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Abstract: We present a new method for deriving lower bounds to the expected number of

queries made by noisy decision trees computing Boolean functions. The new method has

the feature that expectations are taken with respect to a uniformly distributed random

input, as well as with respect to the random noise, thus yielding stronger lower bounds.

It also applies to many more functions than do previous results. The method yields a

simple proof of the result (previously established by Reischuk and Schmeltz) that almost

all Boolean functions of n arguments require 
(n log n) queries, and strengthens this bound

from the worst-case over inputs to the average over inputs. The method also yields bounds

for speci�c Boolean functions in terms of their spectra (their Fourier transforms). The

simplest instance of this spectral bound yields the result (previously established by Feige,

Peleg, Raghavan and Upfal) that the parity function of n arguments requires 
(n logn)

queries, and again strengthens this bound from the worst-case over inputs to the average

over inputs. In its full generality, the spectral bound applies to the \highly resilient"

functions introduced by Chor, Friedman, Goldreich, Hastad, Rudich and Smolensky, and

it yields non-linear lower bounds whenever the resiliency is asymptotic to the number of

arguments.
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1. Introduction

We shall deal in this paper with dynamic decision trees for computing Boolean func-

tions. A dynamic decision tree is a binary tree in which each internal node N is labelled

with an argument index �(N) 2 f1; : : : ; ng, each child M of an internal node N is la-

belled with a Boolean value �(M) 2 f0; 1g that might be assumed by this argument (with

siblings being labelled with distinct values), and each leaf L is labelled with a Boolean

function value �(L) 2 f0; 1g. Such a dynamic decision tree computes a Boolean function

f of n Boolean arguments x1; : : : ; xn in an obvious way: start at the root; when at an

internal node N , query the argument x�(N) and proceed to the child M of N such that

�(M) = x�(N); when at a leaf L, announce the function value f(x1; : : : ; xn) = �(L). For

such a dynamic decision tree, we may speak of the worst-case cost (the maximum over

argument values of the depth of the leaf that announces the function value) or the average-

case cost (the average with a uniform distribution over argument values of the depth of

the leaf that announces the function value).

We shall be interested in the situation in which dynamic decision trees are noisy; that

is, in which each internal node independently passes control to the incorrect child (that is,

the childM of the internal node N such that �(M) = :x�(N)) with some �xed probability

0 < " < 1=2. We shall say that such a tree ("; �)-computes a Boolean function f if, for all

x1; : : : ; xn 2 f0; 1g, the probability that control reaches an incorrectly labelled leaf (that

is, a leaf L labelled �(L) = :f(x1; : : : ; xn)) is at most � < 1=2. For such a noisy dynamic

decision tree, we may again speak of the worst-case or average-case cost (where we may

maximize or average over argument values, but always average over noise).

To describe the history of our results, we shall need to refer to two additional com-

putational models. The �rst of these is the static decision tree, which we may regard as a

dynamic decision tree in which the argument queried by an internal node does not depend

on the outcomes of previous queries (and thus depends only on the depth of the node in

the tree), and in which all leaves appear at the same depth. The cost in this case is simply

the common depth C of the leaves. It is not hard to see that we may ignore the tree struc-

ture, and simply focus on the number of queries Ci to each argument xi. We then have

C1 + � � � + Cn = C. Furthermore, we may ignore the sequence of answers to the queries

to a given argument, and focus on the number Di of a�rmative answers among answers

to the Ci queries to xi. We then have 0 � Di � Ci for 1 � i � n. While a noisy static

decision tree might announce distinct function values for the same values of D1; : : : ;Dn, it

is not hard to see that these announcements can be replaced by a consistent announcement
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�(D1; : : : ;Dn), without increasing the probability of an incorrect announcement in any sit-

uation. Thus we may describe a static decision tree by specifying the numbers C1; : : : ; Cn

and the labelling �(D1; : : : ;Dn) for 0 � D1 � C1; : : : ; 0 � Dn � Cn.

