
Simplifying Terrain Models and Measuring Terrain Model Accuracy

David Scott Andrews

May 3, 1996



Abstract

We describe a set of TIN simpli�cation methods that enable the use of the triangulation hierarchy

introduced by Kirkpatrick [Kir83] and modi�ed by de Berg and Dobrindt [dBD95a, dBD95b]. This trian-

gulation hierarchy can be used to form a terrain model combining areas with varying levels of detail. One

variant of the delete simpli�cation method formed simpli�cations with accuracy close to the greedy method.

We also investigated di�erent variables that can be used to measure the accuracy of our simpli�ed

terrain models. Although the use of derivative statistics did not signi�cantly alter our evaluation of the

performance of our simpli�cation methods, we recommend that any future comparisons should be aware of

these alternative variables of surface characterization.
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Chapter 1

Introduction

There are many �elds that work with models of terrain. As computers were incorporated into these �elds,

various Digital Terrain Models were proposed and developed. One popular terrain model, introduced in

1978, is the Triangular Irregular Network [PFLM78]. It is based on irregularly distributed surface-speci�c

points. The selection of these points (as well as the triangulation criteria) has been well studied.

A single terrain model might not be appropriate for all users because of constraints on computing

space and time. A solution is to simplify the model, providing a balance of size and detail to suit each

individual. The user could select the best model from a set of precomputed simpli�cations or they could

create a new simpli�ed model that would meet their own requirements.

There exist many ways to simplify the model of a terrain. To compare the e�ectiveness of these

methods we need to examine their speed and their accuracy. Previous comparisons have used only the

elevation error of the models to grade their performance. But other �elds such as geomorphometry, the

study of landform, and geometry of surfaces indicate that there are other variables that can be used to

characterize a terrain. The e�ect of a simpli�cation on these variables should also be observed.

Chapter 2 describes and compares three Digital Terrain Models. The next chapter covers some of

the work we did on simplifying polygonal lines and measuring the concavity of polygonal lines. Chapter 4

describes various methods for Triangular Irregular Network simpli�cation and Chapter 5 describes our surface

accuracy measures. The results of our experiments are in Chapter 6 and our conclusions are in Chapter 7.
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Chapter 2

Digital Terrain Models (DTMs)

A terrain is the physical features of a tract of land. Its topography is its physical or natural features

and their structural relationships. If the earth's surface was regular, it could be perfectly modelled by

mathematical functions. Unfortunately, it is continuous but irregular, requiring the use of models based on

samples of the surface [Kum94].

A Digital Terrain Model (DTM) is a representation of terrain and topography. A DTM can

be stored on a computer as a data structure and a set of associated procedures. Computer applications

containing DTMs are used by people who specialize in terrains, such as geomorphologists, surveyors, pho-

togrammeters, cartographers and mathematicians [Mar78]. DTMs are also a vital component of Geographical

Information Systems (GISs).

The �rst section of this chapter lists some of the terrain characteristics that can be obtained from

a DTM. The next three sections describe three common DTMs, the Digital Line Graph (DLG), the Digital

Elevation Model (DEM) and the Triangular Irregular Network (TIN). The �nal section compares these three

DTMs.

2.1 Terrain Characteristics

The following paragraphs describe some of the problems that require DTMs to solve. Obtaining various

terrain characteristics from a DTM help to form the solutions to these problems. The data structure

and procedures of a DTM should support the computation of these terrain characteristics. Some sample

characteristics are listed below.

� elevation

� slope

� aspect

� visibility

� drainage

A slope map is a map of the slope magnitude at each point of the terrain. Hammond [Ham64] notes

that slope has a strong e�ect on landuse. One of the variables he uses to classify landform is the frequency of

gentle slope. At his upper limit of eight percent, machine cultivation becomes di�cult, the e�ects of erosion

become troublesome and vehicle movement becomes impeded. A DTM should be able to compute the slope

at a given point or generate a slope map for the complete surface.

De Berg and van Kreveld [dBvK93] de�ne a height level map to be built from a DTM. This map can

be used to answer path queries with height restrictions. Elevation has an e�ect on temperature. The e�ects
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of slope have been noted in the paragraph above. A path that satis�es elevation and slope constraints might

be preferred to the Euclidean shortest distance path.

