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CANADA

Abstract: A channel graph is the union of all paths between a given input and a given
output in an interconnection network. At any moment in time, each vertex in such a graph
is either idle or busy. The search problem we consider is to �nd a path (from the given
input to the given output) consisting entirely of idle vertices, or to �nd a cut (separating
the given input from the given output) consisting entirely of busy vertices. We shall also
allow the search to fail to �nd either a path or a cut with some probability bounded by
a parameter called the failure probability. This is to be accomplished by sequentially
probing the idle-or-busy status of vertices, where the vertex chosen for each probe may
depend on the outcome of previous probes. Thus a search algorithm may be modelled as a
decision tree. For average-case analysis, we assume that each vertex is independently idle
with some �xed probability, called the vacancy probability (and therefore busy with the
complementary probability).

For one commonly studied type channel graph, the parallel graph, we show that the
expected number of probes is at most proportional to the length of a path, irrespective of
the vacancy probability, and even if the allowed failure probability is zero. Another type
of channel graph we study is the spider-web graph, which is superior to the parallel graph
as regard linking probability (the probability that an idle path, rather than a busy cut,
exists). For this graph we give an algorithm for which, as the vacancy probability is varied
while the positive failure probability is held �xed, the expected number of probes reaches
its maximum near the critical vacancy probability (where the linking probability make a
rapid transition from a very small value to a substantial value). This maximum expected
number of probes is about the cube-root of the diversity (the number of paths between the
input and output).

* This research was supported by an NSERC Operating Grant.



1. Introduction

A channel graph is an acyclic directed graph G = (V;E) with vertices V and edges

E in which there exists a source vertex s 2 V and a target vertex t 2 V such that every

vertex lies on a directed path from s to t. (Such a source and target, if they exist, are

clearly unique.) The vertices other than the source and target will be called links.

We shall deal in this paper with two particular families of channel graphs that have

been proposed and analyzed for use in telephone-switching networks. The �rst family,

comprising the fully parallel channel graphs Fk (or simply parallel graphs), can be described

as follows. Let Tk be a tree whose vertices are the 2k+1 � 1 words of length at most k

over the alphabet f0; 1g, with the empty word " as the root, with edges directed from

each word w of length at most k � 1 to each of the two words w0 and w1, and with the

2k words of length k as leaves. Let T 0k be a tree like Tk, but with all vertices \primed"

(to distinguish them from the corresponding vertices in Tk) and with all edges reversed.

Then Fk is obtained from Tk and T 0k by joining each leaf w of Tk with the corresponding

leaf w0 of T 0k by an edge (w;w0). The source of Fk is the root of Tk, and the target is the

root of T 0k. The second family, comprising the spider-web channel graphs Gk (or simply

spider-web graphs), is formed like Fk, except that each leaf w of Tk is joined to the leaf

Rev(w)0 of T 0k by an edge
�
w;Rev(w)0

�
, where Rev(w) = �k � � ��1 denotes the reversal of

the word w = �1 � � ��k.
A state of a channel graph is an assignment of a status (busy or idle) to each link

of the graph. We shall extend such an assignment to all vertices by agreeing that the

source and target are always idle. We shall deal in this paper with a particular probability

distribution on the states of a channel graph, which again has been proposed and analyzed

in the context of telephone-switching networks. We choose a real number q, in the range

0 < q < 1, which we call the vacancy probability; its complement p = 1 � q is called the

occupancy probability. We then de�ne a random state of a channel graph to be one in

which each link is independently idle with probability q or busy with probability p. This

probability distribution on states, which was introduced independently by Lee [L1] and

Le Gall [L2], is one most commonly used in the probabilistic analysis of interconnection

networks.

