
Civil Law and the Development of

Software Engineering

Martina Shapiro

September 25, 1996

Contents

1 Introduction 1

2 Civil Law Concepts 4

2.1 Tort Law . 4

2.1.1 Negligence . 4

2.1.2 Strict Liability . 5

2.2 Contract Law . 6

2.2.1 Contract . 6

2.2.2 Breach of Contract . 7

2.2.3 Rescission of a Contract . 7

2.2.4 Strict Liability and the Contract . 8

2.2.5 Vicarious Liability . 8

2.3 Statute Law . 8

2.4 The Legal Process . 9

2.5 International Di�erences . 11

3 Software Engineering Concepts 12

3.1 Software Development . 12

3.2 Standards and Certi�cation . 14

3.3 Software Development Process Improvement 15

3.4 Section Summary . 17

4 Applying Civil Law to Software

Engineering 18

4.1 Review of Literature . 18

4.1.1 How do standards relate to negligence? 18

4.1.2 Company is liable for employees, but... 19

4.1.3 Bene�ts and limits of a contract . 20

4.1.4 Safety �rst, contract and budget are secondary 21

4.1.5 Changing state-of-the-art during project development 21

4.1.6 Incomplete requirements speci�cation - who's fault is it? 22

4.1.7 Can software be an \unavoidably dangerous product"? 23

4.1.8 Should courts enforce strict liability for software? 24

4.1.9 Operator error or \unfriendly" interface? 24

4.1.10 Product vs. service dilemma . 24

4.1.11 Recovery of damages, punitive damages 25

4.2 Case Examples . 26

4.2.1 Diversi�ed Graphics v. Groves; USA Court of Appeals, 1989 26

4.2.2 Data Processing Services v. L.H. Smith Oil Corporation; Court of

Appeals, Indiana, 1986 . 27

4.2.3 Hawaiian Telephone Co. v. Microform Data Systems, Inc.; USA

Court of Appeals, 1987 . 27

1

4.2.4 Ottawa Strong & Strong v. McLeod Bishop Systems; USA District

Court, 1987 . 28

4.3 Section summary . 28

5 Implications 29

5.1 Software Quality and Process Improvement 30

5.2 Development of Product Liability Strategies 31

5.3 Individual Protection . 32

6 Conclusion 32

References 34

2

Abstract

3

Abstract

This paper provides software engineers with an understanding of the basic tenets of civil

law and how legal liability principles may be applied by the courts so as to a�ect the future

direction of software engineering. The issues discussed are based on a review of selected

literature in software engineering, civil law reported case decisions and texts as well as

on interviews with legal consultants. Examples of some court rulings in cases involving

software malfunction are included, along with some projections relating to the possible

implications for software development arising from the anticipated reaction of the courts

to the novel issues presented by software engineering.

1 Introduction

Since the 1950's, the cost of producing software has been rising and the cost of producing

hardware has been dropping. Hardware seemed to become more reliable, while software

was becoming more complex and less reliable. This trend has remained quite consistent

over the years.

Software, being a part of many products, now pervades all aspects of our lives. The

fast growing, pro�t-driven industrial need for software of great complexity, together with

the ad-hoc software development methods still practiced by the majority of North Ameri-

can software development companies, have resulted in many project schedule and budget

overruns. Software errors have caused not just considerable economic damage, but also

human injury and loss of life, since software is an integral part of many safety-critical

systems.

Some well publicized software-related failures include the Therac-25 radiation overdose

incidents that claimed many lives[9], the failed �rst launch of the space shuttle in 1981

that occurred because of a timing problem in one of its computers and the AT&T phone

system failure in 1990, amongst others[53].

Software development has traditionally been treated more like an art-form than a

science, which has led to both quality and production problems. Software engineering grew

out of the need to make software development consistent, disciplined and quanti�able, and

thus better able to �nd the right balance between product quality, project schedule and

budget.

Software engineering is a relatively young and evolving discipline, with no widely

agreed-upon standards, and with no required licensing of its engineers similar to that of

other professions such as doctors, civil engineers and accountants. As public exposure to

software-controlled, safety-critical products continues to increase, so too does the risk of

legal liability accruing to anyone who is involved in the development and marketing of

software products.

Because of the nature of what software is and because of the fast-changing state-of-

the-art of software engineering, the judicial application of civil law principles that were

developed over the past two centuries to the relatively new discipline of software engi-

neering is not yet well de�ned. It is therefore not surprising that software development

companies often prefer the certainty of settling out of court, rather than risk the wrath

and predisposition to perverse damage awards of relatively unsophisticated judges and

juries.[34]

There are no easy answers on how to apply existing law to information technology,

and traditional legal theories may not easily be made to address the peculiarities inherent

in software. Software is an intangible and therefore is often considered to be an idea

which has, on occasion, led to a legal de�nition of software as a service rendered to solve

a problem. Software, however, has to be recorded on a physical medium if it is to be of

any practical use, and so it has also been legally de�ned as a product. This distinction

between product and service is important, since di�erent legal theories apply in each case.

Another issue, quite speci�c to software, is that software solutions are being developed

in many application areas. Software developers may be experts in software engineering,

1

but typically they do not have expert knowledge in each application area for which they

are developing software. Collecting and analyzing requirements thus becomes tricky, since

they have to rely on others to provide them with speci�c information about the area in

question in order to derive a requirements speci�cation that is reasonably complete.

This leads to an interesting question relating to the spreading of liability between

the client contracting for the software, the company developing the software and expert

consultants hired by either party in cases where some safety-critical requirements were not

discovered.

Many accidents can be attributed to human error, but, under closer scrutiny, inappro-

priate design of the interface may be the real reason for the error of the operator who was

interacting with the software program. De�ning legal responsibility for designing \user

friendliness" will be another di�culty faced by both the courts and software developers.

To protect oneself from potential liability arising out of contract and tort-related law-

suits, it is necessary to understand who might be held liable and for what damages when

software fails, and how far-reaching that liability can be. This issue is also of interest to

insurance companies who have to quantify the �nancial risk involved in undertaking soft-

ware coverage in order to determine their insurance premiums. Even though a company

is liable for all of its employees, one can be held personally liable, even when working for

a company, whether as an employee or o�cer: US cases have established that o�cers of

a company may be personally liable to pay compensation for incidents relating to safety

of the company's products as well as environmental damage if their own acts or omissions

prove to be the direct cause of the loss which forms the subject of the claim.[37] The

company CEO can also be liable to criminal prosecution for a company's failure to comply

with certain duties imposed by statute.[37]

Third parties outside of the contractual nexus with the company may also look to individ-

ual software engineers employed by the company where they can trace their loss to that

person.

Because of the nature of software and its incursion into all aspects of today's economy,

awareness of the legal issues that arise in software development as well as an understanding

of basic civil law principles, can assist practitioners in dealing with the many trade-o�

situations faced in industrial software development, including the mitigation of potential

liability exposure of both individuals and companies involved in developing and marketing

software-based products and systems.

The author makes no warranties nor representations as to the completeness of the

legal research contained in this paper as it has been prepared by a non-lawyer, based

upon a cursory overview of civil law jurisprudence as it pertains to software development.

The paper is meant to be an overview of basic legal issues as they apply to the design,

development and marketing of software, and as such should prove to be of primary interest

to people associated with the software development industry. If speci�c legal questions

require to be answered, the reader is advised to seek the professional advice of legal counsel.

2

Negligence/Strict

Distributor/Client

Software Developer/Company

Employees

Subcontractors

Concurrent

Contract
3. Fradulent
4. Negligent

2. Unconsciable
1. Breach

Contracts

Contracts

Statute Claims

Tort Claims

Statute Claim

Third Parties - Users

Tort Claim
Concurrent

Concurrent
Tort Claim

Concurrent
Tort Claim

(goods)

(goods)

(service or
product)

(product)

Contract Claims:

Tort Claims

Figure 1: Possible Claims

3

2 Civil Law Concepts

In this section, civil law concepts are de�ned and explained.(Figure 1.) This section

results from the author's research of various legal texts as well as from discussions with

legal practitioners with expertise in this area.[34] For a detailed explanation of the legal

concepts, see, for example, [28], [29], [30].

The basic legal principles presented in this section, have evolved over the last 250 years

and form the basis of the civil law in the USA, Canada, UK and many commonwealth

countries. These concepts will not change fundamentally in a court's attempts to apply

them to software engineering. What is subject to change is state legislation (see Statute

Law), but these changes will not a�ect the basic principles, just the way these are applied

to speci�c fact situations. An understanding of the basic principles can therefore assist

a software engineer in anticipating the potential liability exposures or likely outcomes

relative to speci�c software design situations.

2.1 Tort Law

2.1.1 Negligence

A claim of negligence, in the context of software development, usually arises when a

software product causes economic damage or physical injury to a \third party" that does

not have a contract with the manufacturer of the product. The challenge for the injured

party (plainti�) is to prove who was negligent and how the negligent act caused the

plainti�'s injury.

Black's Law Dictionary[30] de�nes negligence as:

"The omission to do something which a reasonable man, quided by those ordinary con-

siderations which ordinarily regulate human a�airs, would do, or the doing of something

which a reasonable and prudent man would not do. " (p. 1184)

A �nding of negligence is thus based upon an objective test which applies to every

�eld of endeavour, profession or calling. It is the doing of something which a �ctional

\reasonable man" would or would not have done under similar circumstances, given the

state of the art of his/her profession or calling at the time that the act complained of was

committed. For negligence to exist, someone must be found to have failed to meet the test

described above, and that failure must have a�ected someone else within the forseeable

risk of harm in a deleterious manner so as to cause that person injury, loss or damage,

either of a physical or economic nature.

Whether or not the objective test has been met is ultimately determined by a judge or

a jury looking at all of the evidence, including expert evidence, if required. Note that the

\reasonable man" does not have to be perfect. An error in judgment or a mistake is not

necessarily indicative of negligence, and thus does not automatically incur tort liability.

The reasonable man standard has been strengthened for professionals, who are ex-

pected to perform to a higher standard than an ordinary prudent lay person.[29] A good

de�nition of reasonability is cited in [29]:

\The degree of skill consistent with the function discharged, that is, consistent with the

4

measure of skill displayed by others reasonably competent in that profession touching mat-

ters of like kind. Perfection is not expected; the world of work, not the ideal of the debating

area, is the standard."(p. 134)

2.1.2 Strict Liability

Strict Liability applies to products that are inherently dangerous or have the potential

to cause damage or injury to others. In the software development context, strict liability

arises most often when a software product causes physical injury and the product can

be classi�ed as being inherently dangerous in itself, or a software defect which cannot

be empirically observed by the user renders the product \unreasonably dangerous". In

such cases, the plainti� does not have to prove any negligent act on the part of the

manufacturer. The monetary awards for damages in these situations can be huge, and

may include punitive damages imposed on the manufacturer and paid to the plainti�.

