Formalization and Analysis of the Separation
Minima for the North Atlantic Region: Complete
Specification and Analysis Results

Nancy A. Day, University of British Columbia
Jeffrey J. Joyce and Gerry Pelletier, Hughes International Airspace Management Systems

Technical Report 97-12
Department of Computer Science
University of British Columbia
28 Oct 1997

Abstract

This report describes work to formalize and validate a specification of the separation minimafor aircraft in
the North Atlantic (NAT) region completed by researchers at the University of British Columbiain
collaboration with Hughes International Airspace Management Systems. Our formal representation of
these separation minimais given in amixture of atabular style of specification and textual predicate logic.
We analyzed the tables for completeness, consistency and symmetry. This report includes the full
specification and complete analysis results.

Contents

1. Introduction

2. Specification Notation and Analysis
3. Analysis Results

4. Summary

5. Acknowledgments

6. References

Appendix A: Full Specification
Appendix B: Full Analysis results
Appendix C: A Brief Introduction to the S Notation

1 Introduction

This report describes work to formalize and validate a specification of the separation minimafor aircraft in
the North Atlantic (NAT) region completed at the University of British Columbiain collaboration with
Hughes International Airspace Management Systems. Our formalization is based on a description provided
in a source document entitled "Application of Separation Minimafor the NAT Region" (3rd edition,
effective December 1992) published by Transport Canada on behalf of the ICAO North Atlantic Systems
Planning Group. ICAQ isthe International Civil Aviation Organization with headquartersin Montreal,
Canada. Related pseudo code interpretation of this material was also considered. This additional

documentation was developed by the COMAG (Communications and ATM Automation Group), now
named the CADAG (Communication, Automation and Data Link Applications Group).

The separation minima provides guidance to air traffic controllers managing the region of oceanic airspace
between Europe and North America. It isaso used as the basis for the development of software based
systems that support the management of air traffic in the NAT region. For example, it would be used
during the planning of aflight from New Y ork to London to check whether the route is free from
separation conflicts with other aircraft expected to bein the NAT region at the same time.

The source document for our formalization is an informal specification that has been scrutinized by the
NATSPG (NAT Systems Planning Group) members who are air traffic control (ATC) specialists from the
NAT countries, and most of them maintain and use automated systems that implement these rules.

Our formalization and analysis effort directly involved an ATC domain expert (not just formal methods
experts) in the process of developing and analyzing aformal representation of this complex real
description. The two objectives for formalizing these separation rules were:

¢ to present them in an understandable, unambiguous format, and
¢ to detect potential incompleteness or inconsistencies.

Our formal representation of these separation minimais given in amixture of atabular style of
specification and atextual predicate logic notation called S[IJDD94]. This effort required itemizing the
variety of English phrases used to describe various conditionsto yield a"dictionary” of primitives. These
primitives are used in tables to specify the combinations of conditions which result in particular outcomes.
It is possible to analyze this formal representation so we are able to determine the scenarios that are either
not covered by atable, or are covered by the default case (completeness analysis). We also examined the
consistency and symmetry of the tables.

In this project, considerable emphasis was placed on the readability of the specification. Consequently,
tools were devel oped to create an on-line, top-down presentation of the specification with
cross-referencing links. Thistechnical report is a printout from aweb browser. However the formal
specification and analysis results do not necessarily have to be given in this format.

This report presents the complete specification along with an introduction to the formal description
technique used for this specification. The full results of the analysis are also included. Details of the
technique used to carry out the analysis can be found in [DJP97].

2 Specification Notation and Analysis

This document uses aformal description technique to specify the separation minimafor the NAT region.
The description is "formal™ in the sense that it can be parsed by a software tool into a mathematical
representation based on formal logic. Although inherently mathematical, considerable effort has been
made in the use of this formal description technique to make the specification understandable to as wide an
audience as possible.

The ability to parse this separation minimainto a mathematical representation is valuable for several
reasons. For instance, software tools based on formal logic can be used to perform avariety of validation
checks on the mathematical representation. It may also be possible to use this mathematical representation
as input to software tools which automatically generate software components for a software system based
on the NAT separation minima.

In this section, we describe the notation used in this specification and briefly introduce the analysis carried
out.

2.1 Specification Notation

The formal specification of the separation minima appears in this document as a combination of text such
as,
W t hi nCppDi r NoLongSepPeri od(A: flight,B:flight,t:time) :=
let timePeriod := QppDir NoLongSepPeri od(A B) in
(StartTime(timePeriod) <=1t) AND (t <= EndTi ne(tinePeriod));

and tables such as;

Table 1: Vertical Separation

1 2 3 4 Default
: FlightLevel (A) <=280| . | _>as0| >a50
j FlightLevel (B) _ <=280| >4s0| >450
? | sSupersonic (A) =T
T | sSuper sonic (B) =T
- Vertical SeparationRequired (A,B) 1000 1000 4000 4000 2000

Thetextual parts of the formal specification of the separation minimafound in Appendix A are easily
distinguished in this document from unformalized text by the use of "typewriter font" for the formalized
text, e.g.,

W t hi nOCppDi r NoLongSepPeri od(A: flight,B:flight,t:time) := ...

The formalized text is written in aformal notation called "S*. Although based on formal logic, much of the
syntax of this notation is similar to that of well-known programming languages, e.g., "if ... then ... else ...".

The tabular parts of the formal specification of the separation minima are also easy to recognize by the
graphical presentation of these tables in this document. The row entries within these tables is based on the
syntax of S.

This section gives a brief description of the tabular style of specification. Appendix C provides an
description of the"S" notation focusing on the S constructs used in this document.

The formal specification of the separation minimais presented in this document as a sequence of
declarations and definitions. Many elements of the formal specification are defined hierarchically in terms
of other formally specified elements. For instance, the "top- level" element of this hierarchy isthe

predicate "AreSeparated”; it is defined in terms of a number of predicates and functions such as

"V ertical SeparationRequired”, "LatitudeEquivalent”, "L ateral Separation RequiredinDegrees’, and
"Lateral Separation RequiredinMiles'. The order of the declarations and definitions for these elements, as
they appear in the specification, is approximately "top down" beginning with top level concepts and
refining these successively into lower level concepts. Figure 1 in Appendix A shows the hierarchy of
definitions for our formal specification of the NAT separation minima.

The bottom (or "leaf") level of definitionsin thisfigure are defined in terms of primitive elements. These
primitive elements include objects such as a"flight". They also include terms which correspond to
attributes or properties of objects as well as relationships between objects. An example of a primitive term
isthe"FlightLevel" of aflight. These terms are declared rather than defined. As primitives, they identify
the lowest level of abstraction used to specify the NAT separation minima. It can be assumed that the
meaning of these primitivesis obvious to the intended audience of this specification, namely, individuals
familiar with aircraft separation.

2.2 A Brief Introduction to Tabular Style Specification

The tabular style of specification used in this document is quite similar to conventional decision tables
used in semi-formal specification methodol ogies such as Structured Analysis as described by DeMarco
[DeM79]. Similar tables are also used in other engineering disciplines such as digital circuit design. A
form of decision tables called AND/OR tables were used extensively in the TCAS I (Traffic Collision
Avoidance System) formal specification [LHHR94] adopted by the US FAA. Parnas has a so advocated
the use of tables to represent relations [P92].

A predicate table specifies a condition which is true or false depending on the values of other conditions.

Each column of atable represents a set of these subconditions that, when taken together, describe one case.
For example, the following table,

Table2: P1

PL@b) || T | T F | F

defines a predicate "P1" in terms of two input conditions, "a' and "b". The constants"T" and "F" are used
to represent "true" and "false" respectively. Anentry inarow suchas”__ = T" represents the condition
resulting from filling in the blank with the label of the row (an input condition). For example, the entry in
row 2, column 3is"b=T". Each of the four columns corresponds to a separate case. For instance, column
2 specifiesthat the predicate "P1" istrue if condition "a" istrue and "b" isfalse. The value of "P1" for this
particular combination of input conditionsisindicated by the"T" in the last row of column 2.

The tabular specification of a condition in this manner is an alternative to atextual representation. For
instance, an equivalent representation of the condition "P1" using S notation is:

PL:=if ((a=T) AND (b =T)) then T
else if ((a=T) AND (b
else if ((a =F) AND (b
el se F;

2.2.1 Reducing the number of columnsin atable

The above example table is "complete” in the sense that every possible combination of the values of the
input conditions is represented explicitly by one of the columnsin the table. In this case, there are just four
possible combinations. However, for more complex tablesit is not practical to write out every possible
combination of input conditions. Fortunately, the specification notation used in this document provides
several mechanisms for reducing the size of tables without changing their meaning.

One such mechanismisthe use of "." in acell of atable which means"don't care" - i.e., the input condition
for this row can be any value. This mechanism often allows two or more columns of atable to be merged
into one column. For example, Table 2 given above for "P1" can be simplified as follows without changing
its meaning:

Table 3: Revised Specification of P1

a ||_=71] =] =F
b =T _=F

Pl@ab) || T F F

Column 1 of Table 3 corresponds to Columns 1 and 2 of Table 2. It is possible to merge these columns of
Table 2 because the only difference between them isthe value of "b".

Another mechanism used in this specification document to reduce the size of tables is the addition of an
extra column at the right hand side of the table which specifies the default value of the predicate. Thisis
the value of the predicate if none of the other columns match the table inputs. For example, an even
simpler specification of the condition "P1" is given by the following table:

Table 4: Second Revised
Specification of P1

1 Default

a_:T
b

Plab)|| T F

2.2.2 Reducing the number of rowsin atable

It isalso possible to reduce the size of table without changing its meaning by reducing the number of rows.
For example, the table,

1 2 Default
: X <=100 _=T|_=F
j 100 < x C=F| =T
j a _=F||_=T
- P2 (x,a) T T F

can be reduced in size by taking advantage of the fact that Rows 1 and 2 are related. In particular, the value
in each cell of Row 1 isthelogical opposite of the corresponding cell in Row 2 because the conditions
|abelling the rows are mutually exclusive. These two rows can be merged by using parameterized
expressionsinasinglerow other thanjust” =T"or"__=F". These two rows can be merged by using
parameterized expression in the cells of asingle row where the parameter corresponds to the value of the
input variable "x":

Table 6: Revised Specification of P2

1 2 Default

X __<=100|100<__
e | _=F | =

P2 (x, a) T T F

Each cell of thefirst row of the abovetable (i.e., the row labelled by "x" on the left hand side of the table)
containseither " _<=100" or "100 < _". The blank, i.e.,"_" stands for the value of the input variable
identified at the left hand side of the row, i.e,, "X".

The textual parts of the tables which appear in this document are based on the S notation. The only
extension to the S syntax used within the tables isthe use of "_" to stand for the value of the input variable.

2.2.3 Using Tablesto Specify Functions
So far, this section has described how tables are used to describe predicates which are functions that return

only true or false. Tables can also be used to specify functions. Thisis simply a matter of specifying values
other than "T" or "F" at the bottom of the table. For instance, the table,

Table 7: F1

B 1 2 3 Default
1% _ <=100|100<__[[100<

j y <55 | =55 55«

j 2 _=T _=F

- F1(x,y,a) 20 40 60 30

specifiesafunction "F1" that, for instance, evaluates to "40" when "X" is greater than "100" and "y" is
exactly "55". Notice that the input variables are given as parameters to the function specification unless
they are global constants.

The equivalent textual representation for "F1" is:

F1(x,y,a) :=
if ((x <= 100) AND (y < 55) AND (a = T)) then 20
else if ((100 < x) AND (y = 55)) then 40
else if ((100 < x) AND (55 <y) AND (a = F)) then 60
el se 30;

2.3 AllOf and AtL eastOneOf Conditions

Expressions of the form, "AllOf [A;B] P are frequently used in the formal specification of the separation
minima. An expression of this form denotes the condition that both A and B satisfy the predicate P. Hence,
"AllOf [A;B] P" isequivalent in meaning to "P (A) AND P (B)". The"AllOf" syntax is used to make the
label of arow in atable more concise than its expanded form especially when the name of the predicateis
lengthy, for example,

"AllOf [A;B] HavePartOfRoutel NMNPSAIrspace "
instead of

"HavePartOf Routel NMNPSAirspace (A) AND
HavePartOfRoutel NMNPSAirspace (B)"

Similarly the expression "AtL eastOneOf [A;B] P" isequivalentto "P (A) OR P (B)".
2.4 Environmental Assumptions

There are various relationshi ps between the primitive terms in the specification. To both document these
relationships and take advantage of them in analysis, they are noted formally as assumptions about the
environment (or domain) of the separation minima specification. For example, we documented the
constraint that aflight could not satisfy both of the predicates "IsLevel" and "InCruiseClimb" at the same
time. This constraint is expressed directly in S notation by the following assertion :

forall (A:flight). NOT (IsLevel A AND InCruiseClimb A);

These assumptions helped reduce the results of the analysis by eliminating some impossible scenarios.
They are specified using predicate logic because each assumption isfairly smple.

2.5 Validation
2.5.1 Completeness Checking

A number of routine checks may be performed to validate a tabular specification. One such form of
validation is completeness checking.

It is useful to check whether atabular specification is"complete” in the sense that any possible
combination of inputs given by the row entries corresponds to at least one of the columns in the table. For
instance, the table,

Table 8: P3
1| 2| 3
(ks _=T||_=T||_=F
; b =T =F|_=T
B P3@b)|| T | T || T

is not complete in the sense that it does not include the case when "a" and "b" are both false. The table,

Table 9: F2
1 2 3
1| * _ <100|[100< [100<
2(Y _ <55 =55 55<
32 =T _=F
F2xy,a) | 20 40 60

is also incomplete because it omits the cases when "x" is equal to "100".

From alogical perspective, it isnot necessarily an error if atableisfound to be incomplete. It is sometimes
desirable to only partially specify a condition or function. However, it would be common in a specification

methodology to disallow partial specifications -- which means, in this case, to require every table to be
complete.

A tableis guaranteed to be completeif it contains a"Default” column. However, it is possible that more
cases than intended fall into the "Default" column. When a"Default” column isused in atabular
specification, it is desirable to enumerate the cases included in that column as part of the validation effort.
2.5.2 Consistency Checking

Another form of analysisis consistency checking. For instance, the table,

Table 10: F3
1 2 3
1 _ <100|100<_ [100<__
2(Y <55 55< | 55<
32 _=T _=F
F3(X,Y,a) | 20 40 60

is not consistent because it specifies two different values, "40" and "60" for the same case, namely, when
"X" is greater than 100, "y" is greater than 55 and "a" isfalse.

Note that a predicate table can never be inconsistent because all of its columns have the same return value
for the function, i.e. "T".

2.5.3 Symmetry Checking

Thelast validation check that is described here is symmetry checking. All of the tables of the separation
minima describe functions over two inputs, namely two flights. Symmetry checking attempts to ensure that
these functions do not rely on the order that flights are given as parameters to the function, i.e., for every
function "F", "F(flightA flightB) = F(flightB,flightA)".

2.6 Tool Assisted Validation

Software tools may be used to perform these validation checks on tabular style specifications used in this
document. One such tool is called "fusion” which was devel oped by the first author and used in this
project. Others have developed tools for other notations to carry out similar analysis
[HCO5][HJIL96][HL96]. (Note other commerical tools may exist called fusion. Oursis a prototype
academic tool.)

Initially fusion typechecks the specification to ensure that the terms are all used consistently and that every
object refered to is defined or declared. Then fusion can check the compl eteness, consistency and
symmetry of individual tables.

Completeness checking returns alist of the cases covered by the default column, or those not covered if
there is no default column. The tool attempts to shorten the list by determining how output cases can be
combined through the use of "don't care" (DC) values. Thislist of cases can be reviewed manually to
determine if these cases are intended to have the default value. While thisinvolves manual effort, the
processing performed by fusion streamlines the review process and potentially improves its thoroughness.

Consistency checking returns pairs of columns which return different values for the function but overlap in
the set of input values that can satisfy the column. The tool also returns the combination of input values
that can satisfy both columns.

If it can not fully determine that it is symmetric, symmetry checking returns alist of conditions which must

be satisfied for the table to be symmetric. The addition of some environmental constraints about the
symmetry of primitive terms helps this analysis.

3 Analysis Results

The formal specification of the separation minimaincludes 15 tables which we can analyze for
completeness, consistency and symmetry. The results for each of these checks are summarized in the
following table.