De Floriani, Marzano and Puppo [DFMP94] study line-of-sight visibility problems. Their example

problem asks for the arrangement of a set of microwave transceiver stations in such a way that a signal

transmitted from any station can be received by any other station. Since a signal propagates along a

straight line and is interrupted by physical obstructions, the towers must be mutually visible. Other related

line-of-sight problems include the location of radar, laser or sonar surveillance systems and the location of

television transmitters. They use a discrete visibility map consisting of a set of candidate points with edges

connecting points that are mutually visible.

The viewshed of a point on the terrain is the area of the terrain visible to that point. Fisher [Fis94]

considers a variant of the binary viewshed. The smoke from a forest �re might be in the viewable area of an

observation tower even if the �re is not in the line-of-sight. The same situation applies to the visual impact

of a tall structure built beyond the horizon. His variant would encode the distance between the horizon and

the surface. The height of the smoke of a forest �re or the height of a building could be compared to this

distance to obtain a more accurate viewable area than a simple line-of-sight viewshed.

Mark [Mar78] proposes a typology for DTM data structures with an initial classi�cation based on

how elevation is computed. His typology has been reproduced in Figure 2.1. Tabular or discrete data

DTM

Tabular

Lines

Horizontal DLG

Vertical

Points

Irregular TIN

Regular DEM

Mathematical

Patches

Surface-Speci�c

Surface-Random

Universal

Multi-Quadric

Fourier

Figure 2.1: Mark's DTM typology

structures obtain the elevation by interpolating from the surrounding data. Mathematical or continuous

data structures obtain the elevation by evaluating a modelling function. The di�erence between the two

branches of his initial division is minor since interpolation can be considered as the evaluation of a function.

He also notes that the digital data structure of a continuous function is represented by a discrete set of
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coe�cients. We only use a subdivision of his typology as the data structures of the three DTMs discussed

below are all part of the tabular or discrete data structure division.

A discrete data structure requires an interpolation method. The interpolation method depends on the

data structure and the desired level of continuity. Di�erent interpolation methods can a�ect the continuity

of the surface and its derivatives. For example, the TIN model discussed in Section 2.4 commonly uses linear

interpolation. The surface of this model is continuous but its slope is not di�erentiable.

2.2 Digital Line Graphs (DLGs)

Figure 2.2: Digital Line Graph (DLG)

A Digital Line Graph (DLG) is a set of contour lines. Figure 2.2 shows a perspective view of a DLG.

Each contour line is a list of x and y coordinate vertices with a common z coordinate altitude. Each vertex

requires the storage of two coordinates. DLGs are part of Mark's [Mar78] Tabular - Lines - Horizontal DTM

subdivision.

Terrain and topography information is commonly stored in non-automated contour maps [Eva72].

Data �les of contours are widely available because digitizing contour lines from existing maps is a popular

input method. Other DTMs are often constructed from digitized contour lines because of their availability.

Elevation contours can be formed from other DTMs but this is only done because contour lines are a familiar

visual representation of an elevation surface [Kum94].

Terrain characteristics can be quickly computed if they only depend on a single contour line. Un-

fortunately most terrain characteristics, like the sample characteristics listed in Section 2.1, are much more

di�cult to compute because they require identifying nearby contours [Eva72].

2.3 Digital Elevation Models (DEMs)

A Digital Elevation Model (DEM) or regular grid is a matrix of z coordinate altitudes with x and y

coordinates implicit in the grid. Figure 2.3 shows a perspective view of a DEM with edges connecting neigh-

bouring vertices. Each vertex requires the storage of only one coordinate. DEMs are part of Mark's [Mar78]

Tabular - Points - Regular - Constant Density DTM subdivision.

DEMs are widely available. The United States Geological Survey produces DEM data �les cor-

responding to its published maps. These are created by manually pro�ling stereo models or by using an

automatic image correlator [Kum94].
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Figure 2.3: Digital Elevation Model (DEM)

DEMs are widely used because they are convenient for programming and for machine storage [Mar78].

Many problems requiring a DTM bene�t from the �xed data resolution of a DEM. Information concerning

a restricted area, a neighbourhood, can be easily selected since the sequence of storage is known and

regular [Eva72]. But a �xed resolution is also a disadvantage. The resolution of the regular grid may not

adequately model rough areas of the surface while being redundant in smooth areas.

Kumler [Kum94] notes that many early favorable comparisons of DEMs and other DTMs concerned

the trade-o� between the speed of processing and the cost of storing the structure. Later comparisons

considered accuracy and required storage space.

