. During the 1950's it was shown

that many such decision problems for �nitely presented groups, not necessarily

arising from knots, are undecidable (see Rabin [28], for example), thus blocking
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this avenue of progress. The avenue has been traversed in the reverse direction,

however: there are decision procedures for restricted classes of �nitely presented

groups arising from topology. In particular, computational results for properties

of knots that are characterized by properties of the corresponding groups can

be interpreted as computational results for knot groups.

Abstracting somewhat from Dehn's program, we might try to recognize knot

triviality by �nding an invariant of the knot that (1) can be computed easily

and (2) assumes some particular value only for the trivial knot. (Here invari-

ant means invariant under isotopy.) Thus Alexander [2] de�ned in 1928 an

invariant AK(x) (a polynomial in the indeterminate x) of the knot K that can

be computed in polynomial time. Unfortunately, it turns out that many non-

trivial knots have Alexander polynomial AK(x) = 1, the same as the Alexander

polynomial of the trivial knot.

Another invariant that has been investigated with the same hope is the

Jones polynomial JK(x) of a knot K, discovered by Jones [22] in 1985. In this

case the complexity bound is less attractive: the Jones polynomial for links (a

generalization of the Jones polynomial for knots) is#P-hard and in FP#P
(see

Jaeger, Vertigan and Welsh [21]). It is an open question whether trivial knots

are characterized by their Jones polynomial. Even this prospect, however, has

led Welsh [41] to observe that an a�rmative answer to the last open question

would yield an algorithm in P#P for recognizing trivial knots, and to add: \By

the standards of the existing algorithms, this would be a major advance."

The revolution started by the Jones polynomial has led to the discovery of

a great number of new knot and link invariants, including Vassiliev invariants

and invariants associated to topological quantum �eld theories, see Birman [4]

and Sawin [32]. The exact ability of these invariants to distinguish knot types

has not been determined.

A di�erent approach to the problems of recognizing unknottedness and de-

ciding knot equivalence eventually led to decision procedures. This approach

is based on the study of normal surfaces in 3-manifolds (de�ned in Section 3),

which was initiated by Kneser [23] in 1929. In the 1950's Haken developed

the theory of normal surfaces, and obtained a decision procedure for unknot-

tedness in 1961. Haken considered compact orientable 3-manifolds. Schubert

[34] extended Haken's procedure to decide the knot genus problem and related

problems on arbitrary compact 3-manifolds with boundary. Haken also outlined

an approach via normal surfaces to decide the knot equivalence problem

[40]:

Problem: KNOT EQUIVALENCE PROBLEM

Instance: Two link diagrams D1 and D2.

Question: Are D1 and D2 knot diagrams of equivalent knots?

The �nal step in this program was completed by Hemion [14] in 1979. This

program actually solves a more general decision problem, concerning a large class

of 3-manifolds, now called Haken manifolds, which can be cut into \simpler"

6



pieces along certain surfaces (incompressible surfaces), eventually resulting in

a collection of 3-balls. Knot complements are examples of Haken manifolds.

It gives a procedure to decide if two Haken manifolds are homeomorphic [18].

Recent work of Jaco-Oertel [18] and Jaco-Tollefson [20] further simpli�ed some

of these algorithms.

Apart from these decidability results, there appear to be no explicit complex-

ity bounds, either upper or lower, for any of the three problems that we study.

The work of Haken [10] and Schubert [34] predates the currently used frame-

work of complexity classes and hierarchies. Their algorithms were originally

presented in a framework (handlebody decompositions) that makes complex-

ity analysis di�cult, but it was recognized at the time that implementation of

their algorithms would require at least exponential time in the best case. More

recently Jaco and others reformulated normal surface theory using piecewise

linear topology, but did not determine complexity bounds. Other approaches to

knot and link algorithms include methods related to Thurston's geometrization

program for 3-manifolds (see [11] for a survey) and methods based on encod-

ing knots as braids (see Birman-Hirsch [5]). These approaches currently have

unknown complexity bounds.

Our results are obtained using a version of normal surface theory as de-

veloped by Jaco-Rubinstein [19]. Among other things we show that Haken's

original approach yields an algorithm which determines if a knot diagram with

n crossings is unknotted in time O(exp(cn2)), and that the improved algorithm

of Jaco-Tollefson runs in time O(exp(cn)), see Theorem 8.1. The complexity

class inclusions that we prove require some additional observations.

3 Knots and Links

A knot is an embedding f : S1 ! R
3 , although it is usually identi�ed with

its image K = f(S1); we are thus considering unoriented knots. A link with

k components is a collection of k knots with disjoint images. An equivalent

formulation regards a knot as an embedding in the one-point compacti�cation

S3 of R 3 , and we will sometimes use this setting.

Two knots K and K 0 are ambient isotopic if there exists a homotopy ht :

R
3 ! R

3 for 0 � t � 1 such that h0 is the identity, each ht is a homeomorphism,

and h1(K) = K 0. We shall also say in this case that K and K 0 are equivalent

knots. Since we consider unoriented knots, we will also set two knots equivalent

if they are equal after composing with a re
ection of S1. Our results work

equally well for oriented or unoriented knots.

A knot or link is tame if it is ambient isotopic to a piecewise-linear knot or

link, abbreviated as PL-knot or PL-link, and also called a polygonal knot or

link. This paper considers PL-knots and links. Given this restriction, we can

without further loss of generality restrict our attention to the piecewise-linear

settings (see Moise [24]).

A regular projection of a knot or link is an orthogonal projection into a plane

(say z = 0) that contains only �nitely many multiple points, each of which is a
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double point with transverse crossing. Any regular projection of a link gives a

link diagram D, which is an undirected labeled planar graph such that:

1. Connected components with no vertices are loops, simple closed curves

disjoint from the rest of the diagram.

2. Each non-loop edge meets a vertex at each of its two ends (possibly the

same vertex), and has a label at each end indicating an overcrossing or

undercrossing at that end.

3. Each vertex has exactly four incident edges, two labeled as overcrossings

and two labeled as undercrossings, and has a cyclic ordering of the incident

edges that alternates overcrossings and undercrossings.

Conversely, every labeled planar graph satisfying these conditions is a link dia-

gram for some link.

Given a link diagram, if we connect the edges across vertices according to the

labeling, then the diagram separates into k edge-connected components, where

k is the number of components in the link. A knot diagram is a link diagram

having one component. A trivial knot diagram is a single loop with no vertices.

It is straightforward to see that all knots with the same diagram are isotopic.

We de�ne the crossing measure of a link diagram D to be the number of ver-

tices in the diagram, plus the number of connected components in the diagram,

minus one.

n = #(vertices of L) + #(connected components)� 1 : (1)

For knot diagrams, the crossing measure is equal to the crossing number, which

is the number of vertices in the diagram. A trivial knot diagram is the only

link diagram with crossing measure zero. All other link diagrams have strictly

positive crossing measure.

