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Abstract

This paper introduces the idea of temporally extend-

ing results of a stereo algorithm in order to improve

the algorithm's performance. This approach antic-

ipates the changes between two consecutive depth

maps resulting from the motion of the cameras. Un-

certainties in motion are accounted for by computa-

tion of an ambiguity area and a resulting disparity

range for each pixel. The computation is used to

verify and re�ne the anticipated values, rather than

calculate them without prior knowledge. The paper

compares the performance of the algorithm under dif-

ferent constraints on motion. Speedups of up to 400%

are achieved without signi�cant errors.

1 Introduction

Stereo vision is one of the most common and robust

vision algorithms used in mobile robot navigation. It

has been used for mapping, localization and obstacle

avoidance [8], [10], [11]. While performance of stereo

has increased with growing computer power, the tech-

nique is still limited by the high computational cost of

the algorithm. One reason for the lack of performance

is that stereo is performed fully in each iteration of

the perceptual cycle. This is wasteful because the

algorithm is not taking advantage of the coherence

between depth maps obtained in consecutive time in-

tervals. We propose a method of coherent stereo as

a way of increasing the speed of the stereo algorithm

by using the information from the previous iterations

of the algorithm and the constraints on the robot mo-

tion.

The thrust of our approach is to anticipate the

changes between two consecutive stereo pairs of im-

ages. The computation is used to verify and re�ne the

anticipated values, rather than calculate them with-

out prior knowledge. The main computational gain is

achieved by reducing the search space needed to �nd

the correct disparity for each pixel in the image.

The changes in the stereo depth information be-

tween two time intervals can be attributed to motion

of the robot and motion of objects in the environ-

ment. Our algorithm assumes a static environment,

however we suggest ways of extending the method to

dynamic environments.

The following is an outline of the algorithm:

1. Compute stereo over the full range of disparities,

creating a depth map

2. The robot moves

3. Project the old depth map to get a new map that

reects the estimated robot motion

4. Use the new depth values to compute uncertainty

ranges in disparity for search in the next iteration

of the algorithm

5. Go to step 2

At the beginning of the process stereo is computed

fully because there is no prior knowledge about the

scene. After the initial depth map is obtained the

search space is reduced according to knowledge of the

robot motion. The speedup of the algorithm depends

on how accurately it is possible to determine the new

depth model.

The accuracy of the new depth map depends on

the error in measuring the new position of the robot.

The most general constraint on robot motion is the

amount it can possibly move in one time interval.

If the time interval is short the change in what is

observed may be very small.

The constraints on motion can be re�ned by knowl-

edge of the general direction in which the robot is

moving. For example, if it is known that the robot is

moving forward, it should be expected that distances

are getting smaller. Therefore, the search space is

further reduced.

Finally, the amount of relative motion can be de-

termined, quite accurately, by the use of odometry.



In this case the uncertainty in the robot's position

comes from the odometry readings, which in general

are quite accurate over short distances. It should be

noted that dead-reckoning su�ers from accumulating

errors over long periods of time [2]. Our approach,

however, does not require absolute odometry read-

ings; Rather it uses the relative change in the readings

between two closely-spaced time intervals.

This paper presents the approach taken in speed-

ing up the stereo algorithm when the constraints on

motion of the robot are known. The paper compares

the increases of performance achieved depending on

what is known about the robot's motion.

2 Related Work

Speeding up stereo algorithms has been an ongoing

problem in computer vision. Much research has been

done in developing specialized hardware that imple-

ments the stereo algorithm in parallel [7]. Our algo-

rithm could exploit special hardware, but it is par-

ticularly well suited for implementation on sequential

computers, which are currently much less expensive

and easier to program.

Our approach is related to the coarse-to-�ne stereo

algorithm [15] which takes advantage of the results

obtained at lower resolutions to predict the results

at larger resolutions. This approach is related to our

work because the coarse-to-�ne algorithm is designed

to take initial values for stereo search in order to speed

up the computation. In the coarse-to-�ne approach,

information is propagated between resolutions, while

our approach propagates information temporally.

