
Department of Computer Science

University of British Columbia

2366 Main Mall

Vancouver, B.C. Canada V6T 1Z4

e-mail: gilmore@cs.ubc.ca

SOUNDNESS & CUT-ELIMINATION

for NaDSyL

by

Paul C Gilmore

Technical Report TR97-1

February 1997

ABSTRACT

NaDSyL, a Natural Deduction based Symbolic Logic, like some earlier logics, is

motivated by the belief that a confusion of use and mention is the source of the set

theoretic paradoxes. However NaDSyL differs from the earlier logics in several

important respects.

"Truth gaps", as they have been called by Kripke, are essential to the consistency of

the earlier logics, but are absent from NaDSyL; the law of the excluded middle is

derivable for all the sentences of NaDSyL. But the logic has an undecidable elementary

syntax, a departure from tradition that is of little importance, since the semantic tree

presentation of the proof theory can incorporate the decision process for the elementary

syntax.

The use of the lambda calculus notation in NaDSyL, rather than the set theoretic

notation of the earlier logics, reflects much more than a change of notation. For a second

motivation for NaDSyL is the provision of a higher order logic based on the original term

models of the lambda calculus rather than on the Scott models. These term models are

the "natural" intepretation of the lambda calculus for the naive nominalist view that

justifies the belief in the source of the paradoxes. They provide the semantics for the first

order domain of the second order logic NaDSyL.

The elementary and logical syntax or proof theory of NaDSyL is fully described, as

well as its semantics. Semantic proofs of the soundness of NaDSyL with cut and of the

completeness of NaDSyL without cut are given. That cut is a redundant rule follows

form these results. Some applications of the logic are also described.

TABLE of CONTENTS Page #

1. INTRODUCTION 1

.1. Summary of Paper 1

.2. Related Work 2

.3. Some Applications of NaDSyL 3

.4. Acknowledgements 4

2. ELEMENTARY SYNTAX 5

.1. Notation for Constants, Variables, & Parameters 5

.2. The Set S 5
.1. Substitution

.3. Reductions 7
.1. The Relation >> and the Church-Rosser Theorem

.4. Definitions of Formulas, Degrees, & Terms 8

.5. F is Undecidable 10

3. SEMANTICS 11

.1. Interpretations of NaDSyL 11

.2. The set Ω[I] 12
.1. Sequents & Satisfaction

.3. Definition of Φ2[T] 13

.4. Models & Validity 14

4. LOGICAL SYNTAX 15

.1. Semantic Rules 15

.2. Derivations 16
.1. Terminology
.2. Eliminable Rules

.3. The Undecidability of the Elementary Syntax 17

5. SOUNDNESS & CUT-ELIMINATION 19

.1. Soundness Theorem 19

.2. Derivable & Underivable Sets 20

.3. An Interpretation Defined from a Model Set 21

.4. A Model that is a Counter-Example 23

6. REFERENCES 26

NaDSyL, Introduction, February 25, 1997 Page 1

1. INTRODUCTION

This report provides an introduction to the semantics and proof theory of the logic

NaDSyL. Semantic proofs of the soundness of NaDSyL with cut and of its completeness

without cut are provided from which follows the redundancy of cut. A sketch of some of

the applications of the logic is also given. [Gilmore97a] provides an abbreviated

introduction to the logic with proofs of soundness and completeness with cut but not of

the redundancy of cut, while [Gilmore97b] describes the applications more fully.

NaDSyL, a Natural Deduction based Symbolic Logic, like the logics described in

[Gilmore71,80,86], is motivated by the belief that a confusion of use and mention is the

source of the set theoretic paradoxes, a view also expressed in [Sellars63a,63b]. NaDSyL

differs from the earlier logics in several important respects.

"Truth gaps", as they were called in [Kripke75], are essential to the consistency of the

earlier logic, but are absent from NaDSyL; the law of the excluded middle is derivable for

all the sentences of NaDSyL. But the logic has an undecidable elementary syntax, a

departure from tradition that is of little importance since the semantic tree presentation of

the proof theory can incorporate the decision process for the elementary syntax.

The use of the lambda calculus notation in NaDSyL, rather than the set theoretic

notation of the earlier logics, reflects much more than a change of notation. For a second

motivation for NaDSyL is the provision of a higher order logic based on the original term

models of the lambda calculus rather than on the Scott models described for example in

[Barendregt84]. These term models are the "natural" intepretation of the lambda calculus

for the naive nominalist view of the logic that justifies the belief in the source of the

paradoxes and that is sketched in [Gilmore80] . They provide the semantics for the first

order domain of the second order logic NaDSyL.

Incidentally, that the source of the paradoxes is a confusion of use and mention is

more competently argued in [Sellars63a,63b]. This view of the source of the paradoxes

may have some relevance for logic programming. In §2 of [Nadathur&Miller94], titled

"Motivating a Higher-Order Extension to Horn Clauses", predicate variables appearing in

"extensional" positions in atomic formulas are distinguished from those appearing in

"intensional" positions. For the latter, values can be found by a structural analysis. The

distinction between extensional and intensional uses is exactly that of use and mention.

1.1. Summary of Paper

The elementary syntax is defined in §2 in two stages. First the syntax for an extended

lambda calculus is defined as a set S of strings of characters and a lambda reduction

relation > is then defined on S. The Church-Rosser theorem for > over S is stated

NaDSyL, Introduction, February 25, 1997 Page 2

without proof. Then the set F of formulas of the logic is defined as a subset of S.

Although S includes strings that are not formulas of the pure lambda calculus, a proof

that F is not a decidable subset of S is sketched in §2.5 based on the concept of head

normal form [Barendregt84]. A discussion of the significance of this result is deferred to

§4.4.

The semantics for the logic is described in §3. Parameters are used in the logic in

place of free quantification variables. The first order domain d for interpretations and

models of NaDSyL consists of the members of S in which no parameter occurs and no

variable has a free occurrence; d is closed under >.

The logical syntax or proof theory, described in §4, is presented as a theory of

semantic trees which is the tree version of the original semantic tableaux of [Beth55].

The close connection with the Gentzen sequent calculus [Gentzen34-35] is apparent:

Derivations in NaDSyL are derivations of Gentzen sequents. Another tree version of

semantic tableaux is described in [Smullyan68]. In §5 semantic proofs of the soundness

of the logic with cut and its completeness without cut are provided from which the

redundancy of cut follows.

1.2. Related Work

The single most important inspiration for [Gilmore71] was §21 of [Church41], where a

logic is defined within the λ−δ calculus. Related papers cited in [Fitch52] and in

[Schütte60,77] suggest that they had a similar inspiration. The logics described in

[Gilmore71,80,86], as well as NaDSyL, differs from those of Fitch and Schütte in

allowing some second order terms to also be first order terms. Those second order terms

that are also first order are those for which the distinction between use and mention can

be maintained; see §2.4 where the set t of first order terms is defined.

Theories described in [Cocchiarella79,85] also allow some second order terms to be

first order. How NaDSyL relates to the these theories is complicated by their

presentation as axiomatic theories, in contrast to the natural deduction presentation of

NaDSyL. One of the motivations for the presentation of NaDSyL is the desire to treat

abstraction in the same manner as logical connectives and quantification.

The most recent related work is that described in [Apostoli94,95]. The logic G

described in [Apostoli94] was motivated by the first order logic NaDSet 1 described in

[Gilmore86]. G remains first order but, unlike NaDSet 1, arithmetic can be formalized

within it, although with the addition of axioms that are instances of the law of the

excluded middle. [Apostoli95] describes another first order theory LPL based on the

theory of pairs and formalized in the manner of NaDSet 1 and with a similarly defined

NaDSyL, Introduction, February 25, 1997 Page 3

semantics. However again unlike NaDSyL 1, LPL has axioms; one of its axiom schemes

asserts for example that the representative for the natural number 0 is not an ordered pair.

The paper [Apostoli&Kanda96] argues for the importance of the logic LPL for computer

science, while the monograph [Apostoli&Kanda97] argues that LPL is a consistent

replacement for Frege's inconsistent logic.

1.3. Some Applications of NaDSyL

Here a sketch of the existing and proposed contents of the monograph [Gilmore97b] will

be described.

Chapter 1 is a leisurely presentation of the contents of this paper together with some

additional topics. These include other formulations of the logic including a natural

deduction presentation in the style of [Prawitz65] for an intutionistic version of the logic.

The sparce notation of NaDSyL as it is described in this paper is not suitable for

many of its applications. Chapter 2 describes how the logic can be extended by

definitions of intensional and extensional identity, ordered pairs and the natural numbers.

These definitions permit the formalization of second order arithmetic within NaDSyL, in

both its classical and intuitionistic forms.

