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Abstract

No polynomial time algorithm is known to compute the minimum weight triangulation

(MWT) of a point set. In this thesis we present an e�cient implementation of the LMT-

skeleton heuristic. This heuristic computes a subgraph of the MWT of a point set from

which the MWT can usually be completed. For uniformly distributed sets of tens of

thousands of points our algorithm constructs the exact MWT in expected linear time

and space.

A fast heuristic, other than being usefull in areas such as stock cutting, �nite element

analysis, and terrain modeling, allows to experiment with di�erent point sets in order to

explore the complexity of the MWT problem. We present point sets constructed with

this implementation such that the LMT-skeleton heuristic does not produce a complete

graph and can not compute the MWT in polynomial time, or that can be used to prove

the NP-Hardness of the MWT problem.
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Chapter 1

Introduction

One of the many properties the triangulation of a point set might have, and probably

one of the �rst that comes to mind, is the property of minimum weight. The following

de�nitions are presented in order to state the minimum weight triangulation problem

clearly.

De�nition 1.0.1 A triangulation, T (S), of a 2-dimensional point set S is a maximum

set of edges with endpoints in S such that no edges cross. The set of edges in T (S) are

said to triangulate S.

The reader can check that this concise de�nition gives what is expected { an embedded

graph whose outer face is the convex hull of S and all other faces are triangles.

In the scope of this thesis the weight of an edge refers to the Euclidean length of

the line segment between its two endpoints. The weight of a triangulation will therefore

denote the total length of its edges.

De�nition 1.0.2 The weight of a triangulation T (S) is the sum of the weights of all

edges : w(T (S)) =
P

e2T (S)w(e).

De�nition 1.0.3 A minimum weight triangulation of a point set S is a triangulation

whose weight is minimum: w(MWT (S)) = min 8 T (S) (w(T (S))). The set of edges in

MWT (S) is said to triangulate S minimally.

1



Chapter 1. Introduction 2

This leads to the statement of the problem: �nd a set of edges T that triangulates S

minimally.

No polynomial time algorithm is known for computing the solution of this problem,

nor has it been proven that the problem is NP-hard. In fact this problem is one of the

few problems stated in Garey and Johnson's book on NP-completeness [GJ79] whose

complexity status is still unknown.

This thesis will present an e�cient implementation of a heuristic that calculates an ex-

act minimumweight triangulation of most point sets. For all uniformly distributed point

sets we tested the heuristic on, we obtained a minimum weight triangulation. However

one can construct point sets for which the heuristic does not produce a triangulation.

This thesis will also illustrate such examples.



Chapter 2

History

The problem of �nding a minimal weight triangulation of a point set has attracted a lot

of interest and research. It is a very interesting problem because minimal weight is a

natural property of a triangulation and no polynomial time algorithm is known to solve

it.

One of three directions is usually taken when addressing this problem. One can

look for e�cient algorithms that compute the MWT for restricted classes of point sets.

Otherwise, one can �nd algorithms that compute triangulations that approximate the

weight of the MWT. Finally, one can �nd algorithms that identify edges that must be in

a MWT and try to construct the optimal triangulation from these edges.

The following sections present the various work done towards computing e�ciently

the MWT of a point set through the di�erent directions.

2.1 MWT of Restricted Classes of Point Sets

In considering restricted classes of point sets, Gilbert [Gil79] and Klincsek [Kli80] in-

dependently presented a dynamic programming algorithm that computes a minimum

weight triangulation of a simple polygon in O(n3) time.

Recently, Anagnostou and Corneil [AC93] described an O(n3k+1) time algorithm that

computes the MWT of a point set that can be the vertices of k nested convex polygons.

Many others have applied dynamic programming with branch and bound techniques to

3



Chapter 2. History 4

the general problem. Cheng, Golin and Tsang [CGT95] proposed a dynamic program-

ming algorithm that completes a subgraph of a minimumweight triangulation composed

of k unconnected components in O(nk+2) time.

2.2 Heuristics That Approximate the MWT

It is legitimate to ask if any of triangulations like the Delaunay triangulation or greedy

triangulation that have polynomial time algorithms are minimum weight triangulations

or are a constant factor approximation of the MWT.

Lloyd [Llo77] showed that in general the Delaunay triangulation is not a minimum

weight triangulation. In fact, the Delaunay triangulation does not produce a constant

factor approximation of the MWT. Kirkpatrick [Kir80] showed that for each n there

exists a set of n points such that the Delaunay triangulation is 
(n) times longer than

the MWT.

Lloyd [Llo77] also showed that the greedy triangulation is not the minimum weight

triangulation. Levcopoulos [Lev87] showed that it does not approximate theMWT better

than by a 
(
p
n) factor.

Since known triangulations do not provide good approximations of the MWT, work

has been done to �nd algorithms that compute better approximations. Plaisted and

Hong [PH87] proposed a heuristic that approximates the MWT with a factor of at most


(log n). To compute this triangulation the algorithm took O(n2 log n) time in the worst

case.

Other heuristics were proposed to approximate the minimum weight triangulation.

The minimum spanning tree heuristic constructs a triangulation by including the edges

in the minimum spanning tree and the edges of the convex hull of a point set. The result

is a connected graph where polygonal holes can be completed with the polygon MWT
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dynamic programming algorithm described in Section 4.3. The greedy spanning tree

heuristic constructs a triangulation similarly but uses the edges of the greedy spanning

tree instead. Levcopoulos and Krznaric [CL96] showed that these heuristics produce

triangulations that are respectively 
(
p
n) and 
(n) longer than the MWT.

Lingas [Lin85], Levcopoulos et al. [LLS89] and Levcopoulos and Krznaric [LK97] have

an in-depth study of the MWT of convex polygons. The last paper [LK97] presents an

algorithm computing a (1 + �) approximation of the MWT of convex polygons in linear

time, for any �xed �.

2.3 Subgraphs of the MWT

Another direction of attacking the MWT problem is by constructing a subgraph of the

MWT. If the subgraph is connected the MWT can be completed by the dynamic pro-

gramming algorithm presented in Section 4.3.

The �-skeleton, � � 1 of a point set S is the set of edges with endpoints in S such

that for each edge ab the two circles of radius �

2
jabj passing through a and b are empty

of all points as illustrated in Figure 2.1. The �-skeleton is the Delaunay triangulation

when � = 1 otherwise it is a subgraph of the Delaunay triangulation.

Keil [Kei94] showed that the �-skeleton is also a subgraph of theMWT when � � p2.
Unfortunately this subgraph usually contains a lot of disconnected components.

Kyoda [Kyo96] combined branch and cut to the �-skeleton and was able to compute

the MWT of 100 points.

Work has been done to �nd a smaller � to allow more edges in the subgraph. Cheng

and Xu [CX96] showed that the �-skeleton is still a subgraph of the MWT for � �
1:17682. The �-skeleton remains disconnected for this value of �. There is little room

for improvement of � since Keil [Kei94] also found a four point example such that the



Chapter 2. History 6

a

b

Figure 2.1: An edge of the �-skeleton with the two empty circles of radius �

2
jabj.

the �-skeleton is not a subgraph of the MWT for � < 1= sin(�=3) < 1:154701.

Recently, Keil [Kei94] and Dickerson [DM96] independently described the LMT-

skeleton, a new subgraph of the MWT. Inspired by Keil, Snoeyink implemented the

LMT-skeleton heuristic as described in Chapter 5. For uniformly distributed sets of up

to 1000 points this implementation produced a connected subgraph of the MWT in less

than half an hour. This implementation which stored all information on edges required

at most O(n4) time and O(n2) space to compute the LMT-skeleton.

Dickerson [DM96] also implemented the heuristic. His implementation, described in

Section 3.3, requires O(n6) time and O(n3) space to compute the LMT-skeleton. Cheng

and Katoh [CK96] improved the time and space complexity of Dickerson's implementation

by weakening the test.

