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Abstract: We consider models for random interval graphs that are based on stochastic

service systems, with vertices corresponding to customers and edges corresponding to pairs

of customers that are in the system simultaneously. The number N of vertices in a con-

nected component thus corresponds to the number of customers arriving during a busy

period, while the size K of the largest clique (which for interval graphs is equal to the

chromatic number) corresponds to the maximum number of customers in the system dur-

ing a busy period. We obtain the following results for both the M=D=1 and theM=M=1
models, with arrival rate � per mean service time. The expected number of vertices is e�,

and the distribution of the N=e� tends to an exponential distribution with mean 1 as �

tends to in�nity. This implies that logN is very strongly concentrated about �� 
 (where


 is Euler's constant), with variance just �2=6. The size K of the largest clique is very

strongly concentrated about e�. Thus the ratio K= logN is strongly concentrated about e,

in contrast with the situation for random graphs generated by unbiased coin 
ips, where

K= logN is very strongly concentrated about 2= log 2.

* This research was supported by an NSERC Operating Grant.



1. Introduction

Our goal in this paper is to study some models for random interval graphs. We are

by no means the �rst to do this, but our approach is somewhat di�erent from those taken

in previous attempts. Thus we shall begin by describing our approach and some of our

results, and afterward compare it with others.

Consider a stochastic service system, to which customers arrive according to some

random process, are served for randomly distributed intervals of time, and then depart.

We shall con�ne our attention to systems in which any number of customers may be served

simultaneously (so that there is no queueing for service), but other service disciplines could

be considered as well. Construct a graph by associating with each customer a vertex and

joining with an edge each pair of vertices associated with customers that are in the system

simultaneously. The resulting graph is in�nite, but under the mild assumption that there

is a recurrent state in which the system is empty, and from which the system begins its

operation, this graph breaks into in�nitely many independent and identically distributed

connected components. We shall be interested in the probability distribution of such a

component. Since each customer is in the system for a contiguous interval of time, these

components are interval graphs, and we have thus de�ned a probability measure on the

family of interval graphs.

We �rst consider theM=D=1 model, in which customers arrive according to a Poisson

distribution with rate � per unit time, and for which the service times are equal and taken

as the unit of time. For this model, the number N of vertices is geometrically distributed

with mean e�. The random variable N is not concentrated about its mean (the variance

is e2� � e�, which grows as the square of the mean), but the distribution of N=e� tends

to an exponential distribution with mean 1 as � tends to in�nity. From this it follows

that logN is very strongly concentrated about its mean � � 
 (where 
 = 0:557 : : : is

Euler's constant), with variance just �2=6 = 1:6449 : : : . We also show that the size K

of the largest clique (which for an interval graph is equal to the chromatic number) is

similarly strongly concentrated about e�. This implies that the ratio K= logN tends with

high probability to e = 2:718 : : : as � tends to in�nity. This may be compared with the

situation for the model Gn;1=2, where the ratio K= logn tends with high probability to

2= log 2 = 2:885 : : : (see Grimmett and McDiarmid [G2]), but the chromatic number grows

with high probability as n=K rather than K (see Bollob�as [B2]).

We then turn our attention to the M=M=1 model, where customers again arrive

according to a Poisson distribution with rate � per unit time, but now service times are

independent and exponentially distributed with mean taken as the unit of time. In this
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case the distribution of N is much more complicated (its generating function involves the

ratio of two con
uent hypergeometric functions), but the mean is again e� and we obtain

exactly the same results concerning the limiting distributions of N=e� and logN . We also

obtain similar results for the distribution of K, which is again very strongly concentrated

about e�.

Interval graphs arise in a variety of situations and have an extensive literature (see,

for example, Fishburn [F]). In many situation these graphs arise through some random

process, so that it is desirable to have models for random interval graphs. The explicit

study of models for random graphs begins with the work of Erd}os and R�enyi [E1, E2],

who proposed several models (see also Bollob�as [B1] and Palmer [P]). These models assign

very little probability to interval graphs, however, and even when conditioned on the event

that the outcome is an interval graph they give highly skewed distributions. The random

graph Gn;p, for example, for which the graph has n vertices and each edge is present

independently with probability p, yields interval graphs with signi�cant probability only

when p is so small that with high probability all components are trees with at most six

vertices, or so large that with high probability there is at most one edge missing. This

has led to a search for natural models of random graphs that assign positive probabilities

exclusively to interval graphs.

The �rst suchmodel was proposed by Scheinerman [S1]. This model constructs a graph

G
(1)
n by independently choosing 2n points X1; : : : ;X2n uniformly distributed in [0; 1], then

taking n vertices corresponding to the intervals Ik = [minfX2k�1;X2kg;maxfX2k�1;X2kg].
Since all (2n)! orders of the points X1; : : : ;X2n are equally likely, and since an interval

graph is determined by the order of the endpoints, this is equivalent to choosing the points

X1; : : : ;X2n uniformly without replacement from f1; : : : ; 2ng. The result is a dense graph
(the expected number of edges is n(n � 1)=3) that is connected with high probability.