Also in Chapter 2 a notation for partial first order functions is added, with defined

domains as their "type". Two rules of deduction are introduced for reasoning about

partial functions. They provide a conservative extension of NaDSyL. An advantage of

the semantic tree presentation of the proof theory of NaDSyL is demonstrated here.

Although the partial function notation used is closely related to definite descriptions, the

"waste cases" that complicate the formalization of definite descriptions in [Quine51] can

be ignored in NaDSyL.

Since axiomatic theories play such a large role in mathematics, Chapter 2 describes

how such theories can be formalized within NaDSyL. The results of

[Gilmore&Tsiknis93a], where a formalization of category theory in an earlier

unsuccessful logic NaDSet were described, are revisited and revised for NaDSyL.

The last topic dealt with in Chapter 2 is Cantor's diagonal argument. A rule of

deduction is derived which distinguishes between correct and incorrect uses of Cantor's

diagonal argument within NaDSyL. Cantor's use to prove that there are more subsets of

the natural numbers than there are numbers cannot be justified by the rule. But non-

controversial uses can be; for example, the use of the argument to prove that the Turing

computable real numbers cannot be enumerated by a Turing machine, can be justified.

An important advantage of a logic like NaDSyL, over a logic in which an axiom

of infinity must be added, is the ease with which recursively defined sets can be defined

NaDSyL, Introduction, February 25, 1997 Page 4

and reasoned about. This is demonstrated in Chapter 3. There very general methods are

developed in parallel for defining recursively both well-founded and non-well-founded

sets. This is followed by some applications in this and later chapters. One demonstration

of this advantage is given in [Gilmore&Tsiknis93b] where the semantics for a

programming language is defined in the unsuccessful logic NaDSet; the results of that

paper are repeated and enlarged for NaDSyL. The lambda notation of NaDSyL and the

semantic tree form of its proof theory makes the results easier to state and prove.

Sets of domain equations can be used to provide a denotational description of

programming languages [Gordon79]. In [Gilmore&Tsiknis92] solutions of such

equations are defined in NaDSet. The results are repeated and extended for NaDSyL.

Further topics to be discussed include grammars, temporal logics, and applications of

non-well-founded sets. It is expected that one chapter will be devoted to a description of

an interactive computer system for assisting in the construction of NaDSyL derivations.

In light of [Nadathur&Miller94], higher-order logic programming using NaDSyL in

place of the version of Church's Simple Theory of Types described in [Andrews71] will

be explored.

1.4. Acknowledgements

Conversations with Eric Borm, George Tsiknis, and Jamie Andrews, and correspondance

with Hendrik Boom, have greatly helped in the writing of this paper. Support from the

Natural Science and Engineering Council of Canada is gratefully acknowledged.

NaDSyL, Elementary Syntax, February 25, 1997 Page 5

2. ELEMENTARY SYNTAX

Seven different denumerable sets of strings of characters form the basis for the

elementary syntax of NaDSyL: Constants, quantification variables, and parameters, both

first and second order, and abstraction variables. As noted before, parameters play the

role of free quantification variables. The characters from which the strings are formed

consist of upper and lower case Latin letters and the numerals. The particular strings that

are members of these sets and the notation used to name the sets is described in §2.1. In

§2.2 the set S of strings is defined using additional primitive characters and a substitution

operator defined for it. A reduction relation > between members of S is defined in §2.3.

Finally in §2.4 the formulas and terms of NaDSyL are defined. A sketch is given in §2.5

of a proof that the set F of formulas of NaDSyL is undecidable.

2.1. Notation for Constants, Variables, & Parameters

The following notation is used for the sets of strings used in the elementary syntax of

NaDSyL: c, qv , and p are the sets of first order constants, quantification variables, and

parameters. C(n), QV (n), and P(n) are the corresponding sets for the second order terms

of arity n, n ≥ 0, and C, QV, and P are the sets of all second order constants,

quantification variables, and parameters of any arity. av is the set of abstraction variables

used with the λ abstraction operator. Additional primitive symbols are '(', ')', '.', '[', ']', '↓',

'λ', and '∀'. '↓' is the joint denial logical operator, for which [F↓G] is true if and only if

both F and G are false. This single logical connective is used in order to reduce the

number of cases that have to be considered in many proofs.

The strings that are members of c, p , and qv begin with lower case letters,

respectively, one of 'a' through 'c', one of 'p', 'q', and 'r', and with one of 'x', 'y', or 'z'. The

strings that are members of av begin with one of the letters 'u', 'v', and 'w'.

The strings that are members of C(n), P(n), and QV (n) begin with upper case letters,

respectively, one of 'A' through 'C', one of 'P', 'Q', and 'R', and with one of 'X', 'Y', or 'Z'.

It is assumed that each occurrence of one of these strings has an arity associated with it,

although the arity need not be explicitly indicated, but may be inferred from its context.

2.2. The Set S

In the following inductive definition of the set of strings S, bold letters R and S are used

as variables over S, and v and x as variables over respectively av and qv ∪ QV:

Definition of S

1. c ∪ p ∪ qv ∪ av ∪ C ∪ P ∪ QV ⊆ S.

An occurrence of a variable from qv ∪ av ∪ QV is a free occurrence in itself.

NaDSyL, Elementary Syntax, February 25, 1997 Page 6

2. R, S ∈ S ⇒ (R.S) ∈ S

A free occurrence of a variable in R or S is a free occurrence in (R.S).

3. R, S ∈ S ⇒ [R↓S] ∈ S

A free occurrence of a variable in R or S is a free occurrence in [R↓S].

4. R ∈ S & v ∈ av ⇒ (λv.R) ∈ S

A free occurrence of a variable other than v in R is a free occurrence in (λv.R). A

free occurrence of v in R is an occurrence bound by the abstraction operator λv in

(λv.R). R is the scope of the abstraction operator.

5. R ∈ S & x ∈ qv ∪ QV ⇒ (∀x.R) ∈ S

A free occurrence of a variable other than x in R is a free occurrence in (∀x.R). A

free occurrence of x in R is an occurrence bound by the quantifier ∀x in (∀x.R). R is

the scope of the quantifier.

End of definition

The functional application notation (R.S) of the λ calculus does not conform with the

more usual notation of the predicate logic. However, the latter notation can be introduced

by an abbreviating definition: For R, S1, … , Sn ∈ S

R(S1, … , Sn) for (… ((R.S1).S2) … .Sn)

Multiple abstraction operators can be similarly abbreviated:

(λu1, u2, … , un.R) for (λu1.(λu2. … .(λun.R) …))

When there is no risk of confusion, parenthesis '(' and ')' in contexts (λv.R) and (∀x.R)

will be omitted.

Let u be any variable; that is a member of av ∪ qv ∪ QV. Let v be a variable that is

a member of the same set as u, and of the same arity as u if u ∈ QV. The variable v is

said to be free to replace u in S ∈ S provided no free occurrence of u in S is within the

scope of an abstraction operator λv or of a quantifier ∀v. An R ∈ S in which no variable

has a free occurrence is said to be closed. cS is the set of all closed members of S.

2.2.1. Substitution
It is assumed that there is an enumeration of each of the sets av, qv , and QV so that it is

meaningful to speak of the first member of such a set with a given property.

Let u be any variable and let R1, S1 ∈ S. The substitution operator [R1/u] when

applied to S1 produces a member [R1/u]S1 of S defined as follows:

Definition of Substitution Operator

1. [R1/u]S1 is R1 if S1 is u;

S1 if S1 is a variable other than u or a member of c ∪ p ∪ C ∪ P.

2. [R1/u](R.S) is ([R1/u]R.[R1/u]S)

NaDSyL, Elementary Syntax, February 25, 1997 Page 7

3. [R1/u][R↓S] is [[R1/u]R↓[R1/u]S]

4. [R1/u](λv.R) is (λv.R) if u is v;

(λv.[R1/u]R) if v has no free occurrences in R1; and

(λw.[R1/u][w/v]R) if v has a free occurrence in R1; here w is the

first abstraction variable without a free occurrence in R1 that is

free to replace v in R.

5. [R1/u](∀x.R) is (∀x.R) if u is x;

(∀x.[R1/u]R) if x has no free occurrences in R1; and

(∀y.[R1/u][y/x]R) if x has a free occurrence in R1; here y is the

first quantification variable of the same order and arity as x without

a free occurrence in R1 that is free to replace x in R.

For p ∈ p ∪ P and R ∈ cS, [R/p]S is defined to be the string obtained from S by replacing

each occurrence of p by R.