A knot diagram is the unknot (or is unknotted) if there is a knot K having

this diagram that is ambient isotopic to a knotK 0 having a trivial knot diagram.

One can convert a knot diagram to any other diagram of an equivalent knot

by a �nite sequence of combinatorial transformations called Reidemeister moves.

Reidemeister showed that a knot diagram K is unknotted if and only if there is a

�nite sequence of Reidemeister moves that convert it to the trivial knot diagram.

In this sense the unknotting problem is a purely combinatorial problem, though

with no obvious bound on the number of steps, see [12], [42].

4 Unknottedness Criterion

Our approach to solving the unknotting problem, based on that of Haken, relies

on the following criterion for unknottedness: A PL-knot K embedded in R
3 is

unknotted if and only if there exists a piecewise-linear disk D embedded in R
3

whose boundary @D is the knot K transversed once. We call such a disk D a

spanning disk. We shall actually use a weaker unknottedness criterion, given in
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Lemma 4.1 below. It does not deal with a spanning disk of K, but rather with

a spanning disk of another knot K 0 which is ambient isotopic to K.

Given a PL-knot K, let T be a �nite triangulation of S3 containing K in its

1-skeleton, where the 3-sphere S3 is the one-point compacti�cation of R 3 , and

the point \at in�nity" is a vertex of the triangulation. Barycentrically subdivide

T twice to obtain a triangulation T 00, and letMK = S3�RK denote the compact

triangulated 3-manifold with boundary obtained by deleting the open regular

neighborhood RK of K. Here RK consists of all open simplices whose closure

intersects K. The closure �RK of RK is a solid torus neighborhood of K, a

solid torus containing K as its central axis, and its boundary @RK = @MK is

homeomorphic to a 2-torus. See [15] for details of this construction. Each of

RK , MK and @RK = @MK are triangulated by simplices in T 00. We call the

manifold MK a knot complement manifold.

We call a triangulation of MK = S3 � RK constructed as above a good

triangulation of MK . Similarly we de�ne a good triangulation of a link com-

plement manifold. For any good triangulation of MK , the homology group

H1(@MK ;Z) � Z � Z, since @MK is a 2-torus. The kernel of the homology

homomorphism induced by the inclusion map of @MK into MK is in�nite cyclic

(see Theorem 3.1 of [6] for a proof.) We take as generator (1; 0) the homology

class of a �xed closed oriented simple closed curve which is the boundary @B

of an essential disk B in RK (a meridian) and as generator (0; 1) the homology

class of a �xed closed oriented circle in @MK that has algebraic intersection

1 with the meridian and algebraic linking number 0 with K (a longitude). A

simple closed curve in @RK whose homology class is trivial in the 3-manifold

RK but not in the surface @RK is a meridian. A simple closed curve in @RK

whose homology class is trivial in the 3-manifold MK but not in the surface

@RK is a longitude. The homology classes of a meridian and a longitude are

well-de�ned up to orientation.

A compact surface S with boundary @S in a compact 3-manifold with bound-

ary (M;@M) is said to be properly embedded if it does not intersect itself and

if S \ @M = @S. A surface S is essential in M if it is properly embedded in

M , cannot be homotoped into @M while holding @S �xed, and its fundamental

group �1(S) injects into �1(M) (this last condition describes what topologists

call an incompressible surface, see Hempel [15]). In particular, a disk S that

is properly embedded in a 3-manifold (M;@M) is essential when @S does not

bound a disk in @M . In the case of a knot complement MK , a properly em-

bedded disk is essential if and only if the homology class [@S] 6= (0; 0), in @M ,

which happens if and only if removing [@S] does not increase the number of

connected components of @M .

Lemma 4.1 Let K be a polygonal knot, and let MK be any good triangulation

of S3 �K.

(1) If K is knotted, then there exists no essential disk in MK .

(2) If K is unknotted, then there exists an essential disk in MK . Further-

more any essential disk S has boundary @S representing the homology
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class [@S] = (0;�1) in H1(@MK ;Z).

Proof.

(1) An essential disk can be used to give an ambient isotopy from K to the

unknot.

(2) For a knot projecting to give a trivial knot diagram, the existence of an

essential disk in MK is clear. For an equivalent knot K, the ambient

isotopy carrying a knot with trivial projection to K carries the above disk

to an essential disk for K. The homotopy class [@S] 6= (0; 0) since S is

an essential disk. The boundary of S is a longitude, representing the two

possible generators (0;�1) of the kernel of the �rst homology of @MK

under the inclusion map of @MK into MK . �

The Haken algorithm provides a spanning disk for the boundary @S. The

homology condition on [@S] certi�es that @S is an unoriented knot that is equiv-

alent to K.

The usefulness of the extra condition on [@S] is that it can be detected by

homology with Z=2Z-coe�cients.

Lemma 4.2 If K is a PL-knot and a good triangulation MK = S3 � RK con-

tains a properly embedded PL-surface S that is homeomorphic to a disk whose

boundary @S has homology class in H1(@MK ;Z=2Z) � Z=2Z�Z=2Z that is not

trivial, then K is unknotted. Conversely, for any unknotted K the manifold MK

contains such a surface.

Proof. This follows from Lemma 4.1, since Z=2Z-homology is obtained by

reducing modulo 2. �

For later use, we recall the simple fact that triangulated surfaces that are

topological disks can be recognized by their Euler characteristic �(S) = v�e+f ,

where v; e; f count vertices, edges and faces in the triangulation.

Lemma 4.3 If S is a connected triangulated surface in R
3 whose Euler char-

acteristic �(S) = 1 and @S 6= ;, then S is homeomorphic to a disk.

Proof. All connected surfaces have �(S) � 2. The only surface with �(S) = 2

is the sphere, which has @S = ;. The only surfaces with �(S) = 1 are the disk

and the projective plane. The projective plane has @S = ;. �

5 Normal Surfaces

We work in the piecewise-linear category and let (M;@M) be a compact trian-

gulated 3-manifold with boundary. Haken's algorithm solves the unknottedness

problem by �nding a �nite list of properly embedded PL-surfaces in a good tri-

angulation ofMK = S3�RK , such that, if K is the unknot, this list will include
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an essential disk satisfying the conditions of Lemma 4.2. More generally, the

list contains a minimal genus embedded surface bounding the knot. We will use

a variation of Haken's theory based on triangulations.

A normal surface of M , with respect to a given triangulation, is a surface

S �M such that

(1) S is properly embedded in M .

(2) The intersection of S with any simplex in the triangulation is transverse.