Independently of our work, Hainz, Aichholzer, and Aurenhammer [HAA97] incorpo-

rated local tests and bucketing techniques to compute the LMT-skeleton in linear time
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and space for uniformly distributed points. However, their implementation is based on

Dickerson's and still has the same worst case complexity of O(n6) time and O(n3) space.

For uniformly distributed points, their implementation computes the LMT-skeleton of

5000 points in 20 minutes.

This thesis will describe a fast implementation of the heuristic for computing the min-

imum weight triangulation of a point set. It adds to Snoeyink's implementation of the

LMT-skeleton heuristic a bucketing technique which allows it to run in expected linear

time and space over uniformly distributed point sets. In the worst case this implemen-

tation will run in O(n4) time and O(n2) space.



Chapter 3

Properties of Minimum Weight Triangulation Edges

This chapter describes the basic underlying principles used by our algorithm to compute

the minimum weight triangulation. We �rst describe the heuristic that constructs a

subset of the MWT. We then describe a property shared by all MWT edges that is used

before the heuristic to remove edges that cannot be in an MWT, reducing the time that

the heuristic requires.

3.1 Local Minimality

Let e be an edge in a triangulation T (S) that is not an edge of the convex hull of S.

Then e is the base edge of two triangles that form a quadrilateral Q. If Q is convex then

Q has another diagonal d that crosses e.

De�nition 3.1.1 The edge e is locally minimal if e is on the convex hull of S, if the

adjacent quadrilateral Q is not convex, or if weight(e) � weight(d), where d is the

crossing diagonal.

De�nition 3.1.2 When e is locally minimal, the pair of triangles forming Q is called

the certi�cate of e.

Figure 3.2 gives two examples of certi�cates for an edge e. On the left, e has a

certi�cate because the empty quadrilateral is not convex. On the right, e has a certi�cate

because it is the shortest diagonal of the empty quadrilateral.

8
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e

e

d

j e j<j d j

Figure 3.2: Two certi�cates for the edge e. The empty quadrilateral is not convex, left.

The edge e is the shortest diagonal of the convex empty quadrilateral, right.

If the edge e is not locally minimal then we can decrease the weight of the triangulation

by 
ipping e: removing e from T (S) and replacing it by d.

De�nition 3.1.3 A triangulation T (S) is a locally minimal triangulation (LMT) if all

edges in T (S) are locally minimal.

The minimum weight triangulation of a point set is a locally minimal triangulation.

3.2 The LMT heuristic

As suggested independently by Keil [Kei94] and Dickerson [DM96] one can use local

minimality to generate a subgraph of the MWT. The algorithm they proposed is based

on the observation that edges in all locally minimal triangulations are in the minimum

weight triangulation and edges that are not in any locally minimal triangulation are not

in the minimum weight triangulation.

De�nition 3.2.1 The LMT-skeleton is the set of edges that are in all locally minimal

triangulations.
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Given a point set S, the heuristic classi�es all edges joining each pair of points in

S into three categories. All edges are initially said to be possible, which means they

are possibly in MWT(S). The heuristic then considers each possible edge e and makes e

impossible if e has no certi�cate. Similarly the edge e is made certain if e is in all LMT's

which can be determined if e is on the convex hull of S or e has a certi�cate and no

possible or certain edge crosses it.

All resulting certain edges form the LMT � skeleton of S. If the LMT � skeleton is

complete, this subgraph is the MWT(S), except for some non-triangulated empty holes.

These holes are polygons empty of all points and can be triangulated using the dynamic

programing algorithm for the MWT of polygons to obtain the exact MWT(S).

3.3 Dickerson's View

The algorithm described by Dickerson [DM96] di�ers from the one described here and in

[BKMS96] mainly in two points. Dickerson not only stores all edges in P but also the

set of all possible triangles, candTris, which initially contains all empty triangles in P .

When checking for certi�cates for every possible edge e, the algorithm looks for a

certi�cate of e in all the pairs of triangles in candTris that border e. If no certi�cate of e

is found, e is made impossible and all triangles containing e are removed from candTris

(see algorithm in 3.3).

For a general set of n points, P , there are O(n3) empty triangles and O(n2) empty

edges. The time taken to list all empty triangles in P (Step 1) is O(n3). Listing all

empty edges (Step 2) takes O(n2) time. Step 4 can be done in O(n log n) time. There

are O(n2) pairs of triangles to consider around each edge e which, for all O(n2) possible

edges, would take O(n4) time. As for the space required, we need to store all O(n3)

empty triangles. The complexity of the algorithm is therefore O(n3) in space and O(n4)
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1. candTris := A list of all empty triangles in P .

2. possibleEdges := A list of all empty edges in P .

3. certainEdges := A new empty list.

4. Remove convex hull edges from the possibleEdges list

and add them to the certainEdges list.

5. For each edge e 2 possibleEdges

(a)If there does not exist a pair of triangles left

and right of e, ti and tj, such that e

is locally minimal with respect to ti and tj,

then remove e from possibleEdges and remove

all triangles containing e from candTris.

(b)If e intersects no other edge in possibleEdges

or certainEdges, then add e to the certainEdges

Figure 3.3: Dickerson's partial LMT-skeleton algorithm
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in time.

Furthermore, since edges that are eliminated can be part of the certi�cate of previously

checked edge, more edges might become impossible if Step 5 is run over again. In that

sense the algorithm �nds a partial LMT-skeleton. Dickerson suggests to �nd the LMT-

skeleton, by repeating this step until no edges change status. This could be repeated at

most O(n2) times which brings to O(n6) the time complexity of computing the LMT-

skeleton.

Dickerson's implementation triangulated a uniform random distribution of 250 points

in about 12 hours on a Power Macintosh 8500/120, where the space for storing the

possible triangles is the bottleneck.

3.4 The Diamond Property

In order to minimize the time and space the heuristic requires to construct the LMT-

skeleton of a point set, we use the diamond property to eliminate edges before applying

the heuristic.

Das and Joseph [DJ89] argued that all edges in an MWT have the following diamond

property.

Theorem 3.4.1 [DJ89] If an edge ab is inMWT(S) then at least one of the two isosceles

triangles with base ab and base angles �=8 contains no points of P (see �gure 3.4).

The diamond test eliminates from the initial possible edge set those edges with least

one point in each of the two triangles of the diamond. As shown in Lemma 3.4.1,

for uniformly distributed point sets, only an expected linear number of edges pass the

diamond test. On average, less than 50n directed edges pass the diamond test for such

point sets.
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�

�

�
�� = �=8

a

b

Figure 3.4: The diamond region of the line segment ab. Edge ab is not in MWT(S) if

there is a point of P in each of the isoceles triangles t1 and t2.

Suppose that we have a point set uniformly distributed in the unit square. If we

ignore the e�ect of the boundary, it is not hard to calculate the average number of edges

that pass the diamond test.

Lemma 3.4.1 Around one �xed point, the expected number of edges that pass the

complete diamond test in a uniformly distributed point set is less than 50.

Proof Fix one point p0 as the origin and number the remaining points by increasing

distance from p0. Let d be the distance from p0 to pi+1.

Consider the probability that point pi+1 passes the diamond test. The i previous points,

p1, . . . , pi, are distributed uniformly at random in the circle of radius d that is centered

at p0. Thus, they fall into a triangle of the diamond with probability q = sin(�=8)=4� <

0:03. The probability that a given triangles is empty is (1 � q)i; that one of the two is

empty is 2(1� q)i� (1� 2q)i, where subtracting the second term avoids double-counting

diamonds that are empty.

The expected number of points that pass the diamond test with a given origin, is thus

X
0�i�n

2(1� q)i � (1� 2q)i = 2
1 � (1� q)i

q
� 1� (1� 2q)i

2q
<

3

2q
< 50

2
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By �rst eliminating points that fail the diamond test the LMT-skeleton heuristic

would only need to consider the expected O(n) edges that passed instead of all O(n2)

edges in the complete graph of S. This would dramatically improve the time and space

required by the heuristic.