End of definition

2.3. Reductions
A relation > between members of S is defined inductively as follows:

Definition of >

1. R > S, when S is an α-, β-, or η-contractum of R, where

.1. (λu.[u/v]S) is an α-contractum of (λv.S), provided u is free to replace v in S, and

(∀y.[y/x]S) is an α-contractum of (∀x.S), provided y is free to replace x in S.

.2. [R/v]S is a β-contractum of (λv.S)(R).

.3. S is an η-contractum of (λv.S(v)), provided v has no free occurrence in S.

2. Let R > S:

.1. T ∈ S => (T.R) > (T.S) & (R.T) > (S.T).

.2. T ∈ S => [R↓T] > [S↓T] & [T↓R] > [T↓S].

.3. (λv.R) > (λv.S).

.4. (∀x.R) > (∀x.S)

End of definition

The α-, β-, and η-contractum terminology is that of [Curry58]; see also

[Barendregt84]. That ∀y.[y/x]S is an α-contractum of ∀x.S is not part of the lambda

calculus tradition but has been added because it too results from a change of bound

variable.

Clause (1) of the definition defines a replacement of all of R with S; R can be said to

be a part of R at depth 0. Repetitions of the inductive steps (2.1) - (2.4) has the effect of

replacing a part of greater depth in R by an α-, β-, or η-contractum of it.

NaDSyL, Elementary Syntax, February 25, 1997 Page 8

Two elementary properties of the > relation follow from its definition:

Lemma 2.3
1. If R ∈ cS and R > S, then S ∈ cS.

2. Let x ∈ qv , t ∈ cS, and R > S . Then [t/x]R > [t/x]S.

2.3.1. The Relation >> and the Church-Rosser Theorem

The >> relation on S is the transitve closure of >:

1. R >> R, for R ∈ S; and

2. R >> S and S > T => R >> T, for R, S, T ∈ S.

The most important property of the >> relation is expressed in the following theorem:

Theorem (Church-Rosser)
Let R >> S and R >> T. Then there is an R' for which S >> R ' and T >> R '.

The theorem gets its name from the paper [Church&Rosser36] where a similar result

for the pure lambda calculus was first established. Other proofs are given or cited in

[Curry58] or in [Barendregt84] and may be adapted to the extended syntax of S.

For R, S ∈ S, R=S is defined to mean that R >> T and S >> T for some T ∈ S. The

notation for the relation is justified by the following corollary to the theorem:

Corollary
The relation = is an equivalence relation on S.

Proof of Corollary
That = is reflexive and symmetric follows immediately from its definition. That it is also

transitive follows from the Church-Rosser theorem. For let R=S and S=T. Then for

some T1 and T2, R >> T1, S >> T1, S >> T2, and T >> T2. Therefore by the theorem

there is a T3 for which T1 >> T3, and T2 >> T3. But since >> is transitive, it follows

that R >> T3 and T >> T3; that is R =T.

End of proof

2.4. Definitions of Formulas, Degrees, & Terms
The set t of first order terms is the set of R ∈ S for which no member of P has an

occurrence in R and no member of QV has a free occurrence. Since first order terms are

understood to be mentioned and thus to be implicitly within single quotes, this restriction

on the membership of t is necessary to avoid the error described in footnote 136 of

[Church56].

An atomic formula is a string CPV(t1, … , tn) for which

NaDSyL, Elementary Syntax, February 25, 1997 Page 9

CPV ∈ C(n) ∪ P(n) ∪ QV(n) ∪ av , and t1, … , tn ∈ t, for n ≥ 0. AF is the set of atomic

formulas. The set F of formulas is defined inductively:

Definition of F

1. AF ⊂ F.

2. F, G ∈ F ⇒ [F↓G] ∈ F.

3. [R/v]T(S1, … , Sn) ∈ F & v ∈ av ⇒ (λv.T)(R, S1, … , Sn) ∈ F , for n ≥ 0.

4. F ∈ F & x ∈ qv ∪ QV ⇒ (∀x.F) ∈ F.

End of definition
Clause (3) of this definition ensures that F is undecidable because of its relationship to

head normal form reductions in the lambda calculus [Barendregt84]; this connection is

discussed at greater length in §2.5.

The degree deg(F) of a formula F is defined inductively:

Definition of deg(F)

1. F ∈ AF ⇒ deg(F) = 0.

2. deg(F) = d1 & deg(G) = d2 ⇒ deg([F↓G]) = max{d1, d2}+1.

3. deg([R/v]T(S1, … , Sn)) = d ⇒ deg((λv.T)(R, S1, … , Sn)) = d+1.

4. deg([p/x]F) = d ⇒ deg(∀x.F) = d+1, where p is a parameter of the same order and

arity as x that does not occur in F.

End of definition
The members of the sets ct, cF, and cAF are the members of the cited sets in which

no variable has a free occurrence. Sentences are members of cF. The set cT(n) is the set

of T ∈ cS for which T(p1, … , pn) ∈ cF, where p1, … , pn ∈ p, n ≥ 0, are distinct from

each other and from any parameter occurring in T. The degree deg(T) of T ∈ cT(n) is

deg(T(p1, … , pn)).

Lemma 2.4.
1. Let px ∈ p ∪ qv, t ∈ ct, and F ∈ F. Then [t/px]F ∈ F.

2. Let PX ∈ P(n) ∪ QV(n) and T ∈ cT(n), for some n, n ≥ 0, and let F ∈ F. Then

[T/PX]F ∈ F.

Proof
A proof of (1) by induction on the definition of F is immediate. A proof of (2) by

induction on the definition of F makes use of (1): If F is PX(t), where t is a sequence of

n members of t, then [T/PX]F is T(t). Since T(p) ∈ F, where p is a sequence of n

distinct first order parameters without an occurrence in T, T(t) ∈ F by (1). The remaining

cases for (2) are immediate.

End of proof

NaDSyL, Elementary Syntax, February 25, 1997 Page 10

2.5. F is Undecidable

Let St ∈ S. St' is a formula part of St under the following circumstances corresponding

to the clauses (2) - (4) of the definition of F: St is [F↓G], (λv.T)(R, S1, … , Sn), or (∀x.F),

where v ∈ av and x ∈ qv ∪ QV , and St' is one of F and G in the first two case, is

[R/v]T(S1, … , Sn) in the second case, and is F in the third. A sequence St0, St1, … , Stn

of members of S is a chain of formula parts of St if St is St0 and Sti+1 is a formula part

of Sti for 0 ≤ i < n. A maximal chain St0, St1, … , Stn is one for which Stn, 0 ≤ n, has no

formula part.

The following lemma follows immediately from these definitions and the definition

of F:

Lemma 2.5.
Let St ∈ S. Then St ∈ F if and only if each maximal chain of formula parts of St ends in

a member of AF.

Should there be a bound on the length of the chains of formula parts of St, then it is

possible to decide of St whether or not it is in F. But there are St ∈ S for which no such

bound exists; for example, ((λu.u(u))(λu.u(u))) which is a formula part of itself.

The string ((λu.u(u))(λu.u(u))) is a pure lambda calculus term; that is a member of the

subset L of S defined:

1. av ⊂ L

2. R, S ∈ L ⇒ (R.S) ∈ L

3. R ∈ L & v ∈ av ⇒ (λv.R) ∈ L

A chain of formula parts of a member St of L is a head reduction path as defined §8.3 of

[Barendregt84]. Thus St has a head normal form if and only if the chain of formula parts

of St ends in lambda calculus term that is in head normal form. Since there can be no

decision procedure for head normal form, there can be no decision procedure for

membership in F.

NaDSyL, Semantics, February 25, 1997 Page 11

3. SEMANTICS
Preliminary to the definition of models, a definition of an interpretation I of NaDSyL is

given in §3.1. Then in §3.2 a set Ω[I] of signed sentences ±F is defined that records the

sentences that are true and false in I. As is the case with the models described in

[Henkin50], not all interpretations are models. A definition in §3.3 provides the basis for

the definition of models in §3.4..

3.1. Interpretations of NaDSyL
The set d is defined to have as its members the t ∈ ct in which no parameter occurs. Thus

the members of (ct–d) are the members of ct in which first order parameters occur.

Clearly d is closed under >; that is d ∈ d & d > d' ⇒ d' ∈ d.

The set D(0) has as its members the two truth values true and false. For n > 0, D(n)

is the set of functions ƒ: dn → D(0) satisfying the condition: ƒ(d1, … , di, … , dn) is

ƒ(d1, … , d'i, … , dn), whenever di > d'i and d'i, d1, … , dn ∈ d. The effect of this

condition is to make ƒ a function of the equivalence classes of d under =.

A base B is a sequence of nonempty sets B(n) for which B(0) is D(0) and

B(n) ⊆ D(n), for n > 0. An interpretation with base B is a pair of functions Φ1 and Φ2

for which Φ1: d ∪ p → d, where Φ1[d] is d for d ∈ d, and Φ2: C(n) ∪ P(n) → B(n), n ≥ 0.