2.4 Triangular Irregular Networks (TINs)

Figure 2.4: Triangular Irregular Network (TIN)

Peucker, Fowler, Little and Mark [PFLM78] were motivated to develop an alternative model because of

problems with the Digital Elevation Model (DEM). A DEM must use a �ne regular grid to accurately model
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rough terrain; this grid can be highly redundant in smooth terrain. Also, the DEM data structure doesn't

correspond with the \structure of the phenomenon" [Mar78]. The design of a DTM data structure should

reect the terrain it will represent, unlike the DEM which was designed with the problems it solves and the

machines it uses in mind. But the neighborhood of a point in a DEM can be reconstructed without searching

the entire model. Any successful alternative must store this useful information explicitly.

A Triangular Irregular Network (TIN) is a set of irregularly-distributed vertices linked together

by straight lines to form a continuous, non-overlapping set of triangular elements [Mar78]. Figure 2.4 shows

a perspective view of a TIN. Each vertex requires the storage of all three coordinates. TINs are part of

Mark's [Mar78] Tabular - Points - Irregular DTM subdivision.

Peucker, Fowler, Little and Mark [PFLM78] base their TIN on surface-speci�c vertices. Ridges and

channels connecting the peaks, pits and passes of the surface form the skeleton of the TIN. Additional vertices

are added to improve spot height accuracy and the set is then connected in a Delaunay triangulation.

Although DEMs have better elevation detail and DEM �les are widely available, TINs have the

advantage of e�cient storage and better handling of intervisibility analysis and extraction of hydrological

terrain features [Lee91].

Variations of TINs exist with di�erent vertex distributions and di�erent triangulation criteria. The

following section reviews triangulations in general and the Delaunay triangulation in particular.

2.4.1 Triangulations

A triangulation of a set of vertices V is a set of closed triangles T formed by edges connecting pairs of

vertices in V that satisfy the following conditions [DLR90].

� The set of all vertices of triangles in T is V .

� Each edge of a triangle in T contains only two vertices (its endpoints) in V .

� The union of all triangles in T is equal to the convex hull of V .

� The intersection of the interiors of any two distinct triangles in T is empty.

Lee and Schachter [LS80] present an iterative algorithm for constructing a triangulation based on

two primitive operations, adding a vertex and swapping a diagonal. In Figure 2.5, a new vertex is connected

to each of the three vertices of its enclosing triangle in the existing triangulation. If the quadrilateral formed

Figure 2.5: Adding a vertex to a triangulation

by the union of a new triangle and its neighbour is convex, it will have an alternate diagonal. The diagonal

should be swapped with the alternate if required by a local optimization procedure. Figure 2.6 shows how

a diagonal is swapped.

Di�erent triangulations can be de�ned by di�erent local optimization procedures. If a diagonal is

swapped, two new triangles are formed with quadrilaterals that have to be similarly optimized. Some of the

many possible local optimization procedures are listed below.

� minimize the maximum or sum of perimeter2=area of the two triangles [Law72]
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Figure 2.6: Swapping a diagonal in a triangulation

� maximize the minimum angle in the two triangles [LS80]

� minimize the angle between the normals of the two triangles [DLR90]

A local cost function on each pair of neighbouring triangles can be used as an optimization procedure. A

global cost function for the triangulation can be formed by using either the maximum or the sum of the

local cost functions. Lawson proved that any triangulation of a �nite vertex set can be transformed into

another triangulation of the same set with a �nite number of diagonal swaps [Law72]. This theorem shows

that any triangulation can be transformed into a triangulation that minimizes a given global cost function.

Unfortunately, minimizing the local cost function for each diagonal does not guarantee that the global cost

function will be minimized.

There are triangulations that do not have a local optimization procedure. One example is the

Minimum-Weight Triangulation [PS85]. This triangulation is formed by minimizing the total length of the

triangulation edges. Locally minimizing the length of the edges of each pair of triangles does not guarantee

that the total length will also be minimized.

Delaunay Triangulation

ADelaunay triangle is a triangle whose circumcircle does not contain any other vertex in V . This property

is called the empty-circle property. ADelaunay triangulation is a triangulation in which every triangle

Figure 2.7: Delaunay triangle

in T is a Delaunay triangle.

The Delaunay triangulation is related to the Voronoi diagram. The Voronoi diagram for a set of

vertices V is a set of Voronoi cells (convex polygons), one about each vertex. Each Voronoi cell contains

all points closer to its vertex than any other vertex in V . By de�nition, an edge between two Voronoi cells

is equidistant from two vertices. The point where three edges meet is equidistant from three vertices.