A straightforward implementation of the diamond test could consider each edge in-

dividually and simply check all points against the two triangles. This would take �(n3)

time. In chapters 6 and 7 we give methods that are faster|in chapter 6 by weakening

the property to allow a more e�cient test, and in chapter 7 by bucketing under the

assumption that few edges pass the diamond test, as occurs in practice.



Chapter 4

Basic Data Structure and Algorithms

The following sections present the data structure and basic procedures used by the LMT-

skeleton heuristic. The implementation of the main algorithm will be described in terms

of these procedures.

4.1 The Edge Data Structure

The bottleneck of the algorithm described by Dickerson (Section 3.3) was the O(n3) space

required to store all empty triangles. Our LMT-skeleton algorithm tries to minimize

memory use by not keeping a list of empty triangles but by scanning for the empty

triangles when they are needed.

Our data structure is edge-based, storing origin and destination points of the edge,

two radially-sorted lists of edges around each endpoint, and two edge pointers i and j

used to scan for empty triangles. We actually use the directed edge structure of Figure

4.5, which we now describe more precisely.

Between every two points a and b there are two directed edges, ab and ba, where

ba = ab !rev and ab = ba !rev. The edge ab would hold a pointer to its destination

endpoint, ab!dest= b. The point a is then ab!rev!dest. Variable s stores the edge's

status: whether the edge is possible, certain or impossible.

The pointer ab!next points to the next counter-clockwise edge in the radially sorted

list of edges around a; pointer ba!next points to the next counter-clockwise edge around

b. The radially sorted lists ab!next only contains possible or certain edges; they allow

15
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Edge := f Point ptr dest
Edge ptr rev

Status s

Edge ptr next

Edge ptr i

Edge ptr j

Edge ptr dstart

Edge ptr rightPoly

Edge ptr leftPoly

Edge ptr polyWeight

g

Figure 4.5: Data structure elements for one directed edge; values described in the text

us to scan edges to �nd empty triangles that can participate in a certi�cate for ab.

When a certi�cate is found for ab, the pointers ab! i and ab! j point to the edges

of the empty triangle to the left of ab and the pointers ab! rev ! i and ab! rev ! j

point to the two edges of the other empty triangle as seen in �gure 4.6.

a

b

ab! j
ab! i

ba! i

ba! j

Figure 4.6: Pointers i and j identifying the certi�cate of ab.

The edge ab ! dstart, used in scanning for empty triangles, is the �rst edge bc

clockwise around b such that c is not left of ab and bc!next is left of ab or is ab.
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Finally, rightPoly, leftPoly and polyWeight are used to triangulate the polygonal holes

remaining in the LMT-skeleton and will be described in Section 4.3.

4.2 Scanning for Empty Triangles

The procedure advance in �gure 4.7 is the elementary operation used in scanning for

empty triangles. Given two edges ab! i and ab! j, advance �nds the next pair of edges

i and j forming an empty triangle with ab such that i! dest = j ! dest is left of ab. The

algorithm of advance, which scans through the radially-sorted lists to �nd the next empty

triangle, is described in Figure 4.7. Before the �rst time advance is called on the edge

ab, ab is reset: ab! i and ab! j are initialized to ab! next and ab! dstart. Advance

has found the next empty triangle 4abc when c = ab! i!dest= ba! j !dest.

procedure advance(segment ab)

repeat

while ab! i! dest is not left of ab! j

ab! i := ab! i!next

while ab! j ! dest is right of ab! i

ab! j := ab! j ! next

until ab! i! dest= ab! j !dest

Figure 4.7: The advance procedure

To scan through the list of empty triangles left of ab, call advance(ab) until the

destination vertex of ab ! j is a. Both the LMT-skeleton heuristic and the polygon

MWT algorithm of the next section use this scanning.
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4.3 Minimum Weight Triangulation of Polygons: a Dynamic Programming

Algorithm

Let P be a simple polygon with n vertices labelled v0, v1, . . . , vn�1. All further use of

vertex indices will be implicitly modulo n. The segment vivj is an edge of P whenever

ji� jj = 1, otherwise the segment vivj is a diagonal of P .

A simpli�ed variant of the minimum weight triangulation problem is to �nd a mini-

mum weight triangulation of a polygon P , MWT(P). That is, �nd a set of diagonals and

edges of P such that the sum of the weights of the diagonals and edges is minimum.

As shown in [Kli80] and described in this section, there exists a dynamic programming

algorithm to solve this problem.

The algorithm presented in this section will solve the following problem. Given a

polygon P and a subset of possible diagonals D such that MWT (P ) � D [ P �nd a

set of diagonals in D that triangulate P minimally. Figure 4.8 shows an example of a

polygon with diagonals and its minimum weight triangulation.

Figure 4.8: Example of a polygon and its minimum weight triangulation.

The principle of dynamic programming is to solve a problem bottom up, solving all

the smaller sub-problems �rst and then building larger sub-problems with the solutions
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of smaller ones until the solution of the whole problem is found. The following de�nition

describes the sub-problems used in the algorithm.

De�nition 4.3.1 If the line segment vivj is a diagonal of P then there are two subsets

of P [ fvivjg that form polygons. The sub-polygon �ij is the polygon such that vj and vi

are in counter-clockwise order of vertices. The diagonals of �ij is the set of diagonals in

D that have both endpoints on �ij.

The dynamic programming algorithm constructs the MWT of a sub-polygon using

the MWT of smaller sub-polygons. The following two lemmas present its basic principle.

Lemma 4.3.1 Let vivj be a diagonal or edge of a polygon P , if j�i = 1 thenMWT (�ij) =

fvivkg. Otherwise if j � i > 1 then MWT (�ij) = fvivjg [MWT (�ik) [MWT (�kj) for

k satisfying mini<k<j(w(MWT (�ik)) + w(MWT (�kj))) and such that vivk and vkvj are

edges or diagonals of �ij.

Proof For all k such that vivk and vkvj are in D[P the weight of the triangulation of �ij

is w(T (�ik))+w(T (�kj))+w(vivj). For this sum to be minimal w(T (�ik)) and w(T (�kj))

must be minimal. MWT (�ij) is therefore the triangulation such that w(MWT (�ik)) +

w(MWT (�kj)) + w(vivj) is minimal for all k such that vivk and vkvj are in P [D. 2

Lemma 4.3.2 The minimum weight triangulation of the polygon P , MWT (P ) = �ij

for all i = j + 1.

Proof The line segment vivj is an edge of P when i = j+1 such that �ij = P . Therefore

�ij is the minimum weight triangulation of P . 2
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4.3.1 Algorithmic Details for Dynamic Programming

The algorithm uses the data structure described in Section 4.1 to store polygon diagonals

and edges. If vivj is a diagonal, then the �eld vivj !polyWeight stores the weight of

minimum weight triangulation of �ij. The two pointers vivj ! leftPoly and vivj !
rightPoly hold the edges vivk and vkvj in MWT (�ij).

As mentioned in Section 4.2, the procedure scan uses advance to visit all empty

triangles to the left of vivj. The code in Figure 4.9 also checks empty triangles to �nd

the one that can be in MWT (�ij). Scan is applied on every edge and diagonal, starting

with those with endpoint indices j � i = 2 and continuing incrementally with edges that

satisfy j� i = 3; 4; : : : ; n� 2. Scan is �nally applied on one edge such that j � i = n� 1.

The pointers rightSubTri and leftSubTri of this last edge then form a binary tree that

holds all the edges of an MWT (P ).

procedure scan(vivj)

a := vivj !next

b := vivj !dstart

weight :=1

while a!dest is left of vivj
advance(vivj)

if w(MWT (�a)) + w(MWT (�b)) + w(vivj) < weight then

weight := w(MWT (�a)) + w(MWT (�b)) + w(vivj)

rightSubTri := b

leftSubTri := a

Figure 4.9: The scan procedure for the MWT of polygons
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v5

v4

v6

v7

v8

v9

Figure 4.10: The minimum weight triangulation of a sub-polygon.

