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Abstract

Computational problems on graphs often arise in two- or three-dimensional geometric

contexts. Such problems include assigning channels to radio transmitters (graph colour-

ing), physically routing traces on a printed circuit board (graph drawing), and modelling

molecules. It is reasonable to expect that natural graph problems have more e�cient

solutions when restricted to such geometric graphs. Unfortunately, many familiar NP-

complete problems remain NP-complete on geometric graphs.

Indi�erence graphs arise in a one-dimensional geometric context; they are the inter-

section graphs of unit intervals on the line. Many NP-complete problems on arbitrary

graphs do have e�cient solutions on indi�erence graphs. Yet these same problems remain

NP-complete for the intersection graphs of unit disks in the plane (unit disk graphs), a

natural two-dimensional generalization of indi�erence graphs. What accounts for this

situation, and how can algorithms be designed to deal with it?

To study these issues, this thesis identi�es a range of subclasses of unit disk graphs

in which the second spatial dimension is gradually introduced. More speci�cally, � -

strip graphs \interpolate" between unit disk graphs and indi�erence graphs; they are the

intersection graphs of unit-diameter disks whose centres are constrained to lie in a strip of

thickness � . This thesis studies algorithmic and structural aspects of varying the value �

for � -strip graphs.

The thesis takes signi�cant steps towards characterizing, recognizing, and laying out

strip graphs. We will also see how to develop algorithms for several problems on strip

graphs, and how to exploit their geometric representation. In particular, we will see that

problems become especially tractable when the strips are \thin" (� is small) or \discrete"

ii



(the number of possible y-coordinates for the disks is small). Note again that indi�erence

graphs are the thinnest (� = 0) and most discrete (one y-coordinate) of the nontrivial

� -strip graphs.

The immediate results of this research concern algorithms for a speci�c class of graphs.

The real contribution of this research is the elucidation of when and where geometry can

be exploited in the development of e�cient graph theoretic algorithms.
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Chapter 1

Introduction

1.1 Prologue

\It just can't be this hard," mumbledAlice1 to herself. \I wouldn't feel so bad if my graph

theoretic model didn't �t the problem so well, but it seems so natural. It really simpli�es

the statement of my problem; it just doesn't seem to lead to an e�cient algorithm." She

found herself ruminating over the events of the last few months.

It all began with a big project meeting at Blue Sky Airlines (\The airline where

the rubber meets the sky"), where Alice designs algorithms for a living. Blue Sky had

equipped each airplane in its 
eet with a radio beacon. Every beacon has the same

range, which is uniform in all directions. Over the next few weeks, Alice discovered that

one of her tasks is to solve the \midnight bell problem", as she called it. Every day at

midnight (Vancouver time), every plane in a certain trans-Paci�c corridor must either

send a beacon signal, or receive one from at least one other plane. Blue Sky will know

the location (including the altitude) of every plane in the corridor each midnight. Alice's

job is to minimize the number of beacons that must send a signal.

Naturally, Alice does not plan to show up every midnight to tell Blue Sky which

beacons to buzz. Her problem is really to design an algorithm to solve this problem

for her, given the number and locations of the planes as input. Furthermore, Blue Sky

expects to have more than 50 airplanes in the corridor every night by late next decade

1Alice and her company are �ctional. This prologue, and its epilogue in the Conclusion chapter,

is intended only to motivate the theoretical problems addressed in this thesis, and to strengthen your

intuition.

1
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(\The sky's the limit, Alice!"), so it had better be a good algorithm.

Alice thought about this problem for some time, formulating suitable abstractions.

Eventually she constructed a graph theoretic model of her problem. The airplanes are

vertices in the graph, and two vertices are adjacent in the graph if they are within

beacon range. Now, she only needs to �nd a minimum cardinality subset of vertices (the

\transmitters") such that every other vertex (\receiver") is adjacent to a transmitter.

Alice was pleased with her formulation; she likes using graph theory and knows that there

are many algorithms available for many di�erent problems. But this graph theoretical

problem looks like it might be hard.

She consulted her favorite reference book on these matters, Computers and Intractabil-

ity: a Guide to the Theory of NP-Completeness, by Garey and Johnson [GJ79]. After

a few hours|Alice is easily distracted by the many interesting problems to be found in

Garey and Johnson|she discovered that the corresponding decision problem is called

the DOMINATING SET problem, and that it is indeed NP-complete.

What could she do now? Fifty airplanes are not that many, but still too many to

consider every subset of airplanes, in exponential time. She could develop a heuristic

solution, but this approach always leaves her feeling unsatis�ed. Perhaps graph theory

is a little too general. After all, her original problem had a very geometric 
avour to

it, involving airplanes in a shallow corridor and beacons with circular ranges. What

happened to all the geometry? And how could it be used to solve her problem, anyway?

She could think of no other option but to start the whole abstraction process again.

Alice slumped heavily over her desk, with the dreadful feeling that she had run out of

alternatives.
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1.2 Geometric Constraints in Graph Theory

Let us propose an alternative to Alice: exploit geometric constraints in graph theoretic

problems. We will study this advice by deriving a class of graphs from geometric situa-

tions. In particular, this thesis studies unit disk graphs, which are the intersection graphs

of closed unit-diameter disks in the plane. Although this thesis may on occasion draw

your attention to related problems set in higher dimensional space, its primary concern

is with the plane, that is, with two-dimensional space. Clearly, unit disk graphs capture

some two-dimensional constraints. Some subclasses of unit disk graphs capture even

more geometric constraints. In particular, if we constrain the centres of the circles to

be collinear, then we call the graphs indi�erence graphs or unit interval graphs. Clearly,

indi�erence graphs capture some one-dimensional constraints. With some care, we can

move \gradually" from unit interval graphs to unit disk graphs, as outlined below. This

thesis explores algorithmic implications of this gradual movement.

As hinted in the prologue, this thesis studies the complexity of some NP-complete

graph theoretical problems restricted to these classes of unit disk graphs. Graph theoretic

problems on these classes exhibit diverse behaviour. Some problems remainNP-complete

for some of these classes, but some problems admit polynomial time solutions, and some

problems may be e�ciently approximated. Sometimes there are e�cient algorithms that

require a model for the graph, that is, a set of disks that realize the graph. We are there-

fore also interested in the complexity of recognizing unit disk graphs, or of constructing

a realization. Unfortunately, we will see that the decision problem corresponding to both

problems is NP-hard. On the other hand, there are algorithms for some problems that

do not require models.

A graph is a unit disk graph if each vertex can be mapped to a closed, unit diameter

disk in the plane such that two vertices are adjacent (in the graph) if and only if their
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corresponding disks intersect (on the plane). Since there are other de�nitions for unit

disk graphs, let us refer to this mapping of vertices to disks as a unit disk model. Another

de�nition is that a graph is a unit disk graph if each vertex can be mapped to a point in the

plane such that two vertices are adjacent (in the graph) if and only if their corresponding

points are within unit distance of one another. See Section 1.3.5 for a more careful

de�nition of these terms. Such a mapping of vertices to points is called a proximity

model of the graph. Clearly, there is a one-to-one correspondence between these families

of models: the centre of a disk is the mapped-to point. Clearly also, the unit of distance

is of no great consequence, since the models of graphs under one unit can be transformed

into another by scaling. This thesis uses both models for the analysis of algorithms, and

sometimes also for their implementation.

Alternatively, we can think of the model as generating the unit disk graph. Construct

a unit disk graph from a set of points (or unit disks) in the plane by identifying vertices

with points and by putting an edge between two vertices if the distance between them is at

most unit distance (or if the disks intersect). For example, Alice's Blue Sky problem can

be modelled in two dimensions (i.e., assume that the airplanes lie in a common vertical

plane) by letting the unit distance be the beacon range, and by centering unit-diameter

disks on the airplanes.

Alice's problem is even more constrained. Let us imagine that a \trans-Paci�c cor-

ridor" is an (e�ectively) in�nite length strip (rectangle) with thickness � , which is de-

termined by the least and greatest allowed altitudes. We are particularly interested

in the case where � is small compared to the (unit) range of the radio beacons, say

0 � � � p3=2. Such unit disk graphs, where the disks lie in a thin strip, are called

� -strip graphs or just strip graphs when � =
p
3=2. The reason for the number

p
3=2

is that every strip graph is also a cocomparability graph (Theorem 3.7). Such graphs

are perfect, which is often a hint that many graph theoretic problems involving cliques,
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colours, and independent sets can be solved in polynomial time. In fact, we will solve

Alice's problem for cocomparability graphs in Chapter 4. Note that the class of 0-strip

graphs is identical to the class of indi�erence graphs. Note also that every unit disk

graph is a � -strip graph for some (not necessarily small) value � .

Cocomparability graphs properly include the class of strip graphs. Is it possible to

exploit the additional constraints from strips? It is, as Chapter 5 demonstrates by solving

a problem related to Alice's, namely the minimumweight Steiner set problem, even more

e�ciently for strip graphs than for cocomparability graphs.

We also could imagine that certain \rules of the road" apply to Blue Sky's airplanes

in the corridor. For example, perhaps they restrict east bound tra�c to the upper

boundary of the corridor (let us hope that they also restrict west bound tra�c to the lower

boundary). Such a unit disk graph is called a two-level � -strip graph. Chapter 6 solves

another problem related to Alice's, namely the minimumweight independent dominating

set problem for two-level graphs.

1.3 Conventions, Background, and Notation

The following de�nitions for sets (x1.3.1), geometry (x1.3.3), algorithms (x1.3.4), and
graphs (x1.3.2) are standard, or as nearly so as the literature allows. This thesis assumes

that you are already familiar with these basic concepts, but presents their de�nitions to

avoid ambiguity. Furthermore, the body of the thesis repeats some of these de�nitions

as they are required. You may therefore want to skim lightly over this section on a �rst

reading, to ensure that these de�nitions coincide with your expectations. The section on

unit disk graphs (x1.3.5) is more esoteric, so you may want to examine it more closely.



Chapter 1. Introduction 6

1.3.1 Sets

These de�nitions are common to many standard textbooks on discrete mathematics or

algorithms, for example [Gol80], [CLR90], [Epp95].

The terms set and element are the unde�ned primitives of axiomatic set theory, but

the intended meaning is that a set is a collection of elements. Some sets have special

symbols: ; is the empty set, which contains no elements, Z is the set of integers, Z+

is the set of positive integers, and R is the set of real numbers. The following table

summarizes basic relations on sets.

Write: and say: if, for all elements x in some universal set:

x 2 S x is in S x is an element of set S

x =2 S x is not in S x is not an element of set S

A � B A is a subset of B x 2 A implies x 2 B
A = B A equals B A � B and B � A

A � B A is a proper subset of B A � B but A 6= B

A � B A is a superset of B B � A

A � B A is a proper superset of B B � A

For example,
p
2 2 R but

p
2 =2 Z, and Z � R. Usually, sets will be uppercase

symbols, and elements will be lowercase. This thesis is concerned primarily with �nite

sets, for which the elements can often be listed explicitly or implicitly inside curly braces.

For example, f1; 2; 3; : : : ; ng denotes the set of integers from 1 to n inclusive. We can

also specify sets by rule, for example f1; 2; 3; : : : ; ng = fi : i 2 Z and 1 � i � ng. For a
�nite set S, let jSj denote its cardinality, in this case the number of elements in S. For

example, jf1; 2; 3; : : : ; ngj = n. A multiset is similar to a set, except that it may have two

or more elements with the same name. For example, set f1; 2; 3g and set f1; 2; 2; 3g are
the same and have three elements, but multiset f1; 2; 2; 3g has four elements, including
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two occurrences of element 2.

The basic set operations in the following table are especially useful. Here, A and B

are sets, and U is some \universe" set that will be clear from context.

operator: written: equals:

union A [B fx : x 2 A or x 2 Bg
intersection A \B fx : x 2 A and x 2 Bg
di�erence A nB fx : x 2 A and x =2 Bg
complement A fx : x 2 U and x =2 Ag
Cartesian

Product
A�B f(a; b) : a 2 A and b 2 Bg

Two sets A and B are disjoint if A \ B = ;. If the operands A and B of the union

operator are disjoint, we may write the disjoint union A+B instead of A[B to emphasize

this fact. The Cartesian product operation is also de�ned on more than two sets:

S1 � S2 � � � � � Sk = f(s1; s2; : : : ; sk) : s1 2 S1; s2 2 S2; : : : ; and sk 2 Skg:

The elements of the Cartesian product of k sets are called (ordered) k-tuples. When all

k sets are the same, it is traditional to write S � S � � � � � S = Sk. For example, R2

denotes the real plane as a set of coordinates (x; y) 2 R2.

A k-ary relation on a Cartesian product of sets S1 � S2 � � � � � Sk is just a subset

of this product. This thesis is mainly concerned with binary relations, for which k = 2.

More speci�cally, it is primarily concerned with binary relations on a Cartesian product

of the same set. Therefore, say that a (binary) relation on a set S is a pair (S;R), where

R � S2. Sometimes we will write aRb to mean (a; b) 2 R. There are a few standard

properties on binary relations, as summarized by the following table.
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A binary relation

(S;R) is said to be:
if, for all a; b; c 2 S:

re
exive (a; a) 2 R
irre
exive (a; a) =2 R
symmetric (a; b) 2 R implies (b; a) 2 R
asymmetric (a; b) 2 R implies (b; a) =2 R
antisymmetric (a; b) 2 R and (b; a) 2 R implies a = b

transitive (a; b) 2 R and (b; c) 2 R implies (a; c) 2 R
complete a 6= b implies (a; b) 2 R or (b; a) 2 R
strongly complete (a; b) 2 R or (b; a) 2 R

It is sometimes advantageous to force a relation to have one or more of these proper-

ties. The following table de�nes a set of operations on relations designed for this purpose.

This operation

on relation R
yields the relation:

inverse R�1 = f(a; b) : (b; a) 2 Rg
re
exive closure R [ f(a; a) : (a; a) 2 Rg
symmetric closure R [ f(b; a) : (a; b) 2 Rg = R [ R�1

transitive closure the smallest transitive superset of R

transitive reduction the smallest relation having the same

transitive closure as R

Some relations are given special names, depending on the standard properties they

satisfy. The following table summarizes the relations used in this thesis.
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A Binary Relation

(S;R) is said to be a:
if it is:

partial order re
exive, antisymmetric, and transitive

strict partial order irre
exive, asymmetric, and transitive

linear order a strongly complete, partial order

strict linear order a complete, strict partial order

equivalence relation re
exive, symmetric, and transitive

(If (S;�) is an equivalence relation,

and a 2 S, then the equivalence class of

a is the set [a] = fx : x � ag.)

Note that the literature also refers to linear orders as total orders, complete orders,

and simple orders. A strict linear order can also be speci�ed by listing its elements

(a1; a2; : : : ; an) with the understanding that ai < aj if and only if i < j. This thesis is

mainly concerned with strict partial orders (and strict linear orders), which are sometimes

written as pairs (S;<). Furthermore, to distinguish the relation from the set on which it

is de�ned, we will sometimes want to refer to the relation R as a partial order, and the

pair (S;R) as a partially ordered set, or more economically, as a poset. An element a in

a poset (S;<) is maximal (respectively minimal) if a < x (respectively x < a) does not

hold for any element x 2 S. In particular, a set S in a family of sets F is maximal if it

is a maximal element in the poset (F ;�). The restriction (S0; R0) of a relation (S;R) to

a subset S0 � S is de�ned by the equation R0 = f(a; b) : a; b 2 S0 and (a; b) 2 Rg. Note
that the restriction of a poset is also a poset. A linear extension of a strict partial order

R is a complete strict partial order R0, where R � R0. It is perhaps not obvious that such

a linear extension exists; you can always generate one by listing (topologically sorting,

[CLR90] pages 485{488) its elements as follows. Remove a maximal element from S,
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recursively list the partial order restricted to S n fmg, and append m to the end of the

list.

The operators union, intersection, and di�erence are de�ned also for binary relations

on sets, by operating on the set and the relation. For example, the intersection (S1; R1)\
(S2; R2) of two binary relations is the relation (S1 \S2; R1 \R2). In nearly all cases, this

thesis applies set operators only to binary relations on the same set.

The dimension of a partial order P is the minimum number of linear orders whose

intersection is P . Note that, if P is the intersection of k linear orders, then each linear

order is a linear extension of P . Note also, that P is the intersection of all of its linear

extensions, so the notion of dimension is well-de�ned.

An interval is a contiguous subset of a linearly ordered set. There are open, closed,

and partially closed intervals de�ned by the following table.

open (a; b) = fx : a < x < bg
closed [a; b] = fx : a � x � bg
partially closed (a; b] = fx : a < x � bg
partially closed [a; b) = fx : a � x < bg

A poset (S;R) is called an interval order if S is a set of intervals, and

R = f((a; b); (c; d)) : (a; b) 2 S; (c; d) 2 S; and b < cg:

The interval order dimension of a poset P is the smallest number of interval orders whose

intersection is P .

1.3.2 Graphs

For the most part, the graph theoretic de�nitions in this thesis conform to those in

Golumbic's book [Gol80] on algorithmic graph theory. A graph G = (V;E) is a set of
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vertices V and an irre
exive binary relation E, called edges, on the vertices. We also

write V (G) = V and E(G) = E. Unless mentioned otherwise, both sets are �nite; the

order of a graph G is the value jV (G)j. A multigraph is similar to a graph, except that

E is a multiset. If, in addition, E is not irre
exive, then G is called a pseudograph.

If E is symmetric, the graph is said to be undirected. In this case, it is sometimes

convenient to assume that edges (a; b) and (b; a) are the same edge, which is also said

to be undirected. Since graphs are irre
exive, the complement G of a graph G is de�ned

di�erently than the complement of a relation, it is the graph G = (V;E) where E =

f(u; v) : (u; v) =2 E and u 6= vg. If E is not symmetric, then G is called a directed

graph and has directed edges or arcs. We will often write A instead of E for arcs. An

oriented graph is a directed graph G = (V;A) where A is asymmetric. An orientation of

an undirected graph G = (V;E) is an oriented subgraph H = (V;A) where E = A+A�1

(the arc set A is also called an orientation of the edge set E).

The adjectives dense and sparse are used informally in this thesis. Roughly, a graph

G is dense if jE(G)j = �(V 2) and sparse otherwise.

Two vertices u and v in V are said to be adjacent if (u; v) 2 E; vertex u is said to

be adjacent from vertex v, and vertex v is said to be adjacent to vertex u. Two adjacent

vertices are said to be connected by an edge. If (u; v) is an edge, then vertices u and v are

said to be its endpoints. An edge is said to be incident to its endpoints, and two edges

are adjacent if they have a common endpoint. Graph vertices will usually be drawn as

small circles. An undirected edge will be drawn as a solid, usually straight, line segment

between the circles corresponding to its endpoints. A directed edge (u; v) will be drawn

as an arrow from circle u to circle v. When an edge in the complement of a graph

needs to be emphasized, it will be drawn as a dotted line segment. The following table

summarizes some familiar parameters of vertices in graphs.
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Name Symbol Meaning

adjacency list Adj(v) fu : (v; u) 2 Eg
out-neighbourhood N+(v) Adj(v) [ fvg
in-neighbourhood N�(v) fu : (u; v) 2 Eg [ fvg
neighbourhood (undirected) N(v) N+(v)

indegree indegree(v) jf(u; v) : (u; v) 2 Egj
outdegree outdegree(v) jf(v; u) : (v; u) 2 Egj
degree (for undirected graphs) deg(v) outdegree(v)

Note that the adjacency list of v is just the set of vertices adjacent to v, and that

deg(v) = indegree(v) = outdegree(v) = jAdj(v)j for undirected graphs. The neighbour-

hood N(S) of a subset S � V (G) is the union of the neighbourhoods2 of its elements.

That is, N(S) = fu : u 2 N(v) for some v 2 Sg. A source in a directed graph G is a

minimal vertex in G (that is, one with indegree 0). Similarly, a sink in a directed graph

G is a maximal vertex in G (that is, one with outdegree 0).

A graph Gs = (Vs; Es) is a subgraph of a graph G = (V;E), written Gs � G, if Vs � V

and Es � E. Subgraph Gs is spanning if Vs = V . The subgraph of G = (V;E) induced

by (induced on, generated by) a subset of vertices U � V is the graph G(U) = (U;EU)

where EU is the set of all edges in E that have both endpoints in U . A class of graphs

is hereditary or closed under taking induced subgraphs if every induced subgraph of every

graph in the class is also a graph in the class. When this is the case (and only when this

is case), it makes sense to consider a forbidden subgraph characterization of the class. A

graph F is a forbidden subgraph of the class if it is not in the class, but every induced

subgraph of F is in the class. The forbidden subgraph characterization of a class of

hereditary graphs is the set of all forbidden subgraphs.

2The neighbourhood of a vertex is also sometimes called the closed neighbourhood of the vertex. This

is because some authors use \neighbourhood" to mean the adjacency list.
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The complement G of a graph G = (V;E) is the graph G = (V;E). A subset of

vertices U � V is independent if no pair of vertices in U is connected by an edge, that

is, if E(G(U)) = ;. A subgraph K of a graph G is a clique (or completely connected) if

every pair of vertices in K is connected by an edge, that is, if E(K) = ;. A matching in

a graph G is a subset of edges M � E(G) such that no two edges are adjacent.

Let D be a subset of the vertices V of a graph G = (V;E). Subset D is said to

dominate a vertex v 2 V if v 2 D or if v is adjacent to some vertex in D. Subset D is

a dominating set, and said to dominate the graph G (or the vertices V ), if D dominates

every vertex in V . Subset D is said to be a connected dominating set if it is dominating

and the subgraph it induces is connected. Subset D is an independent dominating set if it

is dominating and the subgraph it induces has no edges. Subset D is a total dominating

set if every vertex in V (including those in D) is adjacent to some vertex in D. Given

a graph and a required set R � V , a subset S � V n R is a Steiner set if the subgraph

induced by R [ S is connected.

In general, a maximum subgraph satisfying some speci�ed property is one that attains

the greatest cardinality. For example, a maximum clique is a clique that has at least as

many vertices as any other clique, and a maximum matching is one that has at least as

many edges as any other matching.

A graph G = (V;E;<) is partially ordered if (V;<) is a partial order on the vertex set.

Often this partial order will be linear. If G1 and G2 are subgraphs in a linearly-ordered

graph, then G1 < G2 if u < v for all u 2 V (G1) and v 2 V (G2). The subgraphs are said

to overlap in the order if neither G1 < G2 nor G2 < G1.

The vertices V of a graph G are weighted by a function w : V ! R. Similarly, the

edges E of a graph G are weighted by a function w : E ! R. A weighted graph G =

(V;E;w) may be either a vertex weighted graph or an edge weighted graph, depending

on context. The weight of a graph is typically the sum of the weights of its vertices (or
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edges), but may be rede�ned to be some other function of its constituent weights.

A chain of length k (v0; v1; v2; : : : ; vk) in a graph G is a sequence of vertices from

V (G) such that (vi�1; vi) 2 E or (vi; vi�1) 2 E for i = 1; 2; : : : ; k. The vertices v0 and vk

are called the endpoints of the chain, and the chain is between its endpoints. A graph is

connected (and a digraph is weakly connected) if there is a chain between every pair of

vertices. A path of length k (v0; v1; v2; : : : ; vk) in a graph G is a sequence of V (G) such

that (vi�1; vi) 2 E for i = 1; 2; : : : ; k. A directed graph is strongly connected if there is

a path between every pair of vertices. A cycle of length k is a path (v0; v1; : : : ; vk = v0).

Note that all cycles are paths, and all paths are chains. A chain or path of length k is

called simple if i 6= j implies vi 6= vj for all i; j � k. A cycle of length k is called simple

if i 6= j implies vi 6= vj for all i; j < k. It is sometimes convenient to treat a chain simply

as a set of vertices or edges by context. Let P = (v0; v1; : : : ; vk) be a chain. An edge

(a; b) 2 E is an edge of P if (a; b) = (vi�1; vi) or (a; b) = (vi; vi�1) for some i 2 [1; k]. An

edge (a; b) 2 E is a chord of P if a 2 P and b 2 P , but (a; b) =2 P and (b; a) =2 P . A

chain (or path or cycle) is chordless if it is simple and has no chords.

Some graphs prove to be so useful (and ubiquitous) that they have been given their

own names, as the following table illustrates.
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Name Symbol Meaning

complete graph on

n vertices
Kn

G = (V;E) where

E = f(u; v) : u; v 2 V g
complete bipartite graph

on m+ n vertices
Km;n

G = (U; V;E) where

E = f(u; v) : u 2 U and v 2 V g
chordless cycle on

n vertices
Cn

G = (f1; 2; : : : ; ng; E) where
E = f(i; (i mod n) + 1) : i 2 [1; n]g

star on n+ 1 vertices K1;n

square C4

claw K1;3

triangle K3 = C3

Two graphs G1 = (V1; E1) and G2 = (V2; E2) are said to be isomorphic if there is a

bijection (an isomorphism) f : V1 ! V2 that preserves adjacency, that is, (u; v) 2 E1 if

and only if (f(u); f(v)) 2 E2 for all u; v 2 V1. Clearly, the relation of being isomorphic,

also called isomorphism, is an equivalence relation, that is, it is relexive, symmetric, and

transitive.

The following table de�nes some well-known graph parameters studied in this thesis.

Note that the value of any one of these parameters would be the same for all graphs

in an isomorphism equivalence class. Therefore these parameters are also called graph

invariants (they are invariant up to isomorphism).
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Name Symbol Meaning

(maximum) graph degree �(G) maxfdeg(v) : v 2 V (G)g
minimum graph degree �(G) minfdeg(v) : v 2 V (G)g
(maximum) graph indegree �in(G) maxfindegree(v) : v 2 V (G)g
minimum graph indegree �in(G) minfindegree(v) : v 2 V (G)g
independence (or stability)

number
�(G)

cardinality of a maximum

independent set in G

clique number !(G)
cardinality of a maximum

clique in G

clique cover number k(G)
least number of cliques for which

every v 2 V is in some clique.

chromatic number �(G) least number of colours to colour G.

(A graph G = (V;E) is (correctly)

coloured by a function c : V ! Z+

if (u; v) 2 E implies c(u) 6= c(v).)

A graph is said to be k-partite if its vertex set can be partitioned into k non-empty

independent sets, that is, if its chromatic number is at most k. In this thesis, the most

important value for k is 2; such graphs are called bipartite. To emphasize a bipartition of

a graph's vertex set, it is traditional to write G = (U; V;E), where vertex sets U and V

are both independent sets. A graph is said to be cobipartite if its complement is bipartite.

A planar graph is one that can be drawn on the plane such that edges may share

a vertex, but do not otherwise cross. Such a drawing is called a plane graph. Kura-

towski characterized planar graphs in 1930. We will need the following de�nitions to

appreciate his theorem. To subdivide an edge (u; v) in a graph G, replace it with a path

(u; u1; u2; : : : ; uk = v) of length k � 1. A graph H is a subdivision of a graph G if H
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can be constructed from G by subdividing some of its edges. Finally, two graphs are

homeomorphic if they are subdivisions of the same graph.

Theorem 1.1 (Kuratowski [Kur30]) Every non-planar graph has a subgraph homeo-

morphic to either K5 or K3;3.

The binary set (and binary relation) operators are de�ned for graphs also, by operat-

ing on the edge and vertex sets. For example, the intersection of two graphs G1 = (V1; E1)

and G2 = (V2; E2) is G1 \ G2 = (V1 \ V2; E1 \ E2). In nearly all cases, this thesis will

only apply set operators to graphs that have the same vertex set.

The intersection graph 
(O) generated by a family (a multiset) O of sets, also called

the intersection graph of O, is the graph G where V (G) = O andG(E) = f(u; v) : u; v 2 O
and u\v 6= ;g. The intersection graph class of a set S is the set of all intersection graphs

generated by �nite (multi) subsets O of S (cf. [Sch85]). A graph G is an S-intersection

graph if it is isomorphic to 
(O) for some subset O � S. Extending the codomain of

the isomorphism f : V (G) ! O to the entire set S leads to the following equivalent

de�nition. A graph G is an S-intersection graph if there is a mapping f : V (G) ! S

such that (u; v) 2 E(G) if and only if f(u) \ f(v) 6= ;. The function f : V (G) ! S is

called an S-realization of G, or a realization of G in terms of S.

1.3.3 Geometry

Points in space Rd (or Ed to emphasize Euclidean metric space) are denoted with lower

case letters (for example, p and q) or, when there is a one-to-one correspondence between

points and the vertices of a graph, just with the names of the vertices. The coordinates

of a point are denoted p = (p1; p2; : : : ; pd). We need only a few standard operations on

points (as vectors): p + q = (p1 + q1; p2 + q2; : : : ; pd + qd), cp = (cp1; cp2; : : : ; cpn), where

c 2 R, and p � q = p + �1(q). This thesis focuses on two-dimensional space, where the
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coordinates of a point are denoted p = (xp; yp).

This thesis uses three metrics in the plane: the L1 metric, also called the city block (or

taxi cab or Manhattan) metric; the L2 metric, also called the Euclidean metric; and the

L1 metric, also called the maximum coordinate (or chess board or queen's move) metric.

These metrics are de�ned by their associated distance functions, Lk being de�ned by the

distance function k � kk : Rd ! R, where

kpkk =
 

dX
i=1

jpijk
!1=k

for all p 2 Rd. The distance function for L1 is given by:

kpk1 = lim
k!1
kpkk = maxfjpij : 1 � i � dg:

The distance between two points p and q is given by the expression

kp� qkk:

This thesis concerns itself primarily with the Euclidean metric in two dimensions. The

distance function kpk therefore will usually denote

kpk2 =
q
x2p + y2p:

If p and q are points in space, then the (open) line segment between them is the set

(p; q) = fr : (1 � �)p + �q where � 2 (0; 1)g. The diameter of a set of points P in space

is

maxfkp� qk : p; q 2 Pg:

Two points in a set are said to be diametral if the distance between them is the diameter

of the set. The sphere of radius r about a point c in d-dimensional space is the set

fp : kp � ck = r and p 2 Edg:
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The two-dimensional sphere is called a circle. The (closed) ball of radius r about a point

c in d-dimensional space is the set

fp : kp� ck � r and p 2 Edg:

The two-dimensional ball is called a disk. A unit sphere, circle, ball, or disk is a sphere,

circle, ball, or disk respectively with radius 1=2, that is, with unit diameter. The lune

through a pair of points p and q is the set

fs : ks� pk � kp � qk and ks� qk � kp � qkg:

1.3.4 Algorithms

Most of the algorithms described in this thesis manipulate graphs. A traditional model

of computation for such work is the Random Access Machine [AHU74], or RAM for

short. Brie
y, a RAM has three devices (an input, an output, and a memory), as well

as a program, of course. A RAM can read from input, write to output, or store in

memory, an arbitrary integer, all at unit cost in space and time. It also can execute the

usual [AHU74] arithmetic and comparison operations between two integers, and program

control instructions, in unit time each. Finally, this thesis uses a RAM augmented with

a unit-time 
oor function.

Geometric computations on a RAM must restrict any input points to integer coor-

dinates (or rational coordinates represented as pairs of integers). We can deal with the

possibly irrational Euclidean distance between points by computing only the squared Eu-

clidean distance, which is an integer (or a rational). This model, or one easily transformed

to it, also will be assumed for NP-hardness proofs. A disadvantage of using an integer

RAM is the temptation to exploit the algorithmic properties of small integers. For exam-

ple, we may be tempted to sort coordinates in linear time, using counting sort [CLR90],
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for example. While such an exploitation can have practical bene�ts, particularly when

the application domain is naturally discrete, it is peripheral to this investigation.

The purpose of this thesis is to investigate the role of geometric constraints in graph

theory. That is, we wish to exploit geometric constraints (e.g., position, proximity, and

distance) in dealing with combinatorial problems. In any representation of the underlying

entities (space, points, and graphs) there are issues that are peripheral to this cause.

For example, (physical) digital computers represent numbers to some �nite precision.

Therefore, programs written for such machines must deal with issues such as inconsistent

roundo� and the need for higher precision during intermediate calculations. Where such

issues are secondary to a more primary interest, as they are in this thesis, it has become

customary to adopt a model of computation called a real RAM [PS85]. A real RAM

can read, write, and store a real number, to in�nite precision, in unit time and space.

It also can execute the usual arithmetic and comparison operations between two real

numbers in unit time each. Again, this thesis augments the real RAM with a unit-time


oor function. A disadvantage of using a real RAM is the temptation to exploit the unit

memory and operation times for in�nite precision numbers. Again, such exploitation is

not the intention of this thesis. We will use the real RAM model to describe geometric

algorithms when it simpli�es the presentation.

Although the RAM or real RAM is the underlying computational model, this thesis

does not actually describe algorithms in terms of these primitive models. Rather, it

describes algorithms with a much higher-level pseudocode. This pseudocode follows the

conventions laid out by Cormen, Leiserson, and Rivest ([CLR90] pp. 4{5). You should

have no trouble reading it even without consulting [CLR90]. The only exception is that

this thesis uses the following notation for comments:

/* This is a comment. */
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The thesis assumes that you are familiar with the elementary algorithms and data

structures usually considered in any introductory textbook [Sed83, CLR90] on that sub-

ject. In particular, you should understand linked lists, balanced trees, and binary search.

You should be familiar with the representation of a graph G = (V;E) as an adjacency

list, for example as an array of linked lists each representing Adj(v) for all v 2 V , and

as an adjacency matrix, for example as a jV j � jV j array M , where Mu;v = 1 if and

only if (u; v) 2 E. Also, you should be aware of fundamental algorithms on these graph

representations, such as depth-�rst and breadth-�rst search.

As a matter of routine \programming" style, this thesis will use a sentinel [Sed83], in

place of an explicit test for boundary conditions, wherever possible. A sentinel is just a

\dummy" element in a data structure that holds the values for the boundary condition.

For example, to search a list for a value without having to test for an end-of-list condition,

�rst append a sentinel holding the desired value to the end of the list.

In analyzing algorithms in this thesis, we are interested primarily in their consumption

of time and space resources. The run-time of an algorithm on an input is the number

of primitive (unit-time) operations executed by the algorithm. We are interested in how

the run-time changes as a function of the input size, which depends on the problem,

but will always be explicit in this thesis. In nearly all cases, we will be interested in an

algorithm's worst case behaviour (taken over all possible inputs) in the limit, that is,

as the input size goes to in�nity. This is normally expressed in asymptotic notation, as

summarized by the following equations.

O(g(n)) = ff(n) : there exist positive constants c and N such that

jf(n)j � cjg(n)j for all n � Ng

(g(n)) = ff(n) : there exist positive constants c and N such that

jf(n)j � cjg(n)j for all n � Ng
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�(g(n)) = ff(n) : f(n) 2 O(g(n)) and g(n) 2 O(f(n))g
o(g(n)) = ff(n) : for all positive constants c, there exists a positive constant N

such that jf(n)j � cjg(n)j for all n � Ng

Following the lead of Cormen, Leiserson, and Rivest [CLR90], this thesis drops the set-

cardinality symbols from asymptotic notation. For example, interpret O(V log V + E)

as O(jV j log jV j + jEj). By convention, we write f(n) = O(g(n)) instead of f(n) 2
O(g(n)), and say that f(n) is order (at most) g(n). The computational complexity of an

algorithm refers to its worst case run-time (and memory usage). Say that an algorithm

has polynomial time (or space) complexity if its worst case run-time (or memory usage)

satis�es f(n) = O(nk) for some constant k.

Several algorithms in this thesis use matrix multiplication. The best upper bound

known for the time to multiply two n� n matrices is n2:376 [CW87]. Most often, we will

be multiplying two jV j � jV j adjacency matrices, so let us abbreviate the upper time

bound on this operation by O(M(V )) = O(V 2:376).

This thesis addresses several combinatorial optimization problems [GJ79, PS82]. Es-

sentially, an instance of a combinatorial optimization problem is a pair (S; c), where S

is a �nite (hence combinatorial) set of candidate (or feasible) solutions, and c : S ! R

is a cost function, telling us how expensive a feasible solution is. The goal is to �nd

an optimal solution for (S; c), that is, a candidate solution s� of minimum (or possibly

maximum) cost:

c(s�) = minfc(s) : s 2 Sg:

A combinatorial optimization problem is a set of instances of a combinatorial optimization

problem. For example, the chromatic number (combinatorial optimization) problem is to

use the minimum number of positive integers to colour the vertices of a graph such that
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adjacent vertices do not get the same colour. An instance (S; c) of this problem comprises

all (correct) ways S of assigning colours f1; 2; : : : ; jV (G)jg to the vertices of a given graph
G, and the number c of colours used for each way.

Let � be an optimization problem. An approximation algorithm for � is an algo-

rithm that takes instances of � as input and returns candidate solutions as output. An

approximation algorithm A achieves a performance ratio R if c(A(I)) � R � c(OPT (I))
for every instance I 2 �, where OPT (I) is an optimal solution for instance I.

Other problems in this thesis are decision problems: they have a yes or no an-

swer. A decision problem corresponds to \recognizing" the yes instances of the prob-

lem. By convention, a problem name typeset in all capital letters is a decision prob-

lem, sometimes even the decision version of an optimization problem. For example,

K-COLOURABILITY is the decision version, \Can the vertex set of the input graph be

correctly coloured with k colours?", of the chromatic number problem.

Although researchers have identi�ed many complexity classes, this thesis is concerned

with only some of these: P, NP, NP-complete, and NP-hard. The class P consists of

those decision problems that can be recognized (answered) in polynomial time. The class

NP comprises those decision problems that can be \certi�ed" in polynomial time. That

is, a (decision) problem is in NP if there is a (necessarily polynomial size) \certi�cate"

that the answer is yes3, and if the certi�cate can be checked in polynomial time. For

example, K-COLOURABILITY is in NP since a graph coloured with k colours can be

checked in polynomial time by examining every adjacent pair of vertices in the graph.

Clearly, P � NP. If you could solve every NP-problem in polynomial time by solving

problem A in polynomial time, then problem A is said to be NP-hard.

3A problem is in co-NP if there is a polynomial-time-checkable \certi�cate" that the answer is no.
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A decision problem is NP-complete if it is both in NP and NP-hard. The NP-

hardness of a problem A is typically demonstrated by providing a polynomial-time \re-

duction" of some known NP-complete problem to problem A. These complexity classes

are normally de�ned more rigorously using notions of language recognition on determin-

istic and nondeterministic Turing machines. See the book by Garey and Johnson [GJ79]

for these de�nitions. The signi�cance of these de�nitions rests in the fact that there are

no known polynomial-time algorithms for any NP-complete problems. That is, no one

has shown that P =NP. Therefore, proving a problem to be NP-hard gives an e�ective

lower bound on the complexity of any algorithm for solving the problem. On the other

hand, no one has shown that P 6= NP.

1.3.5 Unit Disk, Strip, and 2-Level Graphs

The background of the last few sections allows us to de�ne unit disk graphs more carefully.

A unit disk graph is an S-intersection graph where S is the set of unit diameter disks

in the plane. That is, a graph is a unit disk graph if each vertex can be mapped to a

closed, unit diameter disk in the plane such that two vertices are adjacent (in the graph)

if and only if their corresponding disks intersect (on the plane). This thesis brie
y (x3.4)
studies disk graphs also; these are S-intersection graphs where S is the set of disks with

arbitrary (not just unit) diameter in the plane.

As mentioned in Section 1.2, an alternative to the unit disk model is the proximity

model. That is, a graph is a unit disk graph if each vertex can be mapped to a point in the

plane such that two vertices are adjacent (in the graph) if and only if their corresponding

points are within unit distance of one another.

When a set of points P is given and generates a unit disk graph, then clearly the unit

of distance does matter, since di�erent graphs will be generated by di�erent \threshold"

values. When this is important, we will write G�(P ) = (P;E) to signify the unit disk
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graph generated by points P , where adjacent endpoints are at most distance � apart.

The following, more formal, de�nition summarizes this discussion.

De�nition 1.2 The unit disk graph G�(P ) generated by a set of points P and a real

threshold � is the graph (P;E) where E = f(p; q) : kp � qk � �g. Clearly G�(P ) is

isomorphic to G1(
1
�
P ) for every set of points P . A graph G is a unit disk graph if it is

isomorphic to G1(P ) for some P � R2. Extending the codomain of the isomorphism

f : V (G) ! P to the plane leads to the following equivalent de�nition. A graph G is a

unit disk graph if there is a mapping f : V (G)! R2 such that (u; v) 2 E(G) if and only

if kf(u) � f(v)k � 1. The function f is called a realization of the unit disk graph. We

write f(v) = (xf(v); yf(v)), where v 2 V and f(S) = ff(v) : v 2 Sg. Sometimes, when

it is clear what the mapping is, we will drop the subscripts and write x(v) and y(v).

A unit disk graph is a strip graph if there is a realization that maps all vertices onto

a thin strip. For technical reasons that will be clear later (e.g., Theorem 3.7), we are

interested only in su�ciently thin (at most
p
3=2 units for the Euclidean metric) strips.

The following, more formal, de�nition summarizes.

De�nition 1.3 A graph G = (V;E) is a � -strip graph if there is a mapping f : V !
R � [0; � ] such that (u; v) 2 E if and only if kf(u) � f(v)k � 1. The function f is

called a � -strip realization of the graph. Normally, we are concerned with the L2 metric,

where k(x; y)k = k(x; y)k2 =
p
x2 + y2. For these usual L2 � -strip graphs, restrict � to

the interval [0;
p
3=2]. Occasionally, we will be interested in the L1 metric also, where

k(x; y)k1 = jxj+ jyj. For L1 � -strip graphs, restrict � to the interval [0; 1=2].

Say that a strip graph is a two-level graph if it has a realization that maps every

vertex onto the boundary of the strip. The following de�nition states this more formally.
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De�nition 1.4 A graph G = (V;E) is a two-level � -strip graph if there is a mapping

f : V ! R� f0; �g such that (u; v) 2 E if and only if kf(u) � f(v)k � 1. The function

f is called a two-level � -strip realization of the graph.

1.4 Overview: A Reader's Guide

The following chapters present and derive the results discussed in the introduction. Chap-

ter 2, Related Research, sets the stage by reviewing the context of the research reported in

this thesis. In particular it de�nes several related classes of graphs, some of which appear

in this introduction without de�nition. One class is particularly relevant|indi�erence

graphs are precisely 0-strip graphs|so Chapter 2 gives it extra attention.

The remaining chapters study the \gradual introduction" of the second dimension in

reverse order. They begin with Chapter 3, Unit Disk Graphs, in which the y-coordinate

of the disk centres is unrestricted, as it is for the x-dimension. Chapter 3 shows how to

exploit an explicit realization of a unit disk graph to �nd least vertex-weight paths. To

do so, it makes use of a data structure whose details have been relegated to Appendix A.

It also shows how to use a realization to report an adjacent vertex, and to delete a vertex,

in O(log V ) amortized time. This result is used by Chapters 5 and 6 to design e�cient

domination algorithms for strip graphs and two-level graphs. Chapter 3 continues by

showing how to build the entire adjacency structure of a unit disk graph in O(V log V +E)

time, given only the jV j points that form the image of a realization f : V ! R2.

Chapter 3 also shows how to prove that some problems are NP-complete for unit disk

graphs. In particular, it conjectures that any problem that is NP-complete for degree 4

planar graphs is alsoNP-complete for unit disk graphs. In particular, it applies a generic

transformation schema to show theNP-completeness of both INDEPENDENT SET and

CHROMATIC NUMBER. On the other hand, it shows how to �nd a maximum clique in
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polynomial time. The main result of this chapter is that unit disk graph recognition is

NP-hard. In proving this result, we will see that penny4 graph, bounded-diameter-ratio

coin graph, and bounded-diameter-ratio disk graph recognition are all NP-hard.

The next three chapters limit the second dimension to a strip of thickness � . Since

� -strip graphs are cocomparability graphs for all � 2 [0;
p
3=2], Chapter 4 studies cocom-

parability graphs. In particular, it develops e�cient algorithms for several dominating

set problems on cocomparability graphs, which are then automatically applicable to strip

graphs. In the process, the chapter develops a novel, e�cient algorithm for �nding a min-

imum weight maximal clique in a comparability graph, and therefore also a minimum

weight maximal independent set in a cocomparability graph. Chapter 4 also discusses

properties of the \forcing" relation on cocomparability graphs, which are used in the next

chapter.

Chapter 5 studies strip graphs. It begins by demonstrating how to combine an al-

gorithm for �nding least-weight paths in unit disk graphs and an algorithm for �nding

least-weight Steiner sets in cocomparability graphs. The resulting algorithm for �nding

a minimumweight Steiner set in a strip graph is more e�cient than any known for either

unit disk graphs or cocomparability graphs. Chapter 5 then characterizes strip graphs

with systems of di�erence constraints. It uses this characterization to �nd e�ciently a

realization for a strip graph that has been \levelled" and whose complement graph has

been oriented to meet certain constraints. Chapter 5 continues to explore this charac-

terization by determining which stars are � -strip graphs for di�erent values of � . It also

shows that the characterization implies that a strip graph is an indi�erence graph if it is

free of induced squares and claws. The chapter concludes by characterizing those strip

graphs that are trees.

4A graph is a coin graph if it is the intersection graph of a set of interior-disjoint disks. A coin graph

is a penny graph if it is the intersection graph of a set of unit-diameter interior-disjoint disks.
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Chapter 6, Two-Level Graphs, is the �nal technical chapter. It begins by examining

some elementary properties of two-level graphs. For example, it exhibits small examples

(the square and the claw) that highlight the di�erence between two-level graphs and

indi�erence graphs. It continues by showing again how the realization can be exploited,

this time by improving on the minimum weight independent set algorithm for cocompa-

rability graphs. Chapter 6 also examines how intimately two-levels graphs are related to

other classes of graphs, such as bipartite permutation graphs and trapezoid graphs. The

chapter concludes by studying the recognition problem for two-level graphs.

Finally, Chapter 7, the Conclusion, summarizes the thesis.

Two Notes About the Bibliography This thesis mentions many related results. For

the most part, the bibliography cites the originators, unless a result is very well known.

The rule of thumb is that a result is very well known if it is discussed in a standard

textbook, such as Introduction to Algorithms by Cormen, Leiserson, and Rivest [CLR90].

In such a case, the bibliography normally cites the standard text, rather than the original.

Also, the thesis mentions some results in passing, for completeness, and I may not

have been able to obtain the paper in question. Also, the bibliography may cite a result

used by another researcher, but not directly by this thesis. In such cases, the bibliography

cites the paper, but includes an annotation of the form \cited by [abc]", where \abc" is

another paper that discusses and cites the result.
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Related Research

This chapter describes some of the context for the research described in this thesis,

including other classes of graphs that are related to unit disk graphs. It begins (x2.1)
by describing how and where unit disk graphs have arisen previously. This chapter also

describes other kinds of intersection graphs (x2.2), perfect graphs (x2.3), and other kinds

of proximity graphs (x2.4).

2.1 Unit Disk Graphs

Unit disk graphs are the subject of several algorithmic investigations. In particular,

Clark, Colbourn, and Johnson [CCJ90] show that several well-known problems remain

NP-complete for unit disk graphs (see Section 3.3 for details). Marathe, Breu, Hunt,

Ravi, and Rosenkrantz [MHR92, MBH+95] develop several approximation algorithms for

unit disk graphs (again, see Section 3.3 for details).

Unit disk graphs are also simpli�ed models for several applications. In general, they

model the interaction of objects in a physical situation where the interaction (forces,

visibility, or whatever) is \cut o�" after a �xed distance. Sections 2.1.1 to 2.1.4 present

some examples.

29
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2.1.1 Cluster Analysis

Unit disk graphs arise as a conceptual mechanism in cluster analysis [Zah71, DH73,

God88] when \dissimilarity" is measured by Euclidean distance. More precisely, the sim-

ilarity of a set of objects O = fO1; : : : ; Ong is typically described by an n�n dissimilarity

matrix D that is not necessarily Euclidean nor even metric. Godehardt [God88] de�nes

a \similarity" graph �(�) = (O;E) where (Oi; Oj) 2 E if Dij � �. Note that G�(O) is

a unit disk graph if the Oi are points in the plane and Dij
def
= kOi � Ojk. Godehardt

mentions that the clusters produced by two well known techniques, single-linkage clusters

and complete linkage clusters, correspond to the components and the cliques of the graph

�, respectively. E�cient algorithms for constructing the components and a maximum

clique of a unit disk graph are given in Sections 3.2.3 and 3.3.2 of this thesis.

2.1.2 Random Test Case

Johnson, Aragon, McGeogh, and Schevon [JAMS91] use a class of random graphs to

test heuristics for the travelling salesman problem in arbitrary graphs. Their random

geometric graph Un;r is, in the terminology of this thesis, the unit disk graph Gr(P )

where jP j = n, and where P is chosen randomly from a unit square1. E�cient algorithms

for unit disk graphs could therefore be used to give exact solutions to various problems

on random geometric graphs. These exact solutions could then be compared with those

produced by the heuristic under evaluation. For example, Philips [Phi90] uses Un;0:5 to

evaluate his heuristic for �nding the maximumclique, which he does by comparing it with

another heuristic. The O(n3:5 log n) maximum clique algorithm presented in Section 3.3.2

(or the O(n4:5) algorithm in [CCJ90]) would have allowed him to make a comparison with

the exact solution in polynomial time.

1Johnson et al. generate P by picking 2n independent numbers uniformly from the interval (0; 1) and

viewing these as the coordinates of n points.
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2.1.3 Molecular Graphics and Decoding Noisy Data

Bentley, Stanat, and Williams [BSW77] mention that merely listing the edges of a unit

disk graph, a problem that they call \�nding �xed-radius near neighbors", also has

applications in molecular graphics and decoding noisy data. Their algorithm, along with

others, is discussed in Section 3.2.3.

2.1.4 Radio Frequency Assignment

Suppose that a radio spectrum manager wishes to assign frequencies to a set of trans-

mitters. Perhaps the simplest two-dimensional setting is that these transmitters all have

the same power, and each has a �xed location on a uniform terrain so that their e�ective

ranges are the same. Suppose further that the available frequencies, called channels, are

a discrete set. Two transmitters must not be assigned the same channel if they might

interfere, which they would do if they are within a �xed distance of one another. The

manager's objective is to use the minimum number of channels.

In his review of spectrum management, Hale [Hal80] calls this problem the F*D

constrained cochannel assignment problem. He formalizes it as follows. Given a �nite set

of points V in the plane, and a positive rational number �, �nd an assignmentA : V ! Z+

such that (1) maxA(V ) is as small as possible and (2) if u; v 2 V , u 6= v, and ku�vk � �,

then A(u) 6= A(v). This is just the problem of �nding an optimal colouring of a unit disk

graph.

Hale's survey concludes with some relevant open questions:

There is no graph coloring algorithm or heuristic which exploits the special

structure of unit disk or disk graphs. There is no known intrinsic characteri-

zation of unit disk graphs (a reasonable forbidden subgraph characterization
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seems out of the question, as a large list of in�nite families of forbidden sub-

graphs continues to grow). What is the complexity of the clique problem . . .

for unit disk graphs?

These questions are at least partially resolved in this thesis, and elsewhere. In re-

verse order, the clique problem is in solvable in O(V 3:5 log V ) time (x3.3.2), UNIT DISK

GRAPH RECOGNITION isNP-hard (x3.4), and there are simple polynomial time algo-

rithms that colour unit disk graphs with no more than three times the chromatic number

(x3.3.3).
The most comprehensive study of this frequency assignment (or unit disk graph

colouring) problem is due to Gr�af (see [Gr�a95] and x3.3.3). In his PhD thesis, Gr�af

also identi�es and colours strip graphs (which he calls
p
3=2 stripe graphs).

2.2 Geometric Intersection Graphs

A graph G is an S-intersection graph if S is a family of sets, and there is a mapping

f : V (G) ! S such that (u; v) 2 E(G) if and only if f(u) \ f(v) 6= ; for all vertices u
and v in V . The function f is called an S-realization (or a representation, or a model)

of G in terms of S.

Any graph is an intersection graph for some model. For example, model each vertex

of a given graph by the set of edges incident with it. Geometric models promise to

constrain the available intersection graphs that can be represented in this way. But even

greatly constrained geometric models can generate many graphs. Any planar graph is

an intersection graph of a set of curves in the plane. In fact, an intersection model made

up solely of star-shaped polygons can be constructed from a straight line embedding2 of

a planar graph. The stars are concentric with the vertices, and their \arms" reach up

2Every planar graph has a straight line embedding (cf. [NC88]).
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along each line segment corresponding to an edge.

More remarkably, every �nite planar graph is the intersection graph of a set of interior-

disjoint disks. Since such intersection graphs, also called coin graphs, are themselves

clearly planar, this means that the class of �nite planar graphs is equivalent to the class

of coin graphs. This result was �rst demonstrated by Koebe in 1935. See Sachs's [Sac94]

account for a more detailed history and for references.

Wegner [Weg67, CM78] proves that any graph is the intersection graph of a set of con-

vex objects in R3. Unfortunately, Capobianco and Molluzzo [CM78], who cite Wegner's

result, do not give the proof.

Researchers have studied numerous kinds of geometric intersection models other than

disks and unit disks. In particular, graphs with the following one- and two-dimensional

intersection models, some with e�cient algorithms, can be found in the literature:

� unit intervals [Rob68a, LO93],

� intervals [FG65, GH64, BL76, GLL82, Kei85, Kei86, Ber86, BB86, RR88a, RR88b],

� squares [Ima82, BB86],

� rectangles [IA83, Kra94],

� line segments [IA86, KM94],

� strings [Kas80, Kra91a, Kra91b],

� circular arcs [Kas80, GLL82],

� chords of a circle [Kas80].

Recognition complexity questions have also been studied in the literature. In particu-

lar, there are polynomial time algorithms for recognizing intersection graphs on unit inter-

vals [LO93], intervals [BL76], circular arcs [Tuc80], and chords of a circle [GHS89]. In his
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summary of graph algorithms [van90], van Leeuwen states wistfully that \It should prob-

ably be required of any class of graphs that is distinguished that its recognition problem is

of polynomial-time bounded complexity." This desire notwithstanding, many interesting

classes are di�cult to recognize. In particular, it is NP-hard to recognize intersection

graphs for strings [Kra91b], isothetic rectangles [Kra94], and segment graphs [KM94].

The complexity of recognizing unit square graphs was still open. However, Theorem 3.46

proves that this problem is NP-hard.

2.3 Perfect Graphs

Historically, there were two kinds of perfect graphs, both identi�ed by Berge [Ber61].

A graph G is �-perfect if the chromatic number � of every induced subgraph G(S) is

the same as the size ! of its largest clique. More formally, a graph G is �-perfect if

!(G(S)) = �(G(S)) for all S � V . Clearly, �(G(S)) � !(G(S)) for all graphs, perfect

or otherwise, since every vertex in a clique must get a di�erent colour. A graph G is

�-perfect if the number k of cliques required to cover any induced subgraph is the same

as the size � of its maximum independent set. More formally, a graph G is �-perfect

if �(G(S)) = k(G(S)) for all S � V . Clearly, k(G(S)) � �(G(S)) for all graphs since

every clique can cover at most one vertex in an independent set. Clearly, too, a graph

is �-perfect if and only if its complement is �-perfect, since a clique in a graph is an

independent set in its complement. A graph is perfect if it is both �-perfect and �-

perfect. In fact, a graph is �-perfect if and only if it is �-perfect, as �rst conjectured by

Berge [Ber61] and proved ten years later by Lov�asz [Lov72]:

Theorem 2.1 (The Perfect Graph Theorem [Ber61, Lov72]) The following state-

ments are equivalent for all graphs G:

� !(G(S)) = �(G(S)) for all S � V ,
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� �(G(S)) = k(G(S)) for all S � V ,

� !(G(S))�(G(S)) � jSj for all S � V .

Gr�otschel, Lov�asz, and Schrijver [GLS84] show that these invariants (�(G), !(G),

�(G), and k(G)) can be computed in polynomial time for perfect graphs. Their algo-

rithms use the ellipsoid method, a general technique that has also been used to solve linear

programming in polynomial time (see [GLS84] for details and references). Gr�otschel et al.

do not recommend their algorithms for practical use, due to numerical stability problems

with the ellipsoid method. Furthermore, the complexity of PERFECT GRAPH RECOG-

NITION is unknown, though Gr�otschel et al. show that it is in co-NP. Consequently,

there are many results on subclasses of perfect graphs in the literature (see in particu-

lar Golumbic's book [Gol80]). There are many such subclasses. For example, bipartite

graphs are clearly �-perfect; assuming a bipartite graph has at least one edge, both its

clique number and chromatic number is 2, and it is trivial to �nd such a maximum clique

or such a colouring. Finding a maximum independent set of a bipartite graph is not that

easy, but can be accomplished in polynomial time by matching (cf. x3.3.2).
In this thesis, cocomparability graphs (see Section 2.3.1 and Chapter 4), which are

perfect, are especially relevant. The family of cocomparability graphs properly includes

the family of trapezoid graphs (see Section 6.4.1). In turn, the family of trapezoid graphs

properly includes the families of permutation and interval graphs (see below for de�ni-

tions). Finally, the family of interval graphs properly include the family of indi�erence

graphs.

On the other hand, unit disk graphs are not perfect. For example, C5 is a unit disk

graph (as is any cycle) but it is not perfect since !(Cn) = 2 and �(Cn) = 3 for all

odd n � 5. However, strip graphs are perfect since they are cocomparability graphs.
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2.3.1 Cocomparability Graphs

An undirected graph G = (V;E) is a comparability graph if there exists a transitive

orientation of its edges. We can also say that a comparability graph is a transitively

orientable graph. Recall from Section 1.3.2 that a transitive orientation of an undirected

graph G = (V;E) is an oriented subgraph ~G = (V;A) where E = A+A�1 and A is tran-

sitive. Note that transitive orientations are acyclic since A is asymmetric. Conversely, we

can think of comparability graphs as being generated by partially ordered sets. The edges

of the comparability graph G = (V;E) corresponding to a strict poset (V;<) are given by

E = f(u; v) : u < v or v < ug. A graph is a cocomparability graph if its complement

is a comparability graph. Both comparability graphs and cocomparability graphs have

been extensively studied (cf. [Gol80, M�oh85]). Both classes include permutation graphs

as proper subclasses, and cocomparability graphs properly include interval graphs and

indi�erence graphs (cf. [Duc84]).

Comparability graphs (and therefore cocomparability graphs also) can be oriented

in O(V 2) and recognized in O(M(V )) time [Spi85, Spi94]. Previous algorithmic work

on cocomparability graphs relevant to this thesis includes polynomial time algorithms

for several domination problems ([KS93], but see x4.2 for improved time complexities),

and a cubic time algorithm for the Hamiltonian cycle problem [DS94]. There are also

algorithms for comparability graphs [M�oh85], so that the complementary problem can be

solved on cocomparability graphs. Once a vertex-weighted comparability graph has been

transitively oriented, one can extract a maximum weight clique in O(V 2) time3, and a

maximum weight independent set in O(V 3) time [M�oh85].

3This algorithm for maximumweight clique cannot be used to �nd a minimumweightmaximal clique.

See x4.2.4 for an explanation and an algorithm that �nds a minimum (and maximum) weight maximal

clique in O(M (V )) time.
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Permutation Graphs

A graph G = (V;E) is a permutation graph if there is some pair of permutations (ordered

lists) P and Q of the vertices such that u and v are adjacent if and only if their order di�ers

in the two permutations. The permutations P and Q are said to realize the permutation

graph G, and make up a permutation realization or permutation model. For example, if

P = (3; 5; 1; 4; 2) and Q = (5; 2; 3; 4; 1) model some permutation graph G = (V;E), then

(3; 5) 2 E but (3; 1) =2 E. We can also think in terms of a permutation diagram; lay

out the permutations on two parallel rows and connect corresponding vertices with line

segments. Then u and v are adjacent if and only if their corresponding line segments

cross; see Figure 2.1, for example.
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Figure 2.1: A permutation diagram (a) and its corresponding permutation graph (b).