Table 11: Summary of Analysis Results

10

Type of Consistency .
Table pof | ot | Table | GTRETES) ol e
Rows|| Cols|| Default def 9 overlapping Sy 5
Col ault cases))
\Vertical SeparationRequired | 4 || 4 | FD || 4 | 0 | YES |
" Lateral Separation
Requir edi nDegr ecs” 8 | 4 F.D 16 4 YES
" Lateral Separation
RequiredinMiles’ 8 || 4| FD 16 4 YES
|L atitudeEquivalent | 5 | 6] P | 17 I 0 | NO |
ILongSameDirSepRequired | 2 || 2 | FD || 1 | 0 | NO |
" OppDir NolL ongSepPeriod” || 2 || 2 | FD | 1 | 0 | NO]
" ssOppDir
NoL ongSepPeriod" 1 2 F 0 0 NO
|ssSameDir L ongSep | 4 | 2| FD | 3 [0 | YES |
[sssubcondition Ta 21 P | 4 | o | ves |
"turbojetSameDir LongSep” | 2 || 4 | F | 0 I 0 | NO |
" turbojetOppDir
NoL ongSepPeriod" ‘ 2 ‘ 4 ‘ F ‘ 0 ‘ 0 ‘ NO ‘
" MNPSSameDir LongSep” | 3 || 5 | FD | 3 | 0 | NO |
IWATRSCondition | 6 | 2| P | 8 | 0 | YES |
| genSameDir L ongSep” | 6][3] FD | 5 | 0 [NO |
lother SameDir L ongSep |l 3 | 2| FD | 2 | 1 | YES |

"F" means function table. "P"' means predicate table. "D" means there is a default column in the function
table. The default column of predicate tables is always F for false. The number of columns does not
include the default column in this count.

3.1 Completeness Analysis

Completeness analysis revealed the cases that are covered by the default column of function tables and
those cases that return false in the predicate tables. All the function tables that did not have default
columns were compl ete.

For some tables there are a great number of cases covered by the default column but review by our domain
expert did not find any errors in the specification from these results.

3.2 Consistency Analysis

The results of analyzing the separation minima revealed that three tables are inconsistent. After consulting
the official specification (i.e., not the pseudo code representation), our domain expert concluded that these
are cases where the specification is ambiguous.

The table "otherSameDirLongSep" (Appendix A, Table 25) specifies the number of minutes that must

11

exist between two aircraft (that are not both turbojet or both supersonic) flying in the same direction for
them to be considered longitudinally separated. The checker identified that, for the case where two aircraft
have reported over acommon navigation point, are on the same or diverging tracks, and are both on a
particular set of routes that have special criteria, the specification is ambiguous as to whether there should
be 15 or 20 minutes of separation between them.

The other two tables with inconsi stencies describe requirements for lateral separation. These two tables,

"L ateral Separation RequiredinDegrees" and "L ateral Separation RequiredinMiles' are the same except that
thefirst returns avalue in degrees of latitude and the second returns a value in miles. These tables have
eight rows and four columns. The inconsistent cases involve special provisions for particular routes that
overlap with the more general criteria. The results clearly reveal casesin the official specification that are
ambiguous as to the amount of lateral separation required between aircraft.

3.3 Symmetry Analysis

Symmetry analysis did not reveal any non-symmetric tables. It did highlight information about the
primitive terms which might not be known by an implementor of the separation minimain software. For
example, to make this analysis more accurate, we added environmental constraints such as:

forall (A:flight) (B:flight).
Report edOver CommonPoi nt (A, B) =
Report edOver ConmonPoi nt (B, A) ;

When symmetry analysis can not completely determine if atableis symmetric it returns conditions that if
satisfied would mean the table is symmetric.

If the return values of afunction table are not concrete values, the tool states assumptions about the
symmetry of the return values of the function.

Symmetry checking of the "L atitudeEquivalent” table points out that in one row a condition iswritten "x <
58" and in another row it iswritten "58 > x". The analysis carried out by the tool isto alarge degree based
on the syntactical equivalence of primitive terms so it is not able to show these terms are equal. However if
the table is amended to use only one form of this expression, the tool would be able to show thetableis
symmetric.

4 Summary

This project can be considered a success because aformal specification was achieved with little loss of
readability of the specification, and analysis of the specification was possible which revea ed
inconsistencies in the published separation minima.

We believe that this formalization of these separation minima s readable without extensive training in the
use of formal specification techniques. A number of potential ambiguities in the source documents were
identified and resolved as part of the formalization process. The formal specification contains 15 tables, 18
definitions, 43 uninterpreted constants, 2 uninterpreted types, 1 defined type (location), and 1 type
abbreviation (time).

The formal specification technique demonstrated by this example formalization of the NAT Separation
Minima bears some similarity with the use of pseudo-code as a means of specification. One common
element isthe use of afixed syntax that is potentially parseable by software tools. But unlike pseudo code,
the formal specification technigque used here provides constructs necessary to avoid the unintentional

12

embedding of design or implementation constraints in the specification. For instance, it does not constrain
the order in which conditions are to be evaluated when determining if the condition "AreSeparated” is
satisfied. It also does not require full descriptions to be given for all terms used in the specification. The
use of uninterpreted constants allows the formalization to maintain a suitable level of abstraction for the
separation minima.

The formal specification and analysis techniques demonstrated by example in this report are intended to be
widely applicable. We suggest that this approach would be very useful in the specification and analysis of
systems with combinations of conditions that produce different outcomes that involve considerable logical
complexity. In an informal natural language specification these are conditions that involve considerable
use of words such as"or" and "and". As demonstrated here, automated analysis of these specifications,
such as the 45 checks carried out in thiswork, can quickly reveal problems in the specification that are not
easily discovered through manual review.

As noted in the introduction of Appendix A, the formalization of the NAT Separation Minima does not
include the explanatory text found in the source documents. An interesting next step in the development of
thiswork would be to prototype a new version of the source document incorporating the formalization of
the minima based on the approach documented in this report.

5 Acknowledgments

The authors would like to thank Richard Y ates of MacDonald Dettwiler for comments on an early draft of
the specification. The first author would also like to acknowledge the input of her thesis committeein
focusing the ideas used to develop the analysis techniques. Christine Jensen of UBC provided helpful
comments on afinal draft of thistechnical report. The university based component of this collaborative
research is support by funding from Hughes International Airspace Management Systems, MacDonald
Dettwiler, and the BC Advanced Systems Institute.

6 References

[DeM79] Tom DeMarco. Structured Analysis and System Specification. Y ourdon Press, Englewood Cliffs,
New Jersey, 1979.

[DJP97] Nancy A. Day, Jeffrey J. Joyce, and Gerry Pelletier. Formalization and Analysis of the Separation
Minimafor Aircraft in the North Atlantic Region. In Lfm97: Fourth NASA Langley Formal Methods
Workshop, NASA Conference Publication 3356, compiled by C. Michael Holloway and Kelly J. Hayhurst,
September 1997.

[HC95] D.N. Hoover and Zewei Chen. Tablewise, a Decision Table Tool. In Proceedings of the Ninth
Annual Conference on Computer Assurance (COMPASS95), 97-108, Gaithersburg, MD, June 1995.

[HJIL96] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Software Engineering and Methodol ogy,
5(3):231-261, July 1996.

[HL96] Mats P.E. Heimdahl, and Nancy G. Leveson. Completeness and consistency in hierarchical
state-based requirements. | EEE Transactions on Software Engineering, 22(6):363-377, June 1996.

[JDD94] J. Joyce, N. Day, and M. Donat. S: A machine readable specification notation based on higher

13

order logic. In 7th International Workshop on Higher Order Logic Theorem Proving and Its Applications,
285-299, Valletta, Malta, September 1994.

[LHHR94] Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, and Jon D. Reese. Requirements
specification for process-control systems. |EEE Transactions on Software Engineering, 20(9):684-707,
September 1994.

[P92] David Lorge Parnas. Tabular representations of relations. Technical Report 260, Communications
Research Laboratory, Faculy of Engineering, McMaster University, October 1992.

[P91] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, Cambridge, 1991.
Appendix A: Full Specification

1 Introduction

This formal specification of the separation minima for the North Atlantic Region was devel oped by
researchers at the University of British Columbia and Hughes International Airspace Management
Systems. Our formalization is based on a description provided in a source document entitled "Application
of Separation Minimafor the NAT Region" (3rd edition, effective December 1992) published by Transport
Canada on behalf of the ICAO North Atlantic Systems Planning Group. ICAQO isthe International Civil
Aviation Organization with headquarters in Montreal, Canada. This separation minima document was
developed by the COMAG (Communications and ATM Automation Group), now called the CADAG
(Communication, Automation and Data Link Applications Group).

The formalized version of the specification presented here does not include as much explanatory text as
would be found in afull specification document. In its current form, this document should be seen asa
companion document to the official specification.

This does not represent the views of MacDonald Dettwiller (MDA) or Hughes International Airspace
Management Systems. The document that formed the basis for this formal specification is not proprietary.

2 Abbreviated Terms

MNPS - Minimum Navigation Performance Specifications
WATRS - West Atlantic Route System

3 Structure of the Specification

The following diagram illustrates the structure of the specification and the dependencies between functions
used in defining the specification. Specification primitives are not included on this map. If viewed using an
HTML browsing tool, clicking on afunction name in this diagram will take you to the definition of the
function.

14

Areseparated

VerticalseparationReguired

LatitudeEqguivalent

"LateralSeparation Reguiredintiles"
"LateralSeparation ReguiredinDegrees" LongSameDirsepRequired

__

sgsamelirLongsep

,r‘("turbojetsameDir Longsep” othersameDirLongsep
sssubcondition / /
WaTRICondition FAMPECondition "genSameDir LongSep”

"tAMP S Samelir Longsep”

WaTRSSameDirLongSep

WithinOppDirdoLongsepPeriod

==

"Cpphir MoLongsepPeriod”

|

"s50pplir MoLongSepPeriod” “turbojetCpphir MoLongSepPeriod" otherQppDirtoLongSepPeriod
WaTRSCondition WMMPSCondition "genCppDir MoLongsep Period”
“WATRSOppDir MoLongSepPeriod" "FAMNPECppDir MoLongSepPeriod”

Figure 1. Hierarchy of Definitions.

4 Separation

Two aircraft, A and B, satisfy the separation criteriaif they satisfy the rulesfor at least one of vertical,
lateral, or longitudinal separation. Thisisformalized as:

AreSeparated(A:flight,B:flight,t:time) :=
/* A and B are vertically separated based on flight |evel */
(ABS(FlightLevel A - FlightLevel B) > Vertical Separati onRequired(A, B))
oR

/* A and B are laterally separated based on either position in degrees
of latitude or position in mles */
(if (LatitudeEquival ent(A B))
t hen
(ABS(Lat eral PositionlnDegrees A - Lateral PositionlnDegrees B) >
"Lat er al Separati on Requi redl nDegrees" (A B))
el se
(ABS(Lateral PositioninMles A - Lateral PositioninMles B) >
"Lateral Separation RequiredinMIles" (A B)))
oR

15

/* A and B are longitudinally separated based on tine
dependi ng on whether the two flights are in the approxinate
same or opposite direction */
(if (Angul arDifferenceG eat er Than90Degr ees
(Rout eSegrment A, Rout eSegnment B))

t hen /* opposite direction */
NOT (Wt hi nQppDi r NoLongSepPeri od(A, B, t))
el se /* sane direction */

ABS(Ti meAt Position A - TinmeAtPosition B) >
LongSaneDi r SepRequi red(A, B));

Note that identifiers within quotation marks have no special meaning. The use of quotation marks allows
identifiers to contain white space.

5 Vertical Separation

Therulesfor vertical separation are formalized in the following table:

Table 12: Vertica SeparationRequired

- 1 2 3 4 Default
1 | FlightLevel (A) _ <=oe0|| . _ >450 || _>450

j FlightLevel (B) _ <=280| _>a50| >a50

? I sSupersonic (A) =T

T I sSupersonic (B) =T

- Vertical Separ ationRequired (AB) || 1000 1000 | 4000 | 4000 | | 2000

6 L ateral Separation

Therulesfor lateral separation have special casesfor certain routes. It is assumed that these limits apply to
aircraft travelling in either direction on these routes. These routes are described using sets of pairs:

Rout es1l : = {(USA, BDA); (CAN, BDA); (I beri anPeni nsul a, Azores);
(I cel and, Scandi navi a); (I cel and, UnitedKi ngdon)};

Rout es2 : = {(USA, Cari bbean); (CAN, Cari bbean); (BDA, Caribbean)};

The following predicate checks whether the departure and destination of aflight fall within a set of routes:

| sOnRoute (R (Il ocation#l ocation)set) (X flight) :=
((Rout eDeparture (X), RouteDestination (X)) In R OR
((Rout eDestination (X), RouteDeparture (X)) In R);

16

The following predicate determines whether the flightlevel of an aircraft is above 275:

FI i ght Level Above275 (X:flight) := FlightLevel X > 275;

Therulesfor lateral separation are:

Table 13: "L ateral Separation RequiredinDegrees"

1 2 3 4 Default

AllOf [A;B] 1sOutsideM NPSAir space

AllOf [A;B] (IsOnRoute (Routesl))

AllOf [A;B] (IsOnRoute (Routes?))

AIIOf [A;B] | SWestOf55W

AllOf [A;B] IsSuper sonic

AllOf [A;B] FlightL evel Above275

AlIOf [A:B] MeetMNPS

AllOf [A;B] HavePartOfRoutel nM NPSAIr space

" LateralSeparation RequiredinDegrees' (A,B) 15 15 1 1 2

As prescribed by the " AreSeparated” predicate, sometimesit is necessary to calculate the lateral separation
required in miles, rather than degrees. The result in milesis given by the following table:

17

Table 14: "L atera Separation RequiredinMiles’

1 2 3 4 Default

AllOf [A;B] 1sOutsideM NPSAir space

1 _=T||_=T
5 AllOf [A;B] (IsOnRoute (Routesl)) T
3 AllOf [A;B] (IsOnRoute (Routes?)) -7
4 AlIOf [A;B] 1sWestOf55W T
5 AllOf [A;B] I1sSuper sonic a7
6 AllOf [A;B] FlightL evel Above275 T
- || AlIOf [A;B] MestMNPS =
8 AllOf [A;B] HavePartOfRoutel nM NPSAIr space =T
" LateralSeparation RequiredinMiles' (A,B) 90 90 60 60 120

In this formalization, the primitive " HavePartOf Routel nMNPSAirspace” is true for aflight that has a
portion of itsroute in MNPS airspace. In particular, it only applies to segments of the flight's route that are
in, directly above, or directly below MNPS airspace.

Conversely we assume that " 1sOutsideM NPSAirspace” is true for a flight which has no portion of routein
MNPS airspace or for those segments of an MNPS flight which are below the level immediately below
MNPS airspace and to the segments above the level immediately above MNPS airspace.

The following table determines whether the rules that result in degrees (Table 13) or the rules that result in
miles (Table 14) are used:

Table 15: LatitudeEquivalent

18

Default

" RouteSegment
Degrees' A

<=58

(58<)
AND

(__<70)

(70<=_)
AND

(_<=80)

" RouteSegment
Degrees' B

(__>58)
AND

(__<70)

(70<=_)
AND

(_<=80)

AllOf [A;B]
"LatChange
Per10DL ong
LessThanOrEQ3"

AllOf [A;B]
"LatChange
Per10DL ong
LessThanOrEq2"

AlIOf [A;B]
"LatChange
Per10DL ong
LessThanOrEql"

L atitudeEquivalent
(A,B)

7 Longitudinal Separation

The rulesfor longitudinal separation are divided into three cases. supersonic aircraft, turbojet aircraft and

other aircraft.

Longitudinal Separation does not exist between flights of opposing direction during a certain time period.

let tinmePeriod

W t hi nQppDi r NoLongSepPeri od(A: flight,B:flight,t:tine) :
;= "QOppDir NoLongSepPeriod"(A B) in

(StartTime(timePeriod) <=1t) AND (t <= EndTi ne(tinePeriod));

Table 16: LongSameDirSepRequired

19

Default

AllOf [A;B] IsSuper sonic

AllOf [A;B] IsTurbojet

L ongSameDir SepRequired

ssSameDirLongSep

"turbojetSameDir

otherSameDirL ongSep

(A,B) (A,B) LongSep” (A,B) (A,B)
Table 17: "OppDir NoL ongSepPeriod"
1 2 Default
AlIOf [A;B]
1 || IsSupersonic =T _=F
AllOf [A;B]
2| IsTurbojet =T
" OppDir "ssOppDir "turbojetOppDir "otherOppDir
NoL ongSepPeriod" NoL ongSepPeriod" NoL ongSepPeriod" NoL ongSepPeriod"
(A,B) (A,B) (A,B) (A,B)

7.1 Super sonic Air craft

The rules for the separation period for opposite direction flight route segments is based on the estimated
passing time (ept). Opposite direction exists when the intersection angle between route segments of two
flightsis greater than 90 degrees.

Table 18: "ssOppDir NoL ongSepPeriod"

1

ReportedOver CommonPoint(A,B)

=T

=F

" ssOppDir NoL ongSepPeriod” (A,B)

(ept(A,B),ept(A,B)+10)

(ept(A,B)-15,ept(A,B)+15)

The following table shows the longitudinal separation requirements for same direction supersonic flights.
Same direction here applies to route segments with an intersection angle of 90 degrees or less.