We shall say that a channel graph is linked in a given state if there exists a directed

path from the source to the target consisting entirely of idle links. We shall say that a

channel graph is blocked in a given state if there exists a cut between the source and the

target consisting entirely of busy links. (Clearly a channel graph in a given state is either

linked or blocked, but not both.) If a channel graph H is in a random state with vacancy
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probability q, the linking probability will be denoted Q(H; q), and the complementary

blocking probability will be denoted P (H; q) = 1 � Q(H; q). For the channel graphs we

consider, the asymptotic dependence of the linking probability on q can be described fairly

easily. For q strictly less that the critical probability q0 = 1=
p
2, Q(H; q) tends to zero as

k tend to in�nity for either H = Fk or H = Gk, for the simple reason that the expected

number of idle paths from the source to the target tends to zero. For q > q0, the linking

probability tends to a limit (as k tends to in�nity). This limit (which is 1 � (1 � q)4=q4

for Gk and the smaller 1 � (1 � q2)2=q4 for Fk) is strictly positive (for q > q0), but also

strictly less than unity (for q < 1). We shall refer to the range 0 < q � q0 as the \blocking

regime", and the range q0 < q < 1 as the \linking regime". See Ikeno [I] for analysis

applicable to parallel graphs, and Pippenger [P3] for spider-web graphs.

A few words are in order here concerning the channel graphs and the probability

distribution that we are using. Channel graphs arise form the study of telephone-switching

networks, in which a number of inputs are connected to a number of outputs by means

of a network comprising a number of switches interconnected by wires. We model the

inputs, outputs and wires (which we call links) by vertices, and individual switches by

edges. (There is an alternative convention used in modelling switching networks, whereby

wires are modelled by edges and aggregations of switches (called crossbars) are modelled

by vertices. This convention is only applicable to networks in which the switches aggregate

into crossbars. This condition is satis�ed by the networks considered in this paper, but

we prefer the more 
exible convention that we have adopted.) Both parallel graphs and

spider-web graphs are among those considered by Ikeno [I]. Although spider-web graphs

are not optimal (in the sense that they do not have the largest possible linking probability

among graphs arising from networks with a given number of components; see Chung and

Hwang [CH]), they have been shown by Pippenger [P3] to be asymptotically optimal. In

the terminology of Pippenger [P3], the parallel graphs have rhyme scheme 12 � � � (k�1)k(k�
1) � � � 21, and the spider-web graphs have rhyme scheme 12 � � � (k � 1)k1 � � � (k � 2)(k � 1).

The corresponding interconnection networks have also been studied for their combinatorial

properties: the parallel graphs arise from a well-known network shown to be rearrangeable

by Bene�s [B1]; the question of whether the network corresponding to the spider-web graph

is rearrangeable is the \shu�e-exchange conjecture" (see Bene�s [B2]).

Consider now an algorithm that seeks to determine whether a known channel graph

in an unknown state is linked or blocked. The algorithm gathers information about the

state of the channel graph by sequentially probing the status of links until all the links

2



of either an idle path or a busy cut have been probed. (The decision as to which link to

probe at any step may depend upon the outcomes of all previous probes.)

Such an algorithm can be modelled as a decision tree. The elements of such a tree

will be called nodes and arcs (to distinguish them from the vertices and edges of the

channel graph). Each node is either a probe node, in which case it is labelled with the

name of a link in the channel graph and has two outgoing arcs (one labelled \idle" and the

other labelled \busy") leading to other nodes, or a leaf node, in which case is is labelled

with one of the two possible outcomes (\linked" or \blocked") and has no outgoing arcs.

There is a distinguished probe node, called the root, that has no incoming arcs; every

other node has exactly one incoming arc. Execution of the algorithm begins at the root

and proceeds in an obvious way, probing links and following the appropriate arcs, until it

arrives at a leaf node that announces the �nal result. There is an obvious notion of such an

algorithm being correct: every trajectory from the root to a \linked" leaf probes a set of

links corresponding to a path in the channel graph and departs each of these nodes along

the \idle" arc, and every trajectory from the root to a \blocked" leaf probes a set of links

corresponding to a cut in the channel graph and departs each of these nodes along the

\busy" arc. We shall denote by E(H; q) the minimum possible expected number of probes

for any algorithm that correctly searches the channel graph H with vacancy probability

q. Bounds to E(H; q) for series-parallel channel graphs (which include the case H = Fk of

parallel graphs, also considered below) have been give by Lin and Pippenger [LP].

