
An Object-Oriented Graphics Kernel

Gene S. Lee

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1Z1

Abstract

A graphics kernel serves as interface between an

application program and an underlying graph-

ics subsystem. Developers interact with kernel

primitives while the primitives interact with a

graphics subsystem. Although the two forms of

interaction closely relate, their optimal designs

conict. The former interaction prefers a process

that closely follows the mental (or object-based)

model of application development while the lat-

ter prefers a process that parses display-lists.

This papers describes RDI, an object-oriented

graphics kernel that resolves the di�erences be-

tween the two interactions with one design. De-

velopers explicitly assign intuitive relationships

between primitives while an underlying process

interprets the primitives in an orderly manner.

The kernel's extensible design decouples the pro-

cesses of modeling and rendering. Primitives

dynamically communicate with graphics subsys-

tems to express their purpose and functions. The

discussion of the kernel's design entails its opti-

mizations, its bene�ts toward simulation, and its

application toward parallel rendering.

General Terms: Object-Oriented, Graphics

Kernel

1 Introduction

A graphics kernel serves as an interface be-

tween an application program and an underly-

ing graphics subsystem. The kernel provides de-

velopers with the tools to transform a program-

mer's mental model of application development

into constructs that are readily understood by

a graphics subsystem. A kernel's quality derives

from its ability to naturally express and translate

a programmer's mental model and to e�ciently

interact with various graphics subsystems.

Traditional graphics kernels, such as Gks-

3d[10] (the Graphical Kernel System) and

Phigs+[23] (Programmer's Hierarchical Inter-

active Graphics System), endorse the usage of

display lists, a sequential arrangement of data

structures. Developers organize prede�ned prim-

itives, such as those representing geometric forms

and display characteristics, into a linear format

that the kernel parses from beginning to end.

Although e�cient and simple, traditional ker-

nels su�er from two drawbacks. First, display

list modeling violates the mental model of appli-

cation development. It forces developers to as-

semble primitives into a format that favors the

way (state-based) graphics subsystems interpret

data, not the way developers arrange data. De-

velopers favor structures that enable them to as-

sign and query characteristics to and from ob-

jects, and to construct relationships between the

objects. Second, the kernels tightly couple mod-

eling to rendering. Primitives support only those

data structure that the graphics subsystem can

readily understand. Although this restriction in-

creases the e�ciency of the rendering process, it

limits the extensibility of the kernel and forces

developers to interact with the graphics subsys-

tem at a low level of abstraction.

Modern graphics kernels, such as Dore[13],

Inventor[21], Hoops[11], and Pix[9], combine

object-oriented techniques with an underlying

display list architecture. Object-oriented meth-

ods facilitate the manipulation and arrangement

of primitive objects within display list objects.

As with the traditional ones, the modern kernels

do not support methods to form direct relation-

ships between primitives. Display list objects

constrain primitive objects to derive their rela-

tionship from their relative placement within a

linear grouping. It is not possible to directly link

one primitive with another. Geometric objects

receive, not possess attribute objects. This fail-

ure to support direct relationships violates the

principle of locality, one of the main tenets of

object-oriented design. The behavior (or nature)

1

of an object should be locally controlled. Ele-

ments which a�ect an object's state should be

assigned or queried directly from the object it-

self.

This paper describes RDI (RASP's Design

Interface), an extensible graphics kernel that

bridges the gap between display-list modeling

and object-oriented design. The bene�ts of both

design methods are combined to form a simple,

yet robust kernel. As developers establish intu-

itive relationships among graphics primitives, an

underlying process arranges the primitives into

an orderly structure. Modeling does not vio-

late the principle of locality and the traversal of

primitives occurs in a linear manner. To achieve

extensibility, the kernel decouples the modeling

process from the rendering process. Primitives

dynamically communicate with the graphics sub-

system to optimize the exchange of information.

2 Issues

Merging display-list modeling with object-

oriented design introduces four major di�cul-

ties. First, display-list modeling, as employed

by [21, 23], imposes a strict ordering of elements

(objects) while object-oriented design does not.

Order, not methods or operators, form relation-

ships between elements. Although ordering of el-

ements bene�ts rendering, it creates meaningless

relationships and answers few queries. For ex-

ample, the list (transform,redColor,sphere)

improperly implies that a relationship exists be-

tween transform and redColor. transform and

redColor a�ect sphere, not each other. In addi-

tion, sphere can not return its color. To obtain

sphere's color, the display-list must be traversed

backwards.

Second, display-list modeling, as employed by

[21, 23, 2, 12, 7, 6, 24], prefers late binding of

primitives while object-oriented design prefers

early binding. Late binding supports exible,

easy modi�cation of graphics data while early

binding supports instantaneous noti�cation of

changes to graphics data. For simple applica-

tions, late binding of primitives is acceptable.

Renderers traverse collections of display-lists to

visualize the state of geometric forms. However,

for complex simulations, late binding leads to er-

rors or inaccurate results. Unless extensive pre-

processing of data occurs, simulations are slow

to recognize important state changes. For exam-

ple, if a simulation waits for a �gure to reach a

certain location, the �gure must be rendered fre-

quently to determine its position. Each render-

ing pass temporarily binds the �gure to its trans-

formations. The simulation runs the risks of op-

erating improperly if the �gure's transformations

update faster than the rendering rate. Render-

ing, unnecessarily, becomes an integral element

of a simulation's design. In addition, late bind-

ing promotes overly complex operators. To un-

group or amalgamate existing relations between

primitives, operators must manipulate complex

structures to reconstruct error-free display-lists.

Third, display-list modeling disparages both

extensibility and encapsulation whereas object-

oriented design promotes them. Display-list

modeling performs optimally when the rendering

process easily recognizes the function and pur-

pose of every element within a list. Increasing

the variety of elements or encapsulating informa-

tion within the elements complicates the render-

ing process. Display-list modeling, as employed

by [23], often limits the variety of list elements

or supports only one type of renderer. Numerous

complications arise when display list elements in-

teract with multiple renderers. Some renderers

support a limited set of operations while others

solicit information in uncommon formats.

Finally, display-list modeling incites the devel-

opment of lightweight primitives while object-

oriented design does not. Lightweight primi-

tives are easier to create and to manipulate,

but harder to interpret and to relate. Many

object-oriented approaches resolve this dilemma

by creating monolithic primitives. Created

statically[7] or dynamically[3], the primitives

moderate many operations. They manipulate

shape, color, textures, etc. Although simple, this

2

plan does not scale well. As the kernel expands,

primitives are harder to augment and to manage.

They grow to encapsulate too much information.

It becomes di�cult to create global attributes,

to parse operations in parallel, and to regulate

individual functions. Monolithic primitives are

functionally inexible.

3 Overview of Solution

RDI layers object-oriented principles upon a

display-list architecture. Developers arrange

display-list elements intuitively while graphics

subsystems interact with display-list elements se-

quentially. Without great loss in performance,

RDI supports encapsulation and encourages ex-

tensions.

RDI consists of two object sets, modeling

primitives and rendering primitives. Modeling

primitives facilitate the construction of geomet-

ric models with qualitative attributes. Relation-

ships between primitives stem from couplings

and direct associations. Modeling is intuitive

and meaningful. Rendering primitives organize

virtual scenes and generate synthetic images.

