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1 Introduction

Illumination is the study of how light interacts with

matter to produce visible scenes. In computer graph-

ics, we use illumination to produce \realistic" images.

Local illumination describes the interaction of light

with a single, small volume or surface element with

given incident and viewing directions. Figure 1 shows

the typical geometry and and nomenclature for local

illumination studies.

Global illumination describes how light is distributed

in a scene: a collection of objects, including light

sources, immersed in a given medium. Global illu-

mination solutions must consider multiple reections.

Global illumination solutions are built on top of local

illumination solutions.

In this paper, we will advance a new approach to

an illumination solution that is intermediate between

local and global illumination. Using wavelets, we are

able to treat the interaction between two surfaces and

the interaction of a surface with a radiation �eld in

a source-to-destination model that applies to whole

surfaces, not just small elements. We are continuing

work to extend this to a fully global solution.

Wavelets are relatively recent additions to the ren-

dering toolkit. They were �rst used by Gortler et al.

[gort93] to solve the radiosity equations. Schr�oder et

al. [schr93] and Christensen et al. [chri94] applied

them to non-di�use situations. What we present

here may be considered a further development of that

work.

dL
r

L
i

θ
i

r
ωd

r
θ

φ

S

r

φ
i

N

dA

x

y

z

V

d
i

ω

Figure 1: Geometry

2 Radiative Transfer

and Surface Interaction

Let us �rst discuss some of the basics of how light

is represented. The fundamental quantity is radi-

ance, the amount of power passing in a given direction

though a given surface per unit area (perpendicular

to the direction of travel) per unit solid angle1.

1In this report, we will take radiance to be monochromatic
and assume we can construct a polychromatic images by com-
bining independently computed monochromatic images. We
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Radiance at a point P in a direction S is usually

represented by a function L(P;S).

Radiance's most useful property is its invariance: In

a non-participating medium, the radiance given o� at

a point Po on a surface in a direction S is constant

until reaching another surface. We can express this

as the action of a transport operator T :
L(P;S) = T L = L(Po(P;S);S) (1)

This principle underlies raytracing.

We take the fundamental equation describing surface

interaction to be (cf. Foley, et al. [fole90] or Cohen

and Wallace [cohe93]):

L(V) = Le(V)

+

Z

R
N

fr(S
+0;V)Li(S

+0)
��N � S+0

�� d!0
i

+

Z

T
N

ft(S
�0;V)Li(S

�0)
��N � S�0

�� d!0
i
(2)

where L is the total radiance given o� of a surface

with normal N, Le is the surface emissivity, Li is

the incident radiance, 
R

N
is the reection hemisphere

(contains N , the \viewing" direction V, and the

\positive source" direction S+), 
T
N
is the transmis-

sion hemisphere (opposite 
R
N
, containing the \neg-

ative source" direction S�), fr is the bidirectional

reectance distribution function (BRDF), and ft is

the bidirectional transmittance distribution function

(BTDF). Note that we use the prime (\0") to indicate
bound variables of integration and, since it symboli-

cally factors out of (2), we ignore the spatial variation

of the radiances and distribution functions.

We represent combined reection and transmission

surface interaction by the integral operator S. We

can treat the emissivity term separately.

2.1 Radiance in Nusselt Coordinates

If we con�ne our discussion to at surfaces, we can

assume a parameterization for P of (x; y). S is then

typically represented in polar and azimuthal coordi-

nates (�; �) according to the local frame of reference.

Consider the x, y, and z direction cosines correspond-

ing to a direction (�; �):

�x = sin � cos� �y = sin � sin� �z = cos �

(3)

also ignore polarization.

For reasons that will be obvious later, let us use these

to make a change of the directional variables from

(�; �) to (�; �):

� = �x+1
2

� =
�y+1

2
(4)

To convert integration over (�; �) to integration over

(�; �), the determinant of the Jacobian is:����@(�; �)@(�; �)

���� = 4

jcos � sin �j (5)

so, assuming Li is zero for directions outside the unit

circle, (2) becomes

L = Le+ 4

Z Z 1

0

�
fr(S

+0;V)Li(S
+0)

+ ft(S
�0;V)Li(S

�0)
�
d�0

i
d�0

i
(6)

That the integral no longer contains trigonometric

functions should come as no surprise. We have sim-

ply used a di�erential form of the \Nusselt analog"

([nuss28], but see Cohen and Wallace [cohe93] for a

description in English): The amount of power per

unit area transferred from a di�erential solid angle

d!i is proportional to the area of the surface that the

projection of d!i on a unit sphere subtends, d�i d�i.