We shall also want to consider search algorithms that occasionally fail to reach a

decision as to whether the graph is linked or blocked. We shall model such algorithms

by decision trees in which there are leaves of a third kind, \failure" leaves. We shall

say that such an algorithm is "-correct (for a given graph H and vacancy probability q)

if the trajectory from the root reaches a failure leaf with probability at most ", and if

the algorithm reaches a correct leaf whenever it does not reach a failure leaf. We shall

denote by E"(H; q) the minimum possible expected number of probes for any algorithm

that "-correctly searches the channel graph H with vacancy probability q. We have of

course

E"(H; q) � E0(H; q) = E(H; q):

We shall only need to allow " > 0 in one situation: that of spider-web graph with q >

1=
p
2, where the linking probability is bounded away from zero. But in this situation the

blocking probability is also bounded away from zero, and it seems di�cult to object to

an algorithm that fails with at most a �xed proability that is small compared with the

blocking probability.
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Two �nal comments are in order. First, we have not considered randomized search

algorithms: the probability space is that of the states of the channel graph. This entails no

loss of generality: since the search process is a \game against nature" (rather than against

an adversary), the payo� of a mixed strategy can always be matched or exceeded by that of

a pure strategy. Second, we have taken the position that q is known and �xed while k tends

to in�nity (so that the graphs Fk and Gk become larger and larger). This of course does

not correspond to the situation in practice where a speci�c network is subjected to varying

tra�c. It does accord well, however, with the fact that it is usually desired to operate

a network of the type considered at a vacancy probability q just slightly larger than the

critical probability q0 = 1=
p
2, which is independent of k; this allows the network to carry

the largest amount of tra�c consistent with a blocking probability bounded away from

unity. (The provision of a blocking probability su�ciently close to zero to be satisfactory

to subscribers is the task of additional stages of switching, outside the network considered

here and beyond the scope of this paper.) Finally, we observe that in a situation in which

the vacancy probability is not known, it is of course possible to estimate it closely and

with high con�dence by sampling.

2. Parallel Graphs

In this section we shall study the expected search cost E(Fk; q) of the fully parallel

channel graph Fk. The following is our main result.

Theorem 2.1: For all k � 1 and all 0 < q < 1, we have

E(Fk; q) � 4k:

Observe that this bound is independent of q. Since there are just 2k ranks of links in Fk,

on average at most 2 links in each rank need to be probed.

Let E 0(Fk; q) denote the expected search cost of Fk when the source and target are,

like the links, independently busy with probability p. (In this de�nition, say that Fk is

blocked if either the source or target is busy.) We have the inequality

E(Fk; q) � 2E 0(Fk�1; q); (2:1)

since apart from its source and target Fk comprises two disjoint copies of Fk�1. Thus

Theorem 2.1 will follow from (2.1) and the following proposition.
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Proposition 2.2: For all k � 0 and all 0 < q < 1, we have

E 0(Fk; q) � 2(k + 1):

In the case k = 0, F0 is a single edge, joining the source to the target. Thus we have

E 0(F0; q) � 2: (2:2)

We also have the recurrence

E 0(Fk; q) � 2 + q2
�
1 + P (Fk�1; q)

�
E 0(Fk�1; q); (2:3)

since we can search Fk by the following algorithm. First probe the source and target, at

cost 2. Halt with the result \blocked" unless both the source and target are idle, an event

which occurs with probability q2. In this case, search one of the two disjoint copies of

Fk�1, at expected cost E 0(Fk�1; q). Halt with the result \linked" unless the searched copy

is blocked, an event which occurs with probability P (Fk�1; q). In this case, search the

remaining copy of Fk�1. This algorithm establishes (2.3).

To use this recurrence, we need an estimate for the blocking probability P (Fk; q),

which is provided by the following lemma.

Lemma 2.3: For all k � 0 and all 0 < q < 1, we have

P (Fk; q) � q�2 � 1:

Proof: We proceed by induction on k. For the basis, k = 0, we have

P (F0; q) = 1� q2

� q�2 � 1;

where the inequality, which is equivalent to 1 � (q2+ q�2)=2, compares the geometric and

arithmetic means of q2 and q�2.