4.3.2 Complexity Analysis

Lemma 4.3.3 The time required by the scan procedure applied on an edge vivj is O(d)

where d is the maximum degree of the vertices vi and vj.

Proof Scan visits each edge of the two radially sorted lists at most once. Sideness tests

are done in constant time. With at most d segments in each list, scanning edge vivj takes

at most O(d) time. 2

Lemma 4.3.4 The time required to compute the minimum weight triangulation of a

polygon P is O(dm) where m = jD [ P j is the number of diagonals in D and edges in

P , and d is the maximum degree of vertices of P .

Proof Scan is applied once for each edge or diagonal. From Lemma 4.3.3 each scan

takes at most O(d) time. For m edges and diagonals, the MWT (P ) algorithm therefore

completes in O(md) time. 2
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4.3.3 The Sum of Square Roots Problem

In presenting this dynamic programming algorithm, we have implicitly assumed that one

can evaluate sums of radicals. Speci�cally, consider the sum

S =
kX

i=1

ci
p
qi

where ci and qi 2 R. Determining if S is less, equal or greater than zero is commonly

known as the sum of square roots problem. No polynomial time algorithm is known

to solve this problem [Bl�o91] for machine models that are not given square roots as a

primitive operation.

When the dynamic programming algorithm selects which triangulation of sub-polygon

�ij has minimum weight, it needs to decide if

w(T (�ik)) + w(T (�kj)) > w(T (�il)) + w(T (�lj))

to know that it should use vertex pk rather than pl. The weight of each triangulation is

a sum of square roots since the weight of each edge is the Euclidean distance between

its endpoints. Thus, evaluating this inequality is equivalent to determining if a sum of

square roots is positive.

The sum of square roots problem is common in geometric optimization problems that

involve computing Euclidean lengths. In the the rest of this thesis we assume that the

dynamic programming algorithm can use square roots as a primitive and, thus, compute

the exactMWT. It is notable that the heuristic does not involve comparing sums of square

roots, but works with at most two radicals at a time. This allows it to be implemented

exactly, even in �xed precision models of computation.
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The LMT-skeleton Algorithm

Our implementation of the LMT-skeleton heuristic presented in Section 3.2 does not

store the O(n3) empty triangles, as does the algorithm described by Dickerson [DM96].

Instead, all information is stored around the edge data structure presented in the previous

chapter. Furthermore, the algorithm does not need to be repeated until no further

edges are eliminated. For sets of tens of thousands of uniformly distributed points, the

algorithm computes a connected graph that can be completed with the polygon MWT

dynamic programming algorithm.

This chapter will describe the di�erent parts of the LMT-skeleton algorithm before

presenting the main algorithm.

5.1 Initializing the Data Structure

The algorithm must �rst create edges between each pair of points. The three main

components to initialize in the edge data structure are the radially-sorted lists of possible

edges around each point, the pointers to the reverse edges ab! rev and the dstart pointers

used for checking certi�cates.

Given a point set S the list around a point o contains initially the edges between all

points in Snfog and o. These edges are inserted in the list and then sorted radially in

counter-clockwise order.

Lemma 5.1.1 Given the set of n points S and the set of m edges E, all radially-sorted

lists can be initialized in O(nd log d) time where d is the maximum degree of the graph.

23
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Proof Since the maximum degree of the resulting graph is d there are at most d edges

in each list. Around each point, the time taken for insertion is therefore O(d). Each list

of at most d edges can be sorted in O(d log d) time. To sort all n lists therefore takes

O(nd log d) time. 2

To initialize the reverse pointer of an edge ab, ab! rev, the algorithm checks if the

edge list around the point b has been created. If so, it looks through this list for the

reverse edge ba and sets both pointers ab ! rev and ba ! rev. If the list around b has

not yet been initialized nothing is done: ab! rev will be initialized later when edge ba

is initialized.

Lemma 5.1.2 Given the set of n points S and the set of m edges E, intitializing all

reverse pointers takes at most O(m log d) time where d is the maximum degree of the

resulting graph.

Proof Given edge ab, to �nd edge ba the program needs to search through the radially-

sorted list of edges around b. Each of these searches takes O(log d) using binary search.

This search is done for half of all the m edges therefore requiring at most O(m log d)

time. 2

The ab! dstart pointer is initialized to the last edge around b such that ab! dstart! dest

is not left of ab. To �nd the edge ab ! dstart the algorithm scans through the list of

edges around b starting with ba until it �nds an edge with endpoint left of ab.

Lemma 5.1.3 Given the graph G that contains m edges, initializing all dstart pointers

takes at most O(m) time.

Proof Once the rev pointers are established, one can assign dstart pointers by scanning

the list of edges around every vertex with two pointers that are maintained at 180�.

These scans look at every edge at most twice on each end. Thus, to intialize the dstart

pointers for all m edges therefore takes at most O(m) time. 2
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Lemma 5.1.4 Given a set S of n points, initializing all edges between each pair of points

takes at most O(n3) time.

Proof There are O(n2) edges between pairs of points and there are O(n) edges in the list

around each point therefore the maximum degree d is O(n). From Lemma 5.1.1 creating

the sorted lists takes O(n2 log n) time. Initializing the reverse pointers can be done in

O(n2 log n) time from Lemma 5.1.2 while Lemma 5.1.3 shows that initializing the dstart

pointers takes at most O(n2) since the number of edges m = n2. Therefore the whole

initialization process takes at most O(n2 log n) time. 2

5.2 Checking If an Edge Has a Certi�cate

The procedure check certi�cate uses advance to �nd the next certi�cate of an edge ab.

This certi�cate is a pair of empty triangles 4abc and 4bad where c is left of ab and d

is right of ab and such that ab is the shortest edge of the quadrilateral Q formed by the

two triangles or the quadrilateral Q is not convex.

The �rst time check certi�cate is executed on edge ab, the pointers ab ! i, ab ! j,

ba! i and ba! j need to be initialized. ab! i and ab! j initially point respectively

to ab ! nextand ab ! dstart which are the �rst edges in the lists around a and b such

that their endpoint is left of ab. This operation will be called to reset ab. Similarly, ba is

reset.

As described in Figure 5.11, check certi�cate advances to the next triangle that is

left of ab until a certi�cate is found. If all the empty triangles left of ab were traversed

without �nding a certi�cate, then check certi�cate resets ab and advances ba. This is

repeated until a certi�cate is found or until all empty triangles left ba were traversed. In

this later case, all pairs of empty triangles have been tested and ab has no certi�cate.

One of the edges of the certi�cate of ab can become impossible further in the heuristic.
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procedure check certi�cate(ab)

if check certi�cate was never applied on ab

reset(ab); reset(ba); advance(ba)

while no certi�cate is found

advance(ab)

if all triangles left of ba were visited

ab has no certi�cate; break

if all triangles left of ab were visited

advance(ba); reset(ab)

else

if the quadrilateral Q formed by the two triangles is not convex

or ab is the shorter diagonal of Q

ab has a certi�cate; break

Figure 5.11: The check certi�cate procedure

If so, check certi�cate is called again and tries to �nd the next certi�cate of ab without

reseting the pointers i and j. This avoids visiting a pair of empty triangles more than

once.

Lemma 5.2.1 The time taken by check certi�cate on the edge ab is at mostO(d2), where

d is the maximum degree of points a and b.