For this reason, we refer to � and � as \Nusselt co-

ordinates".

We also note that since, �2x + �2y + �2z = 1, we can

express S+, S�, and V all unabiguously in terms of

their respective incident and reected �'s and �'s,

since each vector is de�ned only over a hemisphere,

not the whole directional sphere. Simply put, it's

always clear which sign to attach to the square root.

2.2 Radiance Representation

What are the characteristics of a four-dimensional ra-

diance distribution L(x; y; �; �)? The easiest way to

visualize this is as \light through a window" where

the position of an observer on a window is (x; y) and

he or she is looking in direction (�; �). For a �xed di-

rection, the resulting two-dimensional projection is a

parallel projection. (The special case (�; �) = (1
2
; 1
2
)

is an orthographic projection.) For a �xed position,

the distribution in (�; �) would be a \�sheye" view.

In both cases, what the observer sees is an image, so

we can infer that dealing with radiance distributions

should be like dealing with images.



Radiance L(x; y; �; �) at a point on a surface is a po-

tentially discontinuous, generally nonanalytic func-

tion. We can approximate it with a �nite element

expansion with Nf degrees of freedom:

L(x; y; �; �) =

NfX
j=1

bjBj(x; y; �; �) (7)

Choices for the basis functions Bi include box dis-

cretization (a la Fournier et al.'s FIAT [four90]),

Fourier, discrete cosine, orthogonal polynomials, and

wavelets. We are particularly interested in wavelets

because, unlike the other bases listed, their basis

functions are of limited support and they can repre-

sent discontinuities compactly. They are also capable

of considerable compression.

3 Wavelet Properties

In this section, we will review some of the properties

of wavelets that make them particularly suitable for

the representation of radiance. The standard refer-

ence on wavelets is Daubechies [daub92], from which

much of this section is derived.

3.1 One-Dimensional Wavelets

Before proceeding to multidimensional wavelets, we

should �rst cover several important properties of one-

dimensional wavelets.

3.1.1 Scaling Functions and Wavelets

Wavelets are built from scaling functions, which we

de�ne by enumerated dilations and translations of a

base scaling function �(x) of the form:

�lm(x) = 2l=2�(2lx�m) (8)

each level l corresponds to a function space Vl, which

is part of a nested sequence of subspaces : : : � V�1 �
V0 � V1 � V2 : : :. Scaling functions have the property

that Z +1

�1

�(x)dx 6= 0 (9)

We de�ne a wavelet function space Wl as composed

of those functions that need to be added to a given

space Vl to span the next �ner space Vl+1: Vl+1 =

Vl�Wl. The basis functions forWl are then dilations

and translations of a mother wavelet  (x):

 lm(x) = 2l=2 (2lx�m) (10)

Wavelets have the propertyZ +1

�1

 (x)dx = 0 (11)

Figures 2-4 show some commonly-used wavelets and

their corresponding smoothing functions.

3.1.2 Multiresolution Re�nement Equations

Since �(x) 2 V0 and V0 � V1, we can write �(x) as

a linear combination of the basis functions �(2x� j)

for V1:

�(x) =
p
2
X
j

hj�(2x� j) (12)

This also holds for  :

 (x) =
p
2
X
j

gj�(2x� j) (13)

These are the dilation or re�nement equations.

Wavelet bases di�er principally in their choices of

fhjg (which determines fgjg).

Using the enumerated bases:

�lm(x) =
p
2
X
j

hj�l+1;2m+j (x)

 lm(x) =
p
2
X
j

gj�l+1;2m+j(x) (14)

3.1.3 Orthogonal Wavelets

We de�ne the inner product of two functions f and

g with respect to x2

hf j gi
x
�
Z +1

�1

f(x0)g(x0)dx0 (15)

Some wavelets are orthogonal:

h lm j  l0m0 i
x
= �ll0 �mm0 (16)

2Using x as a subscript is non-traditional, but will become
useful when we speak of multidimensional wavelets.