The idea of temporally propagating knowledge

about the scene in order to speed up the execution

of an algorithm is not a novel one. The concept of

temporal coherence is used in computer graphics to

propagate the scene structure through time. For ex-

ample, temporal and structural coherence is used in

accelerating the calculation of animation sequences

[5]. While the concepts used in graphics are similar,

the overall goal is di�erent. Computer graphics gener-

ates images given the scene structure, and the stereo

algorithm produces depth maps given the images.

Recent work in view synthesis is also related to our

work. View synthesis is concerned with generating

realistic-looking images of a scene from a novel view-

point, given one or more images of the scene. Work

done by Scharstein [13] uses a stereo image pair to

generate views from new viewpoints. Our approach

is similar to this work because our algorithm needs

the depth maps from new viewpoints. We share the

problem of obtaining new disparity maps given sparse

information. The di�erence, however, is in the appli-

cation of the new depth maps. While view synthesis is

concerned with reproducing the images from the new

depth maps, we use the new depth maps to improve

the performance of the stereo algorithms.

There has been much research in results of stereo

algorithms over time [12], [1], [14]. The bulk of this

research uses only results of the stereo algorithm,

without altering its performance. To the best of

our knowledge, the idea of temporally extending the

stereo results in order to accelerate the algorithm is

a novel one.

3 Approach

We have implemented a correlation-based stereo algo-

rithm, following the approach taken by Fua [4]. The

algorithm computes similarity scores for every pixel

in the image by taking a �xed window in the left im-

age and shifting it along the epipolar line in the right

image. The scores are determined using the normal-

ized mean-squared di�erence of gray levels:

s(i; j; d) =

P
((IL � �IL)� (IR � �IR))

2

pP
(IL � �IL)2

P
(IR � �IR)2

Where s is the score of the correlation. The summa-

tions are performed over all pixels in the correlation

window. IL and IR are pixels from the left and right

correlation window respectively, �IL and �IR are their

average values over the correlation window, i and j

are the coordinates of the correlation window in the

left image, and d is the disparity at which the com-

parison is made.

The desired disparity at the given pixel is then the

one that provides the minimum correlation score:

D(i; j) = d 2 [dmin; dmax]

����s(i; j; d) =
dmax
min

x=dmin
s(i; j; x)

Where D is the disparity map and dmin, dmax is the

disparity search range.

The disparity map can be interpreted as the dis-

tance from the robot to the objects in the viewed

scene, under the assumption of parallel camera im-

age planes. Each disparity is inversely proportional

to the distance of the object along the line of sight of

each pixel [6]:

z(i; j) = b �
f

D(i; j)

where b is the baseline distance between cameras and

f is the focal length of the camera.

The performance of the stereo algorithm is im-

proved by temporally extending the results of the



stereo algorithm. The speedup is achieved by re-

ducing the amount of searching done along the

epipolar lines. In general stereo algorithms search

for the best match within a �xed disparity range,

[dmin; dmax]. Our algorithm accepts di�erent dispar-

ity search ranges, [dmin(i; j),dmax(i; j)], for each pixel

in the image. The disparity ranges provided are less

then or equal to the full disparity range. Therefore,

the amount of searching by the algorithm is reduced.

The disparity ranges are computed from the previ-

ous disparity map and the constraints on the motion

of the robot. The �rst step in computing the dispar-

ity ranges is to determine how much each pixel can

move in the scene, given the constraints on the mo-

tion of the robot. The area of the image to which the

pixel can move will be referred to as the ambiguity

area, A.

Once the ambiguity areas are computed for each

pixel, we have determined all points in the scene that

the pixels can possibly see. By scanning the ambigu-

ity area in the disparity map it is possible to deter-

mine the minimum and maximum disparity that the

pixel may have in the next time interval. This dispar-

ity range is determined for each pixel, and provided

to the next iteration of the stereo algorithm as input.

3.1 Ambiguity area

Image ambiguity area is part of the image that a pixel

may move to given the constraints on motion of the

camera. We are interested in determining the bound-

aries of this area because it contains the minimum

and maximum disparity that the pixel will have in

the next iteration of the algorithm.