20

Table 19: ssSameDirLongSep

1 2 Default

ssSubcondition(A,B)

1 _ =T _=T

j " SameOr Diverging Tracks' (A,B) Tl =T

j ReportedOver CommonPoint(A,B) a7

T " Appropriate TimeSep AtCommon Point" (A,B) =T

- ssSameDir L ongSep(A,B) 10 10 15

Table 20: ssSubcondition

1 2 Default

AIOf [A;B] IsLeve

SameMachNumber (A,B)

SameType(A,B)

AllOf [A;B] InCruiseClimb

ssSubcondition(A,B) T T F

7.2 Turbojet Aircraft

The required longitudinal separation for turbojet aircraft isthe minimum value obtained by three possible
calculations. If certain conditions apply then the MNPS calculation is relevant; likewise certain conditions
limit when the WATRS calculation is applicable. These conditions are specified at the beginning of the
MNPS and WATRS sections. The calculations for the general longitudinal separation for turbojet aircraft
always apply. The following table specifies how the different cal culation produce the minimum
longitudinal separation for turbojet aircraft travelling in the same direction.

Table 21: "turbojetSameDir L ongSep"

21

1 2 3 4
MNPSCondition
1((A,B) =T _=F =T _=F
WATRSCondition
2 (A,B) _:T _:T _:F _:F
Min { Min {
" . . . "WATRSSameDir "MNPSSameDir "genSameDir
Ltgnré)é)‘jegtus?gng[))lr I\él'&né)ll LongSep" (A,B); LongSep" (A,B); LongSep"
' ' "genSameDir "genSameDir (A,B)
LongSep" (A,B)} LongSep" (A,B)}

This table relies on the following definition which takes the minimum value of all the possible

caculations:

MnAll (A B) :=
Mn {

"MNPSSaneDi r LongSep" (A, B);
"WATRSSaneDi r LongSep" (A, B);
"genSaneDi r LongSep" (A B)};

The separation period for which turbojet aircraft flying in opposing directions are not considered separated
also depends on multiple calculations as given by the following table:

Table 22: "turbojetOppDir NoL ongSepPeriod"”

1 2 3 4

MNPSCondition

1 (A!B) _:T _=F _:T _:F
WATRSCondition

2 (A!B) _:T _:T _:F _:F

UnionOfRange { UnionOfRange {
. : . "WATRSOppDir "MNPSOppDir "genOppDir
thl_r gﬁj eégp%%?i'(; " UnionAll || NoLongSepPeriod” NoL ongSepPeriod" NoL ongSep
(AB) 9 (A,B) (A,B); "genOppDir (A,B); "genOppDir Period"
' NoL ongSep Period” NoL ongSep Period” (A,B)
(A,B)} (A,B)}

The resulting time period in which the aircraft do not have longitudinal separation is the minimum of all
the start times given by the relevant cal culations and the maximum of all the possible end times, as given
by the following two definitions:

22

Uni onOF Range (periods) :=
(MnEarliestTinme (periods), MaxLatestTinme (periods));

UnionAll (A /B) :=
l et periods :=
{" MNPSCppDi r NoLongSepPeri od" (A, B);
"WATRSOppDi r NoLongSepPeri od" (A, B);
"genCppDir NoLongSep Period"(A B)} in
(MnEarliestTime (periods), MaxLatestTine (periods));

7.2.1 MNPS Rules

The conditions for using the MNPS rules are:

MNPSCondi ti on(A, B) : =
(Al O [A Bl Meet MNPS) AND
(Al OF [A Bl HavePart OF Rout el nMNPSAI r space) ;

The time period during which turbojet aircraft on opposing tracks do not have separation is the same as
that given for supersonic aircraft.
"MNPSQppDi r NoLongSepPeriod" (A B) := "ssCppDir NoLongSepPeriod" (A, B);

The following table defines the separation required in minutes for turbojet aircraft flying in the same
direction using the MNPS calculation.

Table 23: "MNPSSameDir LongSep"

1 2 3 4 5 Default

" Appropriate
TimeSep

1{[AtCommon =T =T =T =T =T
Point" (A,B)

" SameOr
Diverging
Tracks' (A,B) — — — — -

M ach

EES)A]:\;?;&J; ((0.06>=_) || ((0.05>=_) || ((0.04>=_) || ((0.03>=_)

| (_>006)|| AND AND AND AND
Eiecb‘;;‘dA”Cfa” (_>005)) || (_>004) | (_>003) || (_>0.02)

"MNPSSameDir
LongSep" (A,B)

23

7.22 WWATRSRules

The following table gives the conditions for using the WATRS rules:

Table 24: WATRSCondition

1 2 Default

AllOf [A;B] Enter WATRSAIr spaceAtSomeTime

1 _ =T _=T
2 AlIOf [A;B] IsWestOf60W T

3 AllOf [A;B] INWATRSAIrspace =T
4 AllOf [A;B] MachTechniqueUsed -7 T

AIIOf [A;B] OnPublishedRoute

" SameOr Diverging Tracks' (A,B)

WATRSCondition(A,B) T T F

A completed specification should provide detailed specifications of the same and opposite direction
longitudinal separation required in the WATRS airspace. However, due to problems in the WATRS rules
in the source document, we could not proceed with an accurate definition. Our interim solution isto
introduce these constants as uninterpreted primitives.

"WATRSSaneDi r LongSep" : (flight#flight) -> num

"WATRSOppDi r NoLongSepPeriod": (flight#flight) -> (tinme#tinme);

7.2.3 General Turbojet Rules

The time period during which turbojet aircraft flying in opposing directions do not have longitudinal
separation is the same as that given by the MNPS cal culations.
"genCppDir NoLongSep Period" (A B) := "MNPSQopDi r NoLongSepPeri od" (A B);

The general calculation for the separation required by turbojet aircraft flying in the same direction is given
by the following table:

Table 25: "genSameDir LongSep"

24

1 2 3 Default
: " SameOr Diverging Tracks' (A,B) _=T|| =T =T

j AllOf [A;B] MachTechniqueUsed e =T =T

j AtL eastOneOf [A;B] InCruiseClimb = _=F _=F

T ReportedOver CommonPoint (A,B) =T

| " Appropriate TimeSep AtCommon Point"

5/ (A,B) =T —T

6| (SeooncancrataBy (00| 705

e genSameDir LongSep" (A,B) 15 5 10 20

8 Other Aircraft

Therules for calculating the time period during which flights on opposing tracks are not longitudinally
separated for aircraft other than turbojets and supersonics are the same as those for the general turbojet

case:

"ot her OppDi r NoLongSepPeriod" (A, B)

Thereis aspecia case for certain routes:

Rout es3 :

{(USA, Cari bbean) ; (CAN, Cari bbean) ;
(

(BD , Cari bbean); (USA, BDA); (CAN, BDA)};

25

= "genOppDir NoLongSep Period" (A, B);

Table 26: otherSameDirLongSep

1 2 Default

ReportedOver CommonPoint(A,B)

1 =T
5 " SameOr Diverging Tracks' (A,B) T
3 AllOf [A;B] (IsOnRoute Routes3) =T
other SameDirL ongSep (A,B) 15 20 30

9 Environmental Assumptions

There are various relationships between the primitive terms used in this specification. These are
documented as environmental assumptions.

Often it is the case that two conditions can not both be true at the same time. However, both conditions can
be false. "env1" specifies constraints of this sort.

envl : =
(forall
AND

(forall (A:flight).NOT (lIsOnRoute (Routesl) (A) AND I sOnRoute (Routes2) (A)));

(A flight). NOT (IsLevel (A) AND InCruisedimb (A)))

In order to check the symmetry of the tables, environmental assumptions are needed about the symmetry of
some primitive terms.

env2 : =
(forall (A:flight) (B:flight).
Report edOver CommonPoi nt (A, B) = ReportedOver ConmonPoi nt (B, A))
AND
(forall (A flight) (B:flight).

SanmeMachNunber (A, B) = SameMachNumber (B, A))
AND
(forall (A:flight) (B:flight).

SaneType(A B) = SanmeType(B, A))
AND
(forall (A:flight) (B:flight).

"SameOr Diverging Tracks" (A, B) = "SaneOr Diverging Tracks" (B, A))
AND
(forall (A:flight) (B:flight).

"Appropriate Ti mneSep At Conmon Point" (A B) =

"Appropriate TineSep At Conmon Point"(B,A)) ;

There are also some numeric relationships between the rows used in the LatitudeEquivalent table.

env3 : =
(forall A
i f "Lat Change Per10DLong LessThanOr Eq2" (A)

26

t hen "Lat Change Per10DLong LessThanOr EqQ3" (A))

AND
(forall A
i f "Lat Change Per10DLong LessThanOr Eq1l" (A)
t hen "Lat Change Per10DLong LessThanOr Eq2" (A))
AND
(forall A

if "Lat Change Per10DLong LessThanOr Eq1l" (A)
t hen "Lat Change Per10DLong LessThanOrEq3" (A));

All environmental assumptions are given by:

env := envl AND env2 AND env3

10 Specification Primitives

The primitives specified in this section are assumed to be termsin the common domain knowledge of the
intended users of this specification. This list should also include an informal description of each term to

more thoroughly document the meaning of these terms.

10.1 Primitive Types

e :flight;

® :|ocation := Azores | BDA | CAN | Caribbean | |berianPeninsul a

| Iceland | Scandi navia | UnitedKi ngdom
. segrrent)
® time == num
10.2 Primitive Constants
Constants include functions, and predicates in addition to data values.
Static attributes of an object of type" flight" :

® |sSupersonic :(flight -> bool);

® |sTurbojet :(flight -> bool);

® HavePart O Rout el NMNPSAi rspace : (flight -> bool) ;
* Meet MNPS : (flight -> bool);

® OnPubl i shedRoute :(flight -> bool);

® RouteDeparture :(flight -> |location);

® RouteDestination :(flight -> location);

® MachTechni queUsed : flight ->bool

USA ;

Time-varying attributes of an object of type " flight" at the current time:

27

® FlightLevel:(flight -> nun;

® InCruiseCinb: (flight -> bool);

®* | nWATRSAI rspace : (flight -> bool);

® |sLevel:(flight -> bool);

® | sQutsi deM\PSAi rspace : (flight -> bool);

® | sWestOF60W: (flight -> bool);

® | sWestOF55W (flight -> bool);

e "l at Change Per10DLong LessThanOr Eql" :fli ght->bool
e "l at Change Per10DLong LessThanOr Eq2" :fli ght->bool
e "lLat Change Per 10DLong LessThanOr Eq3" :fli ght->bool
® Lateral PositionlnDegrees :(flight -> num;

® Lateral PositioninMIles :(flight -> nun);

e NMach : (flight->num;

® Rout eSegnent : (flight -> segment);

"Rout eSegnent Degrees" :(flight -> num;
® TinmeAtPosition :(flight->tine);

Static relationships between pair s of objects of type " flight" :
® SaneType :((flight # flight) -> bool);

Time varying relationships between pairs of objectsof type " flight" at the current time:

® SameMachNunber : ((flight # flight) -> bool);
® FirstAircraft :((flight # flight) -> flight);
e /* ept isthe estimated passing time of two flights */
ept : ((flight # flight)->tine);
e "SaneOr Diverging Tracks" :((flight # flight) -> bool);
e SecondAircraft :((flight # flight) -> flight);

Historical relationships between pairs of objects of type" flight™ :

® ReportedOver ConmmonPoint :((flight # flight) -> bool);

® "Appropriate TimeSep At Cormon Point":((flight # flight) -> bool);

28

® Ent er WATRSAI r spaceAt SoneTine : (flight -> bool);
Static relationships between pairs of other types of objects:
e Angul ar Di f f erenceG eat er Than90Degr ees: (segnent # segnent) - >bool ;
Miscellaneous Application Specific Primitives:
e /[* given atime period return the beginning of the time period */
StartTinme : (time # tine) -> tine;
e /* given atime period return the end of the time period */
EndTine : (tine # time) -> tineg;
e /* for aset of pairs of times, return the minimum value of the first element of the pairs */
MnEarliestTine : (tine # tinme)set -> tineg;
e /* for aset of pairs of times, return the maximum value of the second element of the pairs */
MaxLatestTine : (tinme # tine)set -> tine;
Application Independent Primitives:
e [* absolute value of a number */

ABS : num -> num
e [* determineif an elementisin aset */
(:ty) (_In_) @ (ty) -> ((ty)set) ->bool;
e /* return the minimum number of a set of numbers */
Mn: ((nunmset -> nuny;

e This specification also makes use of common arithmetic operators, such as"<" and ">=", and the
common Boolean operators AND, OR , and NOT.

This specification is dependent upon the following files:

% ncl ude startup.s
% ncl ude table.s

Appendix B: Full Analysis Results

1 Introduction to the Analysis Results

This appendix presents the full analysis results carried out in this work. For each table in the specification,
we present the tool's output for completeness, consistency and symmetry analysis. The constant "DC" is

29

used to represent a"." or "don't care" case.

1.1 Vertical Separ ationRequired Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gconp Vertical Separati onRequired env

Vertical SeparationRequired is:

(Tabl e
[
((Row (FlightLevel A))
[(\x.(x <= 280));DC; (\x.(x > 450)); (\x.(x > 450))])
((Row (FlightLevel B))
[DGC; (\x.(x <= 280)); (\x.(x > 450)); (\
; ((Row (I sSupersonic A)) [DC, DC;
((Row (I sSupersonic B)) [DC;
[1000; 1000; 4000; 4000; 2000])

(x> 450))1])

I nvoki ng interval checker...

Interval checker partitions the range into:
((FlightLevel A) > 450)

((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
((FlightLevel A) <= 280)

I nvoki ng interval checker...

Interval checker partitions the range into:
((FlightLevel B) > 450)

((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
((FlightLevel B) <= 280)

The foll owi ng cases
yield the default value of 2000

Case 1

Row 1 : ((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
Row 2 : ((FlightLevel B) > 450)

Row 3 : DC

Row 4 : DC

Case 2

Row 1 : ((FlightLevel A) > 450)

Row 2 : ((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
Row 3 : DC

Row 4 : DC

Case 3

Row 1 : ((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
Row 2 : ((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
Row 3 : DC

Row 4 : DC

Case 4

Row 1 : ((FlightLevel A) > 450)

Row 2 : ((FlightLevel B) > 450)

Row 3 : ((lsSupersonic A) = F)

Row 4 : ((lsSupersonic B) = F)

Stats for Vertical Separati onRequired conpl et eness checki ng:
Nunmber of cases identified: 4
Processor tine: user: 0 sec; system O sec

30

Fusi on session over.

1.2 Vertical Separ ationRequired Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
I'ncluding /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gcons Vertical Separati onRequired env

Verti cal SeparationRequired is:
(Tabl e

((Row (FlightLevel A))
[(\x.(x <= 280));DC (\x.(x > 450)); (\x.(x > 450))])
((Row (FlightLevel B))
[DC;, (\x.(x <= 280)); (\x.(x > 450));
; ((Row (I sSupersonic A)) [DC, DC, TRUE;
(Row (I sSupersonic B)) [DC, DC; DC, TRUE])
[1000; 1000; 4000; 4000; 2000])

(x> 450))1])

I nvoki ng interval checker...

Interval checker partitions the range into:
((FlightLevel A) > 450)

((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
((FlightLevel A) <= 280)

I nvoki ng interval checker...

Interval checker partitions the range into:
((FlightLevel B) > 450)

((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
((FlightLevel B) <= 280)

No i nconsi stenci es
were found in the table.

