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ABSTRACT

NaDSyL, aNatural Deduction based Symbolic Logic, like some earlier logics, is
motivated by the belief that a confusion of use and mention is the source of the set
theoretic paradoxes. However NaDSyL differs from the earlier logics in severa
important respects.

"Truth gaps’, as they have been called by Kripke, are essential to the consistency of
the earlier logics, but are absent from NaDSyL ; the law of the excluded middleis
derivable for all the sentences of NaDSyL. But the logic has an undecidable el ementary
syntax, a departure from tradition that is of little importance, since the semantic tree
presentation of the proof theory can incorporate the decision process for the elementary
syntax.

The use of the lambda calculus notation in NaDSyL, rather than the set theoretic
notation of the earlier logics, reflects much more than a change of notation. For a second
motivation for NaDSyL is the provision of ahigher order logic based on the original term
models of the lambda calculus rather than on the Scott models. These term models are
the "natural” intepretation of the lambda calculus for the naive nominalist view that
justifies the belief in the source of the paradoxes. They provide the semantics for the first
order domain of the second order logic NaDSyL .

The elementary and logical syntax or proof theory of NaDSyL isfully described, as
well asits semantics. Semantic proofs of the soundness of NaDSyL with cut and of the
completeness of NaDSyL without cut are given. That cut is aredundant rule follows
form these results. Some applications of the logic are also described.
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1. INTRODUCTION

This report provides an introduction to the semantics and proof theory of the logic
NaDSyL. Semantic proofs of the soundness of NaDSyL with cut and of its completeness
without cut are provided from which follows the redundancy of cut. A sketch of some of
the applications of the logic isaso given. [Gilmore97a] provides an abbreviated
introduction to the logic with proofs of soundness and compl eteness with cut but not of
the redundancy of cut, while [Gilmore97b] describes the applications more fully.

NaDSyL, aNatural Deduction based Symbolic Logic, like the logics described in
[Gilmore71,80,86], is motivated by the belief that a confusion of use and mention isthe
source of the set theoretic paradoxes, aview also expressed in [Sellars63a,63b]. NaDSyL
differsfrom the earlier logicsin several important respects.

"Truth gaps’, asthey were called in [Kripke75], are essentia to the consistency of the
earlier logic, but are absent from NaDSyL ; the law of the excluded middle is derivable for
all the sentences of NaDSyL. But the logic has an undecidable elementary syntax, a
departure from tradition that is of little importance since the semantic tree presentation of
the proof theory can incorporate the decision process for the el ementary syntax.

The use of the lambda calculus notation in NaDSyL, rather than the set theoretic
notation of the earlier logics, reflects much more than a change of notation. For a second
motivation for NaDSyL isthe provision of ahigher order logic based on the original term
models of the lambda cal culus rather than on the Scott models described for examplein
[Barendregt84]. These term models are the "natural” intepretation of the lambda calculus
for the naive nominalist view of the logic that justifies the belief in the source of the
paradoxes and that is sketched in [Gilmore80] . They provide the semantics for the first
order domain of the second order logic NaDSyL .

Incidentally, that the source of the paradoxesis a confusion of use and mention is
more competently argued in [Sellars63a,63b]. Thisview of the source of the paradoxes
may have some relevance for logic programming. In 82 of [Nadathur&Miller94], titled
"Motivating a Higher-Order Extension to Horn Clauses”, predicate variables appearing in
"extensional" positionsin atomic formulas are distinguished from those appearing in
"intensional” positions. For the latter, values can be found by a structural analysis. The
distinction between extensional and intensional usesis exactly that of use and mention.

1.1. Summary of Paper

The elementary syntax is defined in 82 in two stages. First the syntax for an extended
lambda calculusis defined asaset S of strings of characters and alambda reduction
relation > isthen defined on S. The Church-Rosser theorem for > over Sis stated
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without proof. Then the set F of formulas of the logic is defined as a subset of S.
Although S includes strings that are not formulas of the pure lambda calculus, a proof
that [=is not a decidable subset of Sis sketched in 82.5 based on the concept of head
normal form [Barendregt84]. A discussion of the significance of this result is deferred to
84.4.

The semantics for the logic is described in 83. Parameters are used in thelogic in
place of free quantification variables. Thefirst order domain d for interpretations and
models of NaDSyL consists of the members of Sin which no parameter occurs and no
variable has afree occurrence; dis closed under >.

The logical syntax or proof theory, described in 84, is presented as a theory of
semantic trees which is the tree version of the original semantic tableaux of [Beth55].
The close connection with the Gentzen sequent calculus [ Gentzen34-35] is apparent:
Derivationsin NaDSyL are derivations of Gentzen sequents. Another tree version of
semantic tableaux is described in [Smullyan68]. 1n 85 semantic proofs of the soundness
of the logic with cut and its completeness without cut are provided from which the
redundancy of cut follows.

1.2. Related Work

The single most important inspiration for [Gilmore71] was 821 of [Church41l], where a
logic is defined within the -5 calculus. Related papers cited in [Fitch52] and in
[Schiitte60,77] suggest that they had a similar inspiration. The logics described in
[Gilmore71,80,86], aswell as NaDSyL, differs from those of Fitch and Schittein
allowing some second order terms to also befirst order terms. Those second order terms
that are also first order are those for which the distinction between use and mention can
be maintained; see §2.4 where the set t of first order termsis defined.

Theories described in [Cocchiarella79,85] also allow some second order termsto be
first order. How NaDSyL relates to the these theories is complicated by their
presentation as axiomatic theories, in contrast to the natural deduction presentation of
NaDSyL. One of the motivations for the presentation of NaDSyL isthe desireto treat
abstraction in the same manner aslogical connectives and quantification.

The most recent related work is that described in [Apostoli94,95]. Thelogic G
described in [Apostoli94] was motivated by the first order logic NaDSet 1 described in
[Gilmore86]. G remainsfirst order but, unlike NaDSet 1, arithmetic can be formalized
within it, although with the addition of axioms that are instances of the law of the
excluded middle. [Apostoli95] describes another first order theory LPL based on the
theory of pairs and formalized in the manner of NaDSet 1 and with asimilarly defined
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semantics. However again unlike NaDSyL 1, LPL has axioms; one of its axiom schemes
asserts for example that the representative for the natural number O is not an ordered pair.
The paper [Apostoli& Kanda96] argues for the importance of the logic LPL for computer
science, while the monograph [Apostoli& Kanda97] argues that LPL is a consistent
replacement for Frege'sinconsistent logic.

1.3. SomeApplications of NaDSyL
Here a sketch of the existing and proposed contents of the monograph [Gilmore97b] will
be described.

Chapter 1 isaleisurely presentation of the contents of this paper together with some
additional topics. These include other formulations of the logic including a natural
deduction presentation in the style of [Prawitz65] for an intutionistic version of the logic.

The sparce notation of NaDSyL asit is described in this paper is not suitable for
many of its applications. Chapter 2 describes how the logic can be extended by
definitions of intensional and extensional identity, ordered pairs and the natural numbers.
These definitions permit the formalization of second order arithmetic within NaDSyL, in
both its classical and intuitionistic forms.