Proof If the number of edges in the lists around a and b is smaller than or equal to d

then there are at most d triangles with edge ab. Therefore there are less than d2 di�erent

pairs of triangles. In the worst case where ab has no certi�cate all pairs of triangles are

considered thus requiring O(d2) time. 2

5.3 Checking for Crossing Edges

An edge ab is certain if it is possible and no other possible or certain edges cross it. The

procedure check crossing edges veri�es if there exists such an edge that crosses ab.
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In a general set of line segments, this is an operation that must either test every

segment against every other, or use large or complicated data structures for an e�cient

test. We can make use of the fact that the possible edges always contain a triangulation|

if ab can be omitted while still completing the triangulation, then there is a triangle

incident on a that is crossed by ab. Thus, the algorithm looks at all edges in the list

around a. Edge ab has a crossing edge if, and only if, for some edge ac in this list there

is an edge cd around c such that cd crosses ab. The procedure check crossing edges is

further described in Figure 5.12.

procedure check crossing edges(ab)

u := ab! next

while u! dest is not left of ab

v := u! rev

while b is left of v

if v crosses ab

return ab has crossing edge

v := v! next

u := u! next

return ab has no crossing edge

Figure 5.12: The check crossing edges procedure on edge ab

Lemma 5.3.1 Given a graph G with maximum degree d, the check crossing edge pro-

cedure takes at most O(d2) time for any edge in G.

Proof Since there are at most d edges around any point in the graph G each of the two

nested loops are repeated at most d times. The check crossing edges procedure therefore

takes O(d2) time. 2
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5.4 Lazy Deletion of Edges

An edge that is found to be impossible could be removed from the radially-sorted lists in

order to reduce their size and reduce the runtime of the procedures that use those lists.

However, several pointers from other edges can be directed to this edge. Therefore, when

an edge is found to be impossible, only its status s is changed. It is removed from the

list later through lazy deletion.

Whenever a procedure scans through the radially-sorted lists of edges it applies the

lazy delete to each edge. This procedure checks if the next edge ab ! next is already

marked impossible. If so, then it sets ab! next to ab! next ! next.

5.5 Restacking Edges Whose Certi�cates Became Invalid

When an edge ab is found to be impossible and is part of the certi�cate of another edge

cd, this certi�cate is no longer valid. Once a certi�cate becomes invalid, it will never

become valid again.

The procedure restack edges looks for all the edges having ab as part of their certi�cate

and pushes them onto the stack of edges that need their certi�cates checked.

Restack edges scans through all empty triangles with edge ab and stacks the edges of

triangles if their i or j pointers do point to ab or ba. The same procedure is also applied

to edge ba. Figure 5.13 describes the details of restack edges.

This procedure allows the algorithm to compute what Dickerson calls the extended

LMT-skeleton without repeating the whole algorithm O(n2) times. Pointers i and j not

only facilitate �nding the edges whose certi�cates are no longer valid, but also let check

certi�cate resume from the last certi�cate.

Lemma 5.5.1 Given an edge ab, the procedure restack edges takes at most O(d) time

where d is the maximum degree of the points a and b.
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procedure restack edges(ab)

reset(ab)

for all empty triangles left of ab

advance(ab)

if ab! i! rev ! j = ab

push ab! i

if ab! j ! i = ab! rev

push ab! j

Figure 5.13: The restack edges procedure on edge ab

Proof As in Lemma 5.2.1 the number of empty triangles with edges ab is at most O(d).

Restack edges scans only once through these triangles, thus taking at most O(d) time.

2

5.6 The LMT-skeleton Algorithm

The tools needed to construct the LMT-skeleton were described in the previous sections.

This section describes the main algorithm in terms of the procedures de�ned previously

while Figure 5.14 sums up the main steps.

The algorithm �rst initializes the edge data structures as described in Section 5.1.

Then all edges are pushed on the stack of edges that need to be checked for certi�cates.

The stack is sorted so that check certi�cate is applied to the longest edges �rst since they

are more likely to have no certi�cates.

Each edge ab of the stack is then popped and the procedure check certi�cate attempts

to �nd a certi�cate for ab. If no certi�cate is found ab is either a convex hull edge or

is impossible. So check crossing edges is applied to �nd a possible edge that crosses ab.

If no crossing edge is found then ab is a convex hull edge and its status is changed to

certain. Otherwise the status is set to impossible. In this case ab can be part of the
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certi�cate of another edge. The procedure restack edges is therefore applied to �nd all

the edges whose certi�cates have become invalid. Those edges are pushed back on the

stack.

Initialize data structures

Push all edges onto the stack ST

Sort ST so that longest edges are on top

while ST is not empty

e := pop ST

check certi�cate of e

if e has no certi�cate

check crossing edges

if e has no crossing edge

e! s := certain

else

e! s := impossible

restack edges

Figure 5.14: The LMT-skeleton algorithm

When the stack is empty the algorithm then considers all remaining possible edges.

These edges have certi�cates and check crossing segments is applied on each. If an edge

is possible and has no crossing edges then it is marked certain. Otherwise the heuristic

can not determine if it is in the minimum weight triangulation. The LMT-skeleton is

then the set of all certain edges.

The sets of edges that remain possible can be isolated in polygonal regions. If these

regions are simply connected, then the minimum weight triangulation can be completed

by the algorithm described in Section 4.3.
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5.7 Complexity Analysis

The LMT-skeleton heuristic starts with the O(n2) edges joining all pairs of points in the

set S of size n. The degree of each point in the initial graph is n� 1.

Lemma 5.7.1 The algorithm described in this section takes at most O(n4) time to

calculate the LMT-skeleton of n points.

Proof From Lemma 5.1.4 initializing the data structures takes O(n3) time. The pro-

cedure check certi�cate is the most expensive to compute. For each edge this operation

takes at most O(n2) time; therefore O(n4) time is su�cient for the O(n2) edges. 2

Lemma 5.7.2 The algorithm described in this section takes O(n2) space to compute

the LMT-skeleton of n points.

Proof The algorithm can easily store the O(n2) edges and O(n) points in O(n2) space.

2

5.8 Experimental Results

The algorithm was implemented in cweb and run on an SGI Indy [BKMS96]. To correctly

perform all arithmetic operations in 53-bit double precision, the input points were scaled

to 20 bit positive integers. Degeneracies, as colinearities and equal lengths were handled.

Trials showed that for sets of uniformly distributed random points, the algorithm

computes the complete MWT. For 250 and 1000 points, the algorithm completed in,

respectively 25 seconds and half an hour. The observed time was proportional to n3 log n.

The bottleneck is de�nitely the �(n2) space required.
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The Diamond Test Algorithm

In Section 3.4 we presented the diamond property, a local property that can identify edges

that are not in an MWT. In this and the next chapter we present two algorithms that

eliminate the edges that don't satisfy the diamond property. This pretest is run before

the LMT-skeleton heuristic is applied to reduce the running time and space required by

the heuristic.

The diamond test veri�es if an edge possesses the diamond property. This chapter

describes an e�cient way of eliminating edges that fail the diamond test. The diamond

test is applied to the edges while initializing edges, before applying the LMT-skeleton

heuristic.

6.1 Applying the Diamond Test

When initializing the edge data structures, quick sort is used to sort edges in counter-

clockwise order in the circular edge lists. The sorting algorithm also applies the diamond

test on the edges being sorted. At each partitioning step quick sort chooses a pivot p.

It then scans through the list of edges to �nd the �rst one that must be clockwise of p.

While scanning edges, the diamond test is applied to each edge traversed with respect to

p. In other words, for each edge e traversed the algorithm checks if the endpoint of p lies

within one of the two isosceles triangles of e. If so, e is marked accordingly. If at another

partitioning step the endpoint of the pivot lies in the other isosceles triangle, the edge is

removed from the list. Symmetrically, quick sort scans clockwise for the �rst edge that

32
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must be counter-clockwise of p and marks edges when the endpoint of p lies in one of

their diamond triangles.

The pivot is always chosen as the shortest edge in the partition, which enables the

pivot to kill the most edges. In random point sets it also reduces the chance that the

worst case behavior of quick sort occurs since the position of the pivot in the radially

sorted list is independent of the length of the edge.

The diamond test as applied by quick sort is weaker than the test proposed by Das and

Joseph [DJ89]. Because an edge in a partition is tested only against the pivot endpoint,

edges are not tested for the diamond property with regard to all points. In particular,

endpoints of edges that are killed at one partitioning step are never used to kill other

edges.