Our �nal computational model is the circuit with noisy gates. We shall not describe

this model in detail, but merely remark that a lower bound to static decision tree cost

yields a lower bound to the size (number of gates) of a circuit with noisy gates.

Work on reliable computation in the presence of noise was begun by von Neumann

[N], who argued (though he did not give a rigorous proof) that a computation that can

be performed by a noiseless network with L gates could be reliably performed by a noisy

network with O(L logL) gates. Dobrushin and Ortyukov [D2] provided a rigorous proof

of this result, and also [D1] claimed the following matching lower bound: a noisy net-

work that reliably computes a function f must have 
(S logS) gates, where S is the

sensitivity of f (the maximum over inputs x1; : : : ; xn of the number of indices i such that

f(x1; : : : ; xi�1;:xi; xi+1; : : : ; xn) 6= f(x1; : : : ; xn)). Since there are many functions (for ex-

ample, the disjunction, conjunction or parity of n arguments) that have sensitivity S = n

and can be computed by noiseless networks with O(n) gates, this result shows that the

logarithmic ratio of noisy to noiseless gates is necessary for certain functions.

There are, however, several errors in the proof of the lower bound of Dobrushin and

Ortyukov [D1]. These were pointed out by Pippenger, Stamoulis and Tsitsiklis [P2], who

gave a proof of the weaker result that a noisy network that reliably computes the parity

function of n arguments must have 
(n logn) gates. The full strength of the lower bound

in terms of sensitivity was regained by G�al [G1] (see also Gacs and G�al [G2]) and by

Reischuk and Schmeltz [R]. An important consequence of this stronger result is that a

noisy network that reliably computes the disjunction (or conjunction) of n arguments

must have 
(n logn) gates. All of these lower bound arguments apply to static decision

trees as well as to circuits. For noisy static decision trees, lower bounds of 
(n log n) are

best possible, since any Boolean function of n arguments can be computed by a noisy

static decision tree with O(n log n) queries (with 2 log(n=�)
�
log
�
1=4"(1� ")

�
= O(log n)

queries, it is possible to determine a single argument with error probability at most �=n).

Noisy dynamic decision trees were considered by Feige, Peleg, Raghavan and Upfal

[F1], who showed that there are noisy dynamic decision trees that reliably compute the

disjunction or conjunction of n arguments with O(n) queries. Since we have seen that noisy

static decision trees require 
(n logn) queries, this exhibits a clear separation between

the two models. For noisy dynamic decision trees, Feige, Peleg, Raghavan and Upfal

[F1] showed that 
(n log n) queries are needed to compute the parity or majority of n
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arguments, and Reischuk and Schmeltz [R] showed that 
(n logn) queries are needed

for almost all Boolean functions of n arguments. (This last result contrasts with results

of Muller [M] and Pippenger [P1] for circuits, to the e�ect that for almost all Boolean

functions of n arguments, 
(2n=n) noiseless gates are necessary and O(2n=n) noisy gates

are su�cient.) The lower bound proofs of both Feige, Peleg, Raghavan and Upfal and of

Reischuk and Schmeltz depend on locating particular sets of inputs that are di�cult for

a dynamic decision tree, and thus they yield lower bounds for the worst case over inputs,

but not for the average case over inputs (and clearly no proof that applied to disjunction

or conjunction could give a non-trivial lower bound for the average over inputs).

The present paper gives a new method of establishing lower bounds for noisy dynamic

decision trees. The gist of the method is to argue that for certain Boolean functions there

cannot be even one leaf in the decision tree that has both a small depth and a small

probability of error (conditional on control reaching the leaf). The Boolean functions to

which the method applies are di�cult to compute for all inputs rather than just for certain

inputs. This implies that lower bounds established by the method apply to the average

case over inputs rather than just the worst case. (It also implies of course that the method

is powerless to deal with functions such as disjunction, conjunction and majority, that have

inputs such as x1 = � � �xn = 1, x1 = � � �xn = 0, or both, for which it is easy to reliably

determine the function value.) These strengths and weaknesses of our new method are

embodied in a new complexity measure for Boolean functions, which we call \noisy leaf

complexity". In Section 2 we shall de�ne noisy leaf complexity and relate it to noisy

dynamic decision tree complexity described above.