They interact with modeling primitives to trans-

form scene data from bytes to pixels. Contrary

to traditional methods, rendering primitives are

interpreted by modeling primitives. After they

communicate their capabilities, rendering prim-

itives receive information. To optimize the ex-

change of information, both primitive types com-

municate their preferences. The union of their

preferences determines the format in which in-

formation ows.

To support a wide variety of features, model-

ing primitives bind information early while ren-

dering primitives bind information late. By

binding early, modeling primitives acknowledge

their relationships. They know who inuences

them and how. This permits them to instanta-

neously react to changes and to e�ortlessly re-

spond to queries. By binding late, rendering

primitives disregard established relationships.

They derive implicit relationships from the or-

dering of incoming data. Recent data always re-

lates to or replaces older data.

Although the two object sets bind informa-

tion di�erently, they communicate without great

di�culty. During the rendering process, model-

ing primitives carefully sequence their transmis-

sions for rendering primitives to properly under-

stand. From the ordered transmissions, render-

ing primitives infer relationships that are identi-

cal to those of the modeling primitives.

4 Object-Oriented Modeling

RDI partitions modeling primitives into three

groups: geometries, attributes, and transforma-

tions. Geometries represent geometric shapes.

They de�ne the structure of a model. Attributes

represent characteristic qualities. They specify

the internal and external features of a model.

Common attributes include those that regulate

visual traits, and those that a�ect the interaction

between RDI's primitives. Transformations rep-

resent \coordinate frame" modi�ers. They alter

the orientation, scale, and dimension of existing

frames to produce new frames.

4.1 Geometries

Geometries consist of three types: simple shapes,

complex shapes, and mixed shapes. Simple

shapes are basic forms, such as spheres and

cubes. Modi�cations a�ect their size, not their

pro�les. Complex shapes are elaborate forms,

such as splines and indexed polyhedra. Unlike

simple shapes, their appearance derives from the

organization and interpretation of supplied data.

Mixed shapes are compound forms. They inter-

mix geometries, vertically and horizontally. Ver-

tical construction produces hierarchical struc-

tures. Each level of the hierarchy represents a

\part-of" the level above. Horizontal construc-

tion produces single-level structures. Each ele-

ment of the single level \connects-to" the ele-

ment before.

3

Initially, geometries are attribute-free. They

acquire attributes to describe their characteris-

tic qualities. However, all geometries possess one

inherit and unmodi�able attribute, a local coor-

dinate frame. Local coordinate frames specify

modeling spaces that are independent of each

other and most relevant to a geometry's needs.

The �nal scale and orientation of geometries

in world space depends on its local coordinate

frame and its associated set of transformations.

4.2 Attributes

Attributes attach directly to the primitives they

a�ect. Primitives accept attributes and refer to

them as sources of information. Attributes that

attach to geometries are called local attributes

while those that attach to renderers are called

global attributes. Local attributes possess lim-

ited scope. They a�ect only those geometries

that reference them. For example, the texture

map in Figure 1 a�ects only the geometry to its

right. Global attributes possess unlimited scope.

They a�ect the process in which rendering prim-

itives interact with modeling primitives. Often,

they act as default attributes and a�ect a large

number of primitives. For example, if the tex-

ture map of Figure 1 had been attached to a

rendering primitive, it would a�ect all the ge-

ometries within the scene. In essence, all ge-

ometries would possess the same texture. When

in conict, local attributes take precedence over

global attributes. Global attributes take e�ect

when local attributes are absent.

4.2.1 Attribute Association

Every geometry type maintains a list of at-

tributes. As attributes attach and detach, the

list updates automatically. Unlike similar struc-

tures found in other graphics kernels, the list

never contains more than one copy of a partic-

ular type of attribute. Identical attributes re-

place each other as they join the list. A \copy-

free" list liberates attributes from index values.

Attributes always produce consistent results re-

gardless of their list positions. Index values are

not needed to add or detach attributes from ge-

ometries.

Geometries associate with identical attributes

only when the attributes assemble within mixed

attributes. Mixed attributes, of which there are

many types, collate multiple attributes to pro-

duce single attributes. To create a single at-

tribute, mixed attributes use various reductions

techniques, such as demultiplexing and blending.

Geometries interpret mixed attributes as com-

posites. They ignore the many and recognize

only the �nal result. Mixed attributes alter the

way in which conicting attributes are handled.

Unlike other graphics kernels, resolution of mul-

tiple attributes is not simply a matter of order.

Color: Red
Shape

Color: Black

Texture Map

Mixed Attribute

Color: Blue

Figure 1: Simple and Mixed Attribute

For example, the geometric shape in Figure 1

possess four attributes, one texture map and

three material colors. To avoid immediate re-

placement, the three material colors are stored

within one mixed attribute. Of the four at-

tributes, the geometric shape readily interprets

only two, the texture map and one of the three

colors. The shape interprets only the color that

the mixed attribute selects.

4.2.2 Attribute Inheritance

Mixed shapes propagate their attributes to the

geometries they intermix with. The intermixed

geometries inherit the attributes as though they

were their own. They interpret them and an-

swer queries about them. However, they can not

remove them. Intermixed geometries cease to

4

inherit attributes that are removed indirectly or

over-ridden. Indirect removal occurs when mixed

shapes lose attributes and propagate the loss.

Overriding occurs when the intermixed geome-

tries gain attributes that conict with inherited

attributes. For example, the geometric shape in

Figure 2 inherits two attributes, one display list

and one complexity.

The shape interprets the display list, but ignores

the complexity. The inherited complexity at-

tribute is over-ridden by a local complexity at-

tribute. Local attributes always take precedence

over those that are inherited.

4.3 Transformations

Transformations transform coordinates frames.

Independently or as members of composites,

they scale, rotate, and translate coordinates

frames about axes and points in space. Un-

like attributes, they are not inherent proper-

ties of geometries. They modify, not describe

space. Therefore, transformations may attach

or associate with geometries. Attaching trans-

formations alter the local coordinate frames of

geometries whereas associating transformations

introduce coordinate spaces onto which geome-

tries map their local frames.

4.3.1 Attachment

Like attributes, attaching transformations link

to geometries directly. Geometries, primarily

simple shapes, accept the transformations and

refer to them as local coordinate frame modi�ers.

They modify the basic shape and appearance of

the geometries by altering the scale and orien-

tation of local spaces. For example, anisotropic

transformations change spheres to ellipsoids and

squares to parallelograms.

4.3.2 Association

Transformations associate with geometries via

mixed shapes. For every geometric shape, mixed

shapes maintain a translist, an ordered list of

transformations. Each translist directly a�ects

the local frame of its associated geometry. Trans-

formations are ordered to guarantee determin-

istic results and facilitate rapid editing. Ini-

tially, transformations are ordered upon entry

into the translist. To retrieve or selectively al-

ter the translist, transformation are referred to

by their list index, type, or given name1. In ad-

dition to ordering transformations, the translist

acts as a transformation. Its value is equal to

the multiplicative accumulation of its contents2.