One can apply a complete diamond test by removing killed edges only after the list is

sorted and by testing all edges against each pivot. With this approach, however, sorting

takes longer and the diamond test takes cubic time in the average case; we found it better

to speed up the test at the expense of letting a few more edges pass.

6.2 Complexity analysis

Performing the diamond test doesn't change the O(n4) worst-case complexity of the

algorithm. In a typical case, however, it eliminates a signi�cant number of edges. In

fact, for uniformly distributed random point sets, we observed that only O(n) edges

passed the diamond test. After the test, the average degree of each point was indeed

bounded by 50, even with the weaker test.

Lemma 6.2.1 Given the set of n points S, let the graph G over S contain all edges

that pass the diamond test. Initializing data structures takes at most O(n2 log d) time,

or O(nd log d) time after sorting edges radially, where d is the maximum degree of G.
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Proof Around each vertex, the n edges can be sorted by a combination of quicksort and

the diamond test in O(n log d) time. (To make this true in the worst case, one should

use medians to choose pivots in every other step.)

The algorithm initializes the rev and dstart pointers only after the edge lists are sorted

and the diamond test applied. Initializing rev pointers takes O(nd log d) total time by

Lemma 5.1.2; initializing dstart pointers takes O(nd) time by Lemma 5.1.3.

The overall time taken for initialization is therefore O(n2 log d+ nd log d). 2

Lemma 6.2.2 Given the initialized data structure, the LMT-skeleton algorithm takes

at most O(d3n) time where d is the maximum degree of the initial graph and n is the

number of points.

Proof For each edge the procedures check certi�cate and check crossing edges are the

most expensive, requiring at most O(d2) time. For all O(nd) edges the LMT-skeleton

heuristic therefore takes at most O(d3n) time to complete. 2

Note that to achieve the O(d3n) time bound the algorithm has to omit sorting the

edges in order of length before checking for certi�cates. However in practice it is more

e�cient to sort edges.

Lemma 6.2.3 If the maximum degree d of the graph obtained after the diamond test

is applied is constant then computing the LMT-skeleton heuristic takes at most O(n2).

Proof From Lemma 6.2.1, if d is constant then the time required for initialization is

O(n2). From Lemma 6.2.2 the rest of the heuristic can be computed in worst case linear

time. The overall heuristic therefore takes O(n2) time. 2

If the graph containing all edges that passed the diamond test has constant degree

and therefore the number of edges that pass the diamond test is linear then the rest of

the algorithm can be computed in linear time. The bottleneck becomes the time to sort

edges around points and apply the diamond test, which takes O(n2 log d) time.
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6.3 Experimental Results

The algorithm was implemented in cweb and run on an SGI XZ with a 200 MHz IP22

processor. The algorithm was run on several sets of uniformly distributed random points

ranging from 100 to 40000 points.

For such point sets the degree of the points of the graph obtained after applying the

diamond test is constant. For n points, about 45n directed edges do pass the diamond

test.

For every point set a complete graph was obtained, that means the algorithm was

able to compute MWT(S) by triangulating the unresolved polygonal holes. Table 6.1

and Figures 6.15 and 6.3 give a summary of the times observed as well as the number

of edges that passed the diamond test, while Figure 6.17 illustrates the exact MWT of a

random uniformly distributed point set.

# edges pass avg degree time

n diamond test after test in secs

100 1511 30.21 0.18

200 3711 37.11 0.60

400 8088 40.44 2.58

800 12227 42.43 4.14

1000 21386 42.77 7.32

2000 44846 44.85 11.46

4000 92974 46.49 44.64

6000 141290 47.10 390.48

8000 189438 47.36 721.38

10000 238079 47.62 1283.94

12000 285956 47.66 2210.94

16000 383538 47.94 4818.90

20000 483174 48.32 8242.50

30000 729612 48.64 20018.76

40000 973547 48.68 36998.64

Table 6.1: Statistics observed while running the MWT algorithm with diamond test on

uniformly distributed point sets.
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Figure 6.15: Time required to compute the MWT with the diamond test
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Figure 6.16: Time per point required to compute the MWT with the diamond test
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Figure 6.17: The exact minimum weight triangulation of 2000 uniformly distributed

random points.



Chapter 7

Eliminating Edges by Buckets

The diamond test de�ned in previous chapter is faster than the straightforward algorithm

that tests all diamond, but it still must look at every edge. Bucketing techniques, which

have been successfully applied in greedy triangulations [DDMW94] [DRA95] can be used

to throw out clusters of edges at a time. In this chapter we report on our application

of bucketing to radially sort only those edges that pass the diamond test around each

vertex.

Using this method, our experiments showed that for uniformly-distributed points the

edge initialization step is computed in linear time and therefore the overall observed time

and space required to compute the LMT-skeleton is linear.

7.1 Using the Diamond Property to Discard Regions

To eliminate sets of edges the algorithm uses the diamond property described in Sec-

tion 3.4.

Given three points o, a and b with angle 6 aob less than �=4, there is a dead sector S

consisting of all the points p such that op fails the diamond test by having a and b in the

isosceles triangles to the left and right of op.

De�ne left sector LS to be the region consisting of all points p such that a is in the

isosceles triangle left of op as illustrated in Figure 7.18. LS is bounded by the ray*oa, the

same ray rotated �=8 clockwise, and is outside the circle centered at c such that 4odc

is isosceles with base oa and c, to the right of oa, forms 6 oca of �=4. For all points t

39
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outside this circle, angle 6 ota is less than �=8.

RS

o

t

b

�=8

�=8

LS

o

ta

c

�=8

�=8

Figure 7.18: The sectors LS and RS

De�ne right sector RS symmetrically to be the region for which b is in the right

triangle. Then the dead sector is the intersection S = LS \ RS. Figure 7.19 illustrates

two examples of dead sectors.

7.2 De�nitions

The goal of the algorithm is to eliminate sets of edges at a time. In order to do so, points

are stored into buckets: cells of a homogeneous square grid covering the plane. The size

of the buckets is set to satisfy the speci�ed average number of points in each bucket. In

a grid B of size m� n, individual buckets are denoted bi;j for 1 � i � m and 1 � j � n.
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Figure 7.19: Sectors de�ned by two line segments

A layer of buckets of level l around a bucket bi;j is the set of buckets that can be

reached by crossing exactly l horizontal grid lines or exactly l vertical grid lines. In other

words it is the set

fbi+l;k : j � l � k � j + lg [ fbi�l;k : j � l � k � j + lg [

fbk;j+l : i� l � k � i+ lg [ fbk;j�l : i� l � k � i+ lg:

A layer row is the set of buckets de�ned by one of the terms of the previous union.

Buckets in a layer form a square con�guration. A layer row is the set of buckets along

one side of the square con�guration.

A layer line is the inside edge of a layer row.

The origin point refers to the point around which the algorithm is constructing a

radially-sorted edge list. The origin bucket contains the origin point.

A point, bucket, layer row, or layer is dead if it lies completely inside dead sectors,

otherwise it is alive.
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7.3 The Bucketing Algorithm

The main idea of the algorithm is to construct the radially-sorted list of edges around

an origin point o by considering edges from shortest to longest. A list of dead sectors is

maintained until the dead sectors cover the whole 2� range as illustrated in Figure 7.20.

Only edges op such that p lies in the central alive region need to be considered.

Figure 7.20: Dead sectors covering the 2� range

To construct the list of edges around an origin point o the algorithm starts by con-

sidering all points p in the origin bucket. Each segment op is inserted in the list if it

passes the diamond test with regards to the endpoints of the two neighbouring edges.
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Dead sectors are then generated with each pair of edges in the list. Points contained in

the buckets of the next layer are similarly inserted in the list. The two previous steps

are repeated until the next layer is dead.

There are several variations on how to consider points on the next layer. Considering

all points in a layer can provide an easy implementation but is expensive when only a

few buckets in that layer are alive. The algorithm would apply the diamond test to all

edges with endpoints in that layer although some of these edges are known to fail the test

because their endpoints are contained in dead buckets. Our implementation considers

only edges with endpoints in alive buckets.