The intersection of S with any tetrahedron is a �nite disjoint union of

disks, called elementary disks. Each elementary disk is a curvilinear tri-

angle or quadrilateral, whose vertices are contained on di�erent edges of

the tetrahedron. A disk type is an equivalence class of elementary disks,

where two are equivalent if they can be deformed to one another by an

isotopy preserving each tetrahedron.

We are taking all disks and simplices in the above to be closed. We allow a

normal surface to have more than one connected component, and to be non-

orientable1. Individual connected components may be orientable or nonori-

entable surfaces.

A normal surface has associated to it combinatorial data which speci�es

the number of each disk type that appear in the intersection of S with each

tetrahedron in the triangulation ofM . For a given tetrahedron, each elementary

disk separates the 4 vertices into two nonempty sets; there are seven possibilities,

consisting of 4 types of triangles which separate one vertex from the other three,

and 3 types of quadrilaterals which separate two vertices from the other two.

If there are t tetrahedra in the triangulation of M then there are 7t pieces

of combinatorial data, which specify the number of each disk type in the t

tetrahedra. We represent this combinatorial data as a nonnegative vector

v = v(S) 2 Z
7t ; (2)

by choosing a �xed ordering of tetrahedra and of the disk types. We call v(S)

the normal coordinates of S.

When does a vector v 2 Z
7t give the normal coordinates for some normal

surface S? We call such vectors admissible. There are some obvious constraints

on such integer admissible vectors v 2 Z
7t .

(i) Nonnegativity conditions. v = (v1; : : : ;v7t) has each vi � 0.

(ii) Matching conditions. Suppose two tetrahedra T1; T2 in the triangulation

have a common face F . Each disk type in T1 and T2 produces either zero

or one edge in F which intersects a given two of the three sides of F . The

number of edges induced between each side-pair of F coming from disk

types in T1 must equal that coming from T2.

1Some authors require a normal surface to be connected. They call the concept we use a
system of normal surfaces.
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(iii) Quadrilateral conditions. In each tetrahedron in the triangulation at most

one type of quadrilateral can occur.

The quadrilateral conditions (iii) hold because any two quadrilaterals of di�erent

types placed in a tetrahedron must intersect, which violates the embeddedness

property of normal surfaces.

We note at this point that each admissible vector v = v(S) determines a

normal surface S which is unique up to a normal isotopy, an isotopy leaving the

triangulation of M invariant. We denote this normal surface by S(v). Unique-

ness holds, up to normal isotopy, because there is only one combinatorial way to

disjointly pack into a tetrahedron a given number (n1; n2; : : : ;n7) of disk types

that satisfy the quadrilateral condition. The triangles of types 1; 2; 3 and 4 are

stacked in parallel close to the vertex that they separate from the other three

vertices, all the quadrilaterals of the one type that occur (5; 6 or 7) are arranged

parallel to each other in the center of the tetrahedron. See Figure 1.

Figure 1: Elementary disks in a normal surface.

The necessary conditions given above for a vector v 2 Z
7t to be admissible

are also su�cient.

Theorem 5.1 (Haken's Hauptsatz) Let M be a triangulated compact 3-manifold

with boundary, which consists of t tetrahedra. Any integer vector v 2 Z
7t that

satis�es the nonnegativity conditions, matching conditions and the quadrilateral

conditions gives the normal coordinates v(S) of some normal surface S in M ,

which is unique up to ambient isotopy.

Proof. This is Hauptsatz 2 of Haken [10]. It follows easily by noting that the

matching conditions ensure that there is a unique way to match up the bound-

aries of the elementary disks speci�ed in each tetrahedron to form a normal

surface. �

This result characterizes the set WM of all admissible vectors of normal

surfaces as a certain set of integer points in a rational polyhedral cone in R
7t .

We de�ne the Haken normal cone CM to be the polyhedral cone in R
7t cut out

by the nonnegativity conditions and matching conditions. The points in WM

are then just the integer points in the Haken normal cone CM that satisfy the

quadrilateral conditions.
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Haken observed that the size of the integer vector v(S) measures the com-

plexity of the normal surface. De�ne the weight wt(S) of the normal surface S

to be the number of times it intersects the 1-skeleton of M .

Lemma 5.2 Suppose that v1; v2; v3 2 Z
7t lie in Haken's normal cone CM and

that

v1 + v2 = v3 : (3)

If v3 = v(S3) is admissible, then so are v1 and v2, so that v1 = v(S1) and

v2 = v(S2). The Euler characteristics of these surfaces satisfy

�(S) = �(S1) + �(S2) ; (4)

and their weights satisfy

wt(S) = wt(S1) + wt(S2) : (5)

Proof. The �rst fact follows from Theorem 5.1. For next two, Haken [10]

showed that S is constructed from S1 and S2 by a \cutting and pasting" oper-

ation called regular exchange, which yields (4) and (5). �

The \simplest" normal surfaces are thus those surfaces S such that v(S) 6=

v(S1)+v(S2) for any other (nonempty) normal surfaces S1 and S2. Haken calls

these fundamental surfaces, and the corresponding vectors v(S) fundamental

solutions. He proves that there are only �nitely many fundamental surfaces; see

Section 6.

Lemma 5.3 If S is a fundamental surface for (M;@M), then S is connected.

Proof. If a normal surface S is disconnected, then S = S1 [ S2 where S1
and S2 are disjoint nonempty normal surfaces. Now v(S) = v(S1) + v(S2),

contradicting S being a fundamental surface. �

The basis of Haken's unknotting algorithm and knot genus algorithm is the

following result.

Theorem 5.4 (Haken) Let (M;@M) be a triangulated compact piecewise-linear

3-manifold M with nonempty boundary, which contains no embedded projective

plane. If M contains an essential surface with non-empty boundary, then it

contains such an essential surface of minimal genus, and this surface is a fun-

damental normal surface.

Proof. See Chapter 5 of Haken [10] or Section 5 of Schubert [34] or [19],[18],[20]. �

This yields:

Corollary 5.5 Let MK be a knot complement manifold. There exists a properly

embedded orientable surface S in MK whose boundary is a longitude in @MK

which is of minimal genus among all such surfaces, and which is a fundamental

normal surface.

13



Proof. A knot complement manifold MK contains no embedded projective

plane, since MK can be embedded in S3. Furthermore a minimal genus surface

with boundary a longitude in @MK is an essential surface in MK [15]. Theo-

rem 5.4 now gives an essential surface of minimal genus which is a fundamental

normal surface. �

In the special case where K is unknotted, i.e. K is of genus zero, Jaco

and Tollefson [20] improved Haken's criterion given in Theorem 5.4. We call

a normal surface S in M a vertex surface if v(S) lies on an extremal ray (1-

dimensional face) of the Haken normal cone CM . In this case we call v(S) a

vertex solution of CM . The notion of a vertex surface was introduced by Jaco

and Oertel [18], who imposed the addtional requirement that it be a connected

orientable surface that is either a fundamental surface or twice a fundamental

surface. The last case can occur when a surface S is the boundary of a regular

neighborhood of another surface which is one-sided. However �(S) is even in

this case, so that this case cannot occure when the surface is a disk.