Also in Chapter 2 anotation for partial first order functions is added, with defined
domains astheir "type". Two rules of deduction are introduced for reasoning about
partial functions. They provide a conservative extension of NaDSyL. An advantage of
the semantic tree presentation of the proof theory of NaDSyL is demonstrated here.
Although the partial function notation used is closely related to definite descriptions, the
"waste cases' that complicate the formalization of definite descriptionsin [Quine51] can
beignored in NaDSyL.

Since axiomatic theories play such alarge role in mathematics, Chapter 2 describes
how such theories can be formalized within NaDSyL. The results of
[Gilmore& Tsiknis93a], where aformalization of category theory in an earlier
unsuccessful logic NaDSet were described, are revisited and revised for NaDSyL.

The last topic dealt with in Chapter 2 is Cantor's diagonal argument. A rule of
deduction is derived which distinguishes between correct and incorrect uses of Cantor's
diagonal argument within NaDSyL. Cantor's use to prove that there are more subsets of
the natural numbers than there are numbers cannot be justified by the rule. But non-
controversial uses can be; for example, the use of the argument to prove that the Turing
computable real numbers cannot be enumerated by a Turing machine, can be justified.

An important advantage of alogic like NaDSyL, over alogic in which an axiom
of infinity must be added, is the ease with which recursively defined sets can be defined
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and reasoned about. Thisis demonstrated in Chapter 3. There very general methods are
developed in parallel for defining recursively both well-founded and non-well-founded
sets. Thisisfollowed by some applicationsin this and later chapters. One demonstration
of this advantage is given in [Gilmore& Tsiknis93b] where the semantics for a
programming language is defined in the unsuccessful logic NaD Set; the results of that
paper are repeated and enlarged for NaDSyL. The lambda notation of NaDSyL and the
semantic tree form of its proof theory makes the results easier to state and prove.

Sets of domain equations can be used to provide a denotational description of
programming languages [Gordon79]. In [Gilmore& Tsiknis92] solutions of such
equations are defined in NaDSet. The results are repeated and extended for NaDSyL.

Further topics to be discussed include grammars, temporal logics, and applications of
non-well-founded sets. It is expected that one chapter will be devoted to a description of
an interactive computer system for assisting in the construction of NaDSyL derivations.

In light of [Nadathur& Miller94], higher-order logic programming using NaDSyL in
place of the version of Church's Simple Theory of Types described in [Andrews71] will
be explored.

1.4. Acknowledgements

Conversations with Eric Borm, George Tsiknis, and Jamie Andrews, and correspondance
with Hendrik Boom, have greatly helped in the writing of this paper. Support from the
Natural Science and Engineering Council of Canadais gratefully acknowledged.
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2. ELEMENTARY SYNTAX

Seven different denumerable sets of strings of characters form the basis for the
elementary syntax of NaDSyL: Constants, quantification variables, and parameters, both
first and second order, and abstraction variables. As noted before, parameters play the
role of free quantification variables. The characters from which the strings are formed
consist of upper and lower case Latin letters and the numerals. The particular strings that
are members of these sets and the notation used to name the setsisdescribed in 82.1. In
§2.2 the set S of stringsis defined using additional primitive characters and a substitution
operator defined for it. A reduction relation > between members of Sisdefined in §2.3.
Finally in 82.4 the formulas and terms of NaDSyL are defined. A sketchisgivenin 82.5
of aproof that the set [= of formulas of NaDSyL is undecidable.

2.1. Notation for Constants, Variables, & Parameters

The following notation is used for the sets of strings used in the elementary syntax of
NaDSyL: ¢, qv, and p are the sets of first order constants, quantification variables, and
parameters. C(n), QV (n), and P(n) are the corresponding sets for the second order terms
of arity n,n= 0, and C, QV, and P are the sets of all second order constants,
quantification variables, and parameters of any arity. av isthe set of abstraction variables
used with the A abstraction operator. Additional primitive symbolsare'(, "), ", [, T, "\,
2, and'v'. '|"isthejoint denia logical operator, for which [F|G] istrueif and only if
both F and G arefalse. Thissinglelogical connectiveisused in order to reduce the
number of cases that have to be considered in many proofs.

The strings that are members of ¢, p, and v begin with lower case |etters,
respectively, one of 'a through 'c’, one of 'p', 'q’, and 'r', and with oneof 'x','y’, or 'Z'. The
strings that are members of av begin with one of the letters'u’, 'v', and 'w'.

The strings that are members of C(n), F(n), and QV (n) begin with upper case letters,
respectively, one of 'A’ through 'C', one of 'P, 'Q’, and 'R, and with one of 'X",'Y", or 'Z'.
It is assumed that each occurrence of one of these strings has an arity associated with it,
although the arity need not be explicitly indicated, but may be inferred from its context.

22. TheSets
In the following inductive definition of the set of strings S, bold letters R and S are used
asvariablesover S, and v and x as variables over respectively av and qv U QV :
Definition of S
1. cupuguuavuCuUPuU QV CS.

An occurrence of avariable from qv U av U QV isafreeoccurrencein itself.
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2. R,SeS= (R.SeS

A free occurrence of avariablein R or Sisafree occurrencein (R.S).
3. R,SeS= [R|§] €S

A free occurrence of avariablein R or Sisafree occurrencein [R|S].
4. ReS&veav = W.R)eS

A free occurrence of avariable other than v in R isafree occurrencein(W.W.R). A

free occurrence of v in R isan occurrence bound by the abstraction operator v in

(W\W.R). R isthe scope of the abstraction operator.

5, ReS&xequuQV = (Vx.R)eS

A free occurrence of avariable other than x in R isafree occurrencein (Vx.R). A

free occurrence of x in R isan occurrence bound by the quantifier vx in (VX.R). R is

the scope of the quantifier.
End of definition

The functional application notation (R.S) of the a calculus does not conform with the
more usual notation of the predicate logic. However, the latter notation can be introduced
by an abbreviating definition: For R, Sq, ..., SheS

R(Sy, ..., Sy)for (... (R.$).S)) ... .S)

Multiple abstraction operators can be similarly abbreviated:

(a1, Uy, ..., un.R) for (Au1.(ruo. ... .(uN.R) ...))

When thereisno risk of confusion, parenthesis'(* and ')’ in contexts (zv.R) and (VX.R)
will be omitted.

Let u be any variable; that isamember of av uqv U QV. Let v beavariablethat is
amember of the same set as u, and of the same arity asu if u € QV. Thevariablev is
said to be free to replace u in S e S provided no free occurrence of u in Siswithin the
scope of an abstraction operator Av or of aquantifier vv. An R € Sinwhich no variable
has afree occurrence is said to be closed. cSisthe set of al closed members of S.

2.2.1. Substitution
It is assumed that there is an enumeration of each of the sets av, qv, and QV sothat itis
meaningful to speak of the first member of such a set with a given property.

Let u beany variableand let R1, S1 € S. The substitution operator [R1/u] when
applied to S1 produces a member [R1/u]S1 of S defined as follows:
Definition of Substitution Operator
1. [RI/u]Slis R1if Slisu;

Sl if Slisavariable other than u or amember of cu pu C U P.