The Delaunay triangulation is the graph dual of the Voronoi diagram. An edge in the Delaunay

7



Figure 2.8: Delaunay triangulation

Figure 2.9: Voronoi diagram

triangulation connects vertices with adjacent Voronoi cells. A triangle in the Delaunay triangulation has

a circumcircle centered at a point where three Voronoi edges meet. By de�nition, the Voronoi diagram

for a set of vertices is unique. Since the Delaunay triangulation is the dual of the Voronoi diagram, the

Delaunay triangulation is also unique under general position assumptions. The Delaunay triangulation can

be constructed by using the empty-circle property of Delaunay triangles. It can also be constructed by

using the local optimization procedure of maximizing the minimum angle in each pair of triangles. This

triangulation is used for �tting triangular faceted surfaces to digital terrain data by Lee and Schachter

because it minimizes computation time and produces a good visual display [LS80]. The resulting TIN is

used for ight simulators.

2.5 Comparison of DTMs

Availability, usability and storage space should be considered when comparing DTMs. DTM data �les should

be available or algorithms should exist to convert other DTMs with available data �les to the desired DTM.
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Figure 2.10: Delaunay triangulation and Voronoi dual

DTMs should be able to quickly and accurately compute the terrain characteristics needed by the user.

DTMs should minimize the amount of space needed to store and use the model while keeping an acceptable

level of accuracy.

Availability

DLG and DEM data �les are widely available. TIN data �les are not widely available but many algorithms

exist for constructing a TIN from a DLG or a DEM. Four methods for building TINs from DEMs are reviewed

in Section 4.2.1.

Usability

DLGs are not easy to use. Single contour operations are straightforward but tasks requiring multiple contours

are much more di�cult because moving from contour to contour is very awkward. DEMs are very easy to

use. They are in a matrix form that is easy to access and manipulate. TINs are more complex than DEMs

but they are also better for solving some of the more complex DTM problems.

Storage

DEMs only need to store one coordinate per point while TINs need to store all three coordinates as well

as adjacency information. But the number of points required to accurately describe a surface with a TIN

is usually smaller than the number of points required by a DEM. Kumler [Kum94] studies this tradeo� by

comparing the accuracy of a \Super TIN" with 50000 points to DEM requiring equal data �le storage space

with 170000 points.
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Chapter 3

Work with Polygonal Lines

We started working with both DLGs and TINs but we were unable to transfer ideas useful in forming a

simpli�cation of a surface and measuring the accuracy of a simpli�ed surface from one model to the other.

The main obstacle was the number of dimensions of the primitives in each model; each polyline in a DLG is

2{D while a triangular facet and its neighbours in a TIN are 3{D.We present some of our work on simplifying

and measuring the concavity of the polylines in a DLG in the �rst two sections of this chapter. The third

section discusses the ideas that were transferred to our work with TINs.

Mokhtarian [Mok90] proposes a multi-scale shape representation technique for planar curves based

on curvature. This work can be related to both polyline simpli�cation discussed in Section 3.1 and shape

measurement discussed in Section 3.2. He uses an multi-scale approach to �nd a quick, approximate match

at a coarse, simpli�ed scale and then uses the �ner scales to obtain more accurate matches. He also uses a

technique based on curvature to represent the shape of the curve that is invariant under rotation, uniform

scaling and translation.

3.1 Simpli�cation of Polygonal Lines

A polyline is a sequence of vertices v0; v1; : : : ; vn connected by a sequence of straight line segments

v0v1; v1v2; : : : ; vn�1vn. We will refer to the section of the polyline from vi to vj as vi : : : vj . We wanted a

method for simplifying a polyline. The method should produce a polyline with a reduced number of vertices

but still a good caricature of the original polyline. The algorithm presented by Douglas and Peucker [DP73]

performs well.

3.1.1 Douglas-Peucker Algorithm for Line Simpli�cation

Douglas and Peucker [DP73] present a method for line simpli�cation. The method computes a simpli�cation

value for each vertex of the original polyline. A vertex is included in a simpli�cation if its simpli�cation

value is more than a given threshold. We implemented an algorithm that computes the simpli�cation values

of the n vertices of a polyline in O(n2) time and we also implemented an algorithm that forms a simpli�ed

polyline in O(n) time after the simpli�cation values have been computed.