The translist reacts to mathematical operators

and responds to general queries. However, the

translist is not directly modi�able. Its value

changes only when its set of transformations

changes.

As translists pair with geometries, they iden-

tify themselves to the geometries. This permits

the geometries to obtain information directly

from the translist that a�ects their space. Sim-

ple and complex shapes reference their translists

to answer queries and to interact with render-

ers (see section 5.3). Mixed shapes reference

their translists to create hierarchical translists.

Hierarchical translists are translists that inherit

the values of other translists. They form as ge-

ometries arrange hierarchically or vertically. For

example, the mixed shapes in Figure 3 repeat-

edly embed inherited translists while the mixed

shapes in Figure 4 repeatedly embed connective

translists.

4.3.3 Hierarchical Update

Hierarchical translists consistently reect the

value of their accumulated set of transforma-

tions. As levels change value, they instantly

propagate their updated values to lower lev-

els. Propagation continues until all depen-

dent translists update. Level changes occur

when transformations alter state, compositions

of translists change, or translists receive propa-

1All of RDI's primitives are identi�able by name or by

type.
2An empty translist is equal to the identity matrix.

5

ComplexB

MixedGeo
MixedGeo

MixedGeoMixedGeo

(A)

Transform-X

Transform-Y

(B)

DisplayListGeometry

Material

DisplayList

Geometry

Transform-XY

Material

ComplexB

ComplexA

Figure 2: Attribute Inheritance

G

Simple Shape

F

HorzGroup

CBA

Mixed ShapeB ED

Mixed ShapeC

Figure 4: Connective Translists

gated update notices. To rapidly update hierar-

chical translists, transformations and translists

maintain links to their dependents. Dependents

rely upon the transformations and translists to

compute an accumulative value. Immediately af-

ter transformations and translists change, they

notify their dependents. For example, when

transformation B in Figure 3 changes state, it

informs the translist for MixedShapeB to re-

compute its value. Immediately afterwards,

the new value propagates to the translist for

MixedShapeC, and forces the eventual update of

the translist for SimpleShapeC.

4.3.4 Design Bene�ts

Despite functional reasons, there are bene�ts to

not link transformations to geometries. First, it

emphasizes that transformations possess a vari-

ety of geometric interpretations. As noted by

[5], transformations interpret as a change of co-

ordinates, a transformation from one space onto

another, or a transformation from a space onto

itself. Transformations that link directly to ge-

ometries promote the latter of the three inter-

pretations. Points within the geometries move

while the coordinate system remains �xed. This

interpretation works well to position objects, but

fails miserably to relate objects, such as those

found in articulated �gures. Second, it simpli-

�es the application and manipulation of trans-

formations. Only mixed shapes accept, concate-

nate, and embed transformations. Simple and

complex shapes use transformations while mixed

shapes manage transformations.

4.3.5 Implementation

RDI employs the handle/body idiom[4] to imple-

ment transformations. Transformations consist

of two classes: an outer class (handle) and an

inner class (body). The outer class manages in-

teractions while the inner class reacts to interac-

6

GSimple Shape

Mixed ShapeC

Mixed ShapeB Mixed ShapeB

Mixed ShapeC

Mixed ShapeA

Translist-DE

Translist-ABC

Translist-FG

F

B C

Simple Shape

A

D E

F

D E

G

A B C

Figure 3: Hierarchical Translists

tions. Together, the two classes act as a compos-

ite object. The following class de�nition repre-

sents a transformation that employs two classes.

class MatrixRS: public MatrixBase {

static void setMatrixRep(MtxRep);

protected:

static MtxRep MtxRepr;

MatrixRep *mtxRep;

public:

Matrix();

...

};

The inner class MatrixRep implements the op-

erations of outer class MatrixRS. Subclasses of

MatrixRep interface with various matrix pack-

ages and hardware functions, such as those found

in RogueWave[18] and OpenGL[17].

A simpli�ed implementation employs inner

classes as subclasses of outer classes. Outer

classes act as base classes while inner classes act

as specialized classes. Class inheritance replaces

the run-time interaction between the two classes.

Although this design is simpler, the handle/body

idiom o�ers greater bene�ts. The handle/body

idiom simpli�es user interactions with packages

of related classes. All transformations, irregard-

less of their implementation - hardware or soft-

ware, are of the same type. The outer class

remains the same while the inner class varies.

As a single type, transformations are not sub-

ject to the pitfalls of inheritance. They easily

interact with overloaded operators and endorse

a simpler syntax. Transformations pass freely

from one operation to another without excessive

use of pointers. The handle/body idiom also re-

duces the impact of change on coding and re-

compilation. The idiom localizes the invocation

of derived class constructors and establishes the

representation of transformations at run-time.

Altering applications to use new representations

of transformations is simple and clear.

4.4 Reducing Growth

As the number of primitives within an appli-

cation grows, memory requirements and model

complexities soar. To reduce the severity of this

growth, RDI permits primitives to duplicate and

hierarchies to collapse. To duplicate, primitives

support two copy methods, deep and shallow.

Deep copies the internal structure of primitives

to produce exact duplicates. Duplicates act and

react independently. Shallow references the in-

ternal structure of primitives to produce clones.

Clones possess identity but share state. They

act as one monolithic object. If any clone or the

original changes state, everyone changes state.

7

Clones are extremely useful to reuse geometries.

For example, the following segment of code pro-

duces four copies of a sphere.

GeoSphere *sphr = new GeoSphere();

GeoHGroup *grp = new GeoHGroup();

grp->insert(sphr->deep(NO_ATTRIB);

grp->insert(sphr->deep(SAME_ATTRIB);

grp->insert(sphr->shallow(SHALLOW_ATTRIB);

grp->insert(sphr->shallow(DEEP_ATTRIB);

The �rst two copies are duplicates while the

last two copies are clones. The arguments to the

copy methods dictate what the copies possess for

attributes. The �rst copy is without them, the

second copy references the originals, the third

copy retains clones, and the last copy obtains

duplicates.

To collapse hierarchies, mixed shapes support

methods to eliminate intermediate levels. As

intermediate levels disappear, hierarchies grow

shorter and consume less memory. To elimi-

nate a level, mixed shapes inherit the compo-

nents of intermediate nodes. The intermediate

nodes vanish and the components ungroup. For

example, the following two lines of code collapse

the hierarchy shown in Figure 5.

mxShpA->ungroup(mxShpB, CONCAT_TRANS, LOOSE_ATTRIB);

mxShpA->ungroup(mxShpC, MERGE_TRANS, CLONE_ATTRIB);

The �rst line eliminates mixedShapeB while

the second line eliminates mixedShapeC. The sec-

ond and third argument of each line determines

the fate of the disappearing node's transforma-

tions and attributes. The �rst line purges the

attributes and concatenates the transformations

to the transformations of the components. The

second line clones the attributes for the compo-

nents and merges the transformations with the

transformation of the components.

5 Object-Oriented Rendering

RDI partitions rendering primitives into two

groups: views and renderers. Views manage the

content of virtual scenes. They control lighting,

timing, and display. Renderers interpret the con-

tent of virtual scenes. They inspect modeling

primitives to generate synthetic images.