For the inductive step, k � 1, we have

P (Fk; q) = 1� q2
�
1� P (Fk�1; q)

2
�

= 1� q2 + q2P (Fk�1; q)
2

� 1� q2 + q2
�
q�2 � 1

�2
= 1� q2 + q2

�
q�4 � 2q�2 + 1

�
= q�2 � 1;
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where the inequality follows by inductive hypothesis. 4
Substituting this estimate into (2.3) yields the recurrence

E 0(Fk; q) � 2 + E 0(Fk�1; q): (2:4)

Proposition 2.2 now follows by induction, with (2.2) as the basis and (2.4) as the inductive

step.

The foregoing algorithm and its analysis have a simple interpretation that will be

useful later. Consider the problem of �nding an idle path from the root to an idle leaf of

Tk, supposing as usual that the root is idle and that every other vertex is independently

idle with probability q. This problem can be solved by an obvious \depth-�rst search",

and the analysis given above yields the following result.

Corollary 2.4: If the root of Tk is idle, and every other vertex is independently idle with

probability q, then depth-�rst search �nds an idle path from the root to an idle leaf (or

�nds a busy cut showing that no such path exists) using at most 2k probes (and �nds a

cut rather than a path with probability at most (1� q)2=q2).

If we fold the graph Fk back upon itself, we obtain a tree similar to Tk, which we shall

denote T 00k , with two vertices of Fk corresponding to each vertex of Tk. Thus Theorem 2.1

can be recovered from Corollary 2.4 by observing that each probe in T 00k can be simulated

by 2 probes in Fk (so that we have a bound of 4k rather than 2k), and 2 vertices in Fk

must be idle for the corresponding vertex in T 00k to be idle (so that in the bound (1�q)2=q2,
q must be replaced by q2 to obtain (1 � q2)2=q4).

3. Spider-Web Graphs

In this section we shall begin our study of the expected search cost E(Gk; q) of the

spider-web channel graphGk. We shall present a algorithm that performs well in the block-

ing regime, and in the next section we shall combine this algorithm with other elements

to obtain good performance in the linking regime as well.

We can search Gk using an algorithm comprising the following sequence of k phases.

During the j-th phase, for 1 � j � k, we shall probe each link w in ranks j and j0 that

meets the following condition: there exists a path from the source through w to the target

on which every link that has been probed is idle.

This algorithm will always �nd either an idle path or a busy cut. If there is an idle

path from the source to the target, all its links will be probed. (Thus this algorithm will
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probe the links on all idle paths, and not just one.) If a path from the source to the target

has a busy link, then such a link will be probed in the j-th phase, where j is the smallest

number such that the path has a busy link in rank j or j0. Thus if every path has a busy

link, the algorithm will probe every link of some busy cut.

It remains to analyze the expected cost of this algorithm, which we shall denote

A(k; q). We may write

A(k; q) =
X

1�j�k

Aj (k; q);

where Aj (k; q) denotes the expected number of probes in the j-th phase. The expected

number of probes in the j-th phase may be expressed as the sum over links w in rank j

or j0 of the probability that w is probed. There are 2j links in rank j and 2j links in rank

j0, and thus there are 2 � 2j links i rank j or j0. If v and w are two links in rank j, then

the probability that v is probed is the same as the probability that w is probed. To see

this, observe that there is an automorphism of Gk taking the union of all paths from the

source through v to the target to the union of all paths from the source through w to the

target, and that the probability distribution on states is invariant under automorphisms

of Gk. Furthermore, the probability that a link w is probed is the same as the probability

that w0 is probed. This can be seen by considering anti-automorphisms, which exchange

source and target and reverse the directions of edges. Denoting this common probability

of being probed by Pj(k; q), we have

A(k; q) = 2
X

1�j�k

2jPj(k; q):

To estimate Pj(k; q), consider a link w in rank j. There are j � 1 links on the path in

Tk from the source to w (not including w), and all of these links must be idle if w is to be

probed; this event occurs with probability qj�1. Thus Pj(k; q) � qj�1, and we have