Stats for Vertical Separati onRequired consi stency checki ng:
Nunmber of cases identified: O
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.3 Vertical SeparationRequired Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni nma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

31

Including /isd/usr/day/src/fusion/table.s
Closing table.s

Cl osing onlinespec. hpp

>0sym Verti cal Separati onRequi red env

Vertical Separati onRequired is:
(Tabl e

((Row (FlightLevel A))
[(\x.(x <= 280));DC (\x.(x > 450)); (\x.(x > 450))1)

((Row (FlightLevel B))
[DC (\x.(x <= 280))
; ((Row (| sSupersonic
((Row (I sSupersonic B)
[1000; 1000; 4000; 4000; 2000]

\X. (x > 450)); (\x (x > 450))])
A)) [DC; DC; TRUE; DC]
[DC; DC; DC; TRUE])])

The table is symetric.
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.4 L ater al Separ ation Requiredl nDegrees Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0gconp "Lateral Separation Requiredl nDegrees" env

"Lat er al Separ ati on Requiredl nDegrees" is:

(Tabl e
[
((Row ((AI1OF [A B]) IsCutsideMNPSAI rspace))
[TRUE; TRUE; DC; DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routesl)))
[TRUE; DC, DC, DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routes2)))
[DC; TRUE; DC, DC]) ;
((Row ((AI1OF [A;B]) IsWstO'55W) [DC;, TRUE; DC, DC]) ;
((Row ((AI1OF [A; B]) IsSupersonic)) [DC; DC, TRUE; DC]) ;
((Row ((AI1OF [A; B]) FlightLevel Above275))
[DC; DC; TRUE; DC]) ;
((Row ((AI1OF [A Bl) Meet MNPS)) [DC; DC; DC; TRUE]) ;
((Row ((AIIOF [A;B]) HavePart Of Rout el nMNPSAI r space))
[DC DC, DC, TRUE])]) [1.5;1.5;1;1;2])

The foll ow ng cases
yield the default value of 2

Case 1

Row 1 (((ATO [A B]) IsQutsi deM\PSAI rspace) = F)
Row 2 (((AlOr [A;B) (IsOnRoute Routesl)) = F)
Row 3 DC

Row 4 : DC

Row 5 : (((AIIOF [A; B]) IsSupersonic) = F)

Row 6 : DC

Row 7 (((AIlCr [A;B]) MeetM\PS) = F)

Row 8 DC

Case 2

Row 1 : (((AIIOF [A; B]) IsQutsi deMNPSAI rspace) = F)
Row 2 DC

Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = F)

32

Row 4 :
Row 5 :

DC
(((ATOr

Row 6 : DC

Row 7
Row 8 :

Case 3
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 4
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 5
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 6
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 7
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 8
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 9
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 10
Row 1 :

S (A Of
DC

8222
Q Q QQQ

—~
—~
—~

3]
> > 22>

—
—
—

s

> 22z
Q QQQQQ

8

—~
—~
—~

8

882
>>
QQ

2>
QQQ

—~~—
—~—~—
—~—~—

8

8=
QQQ Q Q

—
—
—

228
22> 2 2

8

QQQ QQQ

2228
22> 222

e

222223
QQeQQQQQ
»rrrre>

8

>
QQ

88

QQ Q

~=8
2> >

>
Q

Row 2 : DC

Row 3

S (((AlOf

Row 4 : DC

[A
[A
[A
[A

——r—

=z

[A
[A
[A
[A
[A

z22x E2E>

; Bl)
; Bl)

Bl)
Bl)
Bl)
Bl)
Bl)

| sSupersonic) = F)

Meet M\PS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl))
(1 sOnRout e Rout es2))

| sSupersonic) = F)

Meet M\PS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =
(I sOnRout e Routes2)) =
| sWest OF 55W = F)

| sSupersonic) = F)

Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =

| sSupersonic) = T)
Fl i ght Level Above275) =
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routes2)) =

| sSupersonic) =T)
Fl i ght Level Above275) =
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =
(I sOnRout e Routes2)) =
| sSupersonic) =T)

Fl i ght Level Above275) =
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Rout esl))
(1 sOnRout e Rout es2))
| sWest OF 55W = F)

| sSupersonic) =T)

Fl i ght Level Above275) =
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =
| sSupersonic) = F)

Meet MNPS) = T)

HavePar t O Rout el nMNPSAI
| sQut si deMNPSAI r space)

(I sOnRout e Routes2)) =

= T)
F)
F)

F)

F)

P

= T)
F)

P

= T)
)

P

rspace) = F)

= F)
P

33

Row 5 : (((AII O [A; B]) IsSupersonic) = F)

Row 6 : DC

Row 7 : (((AIIOF [A;B]) MeetM\PS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)
Case 11

Row 1 : (((AIIOF [A B]) IsCutsi deMNPSAi rspace) = T)

Row 2 : (((AIIOF [A;Bl) (IsOnRoute Routesl)) = F)

Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = F)

Row 4 : DC

Row 5 : (((AII O [A; B]) IsSupersonic) = F)

Row 6 : DC

Row 7 : (((AIIOF [A; B]) MeetMNPS) = T)

Row 8 : (((AIlOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)
Case 12

Row 1 : (((AIIOF [A B]) IsCutsi deMNPSAi rspace) = T)

Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)

Row 3 : (((AIIOF [A;Bl) (IsOnRoute Routes2)) = T)

Row 4 : (((AIIOCF [A;B]) IsWwestO55W = F)

Row 5 : (((AII O [A; B]) IsSupersonic) = F)

Row 6 : DC

Row 7 : (((AIIOF [A; B]) MeetM\PS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)
Case 13

Row 1 : (((AIIOF [A B]) IsCutsi deMNPSAi rspace) = F)

Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)

Row 3 : DC

Row 4 : DC

Row 5 : (((AIIOF [A; B]) IsSupersonic) = T)

Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = F)

Row 7 : (((AIIOF [A; B]) MeetMNPS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)
Case 14

Row 1 : (((AIIOF [A; B]) IsQutsi deMNPSAI rspace) = F)

Row 2 : DC

Row 3 : (((AIIOF [A;Bl) (IsOnRoute Routes2)) = F)

Row 4 : DC

Row 5 : (((AIIOF [A; B]) IsSupersonic) = T)

Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = F)

Row 7 : (((AIIOF [A;B]) MeetM\PS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)
Case 15

Row 1 : (((AIIOF [A; B]) IsQutsi deMNPSAI rspace) = T)

Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)

Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = F)

Row 4 : DC

Row 5 : (((AIIOF [A;B]) IsSupersonic) = T)

Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = F)

Row 7 : (((AIIOF [A;B]) Meet M\PS) = T)

Row 8 : (((AII O [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)
Case 16

Row 1 : (((AIIOF [A; B]) IsQutsi deMNPSAI rspace) = T)

Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)

Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) =T)

Row 4 : (((AIIOCF [A;B]) IsWwestO55W = F)

Row 5 : (((AII O [A; B]) IsSupersonic) =T)

Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = F)

Row 7 : (((AIIOF [A;B]) MeetM\PS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)

Stats for "Lateral Separation Requiredl nDegrees" conpl et eness checki ng:
Nunmber of cases identified: 16
Processor tine: user: 3 sec; system O sec

Fusi on session over.

1.5 L ater al Separ ation Requiredl nDegr ees Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni nma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%g¢ons "Lateral Separati on Requiredl nDegrees" env

"Lat er al Separ ati on Requiredl nDegrees" is:

(Tabl e
[
((Row ((AIIOF [A; B]) |sCQutsi deMNPSAI rspace))
[TRUE; TRUE; DC, DC]) ;
((Row ((AI1OF [A;B]) (IsOnRoute Routesl)))
[TRUE; DC; DC; DC]) ;
((Row ((AI1OF [A;B]) (IsOnRoute Routes2)))
[DC; TRUE; DC; DC]) ;
((Row ((AI1OF [A B]) IswestO55W) [DC;, TRUE; DC, DC]) ;
((Row ((AI1OF [A; B]) IsSupersonic)) [DC; DC, TRUE; DC]) ;
((Row ((AIlOF [A; B]) FlightlLevel Above275))
[DC; DC; TRUE; DC]) ;
((Row ((AIIOF [A; Bl) Meet MNPS)) [DC; DC; DC; TRUE]) ;
((Row ((AI1OF [A B]) HavePart Of Rout el nMNPSAI r space))
[DC DG DC TRUE])]) [1.5;1.5/1;1;2])
Colums 1 and 3 conflict in the follow ng:
Case 1
Row 1 : (((AIIOF [A; B]) IsQutsi deMNPSAi rspace) = T)
Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = T)
Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = F)
Row 4 : DC
Row 5 : (((AIIOF [A; B]) IsSupersonic) = T)
Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = T)
Row 7 : DC
Row 8 : DC

Colums 1 and 4 conflict in the follow ng:

Case 2

Row 1 : (((AIIOF [A; B]) IsCQutsi deMNPSAi rspace) = T)
Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) =T)
Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = F)
Row 4 : DC

Row 5 : DC

Row 6 : DC

Row 7 : (((AIIOF [A;B]) MeetMNPS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = T)
Colums 2 and 3 conflict in the follow ng:

Case 3

Row 1 : (((AIIOF [A; B]) IsQutsi deMNPSAi rspace) = T)
Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)
Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) =T)
Row 4 : (((AIIOCF [A;B]) IsWestO55W =T)

Row 5 : (((AIIOF [A; B]) IsSupersonic) =T)

Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = T)
Row 7 : DC

Row 8 : DC

Colums 2 and 4 conflict in the follow ng:

Case 4

Row 1 : (((AIIOF [A; B]) IsCQutsi deMNPSAi rspace) = T)
Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)
Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = T)
Row 4 : (((AIIOF [A;B]) IsWestOF55W = T)

Row 5 : DC

Row 6 : DC

Row 7 : (((AIIOF [A; B]) MeetM\PS) = T)

Row 8 : (((AIIOF [A; B]) HavePart Of Rout el nMNPSAI rspace) = T)

Stats for "Lateral Separati on Requiredl nDegrees" consistency checking:
Nunmber of cases identified: 4
Processor tine: user: 2 sec; system 0 sec

35

>
Fusi on session over.

1.6 L ater al Separ ation RequiredinDegrees Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0sym "Lat er al Separ ati on Requi redl nDegrees" env

"Lat er al Separ ati on Requiredl nDegrees" is:

(Tabl e
[

((Row ((AIIOF [A; B]) |sCQutsi deMNPSAI rspace))
[TRUE; TRUE; DC, DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routesl)))
[TRUE; DC, DC, DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routes2)))
[DC; TRUE; DC, DC]) ;
((Row ((AI1OF [A B]) IsWwestO55W) [DC, TRUE; DC, DC]) ;
((Row ((AIIOF [A;B]) IsSupersonic)) [DC, DC; TRUE; DC]) ;
((Row ((AI1OF [A; B]) FlightLevel Above275))
[DC; DC; TRUE; DC]) ;
((Row ((AI1OF [A B]) Meet MNPS)) [DC, DC; DC; TRUE]) ;
((Row ((AIIOF [A;B]) HavePart O Rout el nMNPSAI r space))
[DC DG DC TRUE])]) [1.5;1.5/1;1;2])

The table is symetric.
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.7 LateralSepar ation RequiredlnMiles Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0gconp "Lateral Separati on RequiredlnM I es" env

"Lat eral Separati on RequiredlnMI|es" is:

(Tabl e
((Row ((AI1OF [A B]) IsCutsideMNPSAI rspace))
[TRUE; TRUE; DC, DC]) ;
((Row ((AI1OF [A;B]) (IsOnRoute Routesl)))

[TRUE; DC; DC, DC]) ;

36

((Row ((AIIOF [A
[DC;, TRUE; DC; DC]
((Row ((AIIOF [A
((Row ((AIIOF [A
((Row ((AIIOF [A
[DC, DC; TRUE; DC]
((Row ((AIIOF [A
((Row ((AIIOF [A
[DC, DC; DC; TRUE]

The foll owi ng cases
yield the default value
Case 1

Row 1 @ (((AIICF [AB])
Row 2 : (((AIICr [AB])
Row 3 : DC

Row 4 : DC

Row 5 : (((AIOF [A B])
Row 6 : DC

Row 7 : (((AIIOCF [AB])
Row 8 : DC

Case 2

Row 1 : (((AIIOC [AB])
Row 2 : DC

Row 3 : (((AIOF [A; B])
Row 4 : DC

Row 5 : (((AIOF [A B])
Row 6 : DC

Row 7 : (((AIOF [A B])
Row 8 : DC

Case 3

Row 1 : (((AIIOC [AB])
Row 2 : (((AIOF [A B])
Row 3 : (((AIIOr [AB])
Row 4 : DC

Row 5 : (((AIOF [A; B])
Row 6 : DC

Row 7 : (((AIOF [A B])
Row 8 : DC

Case 4

Row 1 : (((AIIOC [AB])
Row 2 : (((AIIOF [A; B])
Row 3 : (((AIICF [AB])
Row 4 : (((AIOF [A; B])
Row 5 : (((AIIO [AB])
Row 6 : DC

Row 7 : (((AIOF [A; B])
Row 8 : DC

Case 5

Row 1 : (((AICOF [A; B])
Row 2 : (((AIICr [AB])
Row 3 : DC

Row 4 : DC

Row 5 : (((AIIO [AB])
Row 6 : (((AIOF [A; B])
Row 7 : (((AIIOF [AB])
Row 8 : DC

Case 6

Row 1 : (((AIOF [A B])
Row 2 : DC

Row 3 : (((AIOF [A; B])
Row 4 : DC

Row 5 : (((AIIOC [AB])
Row 6 : (((AIIOF [A; B])
Row 7 : (((AIIOF [AB])
Row 8 : DC

Case 7

Row 1 : (((AIOF [A B])
Row 2 : (((AIICF [AB])
Row 3 : (((AIOF [A; B])
Row 4 : DC

Row 5 : (((AIIOF [A; B])
Row 6 : (((AIIOC [A B])
Row 7 : (((AIIOF [A B])
Row 8 : DC

R e R Ao A

of 120

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =
| sSupersonic) = F)

Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routes2)) =
| sSupersonic) = F)

Meet M\PS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Rout esl))
(1 sOnRout e Rout es2))

| sSupersonic) = F)

Meet M\PS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl))
(1 sOnRout e Rout es2))
| sWest OF 55W = F)

| sSupersonic) = F)

Meet M\PS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =

| sSupersonic) = T)
Fl i ght Level Above275) =
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routes2)) =

| sSupersonic) = T)
Fl i ght Level Above275) =
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =
(I sOnRout e Routes2)) =
| sSupersonic) =T)

Fl i ght Level Above275) =
Meet MNPS) = F)

= F)
P

_F)

F)

F)

F)

= T)
F)

P

1) (1sOnRoute Routes2)))

]) | sWest OF 55W) [DC;, TRUE; DC, DC]) ;
]) | sSupersonic)) [DC; DC, TRUE; DC]) ;
]) FlightLevel Above275))

1) Meet MNPS)) [DC; DC; DC; TRUE]) ;

]) HavePart Of Rout el nMNPSAI r space))
1) [90;90; 60; 60; 120])

37

Case 8
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 9
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 10
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case ll
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 12
Row 1

Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 13
Row 1

Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 14
Row 1

Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

Case 15
Row 1 :
Row 2 :
Row 3 :
Row 4 :
Row 5 :
Row 6 :
Row 7 :
Row 8 :

222223
QoQQQQQ
»rrrrr>

e

> >
QQ

=88
Qq Q

—~
—~

=23
>> >

QQ Q QQQ

s

—
—
—

=3
2> 2 222

QQ QQQQQ

8
>> z2r222>

—_~—
—_~—
—_~—

>
QQ

88

22>
QQQQ

QQQQ Q Q

RA

—~
—~
—~

~2228
2222 2 2

EEEEREEE
>222 222
QeQQ QQQ

| sQut si deMNPSAI r space)
(I sOnRout e Routesl))
(1 sOnRout e Rout es2))
| sWest OF 55W = F)

| sSupersonic) =T)

Fl i ght Level Above275)
Meet MNPS) = F)

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =

| sSupersonic) = F)

Meet MNPS) = T)
HavePar t Of Rout el nMNPSAI

| sQut si deMNPSAI r space)
(I sOnRout e Routes2)) =
| sSupersonic) = F)

Meet MNPS) = T)
HavePar t Of Rout el nMNPSAI

| sQut si deMNPSAI r space)
(I sOnRout e Routesl))
(I sOnRout e Rout es2))

| sSupersonic) = F)

Meet MNPS) = T)
HavePar t Of Rout el nMNPSAI

| sQut si deMNPSAI r space)
(I sOnRout e Routesl))
(I sOnRout e Rout es2))
| sWest OF 55W = F)

| sSupersonic) = F)

Meet MNPS) = T)
HavePar t Of Rout el nMNPSAI

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =

| sSupersonic) =T)

Fl i ght Level Above275) =
Meet MNPS) = T)

HavePar t O Rout el nMNPSAI

| sQut si deMNPSAI r space)
(I sOnRout e Routes2)) =

| sSupersonic) = T)

Fl i ght Level Above275) =
Meet MNPS) = T)

HavePar t Of Rout el nIMNPSAI

| sQut si deMNPSAI r space)
(I sOnRout e Routesl)) =
(I sOnRout e Routes2)) =
| sSupersonic) = T)

Fl i ght Level Above275) =
Meet MNPS) = T)
HavePar t O Rout el nMNPSAI

= T)
F)
7

P

rspace)

= F)
F)

rspace)

= T)
)
F)

rspace)

= T)
F)
m

rspace)

P

rspace)

= F)
F)

P
rspace)
= T)

F)

P

F)

rspace)

38

P

F)

F)

F)

R

P

P

Case 16

Row 1 (((ATO [AB]) IsQutsi deM\PSAi rspace) = T)

Row 2 : (((AIIOF [A;Bl) (IsOnRoute Routesl)) = F)

Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) =T)

Row 4 : (((AIIOF [A;B]) IsWestOF55W = F)

Row 5 : (((AIIOF [A; B]) IsSupersonic) =T)

Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = F)

Row 7 : (((AIIOF [A;B]) Meet MNPS) = T)

Row 8 : (((AII O [A; B]) HavePart Of Rout el nMNPSAI rspace) = F)

Stats for "Lateral Separation RequiredlnM|es" conpl et eness checki ng:
Nunber of cases identified: 16
Processor tine: user: 4 sec; system 0 sec

Fusi on session over.