Here, P = (3; 5; 1; 4; 2) and Q = (5; 2; 3; 4; 1).

To simplify the notation, the �rst permutation P is traditionally (cf. [Gol80]) written

as a relabelling of the vertices P = (1; 2; : : : ; jV j). The second permutation Q is written

as a list Q = (�(1); �(2); : : : ; �(jV j), where � : V ! V is a permutation (that is, a

bijection) on V . Then (u; v) 2 E if and only if (u � v)(��1(u) � ��1(v)) < 0 (think

of ��1(v) as the \location" of v in Q). We can therefore think of � as the de�ning

permutation (corresponding to permutation P ) for the permutation graph G. Spinrad
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has shown that a de�ning permutation for a given permutation graph can be found in

O(V 2) time [Spi85].

The complement of a permutation graph is also a permutation graph. It is easy

to verify that if � is a de�ning permutation for G, then the reverse �r of �, where

�r(i) = �(jV j+1� i) for all i, is a de�ning permutation for G. Since permutation graphs
are comparability graphs, it follows that permutation graphs are also cocomparability

graphs. In fact, this latter observation characterizes permutation graphs. That is, a

graph G is a permutation graph if and only if G and G are comparability graphs [PLE71].

Recall that the dimension of a partial order P is the minimum number of linear orders

whose intersection is P . If G is the comparability graph of a partial order P , then P

has dimension at most 2 if and only if G is transitively orientable [DM41] (that is, G is

also a comparability graph). It follows that G is a permutation graph if and only if the

partial order underlying any transitive orientation of G has dimension at most 2.

There has been considerable interest in solving dominating set problems on permu-

tation graphs [FK85, BK87, CS90a, TH90, AR92]. These problems are discussed in Sec-

tion 4.2, which also summarizes their complexity on permutation graphs. That section

presents new polynomial time algorithms for these dominating problems on cocompara-

bility graphs, which properly includes permutation graphs, as mentioned above. Permu-

tation graphs also play a role in Chapter 6, in which bipartite permutation graphs appear

in strip graphs.

Function Graphs

Cocomparability graphs may also be characterized as intersection graphs. Let F be a

family of continuous functions fi : [0; 1]! R. Say that two functions fi and fj intersect if

there is a value x 2 [0; 1] such that fi(x) = fj(x), that is, the images of [0; 1] under fi and

fj intersect. Function graphs are the intersection graphs of such families F . Golumbic,
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Rotem, and Urrutia [GRU83] show that a graph is a function graph if and only if it is a

cocomparability graph.

Since all partial orders corresponding to a comparability graph have the same dimen-

sion [TJS76], this number can equally well serve as the dimension of the comparability

graph. Golumbic et al. show that a cocomparability graph is the concatenation of k � 1

permutation diagrams, where k is the dimension of the graph's complement. For example,

permutation graphs (and their complements) have dimension 2. This also characterizes

permutation graphs; they are exactly the intersection graphs of linear functions.

Interval graphs are also the concatenation of permutation diagrams, since they are

cocomparability graphs. However, interval graphs cannot be characterized as the concate-

nation of some �nite number of permutation graphs. For example, C4 is a permutation

graph, but it is not an interval graph.

However, we can characterize interval graphs with a class of piecewise-linear functions,

made up of three linear pieces. Let G = (V;E) be an interval graph where n = jV j, and let
I = f[l1; r1]; [l2; r2]; : : : ; [ln; rn]g be an interval realization of G. We can assume without

loss of generality that lv; rv 2 f1; 2; : : : ; 2ng. The function fv : [0; 1] ! R corresponding

to the interval [lv; rv], where lv � rv, is given by:

fv(x) =

8>>>>><>>>>>:
lv if 0 � x � lv

2n+1

(2n+ 1)x if lv
2n+1

< x < rv
2n+1

rv if rv
2n+1

� x

This process is illustrated in Figure 2.2, which shows the \construction line"

y = (2n + 1)x

for clarity. If two functions intersect, then they do so on the construction line, and mimic

the original intervals. Clearly then, two intervals intersect if and only if the corresponding

functions intersect.
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Figure 2.2: Functions for intervals [lu; ru] and [lv; rv].

2.3.2 Indi�erence Graphs

Roberts [Rob68a] named indi�erence graphs after the notion of \indi�erence" from psy-

chology and economics. The subsection introduces the idea of indi�erence graphs, and

views them as one-dimensional unit disk graphs.

Can an individual's preference within a �nite set of options be assigned a scalar

measure? Such a measure f would map the options into real numbers. To a �rst ap-

proximation, the individual would prefer option a to b if and only if f(a) > f(b). This

approximation would imply that indi�erence corresponds to equality and is therefore

transitive. Roberts [Rob78] cites several sources that argue against the transitivity of

indi�erence. To model indi�erence more accurately, he suggests that the preference

measure have the property that, if the individual is indi�erent between a and b, then

jf(a)� f(b)j < �.

De�nition 2.2([Rob68a]) A graph G = (V;E) is an indi�erence graph if there is a

mapping f : V ! R of its vertices to the reals such that (u; v) 2 E if and only if

jf(u)� f(v)j � 1.



Chapter 2. Related Research 41

Although De�nition 2.2 is su�cient, indi�erence graphs can also be de�ned by any

of the characterizations in Theorem 2.3. All uncited characterizations below are due to

Roberts [Rob68a]. De�nitions of the emphasized terms in the characterizations follow

the theorem.

Theorem 2.3 Let G = (V;E) be a graph. Then the following are equivalent:

1. G is an indi�erence graph.

2. There is a semiorder (V;<) such that (u; v) 2 E if and only if neither u < v nor

v < u, for all u; v in V .

3. G is a unit interval graph

4. G is a K1;3-free interval graph.

5. G is a proper interval graph.

6. ([Rob78] page 33) The adjacency matrix of G has the consecutive-ones property.

7. G is chordal and none of the graphs in Figure 2.3 are induced subgraphs.

8. [Duc84] The closed neighbourhoods of G constitute the edges of an interval hyper-

graph.

9. [Duc84] G admits an orientation ~G that satis�es both:

(a) ~G has no cycle,

(b) G(N+(v)) and G(N�(v)) are complete graphs.

10. [Jac92] G is an astral triple-free graph.

11. [Duc79] There exists a linear ordering of V such that, if u < v < w and (u;w) 2 E,
then both (u; v) and (v;w) are in E.
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Figure 2.3: Forbidden indi�erence graphs. These graphs, together with Cn for n � 4,

make up the forbidden subgraph characterization of indi�erence graphs.

astral triple Three vertices in a graph such that, between any two of them, there is

path P that avoids the third vertex v, and no two consecutive vertices in P are

both adjacent to v.

consecutive-ones property A binary matrix is said to have the consecutive-ones prop-

erty if it is possible to permute the rows so that the ones in each column are

consecutive.

interval graph The intersection graph of a set of intervals on a linearly ordered set.

interval hypergraph A (not necessarily binary) relation H = (V;E) for which there

exists a linear order on the vertices V such that every element (edge) in E is an

interval in the order.

proper interval graph The intersection graph of a set of intervals on a linearly ordered

set, none of which is contained by (is a subset of) any other.

semiorder An irre
exive relation (A;<) is a semiorder if for all x; y; z; w 2 A: x < y

and z < w implies x < w or z < y; and x < y and y < z implies x < w or w < z.

unit interval graph The intersection graph of a set of equal-sized (unit length) inter-

vals on the real line.
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Looges and Olariu [LO93] have developed several optimal algorithms for indi�erence

graphs. In particular, they show how to recognize an indi�erence graph G = (V;E)

in O(V + E) time. Their recognition algorithm returns an e�cient representation of

the ordering from Theorem 2.3.11. Using this representation, Looges and Olariu colour

the graph, �nd a shortest path between two vertices, compute a Hamiltonian path, and

compute a maximum matching, each in O(V ) additional time.

It is clear from the de�nition of indi�erence graphs (De�nition 2.2) that the class

indi�erence graphs is the special case of � -strip graphs where � = 0 (cf. De�nition 1.3).

It would be bene�cial for algorithm design if some or all of the properties for indi�erence

graphs in Theorem 2.3 were preserved for � -strip graphs as � increases. However, such

preservation does not seem to be the case. For example both the square and the claw

are � -strip graphs for all � > 0. In particular, the algorithms by Looges and Olariu

do not seem to generalize, since the closest analogue to Theorem 2.3.11 that applies

to � -strip graphs is the spanning order (which characterizes the more general class of

cocomparability graphs) discussed in Chapter 4.

Roberts [Rob68b] generalizes the notion of indi�erence to higher dimensions by de�n-

ing the cubicity of a graph to be the smallest dimension k for which there exists a function

f : V ! Rk, such that (u; v) 2 E if and only if kf(u)� f(v)k1 � 1. The corresponding

notion for the L2 metric is called the sphericity [Hav82a, Fis83] of a graph. Clearly, the

graphs that have cubicity or sphericity at most one are precisely the indi�erence graphs.

The notion of sphericity is well de�ned, as Maehara's theorem shows.

Theorem 2.4 ([Mae84]) Every graph of order n is isomorphic to some space graph

[unit sphere graph] in n-space.

The sphericity (respectively, cubicity) of a graph is just the smallest dimension in which it

is a unit disk graph|generalized with respect to dimension|under the L2 (respectively,
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L1) metric. The (not generalized) unit disk graphs correspond exactly to graphs with

sphericity at most 2.

How is sphericity related to cubicity? Havel [Hav82a, Fis83] shows that cubicity can

exceed sphericity. For example the cubicity and sphericity ofK1;5 are 3 and 2 respectively.

In fact, Havel shows that there are �nite graphs of sphericity 2 that have arbitrarily large

cubicity. Fishburn [Fis83] shows that sphericity can exceed cubicity for cubicity 2 and 3

but leaves the question open for larger cubicity. Maehara [Mae86] answers this question

by showing that there is a complete bipartite graph with sphericity exceeding cubicity

for every value of cubicity at least 6.

2.3.3 Grid Graphs

A grid graph is a node-induced �nite subgraph of the in�nite grid [IPS82]. Equivalently

therefore, a grid graph is a unit disk graph that has a realization with integer coordinates.

More carefully, a graph G is a grid graph if there is a function f : G(V )! Z2 such that,

(u; v) 2 E if and only if kf(u)� f(v)k � 1 for all u; v 2 V . Some authors [Had77, BC87]

prefer to de�ne grid graphs as (not necessarily induced) subgraphs of the in�nite grid (let

us call these grid subgraphs). For example, the tree in Figure 2.4 is a grid subgraph, but

not a grid graph, since every grid realization of this graph must put two leaves within

unit distance of one another.

d

d

d

d

d

d

d

d

Figure 2.4: A grid subgraph that is not a grid graph.

Grid graphs arise in several applications, including integrated circuit design (cf. [Had77]).
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The in�nite grid represents the possible conducting material. A chip isolates a portion

of the grid, e�ectively inducing a rectangular subgraph on the grid. The graph is further

complicated by electronic components on the chip, which remove any covered vertices

and edges from the graph. A typical problem in this context is to lay out (embed) an

interconnection pattern (a graph) on the chip (in the corresponding grid graph), possibly

by dilating (subdividing) edges in the pattern, so as to minimize the size of its layout.

Since grid graphs (and grid subgraphs) are bipartite, and bipartite graphs are perfect,

grid graphs are also perfect and subject to the same e�cient algorithms (see Section 2.3).

On the other hand, several familiar problems that are NP-complete for arbitrary graphs

remain NP-complete for grid graphs, including �nding a Hamiltonian path [IPS82] and

�nding an optimal Steiner tree [GJ77].

GRID SUBGRAPHRECOGNITION isNP-complete [BC87], even for grid subgraphs

that are binary trees [Gre89]. The following simple reduction shows that GRID GRAPH

RECOGNITION is also NP-complete. Let G = (V;E) be an instance of GRID SUB-

GRAPH RECOGNITION. Create a graph G0 = (V 0; E0) from G by replacing each edge

in E with the edge simulator graph shown in Figure 2.5. Since each edge simulator has

d d q qa a a a
a a
a a)

Figure 2.5: Simulating edges in grid subgraphs with grid graphs.

a unique induced embedding in the grid (up to rotation, re
ection, and translation), it

follows that G0 is a grid graph if and only if G is a grid subgraph. Figure 2.6 shows an

embedded grid subgraph and the embedded grid graph that results from this reduction.

In his PhD thesis [Gr�a95], Gr�af generalizes the notion of grid graphs by allowing

disks of larger than unit diameter. More formally, he de�nes the class of UDd graphs
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Figure 2.6: The grid graph Gi corresponding to the grid subgraph Gs.

to be the intersection graphs of disks with diameter d 2 Z+ and centres in Z2. Clearly,

all UDd graphs are unit disk graphs, and UD1 is equivalent to the class of grid graphs.

Gr�af shows that each UDd graph G = (V;E) has a realization that can be encoded with

O(V log(dV )) bits, so that UDd GRAPH RECOGNITION is in NP. By comparison,

UNIT DISK GRAPH RECOGNITION is not known to be in NP. He shows that UD2

graph recognition is NP-complete by reducing it from grid graph recognition. He also

conjectures that UDd recognition is NP-complete for all �xed d. Again by comparison,

Section 3.4 shows that UNIT DISK GRAPH RECOGNITION is NP-hard. Finally, Gr�af

shows that UD2 GRAPH 3-COLOURABILITY is NP-complete. Since UDd � UDkd

for all positive integers d and k, it follows that GRAPH 3-COLOURABILITY is NP-

complete for all UDd where d is even.

2.4 Proximity Graphs

Two vertices are adjacent in a unit disk graph if their realizations satisfy a certain

proximity condition: they must be within unit distance of one another. Other proximity

conditions lead to other kinds of graphs.
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2.4.1 The Delaunay Triangulation Hierarchy

The Euclidean minimum spanning tree [Zah71, SH75, Yao82, AESW90] MST(P) of a set

of points P in the plane is a minimum spanning tree of the complete graph K(P ) with

edge weights equal to the Euclidean distance between endpoints.

The relative neighbourhood graph [Tou80, Sup83] RNG(P ) = (P;ERNG) of P has an

edge (p; q) between two vertices if and only if the lune through p and q does not contain

any other point in P . That is, (p; q) 2 ERNG if and only if kp � qk � kp � rk and

kp� qk � kq � rk for all r not equal to p or q.
Two vertices p and q of the Gabriel graph [GS69, MS80] GG(P ) = (P;EGG) are

adjacent if and only if the smallest disk through p and q does not contain any other point

in P . That is, (p; q) 2 EGG if and only if kp� qk � kp� rk+ kq� rk for all r not equal
to p or q.

Perhaps the best known proximity graph is the Delaunay graph. Three vertices p,

q, and r are pairwise adjacent in the Delaunay graph [Del34] DT (P ) if and only if the

smallest disk through all three does not contain any other point in P . Since the (straight

line) plane graph corresponding to DT (P ) partitions the plane into triangles and an

external face, the Delaunay graph is usually called the Delaunay triangulation. An

alternative de�nition involves the Voronoi diagram [Vor08, PS85]. The Voronoi polygon

or Voronoi cell associated with a point p is the set of points in the plane that are closer to

p than any other point in P . The Voronoi diagram is the partition of the plane induced

by the Voronoi polygons associated with the points in P . De�ne an edge in EDT to be

a pair of points (p; q) if and only if the Voronoi polygons associated with p and q share

an edge. That is, the Delaunay triangulation is the straight line geometric dual of the

Voronoi diagram.



Chapter 2. Related Research 48

These four graphs are related as follows [PS85]:

MST (P ) � RNG(P ) � GG(P ) � DT (P ):

The number of edges in each of these graphs is linear in the number of vertices. His-

torically at least, there has been little emphasis on recognizing these graphs. How-

ever, Eades and Whitesides [EW94] recently showed that recognizing Euclidean min-

imum spanning trees is NP-hard. There has been more emphasis on constructing

these graphs from a given point set P ; each graph can be constructed in O(P logP )

time ([PS85, Sup83, MS80, PS85] respectively).

2.4.2 Sphere of In
uence Graphs

Let P be a set of points in the plane and let D = fDp : p 2 Pg be a corresponding set

of disks, where Dp is the largest disk centered on p whose interior is empty of any point

in P other than p. That is, radius(Dp) = minfkp � qk : q 2 P and q 6= pg for every
p 2 P . Avis and Horton [AH85] de�ne the (closed) sphere of in
uence graph Ĝ(P ) to

be the intersection graph 
(D) of the disks D. Clearly, the sphere of in
uence graph is

a disk graph. They show that the sphere of in
uence graph is neither a subgraph nor a

supergraph of any of the minimum spanning tree, the relative neighbourhood graph, the

Gabriel graph, or the Delaunay triangulation. They also show that Ĝ(P ) has at most

29jP j edges and that the graph can be constructed in �(P logP ) time, which they show

to be optimal.

There is a subgraph relationship between sphere of in
uence graphs and unit disk

graphs. In particular,

G�1(P ) � Ĝ(P ) � G�2(P );

where �1 = 2 �minfradius(Dp) : p 2 Pg and �2 = 2 �maxfradius(Dp) : p 2 Pg. This

also can be stated in terms of intersection graphs. The intersection graph 
(Cmin), where
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Cmin is a set of equal-diameter disks, is a subgraph of 
(D), where D is a set of disks with

varying diameters, concentric with Cmin, each of which is no smaller than the disks in

Cmin. Similarly, the intersection graph 
(D) of a set of disks D with varying diameters,

is a subgraph of 
(Cmax), where Cmax is a set of equal-diameter disks, concentric with

D, each of which is no smaller than the largest disk in D.

Unit disk graphs share the property with sphere of in
uence graphs that they do not

fall nicely into the Delaunay triangulation hierarchy. Nevertheless, one of the algorithms

in Section 3.2.3 e�ciently constructs (enumerates the edges of) a unit disk graph by

thresholding the Delaunay triangulation.



Chapter 3

Unit Disk Graphs

How does the geometry of intersecting unit disks a�ect the associated intersection graphs?

To address this question, Section 3.1 makes some basic observations about unit disk

graphs that are exploited throughout the thesis. Section 3.2.1 then shows how to exploit

a geometric realization of a unit disk graph to �nd least vertex-weight paths. Section 3.2.2

solves some more fundamental tasks: given a vertex v 2 V , report a vertex adjacent to

v (LIST1(v)), and delete v (MARK(v)). More speci�cally, it shows how to execute

a sequence of O(V ) calls to LIST1 and MARK in O(V log V ) time and O(V ) space.

Section 3.2.3 shows how to construct a unit disk graph from its geometric realization

(that is, from jV j points in the plane) in O(V log V + E) time. Recall that e�cient

construction has historically been of interest for other kinds of proximity graphs (x2.4).
Section 3.3.2 shows how to use a realization to �nd a maximum clique in polynomial

time. Unfortunately, the geometry is not always so exploitable. The rest of Section 3.3

shows that several familiar problems remain NP-hard for unit disk graphs. In proving

some of these (INDEPENDENT SET and CHROMATIC NUMBER), this section draws

a connection between unit disk graphs and planar graphs with no degree exceeding 4.

Finally, we will see in Section 3.4 that even unit disk graph recognition is NP-hard.

Furthermore, penny graph, bounded-diameter-ratio coin graph, and bounded-diameter-

ratio disk graph recognition are all NP-hard, even for square disks and coins. That is,

both 2-SPHERICITY and 2-CUBICITY are NP-hard.

50
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3.1 Basic Observations

This section makes some elementary observations about disk graphs and unit disk graphs

that will prove useful later in the thesis. In particular, this section proves that the star

K1;6 is forbidden, and that triangle-free disk graphs are planar. We will also see that all

strip graphs are cocomparability graphs.

Lemma 3.1 (The Star Lemma) There are no induced stars with degree greater than 5

in any unit disk graph, and no induced stars with degree greater than 4 under the L1 and

L1 metrics.

Proof: At most �ve Euclidean disks can pack around a central disk without intersecting

one another. More precisely, let f : V ! R2 be a realization of a unit disk graph

G = (V;E). Let u be any vertex in V , and let I � Adj(u) be a set with more than �ve

vertices, i.e., jIj � 6. Then there must be two vertices v and w in I such that the angle

between the segments sv = (f(u); f(v)) and sw = (f(u); f(w)) is at most 60 degrees. But

then, since the segments sv and sw have at most unit length, it follows that the segment

(f(v); f(w)) also has at most unit length. Therefore (v;w) 2 E and G(I [ fvg) is not
isomorphic to K1;jI j.

Similarly, disks under the L1 and L1 metrics are closed square boxes. At most four

such boxes can pack around a central box without intersecting one another.

Corollary 3.1.1 The star K1;6 is not an induced subgraph of any unit disk graph.

Lemma 3.2 In every unit disk graph, there is a vertex v that has degree at most 3 in

any induced star. Similarly, in every unit disk graph under the L1 and L1 metrics, there

is a vertex v that has degree at most 2 in any induced star.

Proof: Let f : V ! R2 be a realization of a unit disk graph G = (V;E). Let v 2 V

be a vertex such that f(v) is an extreme point, a leftmost point, for example. Then the
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neighbourhood of v lies in a half plane through v. The rest of the proof is similar to that

of the Star Lemma.

3.1.1 Connections with Planarity

Recall from Section 2.2 that Koebe showed that every �nite planar graph is the intersec-

tion graph of a set of interior-disjoint disks. So every �nite planar graph is a disk graph.

However, there are disk graphs (without the interior-disjoint restriction) that are not

planar. For example, disk graphs may contain arbitrarily large cliques. This subsection

shows (Theorem 3.4) that if a disk graph contains only very small cliques (with at most

two vertices), then it is planar. The converse is clearly not true, as demonstrated by a

triangular packing of unit disks, which generates a planar disk graph with many triangles

(cliques with three vertices).

Lemma 3.3 Let f : V ! R2 (locations) and r : V ! R (disk radii) be a realization

of a disk intersection graph G = (V;E). Let (a; b) and (c; d) be edges in E with distinct

endpoints. If the line segments (f(a); f(b)) and (f(c); f(d)) cross, then the subgraph

induced by fa; b; c; dg contains a triangle.

Proof: For readability, let v denote also f(v) for v 2 fa; b; c; dg. Suppose that (a; b) and
(c; d) cross at some point e, as shown in Figure 3.1. Then the sum of each pair of opposite
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Figure 3.1: If two segments cross in a disk graph realization, then their endpoints induce

a triangle.
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sides of the quadrilateral acbd is at most the sum of its diagonals. More precisely, let uv

denote the Euclidean distance ku� vk between points u and v. Then

ac+ bd � (ae+ ec) + (be+ ed)

= (ae+ be) + (ec+ ed)

= ab+ cd:

Since (u; v) 2 E if and only if uv � r(u) + r(v), it follows that

ac+ bd � ab+ cd

� r(a) + r(b) + r(c) + r(d)

= (r(a) + r(c)) + (r(b) + r(d)):

Therefore, either ac � r(a) + r(c) or bd � r(b) + r(d). That is, either (a; c) 2 E or

(b; d) 2 E. Similarly, ad + bc � ab+ cd, so that either (a; d) 2 E or (b; c) 2 E. Any of

these four possibilities implies a triangle.

Theorem 3.4 Every triangle-free disk graph is planar.

Proof: Let f : V ! R2 (locations) and r : V ! R (disk radii) be a realization of

a disk intersection graph G = (V;E). If, for some pair of edges (a; b) and (c; d) in E

with distinct endpoints, the line segments (f(a); f(b)) and (f(c); f(d)) cross, then the

endpoints induce a triangle in G by Lemma 3.3. Otherwise, no such line segments cross,

and the graph is planar by de�nition.

Corollary 3.4.1 No disk graph has an induced subgraph homeomorphic to K3;3.

Proof: Suppose some disk graph has an induced subgraph homeomorphic to K3;3. Then

there is a disk graph homeomorphic to K3;3, since any class of intersection graphs is

closed under taking induced subgraphs. This graph is clearly not planar. However, all
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graphs homeomorphic to K3;3 are triangle-free. Therefore G is planar by Theorem 3.4, a

contradiction.

On the other hand, there are K4-free disk graphs that are not planar. For example,

the graph in Figure 3.2 is homeomorphic to K5. Note that although Figure 3.2 is K4-

Figure 3.2: A K4-free disk graph homeomorphic to K5

free, it is naturally (by Theorem 3.4) not triangle-free . Figure 3.2 is actually a unit disk

graph. To see this, notice that in the realization shown, there is exactly one disk that is

larger than unit size. Simply shrink it about its centre until it is of unit size. This will

make it less visible in the drawing, but will not a�ect its adjacency.

3.1.2 Every � -Strip Graph is a Cocomparability Graph

De�nition 3.5 A directed orientation ~G = (V; ~E) of the complement of a � -strip graph

G, and a realization f : V (G)! R� [0; � ] are compatible if they satisfy (u; v) 2 ~E if and

only if (u; v) =2 E and xf(u) < xf (v) for all u; v 2 V .

Note that ~G really is an orientation since, for every (u; v) 2 E, either xf (u) < xf (v)

or xf(v) < xf(u), but not both. That is, ~G is asymmetric, as required. Notice that
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there is precisely one compatible orientation for every realization, but that there might

be several realizations that are compatible with any orientation.

Lemma 3.6 For every strip thickness � 2 [0;
p
3=2], the compatible orientation associ-

ated with any � -strip realization of a graph is a transitive orientation (i.e., a strict partial

order).

Proof: Let G = (V;E) be a strip graph, f be a strip realization, and ~G = (V; ~E) the

compatible orientation. Then ~G is transitive. For if (a; b) 2 ~E and (b; c) 2 ~E then

xf(a) < xf (b) < xf(c). Furthermore, since kf(b) � f(a)k > 1 and 0 � � � p3=2, we
have

xf (b)� xf (a) >
q
1� (yf(b)� yf(a))2

�
p
1� � 2

� 1=2:

Similarly, xf(c)� xf(b) > 1=2. Therefore,

xf (c)� xf(a) = (xf (c)� xf(b)) + (xf(b)� xf(a))

> 1=2 + 1=2

= 1:

It follows that (a; c) 2 E and (a; c) 2 ~E.

By a similar proof, compatible orientations for L1 strip graphs (for which 0 � � � 1=2)

are also transitive.

Theorem 3.7 Strip graphs form a subclass of cocomparability graphs.

Proof: Follows immediately from Lemma 3.6.



Chapter 3. Unit Disk Graphs 56

Theorem 3.8 For every strip thickness � >
p
3=2, there is a � -strip graph that is not

a cocomparability graph.

Proof: We will construct C5 in a \thick" strip. Since cocomparability graphs are perfect

but C5 is not, it follows that C5 is not a cocomparability graph. Chapter 4 proves

the stronger claim that no induced cycle (odd or even) on �ve or more vertices is a

cocomparability graph (Theorem 4.6).

Let y be any value that satis�es
p
3=2 < y � minf�;p15=4g. Construct �ve points

P = fp1; p2; p3; p4; p5g in the strip, where

p1 = (�3=4; 0);

p2 = (�1=2; y);

p3 = (1=2; y);

p4 = (3=4; 0);

p5 = (0; 0);

as shown in Figure 3.3. Then the unit disk graph G(P ) generated by P is isomorphic to

p1

p2 p3

p4p5

Figure 3.3: A set of �ve points that generate an induced cycle.

C5 (although this is clearly not the only way to realize C5 in a suitably thick strip).
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3.2 Exploiting a Geometric Model

3.2.1 Least Vertex-Weight Paths in Unit Disk Graphs

Finding short paths is a natural operation on graphs, see ([CLR90] pages 514{578) for

example. This section develops an algorithm that �nds a path (that minimizes the sum

of the weights of its vertices) from a set of source vertices to all other vertices in a unit

disk graph. That is, it solves the multiple-source least vertex-weight path problem on unit

disk graphs.

Any algorithm for �nding a least edge-weight path must examine at least 
(E) edges,

so that 
(E) is a lower bound for the algorithm's run time. To see this, consider an

algorithm on the bipartite graph in Figure 3.4 in which all edges but one, to be determined
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Figure 3.4: Adversary argument for shortest path

by an adversary, have weight 1. Suppose the algorithm fails to examine some edge (u; v)

from the jU j�jV j = �(E) edges between sets U to V . The adversary then makes (u; v) the

0-weight edge. Therefore, the algorithm clearly fails to �nd the shortest path (s; u; v; t)

from s to t.
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This adversary argument does not hold for least vertex-weight paths. If we could

implicitly represent the edges, then we might be able to design algorithms whose com-

plexities do not depend on the number of edges. This section does so by exploiting a

geometric representation for unit disk graphs. In particular, it solves the multiple-source

least vertex-weight path problem for unit disk graphs with nonnegative vertex-weight in

O(V log V ) time, where the unit disk graph G = (V;E) is represented by a realization

f : V ! R2. We will derive the �nal algorithm by modifying Dijkstra's algorithm in

several phases.

By way of background, Dijkstra's algorithm solves the single-source shortest path

problem on graphs with nonnegatively weighted edges; see ([CLR90] pages 527{532) for

example. The version in Table 3.1 solves a variation of this problem; it �nds the least

edge-weight path from any vertex in S to all vertices in V . A well-known way of solving

this multisource variation, without modifying Dijkstra's algorithm, is to modify the input

graph by adding a new source vertex that is incident, via zero-weight edges, to all vertices

in S. We will usually not have the luxury of e�ecting such modi�cations to our unit disk

graphs when they are represented by sets of points in the plane. Therefore, Dijkstra's

algorithm in Table 3.1 simulates the new source vertex and the jSj new edges by \priming"

the queue with the source vertices in S.

Dijkstra's algorithm uses a priority queue Q, a data structure that supports the

following operations.

Q.construct(V ,d) builds the priority queue containing the set V with keys d.

Q.not-empty() is true if Q does not contain any elements.

Q.extract-min() removes and returns the highest priority item, i.e., the one with the

lowest key dv, from the queue.
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Table 3.1: Algorithm: DIJKSTRA(G,S) [Dijkstra's Algorithm]

Input: A nonnegatively weighted graph G = (V;E;w) and
a set of source vertices S � V .
Output: A shortest path forest, given by the parent array �, and

the distance from S to every vertex, given by d.

1 for each vertex u 2 V
2 do if u 2 S /* Prime the queue with S. */

3 then du  0 /* i.e., simulate w(s; u) = 0 */

4 else du  1
5 �u  NIL

6 Q.construct( V , d )

7 while Q.not-empty()

8 do u Q.extract-min()

9 L fv : (u; v) 2 Eg
10 for each vertex v 2 L
11 do if dv > du + w(u; v)
12 then dv  du + w(u; v)

13 Q.decrease-key(v, dv)
14 �v  u

15 return (�; d)
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Q.decrease-key(v,dv) increases the priority of v by lowering its key to dv.

Dijkstra's algorithm �nds least edge-weight paths in O((V + E) log V ) time when its

priority queue is implemented as a binary heap [CLR90]. Note that this performance can

be improved to O(V log V +E) time using Fibonacci heaps [CLR90], but the algorithms

presented in this section do not need to do so since they attain their e�ciency in other

ways. Before modifying the algorithm any further, let us prove1 that the key of any

vertex removed from the queue (at Step 8) is no more than that of any subsequently

removed vertex.

Lemma 3.9 (The Monotone Lemma) The vertex keys form a nondecreasing sequence

in the order that Dijkstra's algorithm removes them from the queue.

Proof: We need only prove that Dijkstra's algorithm maintains the invariant that no

vertex in the queue has a key less than that of an already removed vertex. This invari-

ant holds trivially after the algorithm constructs the queue. Thereafter, the algorithm

changes the priority of a vertex v only at Step 13, by calling Q.decrease-key(v, dv). At

this stage, vertex u has just been removed from the queue, and dv  du+w(u; v). There-

fore dv � du, since all weights are nonnegative. By the invariant, du is no less than the

key of any other removed vertex. It follows that dv also is not less than that of any

removed vertex.

Vertex Weights

We can further modify Dijkstra's algorithm to solve the least vertex-weight path problem.

Here, the weight of a path is the sum of the weights of its vertices. The vertex weights

must be nonnegative, as was also true for the edge weights in the previous algorithm.

1This fact is probably well-known. Nevertheless, I was unable to �nd it stated in a standard reference,

so I have chosen to prove it here for completeness.
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Again, the usual way of solving this variation is to modify the graph, not the algorithm.

To simulate the weight of a vertex with edge weights, set the weight of every incoming

edge to the vertex weight. Since we wish to avoid explicit edge weights, we must change

the algorithm by changing every occurrence of w(u; v) to w(v). In particular, we must

change the already-simulated w(s; u) in Step 3 from the constant 0 to w(u) for all u 2 S.
Also, in Steps 11 and 12, we must change the edge-weight term w(u; v) to the vertex-

weight term w(v). The modi�ed algorithm VERTEX-DIJKSTRA is shown in Table 3.2.

Table 3.2: Algorithm: VERTEX-DIJKSTRA(G,S) [Dijkstra's algorithm for vertex

weights]

Input: A nonnegatively vertex-weighted graph G = (V;E;w) and
a set of sources S � V .

Output: A least-weight path forest, given by the parent array �, and

the weight from S to every vertex, given by d.

1 for each vertex u 2 V
2 do if u 2 S /* Prime the queue with S. */
3 then du  w(u) /* i.e., simulate w(s; u) = w(u) */

4 else du  1
5 �u  NIL

6 Q.construct(V , d)
7 while Q.not-empty()

8 do u Q.extract-min()

9 L fv : (u; v) 2 Eg
10 for each vertex v 2 L
11 do if dv > du + w(v)

12 then dv  du + w(v)
13 Q.decrease-key(v, dv)

14 �v  u

15 return (�; d)

The running time has not changed; it is still O((V + E) log V ). We can do better,

though, because algorithm VERTEX-DIJKSTRA changes the priority of each vertex
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exactly once, when the algorithm visits it for the �rst time. This is shown by the following

lemma. Note that the lemma would not be true for Algorithm DIJKSTRA, that is, if

the algorithm uses arbitrary edge weights.

Lemma 3.10 Algorithm VERTEX-DIJKSTRA determines the �nal priority of a non-

source vertex the �rst time it removes an adjacent vertex from the queue.

Proof: Let v be a nonsource vertex, and let u be the �rst adjacent vertex removed from

the queue (at Step 8). Then dv  du +w(v) at Step 12, and dv either remains in�nite if

du is in�nite, or attains some �nite value if du is �nite. Now, let u
0 be any subsequently

removed vertex adjacent to v. By the Monotone Lemma, du � du0 when the algorithm

removes u0 from the queue (at Step 8). Therefore, dv = du + w(v) � du0 + w(v), so that

the test at Step 11 fails, and Step 13 does not get called to change the priority of v.

This lemma implies that Algorithm VERTEX-DIJKSTRA, when recalculating prior-

ities, need not examine all vertices adjacent to a removed vertex. Rather, it need only

examine those nonsource vertices that are not adjacent to any previously removed ver-

tices. To facilitate this, we can modify the algorithm to mark source vertices at Step 3.5

and adjacent nonsource vertices at Step 9.5. The new algorithm must also compute the

set of adjacent unmarked vertices L accordingly. The complete algorithm MIN-PATH is

shown in Table 3.3.

Lemma 3.11 Algorithm MIN-PATH �nds a lightest path forest in O(V log V +E) time.

Proof: The correctness of the algorithm follows from the correctness of Dijkstra's algo-

rithm and the preceding discussion. Using a binary heap priority queue, Q.construct()

takesO(V ) time,Q.extract-min() takesO(log V ) time, and Q.decrease-key() takesO(log V )

time (see [CLR90] pages 140{152). Vertex operations therefore take O(V log V ) time
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Table 3.3: Algorithm: MIN-PATH(G,S) [Least Vertex-Weight Path]

Input: A nonnegatively vertex-weighted graph G = (V;E;w) and
a set of sources S � V .

Output: A lightest path forest, given by the parent array �, and
the weight of the lightest path from S to every vertex, given by d.

1 for each vertex u 2 V
2 do if u 2 S
3 then du  w(u)
3.5 MARK(u)

4 else du  1
5 �u  NIL

6 Q.construct(V , d)

7 while Q.not-empty()

8 do u Q.extract-min()

9 L fv : v is not marked and (u; v) 2 Eg
9.5 MARK(L)

10 for each vertex v 2 L
11 do if dv > du + w(v)
12 then dv  du + w(v)

13 Q.decrease-key(v, dv)
14 �v  u

15 return (�; d)
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since the algorithm removes each vertex from the queue exactly once, marks it exactly

once, and therefore decreases its key at most once. The remaining step is Step 9, which

examines every edge twice in a straightforward implementation. This takes O(E) time

and the lemma follows.

Exploiting Unit Disk Graphs

Now that we have isolated the dependence of Algorithm MIN-PATH on the edges of

the graph, we can eliminate this dependence for unit disk graphs. We will do this by

e�ciently implementing vertex marking, as well as Step 9 in Algorithm MIN-PATH, for

unit disk graphs represented as a set of points in the plane. We will follow the theoretical

framework proposed by Imai and Asano [IA86], who solve depth �rst search and breadth

�rst search in O(V log V ) time for another class of geometrically represented graphs. In

the process, we will also derive depth �rst and breadth �rst search algorithms that run

in O(V log V ) time on unit disk graphs. We will require two basic operations: LIST1(v)

and MARK(v). The MARK(v) operation marks a vertex v, as in Algorithm MIN-PATH.

The operation LIST1(v) returns an unmarked vertex adjacent to v if one exists, and

returns NIL otherwise. We can therefore implement Step 9 (which includes Step 9.5)

in the MIN-PATH algorithm by calling Algorithm LIST-DELETE in Table 3.4. The

following property of LIST-DELETE is straightforward.

Property 3.12 ([IA86]) Every sequence of O(V ) calls to LIST-DELETE makes O(V )

calls to LIST1 and to MARK.

This, together with our previous discussion of AlgorithmMIN-PATH, proves the following

lemma.
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Table 3.4: Algorithm: LIST-DELETE(G, u) [Return and mark (delete) all un-

marked vertices adjacent to u in G]

Input: A graph G = (V;E) and a vertex u 2 V
Output: L = fv : v is not marked and (u; v) 2 Eg
Side E�ect: All vertices in L are marked.

1 v LIST1(u)

2 L ;
3 while v 6= NIL

4 do L L+ fvg
5 MARK(v)
6 v LIST1(u)
7 return L

Lemma 3.13 Suppose any sequence of O(V ) calls to LIST1 and MARK can be executed,

on-line, in gt(V;E) (= 
(V )) time and gs(V;E) (= 
(V )) space. Then Algorithm MIN-

PATH �nds a lightest path forest in O(gt(V;E) + V log V ) time and O(gs(V;E)) space.

Proof: As in the proof of Theorem 3.11, Q.construct() takes O(V ) time, Q.extract-

min() takes O(log V ) time, and Q.decrease-key() takes O(log V ) time using a binary

heap priority queue. Vertex operations therefore take O(gt(V;E) + V log V ) time since

the algorithm removes each vertex from the queue exactly once, marks it exactly once,

and therefore decreases its key at most once. The remaining step is Step 9, which the

algorithm executes exactly once for each of jV j vertices on the queue. This therefore

takes O(gt(V;E)) time by Property 3.12, and the lemma follows.

Suppose a unit disk graph G = (V;E) is represented by a realization f : V ! R2.

Then we can implement a call to LIST1(v) with a disk query, that is, by �nding a point

in f(V ) that lies within the unit radius disk centered at f(v). We can implement a call to
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MARK(v) by simply deleting v from V . We will see how to implement these operations

e�ciently in Section 3.2.2. In particular, we will prove the following theorem.

Theorem 3.17 (Section 3.2.2)Given a �nite set of points f(V ) in the plane, a sequence

of O(V ) disk queries and point deletions execute in O(V log V ) time, given O(V log V )

preprocessing time with O(V ) space.

Since LIST1 and MARK are e�ectively equivalent to disk query and site deletion

respectively, we immediately have the following corollary.

Corollary 3.13.1 A sequence of O(V ) calls to LIST1 and MARK on unit disk graphs

can be executed in O(V log V ) time and O(V ) space.

Lemma 3.13 and Corollary 3.13.1 therefore prove the main result of this section, as

stated by the following theorem.

Theorem 3.14 Given a representation of a unit disk graph by its realization (V; f), a

least vertex-weight path can be found in O(V log V ) time and O(V ) space.

In addition to �nding least weight paths, e�ciently, we can also perform an e�cient

depth �rst search on a unit disk graph, given a realization. Imai and Asano [IA86] show

that depth �rst search can be executed quickly if LIST1 and MARK can be executed

quickly. The following theorem makes this more precise.

Theorem 3.15 ([IA86]) Suppose a sequence of O(V ) calls to LIST1 and MARK can be

executed, on-line, in gt(V;E) (= 
(V )) time and gs(V;E) (= 
(V )) space. Depth �rst

search can be executed in O(gt(V;E)) time and O(gs(V;E)) space.

Theorem 3.16 below applies Theorem 3.15 to unit disk graphs. We will use Theo-

rem 3.16 in Section 5.1 to determine if unit disk graphs are connected in O(V log V )

time.
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Theorem 3.16 Depth �rst search on unit disk graphs can be executed in O(V log V )

time and O(V ) space, given a geometric representation.

Proof: The theorem follows from Theorem 3.15 and Corollary 3.13.1.

3.2.2 Semi-Dynamic Single-Point Circular-Range Queries

We are now ready to discuss disk queries in more detail. Given a �nite set S of sites

(points in the plane), a disk query asks for just one site inside a (closed) query disk with

unit radius, or a report that no such site exists. Equivalently, it asks for a site within

unit distance of a query point, that is, the center of the query disk. In addition, we

want to delete sites from the set. This section presents an algorithm that executes a disk

query operation in O(log S) time and deletes a site in O(log S) amortized time, given

O(S logS) preprocessing time with O(S) space.

The disk query problem resembles circular range searching|report all sites in a query

disk [PS85]. Another related problem is nearest neighbour search|report the site closest

to the query|which can be solved with Voronoi diagrams [PS85]. These results are not

immediately useful for our needs, since they do not support deletions e�ciently. Note,

however, that the algorithms developed in this section are not fully dynamic in that they

do not support insertion.

The Data Structure

At the coarsest level, our disk-query data structure is a square grid in the plane. The

jSj sites fall into the cells of this grid, and the contents of each cell are organized in a

data structure. At a �ner level, the data structure explicitly represents only those cells

that contain sites, jSj cells at most. More concretely, construct the data structure by

conceptually partitioning the plane into square cells with unit diagonals, that is, with
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q
1=2 sides. To avoid ambiguous site placement, assume that each cell is closed on the

left and bottom, and open on the right and top. Label a cell with the coordinates of

its lower left corner. We can determine the label of the cell that contains a given site

in constant time since our model of computation includes the 
oor function. The data

structure is a balanced tree (ordered lexicographically by label) of those cells that contain

sites. In this way we can determine in which cell in the tree a site lies, or determine that

the site is not in any cell in the tree, in O(log S) time. We can also insert a new cell in

O(log S) time. We can therefore create the complete tree of cells in O(S log S) time as

follows. For each site v, determine if the cell containing v is already in the tree. If not,

create a new cell, insert it into the tree, and associate a linked list (containing just v)

with the cell. Otherwise, just append v to the end of the list associated with the cell in

constant time. Each cell must now organize its list of sites into its own data structure.

Searching Cells

Before discussing how the sites within a cell are organized, let us �rst examine the

structure of a query with respect to these cells. Note that the cells covered by any query

disk come from a set of 21 cells as shown in Figure 3.5. We can therefore answer the

query by looking in at most 21 cells.

Consider the cell in which the center of the query disk lies. This cell always lies

completely within the query disk. Therefore, if it is in the tree, any site within it satis�es

the query.

The other covered cells lie either strictly to the left, to the right, above, or below the

query point. Suppose �rst that the cell lies strictly below the query point q = (xq; yq);

the other three cases are handled symmetrically. We can therefore assume that our query

disk is in fact a query \test tube", that is, the union of the query disk and the in�nite
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Figure 3.5: Any unit-radius query disk covers at most 21 cells.

rectangle [xq�1; xq+1]�[yq;1). The center of the test tube is still de�ned to be (xq; yq).

The following de�nitions and observations are from Appendix A. A tube T contains

a subset P � S of sites if P � T , and it is empty if it does not contain any sites. A tube

and a site on its boundary are said to be incident. A tube is said to be supporting (with

respect to S) if it is incident to exactly one site and is otherwise empty. A site in S is

said to be a test tube maximal site with respect to S, or just a maximal, if it is incident

to some supporting tube. By the following lemma, if we wish to report a site in a test

tube, it su�ces to examine only maximal sites.

Lemma A.2 (Appendix A) A test tube contains a site if and only if it contains a

maximal site.
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Binary Searching Maxima

Order the maxima from left to right. Say that two maxima are neighbouring if they are

adjacent in the order. Then binary search can be used to report a maximal in a query

test tube. The following lemmas provide the details. The proofs are presented in the

appendix.

Lemma A.3 (Appendix A) If a site p is incident to a test tube that contains a site to

the left of p and a site to the right of p, then p is not maximal.

Lemma A.5 (Appendix A) Let p be a maximal and let Tp be any incident test tube.

If Tp does not contain the right neighbour of p, then Tp does not contain any sites to

the right of p. Similarly, if Tp does not contain the left neighbour of p, then Tp does not

contain any sites to the left of p.

We are now ready to search for a maximal in a test tube. Let p be an arbitrary

maximal and let T be the query test tube. If T contains p, then we are done. If p

lies strictly left of T , then any sites in T must lie to the right of p. Similarly, if p lies

strictly to the right of T , then any sites in T must lie to the left of p. Otherwise, if p lies

neither strictly to the left nor strictly to the right of T , then we can lower T onto p to

get test tube T 0. If T 0 does not contain any sites, then neither does T (since T is strictly

contained by T 0). By Lemma A.3, at most one neighbour of p lies in T 0. By Lemma A.5,

if no neighbour lies in T 0, no sites at all lie in T 0 and we are done. Also by Lemma A.5, if

a neighbour does lie in T 0, then any other sites in T 0 (and therefore any sites in T ) must

lie on this neighbour's side of p.

Any data structure that supports binary search can therefore determine, in O(log S)

time, if one of the (at most jSj) maxima lies in a given test tube T . Such a data

structure is developed in Appendix A; the test tube data structure represents the test
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tube maxima of the set of sites S. The following two theorems from the appendix

describe the performance of this data structure.

Theorem A.11 (Appendix A) The test tube data structure (B(S);D(S)) of sites S

can be built in O(S logS) time and O(S) space.

Theorem A.17 (Appendix A) O(S) sites can be deleted from the test tube data struc-

ture (B(S);D(S)) of sites S in O(S logS) time.

Since any cell could be either to the left, right, above, or below a query point, each

cell must maintain four sets of maxima. We can derive the other three directions for

cells symmetrically, by rotating the coordinate system in 90 degree increments. This

completes the disk query data structure.

A Summary of Algorithms

In summary, the data structure requires the following three algorithms. The preprocessing

algorithm builds the data structure by constructing the tree of cells in O(S logS) time.

Then, for each cell b, it builds four sets of maxima from its nb sites in O(nb log nb) time.

Since
P

b nb = jSj, and log b � log jSj, the sum of the O(nb log nb) costs over all nonempty

cells is O(S log S).

To �nd a site in a query disk, the query algorithm must examine at most 21 cells.

The locations of these cells are all closely related to the location of the cell containing

the query point, so the query algorithm can �nd each each such cell in O(log S) time.

The query algorithm can then extract a suitable site in constant time from the center

cell, or in O(log nb) time from any of the others.

To delete a site, the deletion algorithm �nds the cell that contains the site in the tree in

O(log S) time. It then deletes the site from all four maxima lists in O(log nb) = O(log S)

amortized time. This proves the following theorem.
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Theorem 3.17 Let S be a set of sites in the plane. A sequence of O(S) disk queries and

site deletions execute in O(S log S) time, given O(S logS) preprocessing time and O(S)

space.

3.2.3 Building an Adjacency List from a Model

Recall from De�nition 1.2 that the unit disk graph G�(P ) generated by a set V of points

and a real threshold � is the graph (V;E) where E = f(p; q) : kp � qk � �g. How

does G�(P ) change as � changes? In particular, how does the number of edges change?

Surprisingly, the number of edges generated by two di�erent distance units are linearly

related (Theorem 3.18 below).

We saw how a geometric realization of a unit disk graph can be used to implicitly

represent the edges, and consequently to design algorithms whose computational com-

plexity does not depend on the number of edges. What can we do if we have only the

geometric representation of the graph, and we wish to compute its edges? One solution

would be to simply look at every pair of vertices, and check if the corresponding points

are within unit distance of one another. This method would take �(V 2) time, which is

optimal for dense graphs.

We can do better if our graphs are sparse. Theorem 3.18 makes it possible to report

e�ciently the edges of a generated unit disk graph G�(V ) = (V;E�) in O(V log V + E�)

time. This section demonstrates this property by presenting and analyzing two di�erent

algorithms. Given a set V of points in the plane, these algorithms report the edges E� in

the unit disk graph G�(V;E�) for all distance thresholds �. Although these two algorithms

are correct for di�erent reasons, we will see that their e�ciency is due to Theorem 3.18.

This reporting problem is also known in the literature [BSW77, DD90, LS94] as the �xed-

radius all-nearest neighbours problem: given a set P 2 Rk of points and a �xed radius �,

report all pairs of points within � of each other.
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Theorem 3.18 Let � < � be two nonnegative distance thresholds. If G�(V ) = (V;E�)

and G�(V ) = (V;E�) are unit distance graphs generated by the same set V of sites, then

jE�j = O(V + E�).

Proof: This proof generalizes a demonstration by Dickerson and Drysdale [DD90] show-

ing (e�ectively) that jE2j = O(V + E1). Let N�(v) denote the closed neighbourhood of

v in G�. That is, N�(v) is the set of sites in P within � units of f(v). To simplify the

presentation, let us assume that all graphs have loops, that is, that (v; v) 2 E(G) for

every v 2 V (G). Let us also assume that each undirected edge is really two undirected

edges. Then

E� =
[
v2V
f(u; v) : u 2 N�(v)g

and

jE�j =
X
v2V
jN�(v)j: (3.1)

The rest of this proof shows that
P

v2V jN�(v)j = O(E�) by deriving a lower bound for

jE�j. The basic idea is to partition the plane into regions with diameter at most �. Any

pair of sites in such a region will generate an edge in E�. We will then associate, with

each site v, a region containing at least a constant fraction of the sites in N�(v). Each

such region therefore contributes roughly jN�(v)j2 edges to E�. Although a region might

be associated with more than one site, it will not be associated with more sites than a

constant multiple of jN�(v)j. The (disjoint) sum of edges in these associated regions is

therefore at least roughly

X
v2V

(jN�(v)j2=jN�(v)j) =
X
v2V
jN�(v)j:

More concretely (and more carefully), overlay the plane with a square grid whose cell

diagonals are � units long, that is, whose sides are �=
p
2 units long. Let the cells be closed

on the left and bottom, and open on the right and top. These cells clearly partition the

plane and have diameter at most �, as outlined in the previous paragraph.
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For any vertex v, the neighbourhood N�(v) comes from at most a constant number

k1 of these grid cells. The exact value of this constant is not crucial, but it is nevertheless

easy to exhibit a value that will su�ce. For example, there are at most

k = b �

�=
p
2
c = b�

�

p
2c (3.2)

columns strictly between v and the leftmost site in N�(v), since each cell has width �=
p
2.

Therefore, counting the leftmost, rightmost, and center columns, the sites in N�(v) come

from at most 3 + 2k columns. The same argument holds for rows, so N�(v) touches at

most k1 = (3 + 2k)2 cells.

Let the maximum cell Cv be the cell that contains the most sites from N�(v) (break

ties arbitrarily). The Pigeonhole principle implies that the maximum cell Cv contains at

least jN�(v)j=k1 sites from N�(v). That is,

jCvj � jN�(v)j
k1

(3.3)

where jCvj is the number of sites in Cv (note that not all of these jCvj sites need belong

to N�(v)). As promised, every pair of sites in Cv generates an edge in E� since every

such pair is separated by at most � units. Does this mean that jE�j � P
v2V jCvj2? No,

because cell Cv may be counted more than once in this way if it is the maximum cell for

more than one site, that is, if Cv = Cu for some site u 6= v.

Fortunately, there is a constant k2 such that no cell Cv is counted more than k2jCvj
times. Again, the exact value of k2 is not crucial, but we can easily derive a suitable

one. Suppose Cu = Cv for some site u. Then there are again at most k columns (see

Equation 3.2) strictly between u and Cv. By the same argument as above, u must come

from one of k2 = (3 + k)2 cells. But if the cell C� containing u contains more than jCvj
sites, then Cv would could not be the maximal cell for u, since C� contains only sites

from N�(u). Therefore u must be one of at most k2jCvj sites.
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A lower bound for the number of edges in G� is, therefore,

jE�j �
X
v2V

number of pairs in Cv

jfu : Cu = Cvgj

� X
v2V

jCvj2
k2jCvj

=
1

k2

X
v2V
jCvj (3.4)

Substituting Inequality 3.3 into Inequality 3.4 yields

jE�j � 1

k2

X
v2V

jN�(v)j
k1

=
1

k1k2

X
v2V
jN�(v)j

That is, X
v2V
jN�(v)j � k1k2jE�j (3.5)

Finally, substituting Inequality 3.5 into Inequality 3.1,

jE�j �
X
v2V
jN�(v)j

� k1k2jE�j:

Finally, if E0
� and E0

� are versions of E� and E� without loops and not directed, then

jE0
�j = O(E�) = O(E�) = O(V + E0

�), and the theorem follows.

Note that we cannot do without the O(V ) term in general. For example, if V =

f(x; 0) : x = 0; 1; 2; : : : ; ng, � = 0:5, and � = 2�, then G�(V ) has no edges at all, while

G�(V ) has n edges. However, this is only true if G�(V ) is not connected, as shown by

the following corollary.

Corollary 3.18.1 Let � < � be two nonnegative distance thresholds. If G�(V ) = (V;E�)

and G�(V ) = (V;E�) are unit distance graphs generated by the same set V of sites, and

G�(V ) is connected, then jE�j = O(E�).
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Proof: The corollary follows from the theorem since jV j = O(E�) for connected graphs

G� = (V;E�).

A Plane-Sweep Algorithm

To simplify the notation for Algorithm ADJ-PLANE-SWEEP (Table 3.5), assume a unit

distance threshold � = 1. Algorithm ADJ-PLANE-SWEEP maintains three indices p,

q, and r; and two sets L and Bar of points. The set L is a one-dimensional array of

sites, indexed from 1 to jV j, and p, q, and r are indices into L; for convenience, write

(xp; yp) = Lp. Array L stores a lexicographically sorted list of the sites in V . That is,

p < q implies xp < xq, or xp = xq and yp < yq. The array L supports two operations:

L:build(V ), which constructs the lexicographically sorted list; and Li, which returns the

site indexed by i. For each p 2 V , de�ne the set

Barp = fq : q 2 V; q < p; and xp � 1 � xqg:

ADJ-PLANE-SWEEP reuses storage by dropping the subscript, thereby representing

each such set with the single data structure Bar. See Figure 3.6 for a typical event in the

plane-sweep. Algorithm ADJ-PLANE-SWEEP examines each site in L from left to right

using the index p. It maintains the invariant that indices r and p delimit the contents

of the set Bar. To do so, it increases r until xp � 1 � xr. In the process, it removes all

sites that have dropped out of the bar.

Correctness Let G(V ) = (V;E) be the unit disk graph generated by V and suppose

that (Lp; Lq) 2 E. By de�nition, kLp�Lqk � 1. Suppose, without loss of generality, that

q < p. Therefore q will be in the Bar when the algorithm encounters p since jxp�xqj � 1.

The algorithm therefore correctly reports edge (Lp; Lq) at Step 9 when it examines p.

Furthermore, the test in Step 8 ensures that it reports only edges in G(V ).
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Figure 3.6: Algorithm ADJ-PLANE-SWEEP examines site p

Table 3.5: Algorithm: ADJ-PLANE-SWEEP(V ) [Construct the list of edges for the
unit disk graph G(V ) generated by V by sweeping the plane.]

Input: A set V of sites.

Output: The edges E of the unit disk graph G(V ) = (V;E) generated by V .

0 L:build(V )

1 E  ;
2 p r 1

3 while p � jV j /* examine Lp */

4 do while r < p and xr < xp � 1 /* Bring Bar up to date */

5 do Bar Bar n frg
6 r r + 1

7 for each site q 2 Bar such that yq 2 [yp � 1; yp + 1]

8 do if kLp � Lqk � 1

9 then E  E [ f(Lp; Lq)g
10 Bar  Bar [ fpg
11 p p + 1

12 return E
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Complexity This algorithm can be implemented to run in O(V log V +E) time. The

preprocessing operation L:build(V ) just sorts the sites in O(V log V ) time.

Since the algorithm inserts each site into the Bar exactly once and removes each site

at most once, it makes O(V ) insertions and deletions. The implementation represents

the Bar as a balanced tree, a red-black tree for example [Sed83], sorted by y-coordinate.

Inserting (Step 10) or deleting (Step 5) a site therefore takes O(log V ) time for a total of

O(V log V ) time. Balanced trees support the extraction of sites in Step 7 in O(log V +Ip)

time, where Ip is the number of sites in the unit interval about yp [Sed83]. Examining

all V intervals therefore takes

O(V log V +
VX
p=1

Ip)

time.

The sites examined by Step 7 are all within
p
2 of p (see Figure 3.6 again). ThereforePjV j

p=1 Ip � jEp
2j where Gp

2(V ) = (V;Ep
2). By Theorem 3.18, it follows that:

jV jX
p=1

Ip = O(V + E):

The entire algorithm therefore takes O(V log V )+O(V +E) = O(V log V +E) time. We

have established the following theorem.

Theorem 3.19 Algorithm ADJ-PLANE-SWEEP returns the edges of the unit disk graph

G(V ) = (V;E) generated by a set V of points in O(V log V + E) time.

A Delaunay Triangulation Algorithm

The next algorithm is due to Dickerson and Drysdale [DD90]. It has the advantage that

it allows a preprocessing stage, which is time-critical, and which is independent of the

distance threshold �. This preprocessing stage takes O(V log V ) time. The algorithm

can then report the edges in G�(V ) in O(V +E) additional time. Brie
y, the algorithm
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performs a depth-�rst search on the thresholded Delaunay triangulation TDT(V )|the

Delaunay triangulation of V less any edges that are longer than �|from every vertex

p 2 V . The algorithm stops the current branch whenever it visits a vertex that is more

than � units from p. The algorithm reports an edge from p at all other visited vertices.

Table 3.6 provides more details.

Table 3.6: Algorithm: ADJ-DELAUNAY(V , �) [Construct G�(V ) by searching a

thresholded Delaunay triangulation]

Input: A set V of sites and a distance threshold �.
Output: The edges E� of the unit disk graph G�(V ) = (V;E�) generated by V .

0 Construct the Delaunay triangulation DT (V ) of V .

1 TDT(V ) DT (V ) n f(p; q) : kp � qk > � g
2 E�  ;
3 for every vertex p 2 V /* examine p */
4 do depth �rst search TDT(V ) from p, but stop each branch when

the current site is farther than � from p.