7.4 Implementation

Computing the actual dead sectors would be ine�cient because it would require com-

puting expensive trigonometric functions. Furthermore the data structure that would

hold the exact dead sectors would be quite intricate because of the complex shape of

these sectors. Instead the algorithm keeps a radially sorted list of the endpoints of edges

that passed the diamond test. At each new layer considered, the algorithm computes the

intersection of the dead sectors these points generate with the layer lines. The intersec-

tions are stored as intervals in four ordered lists, one for each layer line. Note that no

information is lost by storing intersections instead of sectors.

If there are k endpoints in the list then there are
�
k

2

�
pairs of endpoints. As described

in Figure 7.21, the program builds the lists of dead sector intersections without requiring�
k

2

�
operations. Instead, to build each of the lists, it construct two independent ordered

lists: RSlist contains the intersection of the right sectors RS with the layer line and LSlist

contains the intersection of the left sectors LS with the layer line. In Figure 7.21 RS(ab)

and LS(ab) refer to the right sector and left sector generated by the edge ab while l
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procedure makeDSlist

DSlist := empty

RSlist := empty

LSlist := empty

For each edge ab in the radially-sorted edge list

RSlist := (RS(ab) \ l)[ RSlist

LSlist := (LS(ab) \ l)[ LSlist

ab := ab!next

DSlist := RSlist \ LSlist

Figure 7.21: Creating a list of dead sectors

represents the layer line. The dead sector intersection list DSlist is constructed by taking

the intersection of the right and left sector lists.

Once DSlist is constructed, the algorithm runs through the buckets in a layer row.

Each bucket is tested against the dead sector list corresponding to the layer row. If a

bucket is alive, then the edges with endpoints in that bucket that pass the diamond test

are added to the sorted edge list. If all buckets are dead, the layer row is dead and the

algorithm does not need to consider layer rows in that direction. If all four layer rows

are dead, then all remaining buckets in the grid must also lie in dead sectors and the

list of edges around the origin point is complete. Figure 7.22 describes the algorithm to

construct the radially-sorted list of edges around a point o.

Note that this pretest may allow a few edges through that do not satisfy the diamond

property, because edges that are never inserted in the list don't participate in eliminating

other edges.
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procedure makeEdgeList(o)

For each layer (0 : : : l)

For each alive layer rows

For each alive bucket in the layer row

For each point p in the bucket

If the edge op passes the diamond test with

regards to the two neighbouring edges.

Insert the edge at the edge at the appropriate

position in the radially-sorted list.

If no buckets were alive then stop

Construct RSlist

Construct LSlist

makeDSlist

Figure 7.22: The procedure makeEdgeList(o) that constructs the radially-sorted edge list

around point o

7.5 Calculating the Dead Sectors

Consider the intersection of the sector LS de�ned earlier, generated by the left diamond

triangle and the line l tangent to the inside edge of the right layer row (Figure 7.23).

The intersection of the sector LS with the line is the line segment pq where the point p

is the intersection of the line m tangent to oa. For the sake of simplicity, in the following

equations the point o is also the origin of the Cartesian plane. The coordinate px is

known since l is vertical and py is

py =
ay

ax
px

The point q is the intersection of the lines n and l if t is left of l, otherwise it is the

intersection of the arc at with l.



Chapter 7. Eliminating Edges by Buckets 46

In the �rst case the intersection of n and l is

qy =
sy

sx
px;

where s is the apex of the right diamond triangle. In the second case q is the intersection

of the circle centered at c and l, where

c =
a

2
+ perp(

a

2
) cot(�=8):

Since both q and r lie on the circle

(q � c) � (q � c) = r � r;

so

q � q = 2 r � q:

In this case the larger solution of the quadratic is required

qy =
1

2

�
ax + ay cot(�=8) +

q
(�ay + ax cot(�=8))

2 � 4qx (�ax + qx � ay cot(�=8))

�
:

All other intersections can be similarly obtained without using time consuming trigono-

metric functions.

7.6 Complexity Analysis

The following analysis is based on the number of edges k and the number of buckets b

that are considered to construct a radially sorted edge list. We show that if both values

are constant the algorithm presented here constructs the LMT-skeleton in linear time.

Lemma 7.6.1 Constructing a dead sector list generated by the list of k radially sorted

edges takes O(k) time.
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Figure 7.23: Two cases for the intersection between the sector LS and the line l
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Proof The ordered list of intersections RSlist and LSlist can be constructed O(k) time

by a simple scan of the radially-sorted edge list. The intersection of the two lists can be

done in O(k) time since there are most k intervals in each list. 2

Lemma 7.6.2 The time taken to construct the radially-sorted list of edges L around a

point o is O(b k + k2) where b and k are the number buckets and edges considered to

build the list.

Proof If there are l layers considered the algorithm needs to reconstruct the lists of

dead sectors at most l times. From Lemma 7.6.1 the time taken to compute each list is

O(k). Constructing the l lists can therefore be done within O(b k) time. Furthermore,

at most k edges are added into the sorted edge list requiring at most O(k2) time. 2

Lemma 7.6.3 If the maximumnumber of edges k and the maximum number of buckets

b considered to construct a radially-sorted edge list are constant then the LMT-skeleton

heuristic can be computed in linear time.

Proof If b and k are constant, Lemma 7.6.2 implies that each edge list can be con-

structed in constant time. Constructing the n lists can then be done in linear time. By

Lemma 6.2.2, the rest of the heuristic can also be computed in linear time. 2

Note that for uniformly distributed point sets there is a constant number of points

in each bucket. For such point sets, values k and b are therefore interchangeable in the

previous lemmas.

7.7 Optimizations and Experimental Results

The buckets on the �rst few layers are usually alive. The algorithm considers all buckets

on the �rst two layers saving the time of constructing the dead sector lists and checking
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which buckets are alive. Furthermore, the algorithm sets the size of the buckets so that

an average of �ve points lie in each bucket.

We ran our C++ implementation on a SGI with 200MHz IP22 processor on uniformly

distributed point sets of 500 to 40 000 points. As we had hoped, only a constant number

of layers and buckets are visited around each point. The time saved by not sorting all

n � 1 edges for each point was re
ected in the observed linear behavior of the overall

algorithm.

A signi�cant improvement in the run time was observed in our implementation of the

algorithm. For uniformly distributed point sets, the exact minimumweight triangulation

of 40 000 points was found in less than 5 minutes. Statistics of our implementation can

be found in Table 7.2 and Figures 7.24 and 7.25. Figure 7.26 compares the performances

of the heuristic using the diamond test and the one using bucketing.
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total edges per average avg bkts avg layers time

n buckets point passing degree visited visited (10�2 secs)

100 16 17.05 34.10 13.34 6.00 0.20

200 36 18.80 37.59 18.81 8.96 0.30

400 64 21.19 42.37 21.10 10.30 0.31

600 100 22.24 44.47 23.19 11.29 0.36

800 144 22.63 45.28 25.33 12.23 0.39

1 000 196 22.78 45.55 27.31 13.02 0.41

2 000 400 23.77 47.53 30.11 14.17 0.53

4 000 784 24.62 49.24 31.31 14.73 0.53

6 000 1 156 24.99 50.00 31.63 14.93 0.56

8 000 1 600 25.20 50.39 32.90 15.38 0.57

10 000 1 936 25.41 50.83 32.62 15.32 0.60

12 000 2 304 25.53 51.07 32.72 15.34 0.63

16 000 3 136 25.73 51.47 33.41 15.62 0.66

20 000 3 969 25.69 51.39 33.74 15.72 0.69

25 000 4 900 25.70 51.40 33.69 15.76 0.71

30 000 5 929 25.70 51.39 34.00 15.88 0.74

35 000 6 889 25.76 51.54 34.10 15.92 0.73

40 000 7 921 25.78 51.56 34.25 15.97 0.73

Table 7.2: Statistics observed while running the MWT algorithm with bucketing on

uniformly distributed point sets.
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Figure 7.24: Time required to compute the MWT with bucketing
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Figure 7.25: Time per point required to compute the MWT with bucketing
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Figure 7.26: Time required by LMT-skeleton heuristic: diamond test versus bucketing.
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E�ectiveness and Future Directions

The LMT-skeleton is the set of edges that are in all locally minimal triangulations. If

a point set has more than one locally minimal triangulation then there are some edges

that will remain possible after the LMT-skeleton heuristic is applied. In most cases the

LMT-skeleton is a connected graph. In this case, edges that remain possible are isolated

in polygons and the MWT can be completed with the dynamic programming algorithm

described in Section 4.3.