Haar Wavelet Haar Smoothing Function

Figure 2: Haar Wavelet and Smoothing Functions. Haar wavelets are the simplest possible wavelet and are

the most commonly used wavelets in graphics. They have only one vanishing moment.

Daubechies 4 Wavelet Daubechies 4 Smoothing Function

Figure 3: Daubechies-4 Wavelet and Smoothing Functions. Daubechies wavelets were the �rst compact

orthogonal wavelets discovered. This particular wavelet has two vanishing moments.

But these have undesirable features. First, except

for Haar, they aren't symmetric. Second, they don't

include useful functions like splines.

3.1.4 Biorthogonal Wavelets

We can construct biorthogonal bases by using four

functions instead of two: wavelets �lm and ~�lm and

smoothing functions  lm and ~ lm. These are de�ned

de�ned, respectively, by four sets of coe�cents: fhjg,
f~hjg, fgjg, and f~gjg.

For these, D
 lm j ~ l0m0

E
x

= �ll0 �mm0 (17)

In the rest of this section, we'll assume the more gen-

eral biorthogonality, since we can always treat orthog-

onal wavelets as a special case of biorthogonal ones.

3.1.5 Wavelet Projections and Approxima-

tion

Let us discuss the ability of a wavelet representation

to approximate an arbitrary function f . Let Plf be

the projection of a function f 2 L2 into the subspace
Vl:

Plf(x) =
X
m

D
f j ~�lm

E
x

�lm(x) (18)

It can be shown

k f � Plf k2� C2�lNv

sX
n

k f (n) k2 (19)

where Nv is the number of vanishing moments of the



Spline 2,2 Wavelets
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Spline 2,2 Smoothing Functions
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Figure 4: Linear Spline Wavelet And Smoothing Functions. These wavelets are biorthogonal and have two

vanishing moments. Unfortunately, while ~� and ~ have a simple closed form, this is not true for � and  .
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Figure 5: The Fast Wavelet Transform

wavelets, i. e. for n = 0; : : : ; Nv � 1Z
xn ~ (x)dx =

D
xn j ~ 00

E
x

= 0 (20)

What (19) means is that we can always decrease the

L2 error of a wavelet approximation by increasing

the number of levels l or by choosing wavelets with a

higher number of vanishing moments.

3.1.6 The Fast Wavelet Transform

Given a set of data slm ;m = 0 : : :N , where N =

2l � 1, we treat these as coe�cients of �lm and can

compute a wavelet transform in O(N ) operations, as

shown schematically in Figure 5. This is another ad-

vantage of wavelet methods over Fourier techniques,

which typically require O(N logN ) operations. The

transform leaves us with 2l � 1 wavelet coe�cients

(dark gray in Figure 5) and 1 smoothing coe�cient

(light gray). The hierarchical arrangement of these

coe�cients is sometimes referred to as the \wavelet

pyramid".

3.1.7 Wavelet Compression

Even with the wavelet pyramid, we've still got N co-

e�cients, so we haven't saved any storage (yet).

It can be shown that if f is of the form

f(x) =
X
l;m

wlm lm(x) (21)

and we approximate it by

F (x) =
X

wlm2 ~W

wlm lm(x) (22)

where the ~W is a subset of the set of coe�cents

fwlmg, that

k f � F k2=
X

wlm 62 ~W

jwlmj2 (23)

This gives us a convenient error metric. It also tells

us that the optimal compression scheme discards the

coe�cients with smaller absolute magnitudes �rst {

a thresholding process.



3.2 Multidimensional Wavelets

For D-dimensional coordinates

q = (q1; q2; : : : ; qD); (24)

we can de�ne a set of multidimensional wavelet basis

functions indexed by a multiresolution index

j = (�j; l
j

1;m
j

1; l
j

2;m
j

2; : : : ; l
j

D
;m

j

D
) : (25)

where �j determines the combination of one dimen-

sional smoothing and wavelet functions:

Bj(q) =

8>>>>>><
>>>>>>:

�
l
j

1
m
j

1

(q1)�lj
2
m
j

2

(q2) : : :�lj
D
m
j

D

(qD) �j = 0

 
l
j

1
m
j

1

(q1)�lj
2
m
j

2

(q2) : : :�lj
D
m
j

D

(qD) �j = 1

�
l
j

1
m
j

1

(q1) lj
2
m
j

2

(q2) : : :�lj
D
m
j

D

(qD) �j = 2

...

 
l
j

1
m
j

1

(q1) lj
2
m
j

2

(q2) : : : lj
D
m
j

D

(qD) �j = 2D � 1

(26)

We refer to the special case of �j = 0 as the \pure

smoothing" component, as the corresponding basis

function is made up of only smoothing functions.