Theorem 5.6 (Vertex Surface Theorem) If a triangulated compact 3-manifold

M with nonempty boundary @M contains an essential disk, then it contains such

a disk which is a vertex surface.

Proof. This is an immediate consequence of Corollary 6.4 of Jaco and Tollef-

son [20]. �

The theory of normal surfaces can also be applied to determine the splitta-

bility of links.

Theorem 5.7 (Splittability Criterion) A link L is splittable if and only if

any link complement manifold ML contains a fundamental normal 2-sphere S

that separates two components of @ML.

Proof. This is established in Section 4 of Schubert [34], who attributes the

result to Haken [10]. See also [19] [20] �

This result was strengthened by Jaco and Tollefson [20].

Theorem 5.8 If a link complement manifold ML contains a normal 2-sphere

S which separates two components of @ML, then it contains such a sphere that

is a vertex surface.

Proof. This follows from Theorem 5.2 [20]. �

To check that a sphere S separates two components of @ML it su�ces to

exhibit a path in the 1-skeleton of ML that connects two components of @ML

and whose intersection number with S is odd.

For the complexity analysis, we must give bounds for the number of vectors

v in the exhausting set, and for the sizes jjvjj1 of these vectors, where the size

is

jjvjj1 :=

7tX

i=1

vi : (6)

14



We address these questions in the next section. Then in Section 7 we deal with

the problem of constructing the triangulated 3-manifold MK = S3 � RK from

a knot diagram K. Sections 8{10 give the complexity analysis.

6 Bounds for Fundamental Solutions and Hilbert

Bases

We bound the number and size of fundamental solutions in the Haken normal

cone CM of an arbitrary triangulated compact 3-manifoldM with boundary @M

that contains t tetrahedra. The system of linear inequalities de�ning Haken's

normal cone CM has the form:

vi � 0 (1 � i � 7t) ; (7)

vk1 + vk2 = vk3 + vk4 (at most 6t equations) : (8)

The matching conditions (8) all involve exactly four variables as indicated, be-

cause only two of the seven disk types in a tetrahedron T have edges parallel

to one speci�ed edge on one face of T . There are at most 6t such equations be-

cause the t tetrahedra have between them 12t such edge pairs, and each equation

matches two pairs that occur in no other equation. (There will be strictly less

than 6t equations ifM has nonempty boundary.) The cone CM is a pointed cone,

(i.e. it contains no line) because it is contained in the positive orthant R 7t+ . It

is not full-dimensional because it has equality constraints, but (8) implies

t � dimR(CM ) � 7t : (9)

It is a rational cone because it is cut out by rational equality and inequality

constraints; equivalently, each of its extreme rays contains an integral vector.

The concept of fundamental solutions of CM is closely related to that of a Hilbert

basis for the rational cone CM . Given a (homogeneous) rational cone C in R
m ,

its set of integral points

C(Z) := C \ Z
m (10)

forms a semigroup under addition. An (integral) Hilbert generating set G for

C is any �nite set of generators for C(Z). If C is a pointed rational cone, then

C has a unique minimal generating set H, see Schrijver[33, Theorem 16.4]. It

consists exactly of all elements v 2 C(Z) which are minimal in the sense that

v 6= v1 + v2 for any nonzero v1;v2 2 C(Z) : (11)

We call this set H = H(C) the minimal Hilbert basis of C. By de�nition, any

fundamental solution of CM is in the minimal Hilbert basis H(CM ). There may,

however, be elements in H(CM ) that are not fundamental solutions because they

violate the quadrilateral conditions.

A minimal vertex solution of a pointed homogeneous rational cone C in R
m

is the smallest nonzero integral point on any extreme ray (1-dimensional face)
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of the cone C. A minimal vertex solution is always in the minimal Hilbert basis

H(C), because the only points in C that it can be a convex combination of are

other points in the ray R+v = f�v : � � 0g. By de�nition a fundamental vertex

solution of the Haken cone CM is a minimal vertex solution of CM .

Lemma 6.1 Let M be a triangulated compact 3-manifold, possibly with bound-

ary, that contains t tetrahedra in the triangulation.

(1) Any vertex minimal solution v 2 Z
7t of the Haken normal cone CM in R

7t

has

max
1�i�7t

(vi) � 27t�1 : (12)

(2) Any minimal Hilbert basis element v 2 Z
7t of the Haken normal cone CM

has

max
1�i�7t

(vi) � t � 27t+2 : (13)

Proof.

(1) Choose a maximal linearly independent subset of matching conditions (8).

There will be 7t � d of them, where d = dimR(CM ). Any vertex ray is

determined by adjoining to these equations d� 1 other binding inequality

constraints

fvik = 0 ; 1 � k � d� 1g ; (14)

with the proviso that the resulting system have rank 7t� 1. These condi-

tions yield a (7t� 1)� 7t integer matrix M of rank 7t� 1, and the vertex

ray elements z = (z1; : : : ;z7t) satisfy

Mz = 0 : (15)

In order to get a feasible vertex ray in CM all nonzero coordinates zi must

have the same sign.

At least one of the unit coordinate vectors e1; e2; : : : ;e7t must be linearly

independent of the row space of M. Adjoin it as a �rst row to M and we

obtain a full rank 7t� 7t integer matrix

~M = [
ek
M

] ; det( ~M) 6= 0 :

Consider the adjoint matrix adj( ~M) = det( ~M) ~M�1, which has integer

entries

wij := adj( ~M)ij = (�1)i+j det ~M[jji] ; (16)

in which ~M[jji] is the minor obtained by crossing out the jth row and ith

column of ~M. Let

w = [w11; w21; : : : ;w7t;1]
t (17)
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be the �rst column of adj( ~M). Since ~Madj( ~M) = det( ~M)M this yields

~Mw = 0 ;

and w 6= 0 because hek;wi = det( ~M) 6= 0. We bound the entries of w

using Hadamard's inequality, which states for an m�m real matrix that

det(N)2 �

mY

i=1

jjnijj
2 ;

in which jjnijj
2 is the Euclidean length of the ith row ni of N. We apply

this to (15), and observe that each row of the (7t � 1) � (7t � 1) matrix
~M[jji] has squared Euclidean length at most 4, because this is true for all

row vectors in the system given by (8) and for ek. Applied to (15) this

gives

jwij j
2 � 47t�1 :

However (15) shows that w 2 Z
7t , and a vertex minimal solution v in the

extreme ray is obtained by dividing w by the greatest common divisor of

its elements, hence

max
1�i�7t

jvij � max
1�i�7t

jwi1j � 27t�1 :