The same simpli�cation values can be used with di�erent thresholds to form polylines with di�erent

levels of detail. The vertices that are not included in the simpli�cation are all within a small perpendicular

distance to the line segments connecting the vertices that are included.

Algorithm notes

This algorithm recursively sets the simpli�cation value of the vertex furthest from the line segment connecting

the endpoints of the polyline. It is described below.
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1. Initialize the simpli�cation value of the two endpoints of the polyline to in�nity.

2. Form a line segment v0vn with the two endpoints of the polyline v0 : : : vn.

3. Find the vertex vi in the polyline v0 : : : vn with the largest perpendicular distance to the line segment

v0vn.

4. Set the simpli�cation value for vi to the minimum of the perpendicular distance from vi to the line

segment v0vn and the simpli�cation values of the two endpoints.

5. Repeat steps 2 to 5 with the polyline v0 : : : vi and the polyline vi : : : vn until every vertex has a

simpli�cation value.

If the method is applied to a set of contour lines, the simpli�ed contour lines may intersect. Also,

the method retains the points where a contour crosses a ridge or a valley almost too well, resulting in too

many vertices concentrated on those features and not enough for the other parts of the surface [Kum94].

3.2 Concavity Measures for Polygonal Lines

The simpli�cation of a polyline should preserve key properties of the original polyline. One property we

examined was concavity. To observe the e�ect of the simpli�cation of a polyline on concavity, we needed a

concavity measure for points on a polyline. A good measure should not depend on the level of detail in the

polyline. In addition, it should not be a�ected by translation or rotation of the polyline and it should be

scalable.

The window is the section of the polyline around a given point that is used to determine the

concavity of that point. The measure should have a parameter to control the size of the window. The size

of the window can be set so that local changes do not dominate the concavity measure.

We developed two measures, the secant measure and the disk measure.

3.2.1 Secant Concavity Measure

The secant concavity measure of a point on a polyline is based on the ratio of the area between the

polyline and a secant and the square of the length of the secant.

The area between the polyline and the secant is calculated by �nding the di�erence between the area

covered by the polyline and the area covered by the secant. The area covered by a directed line segment is

equal to the area of a triangle formed by the line segment and a point. The area is positive if the point lies

on the left hand side of the segment and negative if the point lies on the right hand side. The area covered

by a polyline is equal to the sum of the areas covered by the directed line segments of the polyline for the

same point. The area can be positive or negative. These areas are dependent on the location of the point

but the di�erence of these areas is not.

Algorithm notes

Given a point p on the polyline and a window distance d.

1. Find the two points that are d along the polyline in both directions from p and compute the area

covered by the section of the polyline between these two points. The measure is unde�ned if the

distance along the polyline from p to an endpoint is less than d.

2. Form a secant between these two points and compute the area covered by the secant.
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Figure 3.1: Area covered by a line segment Figure 3.2: Area covered by a polyline

3. Calculate the di�erence of the area covered by the section of the polyline and the area covered by the

secant. This di�erence represents the area between the polyline and the secant. It can be positive or

negative.

4. Form the ratio of this area and the square of the length of the secant. Using the square of the length

of the secant makes the measure scalable. It also makes the ratio an area:area ratio. A large positive

ratio indicates a convex point relative to the left side of the polyline near p. A large negative ratio

indicates a concave point. The ratio has no �nite lower or upper bound.

As a polyline is simpli�ed, the region speci�ed by the window parameter gets larger. One solution

to this problem is to keep the ratio of the window distance and the length of the polyline constant. If the

secant concavity measure with a window distance of d is used on a polyline of length l, then a simpli�ed

polyline of length s should use the measure with a scaled window distance of s

l
d.

Implementation notes

This implementation can classify every point (not just the vertices) on a polyline with n vertices in O(n)

time. It maintains the secant concavity measure for the \window" point and it maintains the \tail" point a

distance d behind the \window" point and the \head" point d ahead of the \window" point.

� Initialize the points and the concavity measure.

{ Initialize the \tail" point to one endpoint of the polyline.

{ Initialize the \window" point d along the polyline.

{ Initialize the \head" point 2d along the polyline.

{ Initialize the concavity measure using the polyline section and the secant between the \tail" point

and the \head" point.

� Maintain the concavity measure while moving the three points along the polyline. The concavity

measure is a ratio of two areas. As the \window", \tail" and \head" points move along the polyline,

this ratio forms a quadratic function.