2. [R1U](R.S) is([RI/U]R.[R1/U]S)
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3. [RI/U][R}T]is[[R1/U]R|[R1/uU]S]]

4. [R1/ulaw.R)is (wW.R)ifuisv;
(\W.[R1/U]R) if v has no free occurrencesin R1; and
(\Ww.[R1/u][w/V]R) if v has afree occurrencein R1; herew isthe
first abstraction variable without a free occurrencein R1 that is
freetoreplacevinR.

5. [R1/U](vx.R)is (Vx.R)ifuisx;
(vX.[JR1/u]R) if x has no free occurrencesin R1; and
(vy.[RL/u][y/X]R) if x has afree occurrencein R1; herey isthe
first quantification variable of the same order and arity as x without
afree occurrencein R1 that isfreeto replace x in R.

For pep uPand R ecS, [R/p]Sisdefined to be the string obtained from S by replacing

each occurrence of p by R.

End of definition

2.3.  Reductions
A relation > between members of Sis defined inductively as follows:
Definition of >
1. R>S,when Sisana-,p-, or n-contractum of R, where
1. (M. Juv]S) isan a-contractum of (Av.S), provided u isfreeto replacevin S and
(Vy.[y/X]S) isan a-contractum of (¥x.S), providedy isfreeto replacex in S.
2. [RIV]Sisap-contractum of (Av.S)(R).

3. Sisan n-contractum of (Av.S(v)), provided v has no free occurrencein S.
2. LeeR=>S:

1. TeS=>(T.R)>(T.9 & (RT)=(ST).

2. TeS=>[R|T]>[SIT] & [T|R] > [T.9.

3. (W.R) = (\W.9).

4. (VX.R) = (Vx.9)
End of definition

The a-, -, and n-contractum terminology is that of [Curry58]; see also
[Barendregt84]. That Vy.[y/x]Sisan a-contractum of ¥x.Sisnot part of the lambda
calculus tradition but has been added because it too results from a change of bound
variable.

Clause (1) of the definition defines a replacement of all of R with S; R can be said to
be apart of R at depth 0. Repetitions of the inductive steps (2.1) - (2.4) has the effect of
replacing a part of greater depth in R by an a-, g-, or n-contractum of it.
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Two elementary properties of the > relation follow from its definition:

Lemma 2.3
1. IfRecSandR > S thenSecS.
2. Letxeqv,tecS,andR >S. Then [t/X]R >[t/X]S.

2.3.1. TheRelation >> and the Church-Rosser Theorem

The >> relation on S isthe transitve closure of >:

1. R>>R,forReS;and

2. R>>Sand S>T=>R>>T,for R,S, TeS.

The most important property of the >> relation is expressed in the following theorem:
Theorem (Church-Rosser)

Let R>>Sand R>>T. Thenthereisan R' forwhichS>>R'and T >>R".

The theorem gets its name from the paper [ Church& Rosser36] where a similar result
for the pure lambda calculus was first established. Other proofs are given or cited in
[Curry58] or in [Barendregt84] and may be adapted to the extended syntax of S.

For R, Se S, R=S isdefinedtomeanthat R>>T andS>>T forsomeT € S. The
notation for the relation isjustified by the following corollary to the theorem:

Corollary

Therelation = is an equivalence relation on S.

Proof of Corollary

That = isreflexive and symmetric follows immediately from its definition. That itisalso
transitive follows from the Church-Rosser theorem. For let R=Sand S=T. Then for
someT1and T2, R>>T1,S>>T1,S>>Ty and T >> To. Therefore by the theorem
thereisa T3 for which T1>> T3, and T >> T3. But since >> istransitive, it follows
that R>>T3and T >> T3 thatisR=T.

End of proof

2.4. Déefinitionsof Formulas, Degrees, & Terms
The set t of first order termsisthe set of R € S for which no member of P has an
occurrencein R and no member of QV has afree occurrence. Sincefirst order terms are
understood to be mentioned and thus to be implicitly within single quotes, this restriction
on the membership of t is necessary to avoid the error described in footnote 136 of
[Church56].

An atomic formulaisastring CPV(ty, ... , tp) for which
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CPVeCn)uPMuQV(nuav, andty, ..., thet, forn=0. AF isthe set of atomic
formulas. The set F of formulas is defined inductively:

Definition of =
1. AFcF.
2. F,GeF= [F|G]eF
3. [RN]T(Sy, ..., Sh)eF& veay = (W.T)(R, Sy, ..., SpeF, forn=0.
4. FeF& xeqvuuQV = (VX.F) ek
End of definition
Clause (3) of this definition ensures that = is undecidable because of its relationship to
head normal form reductions in the lambda cal culus [Barendregt84]; this connection is
discussed at greater length in §2.5.
The degree deg(F) of aformula F is defined inductively:
Definition of deg(F)
1. FeAF = deg(F)=0.
2. deg(F) =dl & deg(G) =d2= deg([F|G]) = max{dl, d2} +1.
3. deg([RVIT(Sy, ..., Sn)) =d= deg((\W.T)R, S1, ..., Sp)) = d+1.
4. deg([p/X]F) = d = deg(vx.F) = d+1, where p is a parameter of the same order and
arity as x that does not occur in F.
End of definition
The members of the sets ct, ¢, and cAF are the members of the cited setsin which
no variable has afree occurrence. Sentences are members of c=. The set cT(n) isthe set
of T e cSfor which T(py, ..., pn) € cF, wherepy, ..., ph€p, n= 0, are distinct from
each other and from any parameter occurringin T. The degreedeg(T) of T ecT(n) is
deg(T (1, .-, Pn)).
Lemma 2.4.
1. Letpxepuagv,tect,andFeF. Then[t/px]F e
2. LeePXePnuQV((n)and T ecl(n), forsomen,n=0,andlet F e E Then
[T/IPX]F € F.
Proof
A proof of (1) by induction on the definition of F isimmediate. A proof of (2) by
induction on the definition of F makesuse of (1): If FisPX(t), wheret isasequence of
n members of &, then [T/PX]F isT(t). Since T(p) € [F, where p isasequence of n
distinct first order parameters without an occurrencein T, T(t) € F by (1). Theremaining
casesfor (2) areimmediate.
End of proof
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25. FisUndecidable

Let SteS. St'isaformula part of St under the following circumstances corresponding
to the clauses (2) - (4) of the definition of F. Stis[F|G], (W.T)(R, Sy, ... , Sn), or (VX.F),
whereveav andx eqvu QV , and St"isone of F and G in thefirst two case, is
[RV]T(Sy, ..., Sn) inthe second case, and isF in the third. A sequence Sto, Sty, ..., Sty
of members of Sisa chain of formula parts of St if St is Stg and Stj+1 isaformula part
of Stj forO=<i<n. A maximal chain Stg, Sty, ..., Stpisonefor which Sty, 0 < n, hasno
formula part.

The following lemmafollows immediately from these definitions and the definition
of [~
Lemma 2.5.

Let SteS. Then St € Fif and only if each maximal chain of formula parts of St endsin
amember of AF.