These graphs have many interesting properties, but (as for the random graphs Gn;p with

p �xed), the fact that the number of edges grows as the square of the number of vertices

makes them inappropriate as models for certain phenomena.

This circumstance led Scheinerman [S2] to propose a second model, in which a second

parameter can be varied to produce a variety of interval graphs, ranging from very sparse

to very dense. This model constructs a graph G
(2)
n;r by independently choosing n points

X1; : : : ;Xn uniformly distributed in [0; 1] and independently choosing n radii R1; : : : ; Rn

uniformly distributed in [0; r], then taking n vertices corresponding to the intervals Ik =

[Xk � Rk;Xk + Rk]. Here the intervals have average length 2Ex(Rk) = r. Taking this

length as the unit of time, we see that the intervals \arrive at the rate" nr per unit time.
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Thus if n ! 1 and r ! 0 in such a way that nr ! �, we might expect G
(2)
n;r to behave

like a �nite portion of the graph corresponding to the stochastic service system M=U=1,

where \U" indicated that service times are uniformly distributed in [0; 2] (so that the mean

service time is 1). Scheinerman shows (Theorem 4.3) that the number of components tends

with high probability to n=e� in this limit, so that the average component size is e�. (The

components in G
(2)
n;r are not identically distributed, since edge e�ects at the endpoints 0

and 1 a�ect the early and late components more than those in the middle.) While we

do not have results for this system, the expected component size e� is the same for the

models that we do study. SinceG
(2)
n;r consists of a large number of small components in this

limit, its maximum clique size with be the maximum of many random variable with small

expectations. Thus while we �nd maximum clique sizes concentrated about the constant

e� in our models, the maximum clique size for G
(2)
n;r grow logarithmically with n.

A somewhat di�erent model was proposed by Godehardt and Jaworski [G1]. Their

model constructs a graph G
(3)

n;d like G
(2)
n;r, but with the radii R1; : : : ; Rn being determinis-

tically set equal to d=2, rather than being uniformly distributed in [0; r]. Here the interval

length is d. Thus if n ! 1 and d ! 0 in such a way that nd ! �, we might expect

G
(3)

n;d to behave like a �nite portion of the graph corresponding to the system M=D=1.

(Again, edge e�ects will prevent the correspondence from being exact.) Godehardt and Ja-

worski also obtain an expected number of components n=e�, corresponding to the expected

component size e� in our analysis of the system M=D=1.

The use of the M=D=1 system as a basis for generating random interval graphs may

be criticized on the grounds that all of the intervals in the resulting representation are

of equal length, so that the generated graph is in fact an indi�erence graph (see Roberts

[R]), also known as a unit interval graph. This criticism does not apply to the use of the

M=M=1 system, and this is one of our motives for studying this case. One may ask, of

course, whether there is a statistically signi�cant di�erence di�erence between these two

models. We shall show in the Appendix that there is: the probability that an interval

graph arising from the M=M=1 system is an indi�erence graph tends to zero as � tends

to in�nity.

All of our results can be interpreted in terms of the busy periods of stochastic service

systems, and these busy periods have of course also been studied before. The �rst such

study was that of Tak�acs [T], who was interested primarily in the length of the busy

period in time. The number N of customers arriving in a busy period was �rst studied by

Kingman [K], who gives formulas that allow the distribution of N to be calculated for the

M=G=1 system (with a general service time distribution). We have not succeed, however,

3



in extracting the information we seek from these formulas in the case of the M=M=1
system, and in the case of the M=D=1 system the results are more easily obtained by

more direct methods. The maximum number K of customers during a busy period has

not to our knowledge been studied for M=D=1 or M=M=1 systems, but the analogous

question for the classicalM=M=1 queueing system has been studied by Neuts [N], and our

approach to the problem for the M=M=1 system is similar in spirit to his.

2. The M=D=1 Model

We shall begin by examining the interval graph based on the M=D=1 system, which

is easier in many respects to analyze than that based on the M=M=1 system. In the

M=D=1 system, customers arrive according to a Poisson process with rate � per unit

time, and they each remain in the system for one unit of time.

Let t0 be the time of an arrival that occurs when the system is empty, so that t0 marks

the beginning of a busy period. Let t1; t2; : : : be the times of subsequent arrivals, and let

�1 = t1 � t0;�2 = t2 � t1; : : : be the corresponding interarrival times. Since the arrivals

form a Poisson process with rate �, the interarrival times are independent and identically

distributed according to an exponential distribution with mean 1=�:

Pr(�j > � ) = e��� :

The busy period beginning at t0 comprises n arrivals (counting the arrival at t0), where

n � 1 is the smallest integer such that �n > 1. The number N of arrivals during a busy

period is thus distributed as the number of independent trials, each of which succeeds with

probability e��, required to produce the �rst success. The distribution of N is therefore

geometric,

Pr(N = n) = e��(1� e��)n�1;

with mean

Ex(N) = e�

and variance

Var(N) = e2� � e�:

Since the variance grows as the square of the mean, the distribution does not tend to

concentrate about the mean as � increases. But if we rescale N by its mean, we get a
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random variable N=e� that whose distribution tends to an exponential with mean 1 as �

tends to in�nity. We have

Pr(N=e� > u) = e��
X

n>ue�

(1 � e��)n�1

= (1� e��)bue
�
c:

This gives

Theorem 2.1:

Pr(N=e� > u)! e�u

as �!1 with u � 0 �xed.