5 for each visited vertex q
6 do if kp� qk � �
7 then E�  E� [ f(p; q)g
8 return E�

Correctness Let (p; q) be an edge of the unit disk graph generated by V . Then there

is a path from p to q, in the Delaunay triangulation of V , such that every site on the

path is within � units of p. To see this, consider the line segment between p and q. This

line segment intersects several adjacent cells in the Voronoi diagram of the sites V . The

sequence (p = O1; O2; : : : ; Ok = q) of sites corresponding to these Voronoi cells is therefore

a path in the Delaunay triangulation by the duality of the Delaunay triangulation and

the Voronoi diagram (see Section 2.4.1). Now consider any site (Voronoi center) Oi in

this sequence, and let x be any point on the part of the segment intersecting the Voronoi
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Figure 3.7: The disk through p and q contains Voronoi center Oi

cell corresponding to Oi (see Figure 3.7). By the de�nition of Voronoi diagram, x is

closer to Oi than to any other site in V . It follows that the circle about x and through

Oi (that is, of radius kOi � xk) does not contain any other site in V . In particular, it

does not contain p or q (unless Oi equals p or q respectively). The circle with diametric

points p and q therefore contains the circle about x and so contains Oi also. Since in

addition kp � qk � �, the site Oi is within � units of p and q and of all other sites Oj

in the path. That is, (O1; O2; : : : ; Ok) is a path from p to q in the thresholded Delaunay

triangulation. Consequently, Step 7 will report the edge (p; q) when it examines p.

Complexity Let Gp = (V p; Ep) be the connected component (of the thresholded De-

launay triangulation TDT (V )) that contains p. Suppose that Step 4 visits a vertex q

so that q 2 V p. Since Step 1 thresholds the Delaunay triangulation, q must be within

� of its parent in the depth �rst search. This parent must be within � of p since Step 4
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cuts o� depth �rst search when the distance from p to the current site exceeds �. There-

fore, q is within 2� of p by the triangle inequality. It follows that (p; q) 2 E
p
2� where

G2�(V
p) = (V p; E

p
2�). Since Gp is connected, Corollary 3.18.1 applies to show that

Ep
2� = O(Ep). Since

P
p2V jEpj = jEj, it follows that Pp2V jEp

2�j = O(E) so that Step 6

executes O(E) times.

The Delaunay triangulation can be constructed inO(V log V ) time [PS85], and thresh-

olded in O(V ) time (the number of edges of a Delaunay triangulation is linear in the

number of sites). However, Volker Turau has discovered a way to implicitly threshold

the Delaunay triangulation in the preprocessing step [Tur91], thereby saving the O(V )

thresholding cost and the �(V ) cost of examining each vertex in Step 3. Represent the

Delaunay triangulation as an adjacency list. List every vertex p in nondecreasing order

of the length of the shortest edge incident with p. List every neighbour q of each vertex

p in nondecreasing order of the length of edge (p; q). Then, for any given threshold �,

Step 3 can examine the vertices in order, stopping when it encounters a vertex with every

incident edge longer than �. In this way, it examines only vertices that are not isolated in

G� (and at most one more). Similarly, Step 4 examines edges out of q in order, stopping

when it encounters an edge longer than � (charge the cost of detecting a long edge to

visiting q).

The following theorem summarizes.

Theorem 3.20 ([DD90, Tur91]) Given a set V of points in the plane, algorithm

ADJ-DELAUNAY takes O(V log V ) preprocessing time and, given a threshold �, returns

the edges of the unit disk graph G�(V ) = (V;E) in O(E) additional time.

The discussion above implies that the connected components of a unit disk graph are

equivalently the connected components of the underlying thresholded Delaunay triangu-

lation. These connected components can therefore be extracted in linear time by depth
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�rst searching the thresholded Delaunay triangulation.

Theorem 3.21 The connected components of a unit disk graph G�(V ) can be found in

O(V log V ) time, given a set V of points in the plane.

Other Work

There are other solutions to the �xed-radius all-nearest neighbour problem in the liter-

ature. Bentley, Stanat, and Williams [BSW77] have developed a solution that involves

partitioning the plane into a grid of square cells, much like the proof of Theorem 3.18.

They presented their algorithm in terms of the L1 metric in k-dimensional space, but it

is not di�cult to modify it to work with the L2 metric in the plane. Again, Theorem 3.18

explains the computational complexity of their algorithm. However, the time required to

access the cells containing sites in their algorithms is also a factor in the computational

complexity. Bentley et al. mention three possible ways to implement this set of cells,

leading to three di�erent time bounds for the complete algorithm, as the following table

summarizes.

Implementation of Occupied Cells Time Complexity

hash table O(V + E) average case

balanced tree O(V log V + E) worst case

two-dimensional array O(V + E) worst case

The two-dimensional array solution actually allocates space for all cells, occupied or

not, that intersect the bounding rectangle of the sites. Since the jSj sites may have an

arbitrarily large range of coordinates, the two-dimensional array may require arbitrarily

large space. The hash table or the balanced tree solutions, on the other hand, require

only a linear amount of space.

Subsequent to (and independent of) the development of Algorithm ADJ-PLANE-

SWEEP, Lenhof and Smid [LS92, LS94] described a similar algorithm that runs in
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Problem
Unit Disk

Performance Ratio

Arbitrary Graph

Performance Ratio

chromatic number 3 O(V (G) (log logV (G))2

(logV (G))3
) [Hal90]

vertex cover 3=2 2 [GJ79]

independent set 3 not constant [ALM+92]

domination 5 O(log V ) [Joh74]

independent domination 5 not constant [Irv91]

connected domination 10 ?

total domination 10 ?

Table 3.7: Performance ratios for approximation agorithms on unit disk graphs

O(V log V + E) time. Their approach is in e�ect a combination of our plane-sweep

algorithm and the cell method described in the last paragraph. This combination makes

it easier to adapt to higher dimensions than the pure plane-sweep algorithm. One at-

tractive feature of their presentation is that they have recorded an animation of their

algorithm on an easily-obtained videotape [LS94].

3.3 NP-Complete Problems Restricted to Unit Disk Graphs

Many well-known NP-complete problems on arbitrary graphs, in particular chromatic

number, vertex cover, independent set, domination, independent domination, and con-

nected domination [GJ79] remain NP-complete for unit disk graphs. Clark, Colbourn,

and Johnson provide reductions for all of these problems in their recent paper [CCJ90].

Remarkably, all of these problems have e�cient approximation algorithms. These algo-

rithms, due to Marathe, Breu, Hunt, Ravi, and Rosenkrantz [MHR92, MBH+95], achieve

the performance ratios in Table 3.7, which compares them with the best-known perfor-

mance ratios for arbitrary graphs. Section 3.3.3 presents the details for the chromatic

number problem.
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Clark et al. notice that \For all of the problems2 mentioned here, the complexities for

unit disk graphs and for planar graphs agree." We saw in Chapter 1 that there are some

tantalizing connections between planar graphs and unit disk graphs. Nevertheless, the

observation by Clark et al.may be misleading in its generality. In fact, the complexities of

these problems agree for unit disk graphs and for planar graphs with maximumdegree 4.

Conjecture 3.22 If a problem P is NP-complete for planar graphs with maximum

degree 4, then P is NP-complete for unit disk graphs, too.

Discussion For example, every grid graph is a planar graph with no degree exceeding 4.

If a problem is NP-complete for grid graphs then it is clearly NP-complete for unit

disk graphs, which include grid graphs as a special case. For example, the problem

DOMINATING SET has this characteristic [CCJ90]. But there seem to be stronger

connections. If a problem isNP-complete for planar graphs with maximumdegree 4, then

there is a \plan of attack" for proving that the problem is also NP-complete for unit disk

graphs. The idea is to embed the planar graph instance in a grid graph, then simulate the

embedded edges with a string of disks. The nature of the simulation naturally depends on

the problem under consideration. This \plan of attack" is unfortunately not su�ciently

well-de�ned to yield an easily applied theorem. Instead, the next subsection applies the

idea to an illustrative example, namely INDEPENDENT SET. The NP-completeness

proof for CHROMATIC NUMBER on unit disk graphs (Section 3.3.3) provides another

example. Clark et al. [CCJ90], who provide an explicit reduction for VERTEX COVER

rather than INDEPENDENT SET, provide even more examples.

2Besides these NP-complete problems, Clark et al. also consider the maximumclique problem, which

is polynomial for both planar and unit disk graphs. See Section 3.3.2 for more details.
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3.3.1 Independent Set

An independent set, also called a stable set in a graph is a set of vertices no two of

which are adjacent. The maximum independent set problem is to �nd an independent

set of greatest cardinality. This fundamental problem is very well known; the correspond-

ing decision problem is given below, and is taken verbatim from Garey and Johnson's

book [GJ79].

[GT20] INDEPENDENT SET

INSTANCE: Graph G = (V;E), positive integer K � jV j.
QUESTION:Does G contain an independent set of size K or more, i.e.,

a subset V 0 � V such that jV 0j � K and such that

no two vertices in V 0 are joined by an edge in E?

Theorem 3.23 ([CCJ90]) INDEPENDENT SET is NP-complete for unit disk graphs

under the L1, L2, and L1 metrics.

Proof: The problem is in NP since INDEPENDENT SET isNP-complete for arbitrary

graphs [GJ79]. Let us reduce INDEPENDENT SET, which remainsNP-complete [GJ79]

for planar cubic graphs, to INDEPENDENT SET for unit disk graphs. To this end, let

Gpc and k be an instance of INDEPENDENT SET on a planar cubic graph.

Begin by embedding the instance in a grid graph; this is done only to leave enough

room between vertices and edges for the next step. Let GdIJ be the grid graph induced

by the vertex set f(i; j) : 0 � i < I; 0 � j < Jg. Valiant [Val81] shows how to embed,

without crossovers, any planar graph of degree 4 (or less) with n vertices into Gd3n;3n.

His polynomial time method is simple: given any embedding of the graph in the plane,

strip o� one vertex at a time from the \perimeter" of the embedding. Embed these

vertices in reverse order into the grid. The mth vertex is typically embedded as shown

in Figure 3.8.
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Figure 3.8: Embedding the mth vertex [after [Val81]].

Next, simulate the vertices of the planar graph with disks, and simulate the edges of

the planar graph with a string of an even number of disks. We can use the grid embedding

to make this concrete. All disks in the layout have diameter 1=3. Center the disks at the

points P determined as follows. We must simulate three kinds of grid graph components:

nodes, pseudo-nodes, and segments. Here, nodes are those grid graph vertices in the

embedding that correspond to vertices of the planar cubic graph and pseudo-nodes are

those that do not. Segments are grid graph edges in the embedding. Figure 3.9 shows

how to simulate each of these components with disks. The �gure shows two types of

pseudo-nodes, those that bend and those that do not, even though they are simulated in

the same way. In terms of coordinates, simulate

� the node (i; j) with a disk centered at (i; j),

� the segment [(i; j); (i� 1; j)] with two disks, centered at (i� 1
3
; j) and (i� 2

3
; j),

� the segment [(i; j); (i; j � 1)] with two disks, centered at (i; j � 1
3
) and (i; j � 2

3
),
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Figure 3.9: Components for simulating grid embeddings

� the pseudo-node at (i; j) by putting a disk at (i� 1
6
; j) for each embedding fragment

of the form [(i; j); (i� 1; j)], and a disk at (i; j � 1
6
) for each embedding fragment

of the form [(i; j); (i; j � 1)].

Figure 3.10 simulates the embedding of a small graph (5 vertices, 6 edges). Note that

every edge of the planar cubic graph is simulated with an even number of disks, as

required.

Let n denote the number of nodes, p the number of pseudo-nodes, and s the number

of segments in the embedding. The size of the simulation is polynomial in the size of the

planar cubic graph since, by the properties of Valiant's embedding,

n+ p + s � (3jV j)2 + 2(3jV j2) + 2(3jV j � 1)(3jV j) = O(V 2)

The planar cubic graph Gpc has an independent set Ipc of size k or more if and only

if the unit disk graph Gud = (V;E) has an independent set Iud of size k
0 � k + p + s.

The following de�nitions and observation aid in seeing this. Say that a disk in the

realization of Gud is selected if it is in the independent set Iud. Say that an edge in Gpc

is saturated if one half of the disks that simulate it are selected. Equivalently, an edge is

saturated if exactly one disk is selected from each segment or pseudo-node simulating the

edge. Figure 3.11 shows a saturated edge along with a selected node disk. The following
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Figure 3.10: The embedding has 5 nodes, 3 bending pseudo-nodes, and 3 non-bending

pseudo-nodes. For easier identi�cation, the �gure outlines in bold the disks that simulate

nodes, and shows the underlying grid graph embedding.

Figure 3.11: A saturated edge and a selected node disk
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observation follows from the construction of the simulation.

Observation 3.24 An edge in the planar cubic graph Gpc can be saturated if and only

if at most one of its node disks is selected.

Now suppose that Ipc is an independent set of k vertices in Gpc. Select the node disks

corresponding to Ipc. By the observation above, we can now saturate every edge of Gpc

by selecting exactly one disk from each segment and pseudo-node in such a way that no

two disks overlap. This process yields k0 non-overlapping disks, which make up Iud as

required.

Conversely, suppose that Gud(P ) has an independent set of k
0 disks, and let Iud be the

maximum independent set that maximizes the number of saturated edges. Then every

selected node disk v is adjacent only to saturated edges. For otherwise the number of

saturated edges could be increased: remove v and the less than e=2 disks in the adjacent

unsaturated edge from Iug, and replace them with the e=2 disks that saturate the edge,

as shown in Figure 3.12. By the observation, Ipc, the set of vertices in Gpc corresponding

to node disks in Iud, is an independent set. Since the edges can contribute at most p+ s

disks to the k0 disks in Iud, it follows that k
0 � jIpcj+p+s. That is, jIpcj � k0�p�s = k,

as required.

Squares rotated by 45 degrees can substitute for disks in the above proof. If the grid

graph is �rst rotated by 45 degrees, then upright squares can substitute for the disks,

also. Therefore the proof is valid for disks under the L1 and L1 metrics, as well as the

L2 metric.

Corollary 3.24.1 VERTEX COVER is NP-complete for unit disk graphs under the

L1, L2, and L1 metrics.

Proof: VERTEX COVER has the same complexity as INDEPENDENT SET problem

with respect to restrictions on the graph [GJ79].
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Figure 3.12: Saturating an unsaturated edge. The bold circles on the left form a max-

imal independent set of disks from the edge. However, the edge can be saturated by

redistributing one of the node disks into the edge, as shown on the right.

3.3.2 Maximum Clique

Finding a maximum clique in an arbitrary graph is a well-known NP-complete prob-

lem [GJ79]. This problem is also closely related to �nding a maximum independent set,

since a clique in a graph is an independent set in its complement. We have already seen

that INDEPENDENT SET is NP-complete for unit disk graphs (Section 3.3.1). Nev-

ertheless, we will see in this section that a maximum clique in a unit disk graph can be

found in polynomial time, given a realization of the graph.

Let G = (V;E) be a unit disk graph and let f : V ! R2 be a realization of G.

To simplify the notation, let us assume that vertex names are synonymous with their

realizations; that is, v = f(v) for every vertex v 2 V . Although this practice might lead

to ambiguity, the role of a vertex will always be clear from context. First note that if C

is a maximum clique with more than one vertex in G, then it has a pair of sites p and q

that are farther apart than any other pair in C. The distance � between p and q must
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naturally satisfy � � 1. Furthermore, all sites in C must be within � units of p and q.

That is, let the lune through points p and q be the set of points in the region Rp;q, where

Rp;q = fx : x 2 R2 and kx� pk � � and kx� qk � �g

as shown in Figure 3.13. Then C � Rp;q, and in particular, C � Lp;q, where Lp;q =

V \ Rp;q is the discrete lune through p and q.

p q

Figure 3.13: The lune through a pair of sites.

A maximum clique containing p and q is therefore a maximum clique in the induced

subgraph G(Lp;q). We can now compute a maximum clique in G(Lp;q) by computing

a maximum independent set in the graph's complement G(Lp;q), since these sets are

identical.

Clark, Colbourn, and Johnson [CCJ90] prove that G(Lp;q) is cobipartite, that is, that

G(Lp;q) is bipartite. This is easy to see. The line through p and q partitions the lune

through p and q into two halves, say an upper half and a lower half. It is easy to verify

that each half has diameter �, which is at most 1. Therefore, any edge in the complement

must join a vertex in one half with a vertex in the other. Clark et al. show how to extract
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a maximum independent set from a maximummatching in G. Furthermore, a maximum

matching in a bipartite graph can be found in O(V 2:5) time ([HK73], see for example

[PS82] pages 225{226).

One algorithm for �nding a maximum clique in a unit disk graph G(V ) = (V;E),

therefore, is to examine all jEj adjacent pairs of vertices in V . For each pair fp; qg,
compute G(Lp;q) in O(V 2) time. Finally, compute a maximum independent set of the

subgraph G(Lp;q) in O(V
2:5) time. The complete algorithm therefore runs in O(V 2:5E) =

O(V 4:5) time. This proves the following theorem.

Theorem 3.25 ([CCJ90]) One can �nd a maximum clique of a unit disk graph G =

(V;E) in O(V 4:5) time, given a realization.

We can actually do better if we exploit the realization. The following algorithm is

similar to one developed by Aggarwal et al. [AIKS89] for �nding k points, from n points

in the plane, with minimum diameter. Aggarwal et al. proved independently of [CCJ90]

that G(Lp;q) is bipartite. They then use an algorithm due to Imai and Asano [IA86],

together with an e�cient representation of G(Lp;q) due to Hershberger and Suri [HS89],

to �nd a maximum independent set in G(Lp;q) in O(V 1:5 log V ) time. The algorithm in

the previous paragraph, together with the observations in this paragraph, therefore takes

a total time of O(V 3:5 log V ).

Another result due to Imai and Asano [IA83] is an algorithm that �nds a maximum

clique of an intersection graph of rectangles in O(V log V ) time.

Since a unit disk graph under L1 and L1 is an intersection graph of squares, their

algorithm applies here, also. The following theorem summarizes the preceding discussion.

Theorem 3.26 Given a realization, one can �nd a maximum clique in a unit disk graph

G = (V;E) in O(V 3:5 log V ) time under the L2 metric and in O(V log V ) time under the

L1 and L1 metrics.
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Is it possible to �nd a maximum clique in a unit disk graph without a realization?

For example, Gr�af ([Gr�a95] pages 35{36) interprets [CCJ90] to conclude that Lp;q =

N(p)\N(q), thereby obviating the need for a realization. Unfortunately, this conclusion

is unwarranted if � < 1. The intersection of neighbourhoods N(p) \ N(q) is indeed

enclosed by a (geometric) lune, but this lune is the intersection of two unit-radius disks.

As shown in Figure 3.14, this unit-radius lune is larger than the lune through p and q,

and the graph induced on its sites may not be cobipartite.

p q

Figure 3.14: The unit-lune de�ned by a pair of sites, together with the smaller lune

through the pair of sites.

Perhaps if p and q have the greatest separation of any pair in some clique, then the

subgraph induced by N(p) \ N(q), although not a cobipartite lune, is nevertheless still

cobipartite (for other reasons). Then the maximum clique algorithm could be easily

modi�ed to work without a realization. This conjecture also is not true, as shown by the
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more detailed counterexample in Figure 3.15. The question \Can the maximum clique

of a unit disk graph be computed in polynomial time without access to a realization?"

therefore remains open.

3.3.3 Chromatic Number

To colour a graph, assign a positive integer (a colour) to each vertex in the graph, such

that no two adjacent vertices receive the same colour. The minimum colour problem

is to colour a graph using the least number of colours. This least number of colours

is called the chromatic number of the graph. The related decision problem, GRAPH

K-COLOURABILITY, is NP-complete for arbitrary graphs [GJ79]. We will see in this

section that it remains NP-complete when restricted to unit disk graphs.

Section x2.1.4 presented an illustrative application to radio frequency spectrum man-

agement due to Hale [Hal80]. Hale states that the colouring problem for unit disk graphs

was shown to be NP-complete by J.B. Orlin in April of 1980, but does not provide any

further details or references. Since then it has been proved by Burr [Bur82] and by Clark,

Colbourn, and Johnson [CCJ90]. An independent proof due to the author appears below.

It follows the general framework outlined earlier, of reducing from the same problem in

planar graphs with degree at most four.

GRAPH K-COLOURABILITY (Problem GT4 in [GJ79])

INSTANCE: Graph G = (V;E), positive integer K � jV j.
QUESTION: Is G K-colourable, that is, does there exist a function

c : V ! f1; 2; : : : ;Kg such that c(u) 6= c(v) whenever (u; v) 2 E?

Theorem 3.27 (Orlin 1980 [Hal80, Bur82, CCJ90]) GRAPH K-COLOURABILITY

is NP-complete for unit disk graphs, even for K = 3.
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a

b c

p q

Figure 3.15: G(N(p)\N(q)) is not always cobipartite. The �gure shows unit-radius arcs

centered at a, b, and c. For clarity, the �gure does not show an edge between p and q,
even though these vertices are adjacent. Site p is exactly unit distance from sites a and

c. Similarly, q is exactly unit distance from a and b. Therefore, fa; b; cg � N(p) \N(q).

The remaining sites (not shown in the �gure) fall into one of two halves. The upper half

lies in the lune, just above the unit-radius arcs from both b and c. The lower half also

lies in the lune, just below the unit-radius arc from a. These additional sites are placed
such that p and q have the greatest separation. By this construction, all points in the

lune form a clique. In fact, they form a maximum clique; vertex a cannot be part of a

maximumclique, since its presence would exclude the entire lower half. Similarly, neither

b nor c can be part of a maximum clique, since the presence of either one would exclude

the entire upper half. Finally, note that G(N(p) \N(q)) is not cobipartite since fa; b; cg
induces a triangle in its complement.
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Proof: The problem is in NP since it is in NP for arbitrary graphs. NP-hardness

follows by a reduction from GRAPH 3-COLOURABILITY restricted to planar graphs

having no vertex degree exceeding 4 [GJ79]. Let H = (V;E) be an instance of GRAPH

3-COLOURABILITY. Figure 3.16 shows an example graph H. Begin, as usual, by em-
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Figure 3.16: A planar graph with degree at most 4.

bedding H into a square grid in quadratic time and space using Valiant's method (x3.3.1).
This embedding assigns integer coordinates to each vertex in H. Such an embedding is

shown in Figure 3.17, where the vertices of H are drawn as concentric circles. The embed-

ding introduces new vertices, which we will call pseudo-vertices, and which Figure 3.17

shows as single circles. Valiant's embedding typically dilates an edge in H (i.e., in E)

into several unit length edges. For each edge in E, arbitrarily select one of the resulting

edges and call it a \real" edge. Figure 3.17 shows these as dotted line segments. Call

the remaining unit-length edges, \pseudo-edges"; Figure 3.17 shows these as solid line

segments.

Next, multiply all coordinates by 12, in e�ect re�ning the grid. We are now ready to

construct an instance of a unit disk graph G4(P ) generated by a set of points P . Let P
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Figure 3.17: The graph from Figure 3.16 embedded in the grid.

include points with the coordinates of all vertices, both real and pseudo. In addition, P

includes points corresponding to the edges. Simulate edges with the points (subgraphs)

in Figure 3.18. Note that any 3-colouring of pseudo-edges results in vertices with the

d d
d d d

d d

d dd
d

d
ddd��PP ��

HH �� PP��HH

��PP ��
PP ��

PP ��
PPPseudo-edges

Edges

Figure 3.18: Simulations for edges and pseudo-edges. Note that, in any 3-colouring, the

endpoints of real edges must get di�erent colours, and the endpoints of pseudo-edges

must get the same colour.

same colour, and any 3-colouring of real edges results in vertices with di�erent colours.

Pseudo-edges may therefore be conveniently thought of as extensions of the incident

real vertices. Furthermore, the vertices adjacent to real edges can be coloured by any

pair of non-identical colours (in the absence of other constraints). Figure 3.19 shows
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Figure 3.19: An instance of unit disk graph 3-colourability. This �gure shows \real"

vertices as concentric circles. It shows \real" edges as open circles, and \pseudo-edges"

as solid disks.

a complete transformation of the graph in Figure 3.16. Note that this construction

introduces additional graph edges, which Figure 3.19 depicts as dotted line segments.

These are artifacts of the \drawing". In fact, the vertical pairs of points in Figure 3.18

can be arbitrarily close together (but then they would would not be easily distinguishable

in the drawing), thereby avoiding the connections in Figure 3.19. Nevertheless, it is easy

to see that if the graph with these edges removed can be 3-coloured, then so can the

entire graph.

If c : V ! f1; 2; 3g is a 3-colouring of G, then c restricted to the real vertices is

a 3-colouring of H, since the two kinds of edge component enforce di�erent colours for

adjacent real vertices. Similarly, if c : V ! f1; 2; 3g is a 3-colouring of H, then c can be

extended to the vertices of G. Hence G is 3-colourable if and only if H is 3-colourable.

Approximation Algorithms

Even though GRAPH K-COLOURABILITY remainsNP-complete for unit disk graphs

(Theorem 3.27), we can use the greedy colouring algorithm to colour a unit disk graph
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with no more than three times the minimum number of colours. If we are required to

colour each vertex exactly when it is presented to us \on-line", then the greedy algorithm

still manages to use at most �ve times the minimum. Note that, for arbitrary graphs G,

Lund and Yannakakis [LY93] have shown that there is some constant � > 0 such that no

polynomial-time graph colouring algorithm has a performance ratio R � jV (G)j� (unless
P = NP). It particular, for arbitrary graphs, unlike unit disk graphs, R cannot be a

constant. Much of this subsection appears in a joint paper with Marathe, Hunt, Ravi, and

Rosenkrantz [MBH+95]. In particular, most unattributed lemmas appear in [MBH+95]

also.

The well-known greedy colouring algorithm simply colours each vertex with the �rst

available colour. The algorithm colours each vertex in some order, so assume that the set

of vertices V is totally ordered. For clarity of analysis and exposition, assume that each

edge of the graph is directed from earlier to later vertices in the order of V . Table 3.8

presents the algorithm in detail.

Table 3.8: Algorithm: GREEDY(G) [Colour G sequentially with the �rst available

colour]

Input: A totally ordered, directed unit disk graph G = (V;A)

Output: The number of colours used to colour G.
Side E�ects: colour[v] is the colour of each vertex.

1 for v �rst vertex in V to last vertex in V
2 do colour[v] min(Z+ n fcolour[u] : (u; v) 2 Ag)
3 return max fcolour[v] : v 2 V g

Lemma 3.28 Algorithm GREEDY colours (arbitrary) graphs with no more than one

plus the maximum indegree colours. That is, GREEDY(G) � �in(G) + 1.
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Proof: The algorithmmaintains the invariant that any assigned colour is at most �in+1.

The invariant holds trivially at the beginning. Thereafter, vertex v has indegree at most

�in and outdegree 0, so vertex v too can be coloured with one of the �in+1 colours not

used by its neighbours.

Corollary 3.28.1 Algorithm GREEDY colours (arbitrary) graphs with no more than

one plus the maximum degree colours. That is, GREEDY(G) � �(G) + 1.

An On-Line Algorithm

In order to analyze the behaviour of Algorithm GREEDY on unit disk graphs, we need to

relate its degree to its chromatic number. One way to do this is by relating the degree of

a unit disk graph to its maximum clique size, and relating this to its chromatic number.

This results in Theorem 3.30 below.

Lemma 3.29 The maximum clique size of a unit disk graph G is greater than one sixth

of its maximum degree. That is, !(G) � b�(G)=6c + 2.

Proof: Let v be a vertex with the greatest degree. Its neighbours lie in the unit radius

disk centered on the vertex. Therefore more than one sixth, at least b�=6c + 1 of these

neighbours, lie in some 60 degree unit sector. Since such a sector has unit diameter,

these neighbours together with the vertex v form a completely connected subgraph. A

maximum clique must be at least as large.

Theorem 3.30 Algorithm GREEDY colours unit disk graphs with less than six times

the maximum clique size. That is, GREEDY(G) � 6!(G) � 6.

Proof: Lemma 3.29 implies that ! � b�=6c + 2 > �=6 + 1 so that � < 6! � 6. Since

both � and ! are integers, � � 6! � 7. By Corollary 3.28.1, we have

GREEDY(G) � �+ 1 � 6! � 7 + 1 = 6! � 6:
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Corollary 3.30.1 Algorithm GREEDY colours unit disk graphs with less than six times

the optimal number of colours. That is, GREEDY(G) � 6�(G) � 6.

Proof: This follows from Theorem 3.30 since � � ! for all graphs.

However, this corollary is overly pessimistic. Using the following lemma from [MBH+95],

Gr�af [Gr�a95] obtains a tighter bound on the chromatic number, thereby showing (Corol-

lary 3.32.1) that AlgorithmGREEDY performs even better than stated by Corollary 3.30.1.

Lemma 3.31 Let G be a unit disk graph. Any independent set in the neighbourhood of

a vertex in G has at most �ve vertices.

Proof: If the lemma were false, then some vertex would be the hub of an induced star

K1;6, thereby contradicting Lemma 3.1, which says that there can be no such star in a

unit disk graph.

Lemma 3.32 ([Gr�a95]) The chromatic number of a unit disk graph G is greater than

one �fth of its maximum degree. That is, �(G) � d�(G)=5e + 1.

Proof: Let v be any vertex in a unit disk graph G = (V;E). By Lemma 3.31, at

most �ve vertices adjacent to v can get the same colour. Therefore �(G(Adj(v)) �
djAdj(v)j=5e. Since v is adjacent to every vertex in its neighbourhood, it must be coloured
di�erently than its neighbours. That is, �(G(N(v))) = �(G(Adj(v))) + 1 (recall that

N(v) = Adj(v) [ fvg). Consequently,

�(G) � �(G(N(v))) = �(G(Adj(v))) + 1 � djAdj(v)j=5e + 1:

The lemma follows if we choose v to have the maximum degree.

Corollary 3.32.1 ([Gr�a95]) Algorithm GREEDY colours a unit disk graph with less

than �ve times its chromatic number. That is, GREEDY(G) � 5�(G)� 4.
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Proof: Lemma 3.32 states that �(G) � d�(G)=5e + 1 � �(G)=5 + 1, so that �(G) �
5�(G)� 5. By Corollary 3.28.1, we have GREEDY(G) � �+ 1 � 5�� 5 + 1 = 5�� 4.

An O�-Line Algorithm

In an \o�-line" setting, we have the luxury of examining the entire graph before colouring

any vertices. We will continue to exploit Algorithm GREEDY, but we will do so by

reordering the vertices to our advantage. Essentially, we will create an order for the

vertices so that no vertex has indegree greater than three times the graph's chromatic

number. Say that (the vertex set of) a unit disk graph G is lexicographically ordered if

xf(u) < xf(v) (or xf(u) = xf(v) and yf (u) < yf (v)) implies u < v, for some realization

f : V ! R2. Gr�af attributes the �rst use of this order for colouring unit disk graphs to

Peeters [Pee91].

Lemma 3.33 ([Pee91, MBH+95, Gr�a95]) The maximum clique size of a lexicograph-

ically ordered unit disk graph is greater than one third of the maximum indegree. That

is, !(G) � d�in(G)=3e + 1.

Proof: Let v be a vertex with the greatest indegree. Its (indegree) neighbours lie in the

left unit-radius semicircle centered on the vertex. Therefore at least one third, d�in=3e,
of these neighbours lie in a 60 degree unit sector. Since such a sector has unit diameter,

these neighbours, together with the vertex v, form a completely connected subgraph.

The maximum clique must be at least as large.

Theorem 3.34 ([Pee91, MBH+95, Gr�a95]) Algorithm GREEDY colours lexicograph-

ically ordered unit disk graphs with less than three times the maximum clique size. That

is,

GREEDY(G) � 3!(G) � 2:
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Proof: Lemma 3.33 implies that ! � d�=3e + 1 � �=3 + 1 so that � � 3! � 3. By

Lemma 3.28, we have GREEDY(G) � �+ 1 � 3! � 3 + 1 = 3! � 2.

Corollary 3.34.1 ([MBH+95]) Algorithm GREEDY colours lexicographically ordered

triangle-free unit disk graphs with at most four colours.

Proof: The maximum clique size of a triangle-free graph is at most 2.

Corollary 3.34.2 ([Pee91, MBH+95, Gr�a95]) Algorithm GREEDY colours lexico-

graphically ordered unit disk graphs with less than three times the optimal number of

colours. That is, GREEDY(G) � 3�(G)� 2.

Proof: This follows from Theorem 3.34 since � � ! for all graphs.

Note that we required a realization to lexicographically order the vertices. We can

dispense with the realization as follows. Gr�af points out that Algorithm GREEDY will

perform at least as well given any vertex ordering that achieves a maximum indegree

no greater than that of the lexicographic order. In particular, he mentions that Mat-

ula [MB83] has shown that the smallest-last ordering minimizes the maximum inde-

gree over all vertex orderings. The vertices fv1; v2; : : : ; vng of a graph are said to be in

smallest-last order if vi has minimum degree in G(fv1; v2; : : : ; vig) for all i. There is an
easy algorithm for �nding a smallest-last ordering: �nd a minimum degree vertex v in

the graph G = (V;E), recursively smallest-last order G(V n fvg), and append v to the

end of the sequence. Matula [MB83] shows how to implement this algorithm in O(V +E)

time with O(V ) additional space.

Gr�af's PhD thesis [Gr�a95] also presents a more sophisticated algorithm (for colouring

unit disk graphs) that still uses a realization, and still has a theoretical performance ratio
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of 3, but which performs well in practice. See also [MBH+95] for a di�erent algorithm

that achieves the same performance ratio of 3, but does not require a realization.

In closing this section on colouring, recall that all triangle-free disk graphs are planar

(Theorem 3.4). Therefore such graphs can be coloured with four colours by the famous

four-colour theorem [AH76]. This improves on Lemma 5.2 in [MBH+95], which states

that six colours su�ce for triangle-free disk graphs.

3.4 Unit Disk Graph Recognition is NP-Hard

This section proves that recognizing unit disk graphs is NP-hard. Equivalently, it shows

that determining if a graph has sphericity 2 or less, even if the graph is planar or is

known to have sphericity at most 3, is NP-hard. In fact, this section gives a polynomial-

time reduction from SATISFIABILITY to a more general problem, that of recognizing

�-bounded disk graphs, which involve disks of restricted sizes. It begins by describing

the reduction for �-bounded coin graphs, where the disks have pairwise-disjoint interiors.

We will see that this reduction can be extended to three dimensions, thereby showing

that unit sphere graph recognition, or determining if a graph has sphericity 3 or less, is

also NP-hard.

Section 3.4.1 de�nes SATISFIABILITY and �-bounded disk and coin graphs. There-

after, Sections 3.4.2 through 3.4.9 show how to reduce SATISFIABILITY to the problem

of recognizing �-bounded coin graphs. Finally, Section 3.4.10 shows how to extend the

result to other problems, including the already-mentioned problem of recognizing unit

disk graphs.
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3.4.1 Coin Graphs

A coin is a closed disk in the plane. A graph G is called a coin graph if G is the

intersection graph of a set of interior-disjoint coins [Sac94]. Remarkably, �nite coin graphs

are precisely the �nite planar graphs [Sac94], and can therefore be recognized in linear

time (see [BL76] for example). In fact, every plane graph G has a coin realization f(G)

such that (v1; v2; : : : ; vk) is a clockwise face in G if and only if (f(v1); f(v2); : : : ; f(vk)) is

a clockwise face in f(G).

In this section, however, we are interested in the complexity of recognizing graphs

than can be realized with coins of bounded size. A set of disks is �-bounded if every disk

in the set has diameter between 1 and � inclusive. We will prove that �-BOUNDED

COIN GRAPH RECOGNITION is NP-hard. A special case of this problem is rec-

ognizing penny graphs, where all disks have unit diameter. Penny graphs where all

unit disks must be centered at integer coordinates are equivalently grid graphs (x2.3.3),
which are also a subclass of unit disk graphs. Recall from Section 2.3.3 that GRID

GRAPH RECOGNITION is NP-complete [BC87], even for grid graphs that are binary

trees [Gre89].

We will have occasion to deal with the location and the radius of disks separately. To

ease notation, say that f : V ! R2 (locations) and r : V ! R (disk radii) constitute a

disk realization (f; r) of a graph G = (V;E) if (u; v) 2 E if and only if kf(u) � f(v)k �
r(u)+r(v). Then a disk realization (f; r) is a coin realization if kf(u)�f(v)k � r(u)+r(v)

for all u and v in V , adjacent or not, and it is �-bounded if 1 � 2r(v) � � for all v 2 V .
This section shows that the following parameterized recognition problem is NP-hard for

any �xed � � 1.

�-BOUNDED COIN GRAPH RECOGNITION

INSTANCE: A graph G = (V;E).
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QUESTION: Is G the intersection graph of a set of closed, interior-disjoint disks

whose diameters fall in the range [1; �], that is, does G have a

�-bounded coin realization?

Since coin graphs are planar, they do not include K5. Since any intersection graph

class must contain all complete graphs, this means that coin graphs are not the inter-

section graph class of any family of sets [Sch85], in particular not of any family of disks.

On the other hand, this section's reduction of SATISFIABILITY to �-BOUNDED COIN

GRAPH RECOGNITION extends easily to allow overlapping disks as well. That is,

recognizing �-bounded disk intersection graphs (equivalently the intersection graph class

of �-bounded disks) is also NP-hard for any �xed � � 1. The special case � = 1 of

this latter problem (namely UNIT DISK GRAPH RECOGNITION) has been reported

separately [BK93].

�-BOUNDED DISK GRAPH RECOGNITION

INSTANCE: A graph G = (V;E).

QUESTION: Is G the intersection graph of a set of closed disks

whose diameters fall in the range [1; �], that is, does G have a

�-bounded disk realization?

The problem CNF SATISFIABILITY de�ned below is a common basis for NP-

completeness proofs [Coo71, GJ79]. Let U = fu1; u2; : : : ; umg be a set of Boolean vari-

ables. A clause c = fl1; l2; : : : ; lkg is a set of literals, which are negated (e.g., �ui) and

unnegated (e.g., ui) variables from U . A set C of clauses is intended to represent the

conjunctive normal form Boolean formula

F =
^
c2C

_
li2c

li:
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A truth assignment is a function t : U ! fTRUE;FALSEg. In terms of literals, ui is

TRUE if and only if t(ui) = TRUE, and �ui is TRUE if and only if t(ui) = FALSE. A

clause is satis�ed by t if at least one li 2 c is TRUE. Finally, a satisfying truth assignment
for C is one that simultaneously satis�es all the clauses in a set C.

[LO1, [GJ79]] CNF SATISFIABILITY

INSTANCE: A set U = fu1; u2; : : : ; umg of Boolean variables and

a set C = fc1; c2; : : : ; cng of clauses over U .
QUESTION: Is there a satisfying truth assignment for C?

Theorem 3.35 �-BOUNDED COIN GRAPH RECOGNITION is NP-hard for any

�xed � � 1.

Proof: Given an instance C of SATISFIABILITY, we will construct a graph GC =

(VC ; EC) such that GC has a realization3 if and only if C is satis�able. Assume without

loss of generality (see comments for SATISFIABILITY in [GJ79]) that each clause in C

contains at most three literals (jcij � 3) and that each variable appears in at most three

clauses. Note that this is not the same as 3SAT in which every clause has exactly three

literals, and each variable appears in an unrestricted number of clauses (though 3SAT

remains NP-complete if every variable appears in at most �ve clauses [GJ79]).

We will build GC in several stages. First, in Section 3.4.2, we will construct a bipartite

graph GSAT
C that corresponds closely to the instance C of SATISFIABILITY. We will

de�ne a notion of orientability for this graph, and prove that it is orientable if and only

if C is satis�able (Lemma 3.37). Then, in Section 3.4.3, we will draw this graph on

the square grid. This natural drawing on the grid maintains the intuitive structure of

the SATISFIABILITY problem. It also prevents edge drawings from \interfering" with

3For brevity, and unless stated otherwise, the remainder of this section abbreviates \�-bounded coin

graph realization" as \realization".
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each other by keeping them rectilinear and crossing them only at right angles. We will

de�ne a notion of orientability for this drawing. This serves to express the graph as a

composition of smaller graphs, each of which is a primitive for orientation. The drawing

is orientable if and only if the underlying graph is orientable (Lemma 3.39). Next, we

will skew the grid so that it is part of the triangular grid. This will allow us to build

and connect components by exploiting a hexagonal packing. Finally, we will form GC in

Section 3.4.4 by simulating components of the skewed grid drawing. Lemma 3.42 shows

that GC has a realization if and only if the underlying grid drawing is orientable. We

�nish by showing that the entire reduction can be executed in polynomial time.

3.4.2 A Graph That Simulates SATISFIABILITY

Our �rst step is to construct a bipartite graph GSAT
C from the instance C of SATIS-

FIABILITY as follows. The vertices of the graph correspond to the clauses, variables,

and negated variables of the SATISFIABILITY instance C. There is an edge between

a literal vertex and a clause vertex if the literal appears in the clause. More formally,

GSAT
C = (V SAT

C ; ESAT
C ), where:

V SAT
C = f~c : c 2 Cg [ fu+ : u 2 Ug [ fu� : u 2 Ug

ESAT
C = f(~c; u+) : c 2 C; u 2 cg [ f(~c; u�) : c 2 C; �u 2 cg:

De�nition 3.36 The graph GSAT
C is orientable if its edges can be directed such that,

(1) for each clause vertex, outdegree(~c) � 1 and, (2) for each pair of literal vertices,

indegree(u+) = 0 or indegree(u�) = 0.

The graph GSAT
C models the testing of a truth assignment for SATISFIABILITY by

directing its edges. Intuitively, an edge directed from ~c to u+ (resp. u�) means that

clause c has selected literal u (resp. u) to satisfy it. That is, clause c requests that

t(u) = TRUE (resp. t(u) = FALSE).



Chapter 3. Unit Disk Graphs 109

Lemma 3.37 The set of clauses C is satis�able if and only if the bipartite graph GSAT
C

is orientable.

Proof: If t satis�es C, then orient GSAT
C by directing every edge incident on u+ towards

u+ if t(u) = TRUE, or away from u+ otherwise. Similarly, direct every edge incident

on u� towards u� if t(u) = FALSE, or away from u� otherwise. Then outdegree(~c) � 1

for every clause c, since c must be satis�ed. Furthermore, either indegree(u+) = 0 or

indegree(u�) = 0 for every variable u, since no truth assignment can set both a literal

and its complement TRUE. Therefore GSAT
C is orientable if C is satis�able.

Conversely, if GSAT
C has been oriented, then set t(u) = TRUE if any edge (~c; u+)

is directed towards u+. Similarly set t(u) = FALSE if any edge (~c; u�) is directed

towards u�. Then t sets each variable either TRUE or FALSE since indegree(u+) = 0

or indegree(u�) = 0 for all variables u. Furthermore, t must satisfy every clause c since

outdegree(~c) � 1 for every vertex ~c.

3.4.3 Drawing the Graph on the Grid

Our next step is to draw the graph GSAT
C on the grid as shown in Figure 3.20. Each of

the (6jU j+ 1)� (3jCj+ 2) grid vertices in this drawing is either unused, or is associated

with a unique component of the drawing. Each component is enclosed by a unit square

centered on its own grid vertex.

The drawing is made up of three groups of components: communication components,

literals, and clauses. There are, in turn, three groups of communication components:

wires, corners, and crossovers. A wire is a unit length line segment passing through a

grid vertex, a corner is two half-length line segments meeting at right angles at a grid

vertex, and a crossover is two unit-length line segments crossing at right angles on a grid

vertex. There are therefore two types of wire components (horizontal and vertical), four

types of corners, and one type of crossover.
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Figure 3.20: A SATISFIABILITY graph drawn on the grid. The graph corresponds to

the SATISFIABILITY instance (U;C), where U = fu1; u2; u3; u4g, C = fc1; c2; c3; c4; c5g,
and c1 = fu2; �u4g, c2 = fu1; u2; u3g, c3 = fu1; �u3g, c4 = f�u1g, and c5 = fu2; u4g. The

clauses and the literals are drawn as squares. The variables are embedded as adjacent

pairs and so are drawn as rectangles. Each clause and each literal component has three

terminals. Note that the area of the grid is (6jU j + 1)� (3jCj+ 2).
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Each component in the drawing has two to four terminals, which are centered on a

side of the unit square enclosing the component. The terminal on the top (or north)

side of the unit square is called the T terminal. Similarly, the terminals on the bottom,

left, and right are called the B, L, and R terminals respectively. Wires and corners

have two terminals each, crossovers and literals have four, and clauses have three. Two

components in the drawing are adjacent if they have coincident terminals. The terminal

between two adjacent literals is called the (common) interliteral terminal; the others are

called external terminals. Figure 3.20 depicts the set of all terminals as small circles.

An orientation of a terminal is a direction, North, South, East, or West. Say that a

terminal T (respectively B, L, R) is directed away from its component if it is oriented

North (respectively South, West, East) and is directed towards its component otherwise.

De�nition 3.38 A grid drawing is orientable if all terminals can be oriented subject to

the following four conditions.

draw1: T and B terminals must be directed North or South,

draw2: L and R terminals must be directed East or West,

draw3: every wire, corner, crossover line segment, and clause must have at least one

terminal directed away from it,

draw4: If a literal has its interliteral terminal directed towards it, then all other (exter-

nal) terminals must be directed away from it.

A corollary of conditions draw4 and draw2 is that if a drawing is orientable, then

every variable has a literal component with all external terminals directed away from it.

Figure 3.21 shows an orientation of a portion of Figure 3.20.
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Figure 3.21: An oriented grid drawing. The directions are drawn as arrows. Note that

the path from u+2 to ~c1 has a wire component that has both terminals directed away from

it.

Lemma 3.39 A grid drawing is orientable if and only if the underlying bipartite graph

is orientable.

Proof: Suppose we have an orientation for GSAT
C . Then orient the terminals along

each path4 in the grid drawing so that they are consistent with the orientation of the

corresponding edge in ESAT
C . This ensures that every wire, corner, and crossover line

segment has precisely one terminal directed away from it. It also ensures that each

clause has one terminal directed away from it, since the clause vertices have outdegree

at least one. Finally, every variable has a literal component with all external terminals

directed away from it since one of the literal vertices has zero indegree in GSAT
C ; direct

the interliteral terminal towards this literal.

Now suppose that the grid drawing has been oriented. Condition draw3 ensures that

4Those terminals not on a path need not concern us; they may be arbitrarily oriented, say away from

the component.
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any path in the drawing corresponding to an edge in ESAT
C contains at most one wire,

corner, or crossover line segment with both terminals directed away from the compo-

nent. One terminal of such a component can be redirected by reversing the direction

of all terminals in the path from it to the literal. Doing so keeps all conditions satis-

�ed since this operation does not change the orientation of any clause terminals, and

it directs any external literal terminals away from the literal, in keeping with condition

draw4. Condition draw3 then ensures that all terminals along the path are oriented

consistently with some orientation for the corresponding edge. Under this orientation, all

clause vertices have outdegree at least one, since the corresponding terminal is directed

away from the clause. Furthermore, condition draw4 ensures that indegree(u+) = 0 or

indegree(u�) = 0.

Corollary 3.39.1 A grid drawing is orientable if and only if the underlying instance of

SATISFIABILITY is satis�able.

Skewing the Grid

It would be easier to simulate the grid drawing components with coin subgraphs if GSAT
C

had been embedded in a triangular grid instead of a square grid. This is because coins

(disks) of the same size naturally pack hexagonally. We will exploit this packing for the

two extreme sizes for the disks, that is, for diameter 1 and �. Hexagons also have a higher

connectivity (six) with their neighbours than do squares (four), allowing us to construct

more compact components. Both of these advantages will be evident in the forthcoming

constructions. We chose to embed GSAT
C on a square grid to capture the intuition behind

the bipartite SATISFIABILITY graph. Fortunately, it is easy to turn the square grid

into a triangular one by \skewing" it as follows. If we imagine that the square grid is

generated by two basis vectors (1; 0) and (0; 1), then we can skew the grid by replacing
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Figure 3.22: A skewed version of the oriented grid drawing from Figure 3.21.

these with the new basis vectors (1; 0) and (�1=2;p3=2). The result of skewing the

drawing from Figure 3.21 is shown in Figure 3.22. To aid visibility, the �gure does not

show grid lines with positive diagonal slope, but imagine that they are there to complete

the triangular grid.

3.4.4 Simulating the Drawing with Coins

We are now ready to construct GC . To do so, we create a graph component for each

skewed grid drawing component: wire, corner, crossover, literal, and clause. Section 3.4.8

provides the details. To specify the graph, we will describe a realization of each of

its components, and then describe how the subgraphs are to be connected. Therefore,

before giving detailed descriptions of the various graph components, we must examine

the building blocks from which they are constructed. The main building blocks are

cycles, called \cages". The construction joins two cages at a shared adjacent triple

of vertices to create larger components. The remaining building blocks are clusters of

vertices called \
ippers". Flippers are associated with the vertex triple shared by two
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cages. In any realization, all the vertices in a 
ipper are forced to lie in one of the two

incident cages. To ensure this consistent embedding, the vertices of a 
ipper are connected

among themselves. Flippers come in three di�erent sizes measured as a fraction of a cage's

capacity: 1, 1=2, and 1=4. These sizes, and the capacity of a cage, allow us to rule out

certain embeddings.

Figure 3.23 shows schematically how cages and 
ippers are related. The next sub-

1/2 1

1

Figure 3.23: Schematic drawings for cages and 
ippers. This schematic shows two joined

cages. The one on the left contains two quarter 
ippers and a half 
ipper. The one

on the right contains a full 
ipper, and has another attached full 
ipper that has been

displaced. The labels on the 
ippers indicate their asymptotic portion of the hexagonal

capacity. Unlabelled 
ippers are quarter 
ippers. Note the dimpled connecting corners,

as well as one dimpled nonconnecting corner.

section provides detailed instruction for constructing cages and 
ippers, and proves the

required properties. The schematic shows a realization of a subgraph, but we are really

constructing the subgraphs themselves. Therefore, let the schematics depict also the un-

derlying coin graph. The realizations therefore serve both to specify the graph, and to

show how the graph could be realized.

A 
ipper embedded inside a cage diminishes the capacity of the cage for additional


ippers. It thereby displaces other 
ippers, which may otherwise have been embedded

inside the cage. The forthcoming construction (x3.4.7) for GC ensures that a 
ipper can

only be embedded in one of two adjacent cages. A displaced 
ipper therefore displaces

other 
ippers from whatever cage it is embedded in. This is the basic mechanism for
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propagating information in a realization of GC .

Constructing Cages

Cages will always have the same number of vertices, which depends to some extent on

the diameter � of the largest disk. However, this number will be a multiple of six, so

that a cage can be realized as a string of disks whose centres lie on a regular hexagon

aligned with the triangular grid, as shown in Figure 3.24. Say that such a realization is

Figure 3.24: The hexagonal realization of a cage.

hexagonal. In the construction that follows, we join cages at the corners of such hexagonal

realizations, as shown in Figure 3.25. Clearly, both cages cannot be strictly hexagonal

in such a construction. To solve this problem, we choose to dimple a corner by moving

the corner disk towards the centre of one of the hexagons. Naturally, the corner may be

dimpled towards either of its two hexagons. Clearly, we can dimple a corner even if it is

not shared with another cage; we will attach 
ippers to corners in this way.

De�ne the hexagonal capacity of a cage as the maximum number of interior-disjoint

disks that can be packed hexagonally into a hexagonal realization of a cage, as shown in

Figure 3.26. Note that the capacity depends only on the number of cage vertices.
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Figure 3.25: Joining cages. The corner of the cage on the left is \dimpled". The alterna-

tive hexagon realization, in which the corner is dimpled to the right, is also permitted.

Figure 3.26: A hexagonal realization of a cage packed hexagonally with unit-diameter

disks. The cage disks all have maximum diameter �.
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3.4.5 Fabricating Flippers

We are now ready to fabricate 
ippers for cages. We will do so \asymptotically". Perhaps

this is somewhat unusual, but the idea is simple: fabricate a 
ipper for an arbitrary cage

size, and then notice that the size of the 
ipper approaches an ideal value as the cage

size increases. Therefore, although our 
ipper never actually attains this value, we will

see that it attains a suitable value.

Full Flippers

In any realization, a 
ipper must intersect (touch) the cage only at one corner, even if

some of the other corners are dimpled. To ensure that this is the case, dimple in all

corners of the cage. Fabricate a full 
ipper as follows. Pack the dimpled cage with the

largest hexagon of unit disks in contact with the desired corner. Make sure that the


ipper is not in contact with any other parts of the cage, including the dimpled corners,

as shown in Figure 3.27.

Figure 3.27: Fabricating full 
ippers

The number of disks in a full 
ipper approaches the hexagonal capacity of the cage

as the size of the cage increases. This is because the size of any disk becomes negligible

in comparison with the sides of the cage. In particular, the gap between the 
ipper and

the cage becomes negligible. Note that, even though the required cage size may be large,
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it does not depend on the size of the SATISFIABILITY instance.

Half Flippers

There are two kinds of half 
ippers. The fabrication of quarter 
ippers, described in the

next paragraph, results in one kind. To fabricate the other kind, notice that the line

segment through the hexagon in Figure 3.28.(a) divides the area of the hexagon into two

equal areas. Construct a half 
ipper from this drawing and a full 
ipper by removing any

(a) (b)

Figure 3.28: Fabricating a half 
ipper

disks hit by the line segment, as well as the half hexagon not in contact with the cage.

Figure 3.28.(b) shows two half 
ippers constructed in this way. As the size of the cage

(and the size of the packing) increases, the number of disks in the half 
ipper approaches

one half of the hexagonal capacity.

Quarter Flippers

Similarly, the line segment through the hexagon in Figure 3.29.(a) divides the area of

the hexagon into two regions. The smaller region has one quarter of the hexagon's area,

and the larger region has three quarters the area. Fabricate a 
ipper that approaches

1=4 of the hexagonal capacity from this drawing by removing from a full 
ipper any

disks hit by the line segment, as well as the three quarters hexagon not in contact with
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L

(a) (b)

Figure 3.29: Dividing a hexagon into a quarter and three-quarters. The length L of

the short side of the small trapezoid is (
p
10 � 2)=4, which ensures that the area of the

trapezoid is one-quarter that of the hexagon with unit sides.

the cage. Similarly, fabricate a 
ipper that approaches 3=4 of the hexagonal capacity

by removing any disks hit by the line segment, as well as the one quarter hexagon not

in contact with the cage. Figure 3.29.(b) shows both such 
ippers. As the cage size

increases, the number of disks in the small section approaches one quarter the hexagonal

capacity, and the number of disks in the other section approaches three quarters of the

hexagonal capacity.

In the same way, fabricate another kind of half 
ipper by adding a second segment to

the hexagon, symmetric with the �rst as shown in Figure 3.30.(a). Figure 3.30.(b) shows

the result.

3.4.6 Capacity Arguments

The 
ipper fabrications concentrated solely on the hexagonal capacity of a cage. In fact,

these capacities are close to optimal. De�ne the unconstrained capacity of a cage as the

maximum number of interior-disjoint disks that can be packed into any realization of

a cage. Again, the capacity depends only on the number of cage vertices. We may as

well assume that all disks in a maximum packing have unit diameter, since replacing any
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L

(a) (b)

Figure 3.30: Dividing a hexagon into two quarters and a half

larger disks with unit disks results in an interior-disjoint packing with the same number

of disks (and possibly room for more). With the help of the following lemma, we will be

able to prove that some embeddings cannot be realized.

Lemma 3.40 (The Capacity Lemma) The unconstrained capacity of all su�ciently

large cages is less than 12=�2 (� 1:216) times its hexagonal capacity.

Proof: We will construct an asymptotic value for the hexagonal capacity Ch of a cage,

and a (rather conservative) upper bound for its unconstrained capacity Cu. We will then

see that Cu < (12=�2)Ch.

First, consider a hexagonal realization of a cage, and pack it also hexagonally, see

Figure 3.26 again. As the size of the cage increases, its perimeter5 P approaches that of

its corresponding hexagonal packing. That is, P = 6s in the limit, where s is the length

of a hexagon side. Note that s is one less than the number of unit disks on one of the

hexagon's sides. It is easy to verify by induction on s that the total number of disks in

the packing, which is the hexagonal capacity Ch of the cage, is given by Equation 3.6.

Ch = 3s2 + 3s + 1 > 3s2 (3.6)

5The perimeter of a string of disks is just the perimeter of the polygon through its disk centres. The

perimeter of a set of disks is the perimeter of the convex hull of its centres.



Chapter 3. Unit Disk Graphs 122

To construct an upper bound on the unconstrained capacity Cu, notice that the

interior of a cage can never be completely covered with interior-disjoint unit disks, since

unit disks do not tile the plane. Therefore Cu is less than the maximum internal area,

taken over all possible realizations of the cage, divided by the area of the unit disks.

As the size of a cage increases, its internal area approaches from below the area of the

polygon through its disk centres. The circle has maximum area over all polygons with

the same perimeter. Therefore, the realization of a cage as a set of maximum-size disks

with cocircular centres achieves, at the limit, the maximum internal area. As noted, this

area is less than the area of the circle through its disk centres. Calculate this circle's area

as follows. First note that the circumference c of the circle is the same as the perimeter

P = 6s of the hexagonal realization. Therefore the radius r of the circle is

r = P=2� = 3s=�;

so that its area A is

A = �r2 = �(3s=�)2 = 9s2=�:

Since the area of a unit-diameter disk is �=4, it follows that

Cu <
A

�=4

=
9s2=�

�=4

=
36s2

�2
: (3.7)

Combining Inequalities 3.7 and 3.6 yields the following inequality, which proves the

lemma.

Cu

Ch

<
36s2=�2

3s2
=

12

�2
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Corollary 3.40.1 In any realization, no su�ciently large cage can contain a subset of


ippers whose total nominal size exceeds 12=�2.

Note that this corollary does not exploit the fact that a hexagonal disk packing is

asymptotically optimal [CS88]. By virtue of this corollary, and our earlier requirement

for hexagonal realizations, the main building block for the ensuing construction is a cage

whose size (number of vertices) is a su�ciently large multiple of six. To emphasize the

asymptotic nature of these cages, the rest of this NP-hardness reduction abbreviates

cages and 
ippers by the schematics shown previously in Figure 3.23.

3.4.7 The Skeleton of the Graph GC

The following lemma, which applies to arbitrary disk intersection graphs as well as coin

graphs, shows that the inside of a realization of a cycle is well de�ned.

Lemma 3.41 A realization of a vertex-induced cycle is a plane graph.

Proof: If the realization were not a plane graph, then two line segments would cross

somewhere. Then, by Lemma 3.3, the endpoints of the segment would induce a triangle

in the graph. This contradicts the fact that cages are triangle-free.

The skeleton of the graph under construction will be composed of many cages \hooked

together", as presented already in Figure 3.25. Lemma 3.3 and its corollary guarantees

that cages do not cross or overlap each other in any realization. In addition, the attached


ippers and the capacity of the cages keeps cages from containing each other. This

connection strategy therefore ensures that, in any realization, the clockwise order of the

edges about every cage is determined by the order of the edges about any cage in the

connected graph. It is therefore useful to think of the embedding of the skeleton of the

graph, that is, the cages without 
ipper vertices, to be invariant under all realizations.
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Di�erent realizations simply allow 
ippers to \
ip" from one cage into another. Flippers

must be in one of their two incident cages, by virtue of their construction and Lemma 3.3.

The component de�nitions which follow will clarify this construction.

The properties described above allow realizations of unit disk graphs to simulate the

orientability of the grid drawing, depending on which cage encloses which 
ippers. In

addition, we must ensure that the skeleton of the graph, that is, the graph induced on

the cages, is always realizable. In particular, the components must \�t together". For

example, they must stretch between two grid vertices (from Figure 3.20). To achieve this

requirement, each component joins together several cages. For example, the forthcoming

wire component consists of �ve cages. The number �ve comes from the realization scheme

described in Section 3.4.9.