A(k; q) � 2
X

1�j�k

2jqj�1:

There are k terms in this summation; if q � 1=2, the largest of these is 2, which arises

from j = 1. Thus we have (for q � 1=2)

A(k; q) � 4k: (3:1)

To analyze this algorithm for 1=2 < q < 1, we shall need a sharper estimate for

Pj(k; q). Consider a link w in rank j. There are 2k�j paths from the source through w to
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the target. Denote by K the union of these paths. The portion of K between the source

and w is a path containing j � 1 links (not including w). These j � 1 links have already

been probed (in phases earlier than the j-th), and if w is to be probed they must all be

idle; this event occurs with probability qj�1. Now consider the portion of K joining w

to the target. The links of this portion that have already been probed are those in ranks

(j � 1)0; : : : ; 20; 10. They form a tree (a subtree of T 0k) that is the union of at most 2k�j

paths each containing j�1 links, and if w is to be probed all the links on at least one such

path must be idle; this event occurs with probability at most 2k�jqj�1 (and of course with

probability at most 1). Thus we have

Pj(k; q) � qj�1 minf1; 2k�jqj�1g;

and therefore

A(k; q) � 2
X

1�j�k

2jqj�1minf1; 2k�jqj�1g:

Since we now assuming q > 1=2, we can write

A(k; q) � 8
X

1�j�k

2jqj minf1; 2k�jqjg:

To estimate this sum, we de�ne �(q) by

�(q) =
log 2

log(2=q)
;

so that 1 < 2k�jqj if and only if j < �(q)k. Thus we have

A(k; q) � 8
X

1�j<�(q)k

2jqj + 8
X

�(q)k�j�k

2kq2j :

The two summations contain k terms between them, and each of these terms is at most

the maximum of these terms. In the case of the �rst summation, this maximum is (since

2q > 1) at most (2q)�(q)k = 2�(q)k, where we de�ne

�(q) =
log(2q)

log(2=q)

for q > 1=2, and in the case of the second summation it is (since q2 < 1) at most 2kq2�(q)k =

2�(q)k. Thus we have (for 1=2 < q < 1)

A(k; q) � 8k 2�(q)k: (3:2)
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We combine the results of (3.1) and (3.2) in the following theorem.

Theorem 3.1: For all k � 1 and 0 < q < 1, we have

E(Gk; q) � 8k 2�(q)k;

where

�(q) =

8<
:
0; for 0 < q � 1=2;

log(2q)

log(2=q)
; for 1=2 < q < 1.

This is achieved by an algorithm that �nds all idle paths from the source to the target.

We shall now restate the results of this section in a form that simpli�es the expressions

involved and gives them some intuitive signi�cance. We may regard the search for an idle

path as taking place in a search-space containing 2k paths. We shall think of the subset

of paths actually probed as constituting a subspace of fractional dimension: if 2dk paths

are probed, then the dimension of this subspace is d (0 � d � 1). This suggests that we

transfer attention from E(Gk ; q) to k�1 log E(Gk ; q). Furthermore, it will be convenience

to make the substitution q = 2� as well, so that �1 < � < 0. Thus we de�ne

d(k; �) = k�1 log E(Gk ; 2
�):

We can now express the analysis in this section by

d(k; �) � b(�) +O

�
log k

k

�
;

where we de�ne b(�) by

b(�) =

8<
:
0; for �1 < � � �1;

1+�
1��

; for �1 < � < 0.