The distribution of logN � � thus tends to that of logM , where M is exponentially

distributed with mean 1. The random variable logM has mean

Ex(logM) =

Z
1

0

e�x logxdx = �0(1) = �
;

where �(s) denotes the gamma function and 
 = 0:557 : : : denotes Euler's constant (see

Whittaker and Watson [W], Chapter XII). Its second moment is

Ex
�
(logM)2

�
=

Z
1

0

e�x(log x)2 dx = �00(1) =
�2

6
+ 
2;

and thus its variance is

Var(logM) = Ex
�
(logM)2

�
�Ex(logM)2 =

�2

6
:

Here integrals representing the moments are expressed in terms of the derivatives of the

gamma function at 1 by di�erentiating the integral representation

�(s) =

Z
1

0

e�xxs�1 dx

once or twice before setting s = 1. The values of the resulting derivatives are obtained by

di�erentiating the logarithm of the Weierstrass product

�(s) =
e�
s

s

Y
m�1

�
m

m+ s

�
es=m

once or twice before setting s = 1. The evaluation of the second derivative is completed

using the formula
P

m�1
1
m2 = �(2) = �2

6
, where �(s) is the zeta function of Riemann (see

Whittaker and Watson [W], Chapter XIII). This gives

5



Corollary 2.2:

Pr
�
(logN)=� > u

�
!
�
1; 0 � u < 1,

0; 1 � u,

as �!1 with u � 0 �xed.

Next we shall turn our attention to the maximum number K of customers present in

the system simultaneously during a busy period. We shall show that with high probability

K lies in the interval [e�� 2 log �; e�]. To do this, we shall obtain estimates for the mean

and variance of the number Xk of customers that depart from the system only after k � 1

additional customers have arrived. We shall obtain all our estimates by �rst conditioning

on the eventN = n that there are exactly n customers, then averaging over the distribution

of N . We then have

Pr(K � k j N = n) = Pr(Xk � 1 j N = n):

We rely here on the fact that, since all service times are equal, the customers arrive and

depart according to a �rst-in �rst-out discipline, so if there are k customers in the system

simultaneously, then there are k consecutive customers in the system simultaneously.

Let Xk;i (where 0 � i � n � k) denote the event that the the customer arriving at

time ti departs (at time ti+1) only after k�1 additional customers have arrived (at times

ti+1; : : : ; ti+k�1). Thus Xk;i occurs if and only if �i+1 + � � �+�i+k�1 � 1, and we have

Xk =
X

0�i�n�k

Xk;i

(where we have identi�ed the event Xk;i with its f0; 1g-valued indicator variable).

When we condition on the event N = n, the interarrival times �1; : : : ;�n�1 remain

independent, but they now have the distribution obtained by conditioning on the event

�h � 1, namely

Pr(�h � � ) =

R �
0
e��� d�R 1

0
e��� d�

=
1� e���

1� e��
:

Note that this distribution di�ers from the unconditional distribution by the factor 1�e��.
Thus we have

Pr(Xk;i j N = n) = Pr(�i+1 + � � �+�i+k�1 � 1 j N = n)

= Pr(�i+1 + � � �+�i+k�1 � 1)=(1� e��)k�1:
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Now Pr(�i+1+ � � �+�i+k�1 � 1) is just the probability that k� 1 or more arrivals occur

during an interval of unit length in a Poisson process of arrival rate �:

Pr(�i+1 + � � �+�i+k�1 � 1) = e��
X

k�1�h<1

�h

h!
:

(Note that this formula is exact, with the sum over h extending to in�nity, even though

we are considering a process with just n arrivals.) Thus

Pr(Xk;i j N = n) =
e��

(1� e��)k�1

X
k�1�h<1

�h

h!
:

Summing over i we obtain

Ex(Xk j N = n) =
(n� k + 1)e��

(1 � e��)k�1

X
k�1�h<1

�h

h!
:

This formula holds when n � k � 1; when n < k, the conditional expectation is of course

0. We thus have

Ex
�
maxfn� k + 1; 0g

�
= (1� e��)k�1e�;

so that

Ex(Xk) =
X

k�1�h<1

�h

h!
: (2:1)

By obtaining upper bounds for this expression, we shall be able to show that Pr(Xk � 1)

is small when k is large, which yields bounds on the upper tail of the distribution of K.

To obtain corresponding bounds on the lower tail, we shall need to show that Pr(Xk = 0)

is small when k is small, and for this we shall need upper bounds for the variance of Xk

as well as lower bounds for the expectation.