Our method considers the situation in which control has arrived at a leaf L. Arrival

at L conditions the uniform prior distribution on the input x to a posterior distribution.

Our method is based on the fact that, if the depth of L is small, this posterior distribution

must be spread over a large range of possible input values. In Section 3 we shall calculate

this posterior distribution and derive quantitative versions of the assertion that it is spread

over a large range.

Section 4 deals with random Boolean functions, and establishes a lower bound of

the form 
(n log n) for the noisy leaf complexity of \almost all" Boolean functions of n

arguments. Speci�cally, we show that if L is a leaf of cost

C � n logE(n=2) � n logE log
�
2n2=(1 � 2�)2

�
;
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where E = (1 � ")=", then the probability that L is ("; �)-good for a random Boolean

function of n arguments is at most 2e�n
2

. This strengthens (from the worst-case over

inputs to the average-case over inputs) the lower bound of Reischuk and Schmeltz [R].

Section 5 establishes a lower bound of the form 
(n logn) for the noisy leaf complexity

of the parity function of n arguments. Speci�cally, we show that if a leaf with cost C is

("; �)-good for the parity function of n arguments, then

C � n logE n� n logE log
�
1=(1� 2�)

�
;

where E = (1 � ")=". This strengthens (from the worst-case over inputs to the average-

case over inputs) the lower bound of Feige, Peleg, Raghavan and Upfal [F1] for the parity

function. The proof of our lower bound uses the Fourier transform of the parity function,

which has a particularly simple form. Other examples of the use of the Fourier transform

to derive lower bounds to the computational complexity of Boolean functions are given by

Brandman, Orlitsky and Hennessy [B] (noiseless decision trees) and by Linial, Mansour

and Nisan [L] (bounded-depth circuits). It would be possible to rephrase this proof so as

not to refer to the Fourier transform, but we have refrained from doing this, as the Fourier

transform is an essential tool for deriving the more general results in Section 6.

A general class of Boolean functions to which our method applies is the class of

\highly resilient" functions. If a Boolean function is signi�cantly \biased" (that is, if

it assumes the values 0 and 1 with signi�cantly unequal probabilities under the uniform

input distribution), then even a leaf at depth 0 can announce the function value with a

probability of output error signi�cantly less than 1=2. This suggests we focus our attention

on \unbiased" functions, which assume the values 0 and 1 each with probability 1=2.

Extending this reasoning, we see that if a Boolean function can be signi�cantly biased by

substituting constants for a small number of arguments, then a leaf with small depth can

achieve a probability of output error signi�cantly less than 1=2. This suggests we focus our

attention on functions that are unbiased, and which remain unbiased even when constants

are substituted for some number t of arguments. Such functions are called \t-resilient" by

Chor et al. [C]. Though de�ned combinatorially, the highly resilient functions have natural

characterizations in terms of their \spectra", either in the sense of their Fourier transforms,

or in the sense of the eigenvalues of the adjacency matrix of the Boolean hypercube. These

characterizations are discussed by Friedman [F2].
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Section 6 establishes a lower bound for the noisy leaf complexity of t-resilient Boolean

functions. Speci�cally, we show that if f is t-resilient and a leaf with cost C is ("; �)-good

for f , then

C � (t+ 1) logE
t+ 1

n

2
H
�
t+1
n

�
+ log 1

1�2�

;

where E = (1 � ")=", and H(�) = �� log � � (1 � �) log(1 � �) for 0 < � < 1, extended

by continuity to H(0) = H(1) = 0. The most resilient function of n arguments is the

parity function, which is (n� 1)-resilient. Thus we recover the lower bound of Section 5 in

this special case. There are, however, many highly resilient functions that are not parity

functions. For these functions, our method yields a non-linear lower bound whenever t � n,

that is, whenever the resiliency is asymptotic to the number of arguments. A preliminary

version of this paper was presented by Evans and Pippenger [E].