5.1 Views

Views consists of four types: windows, lights,

cameras, and settings. Windows present images

of scenes. They visualize the output of render-

ers. Windows provide users with methods to

open and close user-interface displays, to bu�er

data, and to delimit the viewing sizes of rendered

images. Lights illuminates scenes. They regu-

late the distribution and characteristic qualities

of light sources. Cameras specify viewing frus-

tums. They circumscribe portions of world space

for renderers to observe. Although they are not

modeling primitives, lights and cameras are ma-

nipulatable objects. They possess location, ori-

entation, and direction. Settings produce and

render scenes. They determine its geometric con-

tent, and control its global parameters and tem-

poral state. To render a scene, settings simply

pair renderers with geometries.

5.2 Renderers

Renderers interact with modeling primitives to

produce synthetic images. Unlike traditional

methods, renderers do not interpret primitives;

the primitives interpret them. Geometries com-

municate with renderers to specify the geometric

contents of a scene while attributes communicate

with renderers to specify the characteristic qual-

ities of a scene. Renderers receive, not retrieve

information. Common retrieval processes, such

as the traversal of hierarchical structures and the

transformation of data, are executed by geome-

tries. Shifting the responsibility of interpretation

promotes several bene�ts: it augments the ex-

ibility of the RDI's design; it supports the con-

struction of new primitives; and facilitates par-

allel rendering.

8

D

UNGROUP

Sphere Cube

A

Mixed ShapeA

CA

Cylinder

* F * GE

BLUE

*H=A

H

E

RED BLUE

Cylinder

Mixed ShapeA

A

CubeSphere

Mixed ShapeB

C D GF

Mixed ShapeC

B

Figure 5: Collapsing an hierarchy

5.2.1 Geometries

A loose coupling exists between geometries and

renderers. The format and quantity of informa-

tion that passes from one to the other is not de-

pendent upon a strict protocol. It depends on

the intrinsic capabilities of each. Not all shapes

and renderers manage information alike. Each

prefers to supply or receive information in for-

mats that suit their needs. Therefore, to max-

imize the needs of both, shapes and renderers

compare capabilities. Those capabilities that

match determine the formats in which informa-

tion ows.

To compare capabilities, shapes pass their

preferences to renderers. Renderers compare the

preferences to their own and store the results

in a table3. Shapes remain oblivious to the re-

sults until interaction occurs. When shapes are

3The size of a renderer's table is function of the number
of geometric types, not the number of geometric instances.

For example, one hundred spheres occupy only one table,

while one sphere and one cube occupy two entries.

ready to supply information, they receive the re-

sults and act accordingly. Generally, this entails

caching data, performing transformations, and

interacting with attributes. Shapes never cache

the results they receive from renderers. It is

not uncommon for renderers to temporarily alter

their preferences and modify their tables as an

application progresses. Often, this occurs when

renderers acquire global attributes or receive in-

formation from local attributes (see 5.2.2).

Mixed shapes interact with renderers di�er-

ently. They retrieve, not supply, sources of in-

formation. They traverse collections of geome-

tries, often arranged hierarchically, to associate

renderers with renderable shapes. For example,

the mixed shape in Figure 7 noti�es its shapes

to render in the following order: sphere, cube,

and cylinder.

5.2.2 Attributes

Like geometries, attributes maintain a loose cou-

pling with renderers. They interact to compare

9

preferences and to exchange information in com-

patible formats. However, unlike geometries, at-

tributes can simply pass themselves to a ren-

derer. If a renderer indicates that it prefers to

interpret an attribute, the attribute temporar-

ily attaches itself to the renderer and acts as

a source of information. For example, almost

all renderers accept color attributes. Therefore,

when color attributes are encountered, the ren-

derers refer to them directly and invoke their

member functions.

When attributes, global or local, attach them-

selves to renderers, they nullify default attributes.

Maintained by renderers, default attributes es-

tablish the global state. They apply to ge-

ometries that lack a complete set of local at-

tributes. For example, if renderers encounter

shapes that lack color attributes, they refer to

default attributes to establish coloring informa-

tion. Global attributes completely replace de-

fault attributes whereas local attributes simply

override them. As noted in section 4.2, local at-

tributes prevail over global attributes. However,

renderers can prevent this if they wish. They

accept instructions to disregard the e�ects of lo-

cal attributes. This permits renderers to alter

quickly the characteristics of entire scenes. Local

attributes need not be replaced, or deactivated,

to induce a variety of e�ects, such as displaying

scenes in wireframe mode or presenting scenes

without textures.

Some attributes, such as Complexity and

DisplayList, interact with geometries, not ren-

derers. During the rendering process, they alter

the way geometries operate and supply informa-

tion. For example, Complexity attributes dic-

tate how much information geometries produce.

To create smooth surfaces, the attributes force

geometries to produce and forward large quanti-

ties of surface detail.

5.3 The Rendering Process

The rendering process consists of two phases:

initialization and visualization. During ini-

Initialization

1 Geometries inform renderers of preferences.

2 Attributes inform renderers of preferences.

Visualization

1 Render non-inherited attributes.

2 Initialize translist.

3 Pass identity to renderer and accept format.

4 Compute information in required format.

5 Transform information and pass to renderer.

6 Deinitialize translist.

7 UnRender non-inherited attributes.

Figure 6: Rendering Process

tialization, view primitives introduce modeling

primitives to rendering primitives. The model-

ing primitives identify themselves and communi-

cate their preferences, as described in section 5.2.

Communication between primitives does not oc-

cur on an instance to instance basis. Instances

of rendering primitives interact with classes of

modeling primitives. Because modeling primi-

tives do not di�er from instance to instance, only

one representative from each class need commu-

nicate.

During visualization, view primitives initiate

interactions between geometries and renderers.

They instruct geometries to communicate their

visual state and their characteristic qualities. To

do so, geometries follow seven steps, as shown

in Figure 5.3. First, they instruct to their at-

tributes to interact. Attributes interact with ren-

derers in any order and in any way they deem

best. Order is not important because geome-

tries never possess or inherit multiple attributes

of the same type, as described in section 4.2.1.

Next, they initialize their translist. Often, this

operation produces no results. However, there

are times when this step is essential. Some at-

tributes and some implementations of matrices

require it. In the next two steps, they identify

themselves, accept a format, and compute geo-

metric information. Afterwards, they transform

the information and pass it forward. In the last

two steps, they deinitialize their translists and

withdraw their non-inherited attributes.

10

Withdrawing attributes retract their previous

interactions. They restore the states of altered

primitives by replacing current values with old

ones. For example, before color attributes take

e�ect, they retain pointers to working color at-

tributes. When the color attributes withdraw,

they simply reinstate the working attributes.

The process of withdrawing attributes is simi-

lar to the process of popping-state, as employed

by traditional display-list traversal algorithms.

Both undo the e�ects of previous actions.

SphereC

B

D

AMixedA

Cube

MixedB E F

G Cylinder

Figure 7: Attributes D, E, H must withdraw

The diagram in Figure 7 illustrates the ne-

cessity to withdraw attributes. As the render-

ing process traverses MixedA, it sequentially in-

duces attributes A though G to interact. Unless

attributes C, D, and G withdraw, they will im-

properly improperly a�ect cylinder. Only at-

tributes A, B, E, and F apply to cylinder. These

attributes need not withdraw until MixedA ceases

to interact.