3.4.8 The Components of the Graph GC

Each of the graph components has two or more terminals|labelled T , B, L, or R|that

correspond to the grid drawing terminals. Each terminal is a three-vertex corner of a

cage with an attached full 
ipper. For example, the three-vertex corners belonging to

terminals L and R are circled in Figure 3.31 below. To construct GC , connect every pair

of adjacent6 components together by identifying the appropriate terminals. Terminal T

(resp. B, L, R) should be identi�ed with an adjacent B (resp. T , R, L) terminal. You

will �nd that the example presented in Section 3.4.9 clari�es this process.

Wires

The graph in Figure 3.31 implements the horizontal wire component as a string of �ve

cages joined by corners (refer back to Figure 3.25).

6Two graph components are adjacent if the associated grid drawing components are adjacent.
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1 1 1 1 1 1

L R

Figure 3.31: The horizontal wire component: drawn with both terminals oriented East.

The terminals are indicated by small circles. Remember that the terminals include the


ippers. The grid square enclosing the wire component is drawn as a dotted parallelo-

gram.
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Say that the T (resp. B, L, R) terminal is oriented South (resp. North, East, West)

if its 
ipper is embedded inside its cage, and that it is oriented North (resp. South,

West, East) otherwise. The orientation of the terminals shown in Figure 3.31, or in any

of the following �gures, is not the only possible orientation. However, the properties of

the cages ensure that, for any realization, if the L terminal is oriented East, then its R

terminal is also oriented East. Similarly, if the R terminal is oriented West, then its L

terminal is also oriented West. This ensures that at least one terminal is directed away

from the wire. Note that it is also possible for the L and R terminals to be simultaneously

oriented West and East respectively.

The vertical wire component is shown in Figure 3.32. Note that although the realiza-

tions are di�erent, and the terminals are labelled di�erently, the (unlabelled) horizontal

and vertical wire component subgraphs are isomorphic. Again, for any realization, if

either terminal is oriented inwards, then the other one must be oriented outwards.

Corners

As can be seen from Figure 3.33, there are four kinds of corners, and their graphs are

also strings of �ve cages. Again, the properties of cages ensure that at least one terminal

is directed away from each corner in any realization.

Crossovers

Of all components used in this reduction, the crossover component is the most di�cult

to understand. Its schematic is shown in Figure 3.34. We need to convince ourselves

that paired terminals (that is, T and B, or L and R) cannot be simultaneously oriented

towards the component, but that all other orientations are possible.

The heart of the crossover is the ring of cages labelled (a; b; c; d; e; f) in Figure 3.34.

The 
ippers associated with a set of cages are those that are shared by two cages of
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T

B

Figure 3.32: The vertical wire component: drawn with both terminals oriented North.
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1
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1

1

Figure 3.33: The corner components. They are drawn with the L terminals oriented

West, the R terminals oriented East, the T terminals oriented South, and the B terminals

oriented North. Note that not all four are isomorphic, since on two of them, some cages

are connected but do not share 
ippers.
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i

j

k

Figure 3.34: The crossover component. The T and B terminals are drawn oriented North,

and the L and R terminals are drawn oriented West. The ring of cages (a; b; c; d; e; f) is

drawn oriented counterclockwise.
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the set. In any realization, the 
ippers associated with the ring can take on one of two

orientations: counterclockwise, as shown in Figure 3.34, or clockwise. This is because

the number (6) of cages and associated 
ippers is the same. By Corollary 3.40.1, no

two 
ippers can be in the same cage. Consequently, every cage of the ring must contain

exactly one of its shared 
ippers. Note that this means that the three-quarters 
ipper in

the central cage k must remain in this cage for all realizations. Figure 3.34 emphasizes

this fact by showing two connections for this 
ipper, but of course one will su�ce.

The crossover allows two channels to cross without interference. The horizontal chan-

nel transmits its information via the horizontal chain of cages, and the diagonal channel

transmits its information via the ring. Let us examine the horizontal channel in action.

Since cages b, k, and e must each contain a three-quarters 
ipper, none of them can

contain two additional quarter 
ippers, by Corollary 3.40.1. This means that the quarter


ippers associated with the horizontal cages (h; b; k; e; j) can take on one of two orienta-

tions, west or east. The west orientation, shown in Figure 3.34, displaces the full 
ipper

from cage h, and the east orientation displaces the full 
ipper from cage j. Conversely,

if terminal R is oriented West, then it forces the west orientation on (h; b; k; e; j), and if

terminal L is oriented East, then it forces the east orientation on (h; b; k; e; j).

Let us now examine the diagonal channel in action. If the ring (a; b; c; d; e; f) is

oriented counterclockwise as shown, then the full 
ipper in cage a displaces the quarter


ipper into cage g. If it is oriented clockwise, then the three-quarters 
ipper displaces

the half 
ipper from cage d. Conversely, if terminalB is oriented North as shown, then it

forces the counterclockwise orientation on the ring, and if terminal T is oriented South,

then it forces the clockwise orientation on the ring. Finally, the orientation of the ring,

and the orientation of the horizontal channel, are independent. To see this, create the

four possible orientations of the crossover by \swivelling" the 
ippers on their articulation

points in Figure 3.34. Figure 3.39 later in this section shows all four orientations in use.



Chapter 3. Unit Disk Graphs 131

Literals

The positive literal component is shown in Figure 3.35. Its heart is the central cage,

R

T

L

B

1

1

1 1 1 1 1

1

1

1/2

Figure 3.35: The positive literal component. The L and R terminals are drawn oriented

East, the T terminal is drawn oriented South, and the B terminal is drawn oriented

North.

drawn containing two quarter 
ippers and a half 
ipper. This component's key property

is that for any realization, if the R terminal is oriented West, so that the terminal's


ipper is in the literal's cage, then a full 
ipper must also be in the central cage, which

means that all other terminals must be directed away from the component. A symmetric

property holds for the negative literal component, shown in Figure 3.36. Note that the

(unlabelled) positive and negative literal subgraphs are isomorphic. This is easier to see

if you rotate one of the diagrams by 180 degrees.
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Figure 3.36: The negative literal component. The L and R terminals are drawn oriented

East, the T terminal is drawn oriented North, and the B terminal is drawn oriented

South.
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Clauses

The clause testing component is shown in Figure 3.37. Its heart is again the central cage,

R

T

B

1

1

1

1 1

1 1

1/2

1/2
1/2

Figure 3.37: Clause component: drawn with the T terminal oriented South, the B ter-

minal oriented North, and the R terminal oriented East.

the one containing two half 
ippers in the �gure. Since this cage can contain at most two

half 
ippers by Corollary 3.40.1, it must be that at least one terminal is oriented away

from it.

If a terminal is not used in the grid drawing, that is, if there is no adjacent wire,

corner, or crossover, then \cap" the corresponding graph component terminal by adding

a small ring of cages with full 
ippers. The T terminal in Figure 3.38 is capped in this

way. This cap ensures that one of the full 
ippers from the ring occupies the terminal's

cage. This full cage acts as if the terminal were oriented towards the component, thereby
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Figure 3.38: Capping a terminal.
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forcing one of the remaining terminals to be oriented away7.

3.4.9 Building and Realizing GC

Now that all components have been described, we can present an example showing how

components are connected. Recall that to connect two components, we simply identify

the terminals at the desired connection point. Figure 3.39 shows how components are

connected to simulate the skewed grid drawing from Figure 3.22. Coincidentally, the

drawing in Figure 3.39 is oriented the same way as Figure 3.22, but remember that the

object under construction is a graph, not a realization. To reiterate: we used realiza-

tions to specify graph components, but we need not appeal to realizations at all when

connecting components.

Lemma 3.42 The graph GC has a realization if and only if the underlying grid drawing

is orientable.

Proof: Given a realization, orient the grid drawing terminals exactly as the realization

terminals. The de�nition of orientation for realization terminals ensures that conditions

draw1 and draw2 are met. The nature of the wire, corner, crossover, and clause compo-

nents ensures that condition draw3 is met. Finally, the nature of the literal components

ensures that condition draw4 is met. That is, the grid drawing is orientable if GC has a

realization.

Now assume that the terminals of the grid drawing have been oriented. From this we

will construct a realization for GC . For each component in the grid drawing, construct

the corresponding component realization, oriented exactly as the grid drawing compo-

nent, centered at the origin. The discussion accompanying the description of each graph

7Note that we could have simply \pinned" the unused 
ipper into its cage by dimpling in all corners

and bending the cage such that all corners contact the 
ipper. It may not be possible to bend the cage

for other potential uses of this reduction, for example, if we further restricted all cage disks to lie on the

hexagonal grid.
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Figure 3.39: How to connect components. This \landscaped" �gure (view it from the

right) shows how to simulate the portion of the skewed grid drawing shown in Figure 3.22.

There is a wire with both terminals directed outwards in Figure 3.21 and Figure 3.22.

Do you see the empty cage corresponding to this wire?
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component above implies that this can always be done. Now magnify the skewed grid

such that the distance between grid coordinates is �ve hexagons. Then translate each

oriented component realization to its grid location.

This procedure results in duplicated disks (points) corresponding to terminals. Re-

move one set; they were only duplicated for clarity of exposition of each component.

Lemma3.43 SATISFIABILITY can be reduced to �-BOUNDED COIN GRAPH RECOG-

NITION in polynomial time, for any �xed �.

Proof: The grid drawing has area (6jU j+1)�(3jCj+2), and therefore at most this many

components, since a unit square encloses each component. Each component of GC has a

small constant number of cages and 
ippers. Each cage and 
ipper, on the other hand,

has some, possible large, number of vertices and edges. But this number depends only

on the ratio of disk diameters �, and not on the size of the SATISFIABILITY instance.

Since the size of the SATISFIABILITY instance is a polynomial function of jU j and jCj,
the entire recognition instance can be built in polynomial time.

3.4.10 Extending Coin Graph Recognition

Disk Intersection Graphs

We can easily modify the reduction for �-BOUNDED COIN GRAPH RECOGNITION

to �-BOUNDED DISK GRAPH RECOGNITION as follows. First note that the cages

are already suitable disk intersection graphs in that their realizations cannot contain

more area by virtue of their disks having the freedom to overlap. The 
ippers pose only

slightly more di�culty. Clearly, the realizations of current 
ippers may occupy less area

by allowing their disks to overlap, thereby possibly leaving room for more 
ippers in a

cage than we would like. The solution is to make the 
ippers out of independent vertices.
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In this way they cannot be compressed smaller than (or even equal to) their packing size

without coming into contact with one another. In their current construction, the 
ippers

do not contact each other nor the cage (except at one attachment point). Therefore we

have room to uniformly scale each 
ipper slightly while leaving the contact point �xed.

This expansion disconnects the constituent disks from one another, as Figure 3.40.(a)

shows in exaggerated proportions.

(a) (b)

Figure 3.40: Expanding 
ippers to make the vertices independent. The 
ippers in the

cage on the left have been expanded to make the vertices independent. The expanded


ippers in the cage on the right have been \bound together" with the addition of many

new disks. Although these new disks have been drawn as an independent set, there is no

need for them to be independent.

Clearly, the number of disks in such an expanded 
ipper still approaches its asymp-

totic portion of the cage's capacity. We still need to hold the 
ipper together somehow,

to ensure that it is completely embedded in some cage. We can easily accomplish this

task by adding as many more disks to the 
ipper as we like, being careful not to intersect

the cage nor any other 
ippers in the construction, as shown in Figure 3.40.(b). This
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modi�ed reduction proves the following theorem.

Theorem 3.44 �-BOUNDED DISK GRAPH RECOGNITION isNP-hard for any �xed

value � � 1.

Corollary 3.44.1 UNIT DISK GRAPH RECOGNITION is NP-hard.

Manhattan and Chessboard Metrics

Disks are bounded by squares under the Manhattan (L1) and the chessboard (L1) met-

rics. We can easily modify the reduction for �-BOUNDED COIN GRAPH RECOGNI-

TION (and the subsequent relaxation to arbitrary intersection) to �-BOUNDED SQUARE

GRAPH RECOGNITION by skewing the grid di�erently and using cages that are di-

amonds rather than hexagons. To illustrate, assume that the squares are aligned with

the coordinate axes. The new reduction is identical to �-BOUNDED COIN GRAPH

RECOGNITION up to the point that the reduction draws the bipartite graph on the

square grid.

Cages are diamonds, and are still joined at the corners by shared vertex triples, as

shown in Figure 3.41.

Figure 3.41: Joining square cages. Compare with Figure 3.25.
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The unit L1 disks (squares) tile the plane in a square packing; this packing also

constructs solid 
ippers leaving no internal gaps. The components are necessarily con-

structed di�erently, but the same principles apply. The modi�ed reduction establishes

the following theorem.

Theorem 3.45 �-BOUNDED COIN GRAPH RECOGNITION is NP-hard for any

�xed value � � 1 under the L1, L2, and L1 metrics.

The extension to disk intersection graphs used for Theorem 3.44 applies here also.

Theorem 3.46 �-BOUNDED DISK GRAPH RECOGNITION isNP-hard for any �xed

value � � 1 under the L1, L2, and L1 metrics.

Corollary 3.46.1 �-BOUNDED SQUARE GRAPH RECOGNITION is NP-hard for

any �xed value � � 1.

Corollary 3.46.2 UNIT SQUARE GRAPH RECOGNITION is NP-hard.

Therefore, the smallest dimension K, for which a graph G is the intersection graph

of K-dimensional unit hypercubes is called the cubicity of the graph [Rob68b]. This

de�nition leads immediately to the following problem.

K-CUBICITY

INSTANCE: Graph G = (V;E), positive integer K.

QUESTION: Does G have cubicity at most K?

The complexity of 2-CUBICITY was a long-standing open question [Rob68b, Coz92].

It follows from Corollary 3.46.2 that K-CUBICITY is NP-hard, even for K = 2. The

Introduction mentions that graphs with cubicity 1 are called indi�erence graphs and can

be recognized in polynomial time. That is, K-CUBICITY is solvable in polynomial time

for K = 1. Also, Yannakakis [Yan82] showed that 3-CUBICITY is NP-hard.
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Corollary 3.46.3 2-CUBICITY is NP-hard.

Conjecture 3.47 K-CUBICITY is NP-hard for all �xed K greater than 1.

Three Dimensions

The reduction can also be modi�ed to three dimensions. A k-dimensional ball is the set of

points within some radius of a point (the ball's centre) in k-dimensional Euclidean space.

Hence disks are two-dimensional balls, and coins are two-dimensional interior-disjoint

balls. The basic building blocks for the three-dimensional reduction are again 
ippers in

cages, but this time the cages are three-dimensional regular octahedra. Again, derive an

upper bound on the capacity of a cage by a spherical volume argument. Derive a lower

bound on its octahedral capacity by packing the interior in a hexagonal lattice, which is

a rotated face-centered cubic lattice. Note that it does not matter whether face-centered

cubic is \optimal" (though it is the densest lattice packing in three dimensions [CS88]),

merely that its capacity forms a small constant ratio with the spherical-volume upper

bound.

Embed the SATISFIABILITY graph in the three-dimensional triangular grid as fol-

lows. Begin by embedding the clauses and variables in a two-dimensional square grid,

as before. Think of this as a horizontal layer, with z = 1. Now, add more horizontal

layers to the grid for a total of 3jCj layers, so that each occurrence of a literal in a clause
has its own layer. Draw the bipartite graph corresponding to SATISFIABILITY on the

three-dimensional grid by routing a literal to a clause. First route from the literal to

the layer corresponding to the clause, using the third dimension. Then route over to the

clause's (x; y) coordinates on its dedicated grid layer. Conclude by routing to the clause

using the third dimension. In this way, no wires interfere so that the construction simu-

lates a natural layout of the bipartite SATISFIABILITY graph without using cross-over
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components. Next, derive a tetrahedral three-dimensional grid by skewing the square

grid. Finally, simulate the components with the octahedral cages. Note that these cages,

unlike their two-dimensional analogues, have \holes in the mesh", which may allow 
ip-

pers to \escape". Patch these holes with smaller spheres placed into the holes, possibly

leaving some much smaller holes. Simply continue this process until all holes are smaller

than the unit spheres.

Theorem 3.48 In two or three dimensions, �-BOUNDED BALL GRAPH RECOGNI-

TION and �-BOUNDED TOUCHING-BALL GRAPH RECOGNITION are NP-hard

for any �xed �.

Conjecture 3.49 �-BOUNDED BALL GRAPH RECOGNITION and �-BOUNDED

TOUCHING-BALL GRAPH RECOGNITION are NP-hard for all �xed � and for all

�xed K greater than 1.

Two unit balls intersect if and only if their boundaries, which are spheres, intersect.

Therefore, the smallest dimension K, for which a graph G is the intersection graph of

K-dimensional unit balls, is called the sphericity of the graph. This de�nition leads

immediately to the following problem.

K-SPHERICITY

INSTANCE: Graph G = (V;E), positive integer K.

QUESTION: Does G have sphericity at most K?

The complexity of 3-SPHERICITY was an open question due to Havel [Hav82a,

Hav82b, HKC83] arising from studies of molecular conformation. It follows from Theo-

rem 3.48 that K-SPHERICITY isNP-hard, even for K = 2 or K = 3. Again, recall from

the Introduction that graphs with sphericity 1 are called indi�erence graphs and can be
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recognized in polynomial time. That is, K-SPHERICITY is solvable in polynomial time

for K = 1.

Theorem 3.50 K-SPHERICITY is NP-hard, even for K = 2 and K = 3.

Conjecture 3.51 K-SPHERICITY is NP-hard for all �xed K greater than 1.

3.4.11 Miscellaneous Properties

The reduction embeds the bipartite graph corresponding to SATISFIABILITY in a very

straightforward manner, making it easy for the reader to recall the structure of the draw-

ing. This clarity comes at a small price, however, namely the need for crossover compo-

nents. We could have constructed a reduction that avoids them. Kratochv��l [Kra94] has

recently introduced a special case of SATISFIABILITY, called 4-BOUNDED PLANAR

3-CONNECTED 3-SAT, and shown that it is NP-complete. In this special case, every

clause contains exactly three variables, every variable appears in at most four clauses,

and the bipartite graph of clauses to variables is planar and 3-connected. We could have

reduced this new problem to �-BOUNDED COIN GRAPHS, as follows. Since the bipar-

tite graph is planar and has degree at most four, Valiant's procedure (see Section 3.3.1)

will embed it in the square grid, with no crossovers, in polynomial time. The rest of the

reduction would be nearly identical to the one presented here, di�ering only in that it

does not require crossovers, and that the literal and clause components may have to have

di�erent shapes to accommodate the di�erent incident edges.

We already noted that coin graphs are planar. On the other hand, no such restriction

holds for disk graphs. However, note that an instance of the �-BOUNDED DISK GRAPH

RECOGNITION constructed by the reduction in this chapter is planar. This is true

whether or not it has a realization, since it is always possible to embed (in the traditional

sense of drawing a graph on the plane) all 
ippers inside their incident cages without



Chapter 3. Unit Disk Graphs 144

crossing edges by making them su�ciently small. That is, �-BOUNDED DISK GRAPH

RECOGNITION remains NP-hard even if the graph is planar.

An instance of �-BOUNDED COIN GRAPH RECOGNITION constructed by the

reduction has a 3-dimensional realization. To see this, embed the cages in the (horizontal)

plane, as usual. Then embed each 
ipper directly above its incident vertex on the cage

using the third dimension. Align all the 
ippers to ensure that 
ippers on a common cage

remain independent of one another. That is, pick some plane normal to the horizontal

and, when embedding a 
ipper, make all of its points equidistant from that plane. Since

the cages are all spaced by the large hexagonal grid, the 
ippers from di�erent cages

will be, too, and will consequently be independent. This implies, for example, that

2-SPHERICITY remains NP-hard even if the graph has sphericity at most 3.

We can express COIN GRAPH RECOGNITION and DISK GRAPH RECOGNI-

TION as existentially-quanti�ed formulae in the �rst order theory of the reals (cf. [Can88])

as follows. Let G = (V;E) be a graph where V = f1; 2; : : : ; ng. Say that ffv : v 2 V g �
R2 is a set of (possible) disk locations. Similarly, say that frv : v 2 V g � R is a set of

(possible) disk radii. Then G is a coin graph if and only if

9f19f2 : : :9fn9r19r2 : : :9rn Pcoin(f1; f2; : : : ; fn; r1; r2; : : : ; rn)

^ PE(f1; f2; : : : ; fn; r1; r2; : : : ; rn)
where

Pcoin(f1; f2; : : : ; fn; r1; r2; : : : ; rn) =
^

(u;v)2E
kfu � fvk = ru + rv

and

PE(f1; f2; : : : ; fn; r1; r2; : : : ; rn) =
^

(u;v)2E
kfu � fvk > ru + rv: (3.8)

Since the existential theory of the reals is decidable in PSPACE [Can88], it follows that

COIN GRAPH RECOGNITION is in PSPACE8.
8This should come as no surprise, since coin graphs can be recognized in linear time, as mentioned

earlier.
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We can add a predicate P� to constrain the radii of the disks. In particular, given a

value �, let

P�(r1; r2; : : : ; rn) =
^
v2V

1 � rv � �: (3.9)

Then G is a �-bounded coin graph if and only if

9f19f2 : : :9fn9r19r2 : : :9rn Pcoin(f1; f2; : : : ; fn; r1; r2; : : : ; rn)

^ PE(f1; f2; : : : ; fn; r1; r2; : : : ; rn)
^ P�(r1; r2; : : : ; rn):

It follows that �-BOUNDED COIN GRAPH RECOGNITION is in PSPACE.

Similarly, G is a disk graph if and only if

9f19f2 : : :9fn9r19r2 : : :9rn Pdisk(f1; f2; : : : ; fn; r1; r2; : : : ; rn)

^ PE(f1; f2; : : : ; fn; r1; r2; : : : ; rn)

where

Pdisk(f1; f2; : : : ; fn; r1; r2; : : : ; rn) =
^

(u;v)2E
kfu � fvk � ru + rv

and PE is de�ned by Equation 3.8. It follows that DISK GRAPH RECOGNITION is in

PSPACE. Again, we can add predicate P� (Equation 3.9). Then G is a �-bounded disk

graph if and only if

9f19f2 : : :9fn9r19r2 : : :9rn Pdisk(f1; f2; : : : ; fn; r1; r2; : : : ; rn)

^ PE(f1; f2; : : : ; fn; r1; r2; : : : ; rn)
^ P�(r1; r2; : : : ; rn):

It follows that �-BOUNDED DISK GRAPH RECOGNITION is in PSPACE.



Chapter 4

Cocomparability Graphs

Every � -strip graph is a cocomparability graph for all � 2 [0;
p
3=2], as we established

in Theorem 3.7. Therefore, the class of strip graphs naturally inherits the properties

of, as well as any algorithms on, the class of cocomparability graphs. This chapter

develops (in Section 4.2) polynomial time algorithms for several domination problems

on cocomparability graphs. This chapter also establishes properties of cocomparability

graphs that will be used later in the thesis to develop algorithms on strip graphs and

two-level graphs. In particular, transitive orientations of the nonedges of strip graphs

play a signi�cant role in their characterization, as we will see in Chapter 5 and Chapter 6.

Section 4.3 therefore explores the possible transitive orientations for the complements of

cocomparability graphs.

The following brief introduction characterizes cocomparability graphs in terms of a

linear order on the vertices of a graph. It also presents an algorithm for �nding such an

order. This characterization leads to e�cient algorithms for several domination problems,

which form the subject of Section 4.2. These algorithms, of course, are applicable to strip

graphs and two-level graphs.

4.1 Introduction

Recall from Section 2.3 that a comparability graph is an undirected graph that has a

transitive orientation, and that a graph is a cocomparability graph if its nonedges are

146
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transitively orientable (that is, if it is the complement of a comparability graph). Cocom-

parability graphs can be characterized in terms of possible linear orders on their vertices.

In this chapter, we will see how this characterization leads to e�cient algorithms.

De�nition 4.1 A spanning order (V;<) of a graph G = (V;E) is a linear order on the

vertices V of G such that, for any three vertices u < v < w, if u and w are adjacent, then

v is adjacent to either u or w (or both).

Figure 4.1 shows a small cocomparability graph and a spanning order on its vertices.

1 2 3 4 5 6 7 8 9

Figure 4.1: A cocomparability graph on nine vertices. The vertices are labelled in span-

ning order.

We will see that the vertices of every cocomparability graph can be labelled in span-

ning order (Lemma 4.2), and that every graph whose vertices can be labelled in spanning

order is a cocomparability graph (Theorem 4.3). Damaschke [Dam92] says this is well-

known, and he states the result without proof. Nevertheless, your intuition may be

strengthened by working through the following simple proofs. In essence, Theorem 4.3

says that the restriction of a spanning order to the complementary edges is a transitive

orientation.

Lemma 4.2 ([Dam92]) Let G = (V;E) be a cocomparability graph. Every linear ex-

tension of a transitive orientation of the complement of G is a spanning order of G.

Proof: Let G = (V;E) be a cocomparability graph. That is, its complement G = (V;E)

is a comparability graph. Let ~G = (V; ~E) be a transitive orientation of G, and consider
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any linear extension (V;<) of ~G. This is a spanning order of G. To see this, consider

any three vertices u < v < w such that (u;w) 2 E but (u; v) =2 E and (v;w) =2 E.

Then, by de�nition, (u; v) 2 ~E and (v;w) 2 ~E. By transitivity, (u;w) 2 ~E, and therefore

(u;w) =2 E, a contradiction.

Theorem 4.3 ([Dam92]) A graph is a cocomparability graph if and only if it has a

spanning order.

Proof: Every cocomparability graph has a spanning order by Lemma 4.2.

Conversely, suppose a graph G = (V;E) has a spanning order. Construct a directed

graph ~G = (V; ~E) such that (u; v) 2 ~E if and only if (u; v) =2 E and u < v. This

graph is a transitive orientation of G, for if (u; v) 2 ~E and (v;w) 2 ~E, then u < v < w

and (u; v) =2 E and (v;w) =2 E. Therefore u and w could not be adjacent; otherwise

the spanning ordering property would be violated. That is, (u;w) 2 ~E. So G is a

comparability graph, and G is a cocomparability graph.

De�nition 4.4 A linearly-ordered graph G = (V;E;<) is a graph (V;E) and a linear

order (V;<). A spanning-ordered graph G = (V;E;<) is a (necessarily cocomparability)

graph (V;E) and a spanning order (V;<).

The algorithm below generates a spanning-ordered graph (several of the following

sections require this) from a cocomparability graph. This algorithmmay return a linearly-

ordered graph even if G is not a cocomparability graph. This property allows us to

use this linearly ordered graph, for example in the subsequent Steiner set algorithm

(Section 4.2.5), to avoid having to recognize cocomparability graphs, a step that would

add �(M(V )) time [Spi85].

Theorem 4.5 Given an arbitrary graph G, Algorithm OCC returns a spanning-ordered

cocomparability graph if G is a cocomparability graph, or it returns a linearly-ordered
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Table 4.1: Algorithm: OCC(G) [spanning Ordered Cocomparability Graph]

Input: A graph G = (V;E).

Output: A linearly-ordered graph, or

a message stating that G is not a cocomparability graph.

1 G the complement of G.

2 ~G TRANSITIVELY-ORIENT( G )

3 if the directed graph ~G does not contain a cycle,

4 then order the vertices of G by topologically sorting ~G.

5 return the now linearly-ordered graph G = (V;E;<).
6 else return \G is not a cocomparability graph."

graph, or it prints a message stating that G is not a cocomparability graph, in O(V 2)

time.

Proof: Implement Step 2 with Spinrad's transitive orientation algorithm [Spi85], which

will orient any undirected graph. The resulting directed graph is transitive if and only if

G is a cocomparability graph [Spi85]. This graph is clearly not transitive if it contains

a cycle; this observation justi�es Step 3. If G is a cocomparability graph, the linearly-

ordered graph in Step 5 is a spanning-ordered graph by Lemma 4.2.

It is straightforward to implement Step 1 to run in O(V 2) time. Spinrad's algo-

rithm also takes O(V 2) time [Spi85]. Step 4 can be implemented to run in O(V + E)

time ([CLR90] pages 485{488) using depth �rst search. Step 4 can simultaneously test

for cycles in ~G, since such a cycle exists if and only if depth �rst search discovers a \back

edge" (one directed to an already-visited vertex). This obviates the need for an explicit

Step 3.

A graph is said to be chordal if it does not contain any induced cycles with four

or more edges, that is, every such cycle has a \chord". Neither comparability graphs
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nor cocomparability graphs are necessarily chordal. In fact, the chordal cocomparability

graphs are exactly the interval graphs [GH64]. However, cocomparability graphs are in

some sense almost chordal. This is a simple consequence of spanning orders.

Theorem 4.6 ([Gal67]) Cocomparability graphs do not have induced cycles with �ve or

more edges.

Proof: Let G = (V;E) be a cocomparability graph, and let C be any cycle with �ve

or more edges, and therefore at least �ve vertices, in G. Consider now a spanning order

(V;<) , which must exist for G by Theorem 4.3. Let s be the least vertex in C in this

order, and t the greatest vertex in C. Then C forms two paths from s to t, as shown in

Figure 4.2. There must be three vertices a < b < c such that b lies on one path, (a; c)
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Figure 4.2: Every 5-cycle in a cocomparability graph has a chord: three cases in

left-to-right order.

is an edge on the other path, and b is not adjacent to a or c (that is, (a; b) =2 E and

(b; c) =2 E). This contradicts the properties of a spanning order.

A related idea is that of a dominating path. A path P = (s; : : : ; t) in a graph

G = (V;E) is dominating if every graph vertex is either equal or adjacent to a path

vertex.

Lemma 4.7 A path P in a spanning-ordered cocomparability graph dominates all vertices

between the least vertex in P and the greatest vertex in P .
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Proof: A path in any graph dominates the vertices on the path. So let v be a vertex

in G = (V;E;<), not in the path P , between the least vertex l and the greatest vertex

t in P (that is, l < v < t). Then there exists some edge (u;w) of the path such that

l � u < v < w � t. By the properties of the spanning order, v is adjacent to either u or

w, so the path dominates v.

Corollary 4.7.1 A path in a spanning-ordered cocomparability graph dominates all

vertices between its endpoints.

4.2 Algorithms for Dominating and Steiner Set Problems

This section describes polynomial time algorithms for �nding optimal dominating sets

and Steiner sets in cocomparability graphs. The following table of contents lists the

subsections in which each algorithm is developed.

An algorithm for this set is presented in Subsection

minimum cardinality connected dominating set (MCCDS) x4.2.1
minimum cardinality dominating set (MCDS) x4.2.2
minimum cardinality total dominating set (MCTDS) x4.2.3
minimum weight independent dominating set (MWIDS) x4.2.4
minimum weight Steiner set (MWSS) x4.2.5

Until recently [KS93], it was not known if these problems on cocomparability graphs

were solvable in polynomial time. Every algorithm in this section has a better run

time complexity, and is designed using a very di�erent method, than the corresponding

dynamic programming algorithm of Kratsch and Stewart [KS93]. Subsequently, Daniel

Liang [Lia94] has achieved the same run time complexities as the algorithms in this

section; his algorithms use dynamic programming and are similar to those of Kratsch

and Stewart. A joint paper with Liang is in preparation.



Chapter 4. Cocomparability Graphs 152

Table 4.2 summarizes the results of this section and compares the running times of

algorithms for interval graphs and permutation graphs, both of which are subclasses of

cocomparability graphs. Recall that interval graphs are exactly the chordal cocompara-

bility graphs. Dominating sets for interval graphs have received considerable attention

[RR88b] and, in fact, linear algorithms for several dominating set problems are known.

These algorithms, however, also exploit additional properties of interval graphs, such as

chordality. The complexity of these problems on other kinds of perfect graphs appear in

the literature and are succinctly surveyed by Corneil and Stewart [CS90b]. A particularly

relevant observation from this survey is that all of these problems are NP-complete for

comparability graphs, the complements of cocomparability graphs.

Table 4.2 assumes that a spanning order is available for the cocomparability graph

algorithms, and that a de�ning permutation is available for the permutation graph al-

gorithms. In both cases, these can be created in O(V 2) time (see [Spi85] and Algo-

rithm OCC in Table 4.1), but notice that doing so would introduce an O(V 2) term to

some of these algorithms. Incidentally, we may assume that our input graphs are con-

nected, otherwise we can run the algorithms on the connected components and take the

union of the solutions. In particular, this means jV j = O(E).

Problem \ Graph Cocomparability Permutation Interval

MCCDS O(V E) O(V + E) [AR92] O(V + E) [RR88b]

MCDS O(V E2) O(V log log V ) [TH90] O(V + E) [RR88b]

MCTDS O(V E2) O(V 2 + V E) [CS90b] O(V + E) [RR88b]
MWIDS O(V 2:376) O(V 2) [BK87] O(V + E) [RR88b]
MWSS O(V log V + E) O(V log V + E) [AR92]

Table 4.2: Complexity of Domination Problems

Section 4.2.1 covers connected domination. Section 4.2.2 then develops an algorithm

for �nding a dominating set by exploiting the structure of a minimum cardinality con-

nected dominating set. Subsequently, Section 4.2.3 reduces the problem of �nding a total
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dominating set to that of �nding a dominating set.

The algorithm for �nding a minimum weighted independent dominating set utilizes

a new O(M(V )) time algorithm for �nding a minimum (or maximum) weight maximal

clique in a comparability graph. Both algorithms are presented in Section 4.2.4.

The Steiner set algorithmMWSS-CC presented in Section 4.2.5 is particularly 
exible:

given an arbitrary graph, the algorithm will either �nd a minimum weight Steiner set,

or it will print a message stating that the graph is not a cocomparability graph. That is,

the �(M(V )) time recognition step is not required.

Section 4.2.6 is on the applicability of these algorithms to realizations for three well

known subclasses of cocomparability graphs. It shows that the standard realizations of

permutation, interval, and indi�erence graphs admit easily extracted spanning orders,

and that the algorithms therefore run unchanged on these representations.

4.2.1 Connected Dominating Sets

This section describes a polynomial time algorithm for �nding a minimum cardinality

connected dominating set (MCCDS) in a cocomparability graph. Recall that a connected

dominating set in a graph is a subset of vertices that induces a connected subgraph, and

that is adjacent to every other vertex in the graph.

If a vertex in a linearly-ordered graph dominates all lesser vertices (in the linear

order), refer to it as a left dominator. Similarly, refer to a vertex that dominates all

greater vertices as a right dominator. Let V �(G) denote the set of left dominators in the

linearly-ordered graph G. Similarly let V +(G) denote the set of right dominators. We

will not write the graph argument if it is implicit (that is, we write V +(G) = V + if G

is understood). Also let V �(S) (respectively V +(S)) denote the set of left dominators
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(respectively right dominators) in the linearly-ordered graph induced by the linearly-

ordered subset S of vertices V . More formally,

V �(G) = fv : (u; v) 2 E(G) for all vertices u < vg; and

V +(G) = fv : (u; v) 2 E(G) for all vertices u > vg:

Corollary 4.7.1 implies that every path from a vertex in V � to a vertex in V + forms a

connected dominating set. The following lemma implies that such a path could serve

as an MCCDS if an MCCDS does not have exactly two vertices. In the forthcoming

material, let jP j denote the number of vertices in the set P , even if P is a path or similar

structure.

Lemma 4.8 Let M be a connected dominating set in a spanning-ordered cocomparability

graph G. Then there exists a path P from V � to V + such that (i) jP j � jM j, or (ii)

jP j = 3 and jM j = 2.

Proof:

Case 1: M contains vertices u 2 V � and w 2 V +.

Since M induces a connected subgraph, there is a path P from u to w using only

vertices in M . Therefore jP j � jM j.
Case 2: M does not contain any vertices from V � but contains a vertex w 2 V +.

Let u1 be the least (in the spanning order) vertex in V . Trivially, u1 2 V � and so

u1 =2 M . Since M is a dominating set, u1 is adjacent to some vertex v1 2 M . See

Figure 4.3.

Since v1 =2 V �, there is a least vertex u2 < v1 that is not adjacent to v1. It must be

that u2 2 V � since every vertex u < u2 is adjacent to u2. To see this, note that such a

vertex u is adjacent to v1 since u2 is the least vertex not adjacent to v1. Then u < u2 < v1

implies that u2 is adjacent to u according to the spanning order.
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Figure 4.3: M does not contain any vertices from V � but contains a vertex w 2 V +.

Again, u2 is adjacent to some vertex v2 2 M . Note that v2 6= v1 since u2 is not

adjacent to v1. Without loss of generality, suppose that P 0 = (v1; : : : ; w) is the shortest

path from either v1 or v2 to w in the subgraph induced by M (otherwise relabel the

vertices by exchanging subscript labels 1 and 2). This path exists since M is connected.

The path cannot contain v2 for, if it did, the path from v2 would be shorter. Therefore

jP 0j � jM nfv2gj = jM j�1. We can now create path P by appending u1 to the beginning

of P 0. It follows that jP j = jP 0j+ 1 � jM j.
Case 3: M contains a vertex w 2 V � but does not contain any vertices from V +.

This proof is symmetric to that for Case 2. Since M does not contain any vertices

from V +, we can �nd distinct vertices u3 2 V + and u4 2 V + that are adjacent to distinct

vertices v3 and v4 in M respectively (see Figure 4.4). We can now construct a shortest

path P from w to u3 or u4 so that, again, jP j � jM j.
Case 4: M contains vertices from neither V � nor V +.

As for Case 2, we can �nd distinct vertices u1 2 V � and u2 2 V � that are adjacent to

distinct vertices v1 and v2 in M respectively (see Figure 4.5). And as for Case 3, we can

�nd distinct vertices u3 2 V + and u4 2 V + that are adjacent to distinct vertices v3 and

v4 in M respectively (see Figure 4.5). Without loss of generality, let P 0 = (v1; : : : ; v3) be
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the shortest path, from either v1 or v2 to either v3 or v4, in the subgraph induced by M

(otherwise relabel the vertices). As before, this path cannot contain v2, and it cannot

contain v4 either.

If v1 = v3, then P = (u1; v1 = v3; u3) is a path in G that dominates G by the

dominating properties of u1 and u3 and by Lemma 4.7. Then jP j = 3. It cannot be that

jM j = 1, since otherwise the sole vertex would be in both V � and V +. Therefore either

jP j � jM j or jM j = 2.

On the other hand, if v1 6= v3, then v2 6= v4, otherwise P
0 = (v2) would have been

the shortest path. Therefore jP 0j � jM n fv2; v4gj = jM j � 2. We can now create path

P by appending u1 to the beginning of P 0, and u3 to the end of P 0. It follows that

jP j = jP 0j+ 2 � jM j.
Figure 4.6 shows a graph with jP j = 3 and jM j = 2. The left-to-right order of the
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Figure 4.6: Lemma 4.8.(ii) A graph with jP j = 3 and jM j = 2.

vertices is clearly a spanning order. The two dark vertices form a connected dominating

set, yet the shortest path from V � to V + has three vertices.

Theorem 4.9 Let G be a connected spanning-ordered cocomparability graph, and let P be

a shortest path from V � to V +. Either P is a minimum cardinality connected dominating

set, or jP j = 3 and G is dominated by a single edge.

Proof: Let P be a shortest path from V � to V +. The path P is clearly connected, and

it is dominating by the de�nitions of V � and V +, and by Lemma 4.7.
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Now let M be a minimum cardinality connected dominating set of G. Then by

Lemma 4.8, either jP j � jM j, and therefore P is a minimum cardinality connected

dominating set, or jP j = 3 and jM j = 2, so that G is dominated by a single edge.

Table 4.3: Algorithm: MCCDS-OCC(G) [Minimum Cardinality Connected Domi-

nating Set for spanning-Ordered Cocomparability Graphs]

Input: A connected spanning-ordered cocomparability graph G = (V;E)
Output: A minimum connected dominating set of G

1 V �  fv : v dominates all lesser vertices g
2 V +  fv : v dominates all greater vertices g
3 P  the shortest path from V � to V + in G
4 if jP j = 3

5 then for all edges (u; v) 2 E
6 do if every vertex w 2 V is adjacent to u or v

7 then P  fu; vg
8 break

9 return P .

Theorem 4.10 Algorithm MCCDS-OCC computes a minimum cardinality connected

dominating set of a connected spanning-ordered cocomparability graph G = (V;E;<) in

O(V E) time.

Proof: The correctness of the algorithm follows immediately from Theorem 4.9. To ana-

lyze the run-time complexity of the algorithm, assume that the input graph is represented

by an adjacency list and adjacency matrix.

Step 1 can be executed in O(V + E) time by making use of the linear-order and the

adjacency matrix. To test if a vertex is a left-dominator, we check all lesser vertices in

order, stopping immediately if a vertex is not adjacent (i.e., not dominated). In this way

every edge is visited at most once, and each vertex examines at most one non-adjacent
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Table 4.4: Algorithm: MCCDS-CC(G) [MinimumCardinality Connected Dominat-

ing Set for Cocomparability Graphs]

Input: A cocomparability graph G = (V;E).

Output: A minimum cardinality connected dominating set,

or a message stating that no connected dominating set exists.

1 if G is connected,

2 then G  OCC(G)

3 return MCCDS-OCC( G )

4 else return \No connected dominating set exists."

vertex. Similarly, Step 2 can be executed in O(V + E) time by checking all greater

vertices. Step 3 can be implemented by adding a new \source" vertex s and a new

\target" vertex t that is adjacent to the vertices in V � and V + respectively. Step 3 can

then be executed in O(V +E) time by running breadth �rst search starting at s. Finally,

Step 6 runs in O(V ) time for a total of O(V E) time since it is called for each edge.

Theorem 4.11 Given a cocomparability graph G, Algorithm MCCDS-CC computes

a minimum cardinality connected dominating set, or prints a message stating that no

connected dominating set exists, in O(V E) time.

Proof: Step 4 is correct since there is clearly no connected dominating set if G is not

connected. On the other hand, if G is connected, V itself forms a connected dominating

set. Step 2 correctly orders the vertices V of G by Theorem 4.5, so the set returned by

Step 3 is a minimum cardinality connected dominating set by Theorem 4.10.

Step 1 takes O(V + E) using depth �rst search, Step 2 takes O(V 2) time by The-

orem 4.5, and Step 3 takes O(V E) time by Theorem 4.10. If G is connected, then

jEj � jV j � 1. Therefore, if the algorithm executes Steps 2 and 3, then it must be that

O(V 2) = O(V E). The total time taken is therefore O(V + E + V E) = O(V E).
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4.2.2 Minimum Cardinality Dominating Sets

We now know how to �nd a minimumcardinality connected dominating set in a cocompa-

rability graph. On the other hand, there may be an even smaller set that dominates the

graph but that does not induce a connected subgraph. This is the ordinary dominating

set problem|to �nd a (not necessarily connected) minimum cardinality dominating set

(MCDS) in a graph|which we now address.

Let G = (V;E;<) be a spanning-ordered graph. To simplify the treatment of special

cases, this section assumes that V has been augmented with two additional vertices s

and t. These vertices s = 0 and t = jV j+1 are not adjacent to any vertices. We will �nd

an MCDS in G by �nding a shortest path in an auxiliary digraph G0 = (V 0; A0), which

we will refer to as a d-auxiliary graph There is a node in V 0 for each vertex in V , and

two nodes in V 0 for each undirected edge in E. More precisely,

V 0 = V [ Vin [ Vout; where

Vin = fein : e 2 Eg and

Vout = feout : e 2 Eg:

The arc set A0 depends only on the spanning-ordered graph G. However, the reader may

�nd its presentation at this point somewhat mysterious, so we will instead present A0 in

conjunction with its properties. For now, let us just say that A0 is the disjoint union of

six sets of directed arcs

A0 = A0 [A1 [ A2 [A3 [A4 [ A5:

These sets are de�ned by the forthcoming Equations 4.10 through 4.15.

Let M be a minimum cardinality dominating set of G. Write

M =
k+1[
i=0

Pi;
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where each induced subgraph G(Pi) is a connected component of the induced subgraph

G(M). Recall that N(Pi) = N(Pi; G) denotes the vertices dominated by Pi in G. Clearly,

Pi is a minimum cardinality connected dominating set of the subgraph induced by N(Pi).

By Theorem 4.9, we may assume that Pi is either a shortest path (li; : : : ; ri) from a

left dominator li 2 V �(N(Pi)) to a right dominator ri 2 V +(N(Pi)), or a single edge

Pi = (li; ri). We may further assume that li � ri in the spanning order for all paths Pi.

We can clearly do so if Pi = (li = ri) or if Pi = (li; ri). For longer paths Pi = (li; : : : ; ri),

we must have li < ri, otherwise li and ri would be adjacent by the de�nition of left and

right dominators, and (li; ri) would be a shorter path than Pi.

Furthermore, these paths do not overlap in the spanning order. That is, no vertex

v 2 Pi falls between the least and greatest vertices of any other path Pj . This is because

such a vertex v would be dominated by Pj according to Lemma 4.7, contradicting the

fact that G(Pi) and G(Pj) are connected components of G(M). We may therefore assume

that

l0 � r0 < l1 � r1 < � � � < lk+1 � rk+1

in the spanning order. Note that, since the vertices s and t are not adjacent to any

vertices, P0 = (l0 = r0 = s) and Pk+1 = (lk+1 = rk+1 = t). De�ne a paths dominator to

be a set M that satis�es all of the above properties. We have established the following

property of spanning-ordered graphs.

Property 4.12 Every spanning-ordered graph has a paths dominator.

We are now ready to derive the arcs of the d-auxiliary digraph. In order to do

so, however, we will need the following technical lemma that explains why all vertices

between two paths are dominated by the endpoints of the paths.

Lemma 4.13 Let v be a vertex between paths in a paths dominator M , that is, ri < v <
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li+1 for some i. Then v is adjacent to at least one endpoint of at least one of the two

bracketing paths. More precisely,

1. If neither Pi nor Pi+1 is an edge, then v is adjacent to ri or li+1.

2. If Pi+1 is an edge but Pi is not, then v is adjacent to ri, li+1, or ri+1.

3. If Pi is an edge but Pi+1 is not, then v is adjacent to li, ri, or li+1.

4. If both Pi and Pi+1 are edges, then v is adjacent to li, ri, li+1, or ri+1.

Proof: Since M is a dominating set, the vertex v is adjacent to some vertex u 2 M . If

u 2 Pi, then we are done since either ri 2 V +(N(Pi)) or Pi = (li; ri). Similarly, we are

done if u 2 Pi+1, since either li+1 2 V �(N(Pi+1)) or Pi+1 = (li+1; ri+1).

Otherwise u is in some other path Pj so that u < ri and (u; ri) 2 E, or li+1 < u and

(u; li+1) 2 E, since Pi and Pj do not overlap in the spanning order. In the �rst case,

where u < ri < v, there is an edge between u and v, but (u; ri) 2 E. Therefore (ri; v) 2 E
by the spanning order. Similarly, in the second case, (li+1; v) 2 E.

We want to de�ne the arcs A0 of the d-auxiliary graph G0 so that for every paths

dominator M , there is a path P 0 from s to t in G0 with the same number of vertices as

M . Essentially, we want P 0 to simulate the sequence

S = (s = l0 = r0; l1; : : : ; r1; : : : ; li; : : : ; ri; : : : ; lk+1 = rk+1 = t);

where (li; : : : ; ri) is the path Pi. More precisely, let � : V 0 ! V denote the signi�cance

of a vertex in G0, de�ned by

�(v0) =

8>>>>><>>>>>:
v0 if v0 2 V
u if v0 = ein; where e = (u; v) and u < v

v if v0 = eout; where e = (u; v) and u < v:



Chapter 4. Cocomparability Graphs 163

We want the signi�cance of path P 0 = (s = p01; p
0
2; : : : ; p

0
n) to be S, that is, we want

S = (�(p01); �(p
0
2); : : : ; �(p

0
n) = t);

or more compactly S = �(P 0), by a traditional abuse of notation. To achieve this, we

need an arc from u0 to v0 in G0 if �(u0) and �(v0) are consecutive in S. We will use

dominating properties to determine which nodes should be adjacent.

To this end, let u and v be two consecutive vertices in the sequence S. If u and v

belong to some path Pi, then (u; v) 2 E, and by the spanning order, fu; vg dominates all

vertices between u and v. Therefore de�ne A1 [A2 to be the set of arcs whose endpoints

dominate all vertices in between. The set A2 is just the reversal of A1. More precisely,

A1 = f(u; v) : u; v 2 V; u < v; and for all i 2 V;

u < i < v implies (i; u) 2 E or (i; v) 2 Eg (4.10)

A2 = f(v; u) : (u; v) 2 A1g: (4.11)

If u and v do not belong to a path, then u = ri and v = li+1 for some paths Pi and

Pi+1. We must consider four cases, depending on whether Pi or Pi+1 is an edge.

Case 1: Neither Pi nor Pi+1 is an edge.

In this case, fri; li+1g dominates all vertices in between by Lemma 4.13.1. Note that

(ri; li+1) 2 A1.

Case 2: Pi+1 = (li+1; ri+1) = e is an edge but Pi is not.

The set frig[fli+1; ri+1g dominates all vertices between ri and li+1 by Lemma 4.13.2.

In this case, we want an arc from ri to ein. More precisely,

A3 = f(w; ein) : w 2 V; e = (u; v) 2 E; w < u < v; and for all i 2 V;

w < i < u implies (i; u) 2 E; (i; v) 2 E; or (i; w) 2 Eg: (4.12)

Also, we wish to ensure that any path in G0 through ein also includes eout. To do so, we

de�ne the arcs A0 between such pairs. For every edge e 2 E, this will be the only arc
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from ein and the only arc to eout. More precisely,

A0 = f(ein; eout) : e 2 Eg: (4.13)

Case 3: Pi = (li; ri) = e is an edge but Pi+1 is not.

The set fli; rig [ fli+1g dominates all vertices between ri and li+1 by Lemma 4.13.3.

In this case, we want an arc from eout to li+1. More precisely,

A4 = f(eout; w) : w 2 V; e = (u; v) 2 E; u < v < w; and for all i 2 V;

v < i < w implies (i; u) 2 E; (i; v) 2 E; or (i; w) 2 Eg: (4.14)

Again, the arcs in A0 ensure that any path in G0 through eout includes ein.

Case 3: Both Pi = (li; ri) = e and Pi+1 = (li+1; ri+1) = f are edges.

The set fli; rig[fli+1; ri+1g dominates all vertices between ri and li+1 by Lemma 4.13.4.

In this case, we want an arc from eout to fin. More precisely,

A5 = f(eout; fin) : e = (u; v); f = (w; x) 2 E; u < v < w < x; and for all i 2 V;

v < i < w implies (i; u) 2 E; (i; v) 2 E; (i; w) 2 E; or (i; x) 2 Eg: (4.15)

This completes our description of the arc sets A0 through A5 in A0. The preceding

discussion establishes the following lemma.

Lemma 4.14 For every paths dominator M of a spanning-ordered graph, there is a path

P 0 in G0 that satis�es jP 0j � jM j.

The reader may suspect from our construction that every path in G0 also corresponds

to a dominating set in G. The following lemma con�rms this suspicion.

Lemma 4.15 Let P 0 be a path from s to t in G0. The vertices of V corresponding to the

nodes of P 0 dominate G.
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Proof: Let S = f�(v) : v 2 P 0g be the set of vertices corresponding to the nodes in the

path P 0, and let j be an arbitrary vertex in V . We claim that S dominates j.

If j 2 S, then we are done. Otherwise, s < j < t in the spanning order, so there

exists a pair of vertices i and k in P 0 such that (i; k) 2 A0 and either �(i) < j < �(k) or

�(k) < j < �(i).

If (i; k) 2 A0, then (�(i); �(k)) 2 E so j is dominated by �(i) or �(k) by the spanning

order. If (i; k) 2 A1 or (i; k) 2 A2 then (j; �(i)) 2 E or (j; �(k)) 2 E by the de�nition of

the sets.

If (i; k) 2 A3, then (i; k) = (w; ein) for some vertex w and edge e = (u; v) that satis�es

w < j < u < v. Therefore j is adjacent to u, v, or w by the de�nition of A3. Since node

ein has outdegree 1 in G0, it must be that eout 2 P 0. Therefore v = �(eout) 2 S and,

since we already know that u = �(ein) = �(k) and w = �(i) are in S, it follows that j is

dominated by S.

If (i; k) 2 A4, then (i; k) = (eout; w) for some vertex w and edge e = (u; v) such that

u < v < j < w. Therefore j is adjacent to u, v, or w by the de�nition of A4. Since

node eout has indegree 1 in G0, it must be that ein 2 P 0. Therefore u = �(ein) 2 S and,

since we already know that v = �(eout) = �(i) and w = �(k) are in S, it follows that j

is dominated by S.

Finally, if (i; k) 2 A5, then (i; k) = (eout; fin) for some edges e = (u; v) and f = (w; x)

such that u < v < j < w < x. Therefore j is adjacent to u, v, w, or x by the de�nition

of A5. Since node eout has indegree 1 and node fin has outdegree 1 in G
0, it must be that

ein 2 P 0 and fout 2 P 0. Therefore u = �(ein) 2 S and x = �(fout) 2 S and, since we

already know that v = �(eout) = �(i) and w = �(fin) = �(k) are in S, it follows that j

is dominated by S.

Theorem 4.16 The set of vertices corresponding to the nodes in a shortest path from s
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to t in G0 is a minimum cardinality dominating set.

Proof: Such a set is dominating by Lemma4.15 and of minimumcardinality by Lemma 4.14.

Let us now examine a straightforward algorithm for constructing the d-auxiliary di-

graph G0. To enhance the legibility of the algorithm, we will construct a subalgorithm for

each of the arc sets A0 through A5. An implementation of this algorithm could combine

the subalgorithms to capitalize on loops that are shared by more than one subalgorithm.

The most straightforward of the subalgorithms is the one for A0. It clearly executes in

O(E) time.

Table 4.5: Algorithm: A0-MCDS-OCC(G) [Construct arc set A0]

Input: A spanning-ordered graph G = (V;E;<).
Output: The arc set A0 (Equation 4.13)

1 A0 ;
2 for all edges e 2 E where e = (u; v) and u < v

3 do A0 A0 [ f(ein; eout)g
4 return A0

To construct the arcs for A1, we only need to determine which pairs dominate all

vertices in between. This is certainly true for the endpoints of edges in G. Otherwise,

Algorithm A1-MCDS-OCC (Table 4.6) tests if a vertex is not dominated by the pair.

Step 2 calls Step 4 O(V 2) times and calls Step 5 O(E) times. Step 5 calls Step 6 O(V )

times. Therefore Algorithm A1-MCDS-OCC runs in O(V 2 + V E) = O(V 3) time. Note

that there are O(V 2) arcs in A1.

To construct the arcs for A3, we need to determine which pairs of vertices and edges

dominate everything in between. Again, Algorithm A3-MCDS-OCC (Table 4.7) tests if

a vertex is not dominated by the pair. Step 2 calls Step 3 O(E) times, which calls Step 5
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Table 4.6: Algorithm: A1-MCDS-OCC(G) [Construct arc set A1]

Input: A spanning-ordered graph G = (V;E;<).

Output: The arc set A1 (Equation 4.10)

1 A1 ;
2 for all pairs of vertices u; v 2 V where u < v

3 do A1 A1 [ f(u; v)g
4 if (u; v) =2 E
5 for all i such that u < i < v
6 if (i; u) =2 E and (i; v) =2 E
7 then A1 A1 n f(u; v)g
8 return A1

O(V ) times, which calls Step 6 O(V ) times. Therefore Algorithm A3-MCDS-OCC runs

in O(V 2E) time. Note that there are O(V E) arcs in A3.

Table 4.7: Algorithm: A3-MCDS-OCC(G) [Construct arc set A3]

Input: A spanning-ordered graph G = (V;E;<).
Output: The arc set A3 (Equation 4.12)

1 A3 ;
2 for all edges e 2 E where e = (u; v) and u < v

3 do for all vertices w such that w < u < v

4 do A3 A3 [ f(w; ein)g
5 for all vertices i such that w < i < u

6 do if (i; w) =2 E, (i; u) =2 E, and (i; v) =2 E
7 then A3 A3 n f(w; ein)g
8 return A3

AlgorithmA4-MCDS-OCC (Table 4.8) is symmetricwith AlgorithmA3-MCDS-OCC.

It therefore also runs in O(V 2E) time, and A4 has O(V E) arcs.

In Algorithm A5-MCDS-OCC (Table 4.9), Step 2 calls Step 3 O(E) times, which calls
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Table 4.8: Algorithm: A4-MCDS-OCC(G) [Construct arc set A4]

Input: A spanning-ordered graph G = (V;E;<).

Output: The arc set A4 (Equation 4.14)

1 A4 ;
2 for all edges e 2 E where e = (u; v) and u < v

3 do for all vertices w such that v < w
4 do A4 A4 [ f(eout; w)g
5 for all vertices i such that v < i < w
6 do if (i; u) =2 E, (i; v) =2 E, and (i; w) =2 E
7 then A4 A4 n f(eout; w)g
8 return A4

Step 5 O(E) times, which calls the constant-time Step 6 step O(V ) times. Therefore

Algorithm A5-MCDS-OCC executes in O(V E2) time. Note that there are O(E2) arcs in

A5.

Table 4.9: Algorithm: A5-MCDS-OCC(G) [Construct arc set A5]

Input: A spanning-ordered graph G = (V;E;<).

Output: The arc set A5 (Equation 4.15)

1 A5 ;
2 for all edges e 2 E where e = (u; v) and u < v
3 do for all edges f 2 E where f = (w; x) and u < v < w < x

4 do A5 A5 [ f(eout; fin)g
5 for all vertices i such that v < i < w

6 do if (i; u) =2 E, (i; v) =2 E, (i; w) =2 E, and (i; x) =2 E
7 then A5 A5 n f(eout; fin)g
8 return A5

Lemma 4.17 Algorithm Aux-MCDS-OCC (Table 4.10) constructs the d-auxiliary graph

in O(V E2) time.



Chapter 4. Cocomparability Graphs 169

Table 4.10: Algorithm: Aux-MCDS-OCC(G) [d-Auxiliary Graph for MinimumCar-

dinality Dominating Set for spanning-Ordered Cocomparability Graphs]

Input: A spanning-ordered graph G = (V;E;<).

Output: The d-auxiliary digraph G0 = (V 0; A0).

1 V 0 V [ Ein [ Eout

2 A0 A0-MCDS-OCC(G)
3 A1 A1-MCDS-OCC(G)

4 A2 A�1
1

5 A3 A3-MCDS-OCC(G)

6 A4 A4-MCDS-OCC(G)
7 A5 A5-MCDS-OCC(G)
8 A0 A0 [A1 [A2 [A3 [ A4 [A5

9 return G0 = (V 0; A0)

Proof: It is straightforward to verify that the algorithm correctly constructs arc sets A0

through A5. Of course, the algorithm refers to these sets for clarity only. An implemen-

tation would just add the arcs directly to the set A0.

Implement the input and output graphs as adjacency matrices. Testing if two vertices

are adjacent in G, or adding an arc to G0 therefore take constant time. Step 1 amounts to

allocating memory for an O((V +2E)�(V +2E)) matrix, and initializing it in O(V 2+E2)

time. It is easy to verify that Step 7 dominates the running time of the algorithm and

takes at most O(V E2) time from the discussion above.

Theorem 4.18 Algorithm MCDS-OCC �nds a minimum cardinality dominating set of

a spanning-ordered cocomparability graph in O(V E2) time.

Proof: The algorithm is correct by Theorem 4.16. Step 1 takes O(V E2) time by

Lemma 4.17. Step 2 can be implemented to run in O(V 02) = O(V 2 + E2) time us-

ing breadth �rst search[CLR90], and Step 3 clearly runs in O(V ) time. Step 1 dominates

the run time of the algorithm, so the theorem follows.
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Table 4.11: Algorithm: MCDS-OCC(G) [MinimumCardinality Dominating Set for

spanning-Ordered Cocomparability Graphs]

Input: A spanning-ordered graph G = (V;E;<).