To this end, we start with the formula

Var(Xk) =
X

0�i;j�n�k

Pr(Xk;i;Xk;j )� Pr(Xk;i) Pr(Xk;j )

� Ex(Xk) + 2
X

0�i<j�n�k

Pr(Xk;i;Xk;j)� Pr(Xk;i) Pr(Xk;j):

When j � i + k � 1, the events Xk;i (which is equivalent to �i+1 + � � � + �i+k�1)

and Xk;j (which is equivalent to �j+1 + � � � + �j+k�1) are determined by disjoint

sets of independent interarrival times, and thus are themselves independent, so that
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Pr(Xk;i;Xk;j ) = Pr(Xk;i) Pr(Xk;j), and these terms make no contribution to the sum.

Thus we have

Var(Xk) � Ex(Xk) + 2
X

0�i<j�n�k
j<i+k�1

Pr(Xk;i;Xk;j )� Pr(Xk;i) Pr(Xk;j )

� Ex(Xk) + 2
X

0�i<j�n�k
j<i+k�1

Pr(Xk;i;Xk;j ):

De�ne Yk;i;j to be the event �i+k+ � � �+�j+k�1 � 1. If j < i+k�1, then Yk;i;j is implied

by Xk;j , so that Pr(Xk;i;Xk;j) � Pr(Xk;i; Yk;i;j). Furthermore, Xk;i and Yk;i;j depend on

disjoint sets of independent interarrival times, and thus are themselves independent, so

that Pr(Xk;i; Yk;i;j) = Pr(Xk;i) Pr(Yk;i;j). Thus we have

Var(Xk) � Ex(Xk) + 2
X

0�i�n�k

Pr(Xk;i)
X

i<j�n�k
j<i+k�1

Pr(Yk;i;j):

Now Pr(Yk;i;j) = Pr(�i+k + � � � +�j+k�1 � 1) is just the probability that j � i or more

arrivals occur during an interval of unit length in a Poisson process of arrival rate �:

Pr(Yk;i;j) = e��
X

j�i�h<1

�h

h!
:

If we sum the probability that d or more arrivals occur over all d � 1, we obtain the

expected number of arrivals, which for the Poisson process in question is �. Thus we have

X
i<j�n�k
j<i+k�1

Pr(Yk;i;j) � �;

so that
Var(Xk) � Ex(Xk) + 2�

X
0�i�n�k

Pr(Xk;i)

� (1 + 2�)Ex(Xk):

By Markov's inequality we have

Pr(Xk � 1) � Ex(Xk);

and by Chebyshev's inequality we have

Pr(Xk = 0) � Var(Xk)

Ex(Xk)2
� 1 + 2�

Ex(Xk)
:
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Thus, since K is the largest k such that Xk � 1, we can obtain bounds on the tails of

the distribution of K from estimates for Ex(Xk). For k � 1 � e�, successive terms in the

sum (2.1) decrease at least geometrically with ratio 1=e, so the sum is bounded above by

e=(e � 1) times its largest term:

Ex(Xk) �
e

e � 1

�k�1

(k � 1)!
:

For k � 1 = e�, Stirling's formula yields

Ex(Xk) �
e

e� 1

1

(2�e�)1=2
+O

�
1

�3=2

�
:

This implies that Pr(Xk � 1) ! 0 as � ! 1 with k � 1 � e�. In any case, the sum in

(2.1) is bounded below by its largest term. For k � 1 = e� � 2 log �, Stirling's formula

yields

Ex(Xk) =
�3=2

(2�e)1=2
+O

�
�1=2

�
:

This implies that Pr(Xk = 0)! 0 as �!1 with k � 1 � e�� 2 log�. Combining these

results we have

Theorem 2.3:

Pr
�
K=(e�) > u

�
!
�
1; 0 � u < 1,

0; 1 � u,

as �!1 with u � 0 �xed.

3. The M=M=1 Model

We now turn our attention to theM=M=1 model, for which we shall obtain analogous

results by di�erent methods. We shall reuse the notation of the preceding section, so N

will denote the number of customers arriving during a busy period of theM=M=1 system,

and K will denote the maximum number of customers served simultaneously during such

a period. The most striking feature of the M=M=1 system is that it has a countable state

space. Indeed, the number of customers being served constitutes the state of the system,

with the system making transitions among states at the rates indicated in the following

diagram.
� � � � �

0 *) 1 *) 2 *) � � � *) j *) � � �
1 2 3 j j+1
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It is easy to see that the number J of customers in the system has an equilibrium distri-

bution

Pr(J = j) =
e���j

j!
:

Let T (z) denote the generating function of N � 1:

T (z) =
X
j�0

zj Pr(N � 1 = j):

(The discounting of the �rst customer, focusing attention on N � 1 rather than N , is for

technical convenience.) Our �rst order of business is to derive an expression for T (z). We

shall use a method given by Guillemin and Simonian [G3].