In Figure 1 we present the pinhole model of one of

the cameras in the stereo camera setup. The oval

represents the lens of the camera. The xi and zi

axis de�ne the camera coordinate system. The xi is

on the image plane, the zi points towards the scene.

The curved line at the top of the �gure represents

the scene viewed by the camera. The focal length of

the lens is labeled with the letter f . The point X

on the image plane is the projection of a point X
0

in the scene. For simplicity, we will consider only

a two dimensional motion of the camera. The mo-

tion of the camera is parameterized by the possible

translations along the x and z axes �xmin; �xmax and

�zmin; �zmax, and rotation around the pinhole of the

camera by ��min; ��max. Figure 2 shows the extreme

possible positions of the camera after motion. The

shaded rectangular area represents the possible posi-

tions of the camera relative to the current position

of the camera. The new positions of the camera are

chosen to reach the farthest visible point in the scene
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Figure 1: Pinhole model of the camera
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Figure 2: Computing the ambiguity area

given the constraints on its motion. We consider the

pointX in the image. We are interested in calculating

the position of points Xmin and Xmax that de�ne the

image ambiguity area. The point X is the projection

of a point X0 in the scene. After the camera moves, a

number of points in the scene can project back onto

pointX. We are interested in calculating the position

of these points in the current image. This is done by

considering the most extreme positions of the cam-

era. The dotted lines, lmin and lmax, represent the

line of sight from point X at the extreme position of

the camera after motion. The intersection of the dot-

ted lines and the scene are the left most point X0

max

and the right most point X0

min that can project onto

pixel X after the motion of the camera.

When the points X
0

min and X
0

max are projected

back onto the image plane we obtain the points Xmin

and Xmax. The range between these two points

contains the pixel that point X will see after the

camera has moved. Therefore the ambiguity area is

Amin(i) = Xmin �X and Amax(i) = Xmax �X.

The extreme lines of sight for the point X, lmin



and lmax, are a function the robot motion:

l = F (x; f)

lmin = Fmin(x; f; �xmin; �z; ��min)

lmax = Fmax1(x; f; �xmax; �z; ��max)

F , Fmin and Fmax can be easily determined using

simple geometric transformations. Once the extreme

lines of sight are determined, the positions X0

min and

X
0

max is a function of the scene structure. The struc-

ture of the scene is de�ned by the disparity mapD(i)

in the one dimensional case considered in this exam-

ple.

The position of points X0

min and X
0

max is deter-

mined by searching for the point that either lies on

the lines lmin, lmax or is closer to the image plane.

X
0

max =
max(x)

min
x=X

����W (D(x); x) is left of lmin

X
0

min =
min(x)
max
x=X

����W (D(x); x) is right of lmin

Where W (D(x); x) is a function that determines the

location of the point in the scene, given the disparity

and the position of its projection, min(x) andmax(x)

are the coordinates of the left and right most pixel in

the image.

This example considers two dimensions. The

derivations are fully applicable in three dimensions

and will not be discussed in detail.

3.2 Disparity range

Once the image ambiguity area is determined it is

possible to determine the disparity ranges dmin(i; j)

and dmax(i; j). This is done by searching the dispar-

ity map in the image ambiguity area and determining

the minimum and maximum disparity values.

dmin(i; j) = minD(x; y) j x; y 2 A(i; j)

dmax(i; j) = maxD(x; y) j x; y 2 A(i; j)

Here D is the disparity map, A is the ambiguity area

for each pixel, and dmin, dmax represent the disparity

search range. They are inversely proportional to the

closest and farthest distance in the scene from the

current viewpoint. In order to have the disparities

represent the distances from the new point view we

need to account for the translation the robot will do.

The �nal disparity range is determined by accounting

for the maximum amount of translation the camera

can do towards and away from these points.

In some cases the image ambiguity area will be out-

side of the existing disparity map. This will occur

when the robot rotates or moves backward. The pix-

els that may not see parts of the seen already observed

have to search of the full disparity range.