Should there be a bound on the length of the chains of formula parts of St, thenitis
possible to decide of St whether or notitisin F. But there are St € Sfor which no such
bound exists; for example, ((Au.u(u))(ru.u(u))) which isaformula part of itself.

The string ((Au.u(u))(2u.u(u))) is a pure lambda calculus term; that is a member of the
subset L of S defined:

1 avc L

2. R,SeL= (R.S5elL

3. ReL&veav= (W.R)el

A chain of formula parts of amember St of L isahead reduction path as defined §8.3 of
[Barendregt84]. Thus St has a head normal form if and only if the chain of formula parts
of St ends in lambda calculus term that isin head normal form. Since there can be no
decision procedure for head normal form, there can be no decision procedure for
membership in F.
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3. SEMANTICS

Preliminary to the definition of models, adefinition of an interpretation | of NaDSyL is
givenin 83.1. Thenin 83.2 aset Q[l] of signed sentences +F is defined that records the
sentences that are true and falsein . Asisthe case with the models described in
[Henkin50], not all interpretations are models. A definition in 83.3 provides the basis for
the definition of modelsin §83.4..

3.1. Interpretationsof NaDSyL
The set d isdefined to have asits membersthet e ct in which no parameter occurs. Thus
the members of (ci—d) are the members of ct in which first order parameters occur.
Clearly disclosed under >; thatisded& d>d'= d'ed.

The set D(0) has as its members the two truth values true and false. For n> 0, D(n)
isthe set of functions f: d" — D(0) satisfying the condition: f(dq, ..., dj, ... ,dp) is
f(dy, ..., dj, ..., dp), whenever d; > d'jand dj, dy, ... , dh €d. Theeffect of this
condition isto make f afunction of the equivalence classes of d under =.

A base B isasequence of nonempty sets B(n) for which B(0) isD(0) and
B(n) € D(n), for n>0. Aninterpretation with base B isapair of functions @1 and @2
for which®1: d U p — d, where®4[d] isd for d e d, and ®,: C(n) UP(n) - B(n),n=0.

The domain of @1 isextended to include ct asfollows: Fort € ct, ®1[t] isthe result
of replacing each occurrence of afirst order parameter p int by ®1[p]. Note that
t>1t'= @qt] > @4 t7, fort, t' e ct. Similarly the definition of @, is extended:
@[ CP(ty, ..., tn)] isdefined to be @] CP|(®1[t1], ..., ®1[tn] ) when CP & C(n) u P(n)
andty, ..., thEect

Lemma 3.1
If CP e C(n) U F(n), t1, ..., tj, ... , th, ti' ect, and t; > t;" for somei, 1 <i <n, then
®o[CP(ty, ..., tj, ... , tp)] iIs®@[CP(ty, ..., ti', ..., tn)]
Proof
Let o[ CP] be f € B(n). Then o[ CP(ty, ..., tj, ..., tp)] and @2 CP(ty, ..., tj, ..., tp)]
arerespectively f(®1[t1], ..., ®1[ti], ..., ®1ltn]) and f(@1[t4], ..., ®1[ti], ..., @1[tn]).
Since ®1[t] = @1] t'], the conclusion follows from the definition of D(n).
end of proof

Let [ be an interpretation with functions @1 and @7, and let p be a parameter, first

or second order. Aninterpretation [* isap variant of [ if it hasthe same baseas| and
its functions ®1* and ®o* satisfy the conditions:
1. If pisfirst order, then ®* is®2 and @1*[ q] differsfrom ®41[q] only if qisp.
2. If p issecond order, then ®1* is @1 and ®2*[ q] differsfrom @[] only if qisp.
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3.2. Theset Q[l]
Aninterpretation | assigns asingle truth value ®2[ A] to each A € cCAF. This assignment
will be extended to an assignment of a single truth value 5[ F] to each F ecF. This
assignment of truth valuesis recorded as a set Q[I] of signed sentences for which
+F € Q[I] recordsthat @, F] istrue and —F € Q[I] that @[ F] isfalse.
The set @[] is defined to be U{Qk[l] | k = 0} where Q[l] isdefined for k = 0 as
follows:
Definition of [l]
1. Qq[l] isthe set of signed atomic sentences +A for which @[ A] istrue, respectively
false.
2. Assuming Qk[l] is defined for al interpretations [, Qk+1[] consists of all members of
Q[l] together with the sentences
1. +[F|G] for which —-F € Q[I] and -G € Q][!]; and
—{F{G] for which +F € Q[l] or +G € Q[!].
2. £(W.T(R, Sy, ..., Sp) for which £[RN]T(Sy, ..., Sh) € [!],
wheren = 0 and v is an abstraction variable.
3. +¥x.F for which +[p/X]F € Q[l*] for every p variant [* of [; and
—vx.F for which {p/x]F € [l *] for some p variant [* of [,
where F isaformulain which at most the quantification variable x has afree
occurrence, and p is any parameter that does not occur in F and is of the same
order and arity as X.
End of definition
Lemma 3.2
For each interpretation [,
1. +F¢Q[l] or—F ¢ Q[l], and +F € Q[[] or —F € Q[[], for F € cF.
2. z[rIX]IFegQ[l]andr >t => £[t/X]F € Q[I], where F e F, x e qv,and r, t € ct.
Proof
Since deg(F) isdefined in §2.4.1 for every F € [, to prove (1) and (2) it is sufficient to
prove by induction on k that if deg(F) = k then
a) +FeQl] or+F &l
b) +F e Q[l] or —-F e Q[l], and
c) =[r/X[Feqg[l] andr >t => «[t/X]F € Q[l].
That each of (a), (b), and (c) hold when k=0 isimmediate. Let them now (i) hold for al F
and all | when deg(F) =< k, and consider an F for which deg(F) = k+1. Thethree casesto
be considered are: F is[G|H], where deg(G), deg(H) < k; Fis(A\W.T)(R, Sy, ... , Sn),
where deg([RIV]T(Sy, ..., Sn)) =k; and F isvx.G, where deg([p/x]G) = k for some
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parameter p that does not occur in G and is of the same order and arity as x. That each of
(@), (b), and (c) hold in these cases can be concluded from the induction assumption.
End of proof

3.2.1. Sequents & Satisfaction
A sequent is an expression of the form
a Fi,...,FmFGy1...,Gp
where the sentences Fj, 0 < i = m, form the antecedent of the sequent and the sentences
Gj, 0= = n, the succedent. Sequents were first introduced in [Gentzen34-5] and for that
reason are sometimes called Gentzen sequents. If T isthe sequence Fy, ..., Fmand e the
sequence Gy, ..., Gp, then (a) can be writtenT |-o.

A sequentT @ issaid to be satisfied by an interpretation [ if thereisa sentence F
for whichF er and —+F €Q[l], or F € ® and +F € Q[[].

3.3  Déefinition of @[ T]
Let T ecT(n), n=0, and | be an interpretation with functions ®1 and ®,. Let d bea
sequence of n members of d. By (1) of lemma 2.4, T(d) is a sentence so that by (1) of
lemma 3.2 exactly one of +T(d) and —T(d) isin Q[I]. Define 5[ T] to be the function f
for which f(d) istrue, respectively false, if +T(d), respectively —T(d), isin Q[I].
Thus @[ T] € D(n) by (2) of lemma 3.2.