For j � 1, let Tj(z) be the generating function for the number of customers arriving

before the �rst visit to state j � 1, when the system starts in state j. Then Tj(1) = 1

(since the state 0 is recurrent, and can only be reached from state j by passing through

state j � 1), and we seek T (z) = T1(z). We have

Tj(z) =
j

�+ j
+

�

�+ j
z Tj+1(z)Tj (z); (3:1)

since from state j the system can either go immediately to state j � 1 (which occurs with

probability j
�+j

), or it can go by an arrival to state j + 1 (which occurs with probability
�

�+j
), after which it must pass through state j before reaching state j�1. For j � 1, de�ne

Sj(z) =
Y

1�i�j

Ti(z);

so that T1(z) = S1(z). Multiplying (3.1) by (� + j)Sj�1(z) yields

(�+ j)Sj(z) = j Sj�1(z) + �z Sj+1(z): (3:2)

De�ne

R(y; z) =
X
j�1

yj

j!
Sj(z):

We note that since jSj(z)j � 1 for jzj � 1, R(y; z) is an entire function of y for any z such

that jzj � 1. Multiplying (3.2) by yj=j! and summing over j � 2 yields

�
�
R(y; z) � yS1(z)

�
+ y

�
@
@y
R(y; z) � S1(z)

�
= yR(y; z) + �z

�
@
@y
R(y; z) � S1(z) � yS2(z)

�
:
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Using the case j = 1 of (3.2), (� + 1)S1(z) = 1 + �z S2(z), allows us to eliminate S2(z),

yielding

(�z � y) @
@y
R(y; z) = (�� y)R(y; z) + �z S1(z) � y:

To solve this equation, we put R(y; z) = P (y; z)Q(y; z), where P (y; z) is a solution to the

homogeneous equation

(�z � y) @
@y
P (y; z) = (�� y)P (y; z):

Integrating the equation

@
@y
logP (y; z) =

�� y

�z � y

yields

P (y; z) = ey(y � �z)��(1�z)C(z);

where C(z) is a factor arising from the constant of integration. Substitution then gives

the following equation for Q(y; z):

@
@y
Q(y; z) =

e�y(y � �z)�(1�z)(�z S1(z) � y)

C(z)
:

Integrating this equation yields

Q(y; z) =
�z S1(z)

C(z)

Z y

0

e��(� � �z)�(1�z) d� � 1

C(z)

Z y

0

e��(� � �z)�(1�z)� d�:

Combining the expressions for P (y; z) and Q(y; z) yields

R(y; z) =

ey(y � �z)��(1�z)
�
�z S1(z)

Z y

0

e��(� � �z)�(1�z) d� �
Z y

0

e��(� � �z)�(1�z)� d�

�
:

We have observed that the left-hand side is an entire function of y for any z such that

jzj � 1. On the other hand, the factor (y � �z)��(1�z) will cause the right-hand side to

diverge when y = �z, unless the expression in large parentheses vanishes for y = �z. This

yields the following expression for T (z) = T1(z) = S1(z) (which is what we were seeking

in the �rst instance):

T (z) =

R �z
0

e��(� � �z)�(1�z)� d�

�z
R �z
0

e��(� � �z)�(1�z) d�
;
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or (making the change of variable � = �z(1 � s))

T (z) =

R 1
0
e�zs(1 � s)s(1�z)��1 dsR 1
0
e�zss(1�z)��1 ds

:

The integrals in both numerator and denominator have singularities as z ! 1, but these

singularities cancel, since both integrands behave similarly in this limit. After some further

manipulations we shall be able to carry out this cancellation explicitly. The Kummer

con
uent hypergeometric function

�(a; c;w) =
X
j�0

(a)jw
j

(c)jj!
(3:3)

(where (a)j = a(a � 1) � � � (a � j + 1)) has the integral representation

�(a; c;w) =
�(c)

�(a)�(c � a)

Z 1

0

ewt(1 � t)c�a�1ta�1 dt

(see Lebedev [L], Equations (9.9.1) and (9.11.1)). Thus, using the functional equation

�(b + 1) = b�(b), we have

T (z) =
1

(1� z)� + 1

�
�
(1 � z)�; (1 � z)� + 2;�z

�
�
�
(1 � z)�; (1 � z)� + 2;�z

� :

The expansion (3.3) gives the numerator and denominator as Laurent series with leading

term 1=(1 � z)�, which gives rise to the singularities mentioned above. Thus it will be

convenient to multiply both expansions by the factor (1� z)�, to obtain

T (z) =

1�
(1�z)�+1

� + (1� z)�
P

j�1
�jzj�

(1�z)�+j
��

(1�z)�+j+1

�
j!

1 + (1� z)�
P

j�1
�jzj�

(1�z)�+j
�
j!

: (3:4)

Let

A(�; z) =
1�

(1� z)� + 1
� + (1 � z)�

X
j�1

�jzj�
(1 � z)�+ j

��
(1 � z)� + j + 1

�
j!
;

and

B(�; z) = 1 + (1 � z)�
X
j�1

�jzj�
(1� z)� + j

�
j!
;
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so that T (z) = A(�; z)=B(�; z). We note that A(�; 1) = B(�; 1) = 1, so that T (z) = 1, as

it must be.