The Therac-25 radiation therapy machine is a good example of a product to which strict

liability can be applied. The main cause of the machine's failures which caused radiation

overexposure to many people was considered to be a software error.[9] The victims who

su�er physical injury as a direct result of the use of such a product or the families of

deceased victims, can �le suits, both for negligence and strict liability. However, a claim

based upon strict product liability in such a case might be easier to prove, and might

result in a signi�cantly larger monetary award than a claim based on negligence alone.

Black's Law Dictionary[30] de�nes injury as follows:

\Any wrong or damage done to another, either in his person, rights, reputation or prop-

erty...The words \damage", \loss" and \injury" are used interchangeably, and, within

legislative meaning and judicial interpretation, import the same thing." (p. 924)

Strict liability is often used in situations where a product, inherently dangerous in

its own right, is allowed to damage others who are within the foreseeable risk of harm1.

Therefore, it has been historically used to compensate claimants who su�ered loss or injury

from water, �re, electricity, gas and explosives.

According to strict liability, a person may be required to compensate another for injury

or damage, even though the loss was neither intentionally nor negligently inicted. One

may attempt to avoid a �nding of negligence by testing one's products for all forseeable

applications. But such testing cannot prevent a �nding of strict liability for products

which, in and of themselves, may have inherently dangerous characteristics which may

cause damage.

The concept of strict liability is employed by the courts to maximize protection to the

public by placing responsibility on manufacturers whose products are potentially danger-

ous to others. The fact that the courts will impose strict liability upon a manufacturer in

the absence of fault acts as a deterrent to manufacturers producing defective products for

sale in the marketplace.

The courts will consider what an ordinary consumer of the product in question would

expect. This \ordinary consumer", like the \reasonable person" in negligence cases, is a

�ctional character, and acts as an objective standard. This ensures the court's objectivity,

since the performance of the product is compared to what this \ordinary consumer" would

5

have expected of it, rather than what the particular person who is claiming damages did

or did not expect of it. [18]

2.2 Contract Law

2.2.1 Contract

Black's Law dictionary[30] de�nes a contract as:

\ A promissory agreement between two or more persons that creates, modi�es, or destroys

a legal relation." (p. 3940)

A contract is thus a voluntary agreement, which may or may not be in writing, sup-

ported by consideration passing from one party to another. Contracts may contain war-

ranties, disclaimers of responsibility and limitations of liability.

In the context of software development, contract-related claims arise most often be-

cause of project schedule and budget overruns or because the delivered software does not

function as claimed by the seller. As long as the contract is considered valid, all the limi-

tations in the contract usually apply, which might mean that any monetary compensation

and the liability for loss and damage incurred will also be limited by the contract. A well

written contract can, to a large extent, protect against potential liability exposure (except

for strict liability). Such a contract, in all but the simplest of cases, can be very complex

and should be prepared with the assistance of an experienced lawyer who specializes in

both contract and computer law.

1. Warranty

A warranty is typically contained within the terms of a contract for the sale of

a product, specifying the parameters of the product's performance and ascribing

responsibility for its defects or shortcomings. It is a quali�cation on a contractual

obligation from one party to another, narrowing the scope of responsibility for

defects or de�ciencies in a product to those which are expressly provided for.

2. Disclaimer

A disclaimer is a warning or notice to another party that a product either should

not be relied upon or that it should be relied upon only for a limited purpose. The

disclaiming language noti�es others about the limited reliance that they should

place upon the product.

3. Limitation of Liability

A limitation of liability is an agreement between two parties that the supplier of

the product or service will only be responsible for a limited period of time and/or

a limited sum of money for any 2 loss, injury or damage which may arise out of

the manufacture, sale, distribution and use of a product or service. Typically, a

limitation applies to physical and economic damage and/or the time within which

a claim must be initiated.

1According to the objective test of reasonable forseeability, ie. what a reasonable man

could forsee.

6

2.2.2 Breach of Contract

A breach of contract is the failure of one party in a contractual relationship to live up

to its material obligations as required by that relationship, and gives rise to a claim for

damages which are caused by and are the direct result of that failure. After a breach of

contract has occurred, the non-breaching party may elect to either waive the breach and

carry on with the contract or declare the contract to be terminated and sue for damages

directly arising from the breach.

The terminating party must be correct in ascribing responsibility for the breach of

contract to the other party. If it is incorrect, then the terminating party will be held to

be in breach for improperly terminating the contract, and will itself be responsible to the

other party for all damages which directly ow from its own breach. Termination of a

contract means that the contract is at an end and the parties to the contract are no longer

obliged to carry on with their respective responsibilities under the contract.

2.2.3 Rescission of a Contract

Rescission means the retrospective cancellation of a contract from its inception. Black's

Law Dictionary[30] de�nes it as follows:

\Annulling or abrogation or unmaking of contract and the placing of the parties to it in

status quo." (p. 1472)

Reasons for obtaining rescission are:

1. Innocent Misrepresentation

In innocent misrepresentation, one party misleads another innocently as to a mate-

rial element of the contract, without intending to mislead. The remedy in this case

will be rescission of the contract, provided that the parties to the contract are ca-

pable of being put back into the same position as if the contract had never existed.

If this is not possible, then the contract will continue to be in e�ect. Damages will

not be awarded for innocent misrepresentation.

2. Negligent Misrepresentation

Negligent misrepresentation occurs when one party misrepresents the facts to a

second party, where the �rst party, acting reasonably, should have known that the

facts were not accurate and the second party would likely rely upon them. This type

of misrepresentation will give rise to rescission of the contract if the parties can be

put back into substantially the same position they were in at the time the contract

was entered into. Damages that directly arise out of the negligent misrepresentation

can also be claimed.

3. Fradulent Misrepresentation

Fradulent misrepresentation occurs when one party misrepresents the true facts to

another party, where the �rst party knew the facts were not true when it stated

2If the type of damage/injury/loss are speci�ed, then the limitation will only apply to

exactly those, and no others.

7

them, but stated them anyway, recklessly, assuming that the second party would

act upon the misrepresentation to its detriment. Fradulent misrepresentation will

result in a claim for rescission as well as a claim for damages. As in 1. and 2.,

one is only entitled to rescission if the parties to the contract can be put back into

substantially the same position they were in at the time the contract was entered

into.

2.2.4 Strict Liability and the Contract

Two parties to a contractual relationship can agree as to the scope of responsibilities and

obligations that each will have to the other. These may be beyond or less than the scope

of responsibilities and obligations imposed by the common law. However, when a product

is inherently dangerous, or if it is against public policy for one party to hide behind

limiting words contained within a contract, particularly where the public health, safety

and welfare are concerned, then the courts will impose strict tort liability notwithstanding

the existence of limiting provisions within the contract. That is, in this type of situation,

the contract will have no e�ect in limiting the scope of liability or amount of damages that

can be recovered.

2.2.5 Vicarious Liability

Vicarious liability is the liability that one party has for another, whom it engages either

as an employee, subconsultant or subcontractor. That is, the employer is vicariously

responsible for everyone he engages contractually to perform a service on his behalf, even

when the service represents a portion of production of a larger product which is sold by

the employer to a third party.

2.3 Statute Law

Statute Law is the law enacted by a legislature. For example, the Sale of Goods Act of the

Province of British Columbia is a statute enacted by the legislature of British Columbia,

and applies to the sale of goods within the Province, unless it is excluded by the terms

of a contract. The Sale of Goods Act implies requirements that products be �t for the

purpose for which they are intended and that they be of merchantable quality. Goods

may be considered to be of \merchantable quality" or \�t for their purpose" even though

they may have a number of defects, as long as they are capable of performing their main

function.[15] The exact meaning of these terms has been subject to considerable debate in

the case law.[26] The statute will protect those who purchase products without the bene�t

of explicit warranties contained within written contracts.

In the USA, the UniformCommercial Code is employed by all states, except Lousianna

and Washington, D. C., to standardize sale of goods legislation throughout the country.[34]

8

2.4 The Legal Process

When a person is injured or su�ers economic damage or loss as a result of using a product

or service, he may seek a remedy through the legal system. He visits a lawyer and advises

him of his concerns. The lawyer evaluates the facts to determine if a basis for a legal claim

exists and ascertains if there is any potential for the complaining party (plainti�) to be

awarded damages. If there is, then the lawyer will initiate a lawsuit by drafting a Writ of

Summons and �ling it in a court of appropriate jurisdiction.

When the Writ is stamped by the court, it becomes an o�cial court document and

is served by the plainti� on the defendant. The Writ of Summons o�cially noti�es the

defendant that a legal action has been initiated against him. The defendant should respond

by �lling an Appearance in court, which is a declaration of his intention to answer the

plainti�'s claims by the time prescribed by the Rules of Court.

After the Appearance document is stamped by the court, it is served on the plainti�,

notifying him that the defendant intends to defend himself at a future trial of the matter.

Next, the plainti�'s lawyer elaborates on the Writ of Summons by setting out in more

detail the factual basis of the claim and the legal remedies to which the plainti� feels he

is entitled. The resulting document is called a Statement of Claim and again has to be

�led in the court �rst and then served on the defendant. The defendant answers by �lling

a Statement of Defence, which is a detailed rebuttal to the Statement of Claim. All these

court documents are referred to as \pleadings" and serve to de�ne the issues in dispute

and the scope of the litigation.

The pleadings may be amended at any time, including at trial, with the permission of

the judge as more evidence becomes available during the pre-trial discovery process and

later during cross-examination at the trial itself.

After all the pleadings and other relevent documents have been received by the court

(this ensures that the other party was noti�ed), the examination for discovery process can

begin. During this process, witnesses are formally examined by both parties according to

the rules of evidence and Rules of Court.

The trial can only begin after the discovery process has been completed and all the

facts and documents are available. (Figure 2.)

The discovery process consists mainly of the following elements:

1. Discovery of Documents.

All documents that are relevant to the issues in dispute must be produced by each party

to a claim to the other, prior to oral examination for discovery and trial on those issues.

2. Discovery of Witnesses of Fact.

Each party is entitled to cross-examine a witness or witnesses from the other side as to the

witness's knowledge of the facts relating to the issues in dispute. This discovery is taken

under oath before a court reporter, and the answers given may be later selectively read in

at the trial by legal counsel, without the necessity of calling the witness at the trial.