Lemma 3.3
Let H be aformulain which at most the quantification variable x has a free occurrence
and let p be a parameter of the same order and arity as x not occurringinH. Lette ctif
x isfirst order, and t € cT(n) if x issecond order of arity n. Let [* beap variant of an
interpretation [ for which ®1*[p] is®1[t] if X isfirst order, and ®2*[p] is®[t] if X is
second order. Then for k = 0,
a) =[p/X]H e Q[l*] = =[t/X]H € Q[!].
Proof
The proof of the lemmawill be by inductionon k. Let k beO. If x isfirst order, then H
takestheform CP(ry, ..., rn) where x may have afree occurrenceinry, ..., rpet. In
this case ®2*[[p/X]H] is®2[CP](®1*[[p/X]r4], ..., @1*[[p/X]rn)). But &1*[[p/X]ri] is
[®1]p]/X]®1[[ri], Since p doesnot occur inrj, and thisis[®4[t]/x]®4[[ri], whichis
@[ [t/X]ri]. Thus®2*[[p/X]H] is®o[[t/X]H]. If X issecond order, then H takes the form
X(t1, ..., tn) wherety, ..., th ect, and t isa second order parameter or constant CP. Thus
®o*[p] is®y CP] and ®1*[tj] is®j[tj] from which (a) followsimmediately.
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Assume now that (@) holds and let +[p/x]H € Qk+1[1*]. Consider first the case that H
is[F|G] and let +[p/X][F|G] € Qk+1[*]. Then +[p/X][F|G] € Qk+1[1*] =
—{p/X]F, {p/X]G € @[l *] = —t/X]F, t/X]G e @[l] = +[U/X][F|G] € Qk+1[!].

The arguments for the — case, aswell asfor the caseswhen H is(A\U.T)(R, Sy, ..., $), are
similar.

Let now H be vy.F, where it may be assumed that x is distinct from y and has afree
occurrencein F, so that [p/X]vy.F isVy.[p/X]F and [t/X]Vy.F is vy.[t/X]F. Let q be of the
same order and arity asy and not occur in [p/X]F or int. Then +vy.[p/X]F € Qk+1[l*] =
+aly][p/X]F € [l **] for every q variant [** of |*. For each [** thereisaq variant
I** of | for which [** isap variant of |*'. Thus by the induction assumption
+Vy.[p/X]F € Qr+1[1*] = +[aly][t/X]F € [l *'] for every q variant [*' of [
= +VY.[t/X]F € Qk+1[l]. The-v case can be similarly argued.

End of proof

34. Modesé& Validity

For every term t e ct and interpretation [, ®1[t] € d. But although @[ T] € D(n), it does
not follow that ®5[T] € B(n), where{ B(n) |n= 0} isthebaseof |. | isamodel if
@[ T] € B(n) for every T cT(n), n>0. Clearly there exists amodel: Every
interpretation for which B(n) isD(n) for n> 0isamodel. Following [Henkin50] such an
intepretation is called a standard model.

A sequent T oisvalidif itissatisfied by every model. A counter-example for the
sequent isamodel M for which +F € @[M ] for each F e T, and —F € Q[M] for each
Feo.

Thelogical syntax or proof theory of NaDSyL to be defined in 84 can be understood
to be amethod for attempting the construction of a counter-example for a given sequent.
It will be proved in 85 that if the method failsto find a derivation for a given sequent,
then a counter-example for the sequent can be constructed.
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4. LOGICAL SYNTAX

Thelogical syntax, or proof theory, of NaDSyL defines derivations for sequents. A
derivation of a sequent is afinite binary tree with nodes consisting of signed sentences
that are related by semantic rules and that satisfy special conditions. The semantic rules
are described in 84.1 and the special conditionsin 84.2. Some terminology for and
transformations of derivations are described in §4.3.

41. Semantic Rules

+|  +[FIG] +FIG] I 1]
—F G +F 4G

W +CP(t1, ..., tiy ... s t) 1 —CP(t1, ..., ti, ... , tn)
+CP(t1, ... , i’ ..., tp) —CP(t1, ..., t{', ..., tn)

where CPe C(n) U P(n), t1, ..., tj, ... , tp, ti'ect,and t; > tj' with 1< i < n.

+2  +(Ww.T)R,S1, ..., S) 22  —(wW.T)R, Sy, ..., S
+HRN]T(Sy, ..., Sn) —IRN]T(S1, ..., Sn)
+v +VXx.F -V —-vXx.F
HtNF {pIXF

HereF €, and either x e qv, pep andt e ct, or x € QV (n), p € P(n) and t € cT(n).
In addition, p does not occur in F or in any node above the premiss of the application of
theruleintroducing it. The parameter p of an application of —v is called the eigen
parameter, or e-par, of the application, and the term t of +V is called the eigen term, or e-
term, of the application.

The last semantic rule has a character different from the above logical rules. Itisa
rule without premiss and with two conclusions:
Cut

+F —F
The sentence F is called the cut sentence of an application.

Itisproved in 85 that the cut rule is not needed; that is, that any derivation of a
sequent in which cut is used can be replaced with a derivation in which it is not used.
Nevertheless, cut isauseful rule; in [Gilmored7b] it isused in avariety of ways to permit
the reuse of previously constructed derivations in the construction of a new derivation.
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Although these are the only rules of deduction that will be assumed to exist in this
report, rules for the more usual logical connectives -, —, a, v, and <> and the existential
guantifier 3 can be derived from the rules +| and +Vv.

4.2. Derivations
Givenasequent Fy, ..., Fm Gy, ..., Gp, asemantic tree based on the sequent consists
of atree of signed sentences defined inductively as follows:
Definition of a Semantic Tree Based on a Sequent
1. Any tree with asingle branch consisting of some nodes +Fj and —G; is atree based on
the sequent.
2. Lett beatreebased on the sequent, and let v be obtained from + by adding to the end
of abranch of t either
1. asigned sentence that is the single conclusion of an application of one of the rules
+|, £\1, A2, or £V with premiss a signed sentence on the given branch; or
.2. two signed sentences on separate branches that are the conclusions of cut, or of an
application of —| with premiss a signed sentence on the given branch.
Then v isatree based on the sequent.
End of definition
Note that not all the sentences in the antecedent or succedent of a sequent need be
signed and added as nodes of a semantic tree based on the sequent. The nodes that are so
added are called the initial nodes of the semantic tree.
A branch of asemantic treeisclosed if thereisan A e cAF for which both +A and
—A are nodes of the branch. A semantic treeisclosed if each of its branchesis closed.
A derivation of asequent isaclosed semantic tree based on the sequent.
An example derivation is given for the sequent
VX[ X((nw.w(p, @)(au,v.u)) | VX.D(X)] F[¥X.C(X)|V¥X.(\w.w(X))(D)].

+V X[ X((Aw.w(p, &) (nu,v.u)) | ¥X.D(X)] initial node
—{vx.C(x){ vx.(Aw.w(x))(D)] initial node
+HC((n.w.w(p, @) (hu,v.u))| ¥YX.D(X)] +V

—C((vw.w(p, @) (ru,v.u)) +

—C((nu,v.u)(p, &) !