If the ambiguity area includes invalid points then

the disparity range will be set by the values of valid

points. However, if the area is completely invalid then

no computation will be done and that pixel will be

invalid ahead of time.

4 Implementation

The algorithm implements a validity check suggested

by Fua [4]. Validation is done by doing correlation

twice by reversing the roles of two images. Valid

matches are considered to be only the ones for which

the disparities are equal.

An important modi�cation to Fua's validation ap-

proach was to improve its performance for small dis-

parity ranges. The problem with Fua's approach was

that it found many invalid disparities to be valid when

the disparity range was small. The reason for this is

seen by an empirical observation that when match-

ing is done in both directions the resulting match is

often at the extreme points of the range. The valida-

tion process would often identify these disparities as

valid while the the full algorithmwould identify them

as invalid.

The solution to this problem was to discard the

pixels that pass Fua's validation procedure, but fall

either on the minimum or maximum on the reduced

disparity range. Another way of justifying this ap-

proach is that the expected disparity is more likely to

be in the middle of the reduced disparity range if it is

valid. In other words, if the model that produces the

disparity range is correct and the range is su�ciently

wide, than the found disparity should not fall at the

extreme locations of the range.

The algorithm makes assumptions about the in-

coming images. It assumes that the epipolar lines are

parallel with the image scan-lines and the epipolar

lines are at the same y coordinate in the image. This

is achieved by a calibration process described by Lenz

and Tsai [9] . The position of the camera relative to

each other, their focal lengths, and radial distortions

are determined and used to correct the obtained im-

ages.

In order fairly judge the e�ciency of the full algo-

rithm the stereo algorithm was implemented recur-

sively [3]. This means that an e�ort was made to

reduce the amount of necessary repetition of compu-

tation. The reduction in processing was achieved by



storing the correlation results of one pixel and reusing

them to get the results for the neighboring pixels.

First, the correlation scores were computed for cor-

relation windows that correspond to one scan line of

the correlation window. These scores are noted as

shoriz (i; j; d) where the i,j are the coordinate of the

center pixel and d is the disparity at which the score

is computed.

The horizontal scores are summed to produce the

total correlation score of the window:

s(i; j; d) =

w=2X

x=�w=2

shoriz (i+ x; j; d)

where w is the size of the window.

This summation was done only for the �rst row.

On the next row the information from above window

was used to compute the correlation score without

having to do the full summation:

s(i; j; d) = s(i; j � 1; d)� upper + lower

Figure 3 shows how computing the correlation score

can be sped up by taking advantage of the results

obtained in the previous scan line. The area that is

subtracted is upper = shoriz(i; j � w=2 � 1; d). The

area added is lower = shoriz (i; j + w=2; d).

Added area

Previously
computed
score

Subtracted area

Figure 3: Recursive correlation

Figure 3 illustrates only the recursion in the ver-

tical direction. The recursion is also done horizon-

tally such that it takes advantage of the scores already

computed for on the same scan line.

The recursive implementation gives an advantage

to the full execution of the algorithm. The advantage

comes from the fact that all the necessary information

for recursion is available. In the case of the coherent

algorithm the scores for the neighboring pixels may

not be available. The lack of information is due to the

di�erence in the disparity search ranges of the pixels.

The coherent algorithm is therefore disadvantaged in

two ways: �rst, it needs to do non recursive com-

putations when the information is not available, and

second, it has to check what information is available

before any computation is done.

5 Expected results

Assessing the performance of the full algorithm is

straight forward. The speed at which the full al-

gorithm executes depends on the resolution of the

image, the size of the correlation mask and, most im-

portantly, the size of the �xed disparity range. The

execution time of the full algorithm is linear to the

number of pixels and disparity range and constant

with respect to the size of the correlation mask (due

to recursion).

The performance of the temporally coherent stereo

algorithm on the other hand is quite complex. The

complexity arises from the fact that the performance

depends on the additional information available to

the algorithm.

The �rst factor is the knowledge of motion. If the

motion is known, then it is possible to accurately es-

timate the disparity search ranges. If the disparity

ranges are small then the stereo search will be done

faster.