We can apply (17) multidimensionally. If we have j

as in (25) and de�ne k as

k = (�k; lk1 ;m
k

1; l
k

2 ;m
k

2 ; : : : ; l
k

D;m
k

D) (27)

then D
~Bj j Bk

E
q

= ��j�k

DY
d=1

�
l
j

d
l
k
d

�
m
j

d
m
k
d

(28)

This is the \standard" multidimentsional Cartesian

product basis. It is also possible to constrain l
j

1 =

l
j

2 = : : : = l
j

D
� lj , resulting in the so-called

\nonstandard" basis. In general multidimensional

(especially image-oriented) applications, as cited in

Daubechies [daub92] and in Schr�oder et al. [schr93],

the nonstandard bases are preferred because of their

\square" (hypercubic, in our case) support.

In this paper, we are considering 4-dimensional, non-

standard basis functions, so let us enumerate the co-

ordinates with the 4-vector q = (u; v; �; �) and the

basis functions with (�; l;mu;mv;m�;m�).

Using (8), (10), (12), (13) and (26), all the basis func-

tions at level l of the pyramid can be written in terms

of the � = 0 basis functions at level l + 1:

B�lm(q) =

4

8>>>>><
>>>>>:

P
m0 hm0

u
hm0

v
hm0

�
hm0

�
B0(l+1)(2m+m0 )(q) � = 0P

m0 gm0

u
hm0

v
hm0

�
hm0

�
B0(l+1)(2m+m0 )(q) � = 1P

m0 hm0

u
gm0

v
hm0

�
hm0

�
B0(l+1)(2m+m0 )(q) � = 2

...P
m0 gm0

u
gm0

v
gm0

�
gm0

�
B0(l+1)(2m+m0)(q) � = 15

(29)

where m0 � (m0
u
;m0

v
;m0

�
;m0

�
).

So for any function f ,

hf j B�lmiq =
X
m0

W�m0



f j B0(l+1)(2m+m0)

�
q

(30)

where W�m0 is (4 times) a product of smoothing and

wavelet coe�cients.

4 Wavelet Radiance Properties

Apart from compression, representing radiance in

terms of a wavelet basis with direction expressed in

Nusselt coordinates makes several calculations of rele-

vance to illumination computation easier. Notice that

these all act directly on wavelet coe�cients them-

selves and do not require an inverse wavelet trans-

form.

4.1 Irradiance Computation

Irradiance is de�ned as

E(x; y) =

Z

R
N

Li(x; y; �
0; �0) jN � S0j d!0

i

= 4

Z Z 1

0

Li(x; y; �
0; �0) d�0i d�

0

i (31)

But if we have

Li(x; y; �; �) =
X
j

bjBj(x; y; �; �) (32)

then

E(x; y) = 4
X
j

bj hBj j 1i�;� (33)

is the wavelet representation of the irradiance. The

inner product on the right hand side is usually easy

to compute analytically,making particular use of (11)



to eliminate some of the non-pure smoothing coe�-

cients3.

4.2 Transport

We represent radiance as

L(q) =
X
k

bkBk(q) (34)

where

bk =
D
L j ~Bk

E
q

(35)

and k is de�ned as in (27).

Radiance travels from a source point qs to a destina-

tion point qd. If we have a mapping of qs ! qd, we

can compute

Ld(qd) =
X
k

bd
k
Bk(qd) (36)

where

bd
k

=
D
Ls(qs(�)) j ~Bk

E
qd

=
X
j

bs
j
Tkk; (37)

j is de�ned as in (25), and we de�ne geometry-

dependent \transport coe�cents"

Tjk �
D
Bj(qs(�)) j ~Bk

E
qd

: (38)

Tjk is large, but bs
j
is sparse. In some applications, it

might be possible to compute coupling coe�cients as

needed.