The domain of Φ1 is extended to include ct as follows: For t ∈ ct, Φ1[t] is the result

of replacing each occurrence of a first order parameter p in t by Φ1[p]. Note that

t > t' ⇒ Φ1[t] > Φ1[t'], for t, t' ∈ ct. Similarly the definition of Φ2 is extended:

Φ2[CP(t1, …, tn)] is defined to be Φ2[CP](Φ1[t1], … , Φ1[tn]) when CP ∈ C(n) ∪ P(n)

and t1, … , tn ∈ ct.

Lemma 3.1
If CP ∈ C(n) ∪ P(n), t1, … , ti, … , tn, ti' ∈ ct, and ti > ti' for some i, 1 ≤ i ≤ n, then

Φ2[CP(t1, … , ti, … , tn)] is Φ2[CP(t1, … , ti', … , tn)]

Proof
Let Φ2[CP] be ƒ ∈ B(n). Then Φ2[CP(t1, … , ti, … , tn)] and Φ2[CP(t1, … , ti', … , tn)]

are respectively ƒ(Φ1[t1], … , Φ1[ti] , … , Φ1[tn]) and ƒ(Φ1[t1], … , Φ1[ti'], … , Φ1[tn]).

Since Φ1[t] > Φ1[t'], the conclusion follows from the definition of D(n).

end of proof
Let I be an interpretation with functions Φ1 and Φ2, and let p be a parameter, first

or second order. An interpretation I* is a p variant of I if it has the same base as I and

its functions Φ1* and Φ2* satisfy the conditions:

1. If p is first order, then Φ2* is Φ2 and Φ1*[q] differs from Φ1[q] only if q is p.

2. If p is second order, then Φ1* is Φ1 and Φ2*[q] differs from Φ2[q] only if q is p.

NaDSyL, Semantics, February 25, 1997 Page 12

3.2. The set Ω[I]

An interpretation I assigns a single truth value Φ2[A] to each A ∈ cAF. This assignment

will be extended to an assignment of a single truth value Φ2[F] to each F ∈ cF. This

assignment of truth values is recorded as a set Ω[I] of signed sentences for which

+F ∈ Ω[I] records that Φ2[F] is true and –F ∈ Ω[I] that Φ2[F] is false.

The set Ω[I] is defined to be ∪{Ωk[I] | k ≥ 0} where Ωk[I] is defined for k ≥ 0 as

follows:

Definition of Ωk[I]

1. Ω0[I] is the set of signed atomic sentences ±A for which Φ2[A] is true, respectively

false.

2. Assuming Ωk[I] is defined for all interpretations I, Ωk+1[I] consists of all members of

Ωk[I] together with the sentences

.1. +[F↓G] for which –F ∈ Ωk[I] and –G ∈ Ωk[I]; and

–[F↓G] for which +F ∈ Ωk[I] or +G ∈ Ωk[I].

.2. ±(λv.T)(R, S1, … , Sn) for which ±[R/v]T(S1, … , Sn) ∈ Ωk[I],

where n ≥ 0 and v is an abstraction variable.

.3. +∀x.F for which +[p/x]F ∈ Ωk[I*] for every p variant I* of I; and

–∀x.F for which –[p/x]F ∈ Ωk[I*] for some p variant I* of I,

where F is a formula in which at most the quantification variable x has a free

occurrence, and p is any parameter that does not occur in F and is of the same

order and arity as x.

End of definition

Lemma 3.2
For each interpretation I,

1. +F ∉ Ω[I] or –F ∉ Ω[I], and +F ∈ Ω[I] or –F ∈ Ω[I], for F ∈ cF.

2. ±[r/x]F ∈ Ω[I] and r > t => ±[t/x]F ∈ Ω[I], where F ∈ F, x ∈ qv, and r, t ∈ ct .

Proof
Since deg(F) is defined in §2.4.1 for every F ∈ F, to prove (1) and (2) it is sufficient to

prove by induction on k that if deg(F) ≤ k then

a) +F ∉ Ωk[I] or –F ∉ Ωk[I],

b) +F ∈ Ωk[I] or –F ∈ Ωk[I], and

c) ±[r/x]F ∈ Ωk[I] and r > t => ±[t/x]F ∈ Ωk[I].

That each of (a), (b), and (c) hold when k=0 is immediate. Let them now (i) hold for all F
and all I when deg(F) ≤ k, and consider an F for which deg(F) = k+1. The three cases to

be considered are: F is [G↓H], where deg(G), deg(H) ≤ k; F is (λv.T)(R, S1, … , Sn),

where deg([R/v]T(S1, … , Sn)) = k; and F is ∀x.G, where deg([p/x]G) = k for some

NaDSyL, Semantics, February 25, 1997 Page 13

parameter p that does not occur in G and is of the same order and arity as x. That each of

(a), (b), and (c) hold in these cases can be concluded from the induction assumption.

End of proof

3.2.1. Sequents &Satisfaction

A sequent is an expression of the form

a) F1, … , Fm |– G1, … , Gn

where the sentences Fi, 0 ≤ i ≤ m, form the antecedent of the sequent and the sentences

Gj, 0 ≤ j ≤ n, the succedent. Sequents were first introduced in [Gentzen34-5] and for that

reason are sometimes called Gentzen sequents. If Γ is the sequence F1, … , Fm and Θ the

sequence G1, … , Gn, then (a) can be written Γ |– Θ.

A sequent Γ |– Θ is said to be satisfied by an interpretation I if there is a sentence F

for which F ∈ Γ and –F ∈ Ω[I], or F ∈ Θ and +F ∈ Ω[I].

3.3 Definition of Φ2[T]

Let T ∈ cT(n), n ≥ 0, and I be an interpretation with functions Φ1 and Φ2. Let d be a

sequence of n members of d. By (1) of lemma 2.4, T(d) is a sentence so that by (1) of

lemma 3.2 exactly one of +T(d) and –T(d) is in Ω[I]. Define Φ2[T] to be the function ƒ

for which ƒ(d) is true, respectively false, if +T(d), respectively –T(d), is in Ω[I].

Thus Φ2[T] ∈ D(n) by (2) of lemma 3.2.

Lemma 3.3

Let H be a formula in which at most the quantification variable x has a free occurrence

and let p be a parameter of the same order and arity as x not occurring in H. Let t ∈ ct if

x is first order, and t ∈ cT(n) if x is second order of arity n. Let I* be a p variant of an

interpretation I for which Φ1*[p] is Φ1[t] if x is first order, and Φ2*[p] is Φ2[t] if x is

second order. Then for k ≥ 0,

a) ±[p/x]H ∈ Ωk[I*] ⇒ ±[t/x]H ∈ Ωk[I].

Proof

The proof of the lemma will be by induction on k. Let k be 0. If x is first order, then H
takes the form CP(r1, … , rn) where x may have a free occurrence in r1, … , rn ∈ t. In

this case Φ2*[[p/x]H] is Φ2[CP](Φ1*[[p/x]r1], … , Φ1*[[p/x]rn]). But Φ1*[[p/x]ri] is

[Φ1[p]/x]Φ1[[ri] , since p does not occur in ri, and this is [Φ1[t]/x]Φ1[[ri] , which is

Φ1[[t/x]ri] . Thus Φ2*[[p/x]H] is Φ2[[t/x]H]. If x is second order, then H takes the form

x(t1, … , tn) where t1, … , tn ∈ ct, and t is a second order parameter or constant CP. Thus

Φ2*[p] is Φ2[CP] and Φ1*[ti] is Φ1[ti] from which (a) follows immediately.

NaDSyL, Semantics, February 25, 1997 Page 14

Assume now that (a) holds and let ±[p/x]H ∈ Ωk+1[I*]. Consider first the case that H

is [F↓G] and let +[p/x][F↓G] ∈ Ωk+1[I*]. Then +[p/x][F↓G] ∈ Ωk+1[I*] ⇒

–[p/x]F, –[p/x]G ∈ Ωk[I*] ⇒ –[t/x]F, –[t/x]G ∈ Ωk[I] ⇒ +[t/x][F↓G] ∈ Ωk+1[I].

The arguments for the – case, as well as for the cases when H is (λu.T)(R, S1, … , Sn), are

similar.