3. Discovery of Expert Witnesses.

Expert witnesses may be called to testify in �elds directly related to the products and

processes giving rise to the damages claimed. An expert witness must be quali�ed aca-

demically and practically in his �eld of endevour in order to be accepted by the judge as

9

Normal use
of product/service

Contract

Client/Distributor/
Thirt Party User(s)

(facts)

product/
service

Judge

lawyers

court reporter and court registrar

law

statutes

rules of court

injury/damage/loss

Trial
Judgment
(could be appealed)

(and jury)

for both sides

witness’s
 testimonies

Statement of

appearance

Detailed elaboration

of Writ of Summons

Entering anInitiation of

legal process

Detailed rebuttal

to Statement of
Claim

court court court court

Discovery process

rules of evidence
rules of court

facts, documents

lawyers
for both sidesreporter

court

categorized documents
(correspondence, photos, reports, memos, etc.)

Application to amend pleadings

Writ of Summons
(basis of claim)

Appearance Statement of Claim Defence

products/services normally
produced in the absence of injury/damage/loss

law law law law

defendant/lawyerplaintiff/lawyer plaintiff/lawyer defendant/lawyer

issues(define scope), pleadings(official court documents)

(document)

F
ig
u
re

2
:
T
h
e
L
eg
a
l
P
ro
cess

1
0

an expert witness whose evidence may be given and received at the trial. The evidence of

expert witnesses engaged by the parties must be produced to the other party in British

Columbia at least 60 days before the witness gives evidence at the trial of the matter.

2.5 International Di�erences

Expanding international markets for computer software are indicative of the increasing

globalization of the world economy. This trend has resulted in the need to regulate inter-

national transactions, including software transactions. The di�ering laws and legal systems

between countries will a�ect these transactions and result in signi�cantly disparate reme-

dies between jurisdictions. Software consumers will thus naturally try to enforce their

legal claims and seek damages in the jurisdiction that provides the most likely forum for

recovery, and with the greatest potential damage awards.[34] The legal aspects that can

arise under these circumstances are very complex and are not being dealt with in this

paper. The purpose of this section is to bring this issue to the reader's attention.

There can be signi�cant di�erences in the magnitude of damages awarded in the USA

and in England or Canada. In the US, where juries decide on issues of liability and

�nancial compensation, damages can be awarded that appear to be out of proportion to

the loss su�ered. US juries are also far more likely to award punitive damages than would a

Canadian or U.K. court.[34] In Canada and UK cases are heard, for the most part, without

juries, and the judge determines issues of liability and the level of damages. Judges tend

to keep damage awards reasonable and in accordance with the actual loss su�ered.[34] A

plainti� can `shop' for the best forum, even if he has very little, if any, connection with the

legal system where he sues.[36] However, a properly drafted commercial software contract

will specify the law of a particular jurisdiction that will apply to all claims or disputes

arising out of that contract.[34],[36]

Legislation that will a�ect the international exchange of software systems includes the

United Nations Convention on Contracts for the International Sale of Goods, passed in

1980. This was an attempt to unify the international sale of goods laws as was the Single

European Act of 1986, that relates to the economic uni�cation of Europe with goals such

as common standards, broad de�nition of what constitutes \goods", and the removal of

legal and �scal barriers to trade.[45]

Most EC States have implemented the EEC directive on product liability. The Con-

sumer Protection Act of 1987, for example, de�nes damage as death, personal injury or

property damage, excluding damage to the product itself. The term \ product" in this

legislation includes \any goods or electricity", and does not include services.[36] There

are a number of other European directives that can be applied to computer controlled

systems. The Health and Safety at Work Act 1974 legislation in England imposes general

duties upon manufacturers producing or supplying anything intended for use at work. [36]

Other EC directives relate to product safety requirements for control systems of ma-

chinery to be \user friendly", and stipulate that errors in logic should not lead to dangerous

situations.[15] They do not provide a de�nition of these terms.[15] Other proposals call

for a directive that would introduce strict liability for suppliers of services, thus making

the issue of whether software is a product or service irrelevant. This results in, for ex-

11

ample, the suppliers of software maintenance services having equal responsibility with the

producer of the software.[15]

3 Software Engineering Concepts

This section is meant to provide a brief introduction to the discipline of software engineer-

ing, its origins, purpose and challenges.

The term \engineering" in the discipline's name is irritating to some, since it indicates

the use of scienti�c methods and the production of valid results which are not always

achieved by software engineering. In fact, it is not even clear how to de�ne who is and

who is not a software engineer as there still is no industry-wide agreement on a standard

for this discipline.

Software engineers study how best to manage, control, measure and evaluate the

software development process, as well as how best to select and combine individual meth-

ods, standards, documentation, human resources and skills, while mitigating both overall

project risks and the technical risks associated with the �nal product.

The number and nature of variables arising from the e�ort to �nd the right combination

of management, engineering, computer science, human and other factors necessary to

the development of diverse software systems operating in di�ering environments makes it

di�cult, if not impossible, to run controlled experiments and thus obtain valid results. It

is therefore questionable whether software engineering will ever become a `true' science.

3.1 Software Development

In the late 1950's and early 60's, the software development process consisted, for the

most part, of writing all of the software code with little or no prior planning or proper

reasoning about requirements and design. The now obvious problems resulting from this

approach led to an understanding of the need to develop conceptual models for organizing,

sta�ng, budgeting and managing software projects, and marked the beginnings of software

engineering as a discipline.

Software engineering grew out of the hardware and systems engineering �elds in an

e�ort to bring discipline, consistency and quanti�able application of engineering practices

to the software development process. The �eld is continuously evolving and its main ob-

jective is to optimize the quality of software products and systems, while meeting speci�ed

requirements, budgets and delivery schedules. The challenges faced relate to the explod-

ing complexity of software, software volatility, ambiguity in speci�cations and veri�ability

of �nal products. Initial software engineering e�orts resulted in the development of the

�rst software life-cycle models, while later e�orts focused on de�ned software processes,

measurement and improvement strategies.

Among the earliest life-cycle models was the \document-driven" waterfall model,

which became the basis for most software acquisition standards.[48] The basic development

stages de�ned in this model were the requirements, design, coding and testing, integration

12

and deployment stages followed by operations and maintenance stage. The name \water-

fall" reected the idea of water owing down a series of steps. The need for feedback loops

between successive stages was, however, quickly recognized, and the model was reworked

but not renamed.

Alternative models were developed to address some fundamental shortcomings, in-

cluding the waterfall model's emphasis on complete documentation after each phase and

a lack of support for evolutionary change.[48] Newer models address the incremental and

evolutionary development of software, but, it is safe to say, that none of them is universally

applicable. Companies typically adapt these models to their particular needs and then

use them to de�ne in-house software development processes.

The so-called \spiral model" of evolutionary software development was driven by ex-

perience gathered from using the waterfall model and its re�nements for large, mission-

critical government software projects.[48] This model is often described as risk-driven and

accomodates most previous models. It is depicted as a spiral, with the inner cycles rep-

resenting early analysis and prototyping, the outer cycles depicting the classical system

life-cycle phases, with the radial distance representing cumulative development costs. The

angular dimension represents the progress made during each development spiral. Risk

analysis is carried out in each cycle of the spiral.[49]

Each spiral cycle begins with stating the objectives of the part of the �nal product

in question, such as required performance and functionality, and the alternative ways

of implementation and their constraints. The next step consists of evaluation and the

identi�cation of uncertain areas that could be sources of project risk. The following step

then strives to resolve or mitigate these risk sources. The other potential steps in the

model are implemented only to the extent required by risk considerations. For example,

a software prototype of a new algorithm might be developed in order to reduce the risks

related to the algorithm's performance. This allows exibility and the choice of a mixed

strategy, using the best features of other software process models and, at the same time,

avoiding many of the problems associated with these models.[48]

The risk-driven approach emphasized by this model and the e�orts to apply and

re�ne this model have led to the establishment of the software risk management discipline,

including techniques for risk identi�cation, analysis, prioritization and risk-management

planning.[48] It should be apparrent that e�ective risk mitigation goes hand-in-hand with

liability mitigation, that is, e�ective risk reduction should reduce the likelihood of failed

projects and unsafe products.

Research and development in software engineering is on-going and dynamic, dealing

with both higher level processes and lower level methods and support tools. While more

e�ort and valid results are needed for both the process and the method aspects, the

emphasis appears to shift from one to the other. The focus on de�ning the underlying

processes in software development started in the 80's, mainly with the work of the Software

Engineering Institute (SEI). The aim was to de�ne processes that are repeatable, produce

consistent results and can be constantly improved.

Software processes focus on the speci�cation of higher-level development activities,

broken down into sub-processes, identifying the inputs and outputs for each activity, to-

gether with the required entry and exit criteria, methods, standards and tools to be used

13

and the speci�c roles and skills of the teams and individuals required to carry them out.

Process and product metrics are identi�ed, collected and analyzed within this context.

Software methods can be thought of as detailed level processes that do not lend them-

selves to the more general purpose process representations. They are typically unique to

the speci�c software product in terms of notations and tools (eg. state-charts for require-

ments speci�cation, object-oriented design methods, complexity metric method, etc.).

Processes and methods have already been de�ned which, if properly implemented, can

reduce both the overall project risk and the risk associated with the safety of the end

product. Adoption of these processes is thus of interest to companies trying to mitigate

the risk and the liability associated with the production of software systems.

Research in software processes and methods was initially driven by the desire to make

software development more predictable in order to increase productivity. As the soft-

ware employed in systems and products became increasingly complex, quality and safety

considerations increased in importance.

Formal methods came into existence as a means of reducing errors in critical systems.

Through the use of formal methods, it is theoretically possible to write all the require-

ments in a mathematical notation, prove them correct, then sucessively re�ne this initial

speci�cation, proving each step, until the re�nement is so detailed that it can be directly

translated into code or the speci�cation itself can be executed and even used to program a

customized chip. If this can be done, we have proof that the �nal code exactly corresponds

to the initial requirements, and has the stated safety properties. The initial requirements,

of course, can be incomplete or not the ones intended. Furthermore, the proofs themselves

could be erroneous and/or the tools used to facilitate this process might represent an ad-

ditional source of error. In practice, formal methods are used selectively because of the

costs involved in applying them. They are often used to assist in writing unambiguous

requirements speci�cation, to formalize and prove correct the safety-critical portions of a

system and to enhance the testing process. Together with other safety analysis methods

and techniques, and an optimized testing process, formal methods can be very valuable

when trying to achieve proveable dependability of safety-critical systems. For a thorough

discussion of issues related to the safety of systems containing software, including many

heuristics for building them, see [54].

The area of formal methods is still developing and the research has so far been mostly

academic and has not yet resolved all of the problems of their application in the industry.