We observe that (1+�)=(1��) increases from 0 to 1 as � increases from �1 to 0, and that

it reaches the value 1=3 at � = �1=2. In the next section we shall derive for �1=2 < � < 0

a sharper upper bound to d(k; �) (more precisely, to an analogous quantity d"(k; �) that

allows for positive, but arbitrarily small, probability " of failure) that decreases from 1=3

to 0 as � increases from �1=2 to 0. Thus the value 1=3 represents the maximum \search

dimension" required by our algorithms, achieved for the value � = �1=2 corresponding to

the critical vacancy probability q = q0 = 1=
p
2.
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4. Spider-Web Graphs in the Linking Regime

In this section we shall present an algorithm that improves the performance in the

linking regime of the algorithm presented in the preceding section. The latter algorithm is

limited by the fact that it �nds all idle paths, so that it cannot use fewer probes than the

number of such paths. We might contemplate reducing the number of idle paths explored

by constraining the initial and �nal segment of the path. If the length of these constrained

segments is chosen appropriately, the number of idle path will be reduced to a small

number, just large enough to give a blocking probability near P (Gk; q). The problem with

this strategy is that the task of �nding suitable initial and �nal segments also contributes

a blocking probability near P (Gk; q). The solution to this problem is to allow a number

of alternatives (about k) for the initial and �nal segments. We shall present the resulting

algorithm as a sequence of three steps, interspersed with their analysis.

Set

i = d4 log(2k)e:

Step 1: Find the set I of all links v in rank i of Tk such that all links on the path from

the source to v (including v itself) are idle. Similarly, �nd the set I 0 of all links v0 in rank

i0 of T 0k such that all links on the path from v0 to the target (including v0 itself) are idle.

If either I or I 0 is empty, there is a busy cut separating the source from the target. If

neither I not I 0 is empty, but either I or I 0 contains fewer than 2k links, the algorithm

fails. Otherwise, let v1; : : : ; v2k be 2k distinct links in I, and let v01; : : : ; v
0
2k be 2k distinct

links in I 0.

The number of links probed in Step 1 is at most

2 + 22 + � � �+ 2i � 64k4:

To estimate the probability of failure in Step 1, we need to estimate the probability that

I contains at least 1 but fewer than 2k links. The cardinality of I is the population Zi in

the i-th generation of a branching process that has been analyzed by Pippenger [P3]. By

the analysis preceding Lemma 8.1 of that paper, we have

Pr(1 � Zi < 2k) = O
�
(2k=R)�

�
;

where R = (2q)i � (2q0)
i � 4k2, and � = � log

�
2(1 � q)

�
= log(2q) � � log

�
2(1 �

q0)
�
= log(2q0) > 1. Thus we have

Pr(1 � Zi < 2k) = O(1=k):
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The probability of failure in Step 1 is also O(1=k), since it is at most Pr(1 � Zi < 2k) plus

an equal contribution from the primed side of the graph.

Set

j =

�
k log(2q2) � 4 log k

2 log(2q)

�
:

We shall assume that k is su�ciently large that j > i, which we may do since

log(2q2)= log(2q) > 0 for q > q0. Furthermore, we shall assume that j < (k � 1)=2,

which we may do since log(2q2)= log(2q) < 1=2 for q < 1.

Step 2: For each link vh (1 � h � 2k) found in Step 1, �nd if possible using depth-�rst

search a link w in rank j of Tk such that all links on the path from vh to w (including

w itself) are idle. If fewer than k of these 2k attempts are successful, the algorithm fails.

Otherwise, let w1; : : : ; wk be k such links, which then have the property that all the links on

the path from the source to wh, inclusive, are idle. Similarly, for each link v0h (1 � h � 2k)

found in Step 1, �nd if possible using depth-�rst search a link w0 in rank j0 of T 0k such

that all links on the path from w0 (including w0 itself) to v0h are idle. If fewer than k of

these 2k attempts are successful, the algorithm fails. Otherwise, let w01; : : : ; w
0
k be k such

links, which then have the property that all the links on the path from w0h, inclusive, to

the target are idle.

According to Corollary 2.4, the expected number of probes required for each of the

2k + 2k = 4k trials in Step 2 is at most 2(j � i) � 2k. Thus the expected number of

links probed in Step 2 is at most 8k2. To estimate the probability of failure in Step 2, we

must estimate the probability of having fewer than k successes in 2k independent trials.