(2) A simplicial cone C in R
7t is a d-dimensional pointed cone which has

exactly d extreme rays. Let v(1); : : : ;v(d) 2 Z
7t be the vertex minimal

solutions for the extreme rays. Each point in C can be expressed as a

nonnegative linear combination of the v(j), as

v =

dX

j=1

�jv
(j) ; each �j � 0 :

If v is in the minimal Hilbert basis H(C), then 0 � �j � 1, for otherwise

one has

v = (v � v(j)) + v(j);

and both v � v(j) and v(j) are nonzero integer vectors in C, which is a

contradiction. Thus, any minimal Hilbert basis element v = (v1; : : : ; v7t)

of a simplicial cone satis�es

jvij �

dX

j=1

jv
(j)

i
j for 1 � i � 7t : (18)

The cone CM may not be simplicial, but we can partition it into a set of

simplicial cones fC
(k)

M
g each of whose extreme rays are extreme rays of CM

itself. We have

H(CM ) �
[

k

H(C
(k)

M
) :
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Thus all Hilbert basis elements of H(CM ) satisfy by the bound in (18) for

Hilbert basis elements of H(C
(k)

M
). Using (12) to bound jv

(j)

i
j we obtain

jvij � d27t�1 � 7t 27t�1 � t 27t+2 ;

as required. �

Lemma 6.2 (1) The Haken normal cone CM has at most 27t vertex funda-

mental solutions.

(2) The Haken normal cone CM has at most t7t 249t
2+14t elements in its min-

imal Hilbert basis.

Proof.

(1) There are
�
7t
d�1

�
possible choices for the systems given in (14), and

�
7t
d�1

�
�

27t.

(2) We wastefully count every integer vector v in the box 0 � vi � t27t+2 for

1 � i � 7t that is allowed by Lemma 6.1. �

Remark. The bounds in Lemma 6.2 are very crude. However the functional

forms 2c1t and 2c2t
2

of the bounds are best possible for general rational cones,

apart from the values of c1 and c2.

7 Triangulations

Given a link diagram D with crossing measure n, we show how to construct a

triangulated 3-manifoldML
�= S3�RL, where RL is a regular neighborhood of a

link L which has a regular projection that is the link diagram D. The construc-

tion takes time polynomial in the crossing measure of D, and the triangulations

of each of ML and �RL contain O(n) tetrahedra.

Lemma 7.1 Given a link diagram D of crossing measure n, one can construct

in time O(n logn) a triangulated convex polyhedron P in R
3 such that:

(i) The triangulation has at most 420n tetrahedra.

(ii) Every vertex in the triangulation is a lattice point (x; y; z) 2 Z
3 , with

0 � x � 30n, 0 � y � 30n and �4 � z � 4.

(iii) There is a link L embedded in the 1-skeleton of the triangulation which

lies entirely in the interior of P , and whose orthogonal projection on the

(x; y)-plane is regular and is a link diagram isomorphic to D.
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Proof. We �rst add extra vertices to D. To each non-loop edge we add a

new vertex of degree 2, which splits it into two edges. To each non-isolated

loop we add two new vertices of degree 2, which split it into three edges. To

each isolated loops we add three new vertices of degree 2, making it an isolated

triangle. The resulting labelled graph G is still planar, has no loops or multiple

edges, and has at most 5n vertices. (The worst case consists of several disjoint

single crossing projections.) Let m denote the number of vertices of G, and call

the m� n vertices added special vertices.

Using the Hopcroft-Tarjan planarity testing algorithm [17] we can construct

a planar embedding of G in time O(n logn). From this data we determine the

planar faces of this embedding, and add extra edges to triangulate each face,

thus obtaining a triangulated planar graph G0, in time O(n). The graph G0 has

m vertices and 2m�5 bounded triangular faces, and the unbounded face is also

a triangle.

It was shown by de Frajsseix, Pach and Pollack [7] that there exists a planar

embedding of G0 whose vertices v(G0) lie in the plane z = �1, in the grid

f(x; y;�1) : 0 � x; y � 10n� 1 ; x; y 2 Zg ; (19)

in which all edges of G0 are straight line segments. They also show in [7, Sec-

tion 4] that one can explicitly �nd such an embedding in time O(n logn).

Next we make an identical copy G00 of G0 on the plane z = 1 with G00 =

G + (0; 0; 2), and vertex set V (G00) = V (G) + (0; 0; 2). We now consider the

polyhedron P 0 which is the convex hull of V (G0) and V (G00). It is a triangular

prism, because the outside face of G0 is a triangle. We add m1 vertical edges

connecting each vertex v 2 V (G0) to its copy v+(0; 0; 1) 2 V (G00). Let E denote

these edges, together with all the edges in G0 and G00. Using these edges, the

polyhedron P 0 decomposes into 2m�5 triangular prisms fQj : 1 � j � 2m�5g,

with top and bottom faces of each being congruent triangular faces of G0 and

G00.

We next triangulate P 0 by dissecting each of the 2m � 5 triangular prisms

into 14 tetrahedra, as follows. We subdivide each vertical rectangular face into

four triangles using its diagonals. Then we cone each rectangular face to the

centroid of P 0, and note that the centroid lies in the plane z = 0. We add 4

new vertices to each prism, one on each face and one in the center. The point

of this subdivision is that the triangulations of adjacent prisms are compatible.

Note also that all new vertices added lie in the lattice
1

6
Z
2 .

Let E 0 denote all the edges in the union of these triangulated prisms. We

identify the link diagram D with the graph G embedded in G0. We next observe

that there is a polygonal link L imbedded in the edge set E 0 whose projection is

the link diagram D. We insist that any edge in D that runs to an undercrossing

have its undercrossing vertex lie in the plane z = �1, while any edge that runs

to an overcrossing has its overcrossing vertex lie in the plane z = 1. Each such

edge travels from one of the n original vertices of D to a special vertex. Edges

that do not meet vertices labelled overcrossing or undercrossing are assigned

to the z = �1 plane. The edge corresponding to an edge running from the
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z = �1 to the z = 1 plane is contained in one of the diagonals added to a prism.

The resulting embedding L in P 0 has a regular orthogonal projection onto the

(x; y)-plane, since no edges are vertical and only transverse double points occur

as singularities in the projection.

The knot edges lie in the boundary of P 0. To correct this we take two

additional copies of P 0 and glue one to its top, along the plane z = 1, and one

to its bottom, along the plane z = �1. The knot now lies in the interior of

the resulting polyhedron P 00. All the vertices added in this construction lie in
1

6
Z
3 , so a rescaling by a factor of 6 puts all vertices in Z

3 . The total number of

tetrahedra used in triangulating P 00 is 84m, which is at most 420n.