A variety of projects for critical systems have successfully applied some of the formal

techniques, but usually only for fairly small amounts of software code. Work in this area

has been most active in Europe, but has been receiving considerably more attention in

North America in recent years.[52][51][50]

3.2 Standards and Certi�cation

Standards for an industry are documents and accepted practices which represent technical

criteria precise enough to be consistently used as rules and guidelines in order to ensure

that the products and services, developed through the use of these standards, are �t for

their purpose. In a negligence lawsuit, a civil court assesses these standards to determine

14

the level of competence and the conduct of those involved in the manufacture of the product

in question.[19] If the software industry does not regulate itself by developing appropriate

standards and by certifying its practitioners, the number of lawsuits may grow signi�cantly

as the courts may lack su�cient guidelines from the industry so as to properly assess the

achievement or failure to achieve a required objective standard of care. It should always

be remembered that as far as the courts are concerned, the health, safety and welfare of

the public is always the primary public policy consideration.[34]

In software engineering, there is still no consensus as to what constitutes the disci-

pline's state-of-the-art and thus there is no single agreed-upon standard. More research

is needed to determine what standards should contain and how speci�c they should be.

Better cooperation between software practitioners, standard developers, academia and reg-

ulatory bodies is necessary in order to facilitate this research.[52][55] It has been argued

that standards should prescribe goals, rather than particular methods, not just to ensure

their validity over time, but also to hold the manufacturers accountable and responsible

for selecting those methods that will achieve prescribed safety and reliability.[52]

There have been many software engineering standards developed over the last two

decades by a number of international, national and industrial organizations. These in-

clude safety and reliability oriented standards, such as civil aviation standards (DO-178A),

nuclear industry standards (IEC 880), NASA software assurance standards, military stan-

dards, the DoD (Defense System Software Development Standards), the ISO/IEC stan-

dards relating to programming languages, environments and system software interfaces,

and many others.[19][57] In [21], a methodology for selecting and evaluating standards is

proposed, and a selection of an appropriate mix of standards is advocated, as opposed to

trying to develop an \ultimate" standard.

The certi�cation of software engineers is an issue related to the development of a

widely agreed-upon standard for the discipline. The term \software engineer" is not yet

de�ned, and the engineering component of it is not quite clear. For example, in some US

states, this term can only be used by registered professional engineers.[34] Whether or not

this is the right practice is questionable, since not every professional engineer is trained in

computer science. On the other hand, many of those who are developing software today

have never even attended a university. There is a lot of debate on whether registration

practices, such as licensing and certi�cation, are desirable or even practical, and what

impact such certi�cation would have on education, insurance and the marketplace.[56]

The setting of software standards is a critical aspect of the industry, since the so-called

\state-of-the-art" in software design will often represent the di�erence between safe and

unsafe applications of software to economically sensitive or safety-sensitive situations. As

stated earlier, the courts will be attuned to public safety and well-being considerations,

and will move quickly to require standards of the software industry that correspond with

this public protection objective.

3.3 Software Development Process Improvement

Standards, such as IEEE standards, are mostly just template documents for core pro-

cesses in software engineering and for product documentation. They do not provide the

15

mechanism for assessing organizational and individual capabilities.

The Capability Maturity Model (CMM), developed by the Software Engineering In-

stitute (SEI), attempts to quantify the capability of an organization to consistently and

predictably develop software products of high quality.[58] The model's levels, numbered

1-5, are referred to as initial, repeatable, de�ned, managed and optimized. Organizations

at Level 1 develop software without formalized procedures, proper plans and cost esti-

mates. This practice is usually described as \ad-hoc" development. Until the process is

recognized, it cannot be repeated, so the organization must establish basic management

practices, such as product assurance and con�guration control in order to move to Level 2.

Organizations at this level have achieved a stable process and are thus able to reasonably

meet basic schedule and cost commitments, but the introduction of newer technologies is

still problematic. Level 3 organization has de�ned the software development process to

the extent that change can be managed. Organizations at this level have trained process

specialists who collaborate closely with management and focus on process improvement.

Level 4 indicates the introduction of comprehensive process measurment and analysis and

the establishment of a process database that enables them to statistically manage their

work and to set and achieve quality goals. Level 5 organization has achieved a solid foun-

dation for continuous optimization of the software process and for meeting challenging

productivity and quality goals. An organization at this last level has implemented defect

prevention strategies, technology change management and process change management. It

is thus possible to analyze trends in order to track the types of defects that have been en-

countered and to identify defects that can recur, to identify new technologies, experiment

with them and incorporate the selected ones into the organization's standard software pro-

cess, as well as to plan continuous process improvement. For a more detailed explanation

see, for example, [58][1][60].

The position of SEI seems to be that the problems in software development lie in poor

management practices, rather than in the inadequacy of technology.[1],[60] The opinions

about the CMM model vary in the software industry, the main concern being the resource

commitments required for the assessment and evaluation and for the subsequent progres-

sion to a higher level. There have been several reported successes in the industry achieved

through the implementation of this model. These success stories do not validate the model,

but they do seem to link the application of the CMM model to the production of higher

quality software at lower cost, with a resulting improvement in a company's reputation.[58]

As an example, the Software Engineering Division of the Hughes Aircraft Corporation was

assessed by the SEI at Level 2 maturity in 1987. The recommended improvements were

implemented, and two years later, a second assessement by SEI found Hughes at a strong

Level 3. Hughes reported that the assessment itself cost approximately $45,000, and the

improvement costs were $400,000, while the resulting annual savings were estimated at

$2,000,000.[59] This and other success stories are also mentioned in [58], together with a

critical look at the CMM model. The CMM model does not directly address expertise in

a speci�c application domain, systems engineering, teamwork and concurrent engineering,

nor does it advocate speci�c tools, methods and technologies, nor prescribe how to hire

and motivate competent practitioners.[60]

The Personal Software Process (PSP) is a stuctured set of forms, standards and proce-

16

dures, designed to be used by an individual developer to help manage his work and improve

his skills. In simple terms, the PSP is the CMM model scaled down for an individual.[61]

The CMM and the PSP models thus address the company's and the individual's

software process and, as a bi-product, o�er a framework for assessment. Other software

process models exist, such as the SPICE initiative, carried out under ISO/IEC that is

trying to develop an international standard for software process assessment.

3.4 Section Summary

The expectations sometimes placed upon the software engineering discipline may be too

high, given limited research funding. Software engineers operate under many constraints

placed upon them by their clients and/or employers in the form of available resources and

tight schedules, and so are constantly facing trade-o� decisions in their work. It is not

yet known (and it might never be) how to absolutely guarantee the safety and reliability

of every software system, while preserving its intended functionality. Even though it

is theoretically possible to prove the compliance of �nal code with stated requirements,

it is not possible to formally prove, for every software system, that these requirements

are the ones intended, and that the set of requirements, including safety requirements,

is complete. We can increase our con�dence in a requirements speci�cation by using

various requirements engineering techniques, even several of them in parallel, just as we can

increase our con�dence in the �nal product by optimizing the testing process, depending

upon available resources and expertise.

It could be argued that with the progression of an organization from Level 1 of the

CMM model to the higher levels, the organization's capability to produce a `good' require-

ments speci�cation should also increase. The introduction of new and untried research

results and new technologies poses the least risk for an organization at Level 5 and the

highest risk for a Level 1 organization. Such an argument is based more on common

sense than on valid results. Valid results, in this case, could only be gained if controlled

experiments were run, and that would be extremely costly, to say the least.

Fortunately, the law does not require infallibility, merely the exercise of reasonable

care. What was or was not reasonable depends on all of the circumstances speci�c to each

case that comes to court. Standards play an important role in evaluating the defendant's

conduct, together with other factors. The development of a uni�ed standard for software

engineering could involve the CMM and the PSP models, coupled with safety, reliability

and product documentation standards. If project types could be categorized according

to their criticality, and if matching could be de�ned between these project categories, or-

ganization's and individual developer's capabilities and the types of methods, standards

and documentation for each project category, then this matching could serve as an objec-

tive standard for software engineering. Risk assessment would provide the means for the

de�nition of the matching among these three categories.

17

4 Applying Civil Law to Software

Engineering

4.1 Review of Literature

This section is devoted to a discussion of the nature of the relationship between the

principles of civil law and the discipline of software engineering.

Because the discipline of software engineering is still relatively new, most of the case

examples that are used in the literature to illustrate the application of civil law to software

try to draw analogies from civil engineering, medical and other areas. It is obvious from

these case examples that the methods that the law employs to determine liability for

damages of one party to another are not so easily transferred by analogy from a discipline

with a well developed infrastructure, standards and state-of-the-art criteria such as civil

engineering to one with a dynamic, fast-evolving body of knowledge and state-of-the-art

such as software engineering.

In the case law, analogies have been made between software and, for example, electric-

ity, music or a book in the courts' attempts to justify their judgments in particular cases.

The problem is that, when considering software, analogies can be made to any or none

of these, depending on circumstances, which also explains the widely di�ering conclusions

made by the courts and the ongoing debate about the legal status of software, all of which

a�ects the extent that the law will inuence and regulate software development.

This section attempts to alert software engineers to the important legal issues that

arise speci�cally in software development. Awareness of these issues can assist a software

developer in preparing his risk analysis as well as in making informed decisions throughout

each project's life-cycle in an e�ort to mitigate potential legal liability exposure.

4.1.1 How do standards relate to negligence?

Without widely used and accepted standards, there can be no consensus within the soft-

ware industry as to minimumacceptable conduct that will facilitate the judicial assessment

of negligence in a given situation.[34] If a uni�ed standard for software development is ever

accepted, it is most likely going to be a general one, leaving more room for the software

engineer to exercise his professional judgement.[44] As long as standards of conduct remain

ill-de�ned and not widely accepted for one reason or another, the ability of the courts and

the software engineering profession to anticipate when liability may attach for particular

actions will be hindered.[34]

On the other side, it should be noted that even if a well-de�ned, widely accepted

standard is established for software engineering, such that a court will be able to objec-

tively determine what a \reasonable software engineer" would or would not have done

under certain circumstances, this standard will not be regarded as the \bible" insofar as a

court's determination of professional liability is concerned.[34] It is but one of the several

criteria of conduct that a court may have reference to in making its liability determina-

tion. An analogy would be the application of the National Building Code of Canada to a

18

design prepared by a structural engineer. His adherence to the Code or his designing to

a standard greater than or less than the standard required by the Code is not necessarily

indicative of negligence, but it is one of many factors that a court will review to make

its �nding.[34] That is, compliance with trade organization standards does not by itself

mean that reasonable care was used.[18] Courts look to the entirety of the actions of the

individual in the context of that party's profession and all of its objective standards, and

will also look to factors such as budgetory and schedule constraints imposed on the design

process which may impact on the ability of the software engineer to meet the client's stated

requirements.[34]

Some of the factors, considered by the courts are illustrated in [37]:

Claiming that a particular system or technique is not commonly used in the �eld or

sector may not be e�ective in defending a negligence claim, if the use of such a system or

method would have prevented or reduced injury or damage. Another aspect is resource

availability: In a US case, a doctor in a remote area was not expected to achieve the

same standard of care as he would in a hospital where he had access to all of the latest

technology. In another lawsuit involving a bank, a customer requested a stop on payment

but quoted the amount on the cheque incorrectly and the bank's system did not permit

the payment to be traced by other information supplied by the customer. In this case, it

was up to the bank to show that other search methods that could have found the payment

regardless of the incorrect amount quoted by the customer, were not available.[37] Except

in safety-critical situations, the courts will consider the budgetary and schedule constraints

of a project in the sense that they will not expect the software developer to make use of

each and every new research result in the software engineering area if it would have been

impractical to do so in all of the circumstances of a given case.[37][34]

As long as there is no widely accepted standard, the courts will �nd it di�cult to

determine adherence to a particular standard of conduct expected of the \reasonable

software engineer", and the judgments rendered in similar cases can di�er widely as they

will only be based on the arguments of selected experts and on the skills of the lawyers in

each case.