According to Corollary 2.4, each trial succeeds with probability at least 1� (1� q)2=q2 �
1 � (1 � q0)

2=q20 > 3=4. By Chebyshev's inequality, the probability Pr(Y < k) that the

number Y of successes in 2k trials, which has expectation at least (3=4) 2k = 3k=2 and

variance at most (1=4) 2k = k=2, deviates by at least 3k=2� k = k=2 from its expectation

is at most (k=2)
�
(k=2)2 = 2=k. The probability of failure in Step 2 is thus at most 4=k,

since it is Pr(Y < k) plus a equal contribution from the primed side of the graph.

For 1 � h � k, denote by Lh the channel graph comprising all vertices of Gk lying on

paths from wh to w0h, with wh as source and w0h as target. The graph Lh is a generalized

spider-web graph of a type dealt with by Pippenger [P3]. Since Gk arises from a network

with rhyme scheme 12 � � � (k � 1)k12 � � � (k � 2)(k � 1), Lh arises from an network with

rhyme scheme (j + 1)(j + 2) � � � (k � 1)k12 � � � (k � 2� j)(k � 1� j). This is equivalent to

the rhyme scheme 12 � � � (s + t � 1)(s + t)12 � � � (s + 2t � 1)(s + 2t), where s = 2j + 1 and

t = k � 1� 2j. The channel graph arising from a network with this rhyme scheme will be

11



denoted Gt �Hs; it is obtained from Gt by substituting for each central edge
�
u;Rev(u)0

�
a copy of a channel graph Hs that has a unique path from the source u through s edges

and s� 1 intermediate links to the target Rev(u)0. Thus each Lh is isomorphic to Gt �Hs.

Furthermore, for 1 � f < g � k, the graphs Lf and Lg are disjoint: the portions in Tk are

disjoint because wf and wg are distinct, and the portions in T 0k are disjoint because w0f

and w0g are distinct.

Step 3: For 1 � h � k, determine in the following way if there is an idle path in Lh from

wh to w0h. To determine if Lh � Gt �Hs is linked, apply the algorithm of Section 3 to Gt

to �nd the set U of central edges of idle paths in Gt. Then, for each edge
�
u;Rev(u)0

�
in

U , determine if all links in the copy of Hs from u to Rev(u)0 are idle, so that the idle path

through
�
u;Rev(u)0

�
in Gt extends to an idle path in Lh. If an idle path through some Lh

is found, it extends to an idle path through Gk. If all Lh are blocked, the algorithm fails.

According to Theorem 3.1, each application of the algorithm of Section 3 to a copy of

Gt uses and expected number of probes at most 8t 2�(q)t � 8k 2�(q)(k�2j). This expression

of course also bounds the number of idle paths found, and thus the expected cardinality

of U . For each edge in U , the number of probes needed to search the corresponding copy

of Hs is at most s � 1 � k � 1. Thus the expected number of probes needed to search

each Lh is at most 8k2 2�(q)(k�2j). Since there are k such channel graphs Lh, the expected

number of links probed in Step 3 is at most 8k3 2�(q)(k�2j).

From the de�nition of j we have

k � 2j � k � k log(2q2) � 4 log k

log(2q)
+ 2

=
k log(1=q) + 4 log k + 2 log(2q)

log(2q)
:

Since �(q) = log(2q)
�
log(2=q) for q > q0, this yields

�(q) (k � 2j) � k log(1=q) + 4 log k + 2 log(2q)

log(2=q)
;

and since log(2q)
�
log(2=q) < 1

�
log(2=q) < 1 for q0 < q < 1, we obtain

�(q) (k � 2j) � 
(q) k + 2 + 4 log k;

where we de�ne 
(q) = log(1=q)
�
log(2=q) for q0 < q < 1. Thus the expected number of

links probed in Step 3 is at most

8k3 2�(q)(k�2j) � 32k7 2
(q)k:

12



To estimate the probability of failure in Step 3, we need to estimate the probability

of blocking in each Lh. To do this we shall need to estimate the expected number J =

2tqs+2t�1 = 2k�2j�1q2k�2j�2 � 2k�2jq2k�2j of idle paths from wh to w0h in Lh. Since

2j � k log(2q2)� 4 log k

log(2q)
;

we obtain J � k4. According to Theorem 10.1 from Pippenger [P3], the blocking probabil-

ity of each Lh is then 1�(1��)2+O(J��), where � = (1�q)2=q2 and � = �=2(1+�) > 1=4

(since � > 1). Since � = (1 � q)2=q2 � (1 � q0)
2=q20 < 1=4, we have 1 � (1 � �)2 < 1=2.