Output: A minimum cardinality dominating set of G.

1 G0 MCDS-OCC-Aux(G)

2 P 0 a shortest path from s to t in G0.

3 S  f�(v) : v 2 P 0g
4 return S.

4.2.3 Total Dominating Sets

Recall from the introduction (x1.3.2) that a total dominating set of a graph G = (V;E)

is a subset D � V such that every vertex in V is adjacent to some vertex in D. Contrast

this with an ordinary dominating set, which either contains or is adjacent to every graph

vertex. The total domination problem is to �nd a total dominating set of minimum

cardinality.

This section presents an e�cient algorithm for total domination in cocomparability

graphs. It does this by reducing the problem to (ordinary) domination in cocompara-

bility graphs. Given an arbitrary graph G, we begin by constructing an (undirected)

auxiliary graph G0 that we will refer to as a t-auxiliary graph. We will see that if G is

a cocomparability graph, then so is G0. Furthermore, there is a minimum cardinality

dominating set M of G0 that corresponds to a minimum cardinality total dominating set

of G. That is, M solves the total domination problem on G.

De�nition 4.19 Let G = (V;E) be an arbitrary graph. The t-auxiliary graph G0 is two

copies of the graph G. In addition, two vertices in di�erent copies are adjacent if the

corresponding vertices in G are adjacent. More formally, G0 is de�ned by the following



Chapter 4. Cocomparability Graphs 171

equations.

G0 = (V 0; E0) where

V 0 = V 1 [ V 2

E 0 = E1 [ E2 [ E12

V 1 = fv1 : v 2 V g

V 2 = fv2 : v 2 V g

E1 = f(u1; v1) : (u; v) 2 Eg

E2 = f(u2; v2) : (u; v) 2 Eg

E12 = f(u1; v2) : (u; v) 2 Eg

To illustrate this de�nition, Figure 4.7 shows the t-auxiliary graph of the graph in

Figure 4.1. For the rest of this subsection, de�ne the signi�cance �(v0) of a vertex in V 0

V1

V2

Figure 4.7: Reducing total domination to domination. This is the t-auxiliary graph of

the cocomparability graph in Figure 4.1. The vertices V 1 are on the top, and the vertices

v2 are on the bottom. Similarly, the edges E1 are on the top and the edges E2 are on

the bottom. The edges E12 go between the two layers of vertices.

to be the corresponding vertex in V . More formally, let � : V 0 ! V be a function that

satis�es �(v1) = �(v2) = v for all vertices v 2 V .
We can now make three simple observations. Note that Observations 4.21 and 4.22

can be viewed as corollaries of Observation 4.20.
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Observation 4.20 Every pair of vertices u0; v0 2 V 0 satis�es (u0; v0) 2 E0 if and only if

(�(u0); �(v0)) 2 E.

Observation 4.21 Vertices v1 and v2 are not adjacent in G0 for every v 2 V .

Observation 4.22 A vertex w0 2 G0 is adjacent to v1 if and only if w0 is adjacent to

v2. That is, Adj(v1; G0) = Adj(v2; G0) for every v 2 V .

Lemma 4.23 The t-auxiliary graph of a cocomparability graph is also a cocomparability

graph.

Proof: Let G = (V;E) be a cocomparability graph, and let G0 = (V 0; E 0) be its t-

auxiliary graph using the notation in De�nition 4.19. If (V;<) is a spanning order of

G, then the linear order (V 0;�), where u0 � v0 if and only if �(u0) < �(v0), or u0 = v1

and v0 = v2 for some v 2 V , is a spanning order of G0. To see this, let a � b � c

be three vertices in G0 such that a and c are adjacent. Then �(a) � �(b) � �(c), and

(�(a); �(c)) 2 E by Observation 4.20. Therefore, if �(b) is equal to one of �(a) or �(c),

then it is adjacent to the other. On the other hand, if �(b) is distinct from �(a) and

�(c), then �(b) is also adjacent to �(a) or �(c) by the spanning order on G. Therefore

b is adjacent to a or c by Observation 4.20. If follows from Lemma 4.3 that G0 is a

cocomparability graph.

Suppose now that M12 � V 1 [ V 2 is a dominating set of G0. Then there is a subset

M1 � V 1 that is also a dominating set of G0, and that satis�es jM1j � jM12j. We will

see shortly (Lemma 4.27) that �(M1) is a total dominating set for G. But �rst, we need

to see how to construct M1 from a dominating set M12. We will do this by \lifting"

vertices from M12 \ V 2 into V 1. Let v2 be an arbitrary vertex in M12 \ V 2. If v1 =2M12,

then lift v2 to v1. Otherwise, v1 2M12. Since G has no isolated vertices, v1 must have a

neighbour w1 2 V 1. In this case, lift v2 to vertex w1 (any such neighbour will do). More
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formally, let M1 = f(M12) where f : V 0 ! V 1 is de�ned by the following equation.

f(v0) =

8>>>>><>>>>>:
v1 if v0 = v1

v1 if v0 = v2 and v1 =2 M12

w if v0 = v2; v1 2 M12; and (v1; w1) 2 E1

(4.16)

For example, the circled vertices in Figure 4.8 form a dominating set (actually a

V1

V2

Figure 4.8: The e�ect of function f on a minimum cardinality dominating set.

minimum cardinality dominating set) of the graph in Figure 4.7. The arrows in Fig-

ure 4.8 show the e�ect of the function f . Since f maps vertices already in the set V 1 to

themselves, the �gure does not show arrows from (or to) these vertices.

Observation 4.24 If v1 2M12 or v2 2M12, then v1 2 f(M12).

Observation 4.25 jM1j � jM12j.

Proof: The observation follows since f (Equation 4.16) is a function.

Lemma 4.26 Let G0 be the t-auxiliary graph of a cocomparability graph G with no

isolated vertices. If M12 is a dominating set of G0, then M1 = f(M12) is a dominating

set of G0.

Proof: Let v0 be an arbitrary vertex in V 0. Since M12 is a dominating set, either (1)

vertex v0 is adjacent to some vertex u0 2M12, or (2) v0 2 M12.

Case 1: v0 is adjacent to some vertex u0 2 M12 (see Figure 4.9).
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d d

di
HHHHH

v0 u1

u2

Figure 4.9: Case 1: Vertex v0 must be adjacent to u1 2M1. The circled vertex is in M12.

Either u0 = u1 or u0 = u2. Therefore v0 is adjacent to u1 by Observation 4.22, and

u1 2M1 by Observation 4.24. It follows that v0 is dominated by M1.

Case 2.1: v0 2M12 and v1 =2M12 (see Figure 4.10).

d

d

d

di i

HHHHH��
��
�

v1

v0 = v2

u1

u0 = u2

Figure 4.10: Case 2.1: Case 1 applies again. The circled vertices are in M12.

Since v1 is not in M12, vertex v1 must be adjacent to (dominated by) some vertex

u0 2M12. Therefore v0 = v2 is also adjacent to u0 by Observation 4.22, and the previous

case applies.

Case 2.2: v0 2M12 and v1 2M12 (see Figure 4.11).

d

d

di

i�
��

��

v1

v0 = v2

w1

Figure 4.11: Case 2.2: Vertex v0 is adjacent to a neighbour w1 of v1, both of which are

in f(M12). The circled vertices are in M12.

If v0 = v1, then we are done. Otherwise, v0 = v2 and, by Equation 4.16, f(v0) = w1,
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where w1 2 V 1 is some neighbour of v1. Vertex v2 is also adjacent to w1 by Ob-

servation 4.22. Therefore v0 is dominated by M1 = f(M12) since w1 = f(v0) and

f(v0) 2 f(M12).

Corollary 4.26.1 If M12 is a minimum cardinality dominating set of a cocompara-

bility graph G with no isolated vertices, then M1 = f(M12) is a minimum cardinality

dominating set of G0.

Proof: Immediate from the lemma and Observation 4.25.

Lemma 4.27 Let G = (V;E) be a cocomparability graph with no isolated vertices. If

M1 � V 1 is a minimum cardinality dominating set of the t-auxiliary graph G0, then

�(M1) is a minimum cardinality total dominating set of G.

Proof: To see that �(M1) is a total dominating set for G, let v be an arbitrary vertex

in V . Then v2 is adjacent to some vertex u1 2 M1, since M1 dominates v2 but M1

does not contain any vertices from V 2. Therefore v = �(v2) is adjacent to �(u1) by

Observation 4.20. Since �(u1) 2 �(M1), it follows that �(M1) is a total dominating set

of G.

To see that �(M1) is of minimum cardinality, let T be a minimum cardinality total

dominating set of G. By de�nition, every vertex in V is adjacent to some vertex in T .

Let T 1 be the subset of V 1 that corresponds to T . That is, let T 1 = ft1 : t 2 Tg. Clearly,
every vertex in v1 2 V 1 is adjacent to some vertex in T 1. Now consider an arbitrary

vertex v2 2 V 2. This vertex v2 is adjacent to some vertex in T 1 since v1 is adjacent to

some vertex in T 1 and Adj(v1; G0) = Adj(v2; G0) by Observation 4.22. Therefore T 1 is an

(ordinary) dominating set of G0, and j�(M1)j = jM1j � jT 1j = jT j by Corollary 4.26.1.

Lemma 4.28 Algorithm MCTDS-OCC (Table 4.2.3) prints a message stating that no

total dominating set exists if and only if no total dominating set exists.
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Table 4.12: Algorithm: MCTDS-OCC(G) [MinimumCardinality Total Dominating

Set in spanning-Ordered Cocomparability Graphs]

Input: A spanning ordered cocomparability graph G.

Output: A minimum cardinality total dominating set M of G, or

a message stating that no total dominating set exists.

1 if G has no isolated vertices,

2 then Construct the spanning-ordered t-auxiliary graph G0.

3 M12  MCDS-OCC(G0)

4 M1  ff(v) : v 2M12g as de�ned by Equation 4.16.

5 return �(M1).

6 else return \No total dominating set exists."

Proof: An isolated vertex of G cannot be total dominated, therefore no total dominating

set exists in this case. On the other hand, G(V ) total dominates G(V ) if there are no

isolated vertices, hence a total dominating set exists in this case. This condition is tested

in Step 1.

Theorem 4.29 Algorithm MCTDS-OCC returns a minimum cardinality total dominat-

ing set of a spanning-ordered cocomparability graph if and only if one exists in O(V E2)

time.

Proof: The algorithm returns a set if and only if a minimumcardinality total dominating

set exists by Lemma 4.28. The t-auxiliary graph G0 constructed in Step 2 is a spanning-

ordered graph by Lemma 4.23. Therefore the setM12 constructed in Step 3 is a minimum

cardinality dominating set by Theorem 4.18. Since G does not have any isolated vertices,

the setM1 constructed in Step 4 is a minimumcardinality dominating set by Lemma 4.26.

Finally, �(M1) is a minimum cardinality total dominating set by Lemma 4.27.

To achieve the stated run time, represent all graphs with adjacency lists. Then

Step 1 can be checked in O(V ) time. To construct the t-auxiliary graph in Step 2, begin
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by copying the graph in O(V + E) time. Then construct E 0 by examining every edge

(u; v) 2 E in O(V + E) time and adding the edges (u1; v1), (u2; v2), and (u1; v2) in

constant time. There are 2jEj edges in E12, and jEj edges in each of E1 and E2, for a

total of 4jEj edges in E0. That is, G0 has O(E) edges, and since there are 2jV j vertices in
V 0, graph G0 has O(V ) vertices. Therefore, Step 3 can be executed in O(V E2) time by

Theorem 4.18. Finally, the output in Steps 4 and 5 can be constructed in O(V ) time by

examining each vertex in V and using the �rst available neighbour when one is needed.

Step 3 is the time critical step and accounts for the complexity of the algorithm.

4.2.4 Weighted Independent Dominating Sets

Until now, the problems in this section entailed �nding minimum cardinality subgraphs.

This section and the next (x4.2.5) generalizes this type of optimization problem by �nding

minimumweight subgraphs in graphs with weighted vertices. The weighted versions of the

problems studied so far, namely minimum weight connected dominating set, minimum

weight dominating set, and minimumweight total dominating set, all on cocomparability

graphs, have been shown to be NP-complete by Maw Shang Chang [Cha94].

This section presents an e�cient polynomial-time algorithm for �nding a minimum

weight independent dominating set in a weighted cocomparability graph. It does so by

reducing the problem to �nding a minimum weight maximal clique1 in a comparability

graph. It then exhibits a new e�cient algorithm for �nding a minimum weight maximal

clique in a comparability graph.

Could we not negate all weights and �nd a maximum weight clique? Yes, certainly,

but are standard maximum weight clique algorithms, for example the one in [Gol80],

applicable here? They are not, because they are content to �nd a maximum weight

clique, not necessarily a maximal one. A maximum weight clique is also a maximal

1Recall that a clique is a complete subgraph.



Chapter 4. Cocomparability Graphs 178

clique if its weights are positive. However, a clique found by such an algorithm would

not contain any vertices with negative weights, even though such a clique might not be

maximal. This is because the weight of any subgraph can be increased by removing any

negative weight vertices.

On the other hand, the new algorithm presented in this section can also �nd a max-

imum weight maximal clique if the weights are �rst negated. Let us begin by exploring

some relevant properties of independent dominating sets.

Observation 4.30 An independent set is a dominating set if and only if it is a maximal

independent set.

Proof: Let I be an independent set. If I is a dominating set, then every vertex not in

I is adjacent to some vertex in I. Therefore, I is a maximal independent set.

Conversely, if I is a maximal independent set, every vertex not in I must be adjacent

to some vertex of I, and therefore is dominated by I. Since I trivially dominates all

vertices in I, it is a dominating set.

Observation 4.31 A set is independent in a graph if and only if it is completely con-

nected in the complement of the graph, and a set is maximal independent in a graph if

and only if it is a maximal clique in the complement.

The two observations above imply that we can �nd independent dominating sets by

looking for maximal cliques in the complement. The complement of a cocomparability

graph is, of course, a comparability graph. The next lemma shows what maximal cliques

look like in comparability graphs. It requires the following de�nition from Section 1.3.1

(where it is phrased more generally in terms of relations).

De�nition 4.32 A transitive reduction of a directed graph G is any directed graph, with
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the least number of edges, whose transitive closure is isomorphic to the transitive closure

of G.

Under this most general de�nition, a transitive reduction need not even be a subgraph

of G. If, however, G is �nite and acyclic, then the transitive reduction is a unique sub-

graph and may be obtained by systematically removing all transitively implied edges from

G [AGU72]. Therefore the notion of the transitive reduction of a transitively oriented

comparability graph is well de�ned.

Lemma 4.33 The maximal cliques in a comparability graph are exactly the maximal

paths in the transitive reduction of any transitive orientation of the graph.

Proof: Let G = (V;E) be a comparability graph, and let T = (V;A) be any transitive

orientation of G. Let the linear order (V;<) be any linear extension of T .

Let C be any maximal clique of the comparability graph G. To see that C is a

maximal (directed) path in the transitive reduction of T , let u and v be two vertices in C

such that u < v. Then (u; v) 2 A. Therefore the vertices of C, taken in their linear order,
form a path in T . Furthermore, every arc (u; v) of this path must be in the transitive

reduction of T . If it were not, there would be a path from u to v in T with at least one

intermediate vertex, w. By the linear order, u < w < v, so that w =2 C. But by the

transitivity of T , w would be adjacent in G to every vertex in C. That is, C [fwg would
be completely connected in G, contradicting the maximality of C. Finally, every path in

T , and therefore in the transitive reduction also, is a completely connected subgraph of

G by transitivity. Therefore C is a maximal path in T since any superpath of C would

contradict the maximality of C in G.

Conversely, let P = (p1; : : : ; pk) be a maximal path in the transitive reduction of T .

Then P is a clique in G by transitivity, and p1 < p2 < � � � < pk. Suppose that P is not a

maximal clique in G. Then there exists a vertex v 2 V nP that is adjacent in G to every
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vertex in P . If v < p1, then there is an arc from v to p1 in T . Therefore there is a path

from v to p1 in the transitive reduction of T . This contradicts the assumption that P is

a maximal path. If v > pk, then a similar contradiction arises. Finally, if p1 < v < pk,

then there are two vertices u and w in P such that u < v < w. Therefore there are arcs

from u to v, and from v to w, in T . But this contradicts the assumption that (u;w) is

an arc in the transitive reduction of T .

These lemmas have set the stage for the polynomial time algorithm below. They

show that independent dominating sets in cocomparability graphs are precisely the paths

from minimal elements to maximal elements in the transitive reduction of a transitive

orientation of the complement of the graph.

To simplify the handling of special cases2, augment the transitively oriented graph

with two sentinel vertices, s = 0 and t = jV j+1, that have 0 weight. Add an arc from s

to every other vertex (including t), and add an arc to t from every other vertex (including

s). Therefore s is the only minimal element and t is the only maximal element. Note

that s and t must appear in every maximal clique C and that C n fs; tg is a maximal

clique in the unaugmented graph. We want only the minimum weight maximal clique,

that is, the minimum weight path from s to t. The details of the algorithm appear in

Table 4.2.4.

Theorem 4.34 Algorithm MWMC-C �nds a minimum weight maximal clique in a

weighted comparability graph G = (V;E;w) in O(M(V )) time.

Proof: Correctness follows from Lemma 4.33 and the discussion concerning augmenting

the digraph.

Step 1 runs inO(V 2) time [Spi85], and Step 2 runs inO(V ) time. Since the augmented

2We can achieve the same e�ect by augmenting the transitive reduction R with s and t. In this case

we would add arcs only from s to minimal elements of R and from maximal elements of R to t. Instead,

we have chosen to let the transitive reduction step �nd the minimal and maximal elements for us.
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Table 4.13: Algorithm: MWMC-C(G) [MinimumWeight Maximal Clique for Com-

parability Graphs]

Input: A weighted comparability graph G.

Output: A minimum weight maximal clique in G.

1 T  a transitive orientation of G.

2 augment T with s = 0 and t = jV j+ 1.

3 R the transitive reduction of T .

4 C  the least weight path from s to t in R.
5 return C n fs; tg.

T is already transitively closed, the transitively implied edges are given by T 2. We can

�nd this by creating the adjacency matrix for T and multiplying this by itself in O(M(V ))

time. Then R = T nT 2 can be computed in O(V 2) time, and so Step 3 runs in O(M(V ))

time3. Let the weight of an arc (u; v) 2 R be w((u; v)) = w(u). Then the edge weight of

a path from s to t is equal to its vertex weight since w(s) = w(t) = 0. Therefore Step 4

can be implemented to run in O(V +E) time since R is a directed acyclic graph [CLR90].

The entire algorithm therefore runs in O(M(V )) time.

We are now ready to construct algorithm MWIDS-CC for �nding an optimal inde-

pendent dominating set in a cocomparability graph, as shown in Table 4.14.

Theorem 4.35 Algorithm MWIDS-CC �nds a minimum weight independent dominating

set in a weighted cocomparability graph G = (V;E;w) in O(M(V )) time.

Proof: Correctness follows from Observation 4.30, Observation 4.31, and Theorem 4.34.

Step 1 runs in O(V 2) time, and Step 2 runs in O(M(V )) time (Theorem 4.34).

3The transitive reduction of an acyclic digraph D = (V;A) can actually be computed in O(kR) =

O(V R) = O(V A) time [Sim88], where k is the number of paths in a path decomposition of D. Since R

is not re
ected in the output of Algorithm MWMC-C, this proof uses the O(M (V )) = O(V 2:376) bound.
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Table 4.14: Algorithm: MWIDS-CC(G) [Minimum Weight Independent Dominat-

ing Set for Cocomparability Graphs]

Input: A weighted cocomparability graph G.

Output: A minimum weight independent dominating set of G.

1 G the complement of G.

2 I  MWMC-C(G)

3 return I.

4.2.5 Weighted Steiner Sets

This section describes a polynomial time algorithm for �nding a minimumweight Steiner

set (MWSS) in a cocomparability graph. This algorithm can be implemented to run

in O(V log V + E) time on a vertex-weighted spanning-ordered cocomparability graph

G = (V;E;<;w). The algorithm terminates in O(V 2) time even if a spanning order is

not available. Furthermore, given an arbitrary graph, the algorithm will either �nd a

minimum weight Steiner set, or it will be print a message stating that the graph is not a

cocomparability graph. That is, the algorithm does not need to recognize cocomparability

graphs, a step that would add �(M(V )) to the run-time complexity.

These results simplify and generalize the permutation graph algorithms obtained

by Colbourn and Stewart [CS90a] (O(V 3) time) and by Arvind and Rangan [AR92]

(O(V log V + E) time). They also extend an O(V + E) algorithm for minimum car-

dinality Steiner sets in cocomparability graphs due to Colbourn and Lubiw (described

in [KS93]).

De�nition 4.36 Let G = (V;E;w) be a graph with nonnegatively weighted vertices.

Let R � V be a \required" set of vertices in G. A Steiner set (of G and R) is a set S of

vertices such that (1) S � V nR and (2) the subgraph G(S [R) induced in G by S [R
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is connected. The weight w(S) of a set of vertices S is de�ned, as usual, to be the sum

of the weights of its elements. Assume without loss of generality that w(v) = 0 for all

vertices v 2 R. The weighted Steiner set problem is to �nd a minimum weight Steiner

set in such a vertex weighted graph. Finally, if G is linearly ordered, let s = minR be

the least point in R and t = maxR be the greatest point in R.

Lemma 4.37 Let P be a path from s to t in a spanning-ordered cocomparability graph.

Then S = P nR is a Steiner set.

Proof: Since S � V nR, we only need to show that S +R is connected. First note that

S +R = P [R. Since P is connected, it su�ces to show that every vertex v 2 R n P is

adjacent to some vertex in P . This follows from Lemma 4.7.

Lemma 4.38 Let G be an arbitrary weighted graph G = (V;E;w) and R � V be a

required set. Let P be a least weight path from some vertex u 2 R to some vertex v 2 R.
If S is a Steiner set of G and R, and S � P , then S is a minimum weight Steiner set.

Proof: Let S0 be a minimumweight Steiner set of G and R. Since the subgraph induced

by S0 [ R is connected, there is a path P 0 from u to v in this subgraph, and w(P 0) �
w(S0 [R). Since P is a least weight path, w(P ) � w(P 0). Now w(S0 [R) = w(S0) since

w(v) = 0 if v 2 R. Finally, w(S) � w(P ) since S � P . It follows that w(S) � w(P ) �
w(P 0) � w(S 0 [R) = w(S 0). That is, S is also a minimum weight Steiner set.

Theorem 4.39 Let P be a least weight path from s to t in a spanning-ordered cocom-

parability graph G. Then S = P nR is a minimum weight Steiner set.

Proof: The set S is a Steiner set by Lemma 4.37 and therefore a minimumweight Steiner

set by Lemma 4.38.

One way to use this result for an arbitrary graph is to �rst check if G is a cocompa-

rability graph, then construct a spanning order, and �nd a least weight path. The best
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known upper bound for recognizing an order n cocomparability graph is the same as that

for n� n matrix multiplication [Spi85]. Since this bound is currently O(n2:376) [CW87],

recognition is the limiting step in this approach. Spinrad [Spi85] shows that the complex-

ity of recognizing comparability graphs and transitive digraphs is the same.4 Therefore,

we are no better o� by assuming a linearly ordered graph as input, since recognizing a

spanning-ordered graph would entail recognizing the transitively oriented complement.

Fortunately, there is another approach, which does not require recognition.

Table 4.15: Algorithm: MWSS-OCC(G, R) [MinimumWeight Steiner Set for span-

ning-Ordered Cocomparability Graphs]

Input: A linearly-ordered vertex-weighted graph G = (V;E;<;w) and
a required set of vertices R � V .

Output: A minimum weight Steiner set S,
or a message stating that no Steiner set exists,

or a message stating that G is not a spanning-ordered cocomparability graph.

1 if R is empty,

2 then return the empty set

3 halt.

4 if R is not a subset of a connected component of G,
5 then return \No Steiner set exists."

6 halt.

7 P  a least weight path from minR to maxR in G.

8 S  P nR
9 if the subgraph induced by S +R is connected,

10 then return S

11 else return \G is not a spanning-ordered cocomparability graph."

Lemma 4.40 Given a linearly-ordered graph G and required vertices R, Algorithm

4More precisely, if transitive digraphs can be recognized in O(f(V )) time, then comparability graphs

(and therefore also cocomparability graphs) can be recognized in O(f(V ) + V 2) time. Conversely, if

comparability graphs can be recognized in O(f(n)) time, then transitive digraphs can be recognized in

O(f(n) + E) time.
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MWSS-OCC (Table 4.2.5) prints a message stating that no Steiner set exists if and only

if no Steiner set exists.

Proof: A Steiner set exists if and only if the required vertices R can be augmented to

induce a connected subgraph. This is true if and only if the vertices of R all lie in the

same connected component of G. This condition is checked in Step 4.

Lemma 4.41 Given a linearly-ordered graph G and required vertices R, if Algorithm

MWSS-OCC returns a set S, then S is a minimum weight Steiner set.

Proof: Suppose the algorithm returns a set S. This can only happen in Steps 2 and 10.

If S is returned by Step 2, then R is empty. A minimum weight Steiner set can therefore

also be empty since all vertex weights are nonnegative.

If S is returned by Step 10, then the subgraph induced by S+R is connected. So S is

a Steiner set by de�nition, and therefore a minimum weight Steiner set by Lemma 4.38.

Theorem 4.42 Given a spanning-ordered cocomparability graph G and required set

R � V , Algorithm MWSS-OCC returns a minimum weight Steiner set of G and R if and

only if it exists.

Proof: If a minimum weight Steiner set does not exist, then no Steiner set exists since

the graph is �nite. By Lemma 4.40, a message is printed and the algorithm halts at

Step 3.

Suppose, on the other hand, that such a set does exist. If R is empty, a suitable

minimum weight Steiner set, the empty set, is returned by Step 2. Otherwise, the set

S = P nR constructed in Step 8 is a minimumweight Steiner set by Theorem 4.39. That

is, the subgraph induced by S + R is connected. So S is correctly returned by Step 10.
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Theorem 4.43 Given any linearly-ordered graph G = (V;E;<;w), Algorithm MWSS-

OCC runs in O(V log V + E) time.

Proof: Use linked lists to represent all sets, and represent the graph as an adjacency

list. Then Step 1 can be executed in constant time.

Step 4 can be implemented by marking all vertices in the same connected component

as the �rst vertex in R using a single phase of depth �rst search in O(E) time. It then

su�ces to check, in O(R) time, that all vertices in R are marked. Step 4 therefore

executes in O(V + E) time.

The extreme vertices minR and maxR can easily be found in O(R) = O(V ) time.

Step 7 uses Dijkstra's algorithm with a Fibonacci heap priority queue [CLR90] to �nd a

least weight path between minR and maxR in O(V log V +E) time. Dijkstra's algorithm

expects an edge-weighted digraph as input. So, implicitly set the weight of a directed

edge to be w((u; v)) = w(u). Since w(minR) = w(maxR) = 0, the edge weight of a

simple path from minR to maxR is equal to its vertex weight.

Step 8, setting S = P nR, can be computed in O(P +R) = O(V ) time. For example,

the algorithm could mark all vertices in R and let S be the set of unmarked vertices in

P .

Finally, Step 9 represents the induced subgraph in O(S+R) = O(V ) time by marking

the inducing vertices inG. It then tests the induced subgraph for connectivity inO(V +E)

time by depth �rst searching the marked vertices.

Although Algorithm MWSS-OCC may work|�nd minimum weight Steiner sets|

for some arbitrary linearly-ordered graphs and sets of required vertices, the class of

graphs for which it works for all sets of required vertices is exactly the spanning-ordered

cocomparability graphs. This is restated by the following lemma.
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Lemma 4.44 For every linearly-ordered graph that is not a spanning-ordered cocom-

parability graph, there exists a required set such that Algorithm MWSS-OCC prints the

message stating that the graph is not a spanning-ordered cocomparability graph.

Proof: Let G = (V;E;<;w) be a linearly-ordered graph that is not a spanning-ordered

graph. Then there exists three vertices a < b < c that violate the spanning order, that is,

(a; c) 2 E but (a; b) =2 E and (b; c) =2 E. Let R = fa; b; cg. Algorithm MWSS-OCC will

�nd the least weight path P = (minR;maxR) = (a; b) in Step 7, and it will construct

the empty set S in Step 8. But the subgraph induced by S + R = R is not connected

since b is not adjacent to either a or c. Hence the message will be printed in Step 11.

We now have enough tools to �nd a minimumweight Steiner set in a cocomparability

graph. Again, the input to the algorithm will be an arbitrary graph; the algorithm does

not require a recognition step.

Table 4.16: Algorithm: MWSS-CC(G, R) [Minimum Weight Steiner Set for Co-

comparability Graphs]

Input: A weighted graph G = (V;E;w) and a required set of vertices R � V .

Output: A minimum weight Steiner set S,

or a message stating that no Steiner set exists,

or a message stating that G is not a cocomparability graph.

1 G OCC(G)
2 return MWSS-OCC(G, R)

Theorem 4.45 Given a weighted graph G and a required set of vertices R, Algorithm

MWSS-CC (Table 4.2.5) computes a minimum weight Steiner set, or prints a message

stating that no Steiner set exists, or prints a message stating that G is not a cocompara-

bility graph, in O(V 2) time.
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Proof: By Theorem 4.5, Step 1 either returns a linearly-ordered graph, or correctly

prints a message stating that G is not a cocomparability graph. If Step 2 returns a set

S, then S is a minimumweight Steiner set by Lemma 4.41. If it prints a message stating

that no Steiner set exists, then no Steiner set exists by Lemma 4.40. Finally, if it prints

a message stating that G is not a spanning-ordered cocomparability graph, then G is

also not a cocomparability graph for, if it were, it would have been spanning-ordered by

Step 1.

Step 1 takes O(V 2) time by Theorem 4.5, and Step 2 takes O(V log V + E) time by

Theorem 4.43.

4.2.6 Applications

We can use the algorithms for spanning-ordered graphs to solve the corresponding prob-

lems for permutation graphs, interval graphs, and indi�erence graphs, given permutation,

interval, or indi�erence realizations of the graphs. These graphs are all cocomparability

graphs, and as shown here, a spanning order can easily be extracted from their realiza-

tions.

Theorem 4.46 All spanning-ordered cocomparability graph algorithms work without

change for permutation graphs given a permutation realization linearly ordered by vertex

label.

Proof: Let G = (V;E) be a permutation graph, and let the labelling of the vertices and

� be a permutation realization. That is, � is a permutation of f1; 2; : : : ; ng such that

(u; v) 2 E if and only if (u � v)(��1(u) � ��1(v)) < 0. Then the vertex labelling is a

spanning order.

To see this, let u < v < w be three vertices such that u and w are adjacent in G. It

follows that (u � w)(��1(u) � ��1(w)) < 0, which implies that ��1(u) > ��1(w) since
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u < w. Either ��1(v) < ��1(u) or ��1(v) > ��1(u). If ��1(v) < ��1(u), then (u; v) 2 E
since u < v. Otherwise, ��1(v) > ��1(u) and ��1(u) > ��1(w) since (u;w) 2 E.

Therefore ��1(v) > ��1(w) so that (v;w) 2 E. That is, u and v are adjacent, or v and

w are adjacent.

Theorem 4.47 All spanning-ordered cocomparability graph algorithms work without

change for interval graphs given a set of intervals in nondecreasing order of left endpoint.

Proof: Such a linear ordering of intervals is a spanning order. Let u � v � w be three

intervals such that u and w are adjacent. Then the left endpoint of w must be to the left

of the right endpoint of u. Therefore the left endpoint of v lies between the left endpoint

of u and the right endpoint of u. That is, u and v are adjacent.

Theorem 4.48 All spanning-ordered cocomparability graph algorithms work without

change for � -strip graphs, given a set of points in order of nondecreasing x-coordinate,

for all � 2 [0;
p
3=2].

Proof: Such a linear ordering of points is a spanning order. Let f : V ! f0; �g be
a strip realization. Let u � v � w be three points such that u and w are adjacent.

Then by the de�nition of � -strip graphs, xf(w) � xf (u) � 1. This implies that either

xf(v)� xf(u) � 1=2 or xf (w)� xf(v) � 1=2. If the former, then

kf(v)� f(u)k2 = (xf(v)� xf(u))
2 + (yf (v)� yf (u))

2

� 1=4 + � 2

� 1=4 + (
p
3=2)2

= 1:

That is, u and v are adjacent. On the other hand, if xf (w)� xf (v) � 1=2, then v and w

are adjacent.
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Corollary 4.48.1 All spanning-ordered cocomparability graph algorithms work without

change for indi�erence graphs given a set of points in nondecreasing order.

Proof: Indi�erence graphs are 0-strip graphs.

4.3 Transitive Orientation, Implication Classes, and Dominating Paths

This section explores the possible transitive orientations for the nonedges of cocompa-

rability graphs. Chapter 5 and Chapter 6 use the transitive orientations of the comple-

ments of � -strip graphs and two-level graphs in characterizing these classes of graphs. For

example, Chapter 6 uses the results of this section to show that two-level graphs have es-

sentially one such orientation that is compatible with a given assignment of y-coordinates

for the vertices.

Subsection 4.3.1 establishes some basic properties of transitive orientations in co-

comparability graphs. In particular, it shows how the orientations of some nonedges

\force" the orientation of others. With this background, Subsection 4.3.2 then studies

cocomparability graphs that have induced dominating paths with four or more vertices.

4.3.1 De�nitions and Basic Properties

The following notation follows that of Golumbic ([Gol80] pages 105{148), where it is

used for comparability graphs. Since � -strip graphs are cocomparability graphs, this

section modi�es Golumbic's notation for the complement of comparability graphs. Let

G = (V;E) be an undirected graph. De�ne the complementary arcs (nonedges) E to be

the set of distinct ordered pairs not in E, that is,

E = f(u; v) : u 6= v and (u; v) =2 Eg:

De�nition 4.49 Write (a; b)�(c; d), and say that arc (a; b) directly forces arc (c; d), if
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1. a = c and (b; d) =2 E, or

2. b = d and (a; c) =2 E.

That is, � is a binary relation on E. Say that (a; b) forces (c; d), and write (a; b)��(c; d),

if there exists a sequence of arcs (a forcing chain of length k � 0) such that

(a; b) = (a0; b0)�(a1; b1)� � � ��(ak; bk) = (c; d):

That is, �� is the transitive closure of �.

Note that � is re
exive and symmetric. Note also that (a; b)�(c; d) if and only if

(b; a)�(d; c). The following lemma explains the intent of these de�nitions.

Lemma 4.50 Let G = (V;E) be a cocomparability graph and ~G = (V; ~E) be a transitive

orientation of G. If (a; b) forces (c; d), then (a; b) 2 ~E if and only if (c; d) 2 ~E.

Proof: The lemma follows by induction on the length k of the forcing chain. The base

case k = 0 is trivial. For the inductive case, consider the forcing chain

(a; b) = (a0; b0)�(a1; b1)� � � ��(ak�1; bk�1)�(ak; bk) = (c; d);

and assume (a0; b0) 2 ~E if and only if (ak�1; bk�1) 2 ~E. Since (ak�1; bk�1)�(ak; bk),

either ak�1 = ak and (bk�1; bk) =2 E, or bk�1 = bk and (ak�1; ak) =2 E. If ak�1 = ak

and (bk�1; bk) =2 E, then (ak�1; bk�1) 2 ~E if and only if (ak; bk) 2 ~E. For otherwise,

transitivity of ~E implies (bk�1; bk) 2 ~E or (bk; bk�1) 2 ~E, and therefore (bk�1; bk) 2 E; see
Figure 4.12. Similarly, if bk�1 = bk and (ak�1; ak) =2 E, then (ak�1; bk�1) 2 ~E if and only

if (ak; bk) 2 ~E. It follows that (a0; b0) 2 ~E if and only if (ak; bk) 2 ~E.

Note that �� is an equivalence relation, i.e., re
exive, symmetric, and transitive. It

therefore partitions E into equivalence classes that we refer to as implication classes.

Let [e] denote the implication class generated by e 2 E. The following theorems will be

useful later, when orienting two-level graphs in Chapter 6.
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Figure 4.12: (ak�1; bk�1) 2 ~E if and only if (ak; bk) 2 ~E.

Theorem 4.51 ([Gol80], page 107) Let A be an implication class of [the complemen-

tary arcs of] an undirected graph G. If G has a transitive orientation F , then either

F \ (A [ A�1) = A or F \ (A [A�1) = A�1 and, in either case, A \A�1 = ;.

Theorem 4.52 ([Gol80], page 122) Let G = (V;E) be a graph. Then G is a cocom-

parability graph if and only if [e] \ [e]�1 = ; for all e 2 E.

To illustrate Theorem 4.52 in action, let us reprove Theorem 4.6 (from the introduc-

tion to this chapter). An examination of both proofs will also associate the notion of

forcing chains with the notion of spanning order.

Theorem 4.6 (x4.1) Cocomparability graphs do not have induced cycles with �ve or

more edges.

Proof: Let (v1; v2; : : : ; vn; v1) be an induced cycle in a graph G, where n � 5, as shown

in Figure 4.13. Then (v1; v3) 2 E and (v3; v1) 2 [(v1; v3)], as demonstrated by the forcing

chain

(v1; v3)�(v1; v4)� : : :�(v1; vn�1)�(v2; vn�1)�(v2; vn�1)�(v2; vn)�(v3; vn)�(v3; v1):

Therefore [(v1; v3)] \ [(v1; v3)]�1 is not empty, and G is not a cocomparability graph by

Theorem 4.52.
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Figure 4.13: An induced cycle on n � 5 vertices. The arrows show that (v1; v3)�
�(v3; v1).

4.3.2 Transitive Orientation and Dominating Paths

When there is a long dominating path in a graph, every nonedge either has its orientation

forced by the nonedge joining the path's endpoints, or belongs to a nearly-oriented square

or claw. Recall that a path is chordless if it is simple and if its vertices are adjacent in the

graph only if they are adjacent in the path. For example, consider the connected � -strip

graph (0 � � � p3=2) generated by some set of points in a strip. A shortest path from

the leftmost point to the rightmost point in the strip is chordless, otherwise there would

be a shorter path. Furthermore, if the leftmost and rightmost points are more than three

Euclidean units apart, then the path has at least three edges (and at least four vertices).

The complementary arc between the endpoints of a chordless path force all other

complementary arcs with endpoints on the path, as shown by the following lemma. This

easy lemma will be so useful to us that we will often use it without reference.

Lemma 4.53 (The Path Lemma) If (s = p0; p1; : : : ; pk = t) is a chordless path in an

arbitrary graph, then (s; t) forces (pi; pj) whenever i < j.

Proof: Since the pi are distinct and adjacent only to their neighbours in the path, there
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is a sequence of arcs

(s; t) = (s; pk)�(s; pk�1)� � � ��(s; pj+1)�(s; pj);

so that (s; t) forces (s; pj), as shown in Figure 4.14. There is also a sequence of arcs

(s; pj) = (p0; pj)�(p1; pj)� � � ��(pi�1; pj)�(pi; pj);

so that (s; pj) forces (pi; pj). The lemma follows since �� is transitive.
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Figure 4.14: The endpoints of a chordless path force the chords in the complement.

De�nition 4.54 A colour class of a graph G is the symmetric closure of an implication

class. That is, if [a] is an implication class of G = (V;E), where a 2 E, then

c[a] = [a][ [a]�1

is a colour class.

The following theorem relates colour classes to cocomparability graphs.

Theorem 4.55 ([Gol80], page 109) Each [undirected subgraph induced by a] colour

class of a graph G either has exactly two transitive orientations, one being the reversal

of the other, or has no transitive orientation. If in G there is a colour class having no

transitive orientation, then G fails to be a cocomparability graph.
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It is sometimes the case that a graph has only one colour class. If such a graph is a

cocomparability graph, then it is said to be uniquely complement orientable5. This section

deals with graphs that are not so strongly constrained. We will see (Theorem 4.57) that if

a graph contains a su�ciently long chordless dominating path, then every complementary

arc is either forced or captured|trapped in a small, otherwise forced subgraph. That

is, the graph has an implication class such that every other arc is captured by it. The

following de�nition is more precise.

De�nition 4.56 Let G = (V;E) be a graph, and let (s; t) be an arc in its complement

G = (V;E). Say that (s; t) captures (u; v) if (u; v) 2 E is part of one of the three induced

subgraphs in Figure 4.15, where the directed nonedges are forced by (s; t).
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Figure 4.15: (s; t) captures (u; v).

Theorem 4.57 (The Capture Theorem) Let G = (V;E) be a connected graph, and

let P = (s; : : : ; t) be a chordless dominating path in G. If P has at least four vertices,

then for all (u; v) 2 E, either (s; t) forces (u; v); (s; t) forces (v; u); or (s; t) captures

(u; v).

5Golumbic [Gol80] would refer to the complement, which is a comparability graph, as uniquely par-

tially orderable. I have chosen not to use this term since it is easily confused with the spanning order,

which is a linear order.
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Proof: Linearly order the vertices in P according to their distance from s (so that s

is the least vertex and t the greatest). Let u0 be the least vertex in P that dominates

u, as shown in Figure 4.16. It may be that u0 = u, but in any event (u; u0) =2 E.
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Figure 4.16: De�nition of u0 and v0.

Assume without loss of generality that v is not dominated by any vertex in P less than

u0 (otherwise swap labels u and v and recompute u0). Let v0 be the greatest vertex in P

that dominates v. Note that v0 is not less than u0. Again, it may be that v0 = v, but

in any event (v; v0) =2 E. However, u 6= v0, since (u; v) 2 E but (u; u0) =2 E. Similarly,

v 6= u0. The de�nitions and assumptions above also pertain to Lemmas 4.58 through

4.61.

There are three alternatives: (u0; v0) 2 E, (u0; v0) 2 E, or u0 = v0. The following three

lemmas prove the theorem: if (u0; v0) 2 E, then Lemma 4.58 applies; if (u0; v0) 2 E, then
Lemma 4.60 applies; and if u0 = v0, then Lemma 4.61 applies.
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Lemma 4.58 Let G = (V;E) be a connected graph, and let P = (s; : : : ; t) be a chordless

dominating path in G. If P has at least four vertices, then for all (u; v) 2 E for which

(u0; v0) 2 E, either (s; t) forces (u; v), or (s; t) captures (u; v).

Proof: Case 1: (u0; v) 2 E.
Then (s; t)��(u0; v0)�(u0; v)�(u; v), so that (s; t) forces (u; v).
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Case 2: (u; v0) 2 E.
Then (s; t)��(u0; v0)�(u; v0)�(u; v), so again, (s; t) forces (u; v).
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Case 3: (u0; v) =2 E and (u; v0) =2 E.
Then since (u; v) 2 E, u0 6= u and v0 6= v. Therefore fu; v; u0; v0g induces a square in

G, and (s; t) captures (u; v).
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Lemma 4.59 Let G = (V;E) be a connected graph, and let P = (s; : : : ; t) be a chordless

dominating path in G. If P has at least four vertices, then for all (u; v) 2 E for which

(u0; v0) 2 E and u0 = s, either (s; t) forces (u; v); (s; t) forces (v; u); or (s; t) captures

(u; v).

Proof: Since u0 = s and P has at least four vertices, P = (s = u0; v0; v00; v000; : : : ; t). Let

us proceed by case.

Case 1: (u; v00) =2 E.
In this case, (s; t) forces (v; u) since (s; t)��(v0; v000)�(v; v000)�(v; v00)�(v; u).

d d

d d d d d

HHHHHHHHHH j

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pR

p p p p p p p p p p p p p p p p p p

� pppppppppppp

p p p p p p p p p p p p p p p p p p p p p p p p p
p p p p p�

ppp ppp ppp ppp ppp ppp
s = u0 v0 v00 v000

u v

t

Case 2: (u; v00) 2 E and (u; v0) =2 E.
Then fv0; u; v; v00g induces a claw in G. Furthermore, (s; t)��(u0; v00)�(u; v00) and

(s; t)��(v0; v000)�(v; v000)�(v; v00), so (s; t) captures (u; v).
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Case 3: (u; v00) 2 E and (u; v0) 2 E.
Here, (s; t) forces (u; v) since (s; t)��(u0; v00)�(u; v00)�(u; v0)�(u; v).

d d
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Corollary 4.59.1 Let G = (V;E) be a connected graph, and let P = (s; : : : ; t) be a

maximum dominating path in G. If P has at least four vertices, then for all (u; v) 2 E

for which (u0; v0) 2 E and v0 = t, either (s; t) forces (u; v); (s; t) forces (v; u); or (s; t)

captures (u; v).

Proof: The lemma applies if we reverse path P , swap labels s and t, and swap labels u

and v.

Lemma 4.60 Let G = (V;E) be a connected graph, and let P = (s; : : : ; t) be a chordless

dominating path in G. If P has at least four vertices, then for all (u; v) 2 E for which

(u0; v0) 2 E, either (s; t) forces (u; v); (s; t) forces (v; u); or (s; t) captures (u; v).
Proof: If u0 = s or v0 = t, then Lemma 4.59 or its corollary applies, and we are done. So

assume P = (s; : : : ; u00; u0; v0; v00; : : : ; t). Note that (u00; v) 2 E since v is not dominated

by any vertex less than u0.

Case 1: (u0; v) 2 E.
Here (s; t) forces (u; v) since (s; t)��(u00; v0)�(u00; v)�(u0; v)�(u; v).
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Case 2: (u0; v) =2 E and (u; v0) =2 E.
It cannot be that u0 = u since (u; v) 2 E, but (u0; v) =2 E. Therefore fu0; u00; u; vg

induces a claw in G. Furthermore, (s; t)��(u00; v0)�(u00; v), and (s; t)��(u00; v0)�(u00; u).

Therefore, (s; t) captures (u; v).
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Case 3: (u0; v) =2 E, (u; v0) 2 E, and (u; v00) 2 E.
Again, (s; t) forces (u; v) since (s; t)��(u0; v00)�(u; v00)�(u; v0)�(u; v).
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Case 4: (u0; v) =2 E, (u; v0) 2 E, and (u; v00) =2 E.
Here, (s; t) forces (v; u) since (s; t)��(u0; v00)�(v; v00)�(v; u).
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Lemma 4.61 Let G = (V;E) be a connected graph, and let P = (s; : : : ; t) be a chordless

dominating path in G. If P has at least four vertices, then for all (u; v) 2 E for which

u0 = v0, either (s; t) forces (u; v); (s; t) forces (v; u); or (s; t) captures (u; v).
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Proof: Since P has at least four vertices, either u0 is at least two edges from s in P , or

v0 is at least two edges from t. We can assume the latter, since the claim for the other

possibility follows from symmetry. Again, let us proceed by case.

Case 1: (u; v00) =2 E.
Here (s; t)��(v0; v000)�(v; v000)�(v; v00)�(v; u), so (s; t) forces (v; u).
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Case 2: (u; v00) 2 E and (u; v000) =2 E.
Again, (s; t) forces (v; u) since (s; t)��(v0; v000)�(v; v000)�(v; u).
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Case 3: (u; v00) 2 E and (u; v000) 2 E.
Clearly, u 6= u0 since (u; v) 2 E but (u; u0) =2 E. Similarly, v 6= v0. Therefore,

fu0 = v0; u; v; v00g induces a claw in G. Furthermore, (s; t)��(v0; v000)�(u; v000)�(u; v00) and

(s; t)��(v0; v000)�(v; v000)�(v; v00). Therefore (s; t) captures (u; v).
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4.3.3 Implications for Cocomparability Graphs

Let G = (V;E) be a connected cocomparability graph, and let ~G = (V;A) be any

transitive orientation of E. If (p0; p1; : : : ; pk) is a shortest path in G from a source p0 in

~G to a sink pk in ~G, then P is dominating. For, if v is any undominated vertex, then

(p0; v)�(p1; v)� � � ��(pk ; v). So either p0 is not a source or pk is not a sink. Furthermore,

such a path is chordless, simply because it is a shortest path. This argument establishes

that every connected cocomparability graph has a chordless dominating path.

It is instructive to see that this result also follows from the spanning order character-

ization of cocomparability graphs. A connected cocomparability graph has a spanning

order by Theorem 4.3. Since the graph is connected, there is a shortest path from its

least vertex to its greatest vertex. This path is dominating by Lemma 4.7.



Chapter 5

Strip Graphs

Recall from De�nition 1.3 that a graph G = (V;E) is a � -strip graph if there is a function

(a � -strip realization) f : V ! R�[0; � ] such that (u; v) 2 E if and only if kf(u)�f(v)k �
1. A graph is a strip graph if it is a

p
3=2-strip graph. Recall that every

p
3=2-strip graph

is a cocomparability graph (Theorem 3.7) but that for every � >
p
3=2 there is a � -strip

graph that is not a cocomparability graph (Theorem 3.8). In this chapter, we will see

how algorithms can exploit a strip-realization for strip graphs. In particular, Section 5.1

develops an algorithm for �nding optimal Steiner sets whose run-time is independent of

the number of edges.

The rest of this chapter is concerned with characterizing strip graphs; one facet of this

is creating a realization given a graph. Section 5.2 characterizes strip graphs as those

that have only positive-weight cycles in a corresponding digraph. The algorithm for

constructing this digraph assumes knowledge of the y-coordinates of all vertices, as well

as the left-to-right order of the realization of nonedges. Section 5.3 immediately applies

this characterization to small stars, and shows that, for example, K1;4 is a � -strip graph

for some but not all � . Section 5.4 shows how the characterization distinguishes between

indi�erence graphs and other strip graphs. Speci�cally, it shows that a strip graph is

not an indi�erence graph precisely if it contains a claw or a square. Finally, Section 5.5

characterizes trees in strip-graphs, showing that all such trees are equivalently caterpillars

of degree at most 4.

Let us begin with a brief example. We will see later (Property 5.21) that the bound

203
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in this example is tight, that is, that K1;4 is not a � -strip graph for any � �
q
5=8.

Example 5.1 K1;4 is a � -strip graph for all � >
q
5=8.

Proof: Let fa; b; c; dg be the independent set of vertices in the star K1;4, and let h be the

star's \hub". Let dy be any value satisfying
q
5=8 < dy � minf

q
5=4; �g. In particular,

if
q
5=8 < � �

q
5=4, then dy = � will su�ce. De�ne dx =

q
(4� d2y)=9. Then the

assignment f : V ! R� (
q
5=8; � ] is a strip realization for K1;4, where � >

q
5=8, and

f(a) = (0; dy)

f(b) = (dx; 0)

f(c) = (2dx; dy)

f(d) = (3dx; 0)

f(h) = (3dx=2; dy=2)

Figure 5.1 shows the resulting strip realization when dy = � = 0:8. The construction

a

b

h

c

d

Figure 5.1: K1;4 is a 0:8-strip graph.

ensures that kf(a)� f(d)k = 2 so that kf(a)� f(h)k = kf(h)� f(d)k = 1. To see this,

note that

kf(a)� f(d)k2 = (3dx)
2 + d2y

= 9

 
4� d2y
9

!
+ d2y

= 4:
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The construction also ensures that kf(b)� f(h)k = kf(h)� f(c)k � 1 since

kf(b)� f(h)k2 = (dx=2)
2 + d2y

=
4� d2y
4 � 9 + d2y

= (4 + 37d2y)=36

< 1

if d2y < (36 � 4)=37 = 32=37.

Conversely, the construction ensures that kf(a) � f(b)k = kf(b) � f(c)k = kf(c) �
f(d)k > 1 since

kf(a)� f(b)k2 = = d2x + d2y

=
4� d2y
9

+ d2y

=
4 + 8d2y

9

> 1

if d2y > (9 � 4)=8 = 5=8. Finally, the construction ensures that kf(a)� f(c)k = kf(b)�
f(d)k > 1 since

kf(a)� f(c)k2 = = (2dx)
2

= 4

 
4 � d2y
9

!
> 1

if d2y <
9�16
�4 = 5=4.

5.1 Exploiting a Geometric Model

Since strip graphs are both unit disk graphs and cocomparability graphs, we can com-

bine algorithms from both classes of graphs. We will see how do this by solving the
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minimum weight Steiner set problem on strip graphs in O(V log V ) time, given a geo-

metric representation. This result improves on the O(V log V + E) time bound for the

more general cocomparability graphs in Chapter 4. In fact, we will simply implement

the cocomparability algorithm using the unit disk graph data structure from Chapter 3.

5.1.1 Review of Cocomparability Results

The following algorithm and terms from Chapter 4 are reproduced here to keep the

present discussion self-contained. Let G = (V;E;w) be a graph with nonnegatively

weighted vertices. Let R � V be a \required" set of vertices in G. A Steiner set (of G

and R) is a set of vertices S � V n R such that the subgraph induced in G by S [ R
is connected. The weight w(S) of a set of vertices S is de�ned, as usual, to be the sum

of the weights of its elements. Assume without loss of generality that w(v) = 0 for all

vertices v 2 R. The weighted Steiner set problem is to �nd a minimum weight Steiner

set in such a vertex weighted graph.

Theorem 4.42 [Chapter 4] Given a spanning-ordered cocomparability graph G and

required set R � V , algorithm MWSS-OCC returns a minimum weight Steiner set of G

and R if and only if it exists.

Theorem 4.43 [Chapter 4] Given any linearly-ordered graph G = (V;E;<;w), algo-

rithm MWSS-OCC runs in O(V log V + E) time.

5.1.2 Application to Strip Graphs

We want to modify this algorithm to work for strip graphs. The bottleneck in Algorithm

MWSS-OCC is �nding a lightest path in Step 7. This is precisely the operation that

Algorithm MIN-PATH from Chapter 3 was designed to handle for unit disk graphs. A

strip graph is of course a unit disk graph where all vertex points are con�ned to an
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Table 5.1: Algorithm: MWSS-OCC(G, R) [Minimum Weight Steiner Set for span-

ning-Ordered Cocomparability Graphs]

Input: A linearly-ordered vertex-weighted graph G = (V;E;<;w) and
a required set of vertices R � V .
Output: A minimum weight Steiner set S,

or a message stating that no Steiner set exists,

or a message stating that G is not a spanning-ordered cocomparability graph.

1 if R is empty,

2 then return the empty set

3 halt.

4 if R is not a subset of a connected component of G,

5 then return \No Steiner set exists."

6 halt.

7 P  a least weight path from minR to maxR in G.

8 S  P nR
9 if the subgraph induced by S +R is connected,

10 then return S
11 else return \G is not a spanning-ordered cocomparability graph."
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in�nite strip � units thick. Assume the vertices are linearly ordered along the axis of the

strip, left to right in this case. This order is a spanning order, by the following lemma.

Contrast this lemma with Lemma 3.6, which states that the compatible orientation (as

opposed to linear order) associated with any strip realization of a graph is a transitive

orientation.

Lemma 5.2 Every left-to-right-ordered strip graph is a spanning-ordered cocomparabil-

ity graph.

Proof: Let f : V ! [0; � ] be a � -strip realization of a graph G = (V;E), where � 2
[0;
p
3=2]. Let u, v, and w be three vertices where u and w are adjacent, and xf(u) �

xf(v) � xf(w). Since f(u) and f(w) are at most unit distance apart, their projections,

xf(u) and xf (w), on the x-axis are at most unit distance apart, too. Since xf(v) lies

between xf(u) and xf (w), it must lie within half a unit of either xf(u) or xf (w), say

xf(u), without loss of generality. Therefore the square of the distance between f(u) and

f(v) is given by

(xf(u)� xf(v))
2 + (yf(u)� yf(v))

2 � (1=2)2 + � 2

� (1=2)2 + (
p
3=2)2

= 1:

That is, u and v are adjacent, and the vertex order is a spanning order.

Create Algorithm MWSS-S (Minimum Weight Steiner Set on Strip Graphs) by re-

moving Steps 9 through 11 from Algorithm MWSS-OCC, and by inserting Step 0, which

sorts the strip graph vertices from left to right (i.e., by x-coordinate).

Theorem 5.3 Given a strip graph G, represented as a set of points in a strip, and

required vertices R, Algorithm MWSS-S returns a minimum weight Steiner set if and

only if it exists, and runs in O(V log V ) time.
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Proof: Correctness follows from Theorem 4.42 and Lemma 5.2. Steps 9 through 11 are

not required by Lemma 5.2.

Represent all sets as arrays with V elements; linked lists and arrays are easily inter-

converted where required in O(V ) time. Step 0 takes O(V log V ) time, and Step 1 takes

O(V ) time.

Step 4 can be implemented by marking all vertices in the same connected component

as the �rst vertex in R using a single phase of depth �rst search in O(V log V ) time

(Theorem 3.16). It then su�ces to check, in O(R) time, that all vertices in R are

marked. Step 4 therefore executes in O(V log V ) time.

The extreme vertices minR and maxR can easily be found in O(R) = O(V ) time.

Step 7 uses algorithm MIN-PATH (Table 3.3) to �nd a least weight path between minR

and maxR, which takes O(V log V ) time by Theorem 3.14.

Step 8, setting S = P nR, can be computed in O(V ) time by �lling in the array for

S.

5.2 Characterization Via Cycles in Weighted Digraphs

Let G = (V;E) be a � -strip graph, and let f : V ! R� [0; � ] be a realization of G. Let

us suppose that we know the y-coordinates of f(V ). Then we know something about

the x-dimension between pairs of vertices, as clari�ed by the following de�nition and its

property.

De�nition 5.4 For every pair of vertices u; v 2 V , call �u;v =
q
1 � (yf(u)� yf(v))2

the critical x-dimension corresponding to the pair. Note that, if 0 � � � p3=2, then
1=2 � �u;v � 1 for all pairs u; v.
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Property 5.5 Let G = (V;E) be a � -strip graph, and let f : V ! R � [0; � ] be a

realization of G. For every distinct pair u; v 2 V , (u; v) 2 E if and only if

xf(u)� xf(v) � �uv (5.17)

and

xf (v)� xf(u) � �uv: (5.18)

Proof: By De�nition 5.4,

(u; v) 2 E if and only if kf(u)� f(v)k � 1;

if and only if jxf (u)� xf (v)j2 + jyf(u)� yf (v)j2 � 1;

if and only if jxf (u)� xf (v)j � �uv:

Suppose also that we know the left-to-right order of the endpoints of each nonedge.

Note that this is weaker than knowing the left-to-right order of all of the vertices. That

is, let (V; ~E) be the strict partial order where (u; v) 2 ~E if and only if (u; v) 2 E and

xf(u) < xf(v). Note that ~E is an orientation of E.

Property 5.6 For every pair u; v 2 V , (u; v) 2 ~E if and only if

xf (v)� xf(u) > �uv

equivalently, if and only if

xf (u)� xf (v) < ��uv: (5.19)
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Proof: By Property 5.5, (u; v) 2 E if and only if jxf (u)� xf (v)j > �uv.

Note that inequalities 5.17 through 5.19 generate a system of

jEj+ jEj+ (jV j2 � jV j � jEj) = jV j2 � jV j+ jEj

di�erence constraints. Let us make some of these notions more formal.

De�nition 5.7 A (�) levelled graph G = (V;E; l) is a graph G = (V;E) and a levelling

function l : V ! [0; � ] that maps vertices to y-coordinates.

De�nition 5.8 A levelled graph G = (V;E; l) is a levelled � -strip graph if there exists

a � -strip realization f : V ! R � [0; � ] for G such that yf (v) = l(v), for every vertex

v 2 V .

Recall from Chapter 1 that an oriented graph is a directed graph G = (V;A) where A

is asymmetric. Also from Chapter 1, an orientation of an undirected graph G = (V;E)

is an oriented subgraph H = (V;A) where E = A+ A�1 (the arc set A is also called an

orientation of the edge set E).