2. Noisy Leaf Complexity

Let f be a Boolean function of n arguments x1; : : : ; xn. Let T be a decision tree and let

L be a leaf of T . By the cost of L we shall mean the number of queries along the path from

the root of T to L. Suppose now that the input x is chosen at random with the uniform

distribution (with each possible input having probability 2�n). Suppose further that the

tree T is applied to the input x with query error probability " > 0 at each internal node.

We shall say that L is ("; �)-good for f if the probability Pr(�(L) = :f(x) j L) of output
error at L, conditional on control reaching L, is at most � < 1=2. It is clear that whether

or not a leaf L is ("; �)-good for f depends only on the numbers C1; : : : ; Cn of queries to

the arguments x1; : : : ; xn, and on the numbersD1; : : : ;Dn of a�rmative responses to these

queries, and not on the rest of T . By the ("; �)-leaf complexity of a Boolean function f , we

shall mean the smallest possible cost of a leaf that is ("; �)-good for f .

Proposition 2.1: Suppose that the noisy dynamic decision tree T ("; �)-computes the

Boolean function f with expected cost C averaged over both inputs and noise. Let �0

be such that � < �
0
< 1=2. Then f has ("; �0)-leaf complexity at most C 0 = C=(1� �=�

0).

Proof: Let the input x be chosen with the uniform distribution. For each leaf L in T , let

pL = Pr(L) denote the probability that control reaches L, let �L = Pr(�(L) = :f(x) j L)
denote the probability of error conditional on control reaching L, and let CL denote the

cost of L. Let A denote the set of leaves L such that �L > �
0. Then we have

�
0

X
L2A

pL <

X
L2A

pL�L �
X
L

pL�L = �;
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and thus X
L2A

pL < �=�
0
:

Let B denote the set of leaves L such that CL > C
0. Then we have

C
0

X
L2B

pL <

X
L2B

pLCL �
X
L

pLCL = C;

and thus X
L2B

pL < C=C
0
:

These inequalities yield X
L62A[B

pL > 1� �=�
0 �C=C

0 = 0:

Thus with positive probability control arrives at a leaf L such that �L � �
0 and CL � C

0,

which shows that the ("; �0)-leaf complexity of f is at most C 0. 4

3. The Posterior Distribution

Suppose that we choose an input x at random with a uniform distribution: Pr(x) =

2�n. Then suppose that we apply a noisy dynamic decision tree T with query error

probability " > 0 and arrive at a leaf L. We shall calculate the posterior probability

distribution on x, given arrival at L: Pr(x j L).
Suppose that along the path from the root of T to L the input xi is queried Ci times,

with Di a�rmative responses (and thus Ci �Di negative responses). The event of arrival

at L is the conjunction of n events L1; : : : ; Ln, where Li speci�es a particular sequence

of responses of the Ci queries to xi. The prior distribution of xi is Pri(xi) = 1=2. The

conditional probability Pri(Li j xi) of Li given xi is

Pri(Li j 0) = "
Di(1� ")Ci�Di ;

Pri(Li j 1) = "
Ci�Di(1� ")Di ;

and thus

Pr(Li) =
"
Di(1� ")Ci�Di + "

Ci�Di(1� ")Di

2
:

Thus the posterior distribution Pri(xi j Li) of xi, conditioned on Li, is

Pri(0 j Li) =
"
Di(1� ")Ci�Di

"Di(1� ")Ci�Di + "Ci�Di(1� ")Di
; (3:1)

Pri(1 j Li) =
"
Ci�Di(1� ")Di

"Di(1� ")Ci�Di + "Ci�Di(1� ")Di
: (3:2)
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Finally, since the xi, and the responses to the queries given the xi are all independent, we

have

Pr(x j L) =
Y

1�i�n

Pri(xi j Li): (3:3)

Formulas (3.1), (3.2) and (3.3) give the desired posterior distribution of x.