5.3.1 Accelerations

RDI readily accepts two techniques to acceler-

ate the rendering process: subclassing and par-

allelization. Subclassing extends existing prim-

itives to create new primitives that operate

quickly. New primitives rede�ne general meth-

ods to accept fewer parameters or to pass fewer

arguments. In addition, they limit their associa-

tions to reduce their communications. For exam-

ple, subclassing can create specialized attributes

that operate only with OpenGL-based renderers.

These types of attributes neither identify them-

selves nor communicate their preferences.

Parallelization produces faster images by in-

creasing the communication rate between RDI's

primitives. Normally, rendering primitives inter-

act with modeling primitives one by one. They

receive information sequentially. With paral-

lelization, information ows concurrently. View-

ing primitives simultaneously associate geome-

tries with renderers while geometries simultane-

ously associate attributes with renderers. Si-

multaneous association succeeds for two major

reasons. First, geometries retain links to all

their attributes and transformations. Hierarchi-

cal traversal of complex structures is unneces-

sary. Although some attributes and transforma-

tions interact more often than before, the gain

in overall e�ciency is much greater. Second, ge-

ometries never retain multiple attributes of the

same type. Attributes never conict; therefore,

they may interact at the same time with the

same renderer.

6 Example

This section demonstrates the utility of RDI with

a small application. Consisting of three phases,

the application furnishes a scene with windows,

cameras, models, and renderers. The application

uses local and global attributes, hierarchical and

vertical groupings, and clones.

The �rst phase, shown in Figure 8, adds a cam-

era and light source to a scene. The camera de-

�nes a perspective view while the source emits

directional light. The �rst two lines initialize

the toolkit and de�ne the internal representa-

tion of a matrix. Hidden from the user for the

remainder of the application, matrices will use

the Roguewave library to perform mathematical

operations.

The second phase, shown in Figure 9, adds

models to the scene. Initially, it creates one

torus and two spheres - one of which is a clone

of the other. The �rst sphere accepts two at-

tributes, one material and one drawing style.

11

initialize the toolkit & create a scene

(1) RASP::init();

(2) MatrixSlot::setMatrixmRep(MatrixBase::ROGUEWAVE);
(3) Scene world;

create a window

(4) fRect windRect(0, 0, 600, 600);
(5) GLWindow *wind = new GLWindow(windRect);

create a perspective camera

(6) PerspCamera *kamera = new PerspCamera;

(7) kamera!setFView(AngleRS(45), AngleRS(45));

(8) kamera!setView(Point3(20,35,110), Point3(0,0,0));

(9) kamera!setWindow(wind);

(10) world.addObject(kamera);

create a directional light

(11) DirectLight *light = new DirectLight(dVector(0,1,0));
(12) world.addObject(Point3(100, 100, 100), light);

Figure 8: Phase 1: Creating the World

The material colors the sphere sea-green while

the drawing style displays the sphere as lines.

The clone accepts a material and texture. The

texture attribute applies a checkerboard texture

to clone. Following their creation, the torus and

spheres join comp, a mixed shape that joins the

geometries vertically (lines 12-15). comp asso-

ciates transformation with the spheres to move

one to the left and the other to the right.

Afterwards, the second phase creates comp2, a

shallow copy of comp. The torus within comp2

receives a material attribute that colors it dark-

yellow. To obtain the identity of the torus, the

phase simply queries comp2 for a torus. comp2

returns the �rst torus within its collection of ge-

ometries. Finally, phase two adds comp, comp2,

and a new cylinder to compH, a mixed shape that

joins primitives horizontally (lines 19-22). comph

concatenate the transformation of geometries as

they join the group. For example, the cylinder,

linked last, associates with mtxL, mtxR's, and

mtxU.

The last two lines of the second phase link

compH with a \model" (object holder, see [14])

and de�nes a local default color. The default

color, blue, colors those geometries of the model

without a material attribute, such as the cylin-

der and the shallow sphere. Had the default color

not been speci�ed, the sphere and cylinder would

have inherited its color from the renderer that

renders them.

The third phase, shown in Figure 10, ren-

ders the scene twice. It creates two renderers

and applies global attributes to each. The �rst

renderer, glRend, renders the scene with GL

(SGI's graphics library)[15]. The resultant im-

age, shown in Figure 11, appears in a GLwindow

(line 5, �rst phase). glRend's global attributes

regulate the scene's ambient light and specify the

scene's texture mapping environment.

The second renderer, opRend, produces an

Optik[1] scene description. Optik parses the

scene description to produce a high-quality

image. opRend's global attribute applies a

\checkerboard" texture to all the elements

within the scene. The altered scene is seen in

Figure 12.

For a quick comparison between RDI and In-

ventor, see Appendix A. Appendix A generates

phases two and three of the scene with lines of

Inventor.

12

create shapes & assign attributes

(1) GeoTorus *torus = new GeoTorus(10, 20);

(2) GeoSphere *sph1 = new GeoSphere(25.);
(3) GeoSphere *sph2 = (GeoSphere*) sph1!shallow(Qualities::NO ATTRIB);

(4) sph1!setAttrib(new Material(ColorBase::SEA GREEN));

(5) sph1!setAttrib(new DrawingStyle(DrawingStyle::LINES));
(6) sph2!setAttrib(new Material(ColorBase::ENGLISH RED));

(7) sph2!setAttrib(new Texture(Texture::CHECKERBOARD));

(8) GeoCylinder *cyl = new GeoCylinder(20,10);

create transformations

(9) MatrixRS *mtxL = new MatrixRS(MatrixRS::TRANS, Point3(0,0,-25));

(10) MatrixRS *mtxR = new MatrixRS(MatrixRS::TRANS, Point3(0,0,25));

(11) MatrixRS *mtxU = new MatrixRS(MatrixRS::TRANS, Point3(0,35,0));

create mixed shape - vertical grouping

(12) GeoComp *comp = new GeoComp;
(13) comp!addGeom(mtxL, sph1);

(14) comp!addGeom(mtxR, sph2);

(15) comp!addGeom(torus);
copy comp & assign material to its torus

(16) GeoComp *comp2 = (GeoComp*) comp!shallow(Qualities::NO ATTRIB);

(17) GeoBase *torus2 = comp2!getGeom(GeoTorus::getClassTypeId());
(18) torus2!setAttribute(new Material(ColorBase::DARK YELLOW));

create mixed shape - horizontal grouping

(19) GeoHorzComp *compH = new GeoHorzComp;
(20) compH!addGeom(mtxL, comp);

(21) compH!addGeom(mtxR, mtxR, mtxR, comp2);

(22) compH!addGeom(mtxU, cyl));
assign geometry to model

(23) Model *obj1 = new Model(Point3(0,0,0), compH);

(24) world.addObject(obj1, ColorBase::BASIC BLUE);

Figure 9: Phase 2: Adding Models to the World

7 Related Work

As previously mentioned, there have been nu-

merous attempts to extend and to simplify the

architecture of the basic graphics kernel. New

extensions introduce object-oriented principles,

multi-layered designs, and interactive structures.