De�nition 5.9 A complement oriented graph G = (V;E; ~E) is a graph G = (V;E) and

an orientation ~G = (V; ~E) of the complement G = (V;E).

De�nition 5.10 A complement oriented graph G = (V;E; ~E) is a complement oriented

� -strip graph if there exists a � -strip realization f : V ! R � [0; � ] for G such that

xf(v) < xf (v) whenever (u; v) 2 ~E.

By the above discussion, a strip graph can be levelled and complement oriented

such that Inequalities 5.17 through 5.19 are satis�ed. Conversely, if the inequalities

corresponding to a levelled, complement oriented graph are satis�ed by some assignment,

then that assignment, together with the levelling, is also a strip realization. We have

established the following theorem:
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Theorem 5.11 Given a levelled, complement oriented graph G = (V;E; l; ~E), let B be

the corresponding system of �(V 2) di�erence constraints (5.17 through 5.19). A function

f is a strip realization for G if and only if fxu : f(u) = (xu; l(u))g is a feasible solution

for B.

Corollary 5.11.1 A graph is a � -strip graph if and only if it can be � -levelled and

oriented such that the corresponding system of di�erence constraints has a solution.

5.2.1 Solving Systems of Di�erence Constraints

According to Theorem 5.11, we can recognize levelled, complement oriented, � -strip

graphs by generating and solving a system of inequalities. This section develops an

algorithm that solves systems of mixed di�erence constraints such as Inequalities 5.17

through 5.19. We will begin by describing Bellman's solution of nonstrict di�erence

constraints [Bel58], and then extend his methodology to include strict inequalities. The

extension is self-contained, so Bellman's results will be described but not proved.

Bellman's Solution

The following terminology follows [CLR90]. A system of di�erence constraints is a set

of m inequalities (on n variables) of the form xj � xi � bk, where 1 � i; j � n and

1 � k � m. A vector of values x = (x1; : : : ; xn) is a feasible solution of a system of

di�erence constraints if it satis�es the system. If xi � xj � bk is a constraint in the

system, then all other constraints xi � xj � bl, where bl � bk, are redundant in terms of

feasible solutions. Therefore we may assume that any system has at most one constraint

of the form xj�xi � bk, and at most one constraint of the form xi�xj � bl, for each pair

i; j. The corresponding constraint digraph is a weighted directed graph D = (V;A;w)
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where:

V = fv0; v1; : : : ; vng;

A = f(vi; vj) : xj � xi � bk is a constraintg [ f(v0; vi) : 1 � i � ng

w(vi; vj) = bk if xj � xi � bk is a constraint

w(v0; vi) = 0 where 1 � i � n

The weight of a path (or cycle) in D is the sum of the weights of its arcs. Let �(u; v)

denote the least weight of any path from u to v in D.

Theorem 5.12 ([CLR90], page 542) Given a system of di�erence constraints, let D

be the corresponding constraint digraph. If D contains no negative-weight cycles, then

x = (�(v0; v1); �(v0; v2); : : : ; �(v0; vn))

is a feasible solution for the system. If D contains a negative-weight cycle, then there is

no feasible solution for the system.

Adding Strict Inequalities

Let us begin by generalizing the notion of di�erence constraints. Let xj�xi ~<bk denote

a constraint of the form xj � xi � bk or xj � xi < bk. A system of mixed di�erence

constraints is a set of m inequalities (on n variables) of the form xj � xi ~< bk, where

1 � i; j � n and 1 � k � m. Again, we can assume that there is at most one constraint

xj � xi ~< bk and at most one xi � xj ~< bl for each pair i; j. The corresponding mixed

constraint digraph is a weighted directed graph D = (V;A;w) where:

V = fv0; v1; : : : ; vng;
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A = f(vi; vj) : xj � xi ~< bk is a constraintg [

f(v0; vi) : 1 � i � ng

w(vi; vj) = bk if xj � xi ~< bk is a constraint

w(v0; vi) = 0 where 1 � i � n

A loose constraint is one with a strict inequality; the other constraints are tight. A loose

arc is one corresponding to a loose constraint, and a loose cycle is one containing a loose

arc.

Lemma 5.13 Given a system B of mixed di�erence constraints, let D be the corre-

sponding mixed constraint digraph. If B has a feasible solution, then D contains no

negative-weight cycles, and all loose cycles have positive weight.

Proof: Suppose that B has a feasible solution, and let C = (c0; c1; : : : ; cp�1; c0) be any

directed cycle in D with p > 1. Let xi+1 � xi ~< bi;i+1 be the constraint corresponding to

(ci; ci+1). By construction and the feasibility of the solution, w(ci; ci+1) = bi;i+1 ~>xi+1�xi.
Therefore, the weight of the cycle satis�es

p�1X
i=0

w(ci; ci+1) =
p�1X
i=0

bi;i+1

�
p�1X
i=0

xi+1 � xi

= �x0 + x0

= 0;

where subscript arithmetic is modulo p. That is, every cycle has nonnegative weight. If

C contains at least one loose arc, then the inequality is strict. That is, every loose cycle

has positive weight.

The proof and extended statement of the converse of Lemma 5.13 require the following

notions. Let D = (V;A;w) be the weighted digraph corresponding to a set B of mixed
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di�erence constraints. Our goal is to create a digraph for a system of tight di�erence

constraints that has a feasible solution if and only if B has a feasible solution. To do

so, we �rst convert loose arcs to tight arcs by inserting a necessary \space" � into the

constraints. If D has no loose cycles, de�ne � to be any positive constant. Otherwise,

let C0 be a least-weight loose cycle, and let � be any value that satisi�es

0 < � � w(C0)

jV j � 1
: (5.20)

Now create a new directed graph D0 from D by subtracting � from the weight of every

loose arc.

De�nition 5.14 The tightened constraint digraph corresponding to D = (V;A;w) is the

weighted digraph D0 = (V;A;w0) where

w0(u; v) =

8><>:
w(u; v)� � if (u; v) is a loose arc

w(u; v) if (u; v) is a tight arc.

Theorem 5.15 Given a system B of mixed di�erence constraints, let D be the corre-

sponding mixed constraint digraph, and let D0 be the corresponding tightened constraint

digraph. If D contains no negative-weight cycles, and all loose cycles have positive weight,

then x = fxu : u 2 V and xu = �0(v0; u)g is a feasible solution of B. If D contains a

negative-weight cycle, or a loose cycle with non-positive weight, then there is no feasible

solution for the system B.

Proof: The tightened constraint digraph D0 has no negative-weight cycles. To see this,

let C be a cycle in D0. If C is not loose, then it has the same nonnegative weight in D0

that it has in D. Otherwise, assume it has j loose arcs. Then, since j � jV j � 1,

w0(C) = w(C)� j�
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= w(C)� j
w(C0)

jV j � 1

� w(C0)� w(C0)

= 0:

Therefore the least path weight �0(u; v) from u to v in D0 is well de�ned.

Now let (u; v) be any arc in D0. Then �0(v0; v) � �0(v0; u)+w0(u; v), for otherwise the

path from v0 through u to v (with weight �0(v0; u) + w0(u; v)) would be lighter than the

lightest path from v0 to v (with weight �0(v0; v)). It follows that

xv � xu = �0(v0; v)� �0(v0; u) � w0(u; v):

Therefore xv � xu < w(u; v) if (u; v) is loose, and xv � xu � w(u; v) otherwise. It follows

that x is a feasible solution of B. The second claim follows immediately from Lemma 5.13.

5.2.2 Constraint Digraphs Corresponding to � -Strip Graphs

For strip graphs, it is convenient to go directly to the corresponding constraint digraph

by combining Theorem 5.11 and Theorem 5.15 as follows.

De�nition 5.16 The (mixed constraint) digraph corresponding to a levelled, complement

oriented graph G = (V;E; l; ~E) is a weighted, directed graph D = (VD; A;w) where:

VD = V [ fv0g

A = A+ [ A� [ f(v0; v) : v 2 V g

A+ = f(u; v) : (u; v) 2 Eg

A� = f(u; v) : (v; u) 2 ~Eg
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The weight w(u; v) of each directed arc (u; v) in D is:

w(u; v) =

8>>>>><>>>>>:
�uv if (u; v) 2 A+

��uv if (u; v) 2 A�

0 if u = v0

where �uv =
q
1� (l(u)� l(v))2). See Figure 5.2 for a small example.
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Figure 5.2: The weighted digraph (b) corresponding to the star K1;4 (a). The eight arcs

with positive weight in Figure (b) are shown as solid arrows. Note that there are two solid

arrows between every pair of vertices that are adjacent in Figure (a). The six arcs with

negative weight in Figure (b) are shown as dotted arrows. Note that there is exactly one

dotted arrow between every distinct pair of vertices that are not adjacent in Figure (a).

The solid arrows all have weight �0 =
q
1 � (�=2)2. The horizontal dotted arrows all have

weight �1 = �p1 � 02. The diagonal dotted arrows all have weight �� = �p1� � 2.

Arcs in A+ are called positive, and arcs in A� are called negative. Note that, for each

edge in E, there are two oppositely directed arcs in A+ with the same positive weight.

Note also that the negative arcs A� in D are exactly the loose arcs. So, if C is a cycle

in D with no loose arcs, then it must have positive weight.

Theorem 5.17 Given a � -levelled, complement oriented graph G, let D be the cor-

responding mixed constraint digraph, and let D0 be the corresponding tightened con-

straint digraph. If every cycle in D has positive weight, then f : V ! R2, where



Chapter 5. Strip Graphs 218

f(u) = (�0(u); l(u)) for all u 2 V , is a strip-realization of G. If D contains a nonpositive-

weight cycle, then there is no strip-realization with the given levelling and complement

orientation.

Proof: Let B be the corresponding system of �(V 2) di�erence constraints (5.17 through

5.19). By Theorem 5.11, f is a strip realization forG if and only if fxu : f(u) = (xu; y(u))g
is a feasible solution for B. The digraph D corresponding to the levelled and complement

oriented graph G also corresponds to this system of constraints B. If every cycle in D is

positive, fxu : xu = �0(v0; u) and u 2 V g is a feasible solution of B by Theorem 5.15.

Finally, if D contains a nonpositive-weight cycle C, then C must be loose. By Theo-

rem 5.15, there is no feasible solution for B, and the theorem follows by Theorem 5.11.

Corollary 5.17.1 A graph is a � -strip graph if and only if it can be � -levelled and com-

plement oriented such that every cycle in its corresponding digraph has positive weight.

5.2.3 An O(V 3) Algorithm for Laying Out Levelled, Complement Oriented,

Strip Graphs

Theorem 5.17 promises an algorithm to lay out a strip graph once it has been levelled and

complement oriented. Algorithm STRIP-LAYOUT is a straightforward implementation

of the ideas behind the theorem.

Theorem 5.18 Algorithm STRIP-LAYOUT recognizes and produces a � -strip realization

for a levelled, complement oriented graph G = (V;E; l; ~E) in O(V 3) time.

Proof: Given a levelled, complement oriented graph G = (V;E; l; ~E), Step 1 can build

an n � n matrix representation of the corresponding mixed constraint digraph D =
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Table 5.2: Algorithm: STRIP-LAYOUT(G) [Levelled, Complement Oriented, Strip

Graph Recognition]

Input: A levelled, complement oriented graph G = (V;E; l; ~E) and

a real number � .
Output: A shortest least-weight cycle in D and a realization f : V ! R� [0; � ]

if G is a � -strip graph, or evidence (a negative cycle in D)
that G is not a � -strip graph.

0 VD  V [ fv0g
1 D = (VD; A;w) the digraph corresponding to G.
2 f�(u; v) : u; v 2 VDg  FLOYD-WARSHALL( D )

3 w0 = minf�(v; v) : v 2 V g
4 return the cycle in D corresponding to w0.

5 if w0 > 0

6 then � w0=(jV j � 1)

7 D0 = (VD; A;w
0) the tightened digraph corresponding to G.

8 f�0(u; v) : u; v 2 VDg  FLOYD-WARSHALL( D0 )

9 return function f , where f(v) = (�0(v0; v); l(v)) for all v 2 V .
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(VD; A;w) in O(V 2
D) = O(V 2) time. Let us assume that w(v; v) = 1 for all v 2 VD.

Step 2 can then run the dynamic programming Floyd-Warshall all-pairs shortest-paths

algorithm ([CLR90] pages 558{565) on D(V ) in O(V 3) time. Step 3 can then set w0 =

minf�(v; v) : v 2 V g from the result of Step 2 in O(V ) additional time.

Implement the Floyd-Warshall algorithm to maintain, for all pairs u, v, the prede-

cessor p(u; v) of v in the (computed) shortest path from u to v. This does does not

increase the asymptotic run time, but allows Step 4 to extract the cycle corresponding to

w0 in linear time ([Tar83] pages 94{95). The Floyd-Warshall algorithm has the property

that this cycle is negative if w0 < 0, in which case G has no layout compatible with its

levelling and complement orientation, again by Theorem 5.17.

If w0 > 0, then D has no negative cycles, and �(u; v) correctly represents the least

path-weight from u to v for all such pairs. In particular, w0 is the weight of a least-

weight cycle in D, and � in Step 6 satis�es Inequality 5.20. Step 7 can now construct the

tightened constraint digraph D0 = (VD; A;w
0) corresponding to D in O(VD+A) = O(V 2)

time. Finally, Step 8 again1 executes the Floyd-Warshall algorithm in O(V 3) time. The

entire recognition and layout algorithm for levelled, complement oriented strip graphs

therefore runs in O(V 3) time.

5.3 Stars in Strip-Graphs

As an example of the weighted cycle mechanism of the previous section, this section

shows which stars are � -strip graphs as the thickness � of the strip varies.

Property 5.19 The star K1;5 is not a � -strip graph for any � � p3=2.
1Since the time-critical step in this algorithm is Step 2, it su�ces for Step 8 to execute in O(V 3) time.

If you have a faster way to �nd the lightest cycle in Step 2, then you should also use a faster algorithm

for Step 8. One such algorithm is the Bellman-Ford algorithm for the single-source least path-weight

problem ([CLR90] pages 532{544). The Bellman-Ford algorithm runs in O(V A) = O(V 3) time, which

is faster for sparse graphs.
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Proof: Consider any levelling and complement orientation of K1;5. Its 5 independent

vertices are then linearly ordered, say a < b < c < d < e. Then C = (h; e; d; c; b; a; h) is

a cycle in the corresponding digraph, where h is the \hub" of the star. This cycle has

weight

w(C) = �he � �ed � �dc � �cb � �ba + �ah

� 1� 1=2 � 1=2 � 1=2 � 1=2 + 1

= 0

since, for all arcs (u; v),
p
1� � 2 � �uv � 1 and

p
1 � � 2 =

q
1 � (3=4) = 1=2. Hence

K1;5 is not a strip graph by Theorem 5.17.

Property 5.20 The star K1;4 is not a � -strip graph for any � �
q
5=9.

Proof: Again, consider any levelling and complement orientation of K1;4 such that

C = (h; d; c; b; a; h) is a cycle in the corresponding digraph where a < b < c < d are the

independent vertices and h is the hub. This cycle has nonpositive weight

w(C) = �hd � �dc � �cb � �ba + �ah

� 1� 2=3 � 2=3 � 2=3 + 1

= 0

since, for all arcs (u; v),
p
1 � � 2 � �uv � 1 and

p
1� � 2 =

q
1 � (5=9) = 2=3.

We saw in Example 5.1 that K1;4 is a strip graph for all strips of thickness greater

than
q
5=8, and in the previous property, that K1;4 is not embedable in strips thinner

than
q
5=9. Is one of these bounds tight? As it turns out, the � >

q
5=8 bound is tight.

The weighted cycle mechanism from the previous section does not provide enough power

to prove this by itself. We must therefore resort to more ad hoc arguments.
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Property 5.21 The star K1;4 is not a � -strip graph for any � �
q
5=8.

Proof: The diameter of any set of points realizing K1;4 must be at most 2 since every

pair of vertices is joined by a path of length at most 2. In particular, any realization of

the four (independent) leaves must have diameter at most 2. However, we will see that

any
q
5=8-realization of four independent vertices has diameter greater than 2.

To this end, let fa; b; c; dg be a set of points that realizes four independent vertices in
a
q
5=8-strip. Without loss of generality, we may assume that x(a) < x(b) < x(c) < x(d),

so that ka� dk is the diameter. Therefore x(b)� x(a) >
q
1� (5=8) =

q
3=8 > 1=2, and

this relation also holds for x(c)�x(b) and x(d)�x(c). It follows that x(d)�x(a) > 3
q
3=8.

We may also assume that a and d minimize ka� dk, and that b and c maximize kb� ck
(over all possible realizations). Then all points in fa; b; c; dg lie on the boundaries of the

strip.

To see this, suppose �rst that a does not lie on the boundary, as shown in Figure 5.3.

Then we can perturb a such that the resulting realization has a smaller diameter ka�dk,

a

b

c
d

Figure 5.3: If point a is not on the boundary, then rotate it about b to decrease ka� dk.
The �gure shows two arcs, centered at b and d, and passing through a. In the �gure,

b lies below segment ad so rotate a clockwise along the arc about b. The arc about d

delimits the points that are farther from d from those that are closer to d.

as follows. If b lies on or below the line segment ad, as shown in Figure 5.3, then rotate

a clockwise about b, thereby moving a closer to d. This process does not change the

distance ka � bk > 1, so that x(b) � x(a) remains greater than
q
3=8. It follows that
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x(c) � x(a) = (x(c) � x(b)) + (x(b) � x(a)) > 1=2 + 1=2 = 1, so that a and c remain

independent. By a symmetric argument (re
ect the points about the horizontal), if b

lies above segment ad, then decrease the diameter by rotating a counterclockwise about

b. Similarly, if d does not lie on the boundary, then decrease the diameter by rotating

it about c, either clockwise or counterclockwise, depending on whether c lies above or

below segment ad, respectively.

Now suppose that b does not lie on the boundary. If b lies on or below the line segment

ac, as shown in Figure 5.4, then rotate b clockwise about a, thereby moving b farther from

a

b

c
d

Figure 5.4: If point b is not on the boundary, then rotate it about a to increase kb� ck.
The �gure shows two arcs, centered at a and c, and passing through b. In the �gure,

b lies below segment ac, so rotate b clockwise along the arc about a. The arc about c
delimits the points that are farther from c from those that are closer to c.

c. Again, this process does not change the distance ka� bk > 1, so that a and b remain

independent. Also x(d)�x(b) = (x(d)�x(c))+(x(c)�x(b))> 1=2+1=2 = 1, so that b and

d remain independent. By a symmetric argument (re
ect the points about the horizontal

again), if b lies above segment ac, then increase kb � ck by rotating b counterclockwise

about a. Similarly, if c does not lie on the boundary, then increase kb � ck by rotating

it about d, either clockwise or counterclockwise, depending on whether c lies below or

above segment bd, respectively.
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Now that we know that fa; b; c; dg lies on the boundary, we must analyze the possi-

bilities. Suppose a and d lie on di�erent levels. Then the distance between them satis�es

ka� dk2 > (3
q
3=8)2 + (5=8) = 22

so that the diameter of the point set is greater than 2. On the other hand, suppose that

a and d lie on the same level. Then the points in at least one pair (a; b), (b; c), or (c; d)

must also lie on the same level (as each other). The x-distance between this pair is the

same as the distance between the pair, which must be greater than 1. Therefore the

x-distance between a and d satis�es:

x(d)� x(a) > (2
q
3=8) + 1 > 2:22

so the diameter is again greater than 2.

The following theorem summarizes Example 5.1 and Property 5.21.

Theorem 5.22 The star K1;4 is a � -strip graph precisely when � >
q
5=8.

Property 5.23 The star K1;4 is not an L1 � -strip graph for any � � 1=2.

Proof: This proof is analogous and nearly identical to that of Property 5.21, so it is

worded as similarly as possible to emphasize this analogy. Again, we will show that

any four independent points fa; b; c; dg under the L1 metric in a strip at most 1=2-

unit thick has diameter greater than 2. Again assume without loss of generality that

x(a) < x(b) < x(c) < x(d). Therefore x(b) � x(a) > 1 � (1=2) = 1=2, and this relation

also holds for x(c)�x(b) and x(d)�x(c). It follows that x(d)�x(a) > 3(1=2). This time,

assume that a and dminimize the x-span x(d)�x(a), and that b and cmaximizex(c)�x(b)
(over all possible realizations). Then all points in fa; b; c; dg lie on the boundary of the

strip.
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a

b

c
d

Figure 5.5: If point a is not on the boundary, then rotate it about b to decrease x(d)�x(a)
while not decreasing ka�dk1. The �gure shows two arcs, centered at b and d, and passing
through a. In the �gure, b lies below a so rotate a clockwise along the arc about b. The

arc about d delimits the points that are farther from d from those that are closer to d.

To see this, suppose �rst that a does not lie on the boundary, as shown in Figure 5.5.

Then we can perturb a such that the resulting realization has a smaller value x(d)�x(a),
as follows. If b lies at or below y(a), as shown in Figure 5.5, then rotate a clockwise about

b, thereby moving a closer to d in the x-dimension. Note that this may decrease the L1

distance between a and d, or it may leave it unchanged. However, this process does not

change the distance ka� bk1 > 1, so that x(b)�x(a) remains greater than 1=2. It follows

that x(c) � x(a) = x(c)� x(b) + (x(b)� x(a)) > 1=2 + 1=2 = 1, so that a and c remain

independent. By a symmetric argument (re
ect the points about the horizontal), if b lies

above a, then decrease the x-span by rotating a counterclockwise about b. Similarly, if

d does not lie on the boundary, then decrease the x-span by rotating it about c, either

clockwise or counterclockwise, depending on whether c lies above or below d, respectively.

Now suppose that b does not lie on the boundary. If b lies at or below y(a), as shown

in Figure 5.6, then rotate b clockwise about a, thereby moving b farther from c. Note

that this may increase the L1 distance between b and c, or it may leave it unchanged.

Again, this process does not change the distance ka � bk > 1, so that a and b remain

independent. Also x(d)�x(b) = x(d)�x(c)+(x(c)�x(b))> 1=2+1=2 = 1, so that b and

d remain independent. By a symmetric argument (re
ect the points about the horizontal
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a

b

c
d

Figure 5.6: If point b is not on the boundary, then rotate it about a to increase x(c)�x(b).
The �gure shows two arcs, centered at a and c, and passing through b. In the �gure,

b lies below segment ac, so rotate b clockwise along the arc about a. The arc about c

delimits the points that are farther from c from those that are closer to c.

again), if b lies above point d, then increase x(c) � x(b) by rotating b counterclockwise

about a. Similarly, if c does not lie on the boundary, then increase x(c)�x(b) by rotating
it about d, either clockwise or counterclockwise, depending on whether c lies below or

above point d, respectively.

Now that we know that fa; b; c; dg lies on the boundary again, we must analyze the

possibilities. Suppose a and d lie on di�erent levels. Then the distance between them

satis�es

ka� dk1 > 3(1=2) + (1=2) = 2

so that the diameter of the point set is greater than 2. On the other hand, suppose

that a and d lie on the same level. Then the points in at least one pair, (a; b), (b; c), or

(c; d) must also lie on the same level (as each other). The x-distance between this pair is

the same as the distance between the pair, which must be greater than 1. That is, the

x-distance between a and d satis�es:

x(d)� x(a) > 2(1=2) + 1 = 2

so the diameter is again greater than 2.

Theorem 5.24 The star K1;3 (claw) is a � -strip graph precisely when � > 0.



Chapter 5. Strip Graphs 227

Proof: The claw is easy to realize if � > 0 as shown in Figure 5.7. However it is not

d

d dd

Figure 5.7: A claw in a thin strip

a 0-strip (indi�erence) graph by Theorem 2.3.4. We can prove this directly, using the

weighted cycle mechanism. Consider any orientation of K1;3 such that C = (h; c; b; a; h)

is a cycle in the corresponding digraph where a < b < c are the independent vertices and

h is the hub. This cycle has nonpositive weight

w(C) = �hc � �cb � �ba + �ah

= 1� 1� 1 + 1

= 0

since, for all arcs (u; v), �u;v =
p
1 � � 2 =

p
1 � 0 = 1.

5.4 Distinguishing Strip Graphs and Indi�erence Graphs

The weighted digraph corresponding to a � -strip was de�ned previously (De�nition 5.16).

This section continues to examine cycles in these weighted digraphs. Let us say that a

strip graph is proper if it is not a strip graph for � = 0, that is, if it is not an indi�erence

graph. This section de�nes the notion of a dangerous cycle, and shows that there is a

dangerous cycle in every weighted digraph that corresponds to a proper strip graph. We

will see that if such a digraph has a dangerous cycle, then it has one with four arcs.

Consequently proper strip graphs contain either a square or a claw, since a dangerous

4-cycle must correspond to one or the other.



Chapter 5. Strip Graphs 228

A graph or digraph is signed if there is a positive (+) or negative (�) sign associated

with each edge or arc of the graph. In this section, it is often easier to think of our

weighted digraphs as signed, depending on whether the arc weight is positive or negative.

De�nition 5.25 A cycle in a signed digraph is dangerous if it contains at least as many

negative arcs as positive arcs, that is, if n
p
� 1, where n is the number of negative cycle

arcs and p is the number of positive cycle arcs.

5.4.1 Dangerous 4-Cycles

Lemma 5.26 Let D be the digraph corresponding to a levelled, complement oriented

graph G. If C is a positive, dangerous cycle in D, then C has at least four arcs.

Proof: By construction, D has no loops and therefore no 1-cycles, dangerous or other-

wise. Similarly, 2-cycles correspond to edges of G, and therefore have two positive arcs.

Finally, if C = (a; b; c) were a dangerous 3-cycle (where at most arc (a; b) is positive),

then it would have weight

w(C) � �ab � �bc � �ca

� 1� 1=2 � 1=2

= 0:

This contradicts the fact that C has positive weight.

We already know by Theorem 3.7 that every strip graph is a cocomparability graph.

However, Lemma 5.26 further illuminates this property, as the following alternative proof

illustrates.

Theorem 3.7 (Chapter 3) Strip graphs form a subclass of cocomparability graphs.
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Proof: We need to show that the complement of a strip graph can be transitively

oriented. If G is a strip graph, then by Theorem 5.17 it can be levelled and complement

oriented such that its corresponding digraph has only positive cycles. This orientation

is transitive, for otherwise the corresponding directed graph would have a dangerous

triangle, contradicting Lemma 5.26.

Lemma 5.27 Let D be the directed graph corresponding to a levelled, complement ori-

ented strip graph G. If D has no dangerous cycles, then G is an indi�erence graph (a

one-level graph).

Proof: Write D = (V;A;w) and de�ne a new weighted digraph D0 = (V;A;w0) where

w0(u; v) =

8>>>>><>>>>>:
1 if w(u; v) > 0

�1 if w(u; v) < 0

0 if w(u; v) = 0 i.e., if u = v0

Now consider any cycle C in D0 (and therefore also in D). Since C is not dangerous,

p > n. Therefore, w0(C) = p � n > 0. Hence D0 has only positive cycles. Since D0

corresponds to G relevelled so that y(v) = 0 for all vertices v 2 V , it follows that G is

an indi�erence graph, that is, a 0-strip graph, by Corollary 5.17.1.

By the previous lemma, the digraph of every proper strip graph has a dangerous cycle.

This dangerous cycle must have at least four arcs by Lemma 5.26. You may therefore

wonder how large the smallest such dangerous cycle could be. This is answered by the

following lemma.

Lemma 5.28 If the digraph corresponding to a levelled, complement oriented graph has

a positive dangerous cycle, then it has a dangerous cycle with four arcs.

Proof: Let D be the directed graph corresponding to a levelled, complement oriented

graph G = (V;E). Let C be a dangerous cycle in D with the least number of arcs. We
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may assume that C is simple, for otherwise C can be decomposed into two cycles, at

least one of which is dangerous. By Lemma 5.26, C has at least four arcs.

Since C is dangerous, it has at least one negative arc. On the other hand, if C had only

negative arcs, its weight would be negative. Therefore C has at least one positive arc.

In particular, it has a negative arc (b; c) followed by a positive arc (c; d); see Figure 5.8.

Let a precede b in C. Now, either (a; b) is positive or it is negative, and either (a; d) is

an edge in G or it is not. This gives us four cases to consider:

Case 1: (a; b) is positive and (a; d) 2 E. See Figure 5.8.
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Figure 5.8: Case 1: (a; b) is positive, and (a; d) is positive.

Since (a; d) is an edge in G, it follows that (a; d) is a positive arc in D. So replacing

(a; b; c; d) with (a; d) in C results in a dangerous2 cycle with fewer arcs, contradicting the

assumption that C is a shortest dangerous cycle.

Case 2: (a; b) is positive and (a; d) =2 E. See Figure 5.9.
Since (a; d) is not an edge of G, either (a; d) or (d; a) is a negative arc in D. If (a; d)

is a negative arc in D, then replacing (a; b; c; d) with (a; d) in C results in a dangerous3

cycle with fewer arcs, again contradicting the assumption that C is a shortest dangerous

2It has n� 1 negative arcs and p� 1 positive arcs.
3It has n negative arcs and p� 2 positive arcs.
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cycle. On the other hand, if (d; a) is a negative arc in D, then (a; b; c; d; a) is a dangerous

4-cycle.
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Figure 5.9: Case 2: (a; b) is positive, and (a; d) or (d; a) is negative.

Case 3: (a; b) is negative and (a; d) 2 E. See Figure 5.10.
Since (a; d) is an edge in G, it follows that (d; a) is a positive arc in D. In this case,

(a; b; c; d; a) is a dangerous 4-cycle.
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Figure 5.10: Case 3: (a; b) is negative, and (d; a) is positive.

Case 4: (a; b) is negative and (a; d) =2 E. See Figure 5.11.
Either (a; d) or (d; a) is a negative arc in D. If (a; d) is a negative arc in D, then
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replacing (a; b; c; d) with (a; d) in C results in a dangerous4 cycle with fewer arcs, again

contradicting the assumption that C is a shortest dangerous cycle. Finally, if (d; a) is a

negative arc in D, then (a; b; c; d; a) is a dangerous5 4-cycle.
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Figure 5.11: Case 4: (a; b) is negative, and (a; d) or (d; a) is negative.

Lemma 5.29 Let D be the directed graph corresponding to a levelled, complement ori-

ented graph G. If C is a positive, dangerous 4-cycle in D, then C corresponds to a square

or a claw in G.

Proof: Let C = (a; b; c; d; a) be a positive, dangerous 4-cycle. It cannot have four nega-

tive arcs, denoted (�;�;�;�), since such a cycle would have negative weight. Similarly,

it cannot have 3 negative arcs and one positive arc, denoted (+;�;�;�), since its weight
would be negative:

w(C) = �ab � �bc � �cd � �da � 1� 3(1=2) = �1=2:

It follows that C has exactly two negative arcs and two positive arcs, isomorphic to either

(�;+;�;+) or (�;�;+;+).
Suppose C = (�;+;�;+) as shown in Figure 5.12. By the construction of D, the

4It has n� 1 negative arcs and p� 1 positive arcs.
5It has 3 negative arcs and 1 positive arc. Such a cycle is not only dangerous, it is unrealizable.
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Figure 5.12: (�;+;�;+) in D corresponds to a square in G.

pairs (a; d) and (b; c) are edges in G, and (a; b) and (c; d) are not. Now, arc (a; c)

cannot be negative for, if it were, (a; c; d; a) would be a dangerous triangle, contradicting

Lemma 5.26. Its opposite orientation, arc (c; a) also cannot be negative for, if it were,

(a; b; c; a) would be a dangerous triangle. Therefore (a; c) is positive and therefore in

G. Similarly, arcs (b; d) and (d; b) are not negative, since they would imply dangerous

triangles (a; b; d; a) and (b; c; d; b). Therefore (b; d) is in G, and C corresponds to a square.

On the other hand, suppose C = (�;�;+;+) as shown in Figure 5.13. By the
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Figure 5.13: (�;�;+;+) in D corresponds to a claw in G.

construction of D, the pairs (a; d) and (c; d) are edges in G, and (a; b) and (b; c) are not.
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Now, edge (a; c) cannot be in G for, if it were, arc (c; a) would be positive in D, and

(a; b; c; a) would be a dangerous triangle. Similarly, arcs (b; d) and (d; b) are not negative,

since they would imply dangerous triangles (a; b; d; a) and (b; c; d; b). Therefore (b; d) is

in G, and C corresponds to a claw.

Theorem 5.30 Any strip graph that is not also an indi�erence graph contains a square

or a claw.

Proof: Let G be a strip graph. It can therefore be levelled and complement oriented

such that its corresponding directed graph D has only positive cycles. If G is not a

one-level graph, then D has at least one dangerous cycle. By Theorem 5.28, D contains

a dangerous 4-cycle, which corresponds to a square or a claw by Lemma 5.29.

5.4.2 Connection with Indi�erence Graph Characterization

Another way of arriving at Theorem 5.30 is to examine the characterization of indif-

ference graphs. Roberts characterized indi�erence graphs as claw-free interval graphs

(Theorem 2.3.4). Also, Gilmore and Ho�man characterized interval graphs as chordal

cocomparability graphs [GH64]. Therefore, indi�erence graphs are equivalently chordal,

claw-free, cocomparability graphs.

We know that all strip graphs are cocomparability graphs (Theorem 3.7). Hence, if a

strip graph is not an indi�erence graph, it must either contain a claw or not be chordal.

If it is not chordal, it must contain a square, since cocomparability graphs do not have

induced cycles with more than four edges (Theorem 4.6).

This higher-level proof clearly hides many of the details inherent in dangerous cycle

proof of Theorem 5.30. In fact, we could prove Roberts's result (Theorem 2.3.4) using

dangerous cycles. Nevertheless, the higher-level proof serves to relate strip graphs with

other familiar results.
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5.5 A Characterization of Trees in Strip Graphs

What sort of trees are strip graphs? If a tree has any \body" to it, that is, if it contains the

subtree in Figure 5.14, then it cannot be a strip graph. The leaves of this subtree have the

d

d

d

d

d

d

d�
��
�
�� @

@@
@
@@

Figure 5.14: The leaves of this tree form an asteroidal triple.

property that between any pair of them, there is a path that avoids the neighbourhood

of the third. A set of three vertices in a graph that has this property is called an

asteroidal triple [LB62]. It is well known that all cocomparability graphs are asteroidal-

triple free [Gal67]. This is an easy consequence of Corollary 4.7.1, that a path in a

(scanning) ordered cocomparability graph dominates all vertices between its endpoints.

Since all strip graphs are cocomparability graphs (Theorem 3.7), it follows that strip

graphs are also asteroidal-triple free, and therefore free of the tree in Figure 5.14.

Trees that are free of this tree (Figure 5.14) are sometimes called caterpillars: remov-

ing their leaves results in a path (the spine). This de�nition implies that every spine

vertex has degree at least 2. But for purposes of exposition, assume that the spine is

ordered and that no leaves are adjacent to the �rst and last vertices, i.e., they have

degree 1.

We already know that K1;5 is not a strip graph (Theorem 5.19). Since strip graphs

are hereditary (i.e., all induced subgraphs of a strip graph are themselves strip graphs), it
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follows that any tree that contains an induced K1;5 subgraph could not be a strip graph,

either.

The only trees not ruled out by this brief analysis are caterpillars all of whose vertices

have degree at most 4. Remarkably, all such trees are strip graphs, as shown by the

following subsection.

5.5.1 A Universal Embedding for Caterpillars

Any caterpillar with degree at most 4 is isomorphic to an induced subgraph of the in-

�nite caterpillar shown in Figure 5.15. Any embedding of this in�nite caterpillar also

d

d

d

d d d

d d

d d

d

d

d q qqc0 c1 c2 c3 c4

a1 a2 a3 a4

d4d3d2d1

Figure 5.15: The in�nite degree-4 caterpillar

speci�es an embedding for an induced subgraph, and therefore for any caterpillar via its

subgraph isomorphism. We will now see how to embed the in�nite caterpillar. All points

corresponding to vertices labelled c will lie strictly inside the strip, except for c0 which

lies on the upper level. Points corresponding to leaves labelled a will always lie on the

lower level of the strip. Points corresponding to leaves labelled d will always lie on the

upper level of the strip.

The following technical de�nition will be useful before proceeding. Say that three

points a, b, and c in the strip satisfy the iterative conditions if
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(i1) points a and b lie on the lower level,

(i2) point b is more than unit distance to the right of a, and

(i3) point c is less than unit distance from both a and b,

as shown in Figure 5.16. In any such triple of points, b will be just a construction point,

a b

c

Figure 5.16: Points a, b, and c satisfy the iterative conditions.

but point a will correspond to a leaf of the in�nite caterpillar labelled a, and point c will

correspond to an interior vertex (of degree 4) labelled c.

The Initial Step

To embed the in�nite caterpillar, we will proceed iteratively, from left to right in the

strip. To this end, place c0 on the upper level, at location (0;
p
3=2). Place a1 slightly

more than unit distance from c0, on the lower level to the right, and b1 slightly more

than unit distance from a1, also on the lower level to the right. More concretely, place

a1 at (0:51; 0) and b1 at (1:52; 0), as shown in Figure 5.17. We can then place c1 within

unit distance of c0, a1, and b1. Again, more concretely, place c1 at (0:75; 0:5). Clearly,

points a1, b1, and c1 satisfy the iterative conditions.
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Figure 5.17: Embedding the �rst four vertices of the in�nite degree-4 caterpillar in the

strip.

The Iterative Step

We can always continue embedding the caterpillar from three points a, b, and c that

satisfy the iterative conditions as follows. Place a new point d on the upper level, between

a and b, exactly unit distance from b, as shown in Figure 5.18. Note that xd = xb � 1=2

a b

c

d

Figure 5.18: Placing point d, which corresponds to a leaf.

since the thickness of the strip is
p
3=2, and that xd > xa + 1=2 by condition (i2). It

follows6 that d is more than unit distance from a. Then point c is within unit distance

of d. If it were not, jxc � xdj would be greater than 1=2, so that either jxc � xaj > 1 or

jxc�xbj > 1, which contradicts the proximity of point c to points a and b. It follows that

6Note well that this conclusion does not follow if the thickness of the strip is less than
p
3=2. Conse-

quently this construction is not applicable to thinner strips.
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vertices a and d are independent but adjacent to vertex c in the strip graph generated

by points a, c, and d.

We are now ready to construct a new set of points a0, b0, and d0. Let C(p) denote the

unit radius circle about point p, where p is any point in the strip. By construction, C(d)

intersects the lower level at point b, as shown in Figure 5.19.

a b

d

c

Figure 5.19: The unit circle about d intersects the lower level at point b.

By the iterative conditions, C(c) intersects the lower level at a point x to the right of

b, as shown in Figure 5.20. Therefore, there is an arc A of C(c) that (1) lies above the

lower level, (2) lies to the right of the circle about c, (3) has positive length, and (4) has

a tangent with �nite positive slope at all points. Figure 5.20 shows arc A in bold.

a b

d

c

x

Figure 5.20: The unit circle about c intersects the lower level at point x. Arc A is the

bold part of C(c).

Now place b0 on the lower level to the right of x such that C(b0) intersects arc A

at its midpoint, as shown in Figure 5.21, although any point of intersection su�ces.
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The circle C(b0) intersects the lower level at a point y to the right of point x since the

a b

c

x y

d

b’

Figure 5.21: Circle C(b0) intersects arc A at its midpoint, and it intersects the lower level

at point y.

tangent to C(b0) is vertical at the lower level, but the tangent to C(c) has positive slope.

Therefore let a0 be the midpoint between x (on the left) and y (on the right), as shown

in Figure 5.22, although any point between x and y will su�ce. This ensures that a0 and

b0 satisfy conditions (i1) and (i2).

a b

c

x y

d

b’

c’

a’

Figure 5.22: Point c0 is on C(c) and inside C(b0)

Finally, let c0 be the point on A midway between the top of A and the intersection of

A and C(b0), as shown in Figure 5.22, though any point on A that lies inside C(b0) will

su�ce. Since c0 is inside C(b0), it is within unit distance of b0. We need to show that c0

is also within unit distance of a0. Since any continuous intersection of a circle (centered

in the strip) with the strip (of width
p
3=2) has diameter at most 1, it follows that arc A

has diameter at most 1. As a consequence, c0 is within unit distance of x. Therefore c0
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is within unit distance of a0, which lies between x and b0, by convexity of the unit-radius

disk about c0.

In summary, a0, b0, and c0 satisfy the iterative conditions. Furthermore, a0 is not

adjacent to a or d since it lies to the right of b, and it is not adjacent to c since it lies

to the right of x. Similarly, c0 is not adjacent to a or d since it lies outside of C(d).

Figure 5.23 shows that portion of the caterpillar generated by points fa; c; d; a0; c0; d0g,

a

c

d

a’

c’

d’

Figure 5.23: The strip graph generated by fa; c; d; a0; c0; d0g.

where d0 is unit distance from b0. Note that d0 is not adjacent to a, b, or c. To see this,

recall that points a, b and c have x-coordinates less than xa0 � 1=2, and that d0 has an

x-coordinate greater than xa0 + 1=2. It follows that a, b and c have x-coordinates less

than xd0 � 1 and therefore lie more than unit distance from d0. We have established the

following theorem.

Theorem 5.31 A tree is a
p
3=2-strip graph if and only if it is a caterpillar with degree

at most 4.
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Two-Level Graphs

This chapter studies two-level strip graphs, that is, graphs that have strip-realizations

with only two distinct y-coordinates. Since the y-coordinates of arbitrary strip graphs

can take on an in�nite number of values, it is di�cult to see the combinatorial aspects

of the y-dimension. To emphasize these combinatorial aspects, we de�ne a notion of

k-level graphs, in which the y-coordinates take on at most k distinct values. If k = 1,

these one-level graphs are exactly the indi�erence graphs. For k = 2, the main object of

attention in this chapter, each of the two \levels" can be thought of as an indi�erence

graph. But still, two-level graphs are not indi�erence graphs. It therefore behooves us to

to better understand the relation between indi�erence graphs and two-level graphs. We

will make signi�cant steps towards characterizing, recognizing, and laying out (realizing)

two-level graphs. We will also see how to develop algorithms for this class of graphs.

After a few de�nitions, we will look at some basic examples in Section 6.2. In par-

ticular, we will see that both the square and the claw are two-level graphs (although

neither are indi�erence graphs), but that their realizations are highly constrained. This

immediately applies to show that K1;4, and consequently any star with more than three

leaves, is not a two-level graph. Finally, we will look at a small graph whose realization

is completely constrained, that is, whose levels and complement orientation is completely

determined. This small graph will be useful for designing larger graphs in which we wish

to restrict the choice for the level of a vertex.

Next, we will see that the geometric realization of k-level graphs can be used to

242



Chapter 6. Two-Level Graphs 243

develop e�cient algorithms. Section 6.3 illustrates this fact by developing an e�cient

algorithm for solving a dominating set problem. This problem, �nding a minimumweight

independent dominating set, was solved (less e�ciently) in the more general context of

cocomparability graphs by Chapter 4. The problem is equivalent to �nding a minimum

weight maximal clique in the complement of a two-level graph; this formulation yields

the necessary insights for solving the problem.

Section 6.4 examines the relation of two-level graphs with other classes of graphs. In

particular, it places two-level graphs farther down a small hierarchy of previously studied

perfect graphs that contains cocomparability graphs. We will see that a two-level graph

under the Euclidean metric is also a two-level graph under the L1 \city block" metric.

We will also see how to compute two illustrative parameters of two-level graphs, by

showing that both the interval number and the boxicity of two-level graphs is at most

two. Finally, we will see that the edges of a two-level graph can be bipartitioned such

that one set induces an indi�erence graph and the other induces a bipartite permutation

graph.

The last section, Section 6.5, examines the problem of recognizing two-level graphs.

We will begin by assuming that we know which level every vertex must be on (i.e., the

graphs are striated), even though we might not know the y-coordinate of that level.

We will see that the complements of striated two-level graphs are uniquely orientable.

Striated k-level graphs, for k > 2, are not in general uniquely complement orientable, nor

are two-level graphs that have not been striated. However, we will see that any transitive

orientation of the complement of an unstriated two-level graph is compatible with some

realization. Unfortunately, we will also see that, unlike indi�erence and cocomparability

graphs, there is no forbidden ordered-triple characterization for two-level graphs. We

will examine the structure of the class of two-level graphs as the thickness of the strip

varies. In particular, we will see that the classes for any two distinct thicknesses are
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incomparable. Nevertheless, if a graph is both a two-level �1-strip graph, and a two-

level �2-strip graph, then it is a two-level � -strip graph for all values of � between �1

and �2. The section concludes by showing how to recognize striated two-level graphs in

O(V 3 log V ) time with the mechanism developed for levelled, complement oriented strip

graphs.

6.1 De�nitions

Let G = (V;E) be a � -strip graph, and let f : V ! R� [0; � ] be a realization of G. As

usual, we write f(u) = (xf (u); yf(u)), and �uv =
q
1� (yf (u)� yf (v))2.

De�nition 6.1 A � -strip graph G = (V;E) is a k-level (� -strip) graph if there is a set

fy1; y2; : : : ; ykg of real values where 0 = y1 < y2 < � � � < yk = � , such that G has a

realization f satisfying yf(u) 2 fy1; y2; : : : ; ykg for every vertex u 2 V . Say that vertex v
is on level i, or on the ith level, if yf (v) = yi.

Note that �uv = �uw whenever v and w are on the same level. Sometimes we would

like to require the vertices to be on certain levels, without actually saying what the y-

values of those levels are. To this end, let us de�ne a notion of striation, which captures

this intuition.

De�nition 6.2 A k-striation is a function s : V ! f1; 2; : : : ; kg. A graph G = (V;E; s)

is k-striated if it includes a k-striation function s. A striated graph G = (V;E; s) is a

striated k-level (� -strip) graph if there is a realization f : V ! R2 and a set of k y-values

(striae) fy1; y2; : : : ; ykg such that 0 = y1 < y2 < � � � < yk = � , and yf (u) = ys(u), for

every vertex u 2 V .

De�nition 6.3 If the endpoints of an edge in a striated graph (or levelled graph) are

on the same stria (or level), call it a level edge, otherwise call it a cross edge.
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One-level graphs are of course (one-dimensional) indi�erence graphs; there is no harm

in assuming that the unused y-coordinate of all vertices is 0, and that all edges are level

edges. Two-level graphs, for which k = 2, are clearly included in these de�nitions. For

example, if f is a two-level realization for G = (V;E), then vertex v 2 V is on level 1 if

yf(v) = 0, and on level 2 if yf (v) = � . In addition, since two-level graphs are discussed

extensively in this chapter, it is convenient to have the following de�nition. The intention

behind this de�nition is given by Property 6.5 below.

De�nition 6.4 Let � =
p
1 � � 2 be the critical x-dimension corresponding to the strip

thickness � . Note that, if 0 � � � p3=2, then 1=2 � � � 1. Note also that, if the

variable � is symbolic (its value has not been speci�ed), then so is �.

Property 6.5 Let f be a two-level realization for G. For all vertices u and v on the

same level, (u; v) 2 E if and only if jxf(u) � xf (v)j � 1. For all u and v on di�erent

levels, (u; v) 2 E if and only if jxf(u) � xf(v)j � �. In either case, (u; v) 2 E if

jxf(u)� xf(v)j � �.

Proof: If u and v are on the same level, then yf (u)� yf (v) = 0. It follows that

(u; v) 2 E if and only if kf(u)� f(v)k � 1

if and only if
q
(xf(u)� xf(v))2 + (yf (u)� yf (v))2 � 1

if and only if
q
(xf(u)� xf(v))2 � 1

if and only if jxf (u)� xf (v)j � 1:

Similarly, if u and v are on di�erent levels, then jyf (u)� yf (v)j = � . It follows that

(u; v) 2 E if and only if kf(u)� f(v)k � 1

if and only if
q
(xf(u)� xf(v))2 + (yf (u)� yf (v))2 � 1

if and only if
q
(xf(u)� xf(v))2 + � 2 � 1
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if and only if (xf (u)� xf (v))
2 + � 2 � 1

if and only if jxf (u)� xf (v)j �
p
1� � 2

if and only if jxf (u)� xf (v)j � �:

In either case (u; v) 2 E if jxf(u)� xf(v)j � � since � � 1.

6.2 Examples

Consider some realization of a two-level graph G = (V;E). Any cycle in the complete

graph K(V ) on V (or any graph on V , for that matter) must have an even number of cross

edges. This is because any cycle must begin and end on the same level. In particular, this

is true of any directed cycle in the weighted digraph (De�nition 5.16) corresponding to

G, the left-to-right orientation, and this levelling. Cross arcs in the digraph have weight

��, and level arcs have weight �1 by Property 6.5. Recall that � =
p
1� � 2 and that

1=2 � � � 1. Furthermore, arcs in the digraph that correspond to edges in the graph

have positive weight, and arcs that correspond to nonedges have negative weight. The

next two lemmas rely on Corollary 5.17.1, that a graph is a � -strip graph if and only if

it can be � -levelled and complement oriented such that every cycle in its corresponding

weighted digraph has positive weight.

Lemma 6.6 Let (a; b; c; d; a) be a chordless 4-cycle (a square) in a two-level graph

G = (V;E). Then (a; d) and (b; c) are level edges, and the others are cross edges, for

every two-level realization f of G for which xf (a) < xf(c) and xf(b) < xf (d). That is,

the orientation of a square determines its levels.

Proof: Let the vertex set fa; b; c; dg induce a square in a two-level graph G as shown

in Figure 6.1.(i). Let f be a two-level realization for which xf (a) < xf (c) and xf (b) <
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Figure 6.1: An induced square in a complement oriented two-level graph, and a cycle in

the corresponding weighted digraph.

xf(d). Then (a; d; b; c; a) is a cycle in the weighted digraph corresponding to graph G

and realization f . Arcs (a; d) and (b; c) correspond to edges in G and so have positive

weight, while arcs (d; b) and (c; a) have negative weight, as shown in Figure 6.1.(ii). The

cycle must have an even number of cross arcs. However, it cannot have 0 or 4 cross arcs,

since its weight would then be 0. Therefore it has exactly two cross arcs and two level

arcs. The level arcs must be the positive arcs (a; d) and (b; c) as shown in Figure 6.1.(iii),

since otherwise the cycle would have nonpositive weight.

Lemma 6.7 Let G(fa; b; c; dg) be an induced claw, where b is the \hub", in a two-level

graph G = (V;E). Then (a; b) and (b; c) are level edges, and (b; d) is a cross edge, for

every two-level realization f of G for which xf (a) < xf(d) and xf (d) < xf(c). That is,

the orientation of a claw determines its levels.

Proof: Let the vertex set fa; b; c; dg induce a claw in a two-level graph G as shown in

Figure 6.2.(i). Let f be a two-level realization for which xf(a) < xf(d) and xf (d) <

xf(c). Then (a; b; c; d; a) is a cycle in the weighted digraph corresponding to graph G and

realization f . Arcs (a; b) and (b; c) correspond to edges in G and so have positive weight,
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Figure 6.2: An induced claw in a complement oriented two-level graph, and a cycle in

the corresponding weighted digraph.

while arcs (c; d) and (d; a) have negative weight, as shown in Figure 6.2.(ii). The cycle

must again have an even number of cross arcs, and again it cannot have 0 or 4 cross arcs,

since its weight would then be 0. Therefore it has exactly two cross arcs and two level

arcs. The level arcs must be the positive arcs (a; b) and (b; c) as shown in Figure 6.2.(iii),

since otherwise the cycle would have nonpositive weight.

Lemma 6.8 K1;4 is not a two-level graph.

Proof: Suppose there is a two-level realization for K1;4. Either there is an induced claw

with all vertices on the same level, or there is an induced claw with two leaf vertices on

a level di�erent from the hub's level. Neither case is allowed by Lemma 6.7.

Lemma 6.9 Let fa; b; c; d; e; fg induce the subgraph G0 in Figure 6.3 in some two-level

graph. Then any two-level realization orients and levels G0 as shown in the �gure (orient

all complement edges left-to-right).

Proof: The subgraph G0 is clearly a two-level graph by the realization shown in the

�gure. It is therefore a cocomparability graph. In fact, its complement is uniquely
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Figure 6.3: A uniquely levelled, uniquely complement oriented, two-level graph.

orientable. To see this, start with nonedge (a; f). Recall from De�nition 4.49 that an

arc (a; b) directly forces arc (c; d) (that is, (a; b)�(c; d)) if

1. a = c and (b; d) =2 E, or

2. b = d and (a; c) =2 E.

The following relations are immediate.

(a; f) � (a; c) � (d; c)

(a; f) � (a; e)

(a; f) � (b; f)

(a; f) � (d; f)

(d; c) � (e; c)

(d; c) � (d; b)

Therefore (a; f) forces the seven remaining nonedges. For example,

(a; f)�(a; c)�(d; c)�(e; c):

Consequently, if x(a) < x(f) for some realization, then

x(a) < x(e) < x(c);

x(a) < x(f);

x(d) < x(b) < x(f);

x(d) < x(c):
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Now since (a; b; d; e; a) and (b; c; e; f; b) are chordless 4-cycles, two applications of

Lemma 6.6 show that (a; b), (d; e), (b; c), and (e; f) are level edges, and all others are

cross edges.

6.3 Exploiting a Geometric Realization

This section develops a data structure that implicitly represents the oriented complement

of a k-level graph G = (V;E; ~E) given its realization f : V ! R2. We will see that

this data structure also e�ciently represents the transitive reduction (De�nition 4.32)

of the oriented complement ~G = (V; ~E). In fact, the forthcoming Theorem 6.22 proves

that the transitive reduction (V;R) of ~G can be computed in O(V log V + k2V + R)

time. This compares with O(M(V )), the best known time for the transitive reduction of

arbitrary digraphs [AGU72], and O(V R), the best known time for transitively oriented

comparability graphs (x4.2.4).
This section applies the data structure to solve the weighted independent dominating

set problem on k-level graphs in O(k2V + V 2) time. In particular, it solves this prob-

lem on two-level graphs in quadratic time. This problem is equivalent to the weighted

maximal clique problem on the complements of k-level graphs. For �xed k, these al-

gorithms therefore improve on the O(M(V )) time algorithms for cocomparability and

comparability graphs in Chapter 4.

6.3.1 k-Level Graphs and their Oriented Complements

De�nition 6.10 A digraph ~G = (V; ~E) is the oriented complement (of strip graph G =

(V;E) and realization f) if ~E = f(u; v) : (u; v) 2 E and xf(u) < xf(v)g.

The next property follows immediately from this de�nition and that of �uv (De�ni-

tion 5.4).
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Property 6.11 Let ~G = (V; ~E) be the oriented complement of a k-level graph G and

realization f . The ordered pair (u; v) is an arc in ~E if and only if xf(v)� xf (u) > �uv.

Another immediate corollary is due to k-level graphs also being strip graphs.

Property 6.12 If ~G = (V; ~E) is the oriented complement of k-level graph G = (V;E)

and realization f , then ~E is a transitive orientation of E.

6.3.2 An Implicit Representation of the Oriented Complement

This subsection shows how to create a representation of the oriented complement ~G =

(V; ~E) given its realization f . The forthcoming algorithms are easier to express if we

augment V with two sentinel vertices si and ti on each level i. To this end, let

V 0 = V + fsi : 1 � i � kg+ fti : 1 � i � kg:

Note that jV 0j = jV j + 2k = O(V ) since k � V . Ensure that each si is adjacent to

every other vertex in ~G by locating it more than unit distance to the left of the leftmost

vertex in V . That is, set xf(si) such that xf (si) < minfxf (u) : u 2 V g � 1 for all i.

Similarly, ensure that each ti is adjacent to every other vertex in ~G by locating it more

than unit distance to the right of the rightmost vertex in V . That is, set xf(ti) such that

xf(ti) > maxfxf (u) : u 2 V g+ 1 for all i.

Assume that V 0 is ordered by level, that is, u � v if and only if xf(u) < xf(v), or

xf(u) = xf (v) and yf (u) � yf(v), for all vertices u; v 2 V 0. The following observation is

an immediate consequence of this assumption.

Observation 6.13 Let u; v 2 V 0 be two vertices on the same level. If u � v, then

x(u) � x(v).
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De�nition 6.14 Let V 0 be a set of vertices ordered by level. Let L, p, and n be arrays,

where Lv denotes the level of vertex v, pi denotes the �rst (the premier) vertex of level i,

and ni denotes the number of vertices on level i.

The following straightforward algorithm computes these values in a single pass over

V 0, once ordered. Notice that si = pi and that ti = pi + ni + 1. Notice also that

fpi+1; pi+2; : : : ; pi+nig are the vertices from V on level i, and that
Pk

i=1 ni = 2k+V =

O(V ).

Table 6.1: Algorithm: INITIALIZE-ORIENTED-COMPLEMENT(V , f)

Input: The vertices V and a realization f of a k-level graph G = (V;E).
Output: Arrays Lv, pi, and ni (De�nition 6.14)

1 V 0 V [ fsi : 1 � i � kg [ fti : 1 � i � kg
2 Order (relabel) V 0 by level so that V 0 = f1; 2; : : : ; jV 0jg.
3 i 0 . i is the current level
4 y0  �1 . Another sentinel

5 for v 1 to jV 0j
6 do if yf(v) > yi . Check if v is on a new level

7 then i i+ 1

8 ni  0

9 pi  v
10 Lv  i
11 ni  ni + 1

12 return (L, p, n)

Lemma 6.15 Algorithm INITIALIZE-ORIENTED-COMPLEMENT(V , f) computes

the arrays L, p, and n in O(V log V ) time.

Proof: Correctness follows from De�nition 6.14. Since the realization function y is onto,

Step 9 sets pi every time Step 7 changes the level.
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Step 2 is time critical, and takes O(V 0 log V 0) = O(V log V ) time. Steps 7, 8, and 9

are each executed k times. The other atomic steps in the loop are executed once for each

vertex in V 0.

De�nition 6.16 For every vertex u 2 V and level 1 � i � k, de�ne Fi[u] to be the least

vertex on level i for which (u; Fi[u]) 2 ~E.

Figure 6.4 illustrates this notion for two levels of a graph. The presence of vertex ti

d d

d d d d d d d d

p p p p
p p p p
p p p p
p p p p
p p�

p p p p p p
p p p p p p
p p p p p p
p p p p p p
p p p p p p*

p p p p p p p p p p p p p p p p p p p p p p p p p p p1

p p p p p p p p p p p p p p p p p p p p p p p p p p p1

u

Fi[u] v

Fj[u]

Fi[Fi[u]] Fi[Fj[u]] ti

Level j

Level i

Figure 6.4: De�nition of array F : value Fi[u] points to the �rst vertex on level i that is
adjacent to u in the oriented complement graph.

ensures that Fi[u] is always well de�ned. We can implement array F as a one-dimensional

array containing k one-dimensional arrays of size ni each, where 1 � i � k. Recall thatPk
i=1 ni = 2k+V so that jF j = O(k+(2k+V )) = O(V ). The arrays F and L constitute

an implicit representation of ordered complement ~G with O(V ) size, as illustrated by the

following simple observation.

Lemma 6.17 Let ~G = (V; ~E) be an oriented complement graph. The ordered pair (u; v)

is an arc in ~E if and only if Fi[u] � v, where i = Lv.

Proof: If (u; v) 2 ~E, then Fi[u] � v by De�nition 6.16.

Conversely, if Fi[u] � v, then x(Fi[u]) � x(v) by Observation 6.13. Furthermore

(u; Fi[u]) 2 ~E by De�nition 6.16, so x(u) + �u;Fi[u] < x(Fi[u]) by Property 6.11. Finally
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�uv = �u;Fi[u] (see De�nition 5.4) since v and Fi[u] are on the same level. It follows that

x(u) + �uv = x(u) + �u;Fi[u]

< x(Fi[u])

� x(v):

Therefore (u; v) 2 ~E, also by Property 6.11.