If there is an accepted objective standard, and the licensing of software engineers

is required, then whoever represents himself as a software engineer will be expected to

perform at or above this standard, and so there might be more predictability in how

courts will handle similar cases.

Professional licencing will not shield software engineers from liability. If, for example,

a particular software engineer should have performed at or above the industry standard,

but did not, thereby causing injury or damage, the existence of the standard will not

protect him from liability.[34]

4.1.2 Company is liable for employees, but...

Standard civil law negligence principles can lead to liability for a company and for each

of the employees involved in the development of software where third parties within the

foreseeable risk of harm su�er loss or injury due to the failure of the company and its

employees to achieve objective standards accepted in the industry. This is the case in

19

jurisdictions where the test for negligence is the standard of reasonable care. Otherwise,

the test will be according to statutory strict liability principles in jurisdictions where such

legislation has been enacted.[34] Companies are vicariously responsible for the errors,

omissions and negligent acts of their employees, carried out within the course and scope of

their employment. However, claimants tend to look primarily to the companies and their

insurers, rather than to the employees and team managers, in order to recover damages. It

is usually di�cult for a court to trace liability to an individual programmer, when software

is developed by a team comprising requirements and design analysts, testing specialists

and many others.[8]

It has been established in the case law that a company that uses systems in its op-

erations is required to properly train it's employees and others who make use of these

systems. This means that a company will not escape liability claiming that a particular

system was available for use if it was used negligently by the company's employees.[37]

Employees can be sued for negligence by their own employer, which usually happens when

they make some extreme error or if the employees violate the company's policies or inter-

nal procedures.[8] Individual employees can also be held personally liable to third parties,

where the third parties can trace their loss to that individual.

O�cers of a company, including the CEO, may be held personally liable for incidents

relating to safety of the company's products as well as for environmental damage if their

own acts or omissions prove to be the direct cause of the loss which forms the subject of

the claim.[37]

A company may limit the liability exposure of itself and its employees to its clients

in contract. It cannot, however, so limit its liability or the liability of its employees to

third parties who are outside of the contract. It is always advisable for every employee to

thoroughly understand the terms of his own employment contract with the company as

well as the contractual procedures of the company that he is working for.

4.1.3 Bene�ts and limits of a contract

A contract, if properly drafted between parties with equal bargaining power, can go a long

way in limiting the liability of a software developer, both in terms of the time period in

which a claim can be brought as well as with respect to the amount of monetary damages

that can be recovered.[34] Such a contract, however, is usually very complex, and the assis-

tance of legal counsel is necessary because many such contractual limitations are governed

by statute, making some contract limitations or disclaimers unenforceable.[8] Properly

worded exclusion clauses in contracts can protect, for example, against the implied war-

ranty of �tness for a particular purpose as well as merchantability, provided these are

referred to speci�cally and clearly. Remedies for repair and replacement of the product,

often provided in contracts, do not exclude these implied conditions.[26]

Overly zealous software engineering companies may try to set up impregnable shields

around themselves by using special disclaimers in their contracts, warning of the inherent

dangers involved in using a particular software product. Nonwithstanding such disclaimers,

the courts will often impose strict liability on such companies in situations where their

product is inherently dangerous or rendered unreasonably dangerous due to an unexpected

20

software error. Such contractual protections will prove to be illusory and will not reduce

the exposure of the company, but may only succeed in compromising the company's pro-

fessional reputation for quality, reliability and integrity.

Contractual liability in the context of software development usually arises when soft-

ware does not conform to speci�cations or is not properly documented, is too slow or

otherwise does not meet the needs of the user. This kind of liability can be avoided by

limitations in the contract, but the client can still claim that the software was developed

negligently.[8] If the contractual limitation of liability provisions between the parties do

not explicitly exclude a separate claim in tort, then a plainti� can sue under the contract

and also �le a concurrent claim for the tort of negligence.[34]

Misrepresentation of the system's capabilities to the client, such as \demos" that hide

and cover up a system's imperfections, can result in a claim based on fradulent or negligent

misrepresentation. For example, one US court has found that stating that a system can be

modi�ed \quickly and cheaply" can be considered to be a basis for a civil fraud lawsuit, if

the company knew or should have known that there was no basis for making the statement

in the �rst place.[8]

4.1.4 Safety �rst, contract and budget are secondary

A contract between a software developer and a client de�nes, among other things, the

budget and time schedule for the project. If it turns out, during the course of the project,

that the budget and the time shedule are inadequate to meet the safety requirements for

the system being developed, then the software developer and his company would do well

to keep in mind the predisposition of the courts to require a higher level of conduct where

public health and safety might be compromised. If a particular budgetary constraint

restricts the full measure of research necessary to produce a safe system, then the software

development company and/or their employees or the project team must notify the client

in writing as to their reservations regarding the ultimate safety and useability of the

�nal product.[34] If the client refuses to commit more resources to the project, then the

company must decline to produce a system whose release into the marketplace could

foreseeably cause injury and damage, either to the client or to third parties.[34] The client

could theoretically sue the company for breach of contract, but such a claim would likely

not be successful, given the facts of this scenario. If, on the other hand, the software

company continues with the contract under these circumstances, it risks the payment of

huge damages, including punitive damages for losses incurred in the use of their system.

Therefore, in a trade-o� situation during software development, choosing compliance

with the contract over the safety of the �nal product is likely to result in substantial

liability exposure to the software developer.

4.1.5 Changing state-of-the-art during project development

Some software development projects can take several years to complete. During the course

of development, the state-of-the-art of software engineering may change in a material way.

In such event, in order to avoid liability exposure, the software developer would be required

21

to design according to the latest state-of-the-art developments which are known in the

industry. Failure to do so, could result in a �nding of liability, again with a potential for

punitive damages. The software engineer is always required to meet the current established

state-of-the-art. He should anticipate this in his contract, where it should be stated that if

substantial changes in the discipline arise, such that substantially more e�ort (time) will

be required to design according to the latest developments, the client will be required to

�nance those e�orts. This is fair, since the client will receive the bene�t of these additional

e�orts. If this is not anticipated in the contract, then the software engineer will likely not

receive any compensation for his additional e�orts.

4.1.6 Incomplete requirements speci�cation - who's fault is it?

The safety and reliability of a software system depends, to a large extent, on the com-

pleteness of the requirements speci�cation for that system. How familiar does a software

engineer have to be with the application area for which he is developing software, and how

does his knowledge of this area impact upon his potential liability? Software, unlike many

other products, can be used to facilitate and automate work in almost any area. With so

many potential areas, it is therefore conceivable that the client who is contracting for the

development of a software system will have a better knowledge of the application area,

including the related potential safety considerations, than the software developer himself.

In these cases, does the client share in the liability for an unsatisfactory result, or

does the total burden of responsibility fall upon the software developer, as the individual

with the purported expertise to design a safe and reliable product based upon the client's

stated requirements? These questions are not easily answered as many of them relate to

hypothetical situations which have not yet been the subject of judicial interpretation.

The courts will tend to attribute responsibility to a party who claims to have an area

of expertise which he represents to others such that he knows they will rely upon him, and

who renders advice in this area with the intention that it will be acted upon by the other

party, and with the knowledge that if he does not act with due care, skill and diligence,

that the other party may su�er economic or physical loss, injury or damage.[34]

As stated earlier, where a client has similar or even greater expertise than the software

developer he employs to develop software for a particular application, it is possible for that

client to be contributorily negligent in a proportion to be determined by the court. Any

additinal consultants or experts hired by either the client or the software company in

order to, for example, analyse the application area and collect the requirements, can also

become contributorily negligent. This \split liability" can result in the court assigning

responsibility in percentage terms, among the various parties to the design, marketing

and use of a particular software product.[34]

An interesting case related to the issues presented above is described in [19]. In 1992,

a computerized dispatching system of the London Ambulance Service (LAS) failed. The

LAS, operating on a tight budget, had assigned the development of this system to a small

software company with no experience in the development of safety-critical systems. The

contracting company had no knowledge of the application area and relied upon the LAS to

provide the necessary input. The system's safety requirements were never properly spec-

22

i�ed and implemented. The LAS knew nothing about safety-critical systems design, yet

they were responsible for selecting a competent company. It would not be considered \rea-

sonable" for LAS to understand that the development of the dispatching system required

safety-critical methods and procedures. Such knowledge, however, would have enabled

the LAS to select a competent company to design the system. The contracting company

claimed that the client did not contract for the development of a safety-critical system and

they, not being familiar with the application area, did not identify the system as being

safety-critical. In [19] the author states that this particular point has not been directly

addressed by a court, but the duty of the contractor to be aware of his own limitations

and advise the client to seek expert advice from other sources has been identi�ed.

It follows that a software contractor must be fully aware, not only of the limitations

of his own expertise, but also as to the level of sophistication of the client who provides

the software engineer with functional requirements for the project. A software designer is

responsible for ascertaining all of the critical factors that could a�ect the client's system

before proceeding with the design of a project. As stated, it is therefore critical that

software development companies understand their own capabilities and limitations, and

perform some form of risk analysis of the proposed system in order to ensure that their

software development methods as well as their in-house expertise are adequate for the

project in question.

4.1.7 Can software be an \unavoidably dangerous product"?

Some products which are available to the public are harmfull, yet strict liability does not

apply to them. Such dangerous products commonly used in our society include some

prescription drugs that may save a person's life, but have serious known side-e�ects. In

these cases, not producing such a product would be a source of harm to the public interest

(ie. loss of life) and therefore, producing the product, with its known side-e�ects is deemed

to be acceptable conduct.