Let now H be ∀y.F, where it may be assumed that x is distinct from y and has a free

occurrence in F, so that [p/x]∀y.F is ∀y.[p/x]F and [t/x]∀y.F is ∀y.[t/x]F. Let q be of the

same order and arity as y and not occur in [p/x]F or in t. Then +∀y.[p/x]F ∈ Ωk+1[I*] ⇒

+[q/y][p/x]F ∈ Ωk[I**] for every q variant I** of I*. For each I** there is a q variant

I*' of I for which I** is a p variant of I*'. Thus by the induction assumption

+∀y.[p/x]F ∈ Ωk+1[I*] ⇒ +[q/y][t/x]F ∈ Ωk[I*'] for every q variant I*' of I

⇒ +∀y.[t/x]F ∈ Ωk+1[I]. The –∀ case can be similarly argued.

End of proof

3.4. Models & Validity
For every term t ∈ ct and interpretation I, Φ1[t] ∈ d. But although Φ2[T] ∈ D(n), it does

not follow that Φ2[T] ∈ B(n), where { B(n) | n ≥ 0} is the base of I. I is a model if

Φ2[T] ∈ B(n) for every T ∈ cT(n), n > 0. Clearly there exists a model: Every

interpretation for which B(n) is D(n) for n > 0 is a model. Following [Henkin50] such an

intepretation is called a standard model.

 A sequent Γ |– Θ is valid if it is satisfied by every model. A counter-example for the

sequent is a model M for which +F ∈ Ω[M] for each F ∈ Γ, and –F ∈ Ω[M] for each

F ∈ Θ.

The logical syntax or proof theory of NaDSyL to be defined in §4 can be understood

to be a method for attempting the construction of a counter-example for a given sequent.

It will be proved in §5 that if the method fails to find a derivation for a given sequent,

then a counter-example for the sequent can be constructed.

NaDSyL, Logical Syntax, February 25, 1997 Page 15

4. LOGICAL SYNTAX

 The logical syntax, or proof theory, of NaDSyL defines derivations for sequents. A

derivation of a sequent is a finite binary tree with nodes consisting of signed sentences

that are related by semantic rules and that satisfy special conditions. The semantic rules

are described in §4.1 and the special conditions in §4.2. Some terminology for and

transformations of derivations are described in §4.3.

4.1. Semantic Rules

+↓ +[F↓G] +[F↓G] –↓ –[F↓G]
- - - - - - - - - - - - _________
–F –G +F +G

+λ1 +CP(t1, … , ti, … , tn) –λ1 –CP(t1, … , ti, … , tn)
- -
+CP(t1, … , ti', … , tn) –CP(t1, … , ti', … , tn)

where CP ∈ C(n) ∪ P(n), t1, … , ti, … , tn, ti' ∈ ct, and ti > ti' with 1 ≤ i ≤ n.

+λ2 +(λv.T)(R, S1, … , Sn) –λ2 –(λv.T)(R, S1, … , Sn)
- -
+[R/v]T(S1, … , Sn) –[R/v]T(S1, … , Sn))

+∀ +∀x.F –∀ –∀x.F
- - - - - - - - - - - - - -
+[t/x]F –[p/x]F

Here F ∈ F, and either x ∈ qv, p ∈ p and t ∈ ct, or x ∈ QV (n), p ∈ P(n) and t ∈ cT(n).

In addition, p does not occur in F or in any node above the premiss of the application of

the rule introducing it. The parameter p of an application of –∀ is called the eigen

parameter, or e-par, of the application, and the term t of +∀ is called the eigen term, or e-

term, of the application.

The last semantic rule has a character different from the above logical rules. It is a

rule without premiss and with two conclusions:

Cut

+F –F

The sentence F is called the cut sentence of an application.

It is proved in §5 that the cut rule is not needed; that is, that any derivation of a

sequent in which cut is used can be replaced with a derivation in which it is not used.

Nevertheless, cut is a useful rule; in [Gilmore97b] it is used in a variety of ways to permit

the reuse of previously constructed derivations in the construction of a new derivation.

NaDSyL, Logical Syntax, February 25, 1997 Page 16

Although these are the only rules of deduction that will be assumed to exist in this

report, rules for the more usual logical connectives ¬, →, ∧, ∨, and ↔ and the existential

quantifier ∃ can be derived from the rules ±↓ and ±∀.

4.2. Derivations

Given a sequent F1, … , Fm |– G1, … , Gn, a semantic tree based on the sequent consists

of a tree of signed sentences defined inductively as follows:

Definition of a Semantic Tree Based on a Sequent

1. Any tree with a single branch consisting of some nodes +Fi and –Gj is a tree based on

the sequent.

2. Let τ be a tree based on the sequent, and let τ' be obtained from τ by adding to the end

of a branch of τ either

.1. a signed sentence that is the single conclusion of an application of one of the rules

+↓, ±λ1, ±λ2, or ±∀ with premiss a signed sentence on the given branch; or

.2. two signed sentences on separate branches that are the conclusions of cut, or of an

application of –↓ with premiss a signed sentence on the given branch.

Then τ' is a tree based on the sequent.

End of definition

Note that not all the sentences in the antecedent or succedent of a sequent need be

signed and added as nodes of a semantic tree based on the sequent. The nodes that are so

added are called the initial nodes of the semantic tree.

A branch of a semantic tree is closed if there is an A ∈ cAF for which both +A and

–A are nodes of the branch. A semantic tree is closed if each of its branches is closed.

A derivation of a sequent is a closed semantic tree based on the sequent.

An example derivation is given for the sequent

∀X.[X((λ.w.w(p, a))(λu,v.u))↓∀x.D(x)] |– [∀x.C(x)↓∀x.(λw.w(x))(D)].

+∀X.[X((λ.w.w(p, a))(λu,v.u))↓∀x.D(x)] initial node
–[∀x.C(x)↓∀x.(λw.w(x))(D)] initial node
+[C((λ.w.w(p, a))(λu,v.u))↓∀x.D(x)] +∀
–C((λ.w.w(p, a))(λu,v.u)) +↓
–C((λu,v.u)(p, a)) –λ1
–C(p) –λ1
–∀x.D(x) +↓
–D(q) –∀
__
+∀x.C(x) –↓ +∀x.(λw.w(x))(D) –↓
+C(p) +∀ +(λw.w(q))(D) +∀
===== +D(q) +λ2

=====

NaDSyL, Logical Syntax, February 25, 1997 Page 17

Apart from the two initial nodes, the rule cited to the right of a node is the rule of which

the node is a conclusion; the premiss for the rule is a node above the conclusion. The

double lines at the bottom of the two branches indicate that the branches are closed.

4.2.1. Terminology

The derivation above has been illustrated with its root at the top and with its branches

spreading downward. The terminology used in discussing trees reflects this orientation.

Thus a node η1 is above a node η2 if they are both on the same branch and η1 is closer to

the root of the tree than η2; it is below η2 if η2 is above it. The height of a node on a

given branch is the number of nodes below it on the branch; the height of a node in a

tree is the maximum of its heights on the branches on which it occurs. A leaf node of a

tree is a node of height zero.

4.2.2. Eliminable Rules

The two λ1 rules can be generalized to the following rules:

+> +[r/x]F –> –[r/x]F
- - - - - - - - - - - -
+[t/x]F –[t/x]F

where x ∈ qv, r , t ∈ ct, and r > t.

These rules are eliminable in the sense that a derivation of a sequent in which they are

used can be replaced by a derivation in which they are not used. For let ±[t/x]F be the

conclusion of an application of one of the rules ±>. Let ±[t/x]F be at the same time a

premiss of an application of one of the logical rules other than ±λ1. Then ±[r/x]F can

equally well be the premiss of the latter rule when occurrences of t in its conclusion or

conclusions are replaced by r. Then an application of ±> to a single conclusion, or

applications of ±> to each of the two conclusions of an application of –↓, restores the

derivation. In this way applications of the ± rules can be postponed until they become

applications of the ±λ1 rules.

4.3. The Undecidability of the Elementary Syntax
A sketch of the undecidability of F was given in §2.4.3. The undecidability of F need

have surprisingly little effect on the construction of derivations, because of the similarity

of the clauses (2), (3), and (4) of the definition of F in §2.4.1 with the semantic rules ±↓,

±λ2, and ±∀. These are emphasized in the proof of the following lemma:

Lemma 4.3
F |– F is a derivable sequent for each F ∈ cF.

NaDSyL, Logical Syntax, February 25, 1997 Page 18

Proof
The lemma will be proved by induction on deg(F). If deg(F)=0, then F ∈ AF so that if

F ∈ cAF , then F |– F has a derivation.

Let now deg(F)=k+1. Let F be [G↓H] so that deg(F), deg(F) ≤ k. By the induction

assumption both G |– G and H |– H are derivable sequents. A derivation of

[G↓H] |– [G↓H] can be constructed from derivations of these sequents by one

application of –↓ and one application of each of the two +↓ rules.