The second factor is the structure of the scene. If

the scene consists mostly of at surfaces, then the

predicted disparity ranges will be around the previous

values. If, on the other hand, the scene has many

discontinuities, then the search at the discontinuities

will have to include both ranges which may be far

apart.

The third factor is the number of valid and invalid

pixels in the image. The algorithm processes only

parts of the image that may move to a valid part of

the image. If the image has large areas of invalid

pixels and the motion is well known or small, then it

is possible to determine areas of the image that do

not need to be processed. This means that images

that lead to large numbers of invalid disparities will

execute faster with the coherent stereo algorithm.

Another important point is that even if the dis-

parity ranges can be determined precisely, the pro-

gram can still perform ine�ciently. The ine�ciency

is due to the recursive nature of the algorithm. In

other words, if one correlation can not bene�t from

the previously done work, the computation is done

ine�ciently. Scattered invalid points and small areas

of di�erent disparities can cause this e�ect.

Finally, close objects cause greater change in the

disparity values when the robot moves towards or

away from them. Therefore the algorithm will have

poorer performance when objects are in close prox-

imity.

The performance of the stereo algorithm, when

given the disparity ranges, is one part of the computa-

tional cost of the whole algorithm. The other part is

determining the disparity ranges. The time required



to compute the disparity ranges depends mainly on

the amount of robot motion. In general the less the

knowledge of motion is constrained the longer it takes

to compute the disparity ranges. Loose constraints

on motion mean that larger ambiguity areas, which

result in more searching for the disparity range.

6 Experimental results

The execution time of our algorithm was compared

to the execution time of the full algorithm in order

to get a measure of the relative speedup. Both al-

gorithms were provided with a sequence of images

obtained from a mobile robot (Spinoza at Labora-

tory for Computational Intelligence at the University

of British Columbia). The robot has two black and

white cameras mounted on it. A sequence of 512�480

gray-scale images was obtained while the robot was

moving through the laboratory. The robot was pro-

grammed to translate forward 5cm, capture a set of

stereo images, rotate 3 degrees, and capture another

set of stereo images. The robot repeated this motion

twenty times.

The amount of information about the motion of the

robot was broken down into three types;

� Type A: robot moves �6 cm and rotates �3:5�

� Type B: robot moves [0::6]cm or rotates [0::3:5]�

� Type C: robot moves 5� 1 cm or rotates 3� � :5

Figure 6 presents the information at the beginning

of the sequence. The images shown are the views

form the left and right camera. The disparity maps

shown are the result of processing with the full algo-

rithm. The shades of gray represent the valid dispar-

ities. The brighter shades of gray represent points in

the scene that are closer to the viewer. The black ar-

eas of the image represent invalid points. The image

labeled with maximum disparity range is the upper

bound on the the disparity range for all pixels, given

that the robot has rotated to the right anywhere be-

tween 0 and 3:5�. The shades of gray represent the

upper bound of the disparity search range and black

pixels represent points that are believed to be invalid.

The white areas of the image represent the lack of in-

formation from the previous image. The right part of

the image therefore has a white vertical strip, because

the robot had moved to the right.

Figure 6 displays the last stereo pair of images in

the sequence and the results obtained both by the full

algorithm as well as the result of the coherent stereo

algorithm. The result of the coherent stereo algo-

rithm was obtained given that the general direction

of robot motion is known.

Left Image t = 0) Right Image t = 0)

Optimal disparity map Maximum disparity image

(t = 0) (t = 0)

Figure 4: Processing done when the robot turns to

the right

Left Image (t = 40) Right Image (t = 40)

Optimal disparity map Temporally coherent stereo

(t = 40) (t = 40)

Figure 5: Processing done at the end of the robot

motion



constraint speedup valid average error

matches error over 1

type (%) (%) (pixels) (%)

A 121 92.3 0.157 0.50

B 342 91.6 0.693 0.85

C 414 88.9 0.622 0.13

Table 1: Comparison of performance between the full

and coherent stereo algorithm

The performance of the algorithm is analyzed by a

number of criteria presented in Table 6. The speedup

is calculated as the ratio of the CPU time used by

the full algorithm over the CPU time used by the

coherent stereo algorithm. The time spent in com-

puting the disparity ranges is included in the time of

the coherent algorithm. The CPU time spent on cali-

brating images is not considered for either algorithm.