1.8 LateralSeparation RequiredlnMiles Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0gons "Lateral Separati on RequiredlnMIes" env

"Lat eral Separati on RequiredlnMI|es" is:

(Tabl e
[
((Row ((AIIOF [A B]) |sCutsi deMNPSAI rspace))
[TRUE; TRUE; DC; DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routesl)))
[TRUE; DC, DC, DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routes2)))
[DC, TRUE; DC; DC]) ;
((Row ((AI1OF [A;B]) IsWstO'55W) [DC;, TRUE; DC, DC]) ;
((Row ((AI1OF [A; B]) IsSupersonic)) [DC; DC, TRUE; DC]) ;
((Row ((AIlOF [A; B]) FlightlLevel Above275))
[DC; DC, TRUE; DC]) ;
((Row ((AI1OF [A Bl) Meet MNPS)) [DC; DC; DC; TRUE]) ;
((Row ((AIIOF [A;B]) HavePart Of Rout el nMNPSAI r space))
[DC, DC, DC;, TRUE])]) [90; 90; 60; 60; 120])
Colums 1 and 3 conflict in the follow ng:
Case 1
Row 1 : (((AIIOF [A; B]) IsCQutsi deMNPSAi rspace) = T)
Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) =T)
Row 3 : (((AIIOF [A;Bl) (IsOnRoute Routes2)) = F)
Row 4 : DC
Row 5 : (((AIIOF [A;B]) IsSupersonic) = T)
Row 6 : (((AIIOF [A; B]) FlightLevel Above275) = T)
Row 7 : DC
Row 8 : DC

Colums 1 and 4 conflict in the follow ng:

Case 2

Row 1 : (((AI1OF [A; B]) IsQutsi deMNPSAi rspace) = T)

Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = T)

Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) = F)

Row 4 : DC

Row 5 : DC

Row 6 : DC

Row 7 : (((AIIOF [A;B]) MeetM\PS) = T)

Row 8 : (((AII O [A; B]) HavePart Of Rout el nMNPSAI rspace) = T)
Colums 2 and 3 conflict in the follow ng:

39

Row 1 : (((AI1OF [A; B]) IsQutsi deMNPSAi rspace) = T)
Row 2 : (((AIIOF [A;Bl) (IsOnRoute Routesl)) = F)
Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes2)) =T)
Row 4 : (((AIIOF [A;B]) IsWestO55W =T)

Row 5 : (((AIIOF [A; B]) IsSupersonic) =T)

Row 6 : (((AIIOr [A; B]) FlightLevel Above275) = T)
Row 7 : DC

Row 8 : DC

Colums 2 and 4 conflict in the follow ng:

Case 4

Row 1 : (((AI1OF [A; B]) IsQutsi deMNPSAI rspace) = T)
Row 2 : (((AIIOF [A;B]) (IsOnRoute Routesl)) = F)
Row 3 : (((AIIOF [A;Bl) (IsOnRoute Routes2)) = T)
Row 4 : (((AIIOF [A;B]) IsWestOF55W =T)

Row 5 : DC

Row 6 : DC

Row 7 : (((AIIOF [A;B]) MeetM\PS) = T)

Row 8 : (((AIIOF [A B]) HavePart Of Rout el nMNPSAI rspace) = T)

Stats for "Lateral Separati on RequiredlnMI|es" consistency checking:
Nunmber of cases identified: 4
Processor tine: user: 3 sec; system O sec

Fusi on session over.

1.9 L ateralSeparation RequiredlnMiles Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>0sym "Lat eral Separati on RequiredlnMI|es" env

"Lat eral Separation RequiredlnM Il es" is:

(Tabl e
[
((Row ((AIIOF [A;B]) |sCQutsi deMNPSAI rspace))
[TRUE; TRUE; DC, DC]) ;
((Row ((AIIOCF [A;B]) (IsOnRoute Routesl)))
[TRUE; DC, DC, DC]) ;
((Row ((AI1OF [A;B]) (IsOnRoute Routes2)))
[DC; TRUE; DC; DC]) ;
((Row ((AI1OF [A B]) IswestO55W) [DC, TRUE; DC, DC]) ;
((Row ((AIIOF [A;B]) IsSupersonic)) [DC, DC; TRUE; DC]);
((Row ((AI1OF [A; B]) FlightLevel Above275))
[DC; DC; TRUE; DC]) ;
((Row ((AIIOF [A; B]) Meet MNPS)) [DC; DC; DC; TRUE]) ;
((Row ((AI1OF [A B]) HavePart Of Rout el nMNPSAI r space))
[DC; DC; DC; TRUE])]) [90; 90; 60; 60; 120])

The table is symetric.
Processor tine: user: 1 sec; system O sec

Fusi on session over.

1.10 L atitudeEquivalent Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0gonp LatitudeEquival ent env

LatitudeEqui val ent is:
(Predi cateTabl e

((Row (" Rout eSegnent Degrees" A))
[(\x.(x <= 58));DC, (\x.((58 < x) AND (x < 70))); DC
(\x.((70 <= x) AND (x <= 80)));DC);
((Row (" Rout eSegnent Degrees" B))
[DC; (\x.(x <= 58));DC, (\x.((x > 58) AND (x < 70)));DC
;(\X. ((70 <= x) AND (x <= 80)))1);
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOrEq3"))
[TRUE; TRUE; DC; DC; DC; DC]) ;
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOr Eq2"))
[DC; DC; TRUE; TRUE; DC; DC]) ;
((Row ((AIlOF [A;B]) "LatChange Per10DLong LessThanOrEql"))
[DC; DC; DC; DC; TRUE; TRUE]) 1)

I nvoki ng interval checker...

Interval checker partitions the range into:
(80 < ("RouteSegnment Degrees" A))
((70 <= ("Rout eSegnent Degrees" A)) AND
((" Rout eSegnent Degrees" A) <= 80))
((58 < ("RouteSegnent Degrees" A)) AND
((" Rout eSegnent Degrees" A) < 70))
(("Rout eSegnent Degrees" A) <= 58)

I nvoki ng interval checker...

Interval checker partitions the range into:
(80 < ("RouteSegnent Degrees" B))
((70 <= ("RouteSegnent Degrees" B)) AND
((" Rout eSegnent Degrees" B) <= 80))
((("Rout eSegnent Degrees" B) > 58) AND
((" Rout eSegnent Degrees" B) < 70))
((" Rout eSegnent Degrees" B) <= 58)

The predicate is fal se
for the follow ng cases:

Case 1
Row 1 : (80 < ("RouteSegnment Degrees" A))
Row 2 : (80 < ("RouteSegment Degrees" B))
Row 3 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq3") = T)
Row 4 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq2") = T)
Row 5 : DC
Case 2
Row 1 : ((70 <= ("RouteSegnment Degrees" A)) AND
((" Rout eSegnent Degrees" A) <= 80))
Row 2 : (80 < ("RouteSegment Degrees" B))
Row 3 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq3") = T)
Row 4 : DC
Row 5 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEql") = F)

Case 3
Row 1 : (80 < ("RouteSegnment Degrees" A))
Row 2 : ((70 <= ("RouteSegnent Degrees" B)) AND
((" Rout eSegnent Degrees" B) <= 80))
Row 3 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOrEq3") = T)
Row 4 : DC
Row 5 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOrEql") = F)

Case 4

41

Row 1 : ((70 <= ("RouteSegnment Degrees" A)) AND
((" Rout eSegnent Degrees" A) <= 80))
Row 2 : ((70 <= ("RouteSegnent Degrees" B)) AND
((" Rout eSegnent Degrees" B) <= 80))
Row 3 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eq3")
Row 4 : DC
Row 5 : (((AIIOF [A B]) "LatChange Per10DLong LessThanOr Eql")

Case 5

Row 1 : (80 < ("RouteSegment Degrees" A))

Row 2 : (80 < ("RouteSegnment Degrees" B))

Row 3 : DC

Row 4 : A; B]) "Lat Change Per 10DLong LessThanOr Eq2")

(CCATOE [
Row 5 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eql")

Case 6

Row 1 : ((58 < ("RouteSegnent Degrees" A)) AND
((" Rout eSegnent Degrees" A) < 70))

Row 2 : (80 < ("RouteSegment Degrees" B))

Row 3 : DC
Row 4 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eq2")
Row 5 : (((AIIOF [A B]) "LatChange Per10DLong LessThanOr Eql")

Case 7

Row 1 : ((58 < ("RouteSegnent Degrees" A)) AND
((" Rout eSegnent Degrees" A) < 70))

Row 2 : ((70 <= ("RouteSegnent Degrees" B)) AND
((" Rout eSegnent Degrees" B) <= 80))

Row 3 : DC

Row 4 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eq2")

Row 5 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eql")

Case 8

Row 1 : (80 < ("RouteSegment Degrees" A))

Row 2 : ((("RouteSegnment Degrees" B) > 58) AND
((" Rout eSegnent Degrees" B) < 70))

Row 3 : DC

[A; B]) "LatChange Per 10DLong LessThanOr Eq2")

[A; B]) "Lat Change Per10DLong LessThanOr Eql")

Case 9
Row 1 : ((70 <= ("RouteSegnment Degrees" A)) AND
((" Rout eSegnent Degrees" A) <= 80))
Row 2 : ((("RouteSegnent Degrees" B) > 58) AND
((" Rout eSegnent Degrees" B) < 70))
Row 3 : DC
[A; B]) "LatChange Per 10DLong LessThanOr Eq2")
[A; B]) "Lat Change Per10DLong LessThanOr Eql")

Case 10

Row 1 : ((58 < ("RouteSegnent Degrees" A)) AND
((" Rout eSegnent Degrees" A) < 70))

Row 2 : ((("RouteSegnent Degrees" B) > 58) AND
((" Rout eSegnent Degrees" B) < 70))

Row 3 : DC

Row 4 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eq2")
Row 5 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eql")
Case 11

Row 1 : (("RouteSegnent Degrees" A) <= 58)

Row 2 : DC

Row 3 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eq3")
Row 4 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eq2")
Row 5 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eql")
Case 12

Row 1 : ((70 <= ("RouteSegnent Degrees" A)) AND
((" Rout eSegnent Degrees" A) <= 80))
Row 2 : (80 < ("RouteSegnment Degrees" B))

Row 3 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eq3")
Row 4 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eq2")
Row 5 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eql")
Case 13

Row 1 : (80 < ("RouteSegment Degrees" A))
Row 2 : ((70 <= ("RouteSegnment Degrees" B)) AND
((" Rout eSegnent Degrees" B) <= 80))

Row 3 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOr Eq3")
Row 4 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eq2")
Row 5 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOr Eql")

42

)
P

F)
F)

)
P

F)

)
P

)
P

)
F

F)
F)

)
P

Case 14

Row 1 : ((70 <= ("RouteSegnment Degrees" A)) AND
((" Rout eSegnent Degrees" A) <= 80))

Row 2 : ((70 <= ("RouteSegnment Degrees" B)) AND
((" Rout eSegnent Degrees" B) <= 80))

Row 3 : (((AIIOF [A; B]) "LatChange Per10DLong LessThanOrEq3") = F)
Row 4 : (((AIIOr [A B]) "LatChange Per10DLong LessThanOrEq2") = F)
Row 5 : (((AIIOr [A B]) "LatChange Per10DLong LessThanOrEql") = F)
Case 15
Row 1 : (80 < ("RouteSegnment Degrees" A))
Row 2 : (("RouteSegnent Degrees" B) <= 58)
Row 3 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq3") = F)
Row 4 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq2") = F)
Row 5 : (((AIIOF [A B]) "LatChange Per10DLong LessThanOrEql") = F)
Case 16
Row 1 : ((70 <= ("RouteSegnment Degrees" A)) AND

((" Rout eSegnent Degrees" A) <= 80))
Row 2 : (("RouteSegnent Degrees" B) <= 58)
Row 3 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq3") = F)
Row 4 : (((AIIOr [A; B]) "LatChange Per10DLong LessThanOrEq2") = F)
Row 5 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEql") = F)
Case 17
Row 1 : ((58 < ("RouteSegnent Degrees" A)) AND

((" Rout eSegnent Degrees" A) < 70))
Row 2 : (("RouteSegnent Degrees" B) <= 58)
Row 3 : (((AIIOr [A; B]) "LatChange Per10DLong LessThanOrEq3") = F)
Row 4 : (((AIIOF [A; B]) "LatChange Per 10DLong LessThanOrEq2") = F)
Row 5 : (((AIIOr [A B]) "LatChange Per10DLong LessThanOrEql") = F)
Stats for LatitudeEquival ent conpl et eness checki ng:
Nunmber of cases identified: 17
Processor tine: user: 2 sec; system 0 sec
>
Fusi on session over.
1.11 L atitudeEquivalent Consistency Check
Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997
Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0gons LatitudeEqui val ent env

LatitudeEqui val ent is:
(PredicateTabl e

((Row (" Rout eSegnent Degrees" A))
[(\x.(x <= 58));DC, (\x.((58 < x) AND (x < 70))); DC
(\x.((70 <= x) AND (x <= 80)));DC);
((Row (" Rout eSegrment Degrees" B))
[DC; (\x.(x <= 58));DC, (\x.((x >58) AND (x < 70)));DC
p (A% ((70 <= x) AND (x <= 80)))]);
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOrEq3"))
[TRUE; TRUE; DC; DC; DC; DC]) ;
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOr Eq2"))
[DC; DC; TRUE; TRUE; DC; DC]) ;
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOrEql"))
[DC; DC; DC; DC; TRUE; TRUE]) 1)

By definition a predicate table can not be inconsistent,
since it returns "T" for all col ums.
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.12 L atitudeEquivalent Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
I'ncluding /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>Usym Lat it udeEqui val ent env

LatitudeEqui val ent is:
(PredicateTabl e

((Row (" Rout eSegnent Degrees" A))
[(\x.(x <= 58));DC, (\x.((58 < x) AND (x < 70))); DC
(\x.((70 <= x) AND (x <= 80)));DC);
((Row (" Rout eSegrment Degrees" B))
[DC; (\x.(x <= 58));DC, (\x.((x >58) AND (x < 70)));DC
p (A X ((70 <= x) AND (x <= 80)))]);
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOrEq3"))
[TRUE; TRUE; DC; DC; DC; DC]) ;
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOr Egq2"))
[DC; DC; TRUE; TRUE; DC; DC]) ;
((Row ((AI1OF [A B]) "LatChange Per10DLong LessThanOrEql"))
[DC; DC; DC; DC; TRUE; TRUE]) 1)

The table is symetric if the following condition is true:

((58 < ("RouteSegnent Degrees" A)) OR
((NOT (58 < ("RouteSegnent Degrees" A))) AND
((" Rout eSegnent Degrees" B) > 58)))
((58 < ("RouteSegnent Degrees" B)) OR
((NOT (58 < ("RouteSegnment Degrees" B))) AND
((" Rout eSegnent Degrees" A) > 58)))

Processor tine: user: 2 sec; system 0 sec

Fusi on session over.

1.13 LongSameDir SepRequired Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%conp LongSaneDir SepRequi red env

LongSaneDi r SepRequired is:

(Tabl e
[((Row ((AII O [A; B]) IsSupersonic)) [TRUE; FALSE]);
((Row ((AI1OF [A;B]) IsTurbojet)) [DC TRUE])])
[(ssSameDirLongSep (A, B));("turbojetSameDir LongSep" (A, B));
(ot her Sanebi rLongSep (A, B))])

The foll owi ng cases

yield the default value of (otherSaneDirLongSep (A, B))
Case 1

Row 1 : (((AII O [A; B]) IsSupersonic) = F)

Row 2 : (((AIIOF [A;B]) IsTurbojet) = F)

Stats for LongSaneDi r SepRequi red conpl et eness checki ng:
Nunber of cases identified: 1
Processor tine: user: 0 sec; system 0 sec

Fusi on session over.

1.14 LongSameDir SepRequired Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gons LongSaneDir SepRequi red env

LongSaneDi r SepRequired is:

(Tabl e
[((Row ((AIIOF [A;B]) |sSupersonic)) [TRUE; FALSE]);
((Row ((AI1OF [A; B]) IsTurbojet)) [DC TRUE])])
[(ssSanmeDirLongSep (A, B));("turbojetSameDir LongSep" (A, B));
(ot her Sanebi rLongSep (A, B))])

No i nconsi stenci es
were found in the table.

Stats for LongSaneDir SepRequi red consi stency checki ng:
Nunmber of cases identified: O
Processor tine: user: 0 sec; system 0 sec

Fusi on session over.

1.15 LongSameDir SepRequired Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp
>%sym LongSaneDi r SepRequi red env

LongSaneDi r SepRequired is:

(Tabl e
[((Row ((AII O [A; B]) IsSupersonic)) [TRUE; FALSE]);
((Row ((AI1OF [A;B]) IsTurbojet)) [DC TRUE])])
[(ssSameDi rLongSep (A, B)); ("turbojetSaneDir LongSep" (A, B));
(ot her SarmeDi r LongSep (A, B))])

Assunpti on:
(ssSaneDirLongSep (A, B))

(S;SarreDi rLongSep (B, A))

Assunpti on:
("turboj et SaneDi r LongSep" (A, B))

("turbojetSameDir LongSep" (B, A))

Assunpti on:
(ot her Sanebi r LongSep (A, B))

(ot her Sanebi r LongSep (B, A))

The table is symetric.
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.16 OppDir NoL ongSepPeriod Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gconp "OppDir NoLongSepPeriod" env

"OppDi r NoLongSepPeriod" is:
(

(Tabl e
[((Row ((AII O [A; B]) IsSupersonic)) [TRUE; FALSE]);
((Row ((AI1OF [A;B]) IsTurbojet)) [DC TRUE])])
[("ssOppDir NoLongSepPeriod" (A, B));
("turboj et OppDir NoLongSepPeriod" (A, B));
("ot her CppDi r NoLongSepPeriod" (A, B))])

The foll owi ng cases

yield the default value of ("otherOppDir NoLongSepPeriod" (A, B))
Case 1

[A; B]) |sSupersonic) = F)

[A;B]) IsTurbojet) = F)

Stats for "OppDir NoLongSepPeriod" conpl eteness checking:
Nunmber of cases identified: 1
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.17 OppDir NoL ongSepPeriod Consistency Check

46

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gons "OppDir NoLongSepPeri od" env

"OppDi r NoLongSepPeri od" is:

(Tabl e
[((Row ((AII O [A; B]) IsSupersonic)) [TRUE; FALSE]);
((Row ((AI1OF [A;B]) IsTurbojet)) [DC TRUE])])
[("ssOppDir NoLongSepPeriod" (A, B));
("turboj et OopDir NoLongSepPeriod" (A, B));
("ot her OQppDi r NoLongSepPeriod" (A, B))])

No i nconsi stenci es
were found in the table.