The following two sections compare and contrast

RDI's architecture to recent proposals and pop-

ular commercial packages. The �rst section dis-

cusses modeling techniques while the second dis-

cusses rendering interfaces.

7.1 Modeling

RDI employs modeling techniques similar

to those found in Geo++[24], Yart[3],

QuickDraw-3D[2], Inventor[21], Groop[12],

Grams[7], Tbag[8], and VRS[6]. All nine ker-

nels employ object-oriented principles to encap-

sulate or to simplify the interaction between

users and graphics subsystems. The top sheet

in Table 1 compares the nine kernels in twelve

categories. For each category, kernels receive

bullets for strong designs, blanks for weak de-

signs, and circles for minimal designs. Minimal

designs support a limited range of functions and

burden users to use awkward constructs or to

invoke greater number of operations.

13

create renderers

(1) GLRenderer3D *glRend = new GLRenderer3D;

(2) OptikRenderer *opRend = new OptikRenderer;
assign global attribute

(3) glRend!setAttrib(new LightingModel(new RGBColor(.2,.2,.2)));

(4) glRend!setAttrib(new TextureEnv(TextureEnv::MODULATE));
(5) opRend!setAttrib(new Texture(Texture::CHECKERBOARD));

render scene with GL

(6) kamera!setRenderer(glRend);

(7) world.initSetting();

(8) world.renderAll();

render scene with Optik

(9) kamera!setRenderer(opRend);

(10) world.initSetting();

(11) world.renderAll();

Figure 10: Phase 3: Rendering the World

Figure 11: Model rendered with GL

All but two kernels implement their designs

with C++. C++ is popular and supports object-

oriented constructs. The two remaining kernels,

Geo++ and QuickDraw-3D, use Smalltalk,

which is not popular, and C, which is not object-

oriented. The learning curves for these two ker-

nels is longer than those based upon common

object-oriented languages. One forces users to

learn unfamiliar keywords while the other forces

users to decipher pseudo-object-oriented struc-

tures.

Some kernels, like RDI and QuickDraw-

3D, support lightweight primitives while oth-

ers, like Yart and Grams, support heavyweight

primitives. Lightweight primitives manage few

operations and form relationships at run-time.

Popular lightweight primitives include shapes

and surface characteristics. Conversely, heavy-

weight primitives manage numerous operations

and form relationships at compile time. For ex-

ample, in Grams, shapes manage everything.

They inherit operations from superclasses to con-

trol their geometry, color, and material proper-

ties. Although this scheme is simple, it consumes

great resources and restricts itself to few opti-

mizations. As the attribute set grows, shapes

14

Figure 12: Model rendered with Optik

Modeling RDI Yart Geo++ Qui3D Inven Groop Grams Tbag Vrs

language C++ C++ Smltk C C++ C++ C++ C++ C++

lightweight primitives � � � � � �

extensible attributes � � � � � � � � �

principle of locality � � � � � �

early binding � �

orderless attributes � � � � � � � �

separ transformations � � � � � � �

connectivity � � � � � � � �

ungroup/atten � � � � �

constraints �

interaction � � � � � � �

animation � � �

Rendering RDI Yart Geo++ Qui3D Inven Groop Grams Tbag Vrs

loose coupling � � � � � � �

global attributes � � � � � �

parallelizable � � � � � �

Table 1: �: full support, �: partial support

inherit greater number of operations and con-

sume greater amounts of memory.

Six of the nine kernels adhere to the princi-

ple of locality. Attributes apply directly to ob-

jects and objects acknowledge their attributes.

However, only two kernels, RDI and Yart,

permit objects to acknowledge their inherited

attributes and their inherited transformations.

Most kernels disregard these important relation-

ships. Objects are permitted to acknowledge

only a subset of the primitives that a�ect them.

Apart from limiting queries, this drawback pre-

vents objects from binding early. Early binding

is fruitless if inherited attributes are ignored.

Of all the kernels, only Inventor forces users

to order the application of attributes. The re-

maining kernels employ a variety of techniques to

eliminate order. The simplest technique, applied

by Yart, Grams and Groop, denies objects

from possessing more than one attribute of the

same type. Attributes never conict; therefore,

order is insigni�cant. Although this technique

is simple, it complicates the process of rapidly

altering an object's attributes. Techniques of

greater complexity issue priorities, such as those

found in Vrs and RDI. Vrs applies priorities

15

directly to attributes while RDI apply priorities

directly to (attribute) containers.

Most kernels regard transformations as at-

tributes. They apply transformations in the

same way they apply attributes. Only RDI

and Inventor resist applying transformations

directly to shapes. Transformations link shapes,

not describe them. QuickDraw-3D promotes

both approaches. Transformations apply di-

rectly to and directly between shapes.

Most kernels support connectivity. Some, like

Inventor, accept it as a default method, while

others, like RDI and Geo++, recognize it as

an alternative method. Of the two methods,

only the latter applies connectivity to transfor-

mations. The former connects attributes as well

as transformation. Although both methods are

useful, the semantics of connecting attributes is

not clear. While connected attributes save time

and space, they obscure meaning and violate

principles of locality.

Only kernels with lightweight primitives un-

group hierarchies. To ungroup properly, prim-

itives must be able to release all of their at-

tributes. Of all kernels that support lightweights

primitives, only Tbag is unable to ungroup.

Tbag's functional approach hides the inter-

nal representation of immutable objects. Users

never see hierarchies; therefore, they can never

selectively ungroup hierarchies.

Except for RDI, many of the kernels support

constraints, interaction, and animation. Con-

straints establish bi-directional relationships, in-

teraction introduces external inuences, and ani-

mation produces time-varying behaviors. Future

versions of RDI hope to incorporate constraints

and interaction, but not animation. Animation

is simpler to describe if the tools for animation

and modeling are distinct. Unlike some kernels

and animation systems[16, 25] that combine the

two processes, RDI manages only one. Temporal

elements, such as those found in RASP, interact

with RDI to produce dynamic systems.

7.2 Rendering

Of the six kernels that support a loose coupling

between modeling elements and graphics subsys-

tems, all but Tbag employs a variation of the

same technique. Most kernels introduce commu-

nication protocols to optimize the exchange of

information. Groop enforces a strict protocol

while RDI and Vrs enforce a exible protocol

- elements are free to support a wider variety

of functions and structures. In place of a pro-

tocol, TBag employs multiple dispatching[19].

Run-time interactions between types evoke spe-

cialized operations. Although this plan promotes

greater extensibility, it operates slower and un-

dermines the encapsulation of information.

Six of the nine kernels support global at-

tributes. However, only RDI links global at-

tributes with rendering elements. Most kernels,

like Inventor, position global attributes at the

apex of modeling hierarchies. Global attributes

describe the state of models, not the default be-

havior of renderers.

Of all the kernels, only RDI readily supports

parallel rendering. Renderers may concurrently

interact with all geometries. Unlike other pro-

posed techniques, such as those byGeo++, par-

allel rendering is not dependent upon the branch-

ing factor of hierarchical arrangements. Con-

currency occurs immediately, not when pars-

ing of branches occurs. Beside being slower,

parallel branching techniques address only non-

connective arrangements. Branches of connec-

tive arrangements must be parsed sequentially.