—C(p) -1

-vx.D(x) +|

—D(a) -V

+VX.C(x) - +vx.(w.w(x))(D) -
+C(p) +v +(aw.w(q))(D) +v

—==—== +D(q) +A2
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Apart from the two initial nodes, the rule cited to the right of anode isthe rule of which
the node is a conclusion; the premiss for the rule is a node above the conclusion. The
double lines at the bottom of the two branches indicate that the branches are closed.

4.2.1. Terminology

The derivation above has been illustrated with its root at the top and with its branches
spreading downward. The terminology used in discussing trees reflects this orientation.
Thusanode n1 isabove anoden? if they are both on the same branch and n1 is closer to
the root of the tree than v2; itisbelow w2 if n2 isaboveit. Theheight of anode on a
given branch isthe number of nodes below it on the branch; the height of anodein a
tree is the maximum of its heights on the branches on which it occurs. A leaf node of a
tree is anode of height zero.

4.2.2. Eliminable Rules

The two A1 rules can be generalized to the following rules:
+=>  +H[rIXJF - rixJF

+Ht/X]F —t/X]F

wherexeqv, r,tectandr >t.
These rules are eliminable in the sense that a derivation of a sequent in which they are
used can be replaced by a derivation in which they are not used. For let £[t/x]F bethe
conclusion of an application of one of therules +>. Let +[t/x]F be at the sametime a
premiss of an application of one of the logical rules other than +A1. Then £[r/x]F can
equally well be the premiss of the latter rule when occurrences of t in its conclusion or
conclusions are replaced by r. Then an application of +> to a single conclusion, or
applications of +> to each of the two conclusions of an application of —|, restores the
derivation. In thisway applications of the + rules can be postponed until they become
applications of the +A1 rules.

4.3. TheUndecidability of the Elementary Syntax

A sketch of the undecidability of Fwas given in 82.4.3. The undecidability of = need
have surprisingly little effect on the construction of derivations, because of the similarity
of the clauses (2), (3), and (4) of the definition of = in 82.4.1 with the semantic rules =,
+)2, and +V. These are emphasized in the proof of the following lemma:

Lemma 4.3

F I F isaderivable sequent for each F € cF.
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Proof
The lemmawill be proved by induction on deg(F). If deg(F)=0, then F € AF so that if
F e cAF, then F |-F hasaderivation.

Let now deg(F)=k+1. Let F be[G|H] so that deg(F), deg(F) < k. By theinduction
assumptionbothG +G and H +H are derivable sequents. A derivation of
[GIH] F[G{H] can be constructed from derivations of these sequents by one
application of —| and one application of each of the two +| rules.

The other two caseswhen F is(\W.T)(R, S, ..., Sp) and F isvXx.G can be proved in a
similar way. Inthe latter case [p/X]G |- [p/X]G isderivable since deg([p/x]G)=k; herep
isaparameter of the same order and arity as x that does not occur in G, . From a
derivation of that sequent, a derivation of the sequent ¥x.G  vx.G can be obtained by
one application of —v with e-par p followed by one application of +V with e-term p.
end of proof

The derivation for the sequent F +F described in the proof isin essence a method
for displaying all the maximal chains of formula parts of F as these are defined in §2.4.3.
However, for some sequent-like strings not of the form of the law of the excluded middle,
it is possible to produce atree that appear to be derivation but is not. Consider the
following example:

) [C@EIAu.uu)u.u)l, C@E)

The following tree records a search for a derivation:
+C(@) (ru.u(u))(ru.u(u))]

+C(a)

—C(a)

But thisis not a derivation because [C(a) | (Au.u(u))(ru.u(u))] & cF. Because the
derivation applies only the first of the two rules with premiss +[C(a) | (Au.u(u))(ru.u(u))],
it does not test whether all maximal chains of formula parts of [C(a) | (Au.u(u)) (zu.u(u))]
terminates in amember of CAE. Thissimple example illustrates the main consequence of
the undecidability of [F: A sequent like string may have a derivation when only one of the
+| rulesis applied to a given premiss, even though the string is not a sequent. But if
necessary this effect can be compensated for by requiring a proof of membership in cF
for these cases by requiring aderivation for F  F for the unused formula parts F.
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5. SOUNDNESS & CUT-ELIMINATION

A semantic proof of the consistency or soundness of NaDSyL isgivenin 85.1. A proof
of the completeness of NaDSyL without the cut ruleisgivenin 85.2t0 85.4. Itisan
adaptation of the proof for the second order predicate logic given in [Prawitz67]. That
cut is aredundant rule of deduction isacorollary of the completeness theorem.

5.1. Soundness Theorem

A derivable sequent isvalid.

Proof

Consider aderivation for asequent T 0. Letn be any node of the derivation which does
not have an initial node below it. DefineT'[n] and ©[n] to be the sets of sentences F for
which +F, respectively —F, isn itself or isanode abovern. Thusif n isthelast of the
initial nodes of the derivation, I'[n] CT and ©[n] C ©; henceif T[n] |- ©[n] issatisfied by
amodel M, soisT {-0.

By induction on the height h(v) of n, I[n] F-©[n] will be shown to be valid. If h(n)=0,
then n) isaleaf node of abranch of the derivation. Since the branchis closed, I'[n] |-6[n]
isvalid. Assume thereforethat h(n) > 0, and that thereisamodel M that does not satisfy
I'[n] F©[n]. Necessarily n isimmediately above a conclusion n1 or conclusions n1 and n2
of one of the rules of deduction. There are therefore two main cases to consider
corresponding to the single conclusion rules +|, +A1, +A2, and £V, and to the two
conclusion rules—| and cut.

For the single conclusion rules it is sufficient to illustrate the argument with the
second order +V rules with premiss +vX.F and conclusion respectively +[T/X]F and
—{P/X]F, where X e QV (n), T € cT(n), and P € P(n) with P not occurring in F. For the +
case VX.F eT[n], r[n1] isT[n] U {[T/X]F}, and ©[n1] is®[n]. Since M satisfies
I'[1] F©[n1] but does not satisfy r[n] F-©[n] it followsthat +vX.F, {T/X]F € Q[M].
Thusfor every P variant M* of M, +[P/X]F € @[M*]. Consider the P variant for which
®2*[P] is®o[T]. By lemma3.3it followsthat +[ T/X]F € Q[M ], contradicting
—{T/X]F e @[M].

For the — case, T[n1] isT[n], YX.F € ©[n], and ©[n1] ise[n] U {[P/X]F}. Since
I'[n1] Fe[n1] isvalid, it follows that it is satisfied by every P variant M* of M. Further,
since M does not satisfy I'[n] |-©[n] it follows that -{ P/X]F € Q[M] while
+[P/X]F € @[M], since M isa P variant of itself.