The other two cases when F is (λv.T)(R, S1, … , Sn) and F is ∀x.G can be proved in a

similar way. In the latter case [p/x]G |– [p/x]G is derivable since deg([p/x]G)=k; here p

is a parameter of the same order and arity as x that does not occur in G, . From a

derivation of that sequent, a derivation of the sequent ∀x.G |– ∀x.G can be obtained by

one application of –∀ with e-par p followed by one application of +∀ with e-term p.

end of proof

The derivation for the sequent F |– F described in the proof is in essence a method

for displaying all the maximal chains of formula parts of F as these are defined in §2.4.3.

However, for some sequent-like strings not of the form of the law of the excluded middle,

it is possible to produce a tree that appear to be derivation but is not. Consider the

following example:

i) [C(a)↓(λu.u(u))(λu.u(u))], C(a) |–

The following tree records a search for a derivation:

+[C(a)↓(λu.u(u))(λu.u(u))]
+C(a)
–C(a)
====

But this is not a derivation because [C(a)↓(λu.u(u))(λu.u(u))] ∉ cF. Because the

derivation applies only the first of the two rules with premiss +[C(a)↓(λu.u(u))(λu.u(u))],

it does not test whether all maximal chains of formula parts of [C(a)↓(λu.u(u))(λu.u(u))]

terminates in a member of cAF. This simple example illustrates the main consequence of

the undecidability of F: A sequent like string may have a derivation when only one of the

+↓ rules is applied to a given premiss, even though the string is not a sequent. But if

necessary this effect can be compensated for by requiring a proof of membership in cF

for these cases by requiring a derivation for F |– F for the unused formula parts F.

NaDSyL, Soundness & Cut, February 25, 1997 Page 19

5. SOUNDNESS & CUT-ELIMINATION

A semantic proof of the consistency or soundness of NaDSyL is given in §5.1. A proof

of the completeness of NaDSyL without the cut rule is given in §5.2 to §5.4. It is an

adaptation of the proof for the second order predicate logic given in [Prawitz67]. That

cut is a redundant rule of deduction is a corollary of the completeness theorem.

5.1. Soundness Theorem

A derivable sequent is valid.

Proof

Consider a derivation for a sequent Γ |– Θ. Let η be any node of the derivation which does

not have an initial node below it. Define Γ[η] and Θ[η] to be the sets of sentences F for

which +F, respectively –F, is η itself or is a node above η. Thus if η is the last of the

initial nodes of the derivation, Γ[η] ⊆ Γ and Θ[η] ⊆ Θ; hence if Γ[η] |– Θ[η] is satisfied by

a model M, so is Γ |– Θ.

By induction on the height h(η) of η, Γ[η] |– Θ[η] will be shown to be valid. If h(η)=0,

then η is a leaf node of a branch of the derivation. Since the branch is closed, Γ[η] |– Θ[η]

is valid. Assume therefore that h(η) > 0, and that there is a model M that does not satisfy

Γ[η] |– Θ[η]. Necessarily η is immediately above a conclusion η1 or conclusions η1 and η2

of one of the rules of deduction. There are therefore two main cases to consider

corresponding to the single conclusion rules +↓, ±λ1, ±λ2, and ±∀, and to the two

conclusion rules –↓ and cut.

For the single conclusion rules it is sufficient to illustrate the argument with the

second order ±∀ rules with premiss ±∀X.F and conclusion respectively +[T/X]F and

–[P/X]F, where X ∈ QV(n), T ∈ cT(n), and P ∈ P(n) with P not occurring in F. For the +

case ∀X.F ∈ Γ[η], Γ[η1] is Γ[η] ∪ {[T/X]F}, and Θ[η1] is Θ[η]. Since M satisfies

Γ[η1] |– Θ[η1] but does not satisfy Γ[η] |– Θ[η] it follows that +∀X.F, –[T/X]F ∈ Ω[M].

Thus for every P variant M* of M, +[P/X]F ∈ Ω[M*]. Consider the P variant for which

Φ2*[P] is Φ2[T]. By lemma 3.3 it follows that +[T/X]F ∈ Ω[M], contradicting

–[T/X]F ∈ Ω[M].

For the – case, Γ[η1] is Γ[η], ∀X.F ∈ Θ[η], and Θ[η1] is Θ[η] ∪ {[P/X]F}. Since

Γ[η1] |– Θ[η1] is valid, it follows that it is satisfied by every P variant M* of M. Further,

since M does not satisfy Γ[η] |– Θ[η] it follows that –[P/X]F ∈ Ω[M] while

+[P/X]F ∈ Ω[M], since M is a P variant of itself.

Consider now the two conclusion rules. Let the premiss of an application of –↓ be

–[F↓G] and the conclusions +F and +G. Thus [F↓G] ∈ Θ[η], Γ[η1] is Γ[η] ∪ {F}, Γ[η2] is

Γ[η] ∪ {G}, Θ[η1] is Θ[η], and Θ[η2] is Θ[η]. As before it follows that –F, –G ∈ Ω[M]

NaDSyL, Soundness & Cut, February 25, 1997 Page 20

and therefore that +[F↓G] ∈ Ω[M] again leading to a contradiction. For the case of cut let

the cut sentence be F. In this case Γ[η1] is Γ[η] ∪ {F}, Θ[η1] is Θ[η], Γ[η2] is Γ[η], and

Θ[η2] is Θ[η] ∪ {F}. It follows therefore that +F, –F ∈ Ω[M] which is impossible by (1)

of lemma 3.2.

End of proof

5.2. Derivable & Underivable Sets

It is convenient to now represent sequents as sets of signed sentences. The members of a

set Sq representing a sequent consist of all the potential initial nodes of a derivation of

the sequent. Thus the sequent F1, … , Fm |– G1, … , Gn is represented by the set

{+F1, … , +Fm, –G1, … , –Gn}.

A finite set Sq is said to be derivable if there is a derivation with initial nodes

selected from the set in which no application of cut appears and in which the eliminable

rules ±> are used in place of the ±λ1 rules. An infinite set is derivable if a finite subset of

it is derivable. A set is said to be underivable if it is not derivable. A set of signed

sentences is said to beconsistent if not both ±F are members for some sentence F, and is

said to be inconsistent otherwise. An inconsistent set is necessarily derivable since a

derivation of F |– F without its initial nodes can be appended to any branch on which

both ±F are nodes.

By systematically applying the rules of deduction to a branch of a semantic tree based

on a set Sq, a downward closure of Sq can be constructed as defined here:

Definition of a Downward Closure for a Set Sq

A set of signed sentences dc[Sq] is a downward closure of a set Sq if it satisfies the

following conditions:

1. Sq ⊂ dc[Sq].

2. ±[r/x]F ∈ dc[Sq] & r > t => ±[t/x]F ∈ dc[Sq], when x ∈ qv and r, t ∈ ct .

3. +[F↓G] ∈ dc[Sq] => –F, –G ∈ dc[Sq]

–[F↓G] ∈ dc[Sq] => + F or +G ∈ dc[Sq]

4. ±(λv.T)(R, S) ∈ dc[Sq] => ±[R /v]T(S) ∈ dc[Sq]

5. +∀x.F ∈ dc[Sq] => +[t /x]F ∈ dc[Sq] for all t of the same order and arity as x

with parameters occurring in members of dc[Sq].

–∀x.F ∈ dc[Sq] => –[p/x]F ∈ dc[Sq] for some parameter of the same order and

arity as x not occurring in F.

End of definition

NaDSyL, Soundness & Cut, February 25, 1997 Page 21

Lemma 5.2
If a set Sq is underivable then there is a downward closure dc[Sq] of Sq that is

consistent.

Proof
If Sq is underivable, then any semantic tree based on it must have a branch that cannot be

closed no matter how the branch is extended. By systematically applying the logical rules

to the nodes of such a branch, a downward closure of Sq can be constructed. Details will

be left to the reader.

End of proof
Following [Hintikka55] a consistent downward closure of a set Sq is called a model

set. Necessarily if Sq has a model set, then Sq is underivable. In the remaining sections

an interpretation I[md[Sq]] will first be constructed from a model set md[Sq] of an

underivable set Sq; this is then followed by the construction of a model of NaDSyL that

is a counter-example for Sq.

5.3. An Interpretation Defined from a Model Set
 Let md[Sq] be a consistent downward closure for an underivable set Sq. Here an

interpretation I[md[Sq]] is defined from md[Sq]. To this end the notation T† is

introduced for any term or formula T.

Let the sets c and p be enumerated c1, c2, … and p1, p2, … . T† is obtained from T

by first replacing each occurrence of ci by c2i, and then replacing each occurrence of pi

by c2i-1, for i ≥ 1. Thus no p ∈ p occurs in T†. In particular, for t ∈ ct, t†∈ d. Should

t ∈ ctn be t1, … , tn, then by t† is meant t1†, … , tn†, and should also r ∈ ctn by r > t is

meant ri > ti and by r >> t is meant ri >> t i for 1 ≤ i ≤ n.