Now P 00 satis�es properties (i), (ii) and (iii). �

We now construct a triangulated 3-manifold ML embedded in S3 from the

triangulation of P in Lemma 5.2. This construction only uses the combinatorial

triangulation of P , i.e. the adjacency relations of tetrahedra and of the set of

edges of P that specify the link L, and does not use its given embedding in R
3 .

Lemma 7.2 Given a link diagram D of crossing measure n, one can construct

in time O(n logn) a combinatorial triangulation of S3 using at most 253440(n+

1) tetrahedra, which contains a good triangulation of ML
�= S3�RL, with �RL a

regular neighborhood of a combinatorial link L with link diagram D, and @RL =

@MK . Furthermore one can construct in time O(n2 logn) in the triangulation

marked sets of edges in @ML for a meridian on each 2-torus component of

@ML, and a set of marked paths of O(n) edges in ML n @ML that connect pairs

of components of @ML, which between them connect all components of @ML.

Proof. We construct a combinatorial triangulation T of S3 by coning all the

triangular outside faces of the triangulation of P to the \point at in�nity" added

in constructing S3 as the one point compacti�cation of R 3 . This adds 4m + 2

new tetrahedra, where m � 5n, for a total of at most 440n + 2 tetrahedra.

Barycentrically subdivide twice to obtain a triangulation T 00, and take ML to

be S3 minus the interior of a regular neighborhood of L. Since barycentric sub-

division splits a tetrahedron into 24 tetrahedra, we use at most 242(440n + 2)

tetrahedra. It is easy to determine a meridian on the 2-torus in @ML corre-

sponding to each component of L, in time O(n). To construct a longitude we

use the projection of the polyhedron P in R 3 on the z-axis in Lemma 7.1 to con-

struct a path with algebraic linking number zero with the core of the 2-torus.

This can be done by suitably making a \twist" at each vertex.

We can �nd a shortest path between each pair of components of @MK in

time O(n logn) each. We retain a minimal set of such paths which contain no

edge inside any component of @MK , whose union connects all components of

@MK . If done carefully, this can be done in time O(n2 logn) and result in a list

of at most O(n) paths involving O(n2) edges. �
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8 Certifying Unknottedness

To show that the unknottedness problem is in NP, we must construct for

any n-crossing knot diagram D a polynomial length certi�cate that proves it is

unknotted. The certi�cate takes the following form.

Unknottedness Certi�cate

1. Given a link diagram D with n crossings certify that D is a knot diagram.

2. Construct a piecewise-linear knot K in R 3 which has regular projection D.

From it construct a good triangulation MK
�= S3 � �RK which contains t

tetrahedra, with t = O(n), and with a meridian of @RK marked in @MK .

3. Guess a suitable fundamental solution v 2 Z
7t to the Haken normal equa-

tions for MK . Verify the Haken quadrilateral conditions. Let S denote

the associated normal surface, so v = v(S).

4. Certify that S is an essential disk.

(4a) Certify that S is connected.

(4b) Certify that S is a disk. Check that @S 6= ; and that it has Euler

characteristic �(S) = 1.

(4c) Certify that S is essential by checking that its homology class [@S] 6=

(0; 0) in H1(@MK ;Z=2Z).

The approach of Haken to deciding unknottedness is based on an exhaustive

search for a certi�cate of the above kind.

Haken-type Unknottedness Algorithm

Input: Link diagram D of crossing number n.

Question: Is D a knot diagram of the unknot?

1. Test if D is a knot diagram. If so, denote it K.

2. Construct a �nite combinatorial triangulation T of S3 which contains

a polygonal knot K in its one-skeleton which has diagram K, and also

contains a good compact triangulated 3-manifold MK
�= S3 �RK , where

�RK is a regular neighborhood of K. Let t denote the number of tetrahedra

in MK .

3. Construct an exhausting list L of vectors L � Z
7t that contains v(S) for

some embedded compressing disk in MK , if one exists.

4. For each v 2 L, test if v is admissible. If so let S denote the normal

surface with v = v(S). Test if S is an essential disk for MK .
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(4a) Is S connected?

(4b) Is S a disk? Check that the Euler characteristic �(S) = 1 and

@S 6= ;.

(4c) Is S essential? Check that the homology class [@S] 2 H1(@M ;Z=2Z)

is nontrivial by computing that its intersection number ( mod 2) with

a meridian of the 2-torus TK is 1 (mod 2).

If all tests are passed for S, answer \yes," halt and output v(S).

5. If the complete list L is examined and no essential disk is found, answer,

\no" and halt.

For the Haken unknottedness algorithm we take for the Exhausting List

LH := LH(MK) the set

LH := fv = (v1; : : : ;v7t) 2 Z
7t : 0 � vi � t27t+2g : (20)

For the Jaco-Tollefson unknottedness algorithm we take for the exhausting list

LV = Lv(MK) the set

LV := fv = (v1; : : : ;v7t) 2 Z
7t : v a minimal vertex solution in CMg : (21)

Theorem 8.1 (1) There is a constant c such that the Haken unknottedness

algorithm decides for any n-crossing link diagram whether it is a knot

diagram that represents the trivial knot using at most O(exp(cn2)) time

and O(n2 log n) space, on a Turing machine.

(2) There is a constant c0 such that the Jaco-Tollefson unknottedness algo-

rithm decides the same question in at most time O(exp(c0n)) time and

O(n2 log n) space, on a Turing machine.

Proof. Assuming that the individual steps of the algorithms are proved cor-

rect, the two algorithms are correct by Lemmas 4.1 and 4.2, respectively.

(1) For the Haken unknottedness algorithm, the list LH is exhausting by

Theorem 5.4 with Lemma 4.1.

Step (1) is done in polynomial time O(n logn) by tracing a path through

the link diagram D and checking that it visits every edge of D.

Step (2) is done in polynomial time O(n logn) by Lemmas 7.1 and 7.2. The

triangulated manifold MK has at most 253440(n+ 1) tetrahedra.

The list LH is a large cube containing t7t249t
2+14t integer vectors, using

integers containing at most 7t + log2 t + 2 binary digits. We now test each

v 2 LH , one at a time, to determine whether it is a fundamental solution that

is an essential disk.

To begin step (4), given v 2 LH , we �rst test whether v corresponds to a

normal surface by checking whether the quadrilateral conditions hold: for each

tetrahedron in MK at least two of the three quadrilateral variables vanish. This
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takes time O(t) and space O(t2). Now we have v = v(S) for some normal

surface S. We can treat S as a triangulated surface by splitting quadrilaterals

into four triangles by adding two diagonals to each quadrilateral.