8 Conclusion

This paper has presented RDI, an extensible

graphics kernel that applies object-oriented prin-

ciples to display-list modeling. Developers relate

primitives directly while graphics subsystems in-

terpret primitives sequentially. Developers and

graphics subsystems interface with primitives in

the manner that suits them the best. An un-

derlying process organizes the primitives in an

16

arrangement that caters to both interfaces.

RDI's modeling primitives permit developers

to express naturally their mental model of ap-

plication development. Disregarding order, de-

velopers query and assign attributes directly to

geometries. Once assigned, attributes bind in-

stanteously. Geometries recognize their inher-

ited and non-inherited relationships. To pro-

mote multiple interpretations and support con-

nective arrangements, developers associate, not

link transformations to geometries. Like at-

tributes, transformations bind early too. They

premultiply and concatenate instantly. The

modeling process need not wait for the render-

ing process to create bindings. To reduce growth

and simplify syntax, modeling primitives employ

letter classes, copy methods, and editing opera-

tions.

RDI's rendering primitives permit graphics

subsystems to e�ciently manage and visual-

ize information. Views control the viewing of

scenes while renderers control the interpretation

of scenes. Graphics subsystems employ renderers

to interface with modeling primitives and present

their preferences. During the rendering process,

modeling primitives cross-reference their prefer-

ences with those of renderers to optimize the

exchange of information. Modeling primitives

carefully sequence their interactions (with ren-

derers) to transmit early binding information as

late-binding data. Renderers accept the data

and derive relations that are identical to those

of the original model. Unlike traditional kernels,

renderers simply accept information. Views and

modeling primitives manage the traversal of hi-

erarchical structures and the transfer of infor-

mation. This permits the rendering process to

support parallel algorithms and specialized prim-

itives.

8.1 Future Directions

In the near future, RDI will be extended to inco-

porate coordinate-free geometry, �lters, and con-

straints. As noted by [5], coordinate-free geome-

try clari�es the role of transformations. RDI's

current design encourages multiple interpreta-

tions, but advances no means to specify a par-

ticular interpretation. Coordinate-free geometry

provides such structures. It removes ambiguities

and improve understanding. Filters, as found in

Phigs[20], change the visibility or detectability

of related sets of primitives. They provide the

means to rapidly disable or highlight primitives

according to name, class, state, or association.

RDI's �lters will apply locally and globally. Lo-

cal �lters apply to speci�c models while global

�lter apply to all the models within a scene.

Constraints, like those in TBAG and [22], create

dynamic relationships between primitives. They

provide structures to link primitives without ex-

plicitly applying them to each other. Constraints

are necessary to form semantic relations and log-

ical associations.

Acknowledgments

The author would like to thank Dave Forsey and

Dinesh Pai for contributions to the ideas and

implementation of RDI. Tien Truong and Alain

Fournier for valuable comments on early drafts,

and Katherine Witowich for critical comments

on grammar.

References

[1] Amanatides, J., Buchanan, J., Poulin, P.,
and Woo, A. Optik Users' Manual | Version
2.6. Technical Report Imager 1992{1, University
of British Columbia, August 1992.

[2] Apple Computer Inc. 3D Graphics Program-

ming With QuickDraw 3D. Addison-Wesley,
Reading, MA, 1995.

[3] Beier, E. Objektorientierte 3D-Gra�k. Inter-
national Thomson Publishing, September 1994.

[4] Coplien, J. O. Advanced C++: Programming

Styles and Idioms. Addison-Wesley, Reading,
MA, 1992.

[5] Derose, T. D. Coordinate-Free Geometric
Programming. In Siggraph 'XX Course Notes

17

(XX). Association for Computing Machinery,
1991, pp. 0{73.

[6] Doellner, J., and Hinrichs, K. The Vir-
tual Rendering System - A Toolkit for Object-
Oriented 3D Graphics. Tech. Rep. Tech Report
19/95, University of M�unster, 1995.

[7] Egbert, P. K. An Object-Oriented Approach
to Graphical Application Support. Tech. Rep.
UIUCDCS-R-92-1755, University of Illinois at
Urbana-Champaign, Urbana, IL, 1992.

[8] Elliott, C., Schechter, G., Yeung, R.,
and Abi-Ezzi, S. TBAG: A High Level Frame-
work for Interactive, Animated 3D Graphics Ap-
plications. In Computer Graphics (Orlando, FL,
August 1994), SIGGRAPH, Association of Com-
puting Machinery, Inc., pp. 421{434.

[9] Huynh, D. L., Jensen, M., Larsen, R.,

Southard, J., Wang, Y.-F., Wang, Y., and

Mangaser, A. PIX: An Object-Oriented Net-
work Graphics Environment. In Visual Comput-
ing: Integrating Computer Graphics with Com-

puter Vision, T. Kunii, Ed. Springer Verlag,
1992, pp. 917{936.

[10] International Standards Organization.
International Standard Infromation Processing
Systems - Computer Graphics - Graphical Ker-
nel System for Three Dimensions (GKS-3D)
Functional Description. Tech. Rep. ISO Docu-
ment Number 8805:1988(E), American National
Standards Institute, New York, 1988.

[11] Kliewer, B. HOOPS: Powerful Portable 3D
Graphics. BYTE 14, 7 (1989).

[12] Koved, L., and Wooten, W. L. GROOP:
An Object-Oriented Toolkit for Animated 3D
Graphics. In OOPSLA '93 (1993), ACM,
pp. 309{325.

[13] Kubota Pacific Computer, Inc. Dore Pro-

grammer's Guide, 5 ed., Sept 1993. Dore Graph-
ics Library.

[14] Lee, G. S. RASP: Robotics and Animation
Simulation Platform. Master's thesis, Univer-
sity of British Columbia, Vancouver, British
Columbia, January 1994.

[15] McLendon, P. Graphics Library Programming

Guide. Silicon Graphics, Inc., Mountain View,
CA, 1991.

[16] Najork, M. A., and Brown, M. H. Obliq-
3D: A High-Level, Fast-Turnaround 3D Anima-
tion System. IEEE Transactions on Visualiza-

tion and Computer Graphics 1, 2 (June 1995),
175{193.

[17] Neiger, J., Davis, T., and Woo, M. OpenGL

Programming Guide. Addison-Wesley, Reading,
MA, 1993.

[18] RogueWave. Roguewave. RogueWave Asso-
ciates, Inc., XXX, 1900.

[19] Schechter, G., Elliott, C., Yeung, R.,
and Abi-Ezzi, S. Functional 3D Graphics in
C++ - with an Object-Oriented, Multiple Dis-
patching Implementation. In 1994 Eurographics

Object-Oriented Graphics Workshop (1994), Eu-
rographics.

[20] Shuey, D., Bailey, D., and Morrissey,

T. PHIGS: A Standardm Dynamic, Interactive
Graphics Interface. IEE Computer Graphics and

Applications 0, 0 (August 1986), 50{86.

[21] Strauss, P. S., and Carey, R. An
Object-Oriented 3D Graphics Toolkit. In Com-

puter Graphics (Chicago, IL, July 1992), SIG-
GRAPH, Association of Computing Machinery,
Inc., pp. 341{349. SGI Inventor Toolkit.