Some software developers may be tempted to evade strict liability by arguing that

software falls into this category of unavoidably dangerous products. Such considerations,

however, will not succeed as far as software is concerned. Catastrophic software system

failures occur unexpectedly, because the developer of the system did not anticipate the

particular situation that led to the failure. This means that the system's users could not

have been warned of the impeding danger. As noted in [40], if the software manufacturer

knew how and when the software would fail, he would likely have �xed the problem. In

the case of a drug with known side-e�ects, such as a drug that saves life but causes the

failure of an organ, it may not be known how to save life without causing the organ's

failure. In these situations, the user is explicitly warned about the drug's side-e�ects, and

accepts the risks, given the dire consequences of rejecting treatment with the drug. In the

case of software, however, it is known in the industry how to �x software errors that are

known, and a software developer will therefore be expected to do so.

The bottom line is if the safety of a software system cannot be ensured, either by

proper design and implementation or by the use of proper warnings, then such a system

should not be developed and marketed.

23

4.1.8 Should courts enforce strict liability for software?

If a software engineer employs his best e�orts within the known standards of his discipline

or according to the state-of-the-art that applies in the development of a software system,

then in a court proceeding, he will be judged as having attained to a standard of reasonable

care, providing the jurisdiction in which the work is being carried out has not enacted strict

liability legislation. Strict liability legislation is designed to protect the public against

potentially dangerous products, and as such, imposes liability on the software developer

that is far beyond the objective standards of reasonable care and skill applied in negligence

lawsuits.

Imposing strict product liability upon software developers might result in an even

slower transfer of research from academia to the industry, hindering innovation in the

software �eld, and so may not prove to be in the public interest.[40] A quite opposing view

is presented in [42], where the author argues that the Northwest Airlines Flight 255 crash

in 1987 should not have been attributed to pilot error, but instead to an inadequate human

factors design, thus making the manufacturer strictly liable. It is stated in this paper that

such a decision would have forced manufacturers to pay more attention to human factors

design which might have resulted in the development of safety-critical systems that reduce

the likelihood of human error.

The degree to which the courts' determination of liability on the part of software

designers will a�ect the future development of software engineering is di�cult to determine,

and would require a separate study which is outside the scope of this paper.

4.1.9 Operator error or \unfriendly" interface?

What is or is not \user-friendly" has not been legally de�ned, even though there are some

European directives that require (but don't de�ne) \user friendliness".[15] The Flight 255

crash example, discussed in [42] is interesting, since the real reason for some accidents

may well be innapropriate design of the interface, rather than operator error. The courts

will often assign liability according to what expert testimony they accept in a given case.

It is conceivable, that strict liability would be imposed on the manufacturer if the lack of

attention to human factors in the design of the system is proven to have caused the error

of the user of that system. Alternatively, given the appropriate facts and expert evidence,

a court can choose to split liability between the user and the manufacturer, rather than

assign fault to one or the other.

4.1.10 Product vs. service dilemma

The debate about whether software should be legally considered a service rendered to solve

a problem or whether it is a product is ongoing.

If software is a service, then software engineers are analogous to lawyers or doctors in

the sense that they do not guaranty the result of their work, only the use of reasonable

care in the provision of the service. For example, doctors cannot guaranty that they will

cure their patients. If, however, software is considered to be a product, then strict product

liability can be applied to it, making the manufacturer strictly liable when software fails

24

and causes injury. In [19] it is argued that software engineering is likely to fall into the

category of a profession, where the practitioner should guaranty the safety of the end

result (ie. product).

In the US, software embodied in a physical medium has been thought of as a trans-

formation of intangible ideas into physical form and so is generally treated as a good,

analogous to a book or a CD.[45] There have been attempts to de�ne the nature of soft-

ware to be \coded information" instead of a good, but as said in [45], such arguments

are analogous to considering only a blank CD to be a good, thus confusing intellectual

property with the physical medium containing that property. The courts have also held

on several occasions that electricity was a product, even though it is intangible.[11] This

`product vs. service' issue has been more prominent in the area of medical expert systems,

where the system provides advice to a physician. This particular problem is best discussed

in [47]. In [43], a number of examples of inconsistency on the part of the courts in han-

dling this issue is mentioned: Software licensed for use in a medical laboratory has been

considered to be \goods"; another US court decided that a contract to develop customized

software is a contract for services when no hardware is supplied, while yet another court

held just the opposite.

4.1.11 Recovery of damages, punitive damages

When a lawsuit is initiated, the claimant's lawyer will typically use the \shotgun approach"

and will sue everyone who could conceivably have had a hand in the development and

marketing of the software system which results in loss or injury to others. If additional

parties that could be blamed are discovered after the lawsuit has been initiated, they can

be added as defendants to the original lawsuit, without the need to commence a new suit.

In the lawsuit, the claimant (plainti�) will list all of his legal claims (causes of action),

and may typically have several of them in one claim, including for example, negligence,

breach of contract or a claim in strict liability. The requirement for strict liability to apply

is the sale of a product and there is still no consensus as to whether software constitutes

a product or a service. Therefore, in some cases, strict liability may not apply, and so the

other liability theories may be pursued.[8]

The theory of both tort and contractual liability in civil law is that a claimant should

never recover more than 100% of his loss. Therefore, if a court apportions liability among

various defendants, the plainti� should never succeed in recovering more than the loss

which it can prove directly ows from the act complained of.[34] In some US jurisdictions,

the concept of punitive or exemplary damages may be employed by the courts to \pun-

ish" the defendant(s) where their reckless conduct exposes others to substantial injury

or damage.[34] These punitive damages are imposed on the defendant and paid to the

plainti�, and in those cases, the plainti� does, in fact, recover more than his loss.

Punitive damages often arise in medical malpractice cases, but in some US states, leg-

islation has been proposed to establish statutory damages for computer-related negligence

as well.[8] These overly dramatic damage awards which are often far beyond the actual

damages incurred by the plainti� are almost never awarded in Canada or the UK.[34]

25

4.2 Case Examples

4.2.1 Diversi�ed Graphics v. Groves; USA Court of Appeals,

1989

Diversi�ed Graphics, Ltd. (DG) was a screen printer and apparel manufacturer. It hired

Ernst & Whinney (EW), a �rm engaged in public accounting and related areas, as consul-

tants. EW were to select and implement an in-house computer data-processing system for

DG. DG later initiated a lawsuit against J. Groves, chairman of EW, alleging negligence,

breach of �duciary duty and a breach of contract.

DG claimed that:

1. A long relationship with EW had resulted in the development of great trust and reliance

on EW's services, given DG's lack of computer expertise. DG explicitly anticipated EW's

superior knowledge in this area.

2. EW promised to �nd a \turnkey", fully operational system, the use of which would

not require extensive employee training. Instead, DG received a system that did not meet

its needs and was di�cult to operate. The term \turnkey" was intended to mean a self-

su�cient system, that would only require DG to \turn the key" to operate. DG claimed

that it should not have had to hire programmers and extensively train its employees in

order to make use of the system.

3. DG incurred considerable expense for the system's modi�cation, employee training,

additional sta�ng and consultations.

EW claimed that:

1. EW was hired for a limited purpose, that of evaluating DG's needs, and preparing a

\Request for Proposal" to be distributed to potential vendors of hardware and software

and to recommend a vendor. EW had no further involvement in the project, except for

providing a representative who acted for DG in a very limited advisory role.

2. EW claims that any di�culties DG experienced with the system's implementation were

a direct result of unwise decisions by DG's management.

The court decided that a consultant hired by a customer, who holds himself out as

having special skill and knowledge to give advice relating to the products or services

being considered, may be liable both in contract and for the tort of negligence to the

customer for giving advice that falls below the standard of reasonable skill and care of the

consultant's profession. EW argued that it should have been held to an ordinary, rather

than a professional, standard of care. The jury decided in favour of DG and awarded

$150,000 on the negligence claim and assessed fault as 55% to EW and 45% to DG. The

�nal award for DG was $82,500 for negligence and $50,000 for breach of �duciary duty. It

was held on appeal that DG was not entitled to two separate damage awards for the same

harm, and only the negligence judgment was a�rmed.

This case is interesting as it illustrates the application of a professional rather than

an ordinary standard of care, based on applicable standards and the stated expertise

which a consultant claimed to have. The decision reached in this lawsuit is likely to

have an e�ect on the liability standards that could be applied to software consultants and

vendors and so have implications for software development as a profession.[43] An analogy

could be drawn to software engineering, where, in a similar situation, the court could

26

measure the software engineer's behaviour against voluntarily imposed standards created

by professional associations.[8]

4.2.2 Data Processing Services v. L.H. Smith Oil Corporation;

Court of Appeals, Indiana, 1986

Data Processing Services (DPS) were a consulting company developing customized soft-

ware applications. They entered into an oral agreement with Smith Oil (SO) to develop

speci�c software for SO's IBM computer. After the payment of several billings, SO refused

to continue payments because it found the system to be inoperable.

DPS initiated a lawsuit against SO, alleging breach of contract. SO counterclaimed

for the tort of negligence. The judge ruled in favor of SO. The measure of damages for a

breach of contract is the loss actually owing from the breach. SO paid $28,000 to DPS

for services in the development of the system. SO also had to hire an additional employee

due to the failure of DPS's program to perform, for a cost of $9,000. The total judgment

of $33,000 plus costs was found to correspond to the evidence presented at the trial. The

court found that SO contracted for the development and delivery of a \program" by DPS.

This program was considered to be a specially manufactured good and the transaction

thus was considered to fall within the meaning of the Uniform Commercial Code (UCC).

DPS claimed the contract was not for a \good", but rather for a \service" and appealed

the decision. The Court of Appeals noted that the transaction, unlike many cases reported

in other jurisdictions, did not involve any hardware or pre-packaged software. DPS was

hired to design, develop and implement a data processing system and thus to act to meet

SO's speci�c needs. SO bargained for DPS's skill, knowledge and ability. The predominant

factor in this transaction was considered to be the sale of services, the situation being

analogous to a client seeking the advice of a lawyer, and so the UCC was not applicable.

DPS was instead found to have breached the implied promise of having reasonable skill

and ability to perform the job for which it contracted.

The Court of Appeals held that the principles of negligence, applicable to the estab-

lished professions, applied with equal force to those who contract to develop computer

software.