Consider now the two conclusion rules. Let the premiss of an application of —| be
—{F{G] and the conclusions +F and +G. Thus[F|G] € ©[n], I[n1] isT[n] U{F}, I[n2] is
I'[n] U{G}, ©[n1] is@[n], and ©[n2] is6[n]. Asbeforeit followsthat —F, -G € Q[M ]
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and therefore that +[F | G] € @[IM ] again leading to a contradiction. For the case of cut let
the cut sentencebe F. Inthiscaser[ni] isT[n] U {F}, ©[n1] is©[n], I'[n2] isT[n], and
0[n2] ise[n] U{F}. Itfollowsthereforethat +F, —F € Q[M ] which isimpossible by (1)
of lemma3.2.

End of proof

5.2. Derivable& Underivable Sets

It is convenient to now represent sequents as sets of signed sentences. The members of a
set Sq representing a sequent consist of all the potential initial nodes of a derivation of
the sequent. Thusthe sequent Fy, ..., Fm Gy, ..., Gnisrepresented by the set

{+Fq, ..., tFm, —G1, ..., Gn}.

A finite set Sgissaid to be derivable if there is aderivation with initial nodes
selected from the set in which no application of cut appears and in which the eliminable
rules +> are used in place of the i1 rules. Aninfinite set isderivable if afinite subset of
itisderivable. A setissaidto beunderivable if itisnot derivable. A set of signed
sentencesis said to beconsistent if not both +F are members for some sentence F, and is
said to beinconsistent otherwise. Aninconsistent set is necessarily derivable since a
derivation of F  F without itsinitial nodes can be appended to any branch on which
both +F are nodes.

By systematically applying the rules of deduction to a branch of a semantic tree based
on aset Sg, adownward closure of Sg can be constructed as defined here:

Definition of a Downward Closure for a Set Sg
A set of signed sentences dc[ Sq] isadownward closure of aset Sq if it satisfies the
following conditions:
1. Sgc de[sq).
2. =[r/X]F edc[Sq] & r >t => «[t/X]F € dc[Sq], when x eqv and T, t € ct.
3. +[F|G] e dc[sq] => -F, -G e dc[<q]
—{F|G] edc[Sq] => +F or +G € dc[<q]
4. +(W.T)(R, S e dc[Sq] => £[RNV]T(S) € dc[Sq]
5. +vx.F e dc[Sq] => +[t/x]F € dc[<q] for all t of the same order and arity as x

with parameters occurring in members of dc[Sq].

—vx.F € dc[Sq] => - p/X]F € dc[Sq)] for some parameter of the same order and

arity as x not occurring in F.

End of definition
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Lemma 5.2
If aset Sq isunderivable then thereis adownward closure dc[Sq] of Sgq that is
consistent.
Proof
If Sgisunderivable, then any semantic tree based on it must have a branch that cannot be
closed no matter how the branch is extended. By systematically applying the logical rules
to the nodes of such a branch, a downward closure of Sg can be constructed. Details will
be |eft to the reader.
End of proof

Following [Hintikkab5] a consistent downward closure of aset S is called a model
set. Necessarily if Sghasamodel set, then Sgis underivable. In the remaining sections
an interpretation [ [md[Sg]] will first be constructed from amodel set md[ Sq] of an
underivable set Sg; thisis then followed by the construction of amodel of NaDSyL that
is a counter-example for Sg.

5.3. AnInterpretation Defined from a Model Set
Let md[Sq] be a consistent downward closure for an underivable set Sg. Here an
interpretation [[md[ S]] is defined from md[Sq]. To thisend the notation TT is
introduced for any term or formula T.
Let the sets c and p be enumerated ¢y, Cp, ...and p1, p2, ... . TTisobtained from T
by first replacing each occurrence of ¢; by cyj, and then replacing each occurrence of p;
by cpi-1, fori=1. Thusnop €p occursin TT. In particular, for t € ct, tTe d. Should
tecihbety, ..., th, thenby tTismeant t17, ..., tyf, and should dlsor ecinby r > tis
meantri>tiandby r >>tismeantri>>tjforl<i=<n.
For each PC € P(n)u C(n), n> 0, afunction f*[PC]: d" — D(0) is defined:
f+[PC](rT) istrue <=> +PC(t) € md[Sg] for somet € cin for whichr >>1.
Lemma5.3.1
For each PC € P(n)u C(n), n= 0O, f*[PC] has the following properties:
1. =PC(r) e md[Sq] => f*[PC](r") istrue, respectively false, forr e cin.
2. f*[PC] € Dpn.
Proof
1) Sincerj=>>rj for 1<i < n, the + case of the implication follows immediately from
the definition of f*[PC]. Consider now the—case. Let f*[PC](r1) betrue. Then for
sometec, r >>t and +PC(t) e md[Sg]. But from (2) of of the definition of md[Sq]
it followsthat if -PC(r) € md[Sc] then —PC(t) € md[Sq] so that —PC(r) ¢ md[Sq].
2) ltissufficient to provethat if rj > ri' then
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fHIPCI(r1t, ..., riT, ..., raD) istrue, <=>f*[PC](r1T, ..., ri'T, ..., rn) istrue.
Letri=ri' and fY[PC](r1T, ..., riT, ..., rn) betrue. Therearethereforety, ..., tpfor
whichrj=>tjfor 1<j=<nand +PC(ty, ... , tj, ... , tn)emd[Sq]. Thusr;j > ri'and

ri >>t; so that by the Church-Rosser theorem thereisan s; for which tj >> sj and

ri' >>sj. Hence again from (2) of of the definition of md[Sq]

+PC(tq, ..., S, ... , tnye md[Sq] so that f+[PC](r1T, ..., ri'T, ..., rnT) istrue.

Let now ri = ri" and f*[PC](r1T, ..., ri't, ..., rn") betrue. For somety, ..., t, for
whichrj =>tj for j=i and ri' > tj, +PC(t, ... , tn) e md[Sq]. Butthensincerj > rj' it
followsthat rj > tj for 1<j < nsothat f*[PC](r1T, ..., rif, ..., rnf) istrue.

End of proof

Thebaseset B, n>0, for [[md[<Sq]] isdefinedtobe{f*[PC] | PC e P(n)uC(n)}.
Thus B C Dy asrequired. The functions @1 and @2 for [ [md[Sg]] are defined as
follows: ®1[pj] iscyj—1 forali=1, sothat ®1t] istf fortect; and o[ PC] is ft[PC],
for PC € P(n)uC(n), n= 0.

Lemma 5.3.2
+F emd[Sq] => =Ft € o[I[md[Sq]]]
Proof

By induction on the degree k of F the following result will be proved:
i) =FemdSq => +FT e l]
Here | abbreviates [[md[<q]].

L et deg(F)=0, so that F is PC(r), for some PC € P(n)uC(n),n=0, andr ectn. FTis
then PC(rT). By (1) of lemma5.3.1, +PC(r) € md[Sq] => f+[PC](r") istrue,
respectively false, forr € cin => +PC(r'") € oq[l].

Assume (i) for 0 = k = m. Let deg(F)=m+1 and consider the forms that F can take:
Fis [G|H]. By (2) of the definition of md[Sq] and the definition of @m+1[l]:
+[GyH] e md[Sq] => -G, H e md[S] => -GT, -HT € Q[1] => +[G|H]T € Q@m+1[!].
Similarly, {G{H] € md[Sq] => +G or +H € md[Sg] => +GTor +HT € o [1] =>
G H]T € Qm+1[l]. ThecasewhereF is(av.T)(R, S) can be similarly argued.