If S is connected, then we can check whether S is homeomorphic to a disk in

polynomial time O(n2 log n). We use the criterion of Lemma 4.3. We check that

@S 6= ; by checking that vi 6= 0 for some triangle or quadrilateral is that has an

edge in @M . We can compute the Euler characteristic �(S) in polynomial time

directly from the data in v, since it encodes the necessary data on the vertices,

edges and faces of the triangles and quadrilaterals in S. According to Jaco and

Tollefson [20, p. 404] we have

�(S) =
1

2
S3 � �(S) + wt(S) (22)

in which S3 counts the total number of triangles in S, �(S) =
P7t

i=1 vi, and

wt(S) is de�ned below. For each edge j in the triangulation of MK , let tj count

the number of tetrahedra that contain edge j, and set �ji = 1 if edge ej meets

a disk of type i. Then

wt(S) =

7tX

i=1

X

j

�jivi

tj
: (23)

The weight counts the intersection of S with the 1-skeleton of the triangulation.

Thus �(S) is computed by (22) using O(n2 logn) bit operations, and we can

check whether �(S) = 1.

If S is known to be a disk, then we can check whether @S is an essential

curve in @M in polynomial time. Since S is a disk the boundary @S must have

homology class (0; 0) or (0;�1) in H1(@M ;Z), by Lemma 4.1. We distinguish

these possibilities by determining if the class [@S] 2 H1(@M1;Z=2Z) is (0; 0) or

(0; 1). To do this we compute the intersection number (mod 2) of @S with a

�xed meridian in the 1-skeleton of the 2-torus @MK . Such a meridian 
 can be

determined in time O(n logn) in the process of constructing MK in step (2).

This intersection number can be computed in time O(n logn) as

nS :=
1

2
(
X

vi) (mod 2) ; (24)

in which the sum is taken over those disk types i that correspond to triangles

and quadrilaterals with an edge on @MK and a vertex on that edge that is

contained in some edge of 
. We count disk types i with multiplicity equal

to the number of vertices of this type contained in the disk type. Then S is

essential only if ns � 1(mod 2), using Lemma 4.2.

Thus to test a given v 2 LH requires O(t7t249t
2+14t) operations, and testing

S for being a fundamental solution is the only step that requires exponential

time.

The total running time of the Haken algorithm is dominated by the test for

being a fundamental solution and the size of the exhausting list LH . It is easy

to sequentially test elements of LH in lexicographic order, so that the space
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complexity does not materially increase over that for testing a single vector v.

Since t � O(n) we obtain upper bounds of the form O(2cn
2

) for time complexity

and O(n2 logn) for the space complexity.

(2). For the Jaco-Tollefson algorithm, the list LV is exhausting by the Vertex

Surface Theorem 5.6 and Lemma 6.1. There are at most 27t elements in LV
by Lemma 6.2. Furthermore these elements are easy to enumerate sequentially

in time O(logn) each: First precompute a maximal linearly independent set

of 7t � d matching condition constraints, where d = dimR(CM ). Then test all

(d� 1)-duples fi1; : : : ;id�1g � f1; 2; : : : ;7tg to see if adjoining the constraints

xij = 0 ; 1 � j � d

gives an extremal ray of the Haken cone CM . If so, determine a minimal point

v 2 Z
7t on this ray and run the rest of the algorithm. Given fi1; : : : ;ijg one

can compute v in polynomial time O(n2 logn) by �rst computing w in (16) and

dividing it by g.c.d. (w1; w2; : : : ;w7t) to get v.

The testing time, for each v 2 LV , for whether v = v(S) gives an essential

disk S goes down to O(t27t) time and to O(n2 logn) space, because the com-

putationally intensive test whether S is connected is eliminated: S is connected

because minimal vertex solutions are always Hilbert basis elements, so S is a

fundamental surface and connected by Lemma 5.2.

Since t = O(n) we obtain the time bound O(2cn) and space bound at most

O(n2 logn).

We check whether S is fundamental by exhaustive search. For each w 2 Z
7t

with 0 � wi � vi for 1 � i � 7t we set w0 = v �w and check if w;w0 2 CM .

If this happens for some w then v = w + w0 is not fundamental. If this

happens for no w then v is in the Hilbert basis, and is a fundamental surface

by Lemma 5.2. There are at most O(t7t249t
2+14t) values of w to check. We can

check them sequentially, using space O(t2). If S is a fundamental surface, then

it is guaranteed to be connected by Lemma 5.3. �

We can now prove that the Unknottedness Certi�cate above can be checked

in polynomial time.

Proof of Theorem 1.1 If all the steps in the certi�cate are checked then D

is unknotted by Lemma 4.2. It remains to show each step can be done in length

polynomial in n.

1. This is trivially polynomial time in n, by tracing edges around the graph.

2. This is polynomial time by Lemma 7.2, upon observing that t = O(n).

3. This step is nondeterministic. According to Lemma 6.1, any fundamental

solution is

wt(v) �

7tX

i=0

vi � 7t227t+2 ;

hence v can be guessed in nondeterministic time linear in t, which is O(n).

At this point we do not have a proof that the solution is fundamental.
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Verifying the quadrilateral conditions takes time O(n2), since we have

O(n) tetrahedra and have O(n)-bit integers in v to examine.

(4a) According to the Vertex Surface Theorem (5.6), we may choose a vertex

fundamental solution in (3) for which S is an essential disk. We may certify

in polynomial time that v = v(S) is in the Hilbert basis, by guessing the

correct linearly independent set of 7t� 1 constraints that are binding for

v, and then verifying that v 2 Z
7t is primitive, i.e.

g:c:d:(v1; v2; : : : ;v7t) = 1 :

This takes time O(n3 logn). We verify the 7t � 1 constraints are lin-

early independent by guessing which one of the unit coordinate vectors

e1; : : : ;e7t extends to a basis of R
7t and verifying that the determinant of

the resulting matrix is nonzero. (We also must check that all equality con-

straints are satis�ed.) Since v is in the Hilbert basis and the quadrilateral

conditions hold, S is connected by Lemma 5.3.

(4b) and (4c) were shown to take polynomial time in the proof of Theorem 8.1.

�

Using Haken's Theorem 5.4 instead of the Jaco-Tollefson result we still obtain

the weaker result that the unknotting problem is in the polynomial hierarchy

�
p

2 [38]: One uses the same certi�cate as above, except for the proof that S is

connected. For this step, we use a co-NP. oracle that answers the question: Is

v in the Hilbert basis of CM? This problem is in co-NP, because one can certify

that v is not in the Hilbert basis by guessing v1;v2 2 CM such that v = v1+v2.

This puts the problem in the complexity class NPco-NP = NPNP = �
p

2. A

stronger result than this cannot be expected, since it is known that the problem

of testing whether a vector v is in the Hilbert basis of a pointed rational cone

C is co-NP complete, see Seb�o [35, Theorem 5.1].

9 Certifying Splittability

We treat the splitting problem with a modi�cation of the method described

above. We use the criterion for splittability of a link given in Theorem 5.7. The

construction of the certi�cate, and its veri�cation, take place in the following

steps.