By expanding the �rst few terms of A(�; z) and B(�; z), we obtain

T (z) =

�
1

� + 1

�
+

�
2�

(� + 1)2(� + 2))

�
z

+

�
6�3

(�+ 1)2(� + 2)2(� + 3)
+

4�2

(�+ 1)3(�+ 2)2

�
z2 + � � � ;

which agrees with the following direct calculation. We obtain Pr(N = n) by summing the

probabilities of the trajectories in state space, starting at state 0, and having exactly n

ascents and n descents before �rst returning to state 0. Each such trajectory contributes

a probability that is a product of 2n factors, with a factor �=(� + j) for each ascent from

state j to state j+1, and a factor of j=(�+ j) for each descent from state j to state j� 1.

The cases N = 1 and N = 2 each have one possible trajectory, as follows.

% &

�
�+0

1
�+1

% &

% &

�
�+0

�
�+1

2
�+2

1
�+1

The probabilities of these trajectories give the constant term and the coe�cient of z in

T (z). The case N = 3 has two possible trajectories.

% &

% &

% &

�
�+0

�
�+1

�
�+2

3
�+3

2
�+2

1
�+1

% & % &

% &

�
�+0

�
�+1

2
�+2

�
�+1

2
�+2

1
�+1
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The sum of their probabilities gives the coe�cient of z2 in T (z). Expanding these coe�-

cients in powers of � gives

Pr(N = 1) = 1� �+ �2 +O(�3);

Pr(N = 2) = �� 5

2
�2 +O(�3);

Pr(N = 3) =
3

2
�2 +O(�3):

This in turn gives

Ex(N) = 1 + �+
1

2
�2 +O(�3) (3:5)

and

Var(N) = �+
5

2
�2 +O(�3): (3:6)

To evaluate Ex(N) = T 0(1) + 1 exactly, we di�erentiate the formula T (z)B(�; z) =

A(�; z), then set z = 1. This gives

T 0(1) = A0(�; 1) �B0(�; 1)

= �� �
X
j�1

�j

(j + 1) j j!
+ �

X
j�1

�j

(j + 1) j j!

= �+ �
X
j�1

�j

(j + 1)!

= e� � 1:

This gives Ex(N) = e� = 1 + �+ 1
2
�2 +O(�3), which agrees with (3.5).

To evaluate Var(N) = T 00(1) + T 0(1) � T 0(1)2 exactly, we di�erentiate the formula

T (z)B(�; z) = A(�; z) twice, then set z = 1. This time we cannot simplify the sums as

much as before, and we get

Var(N) = 2�E(�)e� � e2� + 2�e� + e�;

where

E(�) =
X
j�1

�j

j j!
=

Z �

0

ex � 1

x
dx:

This gives Var(N) = �+ 5
2
�2 +O(�3), which agrees with (3.6).

We could continue in this way to work out higher moments ofN in terms of increasingly

complicated sums or integrals. We shall instead consider the asymptotic behavior of these

moments, which has a particularly simple expression. We shall show the following.

14



Proposition 3.1: For each �xed k,

Ex(Nk) � k! ek�

as �!1.

We shall need a lemma that says that certain functions with power series that are

similar to that of the exponential function, e� =
P

j�0
�j

j!
, have the same asymptotic

behavior as the exponential function.

Lemma 3.2: For any �xed natural numbers a and b,

X
j�1+a+b

�j

ja(j + 1)b(j � a� b)!
� e� (3:7)

as �!1.

Proof: The proof proceeds in three steps. First, we subtract from the left-hand side of

(3:7) the terms with j < �=2 . The sum over these terms is

X
1+a+b�j<�=2

�j

ja(j + 1)b(j � a � b)!
�

X
1+a+b�j<�=2

�j

j!

� (�=2)(2e)�=2:

Here we have bounded the sum by the number of terms times the largest term, then used

the inequality j! � (j=e)j . Since (2e)1=2 < e, this sum is negligible compared with the

right-hand side e�.

The second step is to observe that for the remaining terms, with j � �=2, the denom-

inator is close to j!. This yields

X
j��=2

�j

j!
�

X
j��=2

�j

ja(j + 1)b(j � a� b)!
�
�

�

�+ 2(a + b+ 1)

�a+b X
j��=2

�j

j!
:

The third step is to \complete the exponential" e�, by adding the terms �j=j! for

j < �=2. The sum of these terms is

X
0�j<�=2

�j

j!
� (1 + �=2)(2e)�=2;

which is again negligible compared with e�. Combining these three estimates yields the

lemma. 4
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Next we shall need two lemmas giving the the asymptotic behavior of derivatives of

the series A(�; z) and B(�; z).

Lemma 3.3: For each �xed m,

@m

@zm
A(�; z)

��
z=1
� �m�m�2e�

as �!1.

Proof: We apply the multinomial version of Leibniz's rule to the series for A(�; z). We

observe that the factor (1� z) in front of the sum will prevent the sum from contributing

to the result unless this factor is di�erentiated exactly once. Thus we have

@m

@zm
A(�; z)

��
z=1

=m!�m �m�
X
a;b

�
m� 1

p; q

�X
j�1

�j+p+q

jp+1 (j + 1)q+1 (j �m+ p+ q + 1)!
:

Applying Lemma 3.2 to each term in the sum over p and q, we see that the term with

p = q = 0 makes the largest contribution, and that this contribution gives the asymptotic

behavior �m�m�2e�, with the contributions of all other terms being negligible. Since the

term m!�m is clearly also negligible, we obtain the result of the lemma. 4

A similar and simpler argument gives the following lemma.