Thus the blocking probability in each Lh is at most 1=2+O(1=k), and we may assume that

k is su�ciently large that it is at most 2=3. Since failure occurs in Step 3 only if blocking

independently occurs in all k disjoint channel graphs Lh, the probability of failure in Step

3 is at most (2=3)k.

Combining the expected number of probes from the three steps yields

64k4 + 8k2 + 32k7 2
(q)k � 128k7 2
(q)k:

Combining the estimates for probability of failure yields

O(1=k) + 4=k + (2=3)k = O(1=k);

and thus for any �xed " > 0 we may assume that k is large enough that the probability of

failure for the entire algorithm is at most ". Thus we have obtained the following result.

Theorem 4.1: For any �xed q > q0 and " > 0, and for all su�ciently large k, we have

E"(Gk; q) � 128k7 2
(q)k:

Combining this result with Theorem 3.1, and extending the domain of de�nition of


(q), we have the following result.

Theorem 4.2: For any �xed 0 < q < 1 and " > 0, and for all su�ciently large k, we have

E"(Gk; q) � 128k7 2
(q)k;

where


(q) =

8>>>><
>>>>:

0; for 0 < q � 1=2;

log(2q)

log(2=q)
; for 1=2 < q < q0;

log(1=q)
log(2=q)

; for q0 < q < 1.
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Finally, if we de�ne

d"(k; �) = k�1 log E"(Gk; 2
�)

as the search dimension analogous to d(k; �), then can express the analysis in this section

by

d"(k; �) � c(�) +O

�
log k

k

�
;

where we de�ne c(�) by

c(�) =

8>>>><
>>>>:

0; for �1 < � � �1;

1+�
1��

; for �1 < � < �1=2;

��
1��

; for �1=2 < � < 0.

As described before, the function c(�) assumes its maximum value 1=3 for the unique

critical value � = �1=2.

5. Conclusion

The most obvious problem left by this paper is to determine whether the algorithms

presented for spider-web networks are asymptotically optimal. We can show that this is

the case in the blocking regime, but in the linking regime the best lower bound we have

been able to obtain falls below the upper bound. It is also an open question as to whether

the upper bound we have presented in the linking regime can be obtained for " = 0.

It would also be of interest to address some of the shortcomings of the models we have

employed. The probability distribution on states introduced by Lee [L1] and Le Gall [L2] is

the simplest to use for analysis, but is somewhat unrealistic. Some of its defects are recti�ed

in a more complicated model introduced by Pippenger [P1] (and in a slightly di�erent form

by Koverninski�� [K]). This model has been used to analyze the linking probabilities of both

series-parallel networks (Pippenger [P1]) and spider-web networks (Pippenger [P2]). The

decision-tree model we have used gives a good account of time requirements (at least in

so far as they are re
ected by probes), but takes no account of space requirements. This

shortcoming could be addressed by replacing the decision-tree with a decision-graph, and

reckoning space as the logarithm of the number of nodes in the graph. It should then be

possible to analyze the time-space trade-o� for searching spider-web networks.

Finally, we should mention the possibility of extending the analysis to other fami-

lies of channel graphs. The spider-web graphs are superior to parallel graphs as regards
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linking probability, but they require more time for path-search. This raises the prob-

lem of constructing a new family of channel graphs that might enjoy the advantages of

both, and the disadvantages of neither. Since the linking probability is determined largely

by events in the outermost stages of a network, while much of the search time is con-

sumed by links deeper in the network, it seems reasonable to hope that a network that

is spider-web-like in its outer stages and parallel-like within (say with the rhyme scheme

12 � � � j(j+1) � � � (k�1)k(k�1) � � � (j+1)1 � � � (j�1)j, for some j growing very slowly with

k) would accomplish these objectives.
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