4.2.3 Hawaiian Telephone Co. v. Microform Data Systems, Inc.;

USA Court of Appeals, 1987

In this case, a telephone company (HTC) contracted with the manufacturer of computer-

ized directory systems (MDS) to manufacture and install a system. The software develop-

ment was behind schedule and the system was not fully operational and could not perform

critical functions by the date stated in the contract. It was later determined that MDS

would require up to two years and at least three people working full-time to bring the sys-

tem up to speci�cations. HT noti�ed MDS that it was cancelling the contract because of

the delays and MDS accepted the cancellation. HT then sued MDS for breach of contract.

The court decided that the language used in the manufacturing and supply agreement

providing for daily penalties for each day that MDS delayed the installation did not allow

27

MDS to take inde�nite time to satisfy the contract. MDS was required to perform in a

reasonable time. The contract agreement warranted the �tness of the system that MDS

was to install, and stated that this warranty was to be instead of any liability of MDS for

economic damages. This fact, however, did not prevent HTC from recovering economic

damages ($600,872, plus costs) when MDS failed to deliver the system. These contractual

provisions would only have applied if the system was delivered and installed as required

by HTC. Because no system was delivered in the form contracted for, the breach was so

fundamental that the exclusion of consequential damages by the contract was found to be

unconscionable.

The language of the contractual warranties was as follows:

\Microform warrants that the equipment, when delivered and installed, will conform to

the Equipment Speci�cations attached hereto and will be in good working order...In the

event any item of equipment does not perform as expressly warranted, Microform's sole

obligation shall be to make necessary repairs, adjustments or replacements at no additional

charge to the Customer...The foregoing warranties are in lieu of all other warranties, ex-

press or limited, including without limitation implied warranties of merchantability and

�tness, and are in lieu of all obligations or liabilities on the part of Microform for any

claims, damages or expenses of any kind, whether made or su�ered by Customer or any

other person, including without limitation consequential damages even if Microform has

been advised of the possibility thereof."

4.2.4 Ottawa Strong & Strong v. McLeod Bishop Systems; USA

District Court, 1987

In this case, the issue was whether stating that a computer program can be quickly and

cheaply modi�ed was a misrepresentation and constituted a valid claim in fraud, providing

that the statement was made with the knowledge that the modi�cations would be very

di�cult and require signi�cant time and expense.

The court concluded that the claimant's position in the negotiation of these agreements

was not unusual in the world of computer software purchasing and leasing. People who

purchase or lease software application packages have to rely on the vendor's representations

that the products can be adequately modi�ed to �t their particular requirements. If the

product cannot be modi�ed as represented, it can be useless to the purchaser or require

signi�cant delay and expense in making modi�cations. The court thus concluded that a

person who purchases software based on such misleading representations has a valid claim

against the vendor based upon fradulent misrepresentation.

4.3 Section summary

Software is not completely infallible, yet it is becomming more widespread in our society

every day. The number of lawsuits is likely to grow, and the judgments reached in these

cases will have an e�ect on the development and marketing of software as well as on

standards and certi�cation of software developers. In this way, the law will inuence

the direction and the future of software engineering. The bottom line is that the courts

28

in software engineering cases, as in cases pertaining to other professions, will typically

favor a claimant where safety-critical or economically-critical factors are involved, and the

required degree of reasonable foreseeablity can be established.

5 Implications

While ethical considerations alone should provide su�cient motivation for a software en-

gineer to do his best in order to develop safe and reliable systems, in the real world, the

law is often a necessary tool in deriving this same result.

The law operates as a system to order society. As such, it inuences all aspects of

human endeavour, including the development of software. The question is, to what extent

should civil law control software development? Research related to software is relatively

recent and the �elds of computer science and software engineering are expanding quickly.

If the courts favour software users and the general public over the software manufacturers

and impose huge damage awards on software development companies, it could result in a

curtailing of research and development in the software �eld, which ultimately may not be

in the public interest.

Any decisions that the courts make in this area will have an impact on the number

of new claims that will be initiated, on the amount of damages awarded and on insurance

costs for companies and individuals in the business of developing software.

The discussion about the nature of software and whether it should be classi�ed as a

product or as a service continues. This issue is still not solved and many court decisions

have instead considered the nature of the accompanying transaction or looked at the source

of the injury in an attempt to properly classify software.

In some US states, tort reform was suggested as a way of reducing frivolous law-

suits and large punitive damage awards that are increasing the costs of insurance to the

industry.[34] For an engineer, idemni�cation and limitation of liability are forms of tort

reform that are meant to provide a level of liability comparable with the compensation

that the engineer is receiving for his professional services.[10]

What is the future of software engineering in light of these developments? Despite

continuous e�orts in the software industry, there is still no unique, widely agreed-upon

standard applicable to software development and to the conduct of software engineers. If

a standard that is too stringent and inexible is encoded, it would likely have a negative

impact on progress in the discipline.

Software companies, faced with such a standard, might be reluctant to try new tech-

nologies and implement new research �ndings. A standard that prescribes individual

procedures and methods could also enable software manufacturers to blame the injuries

caused by their product on the standard and the body that enacted it.

If, on the other hand, a exible standard is developed, one that speci�es the safety

and reliability goals to be achieved, instead of speci�c procedures to be followed, it would

give software companies more room for experimentation, while, at the same time, making

them aware of their �nal responsibility for the safety and reliability of any products they

produce.

29

There are many unresolved issues relating to the development of software systems

which make it di�cult to develop a uni�ed standard and even decide whether or not

software practitioners should be certi�ed as professionals. It is still not known how to

guarantee the safety of all the critical systems that are needed and being developed.

Research suggests techniques and methods that, if properly employed, can guaranty

compliance with stated requirements. Many heuristics for the development of safety-

critical systems have also been suggested, and some sucessfully tried.[54]

There is still not enough research producing valid results relating to the selection and

combining of these methods and heuristics for a software project, and to their implemen-

tation in the larger context of industrial software development in a way that would provide

reasonable guaranties of safety and reliability.

5.1 Software Quality and Process Improvement

The legal issues reviewed in this paper suggest that the best way to avoid strict liability

exposure is to make good quality products that are safe and reliable. The courts are

predisposed to protect the public. If a product is judged to be \unreasonably dangerous",

no contractual provisions purporting to exclude or limit liability will protect the software

developer.

When developing a software project, a company has to necessarily make some tradeo�s.

The deployment of best practices and cutting-edge methods and techniques might be

desirable, but not always feasible because of insu�cient budgets, inadequate expertise or

a tight schedule.

Every software development company should strive to develop only safe and reliable

products, not just to protect itself from legal liability. It should also seek to protect its

reputation. In order to ascertain which projects to undertake in order to achieve this result,

every software development company should perform a risk assessment before agreeing to

take on a project.

Risk assessment should indicate whether a company and its employees have the level

of capability and expertise necessary to develop the type of product under consideration,

as well as indicating the types of processes, methods and standards to be used in the

development process.(Figure 3.)

The quality and accuracy of such risk assessment will determine to what extent a

company will mitigate both the risk of producing an unsafe product and the risks of legal

liability, both in tort and in contract.

Having an assessment of a company's maturity, such as the assessment provided by

SEI, can help a company to make a reasonable decision as to what types of projects it

can safely undertake. For example, if a software development company is at Level 1 of the

CMM model, it has no de�ned and repeatable software development processes. If such a

company takes on the development of a system that is potentially safety-critical, claiming

that it had previously developed similar systems and therefore has the required experience,

it may incur substantial legal liability for negligent or fradulent misrepresentation of its

expertise as well as potential liability for breach of contract in failing to produce a safe

and reliable product which meets the client's stated requirements.

30

CMM, PSP, SPICE

IEEE, ISO, DOD, NATO
Standards - Templates

Core Processes:

Risk
Assessment

Product Type

Safety and Reliability Standards

Organization &
Individual

Required Capabilities

Process Requirements -

 product documentation

Requirements
Special Applications/ Product

standard practices
PM, QA,

Figure 3: Risk Assessment in Software Development

The fact that a company previously developed similar systems which are operational,

does not mean that the company is �t to develop such systems now, since being at Level

1 does not mean that it posesses repeatable processes, and so even if the process used to

develop the previous system was the right one, there is no guaranty that the company will

be able to repeat the process to develop a like system that would be safe.

Pro�t considerations should thus be weighed against liability and reputation consid-

erations when proposing to undertake new projects.

5.2 Development of Product Liability Strategies

The control and prevention of liability for software systems produced should be seen as

an integral part of the development and marketing process for computer products and

services, and these e�orts should be considered as an additional important factor in the

software development process.

If, following the risk assessment, a company decides to proceed with a project, then

special care should be devoted to drafting the contract with the client. The assistance of

legal counsel is highly advisable, since a well writen contract can make a signi�cant dif-

ference in helping to protect a software development company. Carefully drafted, explicit

and understandable warnings are also important, so as to make every potential user aware

of any potential dangers involved in using the product.

31

Depending on the resources of each individual company and on the criticality of the

projects developed by it, an assessment of the organization's capability (CMM model) and

an assessment of the employees' capabilities (PSP model) should be considered, along with

seeking the advice of a legal expert so as to facilitate the development of speci�c product

liability strategies for the company.

5.3 Individual Protection

Personal liability exposure is often related to the employee's reputation and career as well

as potential �nancial loss.[10]

Because a software company is vicariously responsible for the errors, omissions and

negligent acts of its employees, it is easy to lose sight of the fact that individual employees

can be sued in tort for their negligence in designing and implementing software prod-

ucts. This exposure can often be limited contractually in the relationship with the client

by inserting provisions within the contract limiting the liability of the company and its

employees, o�cers and directors to an agreed amount in both contract and tort.[34]

While this will limit the exposure of the employees to the client, third party claims

initiated by end users that are outside of the contractual relationship will still be able

to pierce the corporate veil if the individual employee who performed the work can be

ascertained.

Ultimately, the exposure of both the company and its employees to these third party

claims should provide strong motivation to adhere to high standards of quality control

and process improvement as perhaps the only realistic way of reducing the incidence and

quantum of future liability claims.

6 Conclusion

All things considered, how will future software engineering development practices likely

be a�ected by the application of civil law principles? In our consumer-based society,

the consumer is becoming increasingly sophisticated. With this sophistication, comes

an expectation of performance according to functional criteria established between the

software developer and the client. When a level of performance equal to those expectations

is not achieved, the client or other ultimate user will have recourse to their legal remedies.

The overriding theme that arises out of this consideration as to how the law impacts

upon and will likely control the future direction of software development, is that software

engineering design must be responsive to the manner in which the courts perceive its

place in modern society. It must be sensitive to potential danger to the public interest

and it must develop a strategy for dealing with the need for standards of acceptable

conduct in the industry which will constitute the future de�nition of the \reasonable

software engineer". As with most disciplines, generic standards of acceptable conduct will

inevitably be developed, notwithstanding the competing jurisdictional battles for control

within the industry. It is the development of these standards which will allow the software

32

industry to evolve and operate in a controlled economic environment borne of the certainty

that these standards will engender.