Stats for "OppDir NoLongSepPeriod" consistency checking:
Number of cases identified: O
Processor tine: user: 0 sec; system O sec

Fusi on session over.
1.18 OppDir NoL ongSepPeriod Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s
I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s
Closing startup.s
Including /isd/usr/day/src/fusion/table.s
Closing table.s
Cl osi ng onlinespec. hpp
>Usym " QppDi r NoLongSepPeri od" env
"OppDi r NoLongSepPeri od" is:
(Tabl e
[((Row ((AIIOF [A; B]) IsSupersonic)) [TRUE; FALSE]);
((Row ((AI1OF [A;B]) IsTurbojet)) [DC TRUE])])
[("ssOppDir NoLongSepPeriod" (A, B));
("turboj et OopDir NoLongSepPeriod" (A, B));
("ot her CppDi r NoLongSepPeriod" (A, B))])

Assunpti on:
("ssOppDir NoLongSepPeriod" (A, B))

(";sOppDir NoLongSepPeri od" (B, A))

Assunpti on:
("turboj et OppDir NoLongSepPeriod" (A, B))

("t_urboj et OppDi r NoLongSepPeriod" (B, A))

Assunpti on:

47

("ot her CppDi r NoLongSepPeriod" (A, B))
("ot her OQppDi r NoLongSepPeriod" (B, A))

The table is symetric.
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.19 ssOppDir NoL ongSepPeriod Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
I'ncluding /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>0gconp "ssCOppDir NoLongSepPeriod" env

"ssOppDir NoLongSepPeriod" is:
(Tabl e [((Row (ReportedOver CormonPoint (A, B))) [TRUE, FALSE])]

)
[((ept (A, B)) , ((ept (A, B)) + 10));
(((ept (A, B)) - 15) , ((ept (A, B)) + 15))])

The table is conplete.

Stats for "ssOppDir NoLongSepPeriod" conpl et eness checki ng:
Nunmber of cases identified: O

Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.20 ssOppDir NoL ongSepPeriod Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncluding /isd/usr/day/exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gons "ssOppDir NoLongSepPeriod" env

"ssOppDir NoLongSepPeriod" is:
(Tabl e [((Row (ReportedOver CormonPoint (A, B))) [TRUE, FALSE])]

[((ept (A, B)) , ((ept (A, B)) + 10));
(((ept (A, B)) - 15) , ((ept (A, B)) + 15))])

No i nconsi stenci es
were found in the table.

Stats for "ssOppDir NoLongSepPeriod" consistency checking:

Nunmber of cases identified: O
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.21 ssOppDir NoL ongSepPeriod Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>Usym "ssOppDi r NoLongSepPeri od" env

"ssOppDir NoLongSepPeriod" is:
(Tabl e [((Row (ReportedOver CormonPoint (A, B))) [TRUE, FALSE])]

[((ept (A, B)) , ((ept (A, B)) + 10));
(((ept (A, B)) - 15) , ((ept (A, B)) + 15))])

Assunpti on:
((ept (A, B) . ((ept (A, B)) + 10))

((ept (B, A) , ((ept (B, A) + 10))

Assunpti on:
(((ept (A, B)) - 15) , ((ept (A, B)) + 15))

(((ept (B, A) - 15) ., ((ept (B, A) + 15))

The table is symetric.
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.22 ssSameDir L ongSep Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gconp ssSaneDirLongSep env

ssSameDi rLongSep i s:
(Tabl e
[((Row (ssSubcondition (A, B))) [TRUE TRUE]);

((Row ("SameOr Diverging Tracks" (A, B))) [TRUE TRUE]);
((Row (ReportedOver CommonPoint (A, B))) [TRUE DC]);

49

((Row (" Appropriate TimeSep At Cormon Point" (A, B))) [DC, TRUE]
)1) [10;10;15])

The foll owi ng cases
yield the default value of 15

Case 1

Row 1 : ((ssSubcondition (A, B)) = F)
Row 2 : DC

Row 3 : DC

Row 4 : DC

Case 2

Row 1 : ((ssSubcondition (A, B)) =T)
Row 2 : (("SanmeOr Diverging Tracks" (A, B)) = F)
Row 3 : DC

Row 4 : DC

Case 3

Row 1 : ((ssSubcondition (A, B)) =T)

Row 2 : (("SaneOr Diverging Tracks" (A, B)) =
Row 3 : ((ReportedOver CormonPoint (A, B)) = F)
Row 4 : (("Appropriate TineSep At Common Point" (A, B)) = F)

L)

Stats for ssSaneDirLongSep conpl et eness checki ng:
Nunmber of cases identified: 3
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.23 ssSameDir L ongSep Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gons ssSaneDirLongSep env

ssSameDi rLongSep i s:

(Tabl e
[((Row (ssSubcondition (A, B))) [TRUE, TRUE]);
((Row ("SanmeOr Diverging Tracks" (A, B))) [TRUE TRUE]);
((Row (ReportedOver ConmonPoint (A, B))) [TRUE; DC]);
((Row (" Appropriate TimeSep At Common Point" (A, B))) [DC, TRUE]
)1) [10;10; 185])

No i nconsi stenci es
were found in the table.

Stats for ssSanmeDirlLongSep consistency checking:

Nunber of cases identified: O
Processor tine: user: 0 sec; system 0 sec

Fusi on sessi on over.

1.24 ssSameDirL ongSep Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

50

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude minima.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni nma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%sym ssSaneDi r LongSep env

ssSanmeDi rLongSep i s:

(Tabl e
[((Row (ssSubcondition (A, B))) [TRUE TRUE]);
((Row ("SanmeOr Diverging Tracks" (A, B))) [TRUE TRUE]);
((Row (ReportedQver CommonPoint (A, B))) [TRUE DC]);
((Row (" Appropriate TimeSep At Cormon Point" (A, B))) [DC, TRUE]
)1) [10;10; 15])

The table is symetric.
Processor tine: user: 4 sec; system 0 sec

Fusi on session over.

1.25 ssSubcondition Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gonp ssSubcondition env

ssSubcondition is:
(PredicateTabl e
[((Row ((AIIOF [A;B]) IsLevel)) [TRUE; DC]);
((Row (SameMachNunber (A, B))) [TRUE DC]);
((Row (SanmeType (A, B))) [DC TRUE]);
((Row ((AIlOF [A;B]) InCruiseCinb)) [DC TRUE])])

The predicate is fal se
for the follow ng cases:

Case 1

Row 1 : (((AIIOF [A; B]) IsLevel) = F)
Row 2 : DC

Row 3 : ((SaneType (A, B)) = F)
Row 4 : DC

Case 2

Row 1 : (((AIIOF [A;B]) IsLevel) = F)
Row 2 : DC

Row 3 : DC

Row 4 : (((AIIOF [A;B]) InCruisedinmb) = F)
Case 3

Row 1 : (AIIOF [A; B]) IsLevel) =T)

((
Row 2 : ((SaneMachNunber (A, B)) = F)
Row 3 : DC
Row 4 : (((AIIOF [A;B]) InCruiseCinb) = F)

Case 4

51

Row 1 : (((AIOF [A; B]) IsLevel) = F)
Row 2 : DC

Row 3 : ((SaneType (A, B)) =T)

Row 4 : (((AIIOF [A;B]) InCruiseCinb) = F)

Stats for ssSubcondition conpl eteness checking:
Nunber of cases identified: 4
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.26 ssSubcondition Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
I'ncluding /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gons ssSubcondition env

ssSubcondition is:
(PredicateTabl e
[((Row ((AIIOF [A;B]) IsLevel)) [TRUE; DC]);
((Row (SameMachNunber (A, B))) [TRUE DC]);
((Row (SameType (A, B))) [DC TRUE]);
((Row ((AIlOF [A;B]) InCruiseCinb)) [DC TRUE])])

By definition a predicate table can not be inconsistent,
since it returns "T" for all colums.
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.27 ssSubcondition Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%sym ssSubcondi ti on env

ssSubcondition is:
(Predi cateTabl e
[((Row ((AIIOF [A;B]) IsLevel)) [TRUE; DC]);
((Row (SameMachNunber (A, B))) [TRUE DC]);
((Row (SanmeType (A, B))) [DC TRUE]);
((Row ((AIlOr [A;B]) InCruiseCinmb)) [DC TRUE])])

The table is symetric
Processor tine: user: 1 sec; system 0 sec

52

Fusi on session over.

1.28 turbojetSameDir LongSep Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
I'ncluding /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>0gconp "turbojetSaneDir LongSep" env

"turboj et SaneDir LongSep" is:

Tabl e
([((Row (MNPSCondition (A, B))) [TRUE, FALSE; TRUE; FALSE]);
((Row (WATRSCondition (A, B))) [TRUE, TRUE; FALSE; FALSE])]

[(MnAll (A, B));
(Mn
{("WATRSSaneDi r LongSep" (A, B));
("genSaneDir LongSep" (A, B))});
M n
{("M\NPSSaneDi r LongSep" (A, B));("genSanmeDir LongSep" (A, B))
}); ("genSaneDir LongSep" (A, B))])

The table is conplete.

Stats for "turbojetSameDir LongSep" conpl et eness checking:
Nunber of cases identified: O

Processor tine: user: 1 sec; system 0 sec

Fusi on sessi on over.
1.29 turbojetSameDir LongSep Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude minima.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni nma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gons "turbojet SaneDi r LongSep" env

"turboj et SaneDir LongSep" is:

(Tabl e
[((Row (MNPSCondition (A, B))) [TRUE; FALSE; TRUE; FALSE]) ;
((Row (WATRSCondition (A, B))) [TRUE TRUE; FALSE; FALSE])]

[(MnAIl (A, B));
(Mn
{("WATRSSaneDi r LongSep" (A, B
)

)) s
("genSanmeDir LongSep" (A, B))});

53

(Mn
{("M\PSSaneDir LongSep" (A, B));("genSanmeDir LongSep" (A, B))
});("genSaneDir LongSep" (A, B))])

No i nconsi stenci es
were found in the table.

Stats for "turbojetSameDir LongSep" consistency checking:
Nunber of cases identified: O
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.30 turbojetSameDir LongSep Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude minima.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>0sym "turboj et SaneDi r LongSep" env

"turboj et SaneDir LongSep" is:

(Tabl e
[((Row (MNPSCondition (A, B))) [TRUE; FALSE; TRUE; FALSE]) ;
((Row (WATRSCondition (A, B))) [TRUE TRUE; FALSE; FALSE])]

[(MnAll (A, B));
(Mn
{("WATRSSaneDi r LongSep" (A, B));
("genSanmeDir LongSep" (A, B))});
(Mn
{("M\PSSaneDi r LongSep" (A, B));("genSanmeDir LongSep" (A, B))
}); ("genSaneDir LongSep" (A, B))])

Assunpti on:
(MnAl (A, B))

(MnAll (B, A)
Assunpti on:

(Mn
{("WATRSSaneDi r LongSep" (A, B));("genSaneDir LongSep" (A, B))}

~

(Mn
{("WATRSSaneDi r LongSep" (B, A));("genSaneDir LongSep" (B, A))}
)

Assunpti on:
(Mn

{("M\NPSSaneDi r LongSep" (A, B));("genSaneDir LongSep" (A, B))})
(M_n

{("WMNPSSaneDir LongSep" (B, A));("genSanmeDir LongSep" (B, A))})

Assunpti on:
("genSanmeDir LongSep" (A, B))

("aenSan*eDir LongSep" (B, A))

The table is symetric.
Processor tine: user: 8 sec; system O sec

Fusi on session over.

1.31 turbojetOppDir NoL ongSepPeriod Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude minima.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%conp "turbojet CopDir NoLongSepPeriod" env

"turboj et OppDi r NoLongSepPeri od" is:

(Tabl e
[((Row (MNPSCondition (A, B))) [TRUE; FALSE; TRUE, FALSE]) ;
((Row (WATRSCondition (A, B))) [TRUE TRUE; FALSE; FALSE])]

)
[(UnionAll (A, B));
(Uni onOf Range
{("WATRSOppDi r NoLongSepPeri od" (A ,
("genCppDir NoLongSep Period" (A,
(Uni onOf Range
{("MNPSOppDi r NoLongSepPeriod" (A, B));
("genCppDir NoLongSep Period" (A, B))});
("genCppDi r NoLongSep Period" (A, B))])

The table is conplete.

Stats for "turbojet OppDir NoLongSepPeri od" conpl et eness checki ng:
Nunmber of cases identified: O

Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.32 turbojetOppDir NoL ongSepPeriod Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncluding /isd/usr/day/exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gons "turbojet OppDir NoLongSepPeriod" env

"turboj et OopDi r NoLongSepPeri od" is:
(

(Tabl e
[((Row (MNPSCondition (A, B))) [TRUE, FALSE; TRUE; FALSE]);
((Row (WATRSCondition (A, B))) [TRUE TRUE; FALSE; FALSE])]

[(UnionAll (A, B));
(Uni onOf Range
{("WATRSOppDi r NoLongSepPeri od" (A, B));
("genCppDi r NoLongSep Period" (A, B))});
(Uni onOf Range

55

{("MNPSOppDi r NoLongSepPeriod" (A, B));
("genCppDi r NoLongSep Period" (A, B))});
("genCppDir NoLongSep Period" (A, B))])

No i nconsi stenci es
were found in the table.

Stats for "turbojetOppDir NoLongSepPeriod" consistency checking:
Nunber of cases identified: O
Processor tine: user: 0 sec; system 0 sec

Fusi on sessi on over.
1.33 turbojetOppDir NoL ongSepPeriod Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude minima.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>0sym "turboj et OppDi r NoLongSepPeri od" env

"turboj et OppDi r NoLongSepPeri od" is:

(Tabl e
[((Row (MNPSCondition (A, B))) [TRUE; FALSE; TRUE; FALSE]) ;
((Row (WATRSCondition (A, B))) [TRUE TRUE; FALSE; FALSE])]

[(UnionAll (A, B));
(Uni onOf Range
{("WATRSOppDi r NoLongSepPeri od" (A ,
("genCppDir NoLongSep Period" (A,
(Uni onOf Range
{("MNPSOppDi r NoLongSepPeriod" (A, B));
("genCppDir NoLongSep Period" (A, B))});
("genCppDi r NoLongSep Period" (A, B))])

Assunpti on:
(UnionAll (A, B))

(UnionAll (B, A))

Assunpti on:
(Uni onOf Range
{("WATRSOppDi r NoLongSepPeri od" (A ,
("genCppDir NoLongSep Period" (A,

o
—
——
-
—~

(Uni onOf Range
{("WATRSOppDi r NoLongSepPeriod" (B, A));
("genCppDi r NoLongSep Period" (B, A))})
Assunpti on:
(Uni onOf Range
{("MNPSQppDi r NoLongSepPeriod" (A, B));
("genCppDi r NoLongSep Period" (A, B))})
(Uni onOf Range
{("MNPSOppDi r NoLongSepPeriod" (B, A));
("genCppDir NoLongSep Period" (B, A))})

Assunpti on:
("genCppDi r NoLongSep Period" (A, B))
(" éenOppDi r NoLongSep Period" (B, A))

The table is symetric.

56

Processor tine: user: 9 sec; system O sec

Fusi on session over.

1.34 MNPSSameDir LongSep Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni na. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gconp "MNPSSaneDir LongSep" env

"M\PSSaneDi r LongSep" is:
(Tabl e

((Row (" Appropriate TinmeSep At Common Point" (A, B)))
[TRUE; TRUE; TRUE; TRUE; TRUE]) ;

((Row ("SaneOr Diverging Tracks" (A, B)))
[TRUE; TRUE; TRUE; TRUE; TRUE]) ;

(Row
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))))
[(\x.(x > 0.06)); (\x.((0.06 >= x) AND (x > 0.05)));
(\x.((0.05 >= x) AND (x > 0.04)));
(\x.((0.04 >= x) AND (x > 0.03)));
(\x.((0.03 >= x) AND (x > 0.02)))1)1)
[5;6;7;8;9;10])

I nvoki ng interval checker...