For each PC ∈ P(n)∪ C(n), n > 0, a function ƒ+[PC]: dn → D(0) is defined:

ƒ+[PC](r†) is true <=> +PC(t) ∈ md[Sq] for some t ∈ ctn for which r >> t .

Lemma 5.3.1
For each PC ∈ P(n)∪ C(n), n ≥ 0, ƒ+[PC] has the following properties:

1. ±PC(r) ∈ md[Sq] => ƒ +[PC](r†) is true, respectively false, for r ∈ ctn.

2. ƒ+[PC] ∈ Dn.

Proof
1) Since ri >> ri for 1 ≤ i ≤ n, the + case of the implication follows immediately from

the definition of ƒ+[PC]. Consider now the – case. Let ƒ+[PC](r†) be true. Then for

some t ∈ ctn, r >> t and +PC(t) ∈ md[Sq]. But from (2) of of the definition of md[Sq]

it follows that if –PC(r) ∈ md[Sq] then –PC(t) ∈ md[Sq] so that –PC(r) ∉ md[Sq].

2) It is sufficient to prove that if ri > ri' then

NaDSyL, Soundness & Cut, February 25, 1997 Page 22

ƒ+[PC](r1†, … , ri†, … , rn†) is true, <=>ƒ+[PC](r1†, … , ri'†, … , rn†) is true.

Let ri > ri' and ƒ+[PC](r1†, … , ri†, … , rn†) be true. There are therefore t1, … , tn for

which rj >> t j for 1 ≤ j ≤ n and +PC(t1, … , tj, … , tn) ∈ md[Sq]. Thus ri > ri' and

ri >> t i so that by the Church-Rosser theorem there is an si for which ti >> s i and

ri' >> s i. Hence again from (2) of of the definition of md[Sq]

+PC(t1, … , si, … , tn) ∈ md[Sq] so that ƒ+[PC](r1†, … , ri'†, … , rn†) is true.

Let now ri > ri' and ƒ+[PC](r1†, … , ri'†, … , rn†) be true. For some t1, … , tn for

which rj >> t j for j≠i and ri' >> t i, +PC(t1, … , tn) ∈ md[Sq]. But then since ri > ri' it

follows that rj >> t j for 1 ≤ j ≤ n so that ƒ+[PC](r1†, … , ri†, … , rn†) is true.

End of proof
The base set Bn, n > 0, for I[md[Sq]] is defined to be {ƒ+[PC] | PC ∈ P(n)∪C(n)}.

Thus Bn ⊆ Dn as required. The functions Φ1 and Φ2 for I[md[Sq]] are defined as

follows: Φ1[pi] is c2i–1 for all i ≥ 1, so that Φ1[t] is t† for t ∈ ct ; and Φ2[PC] is ƒ+[PC],

for PC ∈ P(n)∪C(n), n ≥ 0.

Lemma 5.3.2
±F ∈ md[Sq] => ±F† ∈ Ω[I[md[Sq]]]

Proof

By induction on the degree k of F the following result will be proved:

i) ±F ∈ md[Sq] => ±F† ∈ Ωk[I]

Here I abbreviates I[md[Sq]].

Let deg(F)=0, so that F is PC(r), for some PC ∈ P(n)∪C(n), n ≥ 0, and r ∈ ctn. F† is

then PC(r†). By (1) of lemma 5.3.1, ±PC(r) ∈ md[Sq] => ƒ+[PC](r†) is true,

respectively false, for r ∈ ctn => ±PC(r†) ∈ Ω0[I].

Assume (i) for 0 ≤ k ≤ m. Let deg(F)=m+1 and consider the forms that F can take:

F is [G↓H]. By (2) of the definition of md[Sq] and the definition of Ωm+1[I]:

+[G↓H] ∈ md[Sq] => –G, –H ∈ md[Sq] => –G†, –H† ∈ Ωm[I] => +[G↓H]† ∈ Ωm+1[I].

Similarly, –[G↓H] ∈ md[Sq] => + G or +H ∈ md[Sq] => +G†or +H† ∈ Ωm[I] =>

–[G↓H]† ∈ Ωm+1[I]. The case where F is (λv.T)(R, S) can be similarly argued.

F is ∀x.F, where x ∈ QV (n). By (5) of the definition of md[Sq] and the definition of

Ωm+1[I]: +∀x.F ∈ md[Sq] => +[PC/x]F ∈ md[Sq] for all PC ∈ P(n)∪C(n) =>

+[PC/x]F† ∈ Ωm[I] for all PC ∈ P(n)∪C(n) => +[P/x]F† ∈ Ωm[I*] for all P variants I*

of I, where P does not occur in F => +∀x.F† ∈ Ωm+1[I]. Similarly, –∀x.F ∈ md[Sq] =>

–[P/x]F ∈ md[Sq] for some P ∈ P(n) not in F => –[P/x]F† ∈ Ωm[I] =>

–∀x.F† ∈ Ωm+1[I]. The case where x ∈ qv can be similarly argued.

End of proof

NaDSyL, Soundness & Cut, February 25, 1997 Page 23

5.4. A Model that is a Counter-Example

Here a model of NaDSyL will be defined that is a counter-example for the sequent

represented by Sq. To this end the sets P(n) of second order parameters are enlarged for

each arity n, n ≥ 0. For each ordinal α of a class to be specified later, a set Pα(n) of new

parameters is added. P0(n) is P(n) and Pα(n)∩ Pβ(n) is empty when α ≠ β. Essential to

the definition of the counter-example is the fact that the sets t and d are not affected by

the introduction of the new second order parameters.

The set of sentences cFβ is defined exactly like cF except that in place of the set P(n)

the set ∪{Pα(n) | 0 ≤ α ≤ β} is used for each n. The sets cTβ(n) are defined from cFβ in

the same way that the sets cT(n) were defined from cF. The set ∪{cTβ(n)| n ≥ 0} is

denoted by cTβ. For each β and n, n ≥ 0, it is assumed that there is a single member P[T]

of Pβ+1(n) assigned to each T ∈ cTβ(n), with distinct T assigned distinct members of

Pβ+1(n).

Definition of Kβ
A set Kβ of signed sentences is defined for each β:

1. K0 is md[Sq].

2. Kβ+1 is Kβ together with all signed sentences ±[P[T1]/Y1] … [P[Tm]/Ym]F for which

±[T1/Y1] … [Tm/Ym]F ∈ Kβ. Here Y1, … , Ym ∈ QV and T1, … , Tm ∈ cTβ.

3. Kβ is ∪{Kα | α < β} for a limit ordinal β.

End of definition

Lemma 5.4.1
For each β, Kβ is a model set for Sq.

Proof
It will be proved by transfinite induction on β that Kβ is a consistent downward closure of

Sq. The case β=0 follows from the definition of K0. Assume the lemma for β and

consider the case β+1 and the clauses of the definition of a downward closure. That

Kβ+1 is consistent and that (1) holds is immediate. Since no Y ∈ QV can have a free

occurrence in a t ∈ t, no occurrence of a T in t is replaced by P[T]; therefore (2) holds for

Kβ+1 if it holds for Kβ. (3), (4) and the first order case of (5) hold for Kβ+1 if they hold

for Kβ. Consider now the second order case of (5). The – case is immediate since a

parameter in Pβ+1(n) is distinct from any parameter in {Pα(n) | α < β}.

Let +∀X.F ∈ Kβ+1 where X ∈ QV (n). To prove that (5) holds in this case it is

necessary to prove that +[R/X]F ∈ Kβ+1 for each R ∈ cTβ+1(n). If [R/X]F ∈ cFβ then

necessarily +∀X.F ∈ Kβ and +[R/X]F ∈ Kβ so that +[R/X]F ∈ Kβ+1. Assume therefore

that [R/X]F ∈ cFβ+1. For some T1, … , Tm ∈ cTβ, and some Y1, … , Ym ∈ QV, there is

an S ∈ Tβ(n) and a G ∈ Fβ for which F is [P[T1]/Y1] … [P[Tm]/Ym]G and R is

NaDSyL, Soundness & Cut, February 25, 1997 Page 24

[P[T1]/Y1] … [P[Tm]/Ym]S. Thus +∀X.[T1/Y1] … [Tm/Ym]G ∈ Kβ and

[T1/Y1] … [Tm/Ym]S ∈ cTβ(n) so that +[T1/Y1] … [Tm/Ym]([S/X]G) ∈ Kβ and therefore

+[P[T1]/Y1] … [P[Tm]/Ym]([R/X]F) ∈ Kβ+1 as required.