It will be convenient to have bounds for Pri(xi j Li) that are independent of Di. If

we divide the numerator and denominator of (3.1) by the numerator, we obtain

Pri(0 j Li) =
1

1 +E2Di�Ci
;

where E = (1 � ")=" (and E > 1, since " < 1=2). The right-hand side is maximized when

Di = 0, so we have

Pri(0 j Li) �
1

1 +E�Ci
:

Similar reasoning from (3.2) yields an expression that is maximized whenDi = Ci, resulting

in the same bound for Pri(1 j Li). Thus if we set Pi = maxfPri(0 j Li);Pri(1 j Li)g, we
have

Pi �
1

1 +E�Ci

=
E
Ci

ECi + 1

= 1� 1

ECi + 1

� 1� 1

2ECi
: (3:4)

This is the desired bound.

4. Random Boolean Functions

Throughout this section, f will denote a random Boolean function of n arguments, for

which f(x) is equally likely to be 0 or 1, independently for each value of x. Our strategy

will be to consider a leaf L of small depth, and bound the probability that L is ("; �)-good

for f . Our main result is the following.

Theorem 4.1: Let L be a leaf of cost

C � n logE(n=2) � n logE log
�
2n2=(1 � 2�)2

�
;
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where E = (1� ")=". Then L is ("; �)-good for a random Boolean function of n arguments

with probability at most 2e�n
2

.

This result easily yields a lower bound for the noisy leaf complexity of almost all

Boolean functions.

Corollary 4.2: For all su�ciently large n (depending on E = (1 � ")=" > 1 and � < 1=2),

the fraction of all Boolean functions of n arguments having ("; �)-leaf complexity at most

(n=2) logE(n=2) is at most 2e�n
2
=2.

Proof: For all su�ciently large n, we have

C = (n=2) logE(n=2) � n logE(n=2)� n logE log
�
2n2=(1� 2�)2

�
;

so we may apply Theorem 4.1 to any leaf of cost at most C. But such a leaf is determined

by specifying (1) which of the n arguments is queried at each of the C queries and (2) the

response (a�rmative or negative) to each query. Thus there are at most (2n)C leaves, and

thus the probability that some leaf is ("; �)-good for f is at most 2e�n
2

(2n)(n=2) logE(n=2).

For su�ciently large n, this bound is at most 2e�n
2
=2. 4

It will be convenient to work not only with the Boolean function f , but also with

the rescaled real-valued function F (x) = 1 � 2f(x), which is equally likely to be +1 or

�1, independently for each value of x. Similarly, it will be convenient to work not only

with the probability of error �L associated with a leaf L, but also with the correlation

�L = 1� 2�L between the rescaled label �(L) = 1� 2�(L) of L and the rescaled function

F (x). If �L � � < 1=2, then �L � 1� 2� > 0. Thus if L is ("; �)-good for f we have

1� 2� � �L = Exx
�
�(L)F (x)

�
= �(L)

X
x

Pr(x j L)F (x):

Since �(L) = �1, this implies

1� 2� �
�����
X
x

Pr(x j L)F (x)
����� : (4:1)

The terms Pr(x j L)F (x) are independent random variables that assume the values �Pr(x j
L) each with probability 1=2. Thus, to estimate the probability that (4.1) holds, it will

su�ce to use an estimate for the probability of large deviations for sums of independent, but

not necessarily identically distributed, random variables. The following result of Hoe�ding

[H] (Theorem 2) suits our purpose.
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Proposition 4.3: (W. Hoe�ding) If Ax are independent random variables with mean 0 and

range jAxj � �x, then

Pr
�X
x

Ax � T
�
� exp�T 2

=2S;

where

S =
X
x

�2
x:

Since the random variables Pr(x j L)F (x) are distributed symmetrically about 0, the

probability that (4.1) holds is just twice the probability that

1� 2� �
X
x

Pr(x j L)F (x): (4:2)

holds. We can bound this using Proposition 4.3 by taking Ax = Pr(x j L)F (x), so that

�x = Pr(x j L), and T = 1� 2�. Thus we seek an estimate for

S =
X
x

Pr(x j L)2:

We observe that by virtue of (3.3) we have

S =
X
x

Pr(x j L)2 =
Y

1�i�n

�
Pri(0 j Li)2 +Pri(1 j Li)2

�
:

Since

u
2 + (1� u)2 = 1� 2u(1� u) � maxfu; 1� ug;

we have

S �
Y

1�i�n

Pi;

with Pi = maxfPri(0 j Li);Pri(1 j Li)g as de�ned in Section 3. Using (3.4) we have

S �
Y

1�i�n

�
1� 1

2ECi

�
:

Since 1� u � exp�u, we have

S �
Y

1�i�n

exp

�
�1

2
E
�Ci

�

= exp

0
@�1

2

X
1�i�n

E
�Ci

1
A :
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Since Eu = exp
E
u is a convex function of u, we have

S � exp

0
@�n

2
exp

E

0
@� 1

n

X
1�i�n

Ci

1
A
1
A

= exp

�
� expE

�
logE

n

2
� C

n

��
:

Thus if

C � n logE(n=2) � n logE log
�
2n2=(1 � 2�)2

�
;

we have S � (1 � 2�)2=2n2. Proposition 4.3 then implies that (4.2) hold with probability

at most e�n
2

, so (4.1) holds with probability at most 2e�n
2

. This completes the proof of

Theorem 4.1. 4

5. The Parity Function

In this section we shall derive a lower bound for the ("; �)-leaf complexity of the parity

function:

f(x1; : : : ; xn) = x1 + � � �+ xn (mod 2):

Our result is the following.

Theorem 5.1: If the leaf L with cost C is ("; �)-good for the parity function f of n argu-

ments, then

C � n logE n� n logE log
�
1=(1� 2�)

�
;

where E = (1� ")=".

The proof of this theorem depends on the notion of the Fourier transform of a Boolean

function. This notion has already been applied to the computational complexity of Boolean

functions by circuits (see Linial, Mansour and Nisan [L]) and noiseless dynamic decision

trees (see Brandman, Orlitsky and Hennessy [B]), but the present paper appears to mark

its debut for the complexity of noisy computation.

Let F : Bn ! R be a real valued function of n Boolean arguments. By the Fourier

transform of F we shall mean the function F̂ : Bn ! R de�ned by

F̂ (y) =
1p
2n

X
x

(�1)x�yF (x);
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where x � y =
P

1�j�n
xjyj denotes the inner product of x and y. (The factor (�1)x�y

is the specialization of the usual Fourier kernel e2�ix�y=m to m = 2.) The normalization

factor 1=
p
2n has been chosen to make the transform an involution: we have

^̂
F (z) =

1p
2n

X
y

(�1)y�z F̂ (y)

=
1p
2n

X
y

(�1)y�z 1p
2n

X
x

(�1)x�yF (x)

=
1

2n

X
x

F (x)
X
y

(�1)x�y+y�z

= F (z);

since X
y

(�1)x�y+y�z =
(
2n; if x = z;

0; otherwise.

(The general Fourier transform is not an involution, but rather has period four, and the

e�ect of applying the transform twice is to reverse the function by negating its argument.

But in B, regarded as an additive group of order two, every element is its own negative,

so each function is its own reversal.)