The remaining algorithms in this section do not make explicit use of Lv, since they

know the level of every vertex. We conclude by showing that inequalities are preserved

by \taking F of both sides", if both sides are on the same level.

Lemma 6.18 Let G = (V; ~E) be an oriented complement graph. For all levels i, if u � v

and u and v are on the same level, then Fi[u] � Fi[v].

Proof: Suppose u and v are on the same level j and that u � v. Then x(u) � x(v) by

Observation 6.13. Now consider any level i. Since (v; Fi[v]) 2 ~E and u and v are on the

same level, Property 6.11 implies that x(Fi[v]) � x(v) > �v;Fi[v] = �u;Fi[v]. Combining

these inequalities

x(Fi[v])� x(u) � x(Fi[v])� x(v) > �u;Fi[v]

implies that (u; Fi[v]) 2 ~E by Property 6.11. Finally, Fi[u] � Fi[v] by Lemma 6.17.

6.3.3 An Algorithm for Constructing the Representation

We are now ready to describe an algorithm for constructing the array F (De�nition 6.16).

We will begin by describing an algorithm that, given levels i and j, computes Fi[u] for

every vertex u on level j.

Theorem 6.19 Given an oriented complement, represented by array p (De�nition 6.14)

and realization f , of a k-level strip graph, Algorithm TWO-LEVEL-F generates the ith

row of array F (De�nition 6.16) in O(ni + nj) time.
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Table 6.2: Algorithm: TWO-LEVEL-F(i, j, p, n, f)

Input: Level numbers i and j,

arrays p and n (De�nition 6.14), and

realization f of a k-level graph.

Output: The row Fi of array F (De�nition 6.16).

1 v pi + 1 . Recall si = pi has no incoming arcs in ~G

2 Fi[pj] v . Recall sj = pj is adjacent to all vertices in ~G

3 for u pj + 1 to pj + nj . u is on level j
4 do while kf(u)� f(v)k � 1

5 do v v + 1

6 Fi[u] v

7 return Fi

Proof: The algorithm computes Fi[u] for vertices u on level j. It does so by simulta-

neously scanning the jth level with vertex u, and the ith level with vertex v, which is a

candidate for Fi[u]. Step 1 initiates the process of scanning v along level i by pointing v

to the �rst \real" vertex on level i. Step 3 steps through each vertex u on level j. The

algorithm maintains the invariant that v � Fi[u], in particular at Step 3; this follows

from Lemma 6.18. Steps 4 and 5 then scan v to the right until an arc (u; v) 2 ~E is

discovered. By the invariant, v is the �rst vertex on level i that is adjacent from vertex

u, as required.

To compute the run time, note that u is set nj times by Step 3, and v is set at most ni

times by Step 5 (remember to count the sentinel ti) for a total of ni+nj operations. More

formally, the expression below is the number of times the algorithm executes Step 5; the

sums correspond to Lines 3 and 4. We simply note that Step 5 is called Fi[u]�Fi[u� 1]
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times by Step 4, and that pi + 1 � Fi[u] � ti = pi + ni + 1.

pj+njX
u=pj+1

Fi[u]X
v=Fi [u�1]+1

1 =

pj+njX
u=pj+1

Fi[u]� Fi[u� 1]

= Fi[pj + nj]� Fi[pj]

= pi + ni + 1 � (pi + 1)

= ni

We are now ready to compute all of F . The algorithm below simply calls algorithm

TWO-LEVEL-F as a subroutine for every pair of levels i and j.

Table 6.3: Algorithm: GENERATE-F(V , f)

Input: Array V of vertices, and k-level realization f of a k-level graph.
Output: The array F (De�nition 6.16).

1 fL; p; ng  INITIALIZE-ORIENTED-COMPLEMENT(V , f)
2 for j  1 to k

3 do for i 1 to k

4 Fi TWO-LEVEL-F(i, j, p, n, f)

5 return F

Theorem 6.20 Given an oriented complement of a k-level strip graph represented

by a realization f , Algorithm GENERATE-F generates array F (De�nition 6.16) in

O(V log V + kV ) time.

Proof: Correctness follows from Lemma 6.15 and Theorem 6.19. Step 1 takesO(V log V )

time by Lemma 6.15. By Theorem 6.19, Step 4 takes O(ni + nj) time. The sum of the

number of vertices on each level over all levels is just the total number of vertices. This
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observation yields the following expression for the total time due to Step 4.

kX
j=1

kX
i=1

O(ni + nj) = O(
kX

j=1

kX
i=1

ni)

= O(
kX

j=1

V )

= O(kV ):

Corollary 6.20.1 Given an oriented complement of a two-level graph represented by a re-

alization f , Algorithm GENERATE-F generates array F (De�nition 6.16) in O(V log V )

time.

6.3.4 An Implicit Representation of the Transitive Reduction

Interestingly, array F is also an implicit representation of the transitive reduction of

the oriented complement. With the aid of Lemma 6.21 below, Algorithm kTRANS

(Table 6.4) generates, for any constant number k of levels, all arcs of the transitive

reduction in constant time each, given the array F .

Lemma 6.21 Let ~G = (V; ~E) be the oriented complement of a k-level graph, and let w

be a vertex on level i. The ordered pair (u;w) is an arc in the transitive reduction of ~G

if and only if Fi[u] � w � Fi[Fj[u]] for all levels j.

Proof: Suppose �rst that (u;w) is an arc in the transitive reduction of ~G. Then (u;w) 2
~E, so that Fi[u] � w by Lemma 6.17. Also, if Fi[Fj[u]] � w for any level j, then

(Fj[u]; w) 2 ~E by Lemma 6.17, which together with (u; Fj[u]), would transitively imply

(u;w). Therefore w � Fi[Fj[u]].

Conversely, suppose that (u;w) is not an arc in the transitive reduction of ~G. Then

either (u;w) =2 ~E or (u;w) is transitively implied. If (u;w) =2 ~E, then w � Fi[u] by
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Lemma 6.17. On the other hand, suppose (u;w) is transitively implied by some chain

of arcs (u; v); (v; v1); (v1; v2); : : : ; (vk; w) in ~E. Then (v;w) 2 ~E since ~G is a transitive

orientation of G. Therefore (u;w) is transitively implied by (u; v) 2 ~E and (v;w) 2 ~E.

Then Fi[v] � w by Lemma 6.17. If j = Lv, as shown in Figure 6.5, then Fj[u] � v by

d

d d

d d d
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u

Fj[u] v

Fi[Fj[u]] Fi[v] w

Level j

Level i

Figure 6.5: Arc (u;w) is transitively implied by (u; v) and (v;w).

Lemma 6.17, and taking F of both sides, Fi[Fj[u]] � Fi[v] by Lemma 6.18. Therefore

Fi[Fj[u]] � Fi[v] � w.

Table 6.4: Algorithm: kTRANS(V , f)

Input: The vertices V and a realization f of a k-level graph G = (V;E).

Output: The arcs in the transitive reduction of ~G, where ~G is

the orientation of G that is compatible with f .

1 F  GENERATE-F( V , f )

2 for u 2 V
3 do for i 1 to k
4 do riu  minfFi[Fj[u]] : 1 � j � kg
5 for v Fi[u] to riu � 1

6 do return (u; v)

Theorem 6.22 Given a k-level strip graph, represented by vertices V and realization

f , Algorithm kTRANS generates all arcs in the transitive reduction (V;R) of the graph's

oriented complement in O(V log V + k2V +R) time.
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Proof: Correctness follows from Lemma 6.21 and Theorem 6.20. In particular, Step 6

is executed jRj times.

Step 1 takes O(V log V + kV ) by Theorem 6.20. Computing the minimum value of

Fi[Fj[u]] in Step 4 takes k operations. Since this step is called jV jk times, this accounts

for O(k2V ) operations.

Note that the same storage location can be used for all values riu; that is, we can

replace all variables riu with a variable r.

Corollary 6.22.1 Given a two-level graph, represented by vertices V and realization f ,

Algorithm kTRANS generates all arcs in the transitive reduction (V;R) of the graph's

oriented complement in O(V log V +R) time.

6.3.5 Weighted Cliques and Independent Dominating Sets

We are now ready to compute a minimumweight independent dominating set in a k-level

graph. An independent set is dominating if and only if it is maximal (Observation 4.30

in Chapter 4), and a set is maximal independent if and only if it is a maximal clique in

the complement. We will therefore develop an algorithm that �nds a minimum weight

maximal clique in the complement of the k-level graph. To do so, we will simply imple-

ment Algorithm MWMC-C, minimum weight maximal clique for comparability graphs

from Table 4.34, to run in O(V 2) time, given the structure developed in this section. This

solves the domination problem since the graph representation V and f also represents

the complement of the graph. For convenience, the algorithm is reproduced below.

Theorem 6.23 Algorithm MWMC-k �nds a minimum weight independent dominating

set in (a minimum weight maximal clique in the complement of) a weighted k-level graph

in O(k2V + V 2) time.
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Table 6.5: Algorithm: MWMC-k(V , f) [Minimum Weight Maximal Clique in the

complement of a k-level graph]

Input: The weighted vertices V and a realization f of a

(vertex) weighted k-level graph G = (V;E).

Output: A minimum weight maximal clique in G.

1 T  a transitive orientation of G.

2 augment T with s = 0 and t = jV j+ 1.

3 (V;R) the transitive reduction of T .

4 C  a least weight path from s to t in (V;R).
5 return C n fs; tg.

Proof: Since every k-level graph is a cocomparability graph, Theorem 4.34 in Chapter 4

establishes the correctness of the algorithm.

Let G = (V;E) be the input k-level graph, and T = (V; ~E) be its oriented complement.

Then ~E is a transitive orientation of E by Property 6.12. Let s be any vertex si, and let t

be any vertex ti in Algorithm INITIALIZE-ORIENTED-COMPLEMENT, Step 1. Then

implement Steps 1, 2, and 3 with a single call to Algorithm kTRANS. This call takes

O(V log V +k2V +R) time according to Theorem 6.22. As before (AlgorithmMWMC-C in

Chapter 4), Step 4 executes inO(V +R) time sinceR is a directed acyclic graph ([CLR90],

page 536{538). The theorem follows since jRj � j ~Ej = O(V 2).

Let us now examine some of the consequences of Theorem 6.23. The parameter k

does not �gure in the complexity of the weighted clique algorithm if k is �xed, since it

is consumed by the constants in the big-oh notation. In particular, the algorithm on

two-level graphs has a better time complexity.

Corollary 6.23.1 Algorithm MWMC-k �nds a minimum weight independent dominating

set in (a minimum weight maximal clique in the complement of) a weighted two-level

graph in O(V 2) time.
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Remark The proof of Theorem 6.23 argues that jRj � j ~Ej = O(V 2), that is, that

the size of the transitive reduction is at most the number of arcs in the graph, which

in turn is at most
�
jV j
2

�
. Is this bound tight for k-level graphs? Can there really be


(V 2) arcs in the transitive reduction? Unfortunately, such a situation can arise, even

for one-level (indi�erence) graphs. The oriented complement of the indi�erence graph

shown in Figure 6.6 is the complete bipartite graph Kn;n, where n = jV j=2. Clearly,
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Figure 6.6: The oriented complement of this indi�erence graph is an oriented complete

bipartite graph and is transitively reduced.

this oriented complement has n2 arcs. Furthermore, no arc is transitively implied, so the

transitive reduction also has n2 = jV j2=4 arcs.

6.4 Relation to Indi�erence Graphs

A one-level graph is clearly an indi�erence graph. A two-level graph is in some ways like

two indi�erence graphs, one on each level. This initial observation can be misleading,

though, since a two-level graph is not just the union of these two graphs. As discussed

in Section 2.3.2, indi�erence have several characterizations and e�cient algorithms for

many problems. Since we are interested in these things on two-level graphs, it behooves

us to study more closely how two-level graphs are related to indi�erence graphs.

Recall (x2.3.2) that indi�erence graphs are equivalently claw-free interval graphs, that
is, claw-free chordal cocomparability graphs. Since two-level graphs are strip graphs, they
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are also cocomparability graphs. On the other hand, since C4 is a two-level graph, two-

level graphs are not chordal. Therefore they are not interval graphs. Contrast this with

indi�erence graphs, which are in fact unit interval graphs.

In this section, we will see that the class of two-level graphs is:

� equivalently the intersection graphs of a set of triangles, which are themselves

properly included in the class of PI� graphs (x6.4.1),

� properly included in the class of unions of two indi�erence graphs (x 6.4.3), and

� properly included in the class of intersections of two indi�erence graphs (x 6.4.4).

Furthermore, we will see how to factor a two-level graph G, given its realization, into two

indi�erence graphs whose intersection is G. We will also see that the level-edges|those

that go between vertices on the same level|of a two-level graph induce an indi�erence

graph, and that the remaining edges induce a bipartite permutation graph (x6.4.2).

6.4.1 Trapezoid Graphs and PI� Graphs

We already know that two-level graphs are generalizations of indi�erence graphs, and

specializations of cocomparability graphs. This section further restricts two-level graphs

in a class hierarchy by demonstrating that they are specializations of trapezoid graphs.

In fact, they are equivalently a restricted form of PI�-graphs.

Trapezoid graphs were independently de�ned by Corneil and Kamula [CK87] and by

Dagan, Golumbic, and Pinter [DGP88]. Given two horizontal lines in the plane, specify

a trapezoid Tv by its four corners [av; bv; cv; dv] where av and bv are x-coordinates on the

upper line, and cv and dv are x-coordinates on the lower line, as shown in Figure 6.7.

The intersection graph of such a trapezoid representation is called a trapezoid graph (or

an II graph in [CK87]).
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Figure 6.7: The convention used to specify a trapezoid.

Note that a trapezoid graph is an interval graph if av = cv and bv = dv for all vertices

v, and a permutation graph if av = bv and cv = dv for all vertices v. Corneil and Kamula

have also identi�ed two other subclasses of trapezoid graphs: PI graphs, where av = bv

for all vertices v, and PI� graphs where av = bv or cv = dv for all vertices v. The union of

interval and permutation graphs is properly contained in PI graphs, which are properly

contained in PI� graphs, which are properly contained in trapezoid graphs.

In the other direction, Dagan et al. show that trapezoid graphs are cocomparability

graphs. In fact, they prove the following theorem.

Theorem 6.24 ([DGP88]) Trapezoid graphs are the cocomparability graphs of partially

ordered sets with interval order dimension at most 2.

The following theorem is very similar in spirit, and could really be considered a

corollary of the proof presented by Dagan et al. Instead, the following proof is self

contained and follows theirs almost verbatim.

Theorem 6.25 A graph is a PI graph if and only if it is the cocomparability graph of

the intersection of a linear order and an interval order.
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Proof: Let L = (V;<) be a linear order and let I = (V;�) be an interval order. Let

G = (V;E) be the cocomparability graph of L \ I. Then there is a set of real numbers

frv : v 2 V g and a set of intervals fIv : v 2 V g such that (u; v) 2 E if and only if ru < rv

and Iu � Iv, or rv < ru and Iv � Iu (note the overloaded inequality/precedes symbols).

De�ne the triangle (degenerate trapezoid) Tv = [av; bv; cv; dv] where av = bv = rv and

[cv; dv] = Iv. Then Tu \Tv = ; if and only if u < v and u � v, or v < u and v � u. Thus,

G is a PI graph.

Conversely, let fTv : v 2 V g be a trapezoid representation of G. For each v 2 V , let
rv = av(= bv) and Iv = [cv; dv]. Since Tu \ Tv = ; if and only if ru < rv and Iu � Iv, or

rv < ru and Iv � Iu, it follows that G is the cocomparability graph of the intersection of

a linear order and an interval order.

Cheah's PhD thesis [Che90] shows how to recognize trapezoid graphs in O(V 3) time.

Cheah also mentions that the PI graph and PI� graph recognition problems are still

open, as of December 1990. Independently, Ma and Spinrad [MS91] developed an O(V 2)

time algorithm for recognizing trapezoid graphs. They did this by developing an O(V 2)

algorithm for determining if the interval dimension of a partial order is at most 2. By

Theorem 6.24, a graph is a trapezoid graph if and only if it is the cocomparability graph

of a partial order with interval dimension at most 2, and Ma and Spinrad's trapezoid

graph recognition algorithm follows.

Triangle Graphs and Two-Level Graphs

De�nition 6.26 A triangle graph is a trapezoid graph for which there is a trapezoid

representation and a constant � such that, for all vertices v,

1. av = bv,

2. av � cv = �, and
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3. dv � cv = 1;

or

1. cv = dv,

2. cv � av = �, and

3. bv � av = 1,

as shown in Figure 6.8.
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Figure 6.8: De�nition of triangle graphs. All triangles in a triangle graph are congruent

to an upright triangle or its re
ection about the horizontal axis.

A triangle graph is called acute if its constant � satis�es 1=2 � � � 1.

Theorem 6.27 A graph is a two-level graph if and only if it is an acute-triangle graph.

Proof: Let G = (V;E) be a two-level graph. Then there is a realization f : V !
R�f0; �g by De�nition 6.1. As before, let � =

p
1� � 2, and remember that 1=2 � � � 1.
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We now represent a vertex on the lower level with the triangle on the left of Figure 6.8,

and a vertex on the upper level with the triangle on the right of Figure 6.8. More formally,

for each vertex v, de�ne the representing triangle (trapezoid) Tv = [av; bv; cv; dv], where

� cv = x(v),

� av = bv = cv + �, and

� dv = cv + 1

if y(v) = 0; and

� av = x(v),

� cv = dv = av + �, and

� bv = av + 1

if y(v) = � . It is easy to verify that Tu \ Tv 6= ; if and only if kf(u)� f(v)k � 1.

Conversely, let G = (V;E) be an acute-triangle graph. Then there exists a constant

� and a set of similar triangles fTv : v 2 V g such that Tu\Tv 6= ; if and only (u; v) 2 E.
Set � =

p
1 � �2. Note that 0 � � � p3=2. Assume triangle Tv = [av; bv; cv; dv] as in

Figure 6.8. Now de�ne a two-level realization f : V ! R� f0; �g as follows.

f(v) =

8><>:
(cv; 0) if av = bv

(av; � ) if cv = dv

Again, it is easy to verify that Tu \ Tv 6= ; if and only if kf(u)� f(v)k � 1.

Corollary 6.27.1 The class of two-level graphs is properly included in the class of PI�

graphs (and trapezoid graphs).
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Proof: By de�nition, an acute-triangle graph is also a PI� graph and a trapezoid graph.

On the other hand, K1;4 is not a two-level graph (Lemma 6.8). However, it is a per-

mutation graph, and therefore a PI� graph as shown by the permutation diagram in

Figure 6.9.
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Figure 6.9: K1;4 is a permutation graph and therefore also a PI� graph.

Corollary 6.27.2 Every two-level graph is the cocomparability graph of the intersection

of two interval orders.

Proof: Since every two-level graph is a trapezoid graph by Corollary 6.27.1, it is the

intersection of two interval orders by Theorem 6.24.

6.4.2 Cross Edges Induce a Bipartite Permutation Graph

A realization of a two-level graph will put some vertices on one level and some vertices

on the other. As a result, some edges will join two vertices on the same level, and some

edges will join two vertices on di�erent levels. We want to see what kind of graph is

induced by each of these groups. To this end, let G = (V;E) be a two-level graph, and

f be a two-level realization.

De�ne the level edges L � E to be edges between vertices on the same level. That is,

let

L = f(u; v) : (u; v) 2 E and yf (u) = yf (v)g: (6.21)
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The associated level-edge graph GL = (V;L) is the graph induced by these edges.

Property 6.28 A (not necessarily connected) graph is a level-edge graph if and only if

it is an indi�erence graph.

Proof: An indi�erence graph (De�nition 2.2) is trivially a level-edge graph, since it can

always be realized on one level (of the two available). Conversely, letG = (V;E) be a two-

level graph, and f be its corresponding two-level realization. The function xf is almost an

indi�erence mapping for GL, we just need to be careful to make the points corresponding

to one level far enough away from those corresponding to the other. We can do this by

suitably displacing one level. For example, set a displacement � > 1 + M � m, where

M = maxfxf(u) : yf(u) = 0g and m = minfxf (u) : yf (u) = �g. Then the indi�erence

realization fL : V ! R su�ces, where for all v 2 V ,

fL(v) =

8><>:
xf(v) if yf (v) = 0

xf(v) + � if yf (v) = �:

De�ne the cross edges X of a two-level graph to be those edges between vertices on

di�erent levels. That is, let

X = f(u; v) : (u; v) 2 E and yf(u) 6= yf(v)g: (6.22)

Note that E = X + L. Let T identify the vertices on the top level, that is, let T = fv :
yf(v) = �g. Let B identify the vertices on the bottom level, that is, let B = fv : yf (v) =
0g. The cross-edge graph GX = (T;B;X) induced by these edges is clearly bipartite. We

will see (Corollary 6.31.1) that GX is also a permutation graph. Again, this graph may

be disconnected.

Spinrad, Brandst�adt, and Stewart [SBS87] show that bipartite permutation graphs

can be recognized in linear time, and that some problems that are NP-complete even
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for bipartite graphs, for example Hamilton Circuit, can be solved in polynomial time

for bipartite permutation graphs. Note, however, that both bipartite and permutation

graphs are perfect.

Indi�erence graphs and permutation graphs are incomparable: the graph shown in

Figure 6.10 is an indi�erence graph but not a permutation graph (it is not even a compa-
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Figure 6.10: An indi�erence graph that is not a permutation graph

rability graph), and the claw K1;4 is a permutation graph but not an indi�erence graph.

Since interval graphs are chordal, and bipartite graphs have no odd cycles, a bipartite

interval graph can have no cycles. Furthermore, since indi�erence graphs are claw free,

a bipartite indi�erence graph can have no vertices with degree 3 or more. Therefore a

bipartite indi�erence graph is just a set of disjoint paths, and therefore also a permuta-

tion graph. Just as clearly, not all bipartite permutation graphs are bipartite indi�erence

graphs, the claw K1;3 and the square C4, for example.

There are graphs, namely the bipartite tolerance graphs1, that are closely related to

bipartite indi�erence graphs, and are again exactly the bipartite permutation graphs.

The following de�nition is taken [almost] verbatim from Brandst�adt, Spinrad, and Stew-

art [BSS87], who state that Derigs, Goetke and Schrader [DGS84] had studied this family

of graphs earlier.

De�nition 6.29([BSS87])A bipartite tolerance graph is a bipartite graph G = (P;Q;E)

1As seems to happen often in the graph theory literature, there is a con
ict of de�nitions here.

Bipartite tolerance graphs should be considered their own class of graphs, and should not be confused

with tolerance graphs [GM82] that happen to be bipartite.
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for which there exists a real-valued function f on the vertices such that for all p 2 P

[and] q 2 Q, [the pair] (p; q) 2 E if and only if jf(p) � f(q)j � � for some prespeci�ed

tolerance �.

Property 6.30 A graph is a cross-edge graph if and only if it is a bipartite tolerance

graph.

Proof: Let GX = (V;X) be a cross-edge graph, and g be its corresponding two-level

realization. De�ne a real-valued tolerance function f such that f(v) = xg(v) for every

vertex v 2 V . Then you can readily verify that G0 = (P;Q;X) is a bipartite tolerance

graph, where

P = fv : yg(v) = 0g;

Q = fv : yg(v) = �g; and

� = �:

Conversely, let G0 = (P;Q;X) be a bipartite tolerance graph and f and � be as in

De�nition 6.29. Pick a value for � in the interval [1=2; 1] and set xg(v) = �f(v)=� and

� =
p
1� �2. Then g : V ! R�f0; �g is a two-level realization for GX = (V;X), where

g(v) =

8><>:
(xg(v); 0) if v 2 P
(xg(v); � ) if v 2 Q:

This is also easy to see. Two vertices on di�erent levels of G are adjacent precisely when

jf(u)�f(v)j � �, therefore precisely when j�f(u)=���f(v)=�j � �, or kg(u)�g(v)k � 1.

Hence GX = (V;X) = G0 = (P;Q;X).

Theorem 6.31 ([BSS87]) Let G = (P;Q;E) be a bipartite graph. Then G is a bipartite

permutation graph if and only if G is a bipartite tolerance graph.
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Proof: We will prove only one direction, that G is a bipartite permutation graph if it

is a bipartite tolerance graph. See [BSS87] for a proof of the converse. The following

proof di�ers from that of Brandst�adt et al. in that it demonstrates a connection between

cocomparability graphs and bipartite tolerance graphs (and therefore cross-edge graphs).

It is included in this thesis to further emphasize these connections.

Let G = (P;Q;E) be a bipartite tolerance graph. A graph G is a permutation

graph if and only if G and G are comparability graphs [PLE71]. All bipartite graphs

are comparability graphs (orient the edges from one part to the other; this orientation is

trivially transitive). Therefore G is a comparability graph.

It remains to show that G is a comparability graph. Let f be the tolerance function

corresponding to G. Transitively orient E by de�ning the relation

F = f(u; v) : (u; v) 2 E and f(u) � f(v)g:

To see that F is transitive, consider (a; b) 2 F and (b; c) 2 F . If a, b, and c are in the

same part (P or Q), then (a; c) 2 E, and f(a) � f(b) � f(c), so (a; c) 2 F . Otherwise,

b and a are in di�erent parts, or b and c are in di�erent parts. If b and a are in di�erent

parts, then f(b) � f(a) > �, so f(c) � f(a) = f(c) � f(b) + f(b) � f(a) > 0 + �, and

again (a; c) 2 F . If b and c are on di�erent levels, then a symmetric argument shows

that (a; c) 2 F .

Corollary 6.31.1 A graph is a cross-edge graph if and only if it is a bipartite permutation

graph.

Proof: Follows from Property 6.30 and the theorem.

Although this corollary tells us that every cross-edge graph corresponds to two per-

mutations, its nonconstructive nature does not tell us what these permutations are. To

construct a permutation model corresponding to a cross-edge graph, let us prove the
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following property constructively, even thought it is an immediate consequence of Corol-

lary 6.31.1.

Property 6.32 The edges that go between the levels of a realization of a two-level graph

induce a bipartite permutation graph.

Proof: We will show that GX is a bipartite permutation graph by constructing two

permutations P and Q, which we will think of as lists of vertices. Construct P by

starting with T in order of increasing x-coordinate. Then add vertices from B in order of

decreasing x-coordinate. Insert each vertex fromB into P immediately after its rightmost

neighbour in T ; see Figure 6.11, for example. Note that this process preserves the left to

right order of B in P .
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Figure 6.11: Constructing permutations P and Q from a two-level graph

Similarly, construct Q by again starting with T in order of increasing x-coordinate.

But now, add vertices from B in order of increasing x-coordinate. Insert each vertex

v 2 B into Q immediately before its leftmost neighbour in T . Note that this process also

preserves the left to right order of B in Q.

To see that P and Q provide a permutation model for G, note �rst that no two vertices
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in T (resp. in B) are adjacent, since vertices from T (resp. from B) have the same left-to-

right order in both P and Q. Now consider an edge (vP ; vQ) in the permutation diagram

corresponding to a vertex v 2 B. By construction, this edge crosses precisely those

edges corresponding to vertices between the leftmost neighbour of v and the rightmost

neighbour of v inclusive. It is easy to verify (by examining the two-level realization) that

these are exactly the neighbours of v.

Recall from Section 1.3.1 that the union G1 [ G2 of two graphs (binary relations)

G1 = (V;E1) and G2 = (V;E2) on the same vertex set is the graph G = (V;E1 [ E2).

The union is called (edge) disjoint if E1 \ E2 = ;.

Theorem 6.33 Every two-level graph is the edge disjoint union of an indi�erence graph

and a bipartite permutation graph.

Proof: Property 6.28 and Property 6.32.

6.4.3 Short Edges Induce an Indi�erence Graph

We will now see that every two-level graph is the union of two indi�erence graphs. An

easy corollary of this result is that the unit-interval number (forthcoming De�nition 6.36)

of every two-level graph is at most two.

Let G = (V;E) be a two-level � -strip graph, and f be a corresponding two-level

realization. Let S be the set of \short" edges, that is,

S = f(u; v) : jxf(u)� xf(v)j � �g (6.23)

where � =
p
1� � 2 as always. The associated short-edge graph GS = (V; S) is the graph

induced by these edges.

Property 6.34 A graph is a short-edge graph if and only if it is an indi�erence graph.
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Proof: Let GS = (V; S) be a short-edge graph, and let G = (V;E) and f be the de�ning

two-level graph and its realization. Obtain the indi�erence mapping fS for GS simply by

scaling xf . That is, fS(v) = xf(v)=�. Then

jfS(u)� fS(v)j = jxf(u)� xf (v)j
�

;

so that jfS(u)� fS(v)j � 1 if and only if jxf (u)� xf (v)j � �, as required.

Conversely and similarly, let G = (V;E) be an indi�erence graph and f its realization.

Construct a two-level representation g for some � by scaling f and putting all the vertices

on one level. That is, g(v) = (�f(v); 0). Then jf(u)�f(v)j � 1 if and only if jxg(u)=��
xg(v)=�j � 1 if and only if jxg(u)� xg(v)j � �, as required.

Theorem 6.35 Every two-level graph is the union of two indi�erence graphs.

Proof: Let G = (V;E) be a two-level graph, and f a corresponding two-level realization.

Let GL = (V;L) be the subgraph induced by edges on the same level (Equation 6.21),

and let GS = (V; S) be the subgraph induced by the short edges (Equation 6.23). The

graphs GL and GS are indi�erence graphs by Properties 6.28 and 6.34 respectively. It

remains to show that G = GL [GS , that is, that E = L [ S.
Clearly, L[S � E. To see that E � L[S, consider (u; v) 2 E. Either yf (u) = yf (v)

or yf (u) 6= yf(v). If yf(u) = yf(v), then (u; v) 2 L. If, on the other hand, yf(u) 6= yf(v),

then jxf(u)� xf(v)j � �, so (u; v) 2 S.
The converse of this theorem is not true. For example, K1;4 is not a two-level graph

(Lemma 6.8), but it is the union of two edge-disjoint paths that share a common in-

termediate vertex. Each such path, together with the remaining isolated vertex, is an

indi�erence graph.

A related notion is that of unit-interval number.
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De�nition 6.36([And88]) A unit t-representation of a graph assigns each vertex up to

t closed unit intervals, with two vertices adjacent when any intervals assigned to them

intersect. The unit-interval number iu(G) is the minimum value of t such that G has a

unit t-representation.

Andreae [And88] showed that iu(G) � d12(n � 1)e for all graphs on n vertices. He

also showed that the extremal graphs are stars2 (and also C4). Since two-level graphs are

K1;4-free, for which iu(G) = 2, this might lead us to believe that iu(G) � 2 for all two-

level graphs. However, Andreae showed that the unit-interval number can grow without

bound even for claw-free graphs. Nevertheless, the unit-interval number of two-level

graphs is at most two; this is a corollary of the previous theorem.

Corollary 6.36.1 Let G be a two-level graph. Then iu(G) � 2, and this bound can be

reached.

Proof: Since G is the union of two indi�erence graphs GL and GS , each vertex v 2 G

corresponds to two unit intervals, [fL(v); fL(v) + 1] and [fS(v); fS(v) + 1] respectively.

Clearly, we can realize these intervals simultaneously by ensuring that the intervals for GL

are disjoint from those in GS (with a suitable displacement, for example). The resulting

set of intervals is a two-interval representation for G.

The bound is reached, for example, by C4 and K1;3. Both are two-level graphs for

which iu(G) = 2; recall that neither is an indi�erence graph.

6.4.4 Every Two-Level Graph is the Intersection of Two Indi�erence Graphs

The following theorem shows that a graph has a two-level realization under the Euclidean

metric if and only if it has a two-level realization under the Manhattan metric. Recall

2In this context, a graph of order n is extremal if it has unit interval number d1
2
(n � 1)e. More

accurately, Andreae showed that the extremal graphs are K1;n�1 and C4 if n is even, graphs with

induced K1;n�2 if n > 5 is odd, and graphs with induced C4 if n = 5.
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that this property does not hold for unit disk graphs. For example, K1;5 is an L2 unit

disk graph, but it is not an L1 unit disk graph by the Star Lemma (Lemma 3.1). It also

does not hold for � -strip graphs. For example, K1;4 is an L2 strip graph (Example 5.1),

but it is not an L1 strip graph (Lemma 5.23).

Theorem 6.37 The class of L2 two-level graphs is equivalent to the class of L1 two-level

graphs. In particular, every L2 two-level � -strip graph is isomorphic to an L1 two-level

(1� �)-strip graph.

Proof: Let G = (V;E) be an L2 two-level graph, and let f2 : V ! R � f0; �g be a

corresponding two-level realization, for some � 2 [0;
p
3=2]. To avoid multiple subscripts,

write xfi = xi and yfi = yi for i = 1; 2. De�ne f1 : V ! R� [0; 1� �] by setting

f1(v) = (x2(v);

�
1 � �

�

�
y2(v))

for every vertex v 2 V . Note that 0 � 1� � � 1=2.

To see that f1 is an L1 two-level realization for G, �rst consider two vertices u and v

on the same level, so that y2(v)� y2(v) = 0. Then

kf1(u)� f1(v)k1 � 1 $ jx2(u)� x2(v)j+
�
1� �

�

�
jy2(u)� y2(v)j � 1

$ jx2(u)� x2(v)j � 1

$ (x2(u)� x2(v))
2 � 1

$ (x2(u)� x2(v))
2 + (y2(u)� y2(v))

2 � 1

$ kf(u)� f(v)k2 � 1

$ (u; v) 2 E:

Similarly, consider two vertices u and v on di�erent levels, so that jy2(u) � y2(v)j = � .

Then

kf1(u)� f1(v)k1 � 1 $ jx2(u)� x2(v)j+
�
1� �

�

�
jy2(u)� y2(v)j � 1
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$ jx2(u)� x2(v)j+ (1 � �) � 1

$ jx2(u)� x2(v)j � �

$ kf2(u)� f2(v)k2 � 1

$ (u; v) 2 E:

In both cases, kf1(u); f1(v)k1 � 1 if and only (u; v) 2 E.
Conversely, let G = (V;E) be an L1 two-level graph, and let f1 : R � f0; �g be a

corresponding two-level realization, where f1(v) = (x1(u); y1(v)) for all vertices v 2 V ,

and � 2 [0; 1=2]. Then, by a similar argument, f2 : R � [0; 1 � �] is an L2 two-level

realization for G, where

f2(v) = (x1(v);

�
�

1 � �

�
y1(v))

for every vertex v 2 V . Here, � = 1 � � and � =
p
1� �2. Note that 0 � � � p3=2, as

required.

Recall from Section 1.3.1 that the intersection G = G1 \ G2 of two graphs G1 =

(V;E1) and G2 = (V;E2) on the same vertex set is de�ned by G = (V;E1 \ E2). The

sphericity (respectively cubicity, boxicity) of a graph G is the smallest k such that G is

the intersection graph of a set of hyperspheres (respectively hypercubes, hyperrectangles)

in k-space. Equivalently, the boxicity of a graph G is the minimum number of interval

graphs whose intersection is G [Rob68b]. Similarly, the cubicity of a graph G is the

minimum number of indi�erence graphs whose intersection is G [Rob68b]. We know, by

construction, that the sphericity of two-level graphs is at most two.

A unit disk under the L1 metric is a square rotated so that its sides are at 45 degrees

to the coordinate axes. Each square is the same size; the distance from its centre to any

of its corners is 1=2 under both the L1 and L2 metrics. Hence we have the following

corollary to Theorem 6.37.
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Corollary 6.37.1 The cubicity and boxicity of any two-level graph is at most two. These

bounds can be reached.

Proof: The bounds follow from the theorem and the preceding discussion. A two-level

graph that achieves both bounds is C4. This is not an interval graph, and therefore

cannot have unit boxicity.

Trapezoids

It is instructive to examine this L1 realization, which uses intersecting L1 disks (squares),

from the following perspective. The centres of the squares lie on two levels. If two squares

intersect anywhere, then they intersect inside the horizontal strip de�ned by these levels.

With this in mind, we can create a new intersection model by clipping each square with

the horizontal strip. Interestingly, the objects in the model are trapezoids, see Figure 6.12

for example. In fact, we can generate the acute-triangle realization (Theorem 6.27; see

Figure 6.12: Three L1 disks (rotated squares) corresponding to the realizations of three

vertices. The disks intersect within the strip, if they intersect at all. The intersections

of the squares with the strip are trapezoids.

Figure 6.8 in Section 6.4.1) as follows. First, take the thickness of the strip for the

triangles to be 1� �. Then, from the trapezoid realizing each vertex, simply remove the

inside left \corner" (i.e., the second corner from the left).
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Identifying the Indi�erence Graphs

How can we \factor" two-level graphs|construct the constituent indi�erence graphs|

given a two-level realization? One way is to (1) construct an L1 realization using the proof

of Theorem 6.37, (2) place unit \diamonds"|rotated squares|at the realized vertices,

and (3) project the sides of the diamonds onto two lines that lie at 45 degrees to the

coordinate axes. Alternatively, we can use the proof of the following lemma, which, as

we have seen, follows from Theorem 6.37. The proof below, however, is more direct and

explicitly exhibits the constituent indi�erence graphs, as desired.

Property 6.38 Every two-level graph is the intersection of two indi�erence graphs.

Proof: Let G = (V;E) be a two-level graph, and let f : V ! R�f0; �g be a correspond-
ing two-level realization. Specify two indi�erence graphs I0 = (V;E0) and I� = (V;E� )

in terms of their indi�erence realizations f0 : V ! R and f� : V ! R, which we now

de�ne.

Intuitively, let fy be the x-coordinates of the two-level realization, but shift to the

right (by 1� �) all vertices with y-coordinate y. More formally, de�ne f0 and f� by the

following equations.

f0(v) =

8><>:
xf (v) + 1 � � if yf (v) = 0

xf (v) if yf (v) = �

f� (v) =

8><>:
xf (v) if yf (v) = 0

xf (v) + 1� � if yf (v) = �

We now need to show that (u; v) 2 E if and only if (u; v) 2 E0 and (u; v) 2 E� . We

will proceed by case.

Case 1 yf (u) = yf (v) = 0.

(u; v) 2 E $ kf(u)� f(v)k � 1
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$ jxf(u)� xf(v)j � 1

$ jxf(u) + 1� � � (xf (v) + 1 � �)j � 1 and jxf(u)� xf (v)j � 1

$ jf0(u)� f0(v)j � 1 and jf�(u)� f� (v)j � 1

$ (u; v) 2 E0 and (u; v) 2 E�

Case 2 yf (u) = yf (v) = � . This case is symmetric to Case 1.

Case 3 yf (u) 6= yf(v) and xf (u) � xf (v). Without loss of generality, assume yf (u) = 0

and yf(v) = � . We �rst show that (u; v) 2 E implies (u; v) 2 E0 as follows.

(u; v) 2 E $ kf(u)� f(v)k � 1

$ 0 � xf(u)� xf(v) � �

$ 1 � � � xf (u) + 1 � �� xf(v) � 1

$ 0 � 1 � � � xf (u) + 1 � �� xf(v) � 1

$ jf0(u)� f0(v)j � 1

$ (u; v) 2 E0 (6.24)

Next, we show that (u; v) 2 E implies (u; v) 2 E� .

(u; v) 2 E $ kf(u)� f(v)k � 1

$ 0 � xf(u)� xf(v) � �

$ �(1� �) � xf(u)� (xf(v) + 1� �) � 2�� 1

! �1 � xf(u)� (xf(v) + 1 � �) � 1

$ jf� (u)� f� (v)j � 1

$ (u; v) 2 E�
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Therefore, (u; v) 2 E only if (u; v) 2 E0 and (u; v) 2 E� . Conversely, if (u; v) 2 E0

and (u; v) 2 E� , then Equation 6.24 implies that (u; v) 2 E.

Case 4 yf (u) 6= yf (v) and xf (u) � xf(v). This case is symmetric to Case 3.

This exhausts all cases and proves the theorem.

Remark: Again, the converse of Property 6.38 does not hold. Figure 6.13 shows two in-

di�erence graphs that intersect to yieldK1;4, which is not a two-level graph by Lemma 6.8.

a b c d e

a d c b e

Figure 6.13: Two indi�erence graphs whose intersection is K1;4.

6.5 Recognizing Two-Level Graphs

6.5.1 Striated Two-Level Graphs

It is convenient to assume that a two-level graph G has been striated (De�nition 6.2), that

is, that the stria of each vertex in G has been �xed for all realizations of G. Property 6.41

below shows that this assumption is not as restricting as it might seem. In essence, this

property shows that the striae of any two-level graph can be forced by embedding it

in another, highly constrained, two-level graph. This is not strictly true, since there

are always at least two ways (corresponding to vertical re
ections) to level any two level

graph. These two striations, however, preserve level edges and cross edges. The following

de�nition and observation make these notions more precise.
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De�nition 6.39 The complement s of a two-level striation s : V ! f1; 2g is a function
s : V ! f1; 2g where

s(v) =

8><>:
1 if s(v) = 2

2 if s(v) = 1:

Observation 6.40 Graph G = (V;E; s) is a striated two-level graph if and only if G0 =

(V;E; s) is a striated two-level graph. Furthermore, an edge is a level-edge (respectively a

cross-edge) in E [E if and only if it is a level-edge (respectively a cross-edge) in E0[E0.

Property 6.41 Let G = (V;E; s) be a striated two-level � -strip graph. Then G is an

induced subgraph of a two-level � -strip graph G0 = (V 0; E0), where every two-level � �-strip

realization f 0 of G0 satis�es

yf 0(v) =

8><>:
0 if s(v) = 1

� if s(v) = 2

for every vertex v 2 V (or

yf 0(v) =

8><>:
0 if s(v) = 1

� if s(v) = 2

for every vertex v 2 V , and for every value � � 2 [0;
p
3=2].

Proof: Let G = (V;E; s) be a striated two-level � -strip graph, and let f be a correspond-

ing realization. We want to embed this graph into a larger two-level graph by following

a preferred realization. The heart of the following construction is the small graph in

Lemma 6.9. By the lemma, striating any of its vertices forces the striae of the others.

Figuratively speaking, we want to build a horizontal \ladder" by gluing together squares

(\rungs"), anchoring the ladder somewhere to the left of f(V ). We can then striate every

vertex by fully extending the ladder to the right by n units, and doubling back to the
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left only partially extended, to hit the vertex in question. In particular, we can anchor

the ladder at x = 0 and always reach bx(v)c fully extended.
It remains to build ladders that reach � in the range 0 < � < 1. One way of doing so

is to fully extend and partially retract the ladder by the same number n of rungs. Then

the \gap" � between the start of the ladder and its end is given by

� = n� n�0; (6.25)

where �0 is the uniform horizontal length of a retracted square, see Figure 6.14.
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v

�

Figure 6.14: Forcing striae. The ladder hits vertex v at x(v) = bx(v)c+ �. The ladder
shown is extended 4 units, and retracted 4 units.

To build a ladder with a gap �, �rst choose the number n of rungs. Clearly, larger

values of n give us more 
exibility; we just need to be sure that n is su�ciently large.

Note that �0 > �; otherwise the square diagonals would be too close together and hence

adjacent. Therefore by Equation 6.25, it must be that

n =
�

1� �0
>

�

1� �
:

So, since � < 1, choose n = d 1
1��e. For example, if � = 1=2, then n = 2, the mini-

mum required for stria forcing with Figure 6.3. It is now easy to set �0 to 1 � �
n
(by

Equation 6.25), which is between 1=2 and 1, as required, since n � 2 and 0 < � < 1.

Construct the graph G0 by building jV j ladders, all anchored at the same point, to �x

the stria of every vertex in G. The vertices of G0 are those of V plus those of the ladders.
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The edges of G0 are determined by the realization just constructed. Note that this

construction may create many more edges than those of G and the ladders. Nevertheless,

G is an induced subgraph of G0, and so is the \double rung" con�guration (Figure 6.3) for

every ladder. Any realization of G0 will therefore have one of two striations; its restriction

to G will have striation s or s.

6.5.2 Orienting the Complement of a Two-Level Graph

Every transitive orientation of the complement of a two-level graph is compatible3 with

some two-level realization. To prove this, given a realization and an implication class of

the graph's complement, we will construct a new realization after reversing the implica-

tion class. To do so, we \rotate" the implication class. This rotation:

1. preserves all adjacencies (Lemma 6.59),

2. preserves all arcs not in the implication class (Lemma 6.58), and

3. reverses all arcs in the implication class (Lemma 6.57).

Therefore, given a compatible orientation, another can be obtained by reversing any

implication class. This proof of the following lemma expands on this argument. The

notation for comparing x-coordinates can obscure the vertices. Therefore, abbreviate

inequalities of the form xf(a) + � � xf (b) as a+ �
f

� b. The proof of Lemma 6.42 uses

Lemmas 6.57, 6.58, and 6.59; these are proved later in this subsection.

Lemma 6.42 Let G = (V;E) be a two-level � -strip graph with a chordless dominating

path of three or more edges. Then every union ~E =
S
iAi of implication classes satisfying

~E \ ~E�1 = ; and ~E + ~E�1 = E is compatible with some two-level � -strip realization.

Furthermore, every such union ~E is a transitive orientation of E.

3Recall that an orientation ~E of (the complement of) a two-level graph G = (V;E) is compatible with

a two-level realization f : V ! R� f0; �g if (u; v) 2 ~E if and only if (u; v) 2 E and x
f
(u) < x

f
(v).
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Proof: Let f : V ! R� f0; �g be a two-level realization of G = (V;E). Now consider

any union ~E =
S
iAi of implication classes satisfying ~E \ ~E�1 = ; and ~E + ~E�1 = E.

Let (s; : : : ; t) be a chordless dominating path of three or more edges where s
f
< t. If

(s; t) =2 ~E, then (t; s) 2 ~E, so re
ect f about the vertical axis. Then rotate every

implication class [(u; v)] for which (u; v) 2 ~E but v
f
< u. The graph G0 = (V;E 0) generated

by the resulting points is a two-level graph by de�nition. By repeated applications of

Lemma 6.57, Lemma 6.58, and Lemma 6.59, E0 = E and ~E is the orientation of E that

is compatible with the rotated realization. Furthermore, ~E is a transitive orientation by

Lemma 3.6.

Theorem 6.43 Every transitive orientation of a two-level graph is compatible with some

two-level realization.

Proof: Every transitive orientation satis�es the conditions of the previous lemma by

Theorem 4.51.

Note that Lemma 6.42 does not hold for arbitrary cocomparability graphs. That is,

some unions of the implication classes of some cocomparability graphs are not transi-

tive. For example, the complement of a triangle is a cocomparability graph, and every

edge in the complement is its own colour class (De�nition 4.54). Nevertheless, the non-

edges cannot be arbitrarily oriented, since two of the eight possible orientations are not

transitive ([Gol80], page 107). We can easily construct a cocomparability graph G that

contains such a triangle in the complement, even though G has an arbitrarily long chord-

less dominating path. Begin with a long path (s; : : : ; t), and make three new vertices

fa; b; cg adjacent only to a vertex near the middle of the path. It is easy to verify that

the vertices fa; b; cg induce a triangle in G, and that none of these complementary edges

is forced by (s; t).
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The Neighbourhood of an Unextendable Captured Arc

Let G = (V;E) be a two-level � -strip graph for some � 2 [0;
p
3=2], and let f : V !

R � f0; �g be a two-level realization. As usual for two-level graphs, let � =
p
1� � 2.

Let ~G = (V; ~E) be the orientation of the complement of G that is compatible with f .

Let us assume in this report that G is large enough to have a chordless dominating

path (s; : : : ; t) with at least three edges, where s
f
< t. Then by the Capture Theorem

(Theorem 4.57), every arc in ~E is either forced or captured by (s; t) 2 ~E. Clearly, every

forced arc is in the implication class [(s; t)]. Just as clearly, the implication class of every

captured arc contains only captured arcs.

Lemma 6.44 Every arc (u; v) 2 ~E captured by (s; t) is a cross-edge. Furthermore,

vertices u and v have at least one common neighbour.

Proof: By De�nition 4.56, (u; v) is part of a square or a claw in which all other arcs are

forced by (s; t). In both cases, u and v have a common neighbour in G. Furthermore,

if (u; v) is part of a square, then it is a cross-edge by Lemma 6.6. On the other hand,

if (u; v) is part of a claw oriented as in Figure 4.15 (see De�nition 4.56), then it is a

cross-edge by Lemma 6.7. That is, (u; v) is a cross-edge in either case.

De�nition 6.45 Say that an arc (u; v) 2 ~E is extendable to the left if u has a left

neighbour on its level, that is, if there exists an edge (u0; u) 2 E where u0
f
< u and

yf(u
0) = yf(u) (note that (u

0; v) 2 ~E). Similarly, an arc (u; v) 2 ~E is extendable to the

right if v has a right neighbour on its level, that is, if there exists an edge (v; v0) 2 E

where v
f
< v0 and yf (v) = yf(v

0) (note that (u; v0) 2 ~E). An arc that is extendable neither

to the left nor to the right is called unextendable.

Lemma 6.46 There is an unextendable arc in the implication class of every arc.
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Proof: Let [i] be the implication class of some arc i. Now let (a; b) be the arc with least

value xf(a) in [i] (break ties by selecting the arc with greatest value xf(b)). Then (a; b)

is not extendable to the left for, if it were, there would exist an arc (a0; b) forced by (a; b)

with a0
f
< a. Similarly, (a; b) is not extendable to the right for, if it were, there would

exist an arc (a; b0), forced by (a; b), with b
f
< b0.

In particular by the previous lemma, there is an unextendable arc in the implication

class of every captured arc. Let (a; b) be an unextendable captured arc with yf (a) = 0

and yf (b) = � , as shown in Figure 6.15. A symmetric argument holds if yf(a) = � and

yf(b) = 0.

f(a)

f(b)

Figure 6.15: The arc (a; b) is unextendable. For clarity, only edges from a and b are

shown.

Observation 6.47 The unit-radius disk about f(a) intersects the unit-radius disk about

f(b) on both the upper and lower levels.

Proof: Vertices a and b share at least one neighbour by Lemma 6.44. The realization of

this neighbour lies on one level or the other, so the disks intersect on that level. If the

disks intersect on one level, then they intersect on the other.



Chapter 6. Two-Level Graphs 288

Let the unit-radius circle about a intersect the upper level at anw and ane, where

anw
f
< ane, and the lower level at asw and ase, where asw

f
< ase, as shown in Figure 6.16.

Similarly, let the unit-radius circle about b intersect the levels at bnw
f
< bne and bsw

f
< bse.

f(a)

anw ane

asw ase

f(b)bnw bne

bsw bse

Figure 6.16: The unit-radius disks about a and b intersect the levels at four distinct

points each.

More analytically,

anw = f(a) + (��; � );

ane = a+ (�; � );

asw = f(a) + (�1; 0);

ase = f(a) + (1; 0);

bnw = f(b) + (�1; � );

bne = f(b) + (1; � );

bsw = f(b) + (��;�� );

bse = f(b) + (�;�� ):
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The following observations are straightforward.

Observation 6.48 Point f(a) is within unit distance of point p = (xp; � ) if and only

if p 2 [anw; ane], and f(a) is within unit distance of point q = (xq; 0) if and only if

and q 2 [asw; ase]. Therefore vertex a is adjacent to vertex v if and only if v satis�es

f(v) 2 [anw; ane] or f(v) 2 [asw; ase]. Similarly, Point f(b) is within unit distance of

point p = (xp; � ) if and only if p 2 [bnw; bne], and f(b) is within unit distance of point

q = (xq; 0) if and only if and q 2 [bsw; bse]. Therefore vertex b is adjacent to vertex v if

and only if v satis�es f(v) 2 [bnw; bne] or f(v) 2 [bsw; bse].

Observation 6.49 kane � anwk � 1 and kbse � bswk � 1.

Proof: The radii of the circles about f(a) and f(b) is 1, and the distance � between

levels is at most
p
3=2.

Observation 6.50 anw
f
< bnw

f

� ane
f
< f(b)

f
< bne and asw

f
< f(a)

f
< bsw

f

� ase
f
< bse.

Proof: The unit-radius disks about a and b intersect each other on the upper level, so

bnw
f

� ane. But a and b are not adjacent, so ane
f
< b. Therefore Observation 6.49 implies

anw
f
< bnw. The proof of the second set of inequalities is similar.

Observation 6.51 The intervals [asw; f(a)) and (f(b); bne] are \empty". That is, no

vertex v 2 V satis�es f(v) 2 [asw; f(a)) or f(v) 2 (f(b); bne].

Proof: A vertex v 2 V that satis�es f(v) 2 [asw; f(a)) or f(v) 2 (f(b); bne] would

contradict the nonextendability of (a; b).

Observation 6.52 The intervals [anw; bnw) and (ase; bse] are \empty". That is, no vertex

v 2 V satis�es f(v) 2 [anw; bnw) or f(v) 2 (ase; bse].
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Proof: If v 2 V satis�es f(v) 2 [anw; bnw), then (a; v) 2 E and (v; b) 2 E by Observa-

tion 6.48. Therefore level-arc (v; b) would directly force (a; b), contradicting Lemma 6.44.

The proof for interval (ase; bse] is similar.

De�nition 6.53 The lower (proper) neighbourhood La of a is the interval (of points in

the plane) La = [f(a); bsw). Similarly, the upper (proper) neighbourhood Ub of b is the

interval Ub = (ane; b]. See Figure 6.17 for an illustration.

f(a)

anw
ane

asw ase

f(b)bnw bne

bsw
bse

Ub

La

Figure 6.17: The unit-radius disks about a and b de�nes the neighbourhoods La and Ub.

Lemma 6.54 The implication class of (a; b) is equivalent to the set of arcs that go from

La to Ub. More formally, [(a; b)] = f(u; v) : (u; v) 2 ~E, f(u) 2 La, and f(v) 2 Ubg.

Proof: Suppose (a; b) = (a0; b0). If (u; v) 2 ~E, f(u) 2 La = [f(a); bsw), and f(v) 2 Ub =

(ane; f(b)], then (a; b)�(a; v)�(u; v) is a forcing chain by Observation 6.48. It follows that

(u; v) 2 [(a; b)].

On the other hand, we will prove by induction on k, that if

(a0; b0)�(a1; b1)� � � � �(ak; bk)
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is a forcing chain, then (ak; bk) 2 ~E, f(u) 2 La, and f(v) 2 Ub. The claim is trivially true

for k = 0, so assume the claim is true for some k � 0 and consider k+1. By Lemma 6.44,

all arcs in [(a0; b0)] are cross arcs. Therefore yf (ai) = yf(a0) = 0 and yf(bi) = yf(b0) = �

for all i 2 [0; k]. By the de�nition of the forcing relation (De�nition 4.49), (b0; : : : ; bk) is

a path in G. It follows that

bk
f

� b (6.26)

(otherwise b would have a neighbour to its right on the upper level). Similarly a
f

� ak.

Furthermore ak + �
f
< bk, since (ak; bk) 2 ~E, and therefore

ane
f
= a+ �

f

� ak + �
f
< bk: (6.27)

By Equations 6.26 and 6.27, ane
f
< bk

f� b, so that f(bk) 2 Ub. By a similar argument

f(ak) 2 La.

The Rotation Operation

We are now ready to describe our rotation operation. Create a new realization r from

the realization f and the captured unextendable arc (a; b) by rotating La [ Ub by 180

degrees about the midpoint m = (a + b)=2. Note that this is equivalent to \re
ecting"

each point through the point m. More formally

r(v) =

8><>:
f(a) + f(b)� f(v) if v 2 La [ Ub;

f(v) otherwise

for all v 2 V . The realization r satis�es the required properties, as follows.

De�nition 6.55 De�ne G0 = (V;E0) to be the graph generated by the points r(V ), and

~G0 = (V; ~E0) to be the orientation compatible with r. That is, let E0 = E(G� (r(V ))),

and let ~E0 = f(u; v) : (u; v) 2 E0 and u
f
< vg.
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Observation 6.56 The rotation operation maps the intervals La and Ub into each

other. More to the point, if v 2 La, then x(ane) < xr(v) � xf(b), and if v 2 Ub, then

xf(a) � xr(v) < x(bsw).

Lemma 6.57 The rotation operation reverses all arcs in the implication class [(a; b)].

More formally [(a; b)]�1 � ~E 0.

Proof: If (u; v) 2 [(a; b)] then f(u) 2 La and f(v) 2 Ub by Lemma 6.54. Since the

rotation operation rotates both points 180 degrees about m, it reverses the vector from

f(u) to f(v). More formally,

g(v)� g(u) = f(a) + f(b)� f(v)� [f(a) + f(b)� f(u)]

= �[f(v)� f(u)]:

Lemma 6.58 The rotation operation preserves all arcs that are not in the implication

class [(a; b)]. More formally, ~E n [(a; b)] � ~E0.

Proof: Consider any arc (u; v) 2 ~E n [(a; b)]. Then f(u) and f(v) are not both in

La [ Ub, by Lemma 6.54. If neither f(u) nor f(v) are in La [ Ub, then r(u) = f(u)

and r(v) = f(v), so again (u; v) 2 ~E0. Therefore assume without loss of generality that

f(u) 2 La but f(v) =2 La [ Ub (the arguments for f(u) 2 Ub, and for f(u) =2 La [ Ub

but f(v) 2 La [ Ub, are symmetric). Note that r(u) = f(a) + f(b) � f(u) and that

r(v) = f(v). First suppose that yf (v) = 0 so that (u; v) is a (forced) level arc as shown

in Figure 6.18. It cannot be that v is adjacent to b for, if it were, (a; b) would be forced

by the chain (u; v)�(a; v)�(a; b). Therefore bse
f
< v since, in addition, f(v) =2 La. Since

r(u) 2 (ane; f(b)] and f(b) is exactly unit distance from bse, it follows that r(v) = f(v) is

more than unit distance to the right of r(u).
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f(a)

anw ane

asw ase

f(b)bnw bne

bsw
bsef(u)

f(v)

Figure 6.18: The rotation operation preserves arcs with v on the lower level.

f(a)

anw ane

asw ase

f(b)bnw bne

bsw
bsef(u)

f(v)

Figure 6.19: The rotation operation preserves arcs with v on the upper level.
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Now suppose yf (v) = � as shown in Figure 6.19. It cannot be that v
f

� ane since then

u
f
< v

f

� ane would imply that (u; v) 2 E, a contradiction. Since in addition v =2 Ub, it

must be that b
f
< v, so that b+1

f
< v since b has no right neighbours on this level. Since

r(u) 2 (ane; f(b)], it follows that xr(u) + 1 � xf (b) + 1 < xr(v) so that (u; v) 2 ~E0.

Lemma 6.59 The rotation operation preserves all edges. More formally, E � E0.

Proof: Consider any edge (u; v) 2 E = E(G� (f(V ))). If f(u) and f(v) are both

in La [ Ub, then (u; v) 2 E 0 since the rotation operation preserves distances so that

kr(u) � r(v)k = kf(u) � f(v)k � 1. Similarly, if neither f(u) nor f(v) are in La [ Ub,

then r(u) = f(u) and r(v) = f(v) so that again (u; v) 2 E0. Therefore assume without

loss of generality that f(u) 2 La but f(v) =2 La [ Ub (the arguments for f(u) 2 Ub, and

for f(u) =2 La [ Ub but f(v) 2 La [ Ub, are symmetric).

Since (u; v) 2 E, the point f(v) is within unit distance of f(u) 2 La = [f(a); bsw).

Therefore f(v) 2 [asw; bse] (by Observation 6.49) or f(v) 2 [anw; f(b)] But the intervals

[asw; f(a)), (ase; bse], and [anw; bnw) are all empty by Observations 6.51 and 6.52. Fur-

thermore f(v) =2 La [ Ub. It follows that either f(v) 2 [bsw; ase] or f(v) 2 [bnw; ane]. In

either case f(v) is within unit distance of f(b).