Lemma 3.4: For each �xed m,

@m

@zm
B(�; z)

��
z=1
� �m�m�1e�

as �!1.

Proof of Proposition 3.1: We shall �rst establish the asymptotic relation

Ex
�
(N)k

�
� k! ek� (3:8)

for the factorial moments Ex
�
(N)k

�
= T (k)(1). The proposition will then follow by induc-

tion on k, using the relation

Nk =
X
j

�
k

j

�
(N)j

(where
n
k
j

o
is the Stirling number of the Second Kind), with

n
k
k

o
= 1.

To establish (3.8), we proceed by induction on k, with the basis being the esti-

mate Ex(N) = e� derived above. For the inductive step, we di�erentiate the identity

T (z)B(�; z) = A(�; z) using Leibniz's rule, then set z = 1. This gives

T (k)(1) = A(k)(�; 1) �
X
j�1

�
k

j

�
T (k�j)(1)B(j)(�; 1):
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Applying Lemmas 3.3 and 3.4 and the inductive hypothesis to each term on the right-

hand side, we see that the term with j = 1 makes the largest contribution, and that this

contribution give the asymptotic behavior k! ek�, with the contributions of all other terms

being negligible. 4

We are now ready to prove the following analogue of Theorem 2.1.

Theorem 3.5:

Pr(N=e� > u)! e�u

as �!1 with u � 0 �xed.

This will imply the following analogue of Corollary 2.2.

Corollary 3.6:

Pr
�
(logN)=� > u

�
!
�
1; 0 � u < 1,

0; 1 � u,

as �!1 with u � 0 �xed.

Proof of Theorem 3.5: By Proposition 3.1, the rescaled variable U = N=e� has moments

satisfying

Ex(Uk)! k!

as � !1. We next observe that the exponential distribution with mean 1 is the unique

distribution with these limiting values for moments. To see this, let M have exponential

distribution with mean 1. Then

Ex(Mk) =

Z
1

0

sk e�s ds = k!:

To establish uniqueness, we use the classical criterion of Carleman [C], which says that the

distribution of a random variable Q on [0;1) with mean 1 is characterized by its moments

if X
2�k�l

Ex
�
(Q � 1)k

�
�1=2k !1

as l ! 1, where Ex
�
(Q � 1)k

�
are the central moments of Q. For the exponential

distribution, the central moments are

Ex
�
(M � 1)k

�
=

Z
1

0

(s� 1)k e�s ds

=

Z
1

0

X
j

�
k

j

�
sj(�1)k�j e�s ds

=
X
j

�
k

j

�
j! (�1)k�j

= Dk;
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where Dk is the k-th derangement number, which is the number of �xed-point-free per-

mutations of f1; : : : ; kg. Since we have Dk � k! � kk, we obtain

X
2�k�l

Ex
�
(M � 1)k

�
�1=2k �

X
2�k�l

k�1=2 �
Z l

2

s�1=2 ds = 2
p
l � 2

p
2;

so that Carleman's criterion is satis�ed. Thus the distribution of U = N=e� converges

weakly to an exponential distribution with mean 1 as �!1. 4

We shall now turn our attention to the maximum number K of customers present in

the system simultaneously during a busy period. We shall show that with high probability

K lies in the interval [e��2 log�; e�]. This conclusion will follow from a remarkably simple

exact formula for the distribution of K.

Proposition 3.7: For k � 0, we have

Pr(K > k) =
1P

0�j�k
j!
�j

:

Proof: For 0 � j � k + 1, let Pj denote the probability that the system arrives at state

k + 1 before arriving at state 0, when started in state j. Then Pr(K > k) = P1.

We have P0 = 0, Pk+1 = 1, and

Pj =
j

�+ j
Pj�1 +

�

� + j
Pj+1

for 1 � j � k. Multiplying through by �+ j and rearranging yields

j(Pj � Pj�1) = �(Pj+1 � Pj):

Thus if we set Qj = Pj+1 � Pj , then we have

jQj�1 = �Qj

for 1 � j � k, and

Qk + � � � +Q1 = (Pk+1 � Pk) + � � � + (P1 � P0) = Pk+1 � P0 = 1:

Thus the Qj satisfy the same equations as the equilibrium probabilities for the following

system.
1 2 3 k�1 k

0 *) 1 *) 2 *) � � � *) k � 1 *) k

� � � � �
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The solution of these equations is

Qi =
i!
�iP

0�j�k
j!
�j

for 0 � i � k. The probability we seek is Pr(K > k) = P1 = Q0, and taking i = 0

completes the proof. 4

We remark that the preceding derivation made no use of the speci�c transition rates

of the M=M=1 system, and thus it is applicable to an arbitrary birth-and-death process,

with the following result.

Corollary 3.8: Consider the birth-and-death process with the transition rates indicated in

the following diagram.