Using the multidimensional re�nement shown in (29),

given T(0lm)k on level l, we can compute all coe�-

cients on the level above it:

T(�(l�1)m)k =
X
m0

W�m0T0l(2m+m0)k (39)

and given Tj(0lm) on level l, we can compute

Tj(�(l�1)m) =
X
m0

W�m0Tj(0l(2m+m0)) (40)

where

m = (mu;mv;m�;m�): (41)

This means that we can compute all transport coef-

�cients strictly in terms of pure smoothing compo-

nents.
3It's important to remember that the inner product is taken

over [0; 1], while (11) is over (�1;1).

4.3 Surface Interaction

If we represent the BRDF in Nusselt coordinates with

the dual wavelet basis:

fr(�s; �s; �r; �r) =
X
j

fj ~Bj(�s; �s; �r; �r) (42)

and

Li(x; y; �s; �s) =
X
k

bkBk(x; y; �s; �s) (43)

where

j = (�j ; lj;m
i

�
;mi

�
;mj

�
;m

j

�
)

k = (�k; lk;m
k

u;m
k

v ;m
k

�;m
k

�) (44)

so, applying (6), the reected radiance is

Lr = 4

Z Z 1

0

fr(S
+0;V)Li(S

+0)d�0
s
d�0

s

= 4
X
j

X
k

fjbk

D
~Br j Bi

E
�s;�s

(45)

Making use of biorthogonality via (28), we derive a

wavelet representation of the post-interaction radi-

ance:

Lr =
X
n

br
n
Bn(x; y; �s; �s) (46)

where

br
n

= br�lmumvm�m�

= 4
X

mi
�;m

i
�

f�lmi
�m

i
�
m�;m�

bi
�lmumvm

i
�m

i
�

:(47)

If both f and b have sparse representations, br can

be e�ciently calculated by traversing their lookup ta-

bles.

We can do the same thing with a BTDF and so rep-

resent general surface interactions: reection, refrac-

tion, and transmission.

5 Implementation

Let's apply some of the concepts of the previous sec-

tion to a classic illumination problem: the transport

of radiation between two arbitrarily-oriented quadri-

laterals.
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Figure 6: Quadrilateral Coordinate Systems

5.1 Coordinate Systems

We must deal with several coordinate systems, as

shown in Figure 6. So far, we have dealt with a

positional distribution of radiance de�ned on a unit

square. In treating quadrilaterals, we still take radi-

ances to be represented on on the unit square, but

we now include a bilinear transformation to take us

from the (now) parametric unit square to an arbi-

trary quadrilateral4 and back. The quadrilaterals are

each de�ned in their respective 2-dimensional \object

coordinates". Furthermore, to establish the qs ! qd
mapping we allow a conventional a�ne mapping of

each quadrilateral to a \world" coordinate system.

5.2 Choice of Wavelet

Our discussion Sections 3 and 4 did not depend on

any particular wavelet. For implementation pur-

poses, we have to choose one. There is an extremely

good reason for choosing Haar wavelets, at least for

a �rst attempt.

As we mentioned in Section 3.1.6, the fast wavelet

transform can be performed in O(N ) time, but if we

allow for a varying dimensionalityD and wavelet ba-

sis, it is easy to see from (29) that the e�ciency is

actually O(jhjDmaxN ) where jhjmax is the maximum

width of the h and ~h �lters.

For this reason, as the dimensionality increases, the

rapidly-increasing operation count makes narrower

�lters increasingly desirable, even though wider �l-

ters have better approximation properties, in gen-

eral. Since Haar is the narrowest possible wavelet

4We allow triangles as a degenerate case of quadrilaterals.

�lter (jhjmax = 2), it seems a wise strategy to make

any multidimensionale�orts �rst with Haar and move

to wider bases later.

An additional advantage of Haar wavelets over the

others is the simpli�cation of the calculation of the

transport coe�cents. As (39) and (40) have shown,

these coe�cients can be computed entirely in terms

of pure smoothing calculations. A four-dimensional

Haar pure smoothing basis is a function that is con-

stant within a hypercube and zero outside of it. The

resulting transport coe�cients are volume integrals of

the overlap between such a hypercube in destination

parametric space and the object which is a projec-

tion of a hypercube in source parametric space into

the destination space5.