F isvx.F, wherex € QV (n). By (5) of the definition of md[Sg] and the definition of
Qm+1[l]: +vX.F e md[Sq] => +[ PC/x]F € md[Sc] for @l PC € P(n)uC(n) =>
+[PC/X]FT € @u[I] for al PC € P(nN)uC(n) => +[P/X]Ft € @m[I*] for all P variants|*
of [, where P does not occur in F => +vx.FT € om+1[l]. Similarly, -vx.F € md[Sq] =>
—P/X]F € md[Sq] for some P € P(n) not in F => [P/X]FT € o [1] =>
—vx.FT € @m+1[l]. The case where x € qv can be similarly argued.

End of proof
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54. A Modd that isa Counter-Example

Here amodel of NaDSyL will be defined that is a counter-example for the sequent
represented by Sg. To this end the sets P(n) of second order parameters are enlarged for
each arity n, n = 0. For each ordinal o of aclassto be specified later, a set P,(n) of new
parametersis added. Po(n) isP(n) and Py (n)n Pg(n) isempty when o = p. Essentid to
the definition of the counter-example is the fact that the setst and d are not affected by
the introduction of the new second order parameters.

The set of sentences cl-g is defined exactly like c= except that in place of the set P(n)
the set U{Py(n) | 0 = o < p} isused for each n. The sets cTg(n) are defined from cFg in
the same way that the sets cT(n) were defined from cF. The set u{cTp(n)|n= 0} is
denoted by cT. For each p andn, n= 0, it is assumed that there is a single member P[T]
of Pp+1(n) assignedto each T € cTp(n), with distinct T assigned distinct members of
P[:‘Hl(n)-

Definition of Kg
A set Kg of signed sentences is defined for each g:

1. Koismd[Sq].
2. Kp41iskKp together with all signed sentences +[P[T1]/Y 1] ... [P[Tm]/Y m]F for which

[To/Y1] ... [Tm/Ym]F €Kp. HereYy, ..., YmeQV and Ty, ..., Tm € CT.

3. Kpisu{Kq |a<p} foralimitordina p.
End of definition

Lemma5.4.1

For each , [Kg isamodel set for Sg.

Proof

It will be proved by transfinite induction on p that K g is a consistent downward closure of
Sg. The case g =0 follows from the definition of K. Assume the lemmafor g and
consider the case p+1 and the clauses of the definition of a downward closure. That

Kp+1 isconsistent and that (1) holdsisimmediate. SincenoY € QV can have afree
occurrencein at e t, no occurrence of a T int isreplaced by P[T]; therefore (2) holds for
Kp+1 if it holdsfor [<g. (3), (4) and thefirst order case of (5) hold for g, if they hold
for Kg. Consider now the second order case of (5). The - caseisimmediate since a
parameter in Pg.1(n) isdistinct from any parameter in {Py(n) | o < p}.

Let +vX.F € Kgy1 where X € QV (n). To provethat (5) holdsin thiscaseitis
necessary to prove that +[R/X]F € Kg41 for each R € cTgy1(n). If [R/X]F € cFg then
necessarily +vX.F € Kg and +[R/X]F € Kg so that +[R/X]F € Kg+1. Assume therefore
that [R/X]F € cFg+1. ForsomeTy, ..., TmecTp, andsome Yy, ..., Yme QV, thereis
anSe Tp(n) anda G € /g for which Fis[P[T1]/Y1] ... [P[Tm]/Ym]G and R is
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[PIT/Yq] ... [P[Tml/Ym]S. Thus+VX.[T1/Y4] ... [Tm/Ym]G € Kp and

[To/Ya] ... [Tm/Ym]S € cTp(n) sothat +[T1/Y1] ... [Tm/Ym]([S/X]G) € K and therefore
+[P[Ta]/Y1] ... [P[Tml/Yml([R/X]F) € Kg41 asrequired.

End of proof

Definition of 1
Aninterpretation | g is defined for each g. Thefirst order function for each [ isthe
function @3 for [o, ®2,3 denotes the second order function, and Bg(n) denotes the arity n
base set.

1. loisI[mdSq]].
2. Let | bedefined. g1 isdefined asfollows:
1. Bpy1(n) isBp(nmu{a2,s[T] | T €cTp(n)}, forn>0.
2. 2 841[PC] is®2 g[PC], for PC € U{[Py(n) | a < g} UC(N), n = O; and
@2 +1[P[T]] is®2p[T] for T e cT .
3. Let [, bedefined for o < g, wherep isalimit ordinal. Then
1. @2 p[C] is®20[C], for C € C(n), n= 0; and
@2 p[P] is®2,4[P], where P €Py(n), n=0and a < p.
2. Bp(n)isu{ Bu(n) | a <p}.
End of definition

Note that since Py (n) C cT'g(n) when o <, Bgy1(n) is{®2p+1[P] | P € Pgs1(n)}.

Lemma 5.4.2
For all ordinals g and all F € cFp, F € Kg => =FT e o[l g]

Proof
The proof is by transfinite induction on p. The case p=0 follows from (1) of the definition
and lemma5.3.2. Assume the lemmafor g and consider the case p+1. By induction on
the degreek of F, tF e Kg,1 => +FT e il p+1] can be proved in much the same way as
lemma5.3.2.

Consider now alimit ordinal p. Assume that the lemmaholdsfor all o, a <p. The
lemmawill be proved for p by induction on deg(F). The result isimmediate when deg(F)
is0. Of theformsthat F can take when deg(F) is k+1, only the form +vX.G presents any
new difficulties. Let +vX.G € Kg, where X € QV(n). By lemma5.4.1 it follows that
+[T/X]G e Kgforal T e cTg(n). Inparticular it followsthat +[P[T]/X]G € K for all
P[T] € Pp(n). By theinduction assumption therefore +[P[T]/X]GT e Q]I p] for the same
P. But this means that +[P/X]GT e [l p*] for al P variants [ g* of [ g, where Pisnotin
G. Hence +vX.GT e o[l g].

End of proof
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Theorem 5.4
Thereisan ordinal g for which [ g is a counter-example for <.
Proof
For each g = 0 and each n = 0, Bg(n) € Bpg+1(n) € D(n). Further d isdenumerable. Thus
the cardinal of an ordinal p for which Bg(n) ¢ D (n) cannot exceed the cardinal of D(n).
Therefore thereis an ordinal p for which Bg,1(n) € Bg(n), for n= 0. But this can only
be the case if @2 p[T](tT) € Bp(n) for each T € cTp(n), n = O; that isif [g isamodel. Itis
necessarily a counter-example for the sequent represented by Sg from lemma5.4.2.
End of proof.

Corollary
Thelogical syntax of NaDSyL is complete without the cut rule.
Proof
It is not possible for there to be a set Sq that is derivable with cut but not without. For let
M be the counter-example for Sg. If Sg were derivable with cut it would be valid by
soundness theorem 5.1, and therefore satisfied by the model M.
End of proof.
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