Interval checker partitions the range into:

(
((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) > 0.06)
(
(0.06 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.05))
(
(0.05 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.04))
(
(0.04 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.03))
(
(0.03 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.02))
(

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))

57

) <= 0.02)

The follow ng cases

yield the default value of 10

Case 1

Row 1 : (("Appropriate TineSep At Conmon Point" (A, B)) = F)
Row 2 : DC

Row 3 : DC

Case 2

Row 1 : (("Appropriate TineSep At Common Point" (A, B)) =T
Row 2 : (("SaneOr Diverging Tracks" (A, B)) = F)

Row 3 : DC

Case 3

Row 1 : (("Appropriate TineSep At Common Point" (A, B)) =T)
Row 2 : (("SaneOr Diverging Tracks" (A, B)) =T

Row 3 : (
((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) <= 0.02)

Stats for "MPSSaneDir LongSep" conpl eteness checking:
Nunmber of cases identified: 3
Processor tine: user: 1 sec; system O sec

Fusi on session over.

1.35 MNPSSameDir LongSep Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gons "MNPSSaneDir LongSep" env

"M\PSSaneDi r LongSep" is:

(Tabl e
[
((Row (" Appropriate TinmeSep At Common Point" (A, B)))
[TRUE; TRUE; TRUE; TRUE; TRUE]) ;
((Row ("SaneOr Diverging Tracks" (A, B)))
[TRUE; TRUE; TRUE; TRUE; TRUE]) ;

(Row
((Mach (FirstAircraft (A, B)))
(Mach (SecondAircraft (A, B)))))
[(\x.(x > 0.06)); (\x.((0.06 >= x) AND (x > 0.05)));
(\x.((0.05 >= x) AND (x > 0.04)));
(\x.((0.04 >= x) AND (x > 0.03)));
(\x.((0.03 >= x) AND (x > 0.02)))1)1)
[5;6;7;8;9;10])

I nvoki ng interval checker...
Interval checker partitions the range into:

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) > 0.06)

(0.06 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -

58

(Mach (SecondAircraft (A, B)))) > 0.05))

(0.05 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.04))

(0.04 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.03))

(0.03 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.02))

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) <= 0.02)

No i nconsi stenci es
were found in the table.

Stats for "MNPSSaneDir LongSep" consistency checking:
Nunmber of cases identified: O
Processor tine: user: 0 sec; system 0 sec

Fusi on session over.

1.36 MNPSSameDir LongSep Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
I'ncluding /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>0sym "MNPSSaneDi r LongSep" env

"M\PSSaneDi r LongSep" is:

(Tabl e
[
((Row (" Appropriate TinmeSep At Common Point" (A, B)))
[TRUE; TRUE; TRUE; TRUE; TRUE]) ;
((Row ("SaneOr Diverging Tracks" (A, B)))
[TRUE; TRUE; TRUE; TRUE; TRUE]) ;

(Row
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))))
.(x >0.06));(\x.((0.06 >= x) AND (x > 0.05)));
.((0.05 >= x) AND (x > 0.04)));
((0.04 >= x) AND (x > 0.03)));
((0.03 >=x) AND (x > 0.02)))1)1)
; 101)

The table is symmetric if the followi ng condition(s) hold
(some conditions may overl ap):

Condi tion 1:

59

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.06) =

((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A)))) > 0.06))

Condi tion 2:
(0.06 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.05)) =

(
(0.06 >=
((Mach (FirstAircraft (B, A))) -
(Mach (SecondAircraft (B, A))))) AND
((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A)))) > 0.05)))
Condi tion 3:
(
(0.05 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.04)) =
(0.05 >=
((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A))))) AND
((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A)))) > 0.04)))
Condi tion 4:
(
(0.04 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.03)) =
(0.04 >=
((Mach (FirstAircraft (B, A))) -
(Mach (SecondAircraft (B, A))))) AND
((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A)))) > 0.03)))
Condition 5:
(
(0.03 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.02)) =
(0.03 >=

((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A))))) AND

((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A)))) > 0.02)))

Processor tine: user: 3 sec; system 0 sec

Fusi on session over.

60

1.37 WATRSCondition Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni nma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gconp WATRSCondi ti on env

WATRSCondi tion is:
(PredicateTabl e
[
((Row ((AI1OF [A B]) Enter WATRSAI r spaceAt SoneTi ne))
[TRUE; TRUE]) ;

((Row ((AIIOF [A B]) IswestOr60W) [TRUE, DC]);

((Row ((AIIOF [A; B]) | nWATRSAI rspace)) [DC; TRUE]);

((Row ((AIl O [A; B]) MachTechni queUsed)) [TRUE; TRUE]) ;
((Row ((AI1OF [A; B]) OnPublishedRoute)) [TRUE; TRUE]) ;
((Row ("SaneOr Diverging Tracks" (A, B))) [TRUE TRUE])])

The predicate is fal se
for the foll owi ng cases:

Case 1

Row 1 : (((AIIOF [A; B]) Enter WATRSAI r spaceAt SoneTine) = F)
Row 2 : DC

Row 3 : DC

Row 4 : DC

Row 5 : DC

Row 6 : DC

Case 2

Row 1 : (((AIIOF [A B]) Enter WATRSAI rspaceAt SoneTinme) = T)
Row 2 : (((AIIOF [A B]) IsWestOF60W = F)

Row 3 : (((AIIOF [A; B]) InWATRSAI rspace) = F)

Row 4 : DC

Row 5 : DC

Row 6 : DC

Case 3

Row 1 : (((AIIOF [A B]) Enter WATRSAI rspaceAt SoneTinme) = T)
Row 2 : (((AIIOF [A;B]) IsWestOF60W = T)

Row 3 : DC

Row 4 : (((AIIOF [A; B]) MachTechni queUsed) = F)

Row 5 : DC

Row 6 : DC

Case 4

Row 1 : (((AIIOF [A; B]) Enter WATRSAI r spaceAt SoneTine) = T)
Row 2 : (((AIIOCF [A;B]) IsWwestO60W = F)

Row 3 : (((AIIOF [A; B]) InWATRSAI rspace) = T)

Row 4 : (((AIIO [A; B]) MachTechni queUsed) = F)

Row 5 : DC

Row 6 : DC

Case 5

Row 1 : (((AIIOF [A B]) Enter WATRSAI rspaceAt SoneTinme) = T)
Row 2 : (((AIIOF [A;B]) IsWestOF60W = T)

Row 3 : DC

Row 4 : (((AIIO [A B]) MachTechni queUsed) = T)

Row 5 : (((AIIOF [A; B]) OnPublishedRoute) = F)

Row 6 : DC

Case 6

Row 1 (((AIlOr [A B]) EnterWATRSAI rspaceAt SoneTinme) = T)
Row2: (((ATO [A B]) IsWwestO60W = F)

Row 3 : (((AIIOF [A; B]) InWATRSAi rspace) = T)

Row 4 : (((AIlOF [A; B]) MachTechni queUsed) = T)

61

Row 5 : (((AIIOF [A; B]) OnPublishedRoute) = F)

Row 6 : DC

Case 7

Row 1 : (((AIIOF [A B]) Enter WATRSAI r spaceAt SoneTinme) = T)
Row 2 : (((AIIOCF [A;B]) IsWestOF60W = T)

Row 3 : DC

Row 4 : (((AIIOr [A B]) MachTechni queUsed) = T)

Row 5 : (((AIIOF [A; B]) OnPublishedRoute) = T)

Row 6 : (("SaneOr Diverging Tracks" (A, B)) = F)

Case 8

Row 1 : (((AI O [A; B]) Enter WATRSAI r spaceAt SoneTine) = T)
Row 2 : (((AIIOF [A; B]) IsWestOF60W = F)

Row 3 : (((AIIOF [A; B]) InWATRSAi rspace) = T)

Row 4 : (((AIIOF [A; B]) MachTechni queUsed) = T)

Row 5 : (((AIIOF [A; B]) OnPublishedRoute) = T)

Row 6 : (("SameOr Diverging Tracks" (A, B)) = F)

Stats for WATRSCondi ti on conpl et eness checki ng:

Nunmber of cases identified: 8

Processor tine: user: 1 sec; system O sec

>

Fusi on session over.

1.38 WATRSCondition Consistency Check
Fusion - Version 1.0 Sep 26 1997 15:22:26

Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly

Type "%el p" to see list of % commands.

search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%ons WATRSCondi tion env

WATRSCondi tion is:
(PredicateTabl e
[
((Row ((AII O [A;B]) Enter WATRSAI r spaceAt SoneTi ne))
[TRUE; TRUE]) ;

((Row ((AI1Or [A;B]) IsWestOr60W) [TRUE; DC]);

((Row ((AIIOF [A; B]) | nWATRSAI rspace)) [DC; TRUE]);

((Row ((AI1OF [A B]) MachTechni queUsed)) [TRUE; TRUE]);
((Row ((AI1OF [A; B]) OnPublishedRoute)) [TRUE; TRUE]);
((Row ("SameOr Diverging Tracks" (A, B))) [TRUE TRUE])])

By definition a predicate table can not be inconsistent,
since it returns "T" for all colums.
Processor tine: user: 0 sec; system 0 sec

Fusi on session over.

1.39 WATRSCondition Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly

Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

62

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>Usym WATRSCondi ti on env

WATRSCondi tion is:
(Predi cateTabl e
[
((Row ((AI1OF [A B]) EnterWATRSAI r spaceAt SoneTi ne))
[TRUE; TRUE]) ;
IOF [A;B]) IsWestOF60W) [TRUE; DC]);
IO [A B]) I nWATRSAI rspace)) [DC;, TRUE]);
IO [A B]) MachTechni queUsed)) [TRUE; TRUE]) ;
IO [A B]) OnPublishedRoute)) [TRUE;, TRUE]);
Row (" SameOr Diverging Tracks" (A, B))) [TRUE TRUE])])

The table is symetric
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.40 genSameDir LongSep Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude minima.s

I ncl udi ng /isd/usr/day/ exanpl es/ Separ ati onM ni na/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%gonp "genSanmeDir LongSep" env

"genSameDir LongSep" is:

(Tabl e
[((Row ("SaneOr Diverging Tracks" (A, B))) [TRUE; TRUE, TRUE])

((Row ((AII O [A; B]) MachTechni queUsed))
[FALSE; TRUE; TRUE]) ;
((Row ((AtLeastOneOr [A;B]) InCruisedinb))
[FALSE; FALSE; FALSE]) ;
((Row (ReportedOver CommonPoint (A, B))) [TRUE DC; DC]);
((Row (" Appropriate TimeSep At Common Point" (A, B)))
[DC, TRUE; TRUE]) ;

(Row
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))))
[DC; (\x.(x > 0.6)); (\x.((0.6 >=x) AND (x > 0.3)))1])
1) [15;5;10;20])

I nvoki ng interval checker...
Interval checker partitions the range into:

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) > 0.6)

(06 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.3))

63

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) <= 0.30)

The foll owi ng cases
yield the default value of 20

Case 1
Row 1 : (("SaneOr Diverging Tracks" (A, B)) = F)
Row 2 : DC
Row 3 : DC
Row 4 : DC
Row 5 : DC
Row 6 : DC
Case 2
Row 1 : (("SaneOr Diverging Tracks" (A, B)) =T
Row 2 : DC
Row 3 : (((AtLeastOneO™* [A;B]) InCruiseCdinmb) = T)
Row 4 : DC
Row 5 : DC
Row 6 : DC
Case 3
Row 1 : (("SameOr Diverging Tracks" (A, B)) =T
Row 2 : (((AIIOr [A B]) MachTechni queUsed) = F)
Row 3 : (((AtLeastOneOf [A;B]) InCruisedinb) = F)
Row 4 : ((ReportedOver CormonPoint (A, B)) = F)
Row 5 : DC
Row 6 : DC
Case 4
Row 1 : (("SaneOr Diverging Tracks" (A, B)) =T
Row 2 : (((AIIOr [A B]) MachTechni queUsed) = T)
Row 3 : (((AtLeastOneOF [A;B]) InCruisedinb) = F)
Row 4 : DC
Row 5 : (("Appropriate TineSep At Conmon Point" (A, B)) = F)
Row 6 : DC
Case 5
Row 1 : (("SaneOr Diverging Tracks" (A, B)) =T
Row 2 : (((AIIOF [A; B]) MachTechni queUsed) = T)
Row 3 : (((AtLeastOneO™* [A;B]) InCruisedinmb) = F)
Row 4 : DC
Row 5 : (("Appropriate TineSep At Common Point" (A, B)) =T
Row 6 : (
((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) <= 0.30)
Stats for "genSaneDir LongSep" conpl eteness checking:
Number of cases identified: 5
Processor tine: user: 1 sec; system O sec
>
Fusi on sessi on over.
1.41 genSameDir LongSep Consistency Check
Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997
Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncl uding /isd/usr/day/ exanpl es/ Separ ati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osing onlinespec. hpp

>%g¢ons "genSanmeDir LongSep" env

"genSanmeDir LongSep" is:

(Tabl e
[((Row ("SaneOr Diverging Tracks" (A, B))) [TRUE; TRUE, TRUE])

((Row ((AI1OF [A Bl) MachTechni queUsed))
[FALSE; TRUE; TRUE]) ;
((Row ((AtLeastOned™X [A;B]) InCruisedinb))
[FALSE; FALSE; FALSE]) ;
((Row (ReportedOver ConmonPoint (A, B))) [TRUE; DC, DC]);
((Row (" Appropriate TinmeSep At Common Point" (A, B)))
[DC;, TRUE; TRUE]) ;
(

(Row
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))))
[DC (\x.(x > 0.6)); (\x.((0.6 >=x) AND (x > 0.3)))])
1) [15;5;10;20])

I nvoki ng interval checker...
Interval checker partitions the range into:

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) > 0.6)

(0.6 >=
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.3))

((Mach (FirstAircraft (A, B))) - (Mach (SecondAircraft (A, B)))
) <= 0.30)

No i nconsi stenci es
were found in the table.

Stats for "genSaneDir LongSep" consistency checking:
Nunmber of cases identified: O
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.42 genSameDir LongSep Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>Usym "genSaneDir LongSep" env

"genSameDir LongSep" is:

(Tabl e
[((Row ("SanmeOr Diverging Tracks" (A, B))) [TRUE; TRUE; TRUE])

((Row ((AI1 O [A; B]) MachTechni queUsed))
[FALSE; TRUE; TRUE]) ;
((Row ((AtLeastOnedr [A;B]) InCruisedinb))
[FALSE; FALSE; FALSE]) ;
((Row (ReportedOver ConmonPoint (A, B))) [TRUE; DC, DC]);
((Row (" Appropriate TinmeSep At Common Point" (A, B)))
[DC, TRUE; TRUE]) ;
(

(Row
((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))))
[DC (\x.(x > 0.6)); (\x.((0.6 >=x) AND (x > 0.3)))])

65

1) [15;5;10;20])

The table is symetric if the followi ng condition(s) hold
(sone conditions may overlap):

Condi tion 1:
(

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.6) =

((Mach (FirstAircraft (B, A)) -
(Mach (SecondAircraft (B, A))) > 0.6))

Condi tion 2:
(
(
(O 6 >=

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B))))) AND

((Mach (FirstAircraft (A, B))) -
(Mach (SecondAircraft (A, B)))) > 0.3)) =

(0.6 >=
((Mach (FirstAircraft (B, A))) -
(Mach (SecondAircraft (B, A))))) AND

((Mach (FirstAircraft (B, A))) -
(Mach (SecondAircraft (B, A)))) > 0.3)))

Processor tine: user: 2 sec; system O sec

Fusi on session over.

1.43 other SameDir L ongSep Completeness Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/usr/day/exanpl es/ Separati onM ni ma

>% ncl ude mini ma.s

I ncluding /isd/usr/day/exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gonp ot her SameDi r LongSep env

ot her SameDi r LongSep i s:

(Tabl e
[((Row (ReportedOver CommonPoint (A, B))) [TRUE DC]);
((Row ("SameOr Diverging Tracks" (A, B))) [TRUE; DC]);
((Row ((AIlOF [A;B]) (IsOnRoute Routes3))) [DC, TRUE])]
) [15;20;30])

The foll ow ng cases
yield the default value of 30

Case 1

Row 1 : ((ReportedOver CormonPoint (A, B)) = F)
Row 2 : DC

Row 3 : (((AIIOF [A;B) (IsOnRoute Routes3)) = F)
Case 2

Row 1 : ((ReportedOver CormonPoint (A, B)) =T)
Row 2 : (("SaneOr Diverging Tracks" (A, B)) = F)
Row 3 : (((AIIOF [A;B]) (IsOnRoute Routes3)) = F)

Stats for otherSaneDi rLongSep conpl et eness checki ng:

66

Nunmber of cases identified: 2
Processor tine: user: 0 sec; system O sec

Fusi on session over.

1.44 other SameDir L ongSep Consistency Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>%gons ot her SameDi r LongSep env

ot her SameDi r LongSep i s:

(Tabl e
[((Row (ReportedOver CommonPoint (A, B))) [TRUE DC]);
((Row ("SameOr Diverging Tracks" (A, B))) [TRUE; DC]);
((Row ((AI1OF [A;B]) (IsOnRoute Routes3))) [DC, TRUE])]
) [15;20; 30])

Colums 1 and 2 conflict in the follow ng:
Case 1

Row 1 : ((ReportedOver CommonPoint (A, B)) =T
Row 2 : (("SameOr Diverging Tracks" (A, B)) =T)
Row 3 : (((AIIOF [A;Bl) (IsOnRoute Routes3)) = T)

Stats for otherSaneDirLongSep consistency checking:
Nunber of cases identified: 1
Processor tine: user: 1 sec; system 0 sec

Fusi on session over.