5.3 Transport Coe�cient Computa-

tion

As the preceding section suggests, using Haar

wavelets turns transport coe�cient computation into

volume integral evaluation. There are two practical

problems that then arise from the computation of

that volume. (Throughout this discussion, we will

be speaking in general terms.)

5.3.1 Some Source Points Don't Project Into

Destination Space

The source hypercube de�nes a range of positional

and directional coordinates qs. Not all of these coor-

dinates may map to points in the destination plane,

5This may not be such a great simpli�cation. After all, any
arbitrarily complex 3-dimensional integration may be trivially
turned into a 4-dimensional volume integral!



much less the destination quadrilateral. This compli-

cates any attempt at direct evaluation of the trans-

port integrals.

One mitigating property (that we have yet to make

use of) is that for a given �xed direction (�s; �s), ei-

ther all points (us; vs) map to the destination quadri-

lateral or none do.

5.3.2 The Projected Hypercube Has Curved

Sides

Even if all points in the source hypercube map to

the destination plane, the nature of the resulting vol-

ume, is not trivial. Needless to say, the projection of

a source parametric hypercube into destination para-

metric space is not a hypercube. Unfortunately, it is

not even a polytope.

Consider the four steps of the transform sequence

illustrated in Figure 6. Only the source-object-to-

world and world-to-destination-object transforms are

a�ne. The source-parametric-to-source-object trans-

form is bilinear and the the destination-object-to-

destination-parametric transform is inverse bilinear6.

The bilinear source-parametric-to-source-object

transform deforms the hypercube into a prism, but

once the prism is projected into destination object

space, its sides generally do not correspond to sur-

faces of constant destination parametric coordinates.

An arbitrary line of the form axd+ byd = c under the

inverse bilinear transform contains a term in udvd,

making the resulting line a hyperbola.

As a result, the projection of the source hypercube

into destination parametric space has curved sides.

Furthermore, the curvature is such that we cannot

guarantee that the convex hull of the polytope formed

by projecting the 16 corners of the source hypercube

into destination space contains the hypervolume.

5.3.3 Integration Techniques

For these reasons, we must resort to multidimen-

sional pointwise numerical integration schemes. At

6We have to be careful inverting a bilinear transform: For
a quadrilateral, points in object space can map to zero, one, or
two points in parametricspace. We have to determine inclusion
in the destination quadrilateral in object space �rst. Then we
can reliably invert the coordinates.

present, we adopt an unstrati�ed Monte Carlo ap-

proach. Other possibilities we are also considering

are: strati�ed Monte Carlo, trapezoidal, and a col-

lection of quasi-Monte Carlo methods as described in

Glassner [glas95].

5.4 Results

For a test con�guration, we imagine light shining

through the square stained glass window shown in

Figure 7. The incident light shines down at an angle

of 45� from the horizontal and is di�used by the glass

according to a distribution proportional to the 4th

power of the cosine of the angle between the propa-

gation direction and the incident direction. The light

falls on the oor, represented by another square.

Figure 8 shows the result, rendered with the help of

Craig Kolb's [kolb91] radshade raytracer. Due to time

constraints, the actual projected image is 16 by 16

pixels (rayshade interpolates), but given the di�use

nature of the problem, the resulting image looks ad-

equate and contains none of the \noise" common to

the usual Monte Carlo approach to this sort of prob-

lem.

5.5 Work in Progress

The wavelet transport solution used for Figure 8 took

several hours to propagate a sparse 16x16x16x16 set

of wavelet coe�cients (in red, green, and blue bands)

on an SGI Indigo 2 workstation. Needless to say, this

is impractical.

Nevertheless, we are continuing work with improved

transport coe�cient integration techniques and plan

to take further advantage of wavelet representations,

such as knowledge of the destination's reective prop-

erties, to reduce the amount of computation required

and allow us to go to larger sets of coe�cients.

Ultimately, we hope to incorporate wavelet radiative

transfer and surface interaction into a global illumi-

nation scheme.
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Figure 7: Spatial Component of Test Con�guration

Figure 8: Example of Wavelet Transport