The key result we shall need is the Parseval identity,

X
y

F̂ (y) Ĝ(y) =
X
y

F (y)G(y);

which says that the Fourier transform is an isometry of the Hilbert space RB
n

. This

follows from a calculation similar to the one above:

X
y

F̂ (y) Ĝ(y) =
X
y

1p
2n

X
x

(�1)x�yF (x) 1p
2n

X
z

(�1)z�yG(z)

=
1

2n

X
x

X
z

F (x)G(z)
X
y

(�1)x�y+z�y

=
X
x

F (x)G(x):

For the proof of Theorem 5.1, we take F (x) = 1 � 2f(x) to be the rescaled parity

function. As in the preceding section, we have

1� 2� �
�����
X
x

Pr(x j L)F (x)
����� :
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Setting G(x) = Pr(x j L) and applying the Parseval identity, we have

1� 2� �
�����
X
y

Ĝ(y)F̂ (y)

����� : (5:1)

For F the rescaled parity function, a simple calculation yields F̂ :

F̂ (y) =

�p
2n; if y = (1; : : : ; 1);

0; otherwise.

Substituting this formula into (5.1) yields

1� 2� �
p
2n jĜ(1; : : : ; 1)j:

From the de�nitions of G and Ĝ, this reduces to

1� 2� �
�����
X
x

(�1)jxj Pr(x j L)
�����; (5:2)

where jyj =P1�i�n yi denotes the number of i such that yi = 1.

To estimate the right-hand side of (5.2), we observe that

X
x

(�1)jxj Pr(x j L) =
Y

1�i�n

�
Pri(1 j Li) � Pri(0 j Li)

�
=

Y
1�i�n

�
2Pri(1 j Li) � 1

�
:

Since

j2u� 1j = 2maxfu; 1� ug � 1;

we have

1� 2� �
�����
X
x

(�1)jxj Pr(x j L)
�����

=
Y

1�i�n

(2Pi � 1);

with Pi = maxfPri(0 j Li);Pri(1 j Li)g as de�ned in Section 3. Using (3.4) we have

1� 2� �
Y

1�i�n

�
1� 1

ECi

�
:
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Since 1� u � exp�u, we have

1� 2� �
Y

1�i�n

exp
�
�E�Ci

�

= exp

0
@� X

1�i�n

E
�Ci

1
A :

Since Eu = expE u is a convex function of u, we have

1� 2� � exp

0
@�n expE

0
@� 1

n

X
1�i�n

Ci

1
A
1
A

= exp

�
� expE

�
logE n�

C

n

��
:

Thus we obtain

C � n logE n� n logE log
�
1=(1� 2�)

�
:

This completes the proof of Theorem 5.1. 4

6. Resilient Boolean Functions

A Boolean function f of n arguments is unbiased if

X
x

F (x) = 0;

where F (x) = 1 � 2f(x) is the rescaled real-valued function as in the preceding section,

and the sum is over all 2n values of x. Thus a function is unbiased if it assumes the values

0 and 1 for equal numbers of inputs.

A Boolean function f is t-resilient if every function obtained from f by substituting

constants for at most t arguments is an unbiased function of the remaining arguments.

Thus a function is 0-resilient if and only if it is unbiased. Our main result in this section

is the following.

Theorem 6.1: If f is t-resilient and the leaf L with cost C is ("; �)-good for f , then

C � (t+ 1) log
E

t+ 1
n

2
H
�
t+1
n

�
+ log 1

1�2�

;

where E = (1� ")=", and H(�) = �� log � � (1� �) log(1� �) for 0 < � < 1, extended by

continuity to H(0) = H(1) = 0.

13



The projection functions, of the form f(x1; : : : ; xn) = xi, are 0-resilient but not 1-

resilient. The parity functions, of the form f(x1; : : : ; xn) = x1+ � � �+xn+ c (mod 2), are

(n � 1)-resilient, which is the maximum possible for a function of n arguments. Theorem

5.1 applies to many other functions however. If g and h are t-resilient functions of k

arguments, then

f(x1; : : : ; xk+1) =

�
g(x1; : : : ; xk); if xk+1 = 0,

h(x1; : : : ; xk); if xk+1 = 1,

de�nes a t-resilient function of k+1 arguments. Since there are 2 distinct t-resilient parity

functions of t+1 arguments, and this scheme allows us to square the number of functions

by adding one argument, we conclude that there are at least 22
n�t�1

t-resilient functions

of n arguments.