1.45 other SameDirL ongSep Symmetry Check

Fusion - Version 1.0 Sep 26 1997 15:22:26
Copyright University of British Colunbia, 1996, 1997

Type "% nclude " or type in S paragraphs directly
Type "%el p" to see list of % commuands.
search path: . /isd/usr/day/src/fusion /isd/ usr/day/exanpl es/ SeparationM nina

>% ncl ude mini ma.s

I ncluding /isd/usr/day/ exanpl es/ Separati onM ni ma/ m ni ma. s
Including /isd/usr/day/src/fusion/startup.s

Closing startup.s

Including /isd/usr/day/src/fusion/table.s

Closing table.s

Cl osi ng onlinespec. hpp

>Usym ot her SameDi r LongSep env

ot her SameDi r LongSep i s:

(Tabl e
[((Row (ReportedOver CommonPoint (A, B))) [TRUE DC]);
((Row ("SameOr Diverging Tracks" (A, B))) [TRUE, DC]);
((Row ((AI1OF [A;B]) (IsOnRoute Routes3))) [DC, TRUE])]
) [15;20;30])

67

The table is symetric.
Processor tine: user: 0 sec; system 0 sec

Fusi on session over.

Appendix C: A Brief Introduction to the S Notation

S[IDD94] isan ASCII-based formal description notation developed at the University of British Columbia
to support the industrial application of formal methods. It is also used to support avariety of research
initiatives in the area of formal methods such as the development of the analysis techniques and tools
demonstrated by the example documented in this report.

1 Similaritiesto Code

Although based upon the formalism of typed predicate logic, much of the syntax of Sissimilar to the
syntax of many general-purpose programming languages. One such example isthe"if ... then ... else ..."
construct provided in Sfor conditional expressions. The association of values denoted by S expressions
with typesis very similar to the association of data values with typesin strongly typed programming
languages such as Pascal, Ada and C++. The syntax and type system of S bears a particularly strong
similarity to aspects of Standard ML [P91].

Just as software devel opers often use a compiler to check that their code conforms to the syntax and
typechecking rules of the programming language, a formal description written in S can be parsed and
checked automatically by a software tool for conformance to the syntax and typechecking rules of S. This
function is performed by atool named "Fuss' developed at the University of British Columbia. Getting an
S specification to be parsed by Fuss without errorsis very much like getting a software package to "clean
compile”. "Fusion”, the analysis tool used to generate the results reported in Appendix B, is an extension
of Fuss developed by Nancy Day at the University of British Columbia.

Thereisalimited sensein which aformal description can evaluated or partially evaluated in a manner
conceptually similar to the evaluation of expressions by an evaluation function for a functional
programming language, e.g., aLisp interpreter. Limitations of this sense of evaluation are related, in part,
to some of the fundamental differences between S and "code" as discussed below. Thisincludes
limitations on the evaluation of S expressions that express quantification over infinite types. A subset of S
could be used as avery simple, but useful, functional programming language. Various forms of evaluating
formal descriptions written in S are being investigated at the University of British Columbia. One such
approach is built into the "Fusion” tool used to generate the results reported in Appendix B.

2 Differences from Code

In spite of these similarities with various programming languages, Sis a mathematical notation with
fundamental differences from most general -purpose programming languages.

Unlike programming languages (except a specialized family of "purely functional" programming
languages such as variants of Lisp), there is no sense of dynamicsin S such as variables whose values may
change over time. There are well-known methods of using predicate logic based notations to formally
describe systems with dynamic behaviour, but thisis a matter of how the formal description isinterpreted
as the description of the dynamic behaviour of a system. Discussion of how S may be used to specify
dynamic behaviour is outside the scope of this brief description of S since the formalization of the NAT

68

separation minimais ultimately a matter of defining a static condition represented by the predicate
"AreSeparated"” rather than dynamic behaviour.

Another fundamental difference from most genera -purpose programming languages is the ability in Sto
express "quantification” (e.g., "for al", "there exists") over all values of agiven type. The distinction
between requirements specification and design is often characterized as the difference between describing
what is required and how this requirement is to be realized. Quantification is often invaluable as a means
of expressing "what" rather than "how". Quantification is also valuable for expressing global properties or
constraints at the requirements level. In the formalization of the NAT separation minima, quantification is
used to express environment assumptions as global constraints.

A third fundamenta way in which S differs from most general-purpose programming languagesisits
ability to support "uninterpreted” types and constants. For most general-purpose programming languages,
software is a description of a series of completely defined operations on patterns of bits. However, it is
often useful, such as when specifying the requirements of system, to develop aformal description on top of
a set of uninterpreted types and constants. In most programming languages, a user-defined data type must
be defined in such away that the compiler or interpreter can realize instances of this data type as a patterns
of bits. Butin S, aswell as several other formal description notations, it is possible to simply introduce the
name of a user-defined type without details of itsrealization. Similarly, it ispossiblein S, to introduce a
constant by providing its name and its type without details of its realization.

Uninterpreted types and uninterpreted constants are used in the formalization of the NAT separation
minimato match the level of abstraction used in the source documents. In principle, an implementation of
the NAT separation minima could be produced by atrandation of the formalization into the notation of a
programming language along with instantiations of the uninterpreted types and constants. The
uninterpreted types and uninterpreted constants used in the NAT separation minima are regarded as
common vocabulary for users of thisformalization. They are regarded as common vocabulary in the sense
that it is assumed that its users would know how to correctly instantiate the uninterpreted types and
uninterpreted constants with suitable implementations.

3 Declaration and Definition of Types

A type declaration in S may be used to introduce one or more new types. For example, the paragraph,

: flight, segnent;

isan example of atype declaration. This example introduces two new types, "flight" and "segment”. Types
introduced by means of atype declaration are "uninterpreted” in the sense that nothing is said about their
composition. As mentioned earlier, an uninterpreted type represents part of what is assumed to be the
common vocabulary of the intended users of the specification.

In addition to type declarations, it is possible to define new types. A type definition in Sis similar to, but
more general than, the notion of an enumerated type in some programming languages such as Ada. The
formalization of the NAT separation minima contains just one type definition which looks very much like
an enumerated type in a programming language:

: location := Azores | BDA | CAN | Caribbean | IberianPenisula
| Iceland | Scandi navia | UnitedKi ngdom | USA

69

Thistype definition is used to introduce a new type named "location” and a set of constants corresponding
to the names of all of locations explicitly mentioned in the separation minima.

More advanced forms of type definition allow atype to be defined as the range of a set of functions called
"constructors'. Under certain conditions, atype definition may be recursive allowing recursive data types
such asa"binary tree" to be defined. Declared and defined types may also be parameterized by type
parameters. These more advanced forms of type definition are not used in the formalization of the NAT
separation minima.

In addition to type declarations and type definitions, S provides a construct for the introduction of type
abbreviations. In this case, anew typeis not declared or defined - instead, a new name isintroduced as an
abbreviation for a potentially more complicated type expression or else as an alias for the name of very
genera type. For example, the type abbreviation,

D time == num

resultsin the introduction of "time" asan alias for "num". Type abbreviations are used mainly to enhance
the readability of a specification.

4 Type Expressions

Type expressions are used within S specifications to indicate the types of constants and variables. A type
expression may be the name of a previously declared or defined type or one of the built-in types of S such
as "bool" (Boolean values) or "num" (natural numbers). A type expression may aso be the name of atype
parameter; thisis similar to the concept of a generic type in some programming languages such as Ada.
Otherwise, atype expression is the application of atype operator to one or more simpler type expressions.

The formalization of the NAT separation minima uses three different type operators, namely, "->", "#" and

The infix type operator "->" is used to specify function types. For instance, the type expression "flight ->
bool" is used to denote the type of afunction whose domain and range are the uninterpreted type "flight”
and the built-in type "bool" respectively.

The infix type operator "#" is used to specify Cartesian products, that is, types whose members are pairs of
elements. For instance, the type expression “flight # flight" is used in the formalization of the NAT
separation minimato denote a type whose members are pairs of flights.

The postfix type operator "set" is used to denote a type whose members are sets of elements of some other
type. For example, the type expression "(num) set" denotes the type whose members are sets of whole
numbers, i.e, ...-2,-1,0,1, 2,

Type expressions may be combined using type operators to make more complex type expressions. For
example, the type expression "(flight # flight) -> bool" denotes a function type whose domainisa

Cartesian product, namely, "flight # flight", and whose range is "bool". Another example is the type
expression "(location # location) set" which denotes a type whose values are sets of pairs of locations.

5 Declar ation and Definition of Constants

70

In the description of many programming languages, the term "constant” is usually used to refer to the name
associated with afixed data value. In the definition of S, asin the definition of many other notations based
on predicate logic, the term "constant” is used in a more general way to refer to the name of any fixed
value including values which are functions types, i.e., values whose type is denoted by atype expression of
theform™...-> ...".

Thus, the term "constant™ in a description of Srefersis used more generally than for just names of "data
values'. Theterm "function” is often used to refer to constants whose values are function types. The term
"predicate” is used to refer specifically to functions whose range is "bool”. In other words, functions are a
particular class of constants and predicates are a particular class of functions.

The formalization of the NAT separation minima introduces a number of constants. Many of these
constants are introduced in the form of tables. The name of each table in Appendix B isthe name of a
constant.

A number of other constants are also introduced in this formalization directly in S notation - either in the
form of a constant declaration or a constant definition.

A constant declaration is used to introduce an uninterpreted constant. For example, the constant
declaration,

| sSupersonic: (flight -> bool);

introduces "lsSupersonic” as the name of afunction whose domain and range are "flight" and "bool"
respectively. Thisis an example of a predicate since the range of this function is"bool".

As mentioned before, an uninterpreted constant represents part of what is assumed to be the common
vocabulary of the intended users of the specification. In the case of "IsSupersonic”, the introduction of this
function as an uninterpreted constant is based on an assumption that the intended users of the NAT
separation minima all understand that the value of the attribute "IsSupersonic" can be determined somehow
from the representation of aflight -- but the details of the representation of the flight and how this attribute
may be obtained is a design detail beneath the desired level of abstraction for this specification.

Similarly, the constant declaration,

Rout eDeparture : (flight -> |ocation);

introduces what may be regarded informally as the name of an attribute of aflight, i.e., "RouteDeparture”.
Asin the case of "IsSupersonic”, details of how the value of this attribute is obtained from the
representation of aflight isintentionally excluded from this formalization.

Other constants are introduced in the formalization by means of constant definitions. For example,

Rout es2 : = {(USA, Cari bbean); (Can, Cari bbean); (BDA, Cari bbean)};

defines the constant "Routes2" in terms of a set of pairs of locations. Another instance of a constant
definition,

| sOnRoute (R (Il ocation#l ocation) set) (X flight) :=
((Rout eDeparture (X), RouteDestination (X)) In R OR

71

(Rout eDestination (X), RouteDeparture (X)) In R);

introduces a function which may be used to determine if the departure location and destination location of
aflight (the second parameter) iswithin a particular set of routes (the first parameter). The above
definition uses an infix predicate named "In" to determine if an element isa member of set, i.e., set
membership. The above definition also uses the built-in infix logical operator, "OR".

The above definition of "I1sOnRoute” illustrates a feature of S which allows the parameters of functionsto
be separated so that they can be "provided one at atime”. The first parameter of "IsOnRoute”, namely, "R",
is separated from its second parameter, " X". Functions of this form are known as "curried functions'. This
is different than grouping the parameters of afunction together , e.g., "(R,X)", so that they must be
"provided all at once". Whilethisis not available in most programming languages, Standard ML allows for
the definition of curried functions.

Curried functions are particularly useful in situations where a general -purpose function is partially
evauated to yield afunction for amore specific purpose. For instance, the expressions "1sOnRoutes
Routes1" and "IsOnRoutes Routes2" denotes two different functions. The former is afunction for
determining whether aflight falls within to the set of routes denoted by the constant "Routesl" while the
latter corresponds to a function for determining whether a flight falls within to the set of routes denoted by
"Routes2".

S alows constants to be introduced as infix functions. While the formalization of the NAT separation
minima uses several "built-in" infix functions of S (e.g., "OR"), it does not include the introduction of any
application specific infix functions.

Constants parameterized by types may also be declared or defined in a S specification. Severa built-in
polymorphic constants (i.e., constants parameterized by one or more types) are used in the formalization of
the NAT separation minima; however, this formalization does not include the declaration or definition of
any such constants.

Constants may be defined recursively (based on the constructors of arecursively defined type) but this
feature of Sisnot used in the formalization of the NAT separation minimafor any application specific
constants.

6 S Expression Syntax

A very basic kind of S expression isthe prefix application of afunction (called the "operator") to another
expression (called the "operand”). Thisis expressed by the juxtaposition of the expression denoting the
operator with expression denoting the operand. For example, "MaxEarliestTime periods’ denotes the
application of the operator "MaxEarliestTime" to the operand "periods’. Unlike most programming
languages, it is not always necessary to enclose the operand within parentheses, i.e., "MaxEarliestTime
(periods)" can be written asjust "MaxEarliestTime periods’. Matching parentheses may be placed around
any S expression, but they are only necessary where required to eliminate ambiguity in the parsing of
expressions. For instance, the parentheses in the expression "ABS (2 - 1)" are necessary for this expression
to be parsed and typechecked successfully.

If afunction has been introduced as an infix function, e.g., "+", then it may be applied to apair of
expressionsin the form of an infix application, e.g., "1 + 2".

72

A third kind of function application is post-fix application. In the definition of "IsOnRoute", the expression
"RouteDeparture (X)" could have been written " X.RouteDeparture”. This expression may informally be
understood as a reference to the "RouteDeparture” attribute of the parameter "X". Actualy, this expression
ismerely the post-fix application of the function "RouteDeparture” to this parameter. It is semantically
equivalent to the prefix application of thisfunctionto "X", i.e., "RouteDeparture (X)". Post-fix function
application is merely "syntactic sugar” but it has been found to be helpful as a means of improving the
readability of aformal specification especially for readers of the specification who are familiar with
programming notations that use "dot notation” to refer to components of records or objects.

Another form of S expression is universal quantification which is used to express the condition that a
specific property istrue for every value of a specific type. For example, the environmental assumptions
section of the formalization includes the assertion,

forall (A:flight). NOT (IsLevel (A) and InCruiseClimb (A))

that al flights cannot both satisfy (simultaneously) the conditions represented by the predicates "IsLevel”
and "InCruiseClimb". S also provides a complementary form of quantification called existential
guantification to assert that at least one value of the specified type satisfies the property.

Sincludes special syntax for denoting pairs, e.g., "(1,2)" and sets"{1;2;3}". Thisillustrated by the
definition of "Routes2" where the right hand side of this definition is a set of pairs of locations.

To allow S specifications to be given a code-like appearance, the syntax of S also includes special syntax
for conditional expressions, i.e., "if ... then ... else” and "if ... then ...".

Another code-like construct is the let-definition construct illustrated below by the definition of the
predicate "WithinOppDirNoL ongSepPeriod"”,

W t hi nQppDi r NoLongSepPeriod (A B, t) :=
let tinmePeriod := "QopDir NoLongSepPeriod" (A B) in
(StartTime(timePeriod) <=1t) AND (t <= EndTi ne(tinePeriod));

where the right hand side of the definition of "WithinOppDirNoL ongSepPeriod" is semantically equivalent
to the following expression:

(StartTi me("OppDir NoLongSepPeriod" (A B)) <=t) AND
(t <= EndTi me(" OppDir NoLongSepPeriod" (A B)));

7 Names of Types, Variables and Constants

Another useful feature of Sisthe ability to use phrases such as "thisisavery long name" as the names of
types, variables and constants, in addition to non-quoted identifiers. The use of thisfeaturein the NAT
separation minimaisillustrated above by the use of the constant "OppDir NoL ongSepPeriod" whose name
includes a space character. The spaces in the names of these constants have no logical significance -- they
are just names -- but these spaces are used, in part, to make the specification more readable. This feature of
S has proven very useful as a means of achieving a higher degree of consistency in appearance between a
formal specification expressed in S and other specification-related documentation.

8 Built-in Typesand Constants

73

The formalization of the NAT separation minima involves a modest number of types and constants which,
for the purposes of this report, may be described as "built-in" elements of S.

Technically, only avery small number of types and constants are fundamental elements of the notation.
Most of the types and constants described here as "built-in" areredly just elements of a standard library of
very basic types and constants that underlies the NAT separation minima.

The dependence of the NAT separation minimaformalization on this standard library isrevealed by the
second last line of Appendix A, wherethe library file "startup.s” is referenced by a"%include” directive.
The other "%include” directive refers to some additional constants and types which support the tabular
style of specification used in the formalization.

The only built-in types of S used in the formalization of the NAT separation minimaare "bool" and "num".

Severa built-in constants of S denoting arithmetic/logical functions are used with this formalization.
Theseinclude"-" (subtraction), "+", ">", "<=","<" "NOT", "OR" and "AND".

74