[22] Teixeira, J. C., and Sakas, V. Towards an

Object-Oriented Kernel for Geometric Modeling.
Springer-Verlag, 1993, pp. 111{127.

[23] van Dam, A. PHIGS+ Functional Description,
Revision 3.0. Computer Graphics 22, 3 (July
1988), 125{218.

[24] Wisskirchen, P. Object-oriented graphics :

from GKS and PHIGS to object-oriented sys-

tems. Springer-Verlag, Berlin, 1990.

[25] Zeleznik, R. C., Conner, D. B., Wloka,

M. M., Aliaga, D. G., Huang, N. T.,

Hubbard, P. M., Knep, B., Kaufman, H.,

Hughes, J. F., and van Dam, A. An Object-
Oriented Framework for the Integration of In-
teractive Animation Techniques. In Computer

Graphics (Las Vegas, Nevada, July 28 - August
2 1991), SIGGRAPH, Association of Computing
Machinery, Inc., pp. 105{111.

18

A Inventor Comparison

To illustrate the di�erence between Inventor and

RDI, this appendix describes the same scene in

section 6 with lines of Inventor. Programming

notes in both speci�cations are consistent to ac-

centuate the correspondence between blocks of

code that perform analogous functions.

The �rst part of phase two, shown in Fig-

ure 13, creates shapes, attributes, and transfor-

mations. Primitive states are set via operations

that access public data members. Although this

approach di�ers from that of RDI, it does not

augment the quality or quantity of the primitive

set. The purpose and design of most primitives

in both toolkits are the same. Although they

function similarly, Inventor primitives do not in-

teract similarly. Unlike RDI, Inventor primi-

tives do not link directly. As seen in Figure 15,

they must explicitly group to work together. Al-

though simple, the act of grouping primitives vi-

olates the principle of locality and burdens de-

velopers to search for links between primitives.

The latter half of phase two, shown in Fig-

ure 14, creates groups to link attributes and as-

sociate transformations (lines 26-41). The dual

purpose of groups restricts the use of direct op-

erators, such as shallow copying, and creates

deep hierarchies. To create a shallow copy of

a geometric primitive without attributes, the at-

tributes must be explicitly removed4 from the

cloned group (lines 42-48), or a reference to the

geometric primitive must be placed into another

group. Deep hierarchies create complex struc-

tures that are troublesome to parse. To relate at-

tributes to a deeply embedded primitive, a recur-

sive task must search for the primitive's location

within a hierarchy (lines 49-52). If the attributes

are misplaced in the hierarchy, unwanted results

may occur.

Phase three, shown in Figure 15, applies a

global attribute (line 67) and renders the scene.

Unlike RDI, the global attribute relates to the

4The user-de�ned function removeChild deletes spe-

ci�c types of primitives from groups.

modeling primitives, not the rendering primi-

tives. Inventor lacks rendering primitives which

act as image synthesizers. Inventor's reliance on

GL (and OpenGL) hampers its ability to create

distinct rendering primitives and to provide mul-

tiple renderers.

19

create shapes

(1) SoTorus *torus = new SoTorus;

(2) torus!width = 50;
(3) torus!height = 50;

(4) SoSphere *sph1 = new SoSphere;

(5) sph1!radius = 25;

(6) SoCylinder *cyl = new SoCylinder;

(7) cyl!radius = 10;

(8) cyl!height = 20;

create attributes

(9) SoMaterial *sea grn = new SoMaterial;

(10) sea grn!di�useColor.setValue(.18, .55, .34);
(11) SoDrawStyle *lines = new SoDrawStyle;

(12) lines!style.setValue(SoDrawStyle::LINES);

(13) SoMaterial *eng red = new SoMaterial;
(14) eng red!di�useColor.setValue(.83, .24, .1);

(15) SoTexture2 *checkTex = new SoTexture2;

(16) checkTex!�lename.setValue("checkboard");
(17) checkTex!model.setValue("SoTexture2::MODULATE");

(18) SoMaterial *yellow = new SoMaterial;
(19) yellow!di�useColor.setValue(1, 1, .87);

create transformations

(20) SoTranslation *mtxL = new SoTranslation;
(21) mtxL!translation.setValue(0,0,-25);

(22) SoTranslation *mtxR = new SoTranslation;

(23) mtxR!translation.setValue(0,0, 25);
(24) SoTranslation *mtxU = new SoTranslation;

(25) mtxU!translation.setValue(0,35, 0);

Figure 13: Phase 2, Part I: Adding Models to the World

20

create mixed shape - vertical grouping

(26) SoSeparator *grp1 = new SoSeparator;
(27) grp1!addChild(sea grn);

(28) grp1!addChild(lines);

(29) grp1!addChild(mtxL);
(30) grp1!addChild(sph1);

(31) SoSeparator *grp2 = new SoSeparator;

(32) grp2!addChild(checkTex);
(33) grp2!addChild(eng red);

(34) grp2!addChild(mtxR);

(35) grp2!addChild(sph1);
(36) SoSeparator *grp3 = new SoSeparator;

(37) grp3!addChild(torus);

(38) SoSeparator *comp = new SoSeparator;
(39) comp!addChild(grp1);

(40) comp!addChild(grp2);

(41) comp!addChild(grp3);
copy comp & assign material to its torus

(42) SoSeparator *comp2 = (SoSeparator*) comp!copy();

(43) SoSeparator *grp1 c = (SoSeparator*) comp2!getChild(0);
(44) removeChild(grp1 c, sea grn!getTypeId());

(45) removeChild(grp1 c, lines!getTypeId());

(46) SoSeparator *grp2 c = (SoSeparator*) comp2!getChild(1);
(47) removeChild(grp2 c, eng red!getTypeId());

(48) removeChild(grp2 c, checkTex!getTypeId());

(49) SoSeparator *grp3 c = (SoSeparator*) comp2!getChild(2);

(50) for(int i=0; i<grp3 c!getNumChildren(); i++)

(51) if (grp3 c!getChild(i)!isOfType(SoCube::getClassTypeId()))

(52) grp3 c!insertChild(yellow,i);

create mixed shape - horizontal grouping

(53) SoSeparator *compH = new SoSeparator;

(54) compH!addChild(mtxL);
(55) compH!addChild(comp);

(56) compH!addChild(mtxR);

(57) compH!addChild(mtxR);
(58) compH!addChild(mtxR);

(59) compH!addChild(comp2);

(60) compH!addChild(mtxU);
(61) compH!addChild(cyl);

Figure 14: Phase 2, Part II: Adding Models to the World

21

assign global attribute

(62) SoMaterial *blue = new SoMaterial;

(63) blue!di�useColor.setValue(0, 0, 1.0);
(64) SoSeparator *root = new SoSeparator;

(65) root!addChild(new SoPerspectiveCamera);

(66) root!addChild(new SoDirectionalLight);
(67) root!addChild(blue);

(68) root!addChild(compH);

(69) SoXtRenderArea *myRenderArea = new SoXtRenderArea(<window-ptr>);
(70) myRenderArea!setSceneGraph(root);

Figure 15: Phase 3: Rendering the World

22