The column valid matches represents the percentage

of the valid disparities correctly identi�ed by the co-

herent stereo algorithm. The average error column

presents the average di�erence between the disparity

values found by the full algorithm and values found

by the coherent algorithm. The error over 1 column

presents the percentage of pixels that are di�erent

from the correct result by more than 1.

7 Discussion and Conclusion

It can be seen from the experimental data, that the

temporally coherent algorithm can decrease the pro-

cessing time needed to produce acceptable results.

The results suggest that as the amount of knowledge

about the robot motion increases, so does the speed

of the algorithm. It should be noted that the signi�-

cant jump in the performance can be observed when

the general direction of the camera motion is speci-

�ed. This is important because the accurate odome-

try readings may not be available on all robots, but

it is likely that the robot knows that it is moving in

a particular direction.

The accuracy of the depth map can be as good

or better when using the temporally coherent algo-

rithm. We have presented the number of matches of

valid disparities between the full and coherent algo-

rithm. The number of matched valid disparities is

above 85%. The coherent algorithm does �nd pix-

els to be valid even though the full algorithm �nds

them invalid. The number of pixels found to be valid

only by the coherent algorithm are in the range of 10

to 15 % of all pixels, for more constrained motion.

The explanation for the this phenomenon is that the

results of stereo are temporally extended when the

search range is limited. Therefore the algorithm is

still able to identify the disparity as valid. If the dis-

parity range was increased the algorithm would �nd

the disparity invalid.

In the case when the motion of the camera is

known, the disparity ranges are reduced to less than

10% of the full disparity range. This would lead us to

believe that the algorithm should run 1000% faster.

The speedup however is only in the range of 400%. A

part of the reason for this unexpected performance is

the time spent producing the disparity ranges. How-

ever, more important is the fact that the algorithm

is trying to take advantage of recursion. The coher-

ent algorithm needs to check if the necessary infor-

mation is available. By doing this it executes many

conditional jumps which are inherently expensive on

sequential computers.

The disparity maps presented in this paper have

on average 60% of all pixels valid. This is quite high

considering that no interpolation was done. This was

done on purpose in order to force the coherent al-

gorithm to perform computation. Greater speedups

are possible if the obtained disparity maps are very

sparse. In this case the algorithm may choose not do

process disparities that are believed to be invalid in

the next iteration. In this case the speedups can go as

high as 1000%. The problem with sparse depth maps

is that there must be a mechanism for introducing

valid points in the regions where invalid disparities

are expected. Otherwise the whole image could pos-

sibly turn invalid. As our future work we propose two

methods as a solution to this problem: statistical ver-

ifying of results and/or use of additional knowledge.

The statistical veri�cation means selecting a num-

ber of random pixels and processing them over the

full range of disparities. The obtained results are then

compared with results of the coherent stereo. If the

results are di�erent then that part of the image can

be processed with a larger disparity range. The sta-

tistical veri�cation can be used for introducing valid

points to an area of the image that was previously

invalid. It could also be used for detecting dynamic

objects in the environment.

The second approach to solving the problem of in-

troducing valid points can be solved by using addi-

tional knowledge such as the image content. For ex-

ample, it is well known that correlation-based stereo

algorithms perform poorly on texture-less surfaces.

Therefore, the checks for texture in parts of the image

where it is necessary can help in deciding on whether

computation should be done or not.

Additional information can also be useful depend-

ing on the task of the robot. For example, a well



calibrated robot can determine disparity ranges that

correspond to a particular part of the environment.

The oor would be ideal to ignore, given that there

are disparities that correspond to points below the

oor. On the other hand, the robot may be particu-

larly interested in holes in the ground. In that case

the disparities should be tuned to �nd points below

the oor level.
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