Our proof of Theorem 5.1 will exploit a characterization of resilient functions in terms

of their Fourier transforms. Friedman [F2] has observed that this characterization is im-

plicit in the work of Chor et al. [C], though the terminology of Fourier transforms is not

used there.

Proposition 6.2: (B. Chor et al.) Let F̂ be the Fourier transform of F (x) = 1 � 2f(x) for

some Boolean function f of n arguments. Then for t � 0, f is t-resilient if and only if

F̂ (y) = 0 for all y such that jyj � t.

In particular, a function f is unbiased if and only if F̂ (0; : : : ; 0) = 0, and the parity

functions are the only functions for which F̂ (y) = 0 for all y except y = (1; : : : ; 1).

We shall also need the following standard estimate for sums of binomial coe�cients.

Lemma 6.3: If l � n=2, then

X
k�l

�
n

k

�
� exp

�
nH
�
l=n
��
:

Proof: For � � 1 we have

X
k�l

�
n

k

�
� �

�l
X
k

�
n

k

�
�
k = �

�l(1 + �)n:

Taking � = l=(n� l), so that � � 1 follows from l � n=2, we obtain

X
k�l

�
n

k

�
� n

n

ll(n� l)n�l
= exp

�
nH(l=n)

�
;
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as claimed. 4
As in the preceding, section we have

1� 2� �
�����
X
y

Ĝ(y)F̂ (y)

����� ; (6:1)

where Ĝ is the Fourier transform of G(x) = Pr(x j L). Since f is t-resilient, we have

F̂ (y) = 0 for jyj � t, and thus we have

1� 2� �
X
y

jyj�t+1

jĜ(y)jjF̂ (y)j:

Using Cauchy's inequality we obtain

(1 � 2�)2 �

0
B@ X

y

jyj�t+1

Ĝ(y)2

1
CA
0
B@ X

y

jyj�t+1

F̂ (y)2

1
CA : (6:2)

Since F (x) = �1, Parseval's identity yields

X
y

jyj�t+1

F̂ (y)2 �
X
y

F̂ (y)2 =
X
x

F (x) = 2n:

Thus from (6.2) we obtain

(1� 2�)2 �

0
B@ X

y

jyj�t+1

Ĝ(y)2

1
CA 2n: (6:3)

We have

X
y

jyj�t+1

Ĝ(y)2 �
 

max
y

jyj�t+1

Ĝ(y)2

!0B@ X
y

jyj�t+1

1

1
CA

�
 

max
y

jyj�t+1

Ĝ(y)2

!0
@ X
k�t+1

�
n

k

�1A

�
 

max
y

jyj�t+1

Ĝ(y)2

!
exp

�
nH

�
t+ 1

n

��
:
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Thus from (6.3) we obtain

(1� 2�)2 �
 

max
y

jyj�t+1

Ĝ(y)2

!
exp

�
nH

�
t+ 1

n

��
2n:

We have

Ĝ(y)2 =
1

2n

 X
x

(�1)x�yPr(x j L)
!2

:

The sum on the right-hand side can be estimated in the same way as the sum in (5.2): if

jyj = k � t+ 1, the sum factors into a product of k factors, and the �nal result is

Ĝ(y)2 � 1

2n
exp

�
�2 expE

�
logE k �

C

k

��
;

so that

max
y

jyj�t+1

Ĝ(y)2 � 1

2n
exp

�
�2 expE

�
logE(t+ 1) � C

t+ 1

��
:

Thus from (6.3) we obtain

(1 � 2�)2 � exp

�
�2 exp

E

�
log

E
(t + 1)� C

t+ 1

��
exp

�
nH

�
t + 1

n

��
:

This yields

C � (t+ 1) logE
t+ 1

n

2
H
�
t+1
n

�
+ log 1

1�2�

;

which completes the proof of Theorem 6.1.
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