First suppose that f(v) 2 [bsw; ase] as shown in Figure 6.20. Then f(v) is also within

unit distance of ane. To see this, recall that x(ane) = xf(a) + � and x(ase) = xf (a) + 1.

Therefore

x(ase)� x(ane) = 1 � � � �

since 1=2 � � � 1, and and so ase is within unit distance of ane. Therefore both a and

ase are within unit distance of ane. It follows that f(v) is within unit distance of ane

by the convexity of the unit disk about ane. Hence both f(b) and ane are within unit

distance of f(v). Consequently r(u) 2 (ane; b] is within unit distance of r(v) = f(v) by

the convexity of the unit-radius disk about f(v). It follows that (u; v) 2 E0.
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f(a)

anw ane

asw ase

f(b)bnw bne

bsw
bsef(u)

f(v)

Figure 6.20: The rotation operation preserves edges with v on the lower level.

Now suppose f(v) 2 [bnw; ane] as shown in Figure 6.21. It follows that r(v) = f(v) is

within unit distance of r(u) 2 Ub = (ane; b] since bnw
r
< v

r� ane
r
< u

r� f(b) and bnw and

f(b) are exactly unit distance apart. It follows that (u; v) 2 E 0.

Corollary 6.59.1 E = E0.

Proof: Since rotating twice is the identity operator, the lemma implies that E0 � E.

Note that this also follows from Lemmas 6.57 and 6.58.

Orienting the Complement of a Striated Two-Level Graph

So far in this subsection, we have seen that every transitive orientation of the complement

of a two-level graph is compatible with some realization. This is no longer true if we

restrict the stria of the vertices. So let us consider striated two-level graphs, and let us

continue to assume that they have dominating paths with at least three edges. Every

realization of such a graph is compatible with one of only two complement orientations,

which are in fact mutual inverses. To prove this, it is convenient to think of an arc
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f(a)

anw ane

asw ase

f(b)bnw bne

bsw
bsef(u)

f(v)

Figure 6.21: The rotation operation preserves edges with v on the upper level.

determining another if they have the same orientation in every compatible realization.

The following de�nition makes this notion more precise.

De�nition 6.60 Let G = (V;E) be a two-level graph. Say that an arc (a; b) 2 E

determines (the orientation of) another arc (c; d) 2 E if xf(a) < xf (b) if and only if

xf(c) < xf(d) for every realization f of G.

Theorem 6.61 Let G = (V;E; s) be a connected, striated two-level graph, and let

P = (p0; : : : ; pk) be a chordless dominating path, with at least three edges (k � 3), in

G. Then (p0; pk) determines (a; b), or (p0; pk) determines (b; a), for every ordered pair

(a; b) 2 E.

Proof: The left-to-right order under any realization is a transitive order for E; let us

write u < v if xf(u) < xf (v). Therefore, if (p0; pk) transitively forces (a; b), it must be

that (p0; pk) determines (a; b). Similarly, if (p0; pk) forces (b; a), it must be that (p0; pk)

determines (b; a).



Chapter 6. Two-Level Graphs 297

So assume that (p0; pk) forces neither (a; b) nor (b; a). By Theorem 4.57, (p0; pk)

captures (a; b), that is, (a; b) is part of one of the three induced graphs in Figure 6.22,

where the directed edges are forced by (p0; pk).

d

d d

d d

d

d

d d
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d
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a

b

b

bc

c c

d d

The Square Claw 1 Claw 2

d

Figure 6.22: Two-level graphs that are not forced. If neither (a; b) nor (b; a) is forced by

(p0; pk), then (a; b) is part of one of these three induced subgraphs.

Suppose �rst that (a; b) is part of the Square (a; c; b; d; a) in the �gure. If a < b

for some realization, then (b; c) and (a; d) are level edges, and the rest cross edges, by

Lemma 6.6. On the other hand, if b < a, then (b; d) and (c; a) are level edges, and the

rest cross edges, by the same lemma. Only one possibility is consistent with striation

s, so this possibility must hold for any realization f consistent with s. It follows that

(p0; pk) determines (a; b).

Now suppose that (a; b) is a part of Claw 1 in the �gure. If a < b, then (c; d) and

(d; b) are level edges, the rest are cross edges, by Lemma 6.7. On the other hand, if b < a,

then (c; d) and (d; a) are level edges, the rest cross edges, by the same lemma. Again,

only one possibility is consistent with s, and (p0; pk) determines (a; b).

Finally, suppose that (a; b) is a part of Claw 2 in the �gure. If a < b, then (a; d)

and (d; c) are level edges, the rest are cross edges, by Lemma 6.7. On the other hand,

if b < a, then (b; d) and (d; c) are level edges, the rest cross edges, by the same lemma.

Again, only one possibility is consistent with s, and (p0; pk) determines (a; b).
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Algorithms for Orienting Two-Level Graphs

By virtue of Theorem 6.43, any transitive orientation of the complement of a two-level

graph is compatible with some realization. A transitive orientation can be found inO(V 2)

time using Spinrad's algorithm [Spi85].

On the other hand, there are only two transitive orientations of a striated two-level

graph that are compatible with some realization. These orientations, too, can be found

in polynomial time, given the endpoints (p0; pk) of a chordless dominating path with at

least three edges. The following algorithm �nds the orientation containing the directed

arc (p0; pk) in O(V
4) time. First enumerate the implication class [(p0; pk)] in O(V

3) time4

([Gol80] pages 129{132). That is, determine which edges in E are forced by (p0; pk). Then

for every unforced edge (a; b) 2 E, �nd a claw or square that captures it. This can be done

in O(V 2) time by examining all distinct pairs c; d of vertices in V , and testing in constant

time whether fa; b; c; dg induces a capturing square or claw. Since the capturing claw or

square is striated, it determines the orientation of the edge (a; b), as we demonstrated in

this section. Therefore all unforced edges can be oriented in jEj � V 2 = O(V 4) time.

6.5.3 There is No Forbidden-Ordered-Triple Characterization of Striated

Two-Level Graphs

The class of graphs characterized by a family F of forbidden linearly-ordered subgraphs

is the set of graphs G whose vertices can be linearly ordered such that no graph in F is an

induced linearly ordered subgraph of G. A (linearly) ordered triple is a linearly-ordered

graph (De�nition 4.4) with three vertices. Many families of graphs, including indi�erence

4Although Spinrad's algorithm [Spi85] will transitively orient a comparability graph in O(V 2) time,

it is not clear if it can be used to enumerate implication classes. Certainly it is not easy to enumerate

all implications classes using Spinrad's algorithm since such an algorithm could be used to recognize

comparability graphs by verifying that no arc and its reversal are in the same implication class. However,

Spinrad's algorithm for recognizing comparability graphs relies on matrix multiplication, which results

in a lower bound of 
(M (V )) on the execution time.
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graphs, interval graphs, and cocomparability graphs, have been characterized in terms of

sets of forbidden ordered triples (cf. [Dam90]). In this subsection we will see that two-level

graphs have no forbidden ordered triple characterization. This is especially interesting

since two-level graphs are generalizations of indi�erence graphs and specializations of

cocomparability graphs.

Assume that all two-level graphs in this subsection, including triples, are striated. Let

us say that an ordered triple is forbidden for strip thickness � if it is not a two-level � -strip

graph. We can then say that a linear order for a graph is unforbidden if it does not contain

any forbidden ordered triples. Now consider the unforbidden order shown in Figure 6.23.

The linearly-ordered graph shown in this �gure is not an ordered two-level graph (since

c c

c c

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

A
A
A
A
A

�
�
�
�
�

a

b c

d

Figure 6.23: An unforbidden order that is not a two-level order. The two horizontal

dotted line segments depict the stria of the vertices, and the left-to-right order of the

vertices depicts their linear order.

a and d are at most unit distance apart, so are b and c). In fact, the weighted digraph

(De�nition 5.2) corresponding to this ordered graph has a nonpositive-weight cycle, but

it has only positive-weight triangles.

But surely the unordered graph in Figure 6.23 is a two-level graph; we need only

reorder the vertices, (b; a; d; c) for example, to achieve a two-level realization. Are there

non two-level graphs for which the forbidden order in Figure 6.23 arises in all unforbidden

orders? Yes, there are; Figure 6.24 shows such a graph. In this graph, one lower neighbour

of each upper vertex u must precede u, and one lower neighbour must follow u in any
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Figure 6.24: The only unforbidden order for this non two-level graph. It contains no

forbidden ordered triples.

unforbidden order since the other orders for this triple are indeed forbidden. For any

unforbidden order for this graph, label the left upper vertex a, and the right lower

neighbour b. Similarly, label the right upper vertex d, and the left lower neighbour c.

Clearly, then, Figure 6.23 is an ordered subgraph of any valid ordering of Figure 6.24.

It follows that Figure 6.24 is not a two-level graph, yet it cannot be ruled out by any

forbidden triple characterization. The following theorem summarizes.

Theorem 6.62 There is no forbidden-ordered-triple characterization of striated two-level

graphs.

6.5.4 Incomparability Between Di�erent Thicknesses

What happens to the class of two-level � -strip graphs as the thickness � of the strip

changes? In particular, is there some threshold value for � such that the class of two-

level � -strip graphs is the same for any � less than this value? We will see that this is

not the case. In fact, we will see that, for any distinct pair of values �1 and �2, there are

two-level �1-strip graphs that are not �2-strip graphs, and vice versa. In fact, we will see

that, for any pair of two-level graph classes distinguished by two values for � , there are

graphs in each that are not in the other. This is true even if the two values for � are

arbitrarily small.
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It will be more convenient to deal directly with � than with � . To this end, de�ne

�-TWO to be the set of levelled two-level � -strip graphs where � =
p
1 � �2.

Lemma 6.63 Let �� be a rational number, and �1 be a real number such that 1=2 �
�1 < �� < 1. Then there is an �1-TWO graph that is not an �-TWO graph for any �

satisfying �� � �.

Proof: Let �� = n=d where n and d are positive integers. Assume without loss of

generality that d is even (otherwise multiply n and d by 2). Construct a striated two-

level graph G = (V;E; l) as follows. First, let V = T [B, where

T = fa1; a3; : : : ; ad�1g and

B = fb0; b1; : : : ; bng [ fa0; a2; : : : ; adg:

Furthermore, identify a0 = b0 and ad = bn. The striation simply assigns T to the top

stria and B to the bottom:

l(v) =

8><>:
1 if v 2 B
2 if v 2 T:

Then let �1 =
q
1 � �2

1 and fy1; y2g = f0; �1g. Specify the edge set E by describing a

realization f : T [ B ! R� f0; �1g,

xf(v) =

8><>:
i�� if v = ai

i if v = bi

and yf(v) = yl(v) for every v 2 V . Note that

xf (ad) = d�� = d(n=d) = n = xf(bn);

as we would expect since ad = bn. For example, the graph for �� = 5=8 and �1 = 1=2 is

shown in Figure 6.25. By construction, (ai; ai+1) =2 E for all i, since ai and ai+1 are on
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a1 a3 a5 a7

b0=a0 b1 a2 b2 a4 b3 a6 b4 a8=b5

Figure 6.25: A 1=2-TWO graph that is not an �-TWO graph for any � � 5=8.

di�erent levels so that

kf(ai � ai+1)k = (��)2 + �1

> �2
1 + (1� �2

1)

= 1:

Furthermore, (bi; bi+1) 2 E for all i, since kf(bi+1) � f(bi)k = k(1; 0)k = 1. The graph

G is connected since (b0; b1; : : : ; bn) is a dominating path, and it is clearly an �1-TWO

graph, since f is its realization.

Now suppose, by way of contradiction, that G is an �-TWO graph for some � � ��.

Then G has an �-realization where (a0; a1) is oriented left to right (otherwise re
ect the

realization about the y-axis). By Theorem 6.61, the orientations of all nonedges (ai; ai+1)

are determined, in this case left to right since this is consistent with their �1-realization.

Let D = (V;A;w) be the weighted directed graph (De�nition 5.16) corresponding to

G, l, and the unique (up to reversal) orientation for E. Then C = (b0; b1; : : : ; bn =

ad; ad�1; : : : ; a0 = b0) is a directed cycle in D. Its weight is

w(C) =
n�1X
i=0

w(bi; bi+1) +
dX
i=1

w(ai; ai�1)

= n� d�

� n� d��

= n� d(n=d) = 0:
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That is, D has a nonpositive weight cycle, and is therefore not a � -strip (where � =
p
1� �2) graph by Theorem 5.17.

Lemma 6.64 Let �� be a rational number and �2 be a real number such that 1=2 � �� <

�2 � 1. Then there is an �2-TWO graph that is not an �-TWO graph for any � � ��.

Proof: This proof is similar to that for Lemma 6.63. Let �� = n
d
where n and d are

integers, and d is even, again without loss of generality. Let G = (V;E) where V = T [B
and

T = fa1; a3; : : : ; ad�1g and

B = fb0; b1; : : : ; bng [ fa2; a4; : : : ; adg:

Again, identify a0 = b0 and ad = bn. The striation function is the same: it simply assigns

T to the top stria and B to the bottom:

l(v) =

8><>:
1 if v 2 B
2 if v 2 T:

Then let �2 =
q
1 � �2

2 and fy1; y2g = f0; �2g. Specify the edge set E by describing a

realization f : V ! R� f0; �2g.

x(v) =

8><>:
i�2 if v = ai

i�2
��

if v = bi

and yf(v) = yl(v) for every v 2 V . Note that

x(bn) = n
�2

��
= n

�2

(n=d)
= d�2 = x(ad);

as we would expect since bn = ad. For example, the graph for �� = 5=8 and �2 = 3=4 is

shown in Figure 6.26. By construction, (ai; ai+1) 2 E, since ai and ai+1 are on di�erent
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a1 a3 a5 a7

b0=a0 b1 b2 b3 b4a2 a4 a6 a8=b5

Figure 6.26: A 3=4-TWO graph that is not an �-TWO graph for any � � 5=8.

levels so that

kf(ai � ai+1)k = �2
2 + �2

= �2
2 + (1� �2

2)

= 1:

Furthermore, (bi; bi+1) =2 E, since x(bi+1)� x(bi) = �2=�
� > 1 since �2 > ��. This graph

G is connected since (a0; a1; : : : ; ad) is a dominating path, and it is clearly an �2-TWO

graph since f is its realization.

Now suppose, by way of contradiction, that G is an �-TWO graph for some � � ��.

Then G has an �-realization where (b0; b1) is oriented left to right (otherwise re
ect the

realization about the y-axis). By Theorem 6.61, all nonedges (bi; bi+1) are determined,

and are therefore oriented left to right since this is consistent with their �2-realization.

Let D = (V;A;w) be the weighted directed graph corresponding to G and �. Then

C = (a0; a1; : : : ; ad = bn; bn�1; : : : ; b0 = a0) is a directed cycle in D. Its weight is

w(C) =
d�1X
i=0

w(ai; ai+1) +
nX
i=1

w(bi; bi�1)

= d� � n

� d�� � n

= d(n=d) � n

= 0:
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That is, D has a nonpositive weight cycle, and is therefore not an � -strip graph by

Corollary 5.17.1.

Lemma 6.65 Let �1 and �2 be such that 1=2 � �1 < �2 � 1. Then �1-TWO 6�
�2-TWO and �2-TWO 6� �1-TWO.

Proof: By the properties of the real numbers, there is a rational �� such that �1 < �� <

�2. Then, by Lemma 6.63, there is an �1-TWO graph that is not an �2-TWO graph.

Similarly, there is an �2-TWO graph that is not an �1-TWO graph by Lemma 6.64.

Theorem 6.66 Let �1 and �2 satisfy 0 � �1 < �2 �
p
3=2. Then there are two-level �1-

strip graphs that are not two-level �2-strip graphs, and there are two-level �2-strip graphs

that are not two-level �1-strip graphs.

Proof: By Lemma 6.65, there is a striated two-level �1-strip graph G that is not a

similarly striated two-level �2-strip graph. By Property 6.41, this graph G is an induced

subgraph of a two-level �1-strip graph G
0, where every realization (for every strip thickness

� ) of G0 respects the striation for G. Therefore G0 is not a two-level �2-strip graph, for if

it were, its �2 realization would also realize the striated graph G.

6.6 Determining the Thickness of the Strip

LetG = (V;E; s;<) be a bistriated (i.e., 2-striated) complement oriented graph. For what

values � is G a striated two-level � -strip graph? First, let D = (V;A;w) be the weighted

digraph (De�nition 5.16) corresponding to G and the orientation of its complement. Note

that the weights �� on the cross arcs are symbolic. Theorem 5.17 tells us that there is

a two-level � -strip realization if every cycle in D has positive weight. What values of �

satisfy this constraint? Let us answer this question by �nding the satisfying values for

� =
p
1 � � 2; this is su�cient since � =

p
1 � �2.
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Since G is bistriated, the weight of any arc in D has one of four values: 1 or �1 for

level arcs, and � or �� for cross arcs. Therefore, the weight of any cycle C in D can be

expressed as

w(C) = LC + �XC

where LC and XC are integers. Note that LC is the number of level arcs with positive

weight, less the number of level arcs with negative weight in C. Similarly, XC is the

number of positive cross arcs, less the number of negative cross arcs. You will �nd it easy

to verify that the weight of a cycle C is positive, that is LC + �XC > 0, if and only if

� >
�LC

XC

if XC > 0;

LC > 0 if XC = 0; and

� <
�LC

XC

if XC < 0: (6.28)

We can condense these necessary and su�cient conditions by �rst de�ning two parameters

r+ and r� of the graph as follows.

r+ = max

���LC

XC

: XC > 0

�
[ f�jV jg

�

r� = min

���LC

XC

: XC < 0

�
[ fjV jg

�
:

Note that, if XC 6= 0, then jXCj � 1 and jLC j < jV j, so j � LC=XC j < jV j, since
jXC j + jLC j � jCj � jV j. Therefore r+ = �jV j if and only if XC � 0 for all cycles

C. Similarly, r� = jV j if and only if XC � 0 for all cycles C. We have established the

following theorem.

Theorem 6.67 Let G = (V;E; l;<) be a bistriated, complement oriented graph, and let

D = (V;A;w) be the corresponding weighted digraph. Then G is a two-level � -strip graph

if and only if
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1. r+ <
p
1� � 2 < r�, and

2. LC > 0 for all cycles C in D for which XC = 0,

where 0 � � � p3=2.

An easy corollary is that two-level graphs appear in \bands" as we sweep through

values for � .

Corollary 6.67.1 Let G = (V;E; l;<) be both a two-level �1-strip graph and a two-level

�2-strip graph. Then G is a two-level � -strip graph for all � in between.

Proof: Assume without loss of generality that �1 � �2, and let � be some value between

�1 and �2. Then
q
1� � 22 �

p
1� � 2 �

q
1 � � 21 . By the theorem,

1. r+ <
q
1� � 22 �

p
1� � 2 �

q
1 � � 21 < r�, and

2. LC > 0 for all cycles C in D for which XC = 0.

Again, by the theorem, G is a two-level � -strip graph.

Another corollary allows us to tell if a graph is a two-level graph for some strip

thickness.

Corollary 6.67.2 Let G = (V;E; l;<) be a bistriated, complement oriented graph and let

D = (V;A;w) be the corresponding weighted digraph. Then G is a bistriated, complement

oriented, two-level � -strip graph for some � if and only if (1) the intervals [1=2; 1] and

(r+; r�) intersect, and (2) LC > 0 for all cycles C in D for which XC = 0.

A Recognition Algorithm for Bistriated, Complement Oriented, Two-Level

Graphs

We can use Theorem 6.67 to recognize bistriated two-level graphs. Essentially, we just

perform a binary search on the interval [1=2; 1] for an � value. The value � =
p
1� �2
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will turn our striated graph into a levelled graph, and we can then apply an existing

algorithm to recognize it. If the graph is not a levelled � -strip graph for this value of � ,

then the corresponding directed graph will have a nonpositive cycle, which we can then

analyze to determine whether � should be larger or smaller. The complete algorithm

appears in Table 6.6.

Table 6.6: Algorithm: 2STRIAE(G) [Recognize striated two-level graphs]

Input: A bistriated, complement oriented graph G = (V;E; s;<)

Output: A realization f : V ! R� f0; �g showing that G is a bistriated,

complement oriented, � -strip graph, or

a message stating that G is not a two-level graph

1 r+  1=2

2 r�  1

3 while r+ < r�

4 do � (r+ + r�)=2

5 �  p1� �2

6 De�ne l0 : V ! [0; � ], where l0(v) = (0 if s(v) = 1; � if s(v) = 2)

7 De�ne G0 = (V;E; l0; <)

8 (C; f) STRIP-LAYOUT( G0 ) /* From Table 5.2 */

9 if w(C) > 0

10 then return f

11 halt

12 else compute LC and XC from cycle C
13 if XC = 0

14 then return \G is not a striated two-level graph"

15 halt

16 else if XC < 0

17 then r+  �LC=XC

18 else r�  �LC=XC

20 return \G is not a striated two-level graph"

Steps 18 and 19 would split the interval [r+; r�] exactly in half if they set the limits

to the midpoint �. In fact, these steps do at least as well by setting the limits to
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�LC=XC . Suppose XC < 0. Then by Equation 6.28, if � > �LC=XC , then C would be

positive. But it is not, so � � �LC=XC . Is it safe to increase r+ this much? Yes, it is,

since Theorem 6.67 states that � must be greater than the maximum of all such ratios.

Similarly, if XC > 0, then �LC=XC � �, and it is safe and e�cacious to set r� to this

ratio, thereby reducing the interval [r+; r�] by at least one half.

How can we analyze the run time of this algorithm? Let us begin by noting that LC

and XC are integers, that �jV j � LC � jV j, and that �jV j � XC � jV j. Therefore,

the ratio �LC=XC can take on at most O(V 2) values and, in particular, at most O(V 2)

values in the interval [0; 1]. Since the search interval is reduced by at least half on each

iteration, the algorithm halts in O(log V 2) = O(log V ) time. From Theorem 5.17, we

know that Step 8 takes O(V 3) time. We have established the following theorem.

Theorem 6.68 Algorithm 2STRIAE (Table 6.6) recognizes bistriated, complement ori-

ented strip graphs in O(V 3 log V ) time.
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Conclusion

We have seen that the recognition problem for unit disk graphs is NP-hard. Further-

more, several familiar NP-complete problems on graphs remain NP-complete for unit

disk graphs even if the graphs are represented by their realizations as intersecting disks.

Nevertheless, at least one nontrivial problem on unit disk graphs, namely the maximum

clique problem, is solvable in polynomial time if a realization is available.

We have also seen that one-dimensional unit disk graphs, in which the centres of the

realizing disks are constrained to be collinear, are indi�erence graphs. What e�ect does

the second dimension have on the complexity of graph theoretic problems? The classes

of � -strip graphs model a gradual introduction of this second dimension.

Indi�erence graphs are equivalently 0-strip graphs or 1-level graphs. These graphs are

easy to recognize, and have very e�cient algorithms for the kinds of problems discussed

in this thesis. The key to their tractability seems to be their characterization as graphs

with a linear order on their vertices such that for any three vertices u < v < w, if u and

w are adjacent, then v is adjacent to both u and w (Theorem 2.3.11).

Indi�erence graphs are also cocomparability graphs, as are all � -strip graphs from

� = 0 (indi�erence graphs) to � =
p
3=2 (but not with � >

p
3=2). We saw in Chapter 4

that such graphs also admit e�cient algorithms, though the algorithms for indi�erence

graphs are even more e�cient. Again, the key seems to be that a linear order (the

spanning order) can be imposed on their vertices, and that such an order is easy to �nd

(Lemma 4.2). Recall that a spanning order is a linear order on the vertices of a graph

310
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such that, for any three vertices u < v < w, if u and w are adjacent, then v is adjacent

to either u or w (or both) (De�nition 4.1).

The spanning order is not the only constraint on � -strip graphs. Chapter 5 captures

some additional constraints by characterizing strip graphs in terms of cycles in a weighted

digraph. This characterization allows us to verify that some small graphs are not strip

graphs. Furthermore, e�cient algorithms could exploit the implicit representation of

edges in a strip graph realization. This exploitation, set up in Chapter 3, actually applies

to arbitrary unit disk graphs, but we saw in Chapter 5 how to combine this representation

with algorithms for cocomparability graphs to improve on both.

Strip graphs that have two-level realizations|where the disks lie on the boundary of

the strip|have an added combinatorial nature to them that also can be exploited. Chap-

ter 6 illustrates this with its transitive reduction and minimumweight maximal clique al-

gorithms on the oriented complement of a two-level graph, and its weighted independent

dominating set algorithm on two-level graphs. Two-level graphs also severely restrict

the realizations of the claw and the square, where they appear as induced subgraphs.

This restriction ensures that every realization has essentially the same left-to-right order

among its distal vertices. Such levelled, oriented two-level graphs can be recognized in

polynomial time.

We exhibited several connections between two-level graphs and other perfect graphs.

Recall that a level-edge graph has a realization like a two-level graph, but only vertices

on the same level may be adjacent. Similarly, a cross-edge graph has a realization like

a two-level graph, but only vertices on di�erent levels may be adjacent. Clearly, every

two-level graph is the edge-disjoint union of a level-edge graph and a cross-edge graph.

The class-inclusion diagram shown in Figure 7.1 summarizes the place of unit disk graphs

and relatives presented in Chapter 6. The class labelled \strip" is itself a hierarchical

family of � -strip graph classes, one for each value of � between 0 and
p
3=2. The class
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labelled \2-level" is also a family of classes, one for each value of � between 0 and
p
3=2,

but no two subclasses are comparable.

7.1 Epilogue

Alice presented her work to the requirements team at Blue Sky Airlines, and outlined her

graph theoretic model of the midnight bell problem. She carefully explained unit disk

graphs, strip graphs, two-level graphs, and cocomparability graphs. She described her

e�cient solution to the dominating set problem on cocomparability graphs, and provided

context by describing other domination problems.

The team thanked Alice for her presentation, and agreed that her graph theoretic

model is appropriate. For them, however, the graph theory highlighted some inadequacies

of their requirements. In particular, they realized that it is unacceptable for an airplane

to both send a radio beacon signal and to receive another one; the two signals would

interfere. They felt that their problem would be better modelled by the independent

dominating set problem (x4.2.4) in which no two transmitters can be within range of one

another. This made Alice very happy because she had a better solution for this problem

(Theorem 4.35) than for the unconstrained dominating set problem (Theorem 4.18).

Furthermore, the speci�cations team agreed that Blue Sky's airplanes would follow

the \rules-of-the-road" and stay to the edges of the corridor. Alice could hardly believe

her luck, since she knew how to solve this problem (on two-level graphs) very well (Corol-

lary 6.23.1), without having to do any additional research (Alice likes research, but she

also likes to see working solutions). Alice rushed o� to implement her solution, already

excited about more opportunities to exploit geometric constraints in graph theory.
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Appendix A

A Data Structure for Maintaining \Test Tube" Maxima

This appendix de�nes the \test tube" maxima of a set S of points, describes their prop-

erties, and shows how to maintain a set of them in a data structure. It describes an

algorithm that builds the data structure in O(S logS) time with O(S) space. This data

structure then supports binary search1 in O(log S) time and deletion in O(log S) amor-

tized time.

We adapt Hershberger and Suri's circular hull data structure [HS89] for our purposes.

They in turn adapt the dynamic convex hull data structures due to Overmars and van

Leeuwen [OvL81] and Chazelle [Cha85]. Although some details are identical, all are

presented here to make this appendix self contained.

A.1 De�nitions

The test tube (or just tube) centered at (x; y) is the union of the closed unit radius disk

centered at (x; y) and the in�nite rectangle [x� 1; x+ 1]� [y;1). Let Tl and Tr be two

tubes centered at (xl; yl) and (xr; yr) respectively. Then Tl lies to the left of Tr, and Tr

lies to the right of Tl, if xl < xr. Tube Tl lies strictly to the left of Tr, and Tr lies strictly

to the right of Tr, if xl + 1 < xr � 1.

Let the sites be a �nite set S of points in the plane. For simplicity of presentation,

assume that S has at most unit diameter, that is, that every pair of sites is within unit

1For example, Section 3.2.2 uses binary search to �nd a maximal point in a query test tube.
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distance,2 and that no two points in S have the same x-coordinate. However, the material

in this appendix is easily extended to sites that do not satisfy these assumptions.

A tube T contains a subset P � S of sites if P � T , and it is empty if it does not

contain any sites. A tube and a site on its boundary are said to be incident. A tube is said

to be supporting (with respect to S) if it is incident to exactly one site and is otherwise

empty. A site in S is said to be a test tube maximal site with respect to S, or just a

maximal, if it is incident to some supporting tube. Let @S denote the set of maxima with

respect to S. Let the sites, and therefore also their maxima, be ordered by nondecreasing

x-coordinate, that is, from left to right. Two sites are neighbouring maxima if they are

maximal and adjacent in left to right order. The left neighbour of a maximal p is the

maximal immediately before p in the order. Similarly, p's right neighbour is the maximal

immediately after p. The tube Tpq through (distinct sites) p and q is the unique tube

incident to both p and q. Note that Tpq is always well de�ned since jxp � xqj � 1 for all

pairs p and q of sites.

A.2 Test Tubes, Maxima, and Their Properties

The arguments in this appendix make extensive use of three basic operations on tubes:

lowering, raising, and rotating. To lower a tube, continuously translate its center to

a smaller y-coordinate. Note that if tube T 0 is a lowered version of T , then T � T 0.

Similarly, raise a tube by continuously translating its center to a greater y-coordinate.

Again, note that if tube T 0 is a raised version of T , then T 0 � T . Finally, to rotate a

tube about an incident site p, continuously rotate the center of the tube about p while

keeping the tube \upright" and the site incident, as shown in Figure A.1.

The next few lemmas clarify the behaviour of test tube maxima. The �rst lemma

2This is the case for the application of this material in Section 3.2.2.
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p

Figure A.1: A test tube rotating clockwise about site p.

elucidates the behaviour of a rotating test tube. The subsequent lemma is straightforward

and justi�es the term \maximal".

Lemma A.1 (The Rotation Lemma) As a test tube rotates clockwise about a point

p, it can only gain sites from the right of p, and it can only lose sites to the left of p.

Similarly, a counterclockwise rotating test tube gains only from the left and loses only to

the right.

Proof: At any instant, p partitions the boundary of the rotating tube into two parts, a

leading edge and a trailing edge. The tube gains sites at the leading edge and loses sites

at the trailing edge. Note that the tube center moves monotonically to the right during a

clockwise rotation. Therefore, the trailing edge is that part of the tube's boundary from

(xt � 1;1) to p, and the leading edge is that part from p to (xt + 1;1). In traversing

the tube's boundary from (xt � 1;1) to (xt + 1;1), one moves monotonically from left

to right. Therefore, the trailing edge is to the left of p and the leading edge is to the

right. Similarly, during a counterclockwise rotation, the trailing edge is to the right of p

and the leading edge is to the left.

Lemma A.2 A test tube contains a site if and only if it contains a maximal site.

Proof: Suppose a tube T contains a site, and begin raising T . In the process, previously

contained sites may drop out the bottom, but no new sites will enter. Continue raising
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T until it contains only sites on its boundary, as shown in Figure A.2. Let p be the

p

Figure A.2: Raising a test tube until it contains sites only on its boundary. The leftmost

and rightmost such sites are necessarily maximal.

rightmost such site, and rotate T slightly clockwise about p. The rotated, raised test

tube is now supporting, and p is maximal by de�nition.

The other direction is trivial since maximal sites are sites.

Lemma A.3 If a site p is incident to a test tube that contains a site to the left of p and

a site to the right of p, then p is not maximal.

Proof: The site p could not have a supporting tube. This is because any tube T incident

to p can be rotated about p into any other incident tube. By the Rotation Lemma, any

site in T to the left of p cannot be eliminated from T by rotating it counterclockwise.

Similarly, any point to the right of p cannot be eliminated by rotating T clockwise.

Therefore, if T contains sites on both sides of p, then any other incident tube contains

one or the other, and therefore cannot be supporting.

Lemma A.4 (The Neighbour Lemma) Two sites p and q are neighbouring maxima

if and only if the test tube through p and q contains only nonmaxima, and these only on

the portion of its boundary between p and q.
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Proof: Let p = (xp; yp) and q = (xq; yq) be two sites and let Tpq be the tube through

them. Assume without loss of generality that xp � xq. First assume that p and q are

neighbouring maxima. Then each has a supporting tube Tp and Tq respectively, as shown

in Figure A.3. Rotate Tp (clockwise) into Tpq about p. In the process, no sites can enter

p

q

Tp Tpq Tq

Figure A.3: Two neighbouring maxima p and q with supporting tubes Tp and Tq, and a

tube Tpq through p and q.

Tp from the left of p by the Rotation Lemma. Therefore Tpq contains no sites left of p.

By a symmetric argument with Tq, test tube Tpq contains no sites to the right of q. Now

let r be the �rst site that entered Tp during its clockwise rotation into Tpq. If more than

one site entered Tp at the same time, let r be the rightmost such site. Then r = q and

the rotated Tp is equal to Tpq. To see this, rotate Tp slightly clockwise about r at the

moment r enters it. The rotated Tp is now supporting and r must be maximal. Since

Tp contains no sites left of p nor right of q, and since there are no maxima between p

and q, it must be that q = r. It follows that all sites that enter the rotating Tp do so

\at the last instance", so that Tpq contains sites only on its boundary, and these must be

nonmaxima between p and q.

Conversely, assume that Tpq contains only nonmaxima on the boundary between p

and q. Rotate Tpq slightly counterclockwise about p, causing all sites other than p to

drop out. The rotated tube Tpq therefore supports p, and certi�es that p is maximal.
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Similarly, tube Tpq rotated clockwise about q certi�es that q is maximal. Now let r be a

site between p and q. If r is in Tpq, then it is not maximal by assumption. Otherwise,

it must lie below Tpq. Lower Tpq onto r so that Lemma A.3 applies to show that r is

not maximal. Therefore there are no maxima between p and q, which makes p and q

neighbouring maxima.

Lemma A.5 Let p be a maximal and let Tp be any incident test tube. If Tp does not

contain the right neighbour of p, then Tp does not contain any sites to the right of p.

Similarly, if Tp does not contain the left neighbour of p, then Tp does not contain any

sites to the left of p.

Proof: Let q be the right neighbour of p, and let Tpq be the tube through p and q.

By the Neighbour Lemma, Tpq contains sites only on the boundary between p and q.

Now rotate Tpq into Tp about p. If the rotation is clockwise, then Tp contains q by the

Rotation Lemma. So if Tp does not contain q, the rotation must be counterclockwise,

and any intermediate sites on the boundary of Tpq are lost. Therefore Tp cannot contain

any sites to the right of p.

Throughout the rest of this appendix, let L and R be two sets of sites in the plane

such that L is strictly to the left of R. For convenience of expression, refer to @L and

@R as local maxima and @(L [ R) as global maxima.

De�nition A.6 The bridge between @L and @R is the pair (bl; br), where bl is the

rightmost global maximal in @L, and br is the leftmost global maximal in @R. The

bridge partitions @L and @R into four pieces (Ll, Lr, Rl, and Rr), where

Ll = fp : p 2 @L and xp � xblg;

Lr = fp : p 2 @L and xbl < xpg;

Rl = fp : p 2 @R and xp < xbrg; and

Rr = fp : p 2 @R and xbr � xpg:
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Observation A.7 All sites in Ll and Rr are global maxima. That is, (Ll [ Rr) �
@(L [R).

Proof: Let us begin by proving that Ll � @(L [ R). Clearly, bl 2 Ll (and br 2 Rr) are

global maxima by de�nition. So assume l0 2 Ll n fblg, and let Tl0 be its local supporting

tube. By de�nition, Tl0 does not contain any other sites from L; in particular, it does

not contain bl. Suppose, to reach a contradiction, that Tl0 contains a site r0 2 R. Like

all sites in R, site r0 lies to the right of bl. The maximal bl must therefore lie below the

tube Tl0. Lower Tl0 onto bl and notice that Tl0 still contains l
0 and r0. Then bl is not

maximal by Lemma A.3, a contradiction. Therefore Tl0 does not contain any sites from

L[R (other than l0), so that Tl0 is globally supporting and l0 is maximal. By symmetry,

all local maxima right of br are also global maxima. In conclusion, (Ll [Rr) � @(L[R).

Observation A.8 No sites in Lr or Rl are global maxima.

Proof: A global maximal p 2 Lr would contradict the de�nition of bl as the rightmost

global maximal in @L. Similarly, a global maximal p 2 Rl would contradict the de�nition

of br as the leftmost global maximal in @R.

The observations above show how local maxima relate to global maxima. Since every

global maximal is also a local maximal, they (Observation A.7 and A.8) lead immediately

to the following lemma.

Lemma A.9 (The Bridge Lemma) If (bl; br) is the bridge between @L and @R, then

the set of global maxima is equal to the union of the local maxima left of bl and the local

maxima right of br inclusive, that is, @(L [R) = (Ll [Rr).
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A.3 The Data Structure

The test tube data structure (B(S);D(S)) for a set S of sites consists of two parts: a

(dynamic) balanced tree B(S), and a (more involved) static binary tree D(S) that we

will refer to as a deletion tree. Let us examine the balanced tree B(S) part of the data

structure �rst. This balanced tree B(S) stores only the maxima of the point set S. A

standard balanced tree will su�ce. For example, a red-black tree (cf. [Sed83], and see also

[CLR90] pages 263{280), takes O(h) space, where h � jSj is the number of maxima of the

sites in S, and supports binary search, insertion, and deletion, all in O(log h) time. The

preprocessing algorithm for the data structure �rst constructs the list of maxima, then

builds the balanced tree B(S) by inserting one maximal at a time. The preprocessing

algorithm therefore spends O(h log h) time dealing with the balanced tree. The algorithm

constructs the list of h maxima in O(S log S) time using the deletion tree; this will be

described shortly.

At the highest level, the deletion tree D(S) is a complete static binary tree of height

dlog jSje. It has 2dlogjSje = �(S) leaves, jSj of which store the sites S, sorted by x-

coordinate. Let site[v] denote the site (or NIL) stored at leaf v. The variable root[D]

stores a pointer to the root of the tree, and the variable lchild [v] (respectively rchild [v])

stores a pointer to the left (respectively right) child of the internal node v. An internal

node of D(S) represents the (local) maxima of the sites stored in the leaves of its subtree.

For space e�ciency, each internal node stores a list of only those maxima that do not

appear in any higher nodes; Q[v] stores the list for node v. More speci�cally, if @L and @R

are the maxima of the left and right subtrees of a node v, and (bl; br) is the bridge between

them, then Q[lchild [v]] stores Lr and Q[rchild[v]] stores Rl (recall De�nition A.6).

In addition, every node stores the least inf [v] and greatest sup[v] x-coordinates of

the leaves of its subtree. At this stage, note that the sites in the leaves of the subtrees
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rooted at the children of an interior node v can be separated by the vertical line x =

(sup[lchild [v]] + inf [rchild[v]])=2, and that this value x is computable in constant time.

This \separator" allows binary search to �nd a site in O(log S) time.

In summary, D(S) has O(S) leaves and just as many (less one) internal nodes. The

maxima stored at the internal nodes partition the sites S, and the red-black tree at the

root is also of linear size, so the entire data structure uses only O(S) space.

Each node in the deletion tree stores its maxima as a linked list with elements ordered

from left to right. Standard linked list techniques manipulate these lists. In particular,

they split and slice lists in constant time, given a pointer to the split point. More

concretely, the algorithms below use the following constant-time primitives.

LIST(p) creates and returns the list containing just the pointer p.

SPLIT(L, p) returns the pair (Ll; Lr), where p is a pointer to an element of the list L,

Ll is the pre�x of the list S up to and including element p, and Lr is the su�x of

the list L past p, but not including p.

SPLICE(L, R) concatenates list R to the end of list L and returns a pointer to the

result.

Each linked list also maintains pointers to its leftmost �rst [h] and rightmost last [h]

elements. In the following algorithms, no site will ever be in more than one linked list

at a time. We can therefore use the leaves of the deletion tree as list elements; each

leaf v has a pointer to its successor (right neighbour) succ[v] and to its predecessor (left

neighbour) pred[v] in the list containing site v. In this way, even an isolated pointer to

a list element will always point to the same site, no matter how often the element has

participated in splits and splices.

Finally, to allow easy reconstruction of the maxima represented at each node, each

internal node stores a pointer to its bridge. More speci�cally, if @L and @R are the
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maxima of the left and right subtrees of a node v, and (bl; br) is the bridge between them,

then bridge [v] = bl (again, recall De�nition A.6). It is easy to see that if @S is the list of

maxima at an internal node v, then the maxima list at lchild [v] is SPLICE(Ll, Lr), where

(Ll; Rr) = SPLIT(@S, bridge [v]) and Lr = Q[lchild [v]]. Similarly, the maxima list at

rchild [v] is SPLICE(Rl, Rr), where Rl = Q[rchild[v]]. These operations are encapsulated

by Algorithm CHILDREN in Table A.1, which returns two lists of maxima, one for each

subtree rooted at the children of an internal node v in D(S), given a list of the maxima

of the subtree rooted at v. It is easy to verify that Algorithm CHILDREN returns these

lists in constant time.

Table A.1: Algorithm: CHILDREN(v, @(L [R))

Input: The global maxima @(L [R) of the sites stored in the leaves of

the subtree rooted at v.
Output: The lists @L and @R of the local maxima of the sites stored in the leaves of

the subtrees rooted at lchild [v] and rchild [v] respectively.

1 @L @R NIL

2 l bridge[v]
3 if l 6= NIL

4 then (Ll; Rr) SPLIT(@(L [ R), l)
5 @L SPLICE(Ll, Q[lchild [v]])
6 @R SPLICE(Q[rchild [v]], Rr)

7 else @L = NIL

8 @R = @(L [ R)
9 return (@L; @R)

A.4 Building the Data Structure

The preprocessing algorithm constructs D(S) by �rst building the tree skeleton, then

�lling in the leaves, and �nally �lling in the internal nodes. The �rst step is standard
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binary tree construction, and takes O(S) time. The algorithm then �lls in the leaves by

sorting the sites in O(S logS) time and putting them in the leaves in O(S) time. In the

process, the algorithm also sets the �elds inf [v] and sup[v] that point to the leftmost

and rightmost extreme leaves in the subtree rooted at v. Clearly, inf [v] = inf [lchild [v]]

and sup[v] = sup[rchild[v]]. The algorithm therefore accomplishes both tasks with a

postorder traversal of the tree.

The algorithm then �lls in the internal nodes of D(S). To construct the list of maxima

at the root, the algorithm recursively constructs the maxima of its two children and

merges them. The details for Algorithm FILL-INTERNAL are presented in Table A.2

below.

Table A.2: Algorithm: FILL-INTERNAL(v)

Input: A node v in the tree D.

Output: A doubly linked list of the maxima of the leaves of the subtree rooted at v.

1 if v is a leaf

2 then return LIST (v) (with pred[v] = succ[v] = NIL)

3 else @L FILL-INTERNAL(lchild [v])
4 @R FILL-INTERNAL(rchild [v])

5 l �rst [@L]
6 r last [@R]
7 return MERGE(v, @L, l, @R, r)

Lemma A.10 Algorithm FILL-INTERNAL(v) (Table A.2) computes the maxima of the

leaves of the subtree rooted at any node v of the deletion tree in O(n log n) time, where n

is the number of sites stored in the leaves of the subtree rooted at v.

Proof: The proof is by induction on the minimum path length from v to a leaf. The

lemma is trivially true if v is a leaf. So assume that v is an internal node, and let L
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and R denote the sites stored at the leaves of v's left and right subtrees. We now wish

to compute the global maxima of L and R, where R is strictly to the right of L. Since

all global maxima are local maxima, it su�ces to look only at local maxima. By the

inductive hypothesis, the lists @L and @R, computed at Steps 3 and 4, are the maxima

of L and R, as required. Step 5 computes the leftmost local maximal l in @L, and Step 6

computes the rightmost local maximal r in @R. These values, l and r, are global maxima

since l is supported by the tube centered at (xl � 1; yl), and r is supported by the tube

centered at (xr+1; yr). By Lemma A.12 (forthcoming), the call to MERGE(v, @L, l, @R,

r) therefore returns the global maxima @(L [ R) in O(h) time, where h = j@(L [ R)j is
the number of global maxima. Clearly, h is never more than the number n of sites stored

at the leaves of the subtree. All other steps take constant time. The time taken for a call

to FILL-INTERNAL(root[D]) is therefore given by the recurrence T (n) = n + 2T (n=2),

which has solution O(n log n) time.

The complete algorithm for building the deletion tree data structure therefore builds

the skeleton of the tree in linear time, sorts the sites from left to right in O(S logS) time,

and �nally executes

Q[root[D]] FILL-INTERVAL(root[D])

to �ll in the distributed lists of maxima in the internal nodes, also in O(S logS) time.

This establishes the following theorem.

Theorem A.11 The test tube data structure (B(S);D(S)) of sites S can be built in

O(S logS) time and O(S) space.

We must now address the problem of e�ciently \merging" two lists @L and @R to

yield a list of global maxima @(L [ R). By the Bridge Lemma, we need only �nd the

bridge points, split the local lists at these points, and splice the global maxima together.
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Table A.3 provides the details. Of course, if either @L or @R is an empty list, there is

no bridge (bl; br). Let us indicate this condition by setting bridge [v] to NIL. Algorithm

MERGE is also needed later in this appendix to handle deletions from the deletion tree.

To facilitate this, Algorithm MERGE maintains the maxima tree by storing lists of local

maxima where appropriate. Again, see Table A.3 for details.

Table A.3: Algorithm: MERGE(v, @L, l, @R, r)

Input: The left maxima @L and right maxima @R of internal node v, and

global maxima l 2 @L and r 2 @R.
Output: The list of global maxima @(L [ R).
Side E�ect: The algorithm maintains the deletion tree D by storing

the list of sites in @L n @(L [R) at the left child of v, and
the list of sites in @R n @(L [R) at the right child of v.

1 if either @L or @R is empty,

2 then bridge [v] NIL

3 (Ll; Lr) (@L;NIL)
4 (Rl; Rr) (NIL; @R)

5 else (bl; br) BRIDGE(@L, l, @R, r)
6 bridge [v] bl
7 (Ll; Lr) SPLIT(@L, bl)
8 (Rl; Rr) SPLIT(@R, pred[br])
9 Q[lchild [v]] Lr

10 Q[rchild[v]] Rl

11 return SPLICE(Ll, Rr)

Except for the call to function BRIDGE (Step 5), all other operations in Table A.3

take constant time. Algorithm BRIDGE �nds the bridge simply by \walking" along list

@L until it reaches the rightmost maximal, and along @R until it reaches the leftmost

maximal. The correctness of Algorithm BRIDGE in Table A.4 follows from the Bridge

Lemma.

How can Algorithm BRIDGE decide if l0 and r0 (Steps 2 and 3) are global maxima,
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Table A.4: Algorithm: BRIDGE(@L, l, @R, r)

Input: Local maxima @L and @R,

global maxima l 2 @L and r 2 @R.
Output: The bridge (bl; br).

1 while succ[l] or pred[r] is a global maximal,

2 do l0 succ[l] /* the right neighbour of l in @L, if it exists. */
3 r0  pred[r] /* the left neighbour of r in @R, if it exists. */

4 if l0 is a global maximal

5 then l l0

6 else if r0 is a global maximal

7 then r r0

8 return (l; r).

and how quickly? The answer is that it can determine this in constant time, as the

following case analysis demonstrates. Let Tlr be the test tube through l and r. If both l0

and r0 are NIL, both are clearly not maximal and we are done. So assume that either l0

or r0 is not NIL. If l0 lies strictly inside Tlr, but r
0 does not (perhaps because it is NIL),

then l0 is maximal. To see this, �rst note that Tlr does not contain any sites from R left

of r by Lemma A.3 and Lemma A.5. Rotate Tlr into Tll0 about l, in the process dropping

r below Tll0. Now lower Tll0 onto r so that Tll0 still contains l and l0 (to the left of r).

Since r is a global maximal, Lemma A.3 implies that the lowered tube does not contain

any sites to the right of r. Therefore the unlowered Tll0 does not contain any sites from

R, and l0 is a global maximal by the Neighbour Lemma. By a symmetric argument, r0 is

maximal if r0 lies strictly inside Tlr, but l
0 does not.

The �nal case is that both l0 and r0 lie properly within Tlr. Let Tll0 be the tube

through l and l0. If Tll0 is strictly left of the separator, then l0 is maximal. To see this,

rotate Tll0 slightly clockwise about l
0, dropping l in the process. It now does not contain

any sites from L (other than l0) by the Neighbour Lemma. It does not contain any sites
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from R by the properties of the separator. It is therefore supporting with respect to

L [R so that l0 is maximal. Similarly, if the tube Tr0r through r and r0 is completely to

the right of the separator, then r0 is maximal.

Finally, suppose that both Tll0 and Tr0r intersect the separator, as shown in Figure A.4.

Since l0 and r0 both lie inside Tlr, then Tll0 also lies to the left of Tr0r. To see this, note

l

Tll’ Tlr Tr’r

r
l’

r’

Figure A.4: Both Tll0 and Tr0r intersect the separator. In the case shown here, both l0

and r0 lie inside the tube Tlr through l and r.

that Tll0 can be rotated clockwise3 into Tlr, and Tlr can be rotated clockwise in Tr0r. The

separator therefore lies between the left wall of Tr0r on the left and the right wall of Tll0

on the right. If Tll0 falls above Tr0r at the separator, as shown in Figure A.4, then l0

is maximal. To see this, note that the only sites from L in Tll0 lie on the boundary of

Tll0 between l and l0 by the Neighbour Lemma. Rotating Tll0 slightly clockwise about l0

therefore drops all such sites from Tll0. No sites from R can be in Tll0 since the portion

of Tll0 that lies to the right of the separator lies in the interior of Tr0r, which is empty of

sites from R by the Neighbour Lemma. By a symmetric argument, if Tr0r falls above Tll0

3Recall that a clockwise rotation moves a tube monotonically to the right.
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at the separator, then r0 is maximal, and both l0 and r0 are maximal if the tubes coincide

at the separator.

Since Algorithm BRIDGE (Table A.4) can determine in constant time if l0 or r0

is a maximal, the algorithm spends a constant amount of time at each step. Other

than the �nal nonmaximal l0 and r0, the algorithm only examines global maxima. If it

does not return the bridge at a given step, it eliminates a global maximal from further

consideration. The algorithm therefore �nds the bridge (a; b) in O(h) time. Here h is

the number of sites in @L between l and a, plus the number of sites in @R between b and

r. This completes the description of Algorithm MERGE, and we have established the

following lemma.

Lemma A.12 Let L and R be two horizontally separated sets of sites. Given are the

left-to-right ordered linked lists @L and @R, and two sites l 2 @L and r 2 @R guaranteed

to be maximal in L [ R. Algorithm MERGE (Table A.3) computes the list @(L [ R) of
global maxima in O(h) time, where h is the number of global maxima @(L [ R) between
l and r.

A.5 Deletions

How does the deletion tree D(S) support deletions in O(log S) amortized time? To

answer this question, we will �rst examine how a set of maxima @S changes when a site p

is deleted from S. LemmaA.14 (below) shows that, if a site p is deleted from a set of sites

and p is not maximal, then the list of maxima does not change. Even if p is maximal,

Lemma A.13 (below) shows that no maxima other than p are \lost" by deleting p from

S. In this case, however, new maxima may be created. Where could these maxima lie?

The answer is that the new maxima must lie between the neighbours of the deleted site

(Lemma A.15 below).
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Lemma A.13 Let p be any site in S. All maxima in S (other than p) are also maximal

in S n fpg. That is, @S n fpg � @(S n fpg).

Proof: Let q be a maximal (other than p) in S. Its supporting tube Tq is empty of any

other sites in S, and therefore of any sites in S n fpg. Tube Tq is therefore supporting

with respect to S n fpg, which certi�es that q is maximal in S n fpg.

Lemma A.14 Let p be a nonmaximal site in S. The maxima in S n fpg are exactly the

maxima in S. That is, @(S n fpg) = @S.

Proof: Lemma A.13 implies that @S � @(S n fpg).
To prove that @(S n fpg) � @S, let q be a site in @(S n fpg. Then q has an incident

tube Tq that is supporting with respect to S n fpg. Assume for the sake of contradiction

that q is not maximal in S. Then Tq must contain a site from S, and therefore a maximal

r 2 S by Lemma A.2. Since neither p nor q are maximal, r is a site other than q in

S n fpg. Therefore Tq is not supporting with respect to S n fpg, a contradiction.

Lemma A.15 Let p be a maximal site in S. If q is a maximal site in S n fpg but not
in S, then q must lie between the left neighbour of p and the right neighbour of p.

Proof: Let Tq be a supporting tube for q with respect to S n fpg. Note that Tq must

contain p, otherwise q would be maximal in S. Now suppose that q lies to the left of the

left neighbour l of p. Then l is between q and p, and therefore below Tq, as shown in

Figure A.5. Lower tube Tq onto l and notice that it still contains both q and p. Therefore

l is not maximal by Lemma A.3, contradicting the de�nition of neighbour. Similarly, if

q is right of r, then r could not be maximal, again a contradiction.

In terms of our deletion tree data structure D(S), maxima move to higher levels in

the tree in response to site deletions until they are themselves deleted. Since the data
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q

l

p r

Figure A.5: Site q is maximal in S n fpg but not in S. Assume that q lies to the left of

the left neighbour l of p.

structure has O(log S) levels, there are a total of O(S logS) site movements between

levels.

Algorithm DELETE-SITE (Table A.5) implements deletions recursively. From an

interior node, it deletes the site from the appropriate child's subtree|it can decide which

subtree in constant time by comparison with the stored separator|and merges the new

list with the unchanged list of the other subtree. As we already illustrated, a merge takes

constant time once we have a pointer to the bridge. We now show that DELETE-SITE

�nds this bridge in constant amortized time.

Let @(Lnfpg) be the maxima in the left subtree after having recursively deleted p, and

let @R be the maxima in the right subtree. If p was not maximal at this internal node,

then the current bridge is still valid by Lemma A.14. So assume that p was maximal. If

p is not the bridge site l in @L or its neighbour r in @R, then the bridge is still valid by

the Neighbour Lemma.

Now suppose that the deleted site p is l. See Figure A.6. Let l0 be the right neighbour

of l and let l00 be the left neighbour of l, both in @L. Similarly, let r0 be the left neighbour

of r and let r00 be the right neighbour of r, both in @R. Any new maxima will appear

between l00 and r by Lemma A.15. By Lemma A.13, all maxima in L [R are maxima in
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Table A.5: Algorithm: DELETE-SITE(p, @(L [R), v)

Input: A node v,

a list @(L [R) of the maxima of the sites stored

at the leaves of the subtree rooted at v, and

a site p to be deleted.

Output: A list of the maxima of the sites stored at the leaves

of the subtree rooted at v after p is deleted.

Side E�ect: The site p is deleted from the subtree rooted at v.

1 if v is a leaf

2 then site[v] NIL

3 return NIL

4 else l root[v]
5 l0 pred[l]

6 r succ[l]
7 r0  succ[r]
8 (@L; @R) CHILDREN(v, @(L [R))
9 if x[p] � sup[lchild [v]]
10 then @L DELETE-SITE(p, @L, lchild [v])

11 return MERGE(v, @L, l00, @R, r)

12 else @R DELETE-SITE(p, @R, rchild [v])
13 return MERGE(v, @L, l, @R, r00)

ll’’ r

r’’

r’

Figure A.6: Deleting the left bridge site, l.
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(L [ R) n flg. In particular, l00 is maximal in (L [R) n flg so the new bridge point in L

cannot lie to the left of l00. Similarly, the right neighbour (in R) of the new bridge point

cannot lie to the right of r.

We can therefore use Algorithm MERGE(v, @(L n flg), l00, @R, r) to compute @((L n
flg) [ R) in O(h) time. Here h is the number of new maxima, ones that have risen

from the level below. We can \charge" this search to site movements. Similarly, if the

deleted point is r, we can use Algorithm MERGE(v, @L, l00, @(R n frg), r) to compute

@(L [ (R n frg)), also in O(h) time.

Since there are O(log S) levels to the tree, each deletion takes O(log S) time, not

including site movements. We can therefore execute O(S) deletions in O(S log S) time,

plus O(S log S) for site movements, for a total time of O(S log S). We have established

the following lemma.

Lemma A.16 Sites fp1; p2; : : : ; png � S can be deleted from the deletion tree D(S) in

O(S logS) time by executing Algorithm DELETE-SITE(pi, Q[root[D(S)]], root[D(S)])

(Table A.5) for every i from 1 to n.

We now know how to delete a site from the deletion tree part of the data structure.

However, a deletion algorithm must also maintain the balanced tree B(S) part of the

data structure. If the deleted site is not maximal, then the maxima do not change by

Lemma A.14, so the deletion algorithm does not need to do anything with B(S). If the

site is maximal, and therefore in B(S), then this site is the only one that the algorithm

has to delete from B(S), by Lemma A.13. Since each site can be deleted at most once,

these balanced tree deletions take a total of O(S log S) time.

On the other hand, some previously nonmaximal sites may become maximal due to

site deletion. These new maxima are easily isolated. If pl and pr are the left and right

neighbours of p in Q[root[D]] before p is deleted, then the new maxima are the sites
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between pl and pr in Q[root[D]] after p is deleted, by Lemma A.15. The site deletion

algorithm executes an insertion whenever a new maximal rises to the root of D. Since

each site can rise to the root at most once, this takes a total of O(S log S) time. The

following theorem summarizes the preceding discussion.

Theorem A.17 O(S) sites can be deleted from the test tube data structure (B(S);D(S))

of sites S in O(S logS) time.
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order, 10
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loose arc, see di�erence constraints

loose cycle, see di�erence constraints

lune

discrete, 91

through two points, 19, 91

M(V ), matrix multiplication, 22

matching in a graph, 92

matrix multiplicationM(V ), 22

minimum weight maximal clique, 177

mixed constraint, see di�erence constraints

model of computation, 19

neighbourhood

lower, 290

upper, 290

neighbouring maxima, 70

NP-complete, 24

order

by level �, 251
by x-value

f

�, 284
interval, see interval

lexicographic, 102

linear, 9

partial, see partial order

semiorder, 42

smallest-last, 103

spanning, 147

orientable grid drawing, 111

orientable simulation of SAT, 108

orientation of an undirected graph, 11

oriented complement of a strip graph, 250

oriented terminal, see cage

partial order, 9

dimension, 10

interval order dimension, 10

linear extension, 9

strict, 9

paths dominator, 161

performance ratio, 23, 99

permutation diagram, 37
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proximity model, 4

pseudocode, 20

RAM, 19

Random Access Machine, 19

real RAM, 20

realization

� -strip graph, 25

coin graph, 105

disk graph, 105

permutation graph, 37

two-level graph, 26

unit disk graph, 25

required vertex set, see Steiner set

semiorder, 42

sentinel, 21, 251

signi�cance of a vertex, 162, 171

spanning order, 147

sphericity, 43, 142, 277

Steiner set, 13, 206

minimum cardinality, 182

minimum weight, 206

required vertex set, 182

weighted, 182

striation, 244

bistriation, 305

complement, 282

t-auxiliary graph, 170

test tube, 68, 325

center, 69

data structure, 70, 332

deletion tree, 332

lowering, 326

maxima, 69, 326

bridge, 330

global, 330

local, 330

neighbouring, 70, 326

raising, 326

rotating, 326

supporting, 69, 326

tight constraint, see di�erence constraints

tightened constraint, see di�erence con-

straints

transitive reduction, 178, 250, 257

uniquely orientable, see graph, cocompa-

rability

unit t-representation, 275

unit disk model, see graph, unit disk

unit-interval number, see interval

Voronoi diagram, 47, 67