Splitting Link Certi�cate.

1. Given a link diagram D, construct a piecewise-linear link L in R
3 that has

regular projection D. From it construct a good triangulation of ML
�=

S3�RL which contains t tetrahedra, with t = O(n), and with a meridian

marked in each component of @ML. (Use Lemma 7.1.)
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2. Guess a suitable vertex solution v 2 Z
7t to the Haken normal equations for

ML. (This solution can be written in polynomial length by Lemma 6.1.)

Verify the quadrilateral disjointness conditions. Let S denote the associ-

ated normal surface, so v = v(S).

3. Verify that S is a sphere that splits two components of @ML.

(a) Verify that S is connected by verifying that v is a minimal vertex

solution.

(b) Verify that S is a sphere by verifying that �(S) = 2.

(c) Verify that S separates two components T and T 0 of @ML by verifying

that the number of intersections of S with the marked arc joining T

and T 0 is odd.

We obtain an algorithm for testing a link diagram for splittability by ex-

haustive search for a certi�cate of the kind above. The Splitting Link Algorithm

searches the list LV of minimal vertex solutions given by (21).

Theorem 9.1 There is a constant c00 such that the Splitting Link Algorithm

decides for any n-crossing link diagram whether it represents a splittable link

using at most O(exp(c00n)) time and O(n2 logn) space, on a Turing machine.

Proof. The correctness of the algorithm follows from the list LV being ex-

hausting by Theorem 5.8 and from the splittability criterion Theorem 5.7. The

connectivity of S and �(S) = 2 imply that @S = ; and that S is a sphere.

Each part of step (3) can be veri�ed in polynomial time using O(n2 logn)

space, by the arguments in the proof of Theorem 8.1. For step (3c), exhaustively

check marked arcs which between them connect every pair of components of the

link. There are at most O(n2) such marked arcs, each containing at most O(n)

edges inML, and we compute the intersection number ( mod 2) of each arc with

S, as in Theorem 8.1. If S certi�es a splitting of the link, then at least one arc

will have odd intersection number with S.

The exponential running time bound follows from the cardinality of LV (ML)

in (1) of Lemma 6.2. �

Proof of Theorem 1.2. The existence and correctness of the Splitting Link

Certi�cate follows from Theorems 5.7 and 5.8. The polynomial-time veri�ability

follows from the proof of Theorem 9.1 above. �

10 Determining the Genus

The unknotting algorithm of Section 8 can easily be generalized to solve the

genus problem in polynomial space.
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Genus Algorithm

1. Given a link diagram D verify that it is a knot diagram K.

2. As before, construct a piecewise-linear knot K in R
3 that has regular

projection K, together with a good triangulation of MK
�= S3�RK which

contains t tetrahedra, with t = O(n), and with a meridian marked in

@MK .

3. Construct an exhausting list LH � Z
7t that includes all fundamental

solutions v 2 Z
7t to the Haken normal equations for MK . This list is

taken to be

LH = fv = (v1; v2; : : : ; v7t) 2 Z
7t : 0 � vi � t27t+2g :

4. For each v 2 L test if v is admissible. If so, let S denote a normal surface

with v = v(S). The following steps test if S is a two-sided connected

surface and, if so, compute its genus g(S) = g(v).

5. (a) Verify that S is connected by verifying the connectedness of an undi-

rected graph with nodes corresponding to triangles in the triangula-

tion of S and edges joining matching triangles. Otherwise go to the

next v.

(b) Verify that S is orientable by verifying the non-connectedness of an

undirected graph with nodes representing each of the two sides of

triangles in the triangulation and edges joining matching sides of

matching triangles. (Since the surface S is connected and is an em-

bedded surface in an orientable manifold, S is orientable if and only

if it is two-sided.)

(c) Verify that @S is non-empty and connected (as an undirected graph),

so that it is topologically S1. Otherwise go to next v.

(d) Verify that @S is a longitude in @MK by verifying that the homology

class [@S] = (0;�1) in H1(@MK ;Z=2Z). Otherwise go to next v.

(e) Compute the genus g(S) =
1� �(S)

2
.

6. Output the minimal value of g(S) found in step (4).

We obtain the following complexity bound for this algorithm.

Theorem 10.1 There is a constant c000 such that for any n � 1 the Genus

Algorithm computes the genus g(K) of the knot K represented by a given n-

crossing knot diagram K and runs in time at most O(2c
000
n
2

) and uses space at

most O(n2) on a Turing machine.
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Proof. The correctness of the Genus Algorithm follows from Corollary 5.5. It

remains to bound the time and space requirements of each step of the algorithm.

In running through the list LH , we do not attempt to recognize which vectors

v give fundamental solutions. We simply compute the genus for each of them,

whenever it is possible. We go through the list LH in lexicographic order. The

key point is to show each step requires polynomial space. In Steps (5a), (5b)

and (5c), we use the fact that in an undirected graph in which nodes can be

written down in polynomial length and in which adjacency of nodes can be

tested in polynomial space, the connectedness of the graph can be determined

in polynomial space (see Savitch [31]).

In step (5d), we compute the intersection number of @S with a marked

meridian and longitude in @S. We trace the curve S, assigning an orientation

to each segment, and keep a running total of the intersection number. This can

be done in polynomial space.

All other steps can be computed in polynomial time, as in Theorem 8.1.

The resulting time bound is dominated by the number of elements O(2c1t
2

) in

LH , given by the proof of Lemma 6.2. A bound of O(2c2t
2

) also occurs in the

connectivity algorithms in (5a) and (5b). The space bound is dominated by

steps (5a) and (5b), and is O(n2). �

Proof of Theorem 1.3. This is immediate from Theorem 10.1. �

11 Conclusion

We know of no non-trivial lower bounds or hardness results for any of the

problems we have discussed; in particular, we cannot even refute the implausible

hypothesis that they can all be solved in logarithmic space. There are also a

great many other knot properties and invariants apart from those considered

here, and for many of them it is a challenging open problem to �nd explicit

complexity bounds.

One interesting question is whether the unknotting problem is in co-NP.

Thurston's geometrization theorem for Haken manifolds can be used to show

that knot groups are residually �nite [16]. It follows that a non-trivial knot

has a representation into a �nite permutation group with non-cyclic image.

Unfortunately no way is yet known to bound the size of this group; if the

number of symbols in the smallest such permutation group were bounded by a

polynomial in the number of crossings, then the unknotting problem would

be in co-NP. In practice the order of such a group seems to be quite small.

Perhaps the most important of the open problems is to determine the com-

plexity of the knot equivalence problem As mentioned before, a decision

procedure is known (see Waldhausen [40] and Hemion [14]). However at present

it is not even clear whether the resulting algorithm is primitive recursive.
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