�0 �1 �2 �j�1 �j

0 *) 1 *) 2 *) � � � *) j *) � � �
�1 �2 �3 �j �j+1

Then for k � 0, we have

Pr(K > k) = 1
� X

0�j�k

� Y
1�i�j

�i
� Y

1�i�j

�j�1
�
:

We shall now use Proposition 3.7 to bound the tails of the distribution of K. For

k � e�, we bound the sum in the denominator from below by its last term:

Pr(K > k) � �k

k!
:

For k = �e, Stirling's formula yields

Pr(K > k) � 1

(2�e�)1=2
+O

�
1

�3=2

�
:

Thus Pr(K > k) ! 0 as � ! 1 with k � e�. To bound the lower tail, we observe that

1=(1 + x) � 1� x, so that

Pr(K > k) � 1� 1

�
�

X
2�j�k

j!

�j
:

To bound the sum from above, we observe that the successive terms decrease until j > �,

then increase, so that the largest term in the sum is either the �rst or the last. The �rst

term is 2=�2. For k = e�� 2 log �, Stirling's formula yields

k!

�k
=

1

(2�e)1=2�3=2
+O

�
1

�5=2

�
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for the last term, which is therefore larger. Thus we have

Pr(K > k) � 1� 1

�
� (k � 2)

k!

�k

� 1� e1=2

(2��)1=2
+O

�
1

�

�
:

This implies that Pr(K > k)! 1 as �!1 with k � e��2 log �. Combining these results

we have

Theorem 3.9:

Pr
�
K=(e�) > u

�
!
�
1; 0 � u < 1,

0; 1 � u,

as �!1 with u � 0 �xed.

4. Conclusion

We have obtained strikingly similar results, for both the number of vertices and the

size of the largest clique, in two models for random interval graphs, namely those based on

the busy periods of theM=D=1 andM=M=1 systems. This similarity suggest that these

results may be more robust than is shown by these particular cases. In particular, one

might try to establish them for theM=G=1 system with general (but independent) service

times. For the distribution of the number of vertices in this case, the work of Kingman

[K] might provide an avenue of approach, but for the distribution of the size of the largest

clique, we have no suggestion as to how to proceed.
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Appendix: Interval Graphs versus Indi�erence Graphs

In this appendix we shall show that the probability that an interval graph arising from

the M=M=1 system is an indi�erence graph tends to zero as � tends to in�nity. This may

be contrasted with the fact that a graph arising from the M=D=1 system is always an

indi�erence graph. Roberts [R] has shown that an interval graph is an indi�erence graph

if and only if it does not contain K1;3 (in which one vertex, the center, is joined by edges

to three other vertices, the tips, among which there are no further edges) as an induced

subgraph. We shall show that for the M=M=1 system, any particular service interval (for
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example, the one that starts a busy period) intersects, with probability tending to 1 as �

tends to in�nity, three other service intervals that are pairwise disjoint among themselves.

Let I0 be a service interval in a realization of the M=M=1 process. We shall describe

a procedure for �nding three service intervals I1, I2 and I3, that each intersect I0, but

which are pairwise disjoint among themselves. At various points we may have to abandon

the procedure, but we shall keep track of the probabilities of having to do this, and in the

end the sum of these probabilities will be an upper bound on the probability that such

intervals do not exist.

Set " =
�
(log �)=�

�1=2
. First, we shall abandon the procedure unless the length of I0

is at least 5". The probability of abandonment at this point is at most 5". Next, we shall

let J1, J2, J3, J4 and J5 be the �rst �ve successive subintervals, each of length ", in I0.

Let H be the number of service intervals that begin during J1. The number H is

distributed as a Poisson random variable with mean � = �" and therefore with variance

�. We shall abandon the procedure unless H � �=2. By Chebyshev's inequality, the

probability of abandonment at this point is at most 4=� = 4=(� log �)1=2. Next we shall

seek one of these H service intervals that terminates before the end of J2, and we shall call

this interval I1. We shall abandon the procedure unless there is at least one such interval.

The probability of abandonment at this point is at most e�"�=2 = 1=�1=2, since each of

at least �=2 service intervals must continue though J2 if we fail to �nd I1. Thus we �nd,

except with probability at most 4=(� log �)1=2+1=�1=2, a service interval I1 � J1 [J2. By
repeating this argument we �nd, except with probability at most 4=(� log �)1=2 + 1=�1=2,

a service interval I2 � J3 [J4. Finally, by repating the �rst part of this argument we �nd,

except with probability at most 4=(� log �)1=2, a service interval I3 that begins in J5 (in

this case we do not care when it ends).

Unless we abandoned the procedure at some point, we found intervals I1, I2 and I3,

that each intersect I0, but which are pairwise disjoint among themselves. Thus sum of

the probabilities of abandonment is at most 5
�
(log �)=�

�1=2
+ 12=(� log �)1=2 + 2=�1=2 =

O
��
(log �)=�

�1=2�
. Thus the probability that the resulting graph does not contain a for-

bidden subgraph for indi�erence graphs tends to zero as � tends to in�nity.
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