33

References

[1] Software Product Liability, Jody Armour, Watts S. Humphrey, Technical Re-

port, CMU/SEI-93-TR-13, ESC-TR-93-190.

[2] The Boyle Case: Its Signi�cance to the Air Tra�c Control Industry,

Richard H. Jones, Deputy Administrator of the FAA 1984-86.

[3] Case Study: Darlington Nuclear Generating Station, Dan Craigen, Susan

Gerhart, Ted Ralston, IEEE Software, January 1994.

[4] Case Study: Paris Metro Signaling System, Susan Gerhart, Dan Craigen,

Ted Ralston, IEEE Software, January 1994.

[5] Case Study: Tra�c Alert and Collision-Avoidance System, Dan Craigen,

Susan Gerhart, Ted Ralston, IEEE Software, January 1994.

[6] Case Study: Multinet Gateway System, Susan Gerhart, Dan Craigen, Ted

Ralston, IEEE Software, January 1994.

[7] Critical Task of Writting Dependable Software, John Knight, Bev Little-

wood, IEEE Software, January 1994.

[8] Software Engineering Malpractice and its Avoidance, Christopher J.

Palermo, Christie, Parker & Hale, Pasadena, Calif. 91109-7068, 4/92, IEEE.

[9] An Investigation of the Therac-25 Accidents, Nancy G. Leveson, Clark S.

Turner, IEEE Computer, July 1993.

[10] Liability and Professional Issues Facing Engineers in Industry, W. H.

Copenhaver, Textile, Fiber, and Film Industry, 1992 Technical Conference.

[11] The Key Issue in Reducing Risk of Liability with Expert Systems: Prod-

uct or Service, Susan L. Rick, Developing and Managing Intelligent System

Projects, 1993 Conference.

[12] Product Liability and Malpractice, Joseph Rigler, Ronald White, IEEE Po-

tentials, December 1990, Vol. 9, Issue 4.

[13] Negligent? Who? Me?, Robert Gaitskell, Engineering Management Journal,

June 1993.

[14] Potential Theories of Legal Liability for Defective Expert System Soft-

ware, Robert D. Sprague, Leslie G. Berkowitz, Managing Expert System Programs

and Projects, 1990.

[15] Safety-Critical Systems - Legal Liability, Dai Davis, Computing and Control

Engineering Journal, February 1994, Vol. 5, Issue 1.

[16] How Liable Are You For Your Software?, George B. Trubow, IEEE Software,

July 1991, Vol. 8, Issue 4.

34

[17] At What Point Does Liability Hit Home?, Robert D. Sprague, IEEE Soft-

ware, July 1995, Vol. 12, Issue 4.

[18] Product Liability and the Plant Engineer: An Introduction, Lawrence K.

English, IEEE Transactions on Industry Applications, Vol. 31, No. 6, Nov/Dec

1995.

[19] Professional Competence in Safety-Related Software Engineering, J. J.

Rowland, D. Rowland, Software Engineering Journal, March 1995, Vol. 10, Issue

2.

[20] Can You Exclude Liability? The Unfair Contract Terms Act 1997, Robert

Gaitskell, Engineering Management Journal, October 1992, Vol. 2, Issue 5.

[21] A Methodology for Evaluating, Comparing, and Selecting Software

Safety and Reliability Standards, Debra S. Herrmann, IEEE Aerospace and

Electronic Systems Magazine, January 1996, Vol. 11, Issue 1.

[22] Product Liability in the UK - Issues for Developers of Safety Critical

Software, Ranald Robertson, COMPASS'90: Proceedings of Fifth Annual Con-

ference on Computer Assuarance, Systems Integrity, Software Safety and Process

Security, p. 178-81, IEEE, MD, USA, June 1992.

[23] "Strategy for Damage Control - Litigation& Presentation of Evidence in

Cases of Industrial Accident and Losses", Robert Gaitskell, IEE Colloquium

on Managing Safety: Losses, Liabilities, Litigation and Law (1993) (Digest No.

066), p. 5/1-4, IEE London, UK, March 1993.

[24] A Model for Assessing the Liability of Seemingly Correct Software, Jef-

frey M. Voas, Larry K. Voas, Keith W. Miller, Proc. of the IASTED Conf. on

Reliability, Quality Control and Risk Assessment, pp.32-35, Tysons Corner, VA,

November 1992.

[25] Computer Law - Acquiring and Protecting Information Technology,

Barry B. Sookman, Carswell, Toronto, Calgary, Vancouver, 1989 - 1995.

[26] Computer Law - second edition, Chris Reed, Blackstone Press Limited.

[27] Computer-Related Agreements: A Practical Guide, C. Ian Kyer, Mark J.

Fecenko, Butterworths, Toronto, Vancouver.

[28] The Law of Contract, 8th edition, G. C. Cheshire, C. H. S. Fifoot, M. P. Furm-

ston, Butterworths, London, 1972, ISBN 0-406-56527-9.

[29] Canadian Tort Law, 4th edition, Allen M. Linden, Canadian Legal Text Series,

Butterworths Toronto and Vancouver, 1988, ISBN 0-409-80191-7.

[30] Black's Law Dictionary: De�nitions of the Terms and Phrases of American

and English Jurisprudence, Ancient and Modern with Guide to Pronunciation, 4th

edition, Henry Campbell Black, West Publishing Co. 1951.

35

[31] Product Liability Issues for the Computer Industry, Scott W. Fleming,

Canadian Bar Association (B.C. Branch) Computer Law Subsection, 1994.

[32] Globalization of the Computer Industry: World Computer Law

Congress, 1991, April 1991, Westin Bonaventure, Los Angeles, USA.

[33] The Law of Information Technology in Europe 1992: A Comparison with

the USA, A. P. Meijboom, C. Prins, (eds.), Deventer, The Netherlands; Boston:

Kluwer Law and Taxation Publishers, 1991.

[34] Legal Consultants: Mark S. Dwor, B.A, LL.B, ACIARB, CHARB, Stuart B.

Hankinson, BSc.(Hons.), LL.B, WilliamE. Knutson, LL.B, LLM, Bryan S. Shapiro,

B.A, LL.B; Vancouver, BC, Canada.

[35] Information Technology Law

Ian J. Lloyd, Butterworths, London, Dublin, Edinburgh, 1993.

[36] An Introduction to Product Liability in the Computer Industry

Clive Davies, Computer Law and Practice, Vol. 9, No. 3, 1993.

[37] If Disaster Strikes - Could You Be Liable?

John Mawhood, Richard Raysman, Computer Law and Practice, Vol. 10, No. 5,

1994.

[38] Product Liability, Computer Software and Insurance Issues - The St

Albans and Salvage Association Cases

E. Susan Singleton, Computer Law and Practice, Vol. 10, No. 5, 1994.

[39] Strict Product Liability and Computer Software

L. Nancy Birnbaum, Computer/Law Journal, Vol.8, No.2, Spring 1988.

[40] Computer Software Defects: Should Computer Software Manufacturers

Be Held Strictly Liable For Computer Software Defects?

Patric T. Miyaki, Computer and High Technology Law Journal, Vol.8, No.1, May

1992.

[41] Developing a New Set of Liability Rules for a New Generation of Tech-

nology: Assessing Liability for Computer-Related Injuries in the Health

Care Field

James N. Godes, Computer Law Journal, Vol.7, No.4, Fall 1987.

[42] Design-Induced Errors in Computer Systems

Bruce Lathrop, Computer/Law Journal, Vol.10, No.1, Winter 1990.

[43] Small Business Reliance on Computer Software: There Should Be Pro-

tection

Julie Delluomo, Computer/Law Journal, Vol.10, No.4, December 1990.

[44] Computer Malpractice: Two Alternatives to the Traditional \Profes-

sional Negligence" Standard

Joseph Condo, Computer/Law Journal, Vol.11, No.2, April 1991.

36

[45] Computer Software: Should the U.N. Convention on Contracts for the

International Sale of Goods Apply? A Contextual Approach to the

Question

L. Scott Primak, Computer/Law Journal, Vol.11, No.2, April 1991.

[46] Information Liability: New Interpretations for the Electronic Age

Blodwen Tarter, Computer/Law Journal, Vol.11, No.4, December 1992.

[47] Tort Liability for Arti�cial Intelligence and Expert Systems

George S. Cole, Computer/Law Journal, Vol.10, No.2, April 1990.

[48] A Spiral Model of Software Development and Enhancement

Barry W. Boehm, IEEE Computer, May 1988.

[49] Models of Software Evolution: Life Cycle and Process

Walt Scacchi, SEI-CM-10-1.0, October 1987.

[50] Seven More Myths of Formal Methods

Jonathan P. Bowen, Michael G. Hinchey, PRG-TR-7-94, Oxford University Com-

puting Lab. technical report.

[51] An International Survey of Industrial Application of Formal Methods

Volume 1: Purpose, Approach, Analysis, and Conclusions

Dan Craigen, Susan Gerhart, Ted Ralston, U.S. Department of Commerce, March

1993.

[52] Safety-Critical Systems, Formal Methods and Standards

Jonathan Bowen, Victoria Stavridou, Oxford University Computing Laboratory

technical report, December 1992.

[53] Risks to the Public in Computers and Related Systems

Peter G. Neumann, ACM SIGSOFT, Software Engineering Notes, Vol.17, No.1,

January 1992.

[54] SafeWare: System Safety and Computers

Nancy G. Leveson, Addison-Wesley, 1995.

[55] Second International Software Engineering Standards Symposium

sponsored by IEEE Computer Society, Montreal, Quebec, August 21-25, 1995.

[56] National Software Council Forum: Should US Software Engineers be Licenced?

25-26 June 1996, St. Louis, Missouri, http://www.reengineer.org/forum

[57] What is the future of Software Engineering Standards?

Leonard L. Tripp, ACM SIGSOFT, Software Engineering Notes, Vol.17, No.1, Jan-

uary 1992.

[58] SEI Capability Maturity Model's Impact on Contractors

Hossein Saiedian, Richard Kuzara, IEEE Computer Magazine, Vol.28, Issue 1,

January 1995.

37

[59] Software Process Improvement at Hughes Aircraft

Watts S. Humphrey, Terry R. Snyder, Ronald R. Willis, IEEE Software, July 1991.

[60] Capability Maturity Model for Software, Version 1.1

M. Paulk et al., CMU-SEI-TR-93-24, February 1993.

[61] Why Should You Use a Personal Software Process?

Watts S. Humprey, ACM SIGSOFT, Software Engineering Notes, Vol.20, No.3,

July 1995.

38