End of proof
Definition of Iβ

An interpretation Iβ is defined for each β. The first order function for each Iβ is the

function Φ1 for I0, Φ2,β denotes the second order function, and Bβ(n) denotes the arity n

base set.

1. I0 is I[md[Sq]].

2. Let Iβ be defined. Iβ+1 is defined as follows:

.1. Bβ+1(n) is Bβ(n)∪{Φ2,β[T] | T ∈ cTβ(n)}, for n > 0.

.2. Φ2,β+1[PC] is Φ2,β[PC], for PC ∈ ∪{Pα(n) | α < β}∪C(n), n ≥ 0; and

Φ2,β+1[P[T]] is Φ2,β[T] for T ∈ cTβ.

3. Let Iα be defined for α < β, where β is a limit ordinal. Then

.1. Φ2,β[C] is Φ2,0[C], for C ∈ C(n), n ≥ 0; and

Φ2,β[P] is Φ2,α[P], where P ∈ Pα(n), n ≥ 0 and α < β.

.2. Bβ(n) is ∪{ Bα(n) | α < β}.

End of definition
Note that since Pα(n) ⊂ cTβ(n) when α < β, Bβ+1(n) is {Φ2,β+1[P] | P ∈ Pβ+1(n)}.

Lemma 5.4.2
For all ordinals β and all F ∈ cFβ, ±F ∈ Kβ => ±F† ∈ Ω[Iβ]

 Proof

The proof is by transfinite induction on β. The case β=0 follows from (1) of the definition

and lemma 5.3.2. Assume the lemma for β and consider the case β+1. By induction on

the degree k of F, ±F ∈ Kβ+1 => ±F† ∈ Ωk[Iβ+1] can be proved in much the same way as

lemma 5.3.2.

Consider now a limit ordinal β. Assume that the lemma holds for all α, α < β. The

lemma will be proved for β by induction on deg(F). The result is immediate when deg(F)

is 0. Of the forms that F can take when deg(F) is k+1, only the form +∀X.G presents any

new difficulties. Let +∀X.G ∈ Kβ, where X ∈ QV(n). By lemma 5.4.1 it follows that

+[T/X]G ∈ Kβ for all T ∈ cTβ(n). In particular it follows that +[P[T]/X]G ∈ Kβ for all

P[T] ∈ Pβ(n). By the induction assumption therefore +[P[T]/X]G† ∈ Ω[Iβ] for the same

P. But this means that +[P/X]G† ∈ Ω[Iβ*] for all P variants Iβ* of Iβ, where P is not in

G. Hence +∀X.G† ∈ Ω[Iβ].

End of proof

NaDSyL, Soundness & Cut, February 25, 1997 Page 25

Theorem 5.4
There is an ordinal β for which Iβ is a counter-example for Sq.

Proof
For each β ≥ 0 and each n ≥ 0, Bβ(n) ⊆ Bβ+1(n) ⊆ D(n). Further d is denumerable. Thus

the cardinal of an ordinal β for which Bβ(n) ⊄ D(n) cannot exceed the cardinal of D(n).

Therefore there is an ordinal β for which Bβ+1(n) ⊆ Bβ(n), for n ≥ 0. But this can only

be the case if Φ2,β[T](t†) ∈ Bβ(n) for each T ∈ cTβ(n), n ≥ 0; that is if Iβ is a model. It is

necessarily a counter-example for the sequent represented by Sq from lemma 5.4.2.

End of proof.

Corollary

The logical syntax of NaDSyL is complete without the cut rule.

Proof
It is not possible for there to be a set Sq that is derivable with cut but not without. For let

M be the counter-example for Sq. If Sq were derivable with cut it would be valid by

soundness theorem 5.1, and therefore satisfied by the model M.

End of proof.

NaDSyL, References, February 25, 1997 Page 26

6. REFERENCES

The numbers in parentheses refer to the date of publication. (xx) is the year 19xx.

Andrews, Peter B.
(71) Resolution in type theory, Journal of Symbolic Logic, vol. 36, 414-432.

Apostoli, Peter
(94) Logic, truth and number: the elementary genesis of arithmetic, To appear in the

Festschrift celebrating Alonzo Church's 92 birthday. Kluwer Academic, ed. M.
Zeleny and A.C. Anderson, 68pp.

(95) The analytical conception of truth and the foundations of arithmetic, draft
manuscript dated October 15, 1995, Dept of Philosophy, University of Toronto,
84pp.

Apostoli, Peter & Kanda, Akira
(96) The proper treatment of abstraction in programming systems, draft manuscript,

Dept of Philosophy, University of Toronto, 75pp.
(97) Regaining the Lost Paradise of Frege and Cantor, draft manuscript, Dept of

Philosophy, University of Toronto, 141pp.

Barendregt, H.P.
(84) The Lambda Calculus, Its Syntax and Semantics, Revised Edition, North-Holland.

Beth, E.W.
(55) Semantic Entailment and Formal Derivability, Mededelingen de Koninklijke

Nederlandse Akademie der Wetenschappen, Afdeeling Letterkunde, Nieuwe
Reeks, 18, no.13, 309-342.

Church, Alonzo
(41) The Calculi of Lambda Conversion, Princeton University Press.
(56) Introduction to Mathematical Logic I, Princeton University Press.

Church, A. & Rosser, J.B.
(36) Some properties of conversion, Trans. Amer. Math. Soc., 58, 472-482

Cocchiarella, Nino B.
(79) The theory of homogeneous simple types as a second order logic, Notre Dame

Journal of Formal Logic, vol. 20, 505-524.
(85) Two λ-extensions of the theory of homogeneous simple types as a second-order

logic, Notre Dame Journal of Formal Logic, vol. 26, 377-406.

Curry, Haskell B.,
(58) Combinatory Logic, Vol I, North-Holland

Fitch, Frederick B.
(52) Symbolic Logic: An Introduction, Ronald Press, New York.

Gentzen, Gerhard
(34-5) Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, 39, 176-

210, 405-431.
This paper appears in translation in [Szabo69].

Gilmore, Paul C.
(71) A Consistent Naive Set Theory: Foundations for a Formal Theory of

Computation, IBM Research Report RC 3413, June 22.
(80) Combining Unrestricted Abstraction with Universal Quantification, To H.B.

Curry: Essays on Combinatorial Logic, Lambda Calculus and Formalism, Editors
J.P. Seldin, J.R. Hindley, Academic Press, 99-123. This is a revised version of
[Gilmore71].

NaDSyL, References, February 25, 1997 Page 27

(86) Natural Deduction Based Set Theories: A New Resolution of the Old Paradoxes,
Journal of Symbolic Logic, 51, 393-411.

(97a) The Consistency & Completeness of NaDSyL, draft manuscript, 12pp.
(97b) A Symbolic Logic and Some Applications, a monograph on NaDSyL in

preparation.

Gilmore, Paul C. & Tsiknis, George K.
(92) Solving Domain Equations in NaDSet, UBC Computer Science Technical report

TR-31, revised, 27pp.
(93a) A Formalization of Category Theory in NaDSet, Theoretical Computer Science,

vol. 111, 211-253.
(93b) Logical Foundations for Programming Semantics, Theoretical Computer Science,

vol. 111, 253-290.

Gordon, Michael, J.C.
(79) The Denotational Description of Programming Languages, Springer-Verlag.

Henkin, Leon
(50) Completeness in the theory of types, J. Sym. Logic, 15, 81-91.

Hintikka, Jaakko
(55) Form and Content in Quantification Theory, Two Papers on Symbolic Logic, Acta

Philosophica Fennica, no. 8, 7-55.

Kripke, Saul
(75) Outline of a Theory of Truth, Journal of Philosophy, November 6, 690-716.

Nadathur, Gopalan & Miller, Dale
(94) Higher-Order Logic Programming, Duke University Dept of Computer Science

report CS-1994-38, pp 83.

Prawitz, Dag
(65) Natural Deduction, A Proof-Theoretical Study, Stockholm Studies in Philosophy

3, Almquist & Wiksell, Stockholm
(67) Completeness and Hauptsatz for Second Order Logic, Theoria, vol. 3, 246-258.

Schütte, K
(60) Beweisetheorie, Springer.
(77) Proof Theory, Springer-Verlag

Sellars, Wilfred
(63a) Abstract Entities, Rev. of Metaphysics, vol. 16, 625-671.
(63b) Classes as Abstract Entities and the Russell Paradox, Rev. of Metaphysics, vol. 17,

67-90.

Smullyan, Raymond
(68) First Order Logic, Springer-Verlag

Szabo, M.E. (editor)
(69) The Collected Papers of Gerhard Gentzen, North-Holland