However some structures that admit more than one locally minimal triangulation do

generate a disconnected subgraph of the MWT. This chapter will present the di�erent

structures that block the LMT-skeleton heuristic.

8.1 The Wheel Con�guration

This section will �rst present a structure and show that it blocks the LMT-skeleton

heuristic. It then presents the work of Bose, Devroye and Evans [BDE96], which shows

that this structure can be expected to occur linearly-many times in uniformly distributed

point sets.

8.1.1 The Structure of the Wheel Con�guration

One can construct a wheel by placing a point o at the center of a circle and all other

points on the circle such that any �=3 sector contains at least three points.

Let o be the point located at the center of the circle and p0; p1; : : : ; pn�1 be the n

54
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points labelled clockwise on the circle such that each �=3 sector contains at least three

points. All further point indices will be modulo .

Lemma 8.1.1 All edges pipi+2 and opi in a wheel have certi�cates. Therefore the LMT-

skeleton of a wheel is a graph where o is disconnected from all other points.

Proof

Suppose all edges opi and pipi+2 are possible, then all these edges have certi�cates.

Consider any three consecutive points pi, pi+1, pi+2 and the point o as shown in Fig-

ure 8.27. Since any �=3 sector contains at least three points the angle 6 piopi+2 is at most

�=3. Therefore jpipi+2j � jpi+1oj. This means that the edge pipi+2 has a certi�cate con-

sisting of the two triangles 4pipi+1pi+2 and 4piopi+2. If the triangle edges are possible

then all edges pipi+2 have certi�cates.

Consider the points pi, pi+2, o and the point pj left of opi such that pj can not lie in the

same �=3 sector than pi and pi+2. Since jpjpi+2j � jopij, the edge opi has a certi�cate

consisting of the two empty triangles triangles 4opipj and 4opipi+2 if the edges of the

two triangles are possible.

Therefore all edges opi and pipi+2 have certi�cates. Since each of these edges is possible

and has at least one crossing edge, none can become certain. The point o therefore

remains disconnected from all other points pi. 2

Figure 8.28 is an example of a wheel con�guration to which the LMT-skeleton heuristic

was applied. Dotted edges are the ones that remained possible. Points do not have to

be co-circular to block the heuristic and such a structure can be expected in a uniformly

distributed point set as shown in the next section.
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pi

pi+1

pi+2

o

Figure 8.27: Certi�cate of edge pipi+2.

Figure 8.28: Example of a point set forming a wheel.
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8.1.2 The Diamond Con�guration

Given a point set S of n points, a point o is a diamond if o is the center of a circle c of

radius 1=
p
n that only contains o. Facets are the 18 regions located between the regular

18-gon in which c is inscribed (see Figure 8.29). In each facet lies exactly one point of S.

Note that the diamond as described in this section does not relate to the one de�ned in

Section 3.4 and used in the previous chapters.

Figure 8.29: The diamond con�guration.

Let p0; p1; : : : ; pn�1 be the 18 points lying in the facets in clockwise order. For the same

reasons as the wheel structure presented in the previous section all edges pipi+2 remain

possible after the LMT-skeleton heuristic is applied. Point o is therefore disconnected

from the other points.
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Bose, Devroye and Evans [BDE96] show that the probability that a diamond occurs

in a uniformly distributed point set is constant. The expected number of diamonds in

a point set exceeds one only when the set contains more than 1051 points. However

this number is high because of the constraining structure of the diamond con�guration.

Points can be placed in a looser pattern and still generate an isolated point in the center.

One can even isolate a set of edges with endpoints near the center as seen in Figure 8.30.

Figure 8.30: Example of a point set forming a wheel with several disconnected edges.

8.2 Tiling Wheels

Even if the wheel con�guration occurs in a point set it only contains a constant number

of points. Using a brute force approach �nds the MWT of each wheel in constant time.

Belleville, Keil, McAllister and Snoeyink [BKMS96] tiled the wheel con�guration to

obtain the structure in Figure 8.31 and Figure 8.32.

The tiling structure is constructed by placing the wheels at the vertices of a hexagonal

grid in such a way that the heuristic produces a graph with disconnected 18-gons as shown
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Figure 8.31: Tiling wheels in the plane along a hexagonal lattice.
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Figure 8.32: A close-up at the tiled wheels.
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if Figure 8.33. With n points one can generate as many as 2n=19 � o(n) disconnected

regions.

Figure 8.33: Tiled wheels, after applying the LMT-skeleton heuristic.

Such a structure shows that the LMT-skeleton heuristic does not provide a polynomial

time algorithm to solve the minimum weight triangulation problem.



Chapter 8. E�ectiveness and Future Directions 62

8.3 The wire

Since the minimum weight is a global property of a triangulation there is good reason to

believe that the MWT problem is NP-complete or even NP-hard. One of the ways to

prove NP-completeness of a problem is to reduce a known NP-complete problem to it.

This section presents a structure that can serve in reducing the problem of satis�ability

of a boolean expression (SAT).

To accomplish the reduction, we need point structures that act as variables, gates

and wires. Snoeyink and Drysdale used the program described in the previous section to

experiment with di�erent point sets to �nd such structures.

A wire is a set of points that admits two di�erent minimum weight triangulations.

This structure can allow a boolean value to be transmitted along its length. Requiring

that an edge e on one of the extremities of the wire be in the MWT entails that some

edge f at the other extremity of the wire be in the MWT. However, requiring that an

other edge g on the �rst extremity be in the MWT entails that some other edge h 6= f is

in the MWT. Figure 8.34 shows how a wire admits two minimum weight triangulations.

This wire can be as long as desired and can also turn.

A variable can be any structure that admits two triangulations. One can build a

variable by constructing a wire such that the two extremities connect.

No structures have been found to represent gates. Furthermore, although we do have

structures for variables and wires we do not know any way to link them together.
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Figure 8.34: Minimum weight triangulations of two closely-related wires
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Conclusion

We presented an e�cient implementation of the LMT-skeleton heuristic and seen that it

usually produces a complete subgraph of the minimumweight triangulation for uniformly

distributed point sets. If the graph is complete we compute the exact MWT by applying

the polygon MWT dynamic programming algorithm to the remaining non-triangulated

polygonal holes.

The algorithm was implemented in C++ and run on an SGI with 200MHz IP22

processor. For uniformly distributed point sets of tens of thousands of points our ex-

periments show that the algorithm computes the exact minimum weight triangulation

in linear time and space. The MWT for uniformly distributed sets of 40,000 points are

computed in less than 5 minutes.

Using this fast implementation allows us to experiment with �nding point sets such

as wheels, for which the heuristic does not compute a connected graph. Furthermore, by

tiling wheels, we can construct point sets whose LMT-skeleton contains a linear number

of disconnected components. This shows that the LMT-skeleton does not provide a

polynomial-time algorithm for solving the MWT problem.

The complexity status of the MWT problem is still open. We do not know whether

it is NP-hard or whether it can be solved by a polynomial time algorithm. One can use

this implementation to experiment with di�erent point sets in order to �nd structures

to prove the NP-hardness of the problem. In the last chapter the wire was presented as

one component that can be used to reduce a satis�ability problem to the MWT problem.

64
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Structures for the remaining components and how the components can be connected

together are still unknown.
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