{ If the \tail" point or the \head" point reaches a polyline vertex, the rate of change of the ratio

changes.

{ If the ratio reaches a given positive or negative threshold, note the change of classi�cation.
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3.2.2 Disk Concavity Measure

The disk concavity measure of a point on a polyline is based on the ratio of the area on the left side of

a directed polyline within a circle of given radius to the area of that circle.

Algorithm notes

Given a point p on the polyline and a window radius r.

1. Form a disk with a radius r around p.

2. Find the two points where the polyline crosses the boundary of the disk.

3. Calculate the area of the intersection of the disc and the left side of the polyline section between these

two boundary points.

4. Compute the di�erence of this area and the area of half the circle.

5. Form the ratio from this di�erence and the area of half the circle. A large positive ratio indicates a

convex point. A large negative ratio indicates a concave point. The ratio has a lower bound of �1:0

and an upper bound of 1:0.

There is no need to scale the window radius as the polyline is simpli�ed.

Implementation notes

Our implementation only classi�ed the vertices of the polyline. It calculates the disk concavity of each vertex

independently. The upper time bound is O(n2) because calculating the disk concavity measure for a single

point is an O(n) operation and this must repeated for all n vertices.

3.2.3 Comparison of Concavity Measures

The implementation of our disk measure only computes the concavity for polyline vertices while the im-

plementation of our secant measure algorithm computes concavity for all points on the polyline. Also, our

secant measure implementation has a better time bound than our disk measure algorithm. The ratio bounds

are di�erent so ratios cannot be directly compared.

3.3 Transferring Ideas to TINs

3.3.1 Simpli�cation

A useful feature of the Douglas-Peucker line simpli�cation method is its use of recursion. The algorithm

subdivides the polyline into two sections and simpli�es these sections independently. This would also be a

useful feature of a TIN simpli�cation method.

The line simpli�cation method uses the distance from a point to a line segment of the polyline to

determine if the line should be subdivided. With a TIN, the distance from a point to the planar facet of a

triangle can be used as a measure of the importance of that point.

3.3.2 Concavity Measures

The ideas behind the secant measure cannot be easily transferred to a polyhedral surface. The secant measure

uses a secant, which can be de�ned for a polyline or a curve but not for a surface. The ideas behind the disk

measure can be transferred but the computation is di�cult. Finding the volume of the intersection of a ball

and a set of planes is harder than computing the intersection of the disk and the area inside the polyline.
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Chapter 4

Simpli�cation of a Triangular

Irregular Network (TIN)

This chapter describes the methods we used to simplify TINs. The �rst two sections review past work

on hierarchical triangulations and hierarchical TINs. Section 4.3 describes our methods for selecting and

removing vertices to form a hierarchical TIN that can combine di�erent levels of detail. We used another

TIN simpli�cation method, described in Section 4.4, to compare the surface accuracy of our simpli�cations.

The details of our implementation of this hierarchical method are described in Section 4.5.

4.1 Hierarchical Triangulations

Kirkpatrick [Kir83] presents an algorithm for optimal search in planar subdivisions that uses a triangular

subdivision hierarchy. A planar subdivision is a �nite collection of line segments inducing a partition of the

plane into polygonal regions. A triangular subdivision is a �nite collection of �nite line segments inducing

a partion of the plane into regions bounded by three line segments. This is equivalent to a triangulation.

A planar subdivision can be reduced to a triangular subdivision in two steps. In the �rst step, the planar

subdivision is intersected with a triangle chosen to contain all intersections of the planar subdivision. In the

second step, each interior region of this triangle is triangulated.

The neighbourhood of a vertex v in a triangular subdivision is the star-shaped polygon formed

by the union of the triangles incident to v. A triangular subdivision can be simpli�ed by removing a vertex

and retriangulating its neighbourhood. The parents of a triangle t in the retriangulated neighbourhood are

the triangles in the original neighbourhood that intersect t. If a vertex v with degree deg(v) is removed,

each triangle in the retriangulated neighbourhood will have at most deg(v) parents regardless of how the

neighbourhood is retriangulated.

The simpli�cation achieved by removing a single vertex is minimal. If a set of vertices is removed, the

simpli�cation can be more substantial. The neighbourhoods of non-adjacent vertices do not intersect except

possibly along edges. The vertices in an independent set can be removed in parallel and their neighbourhoods

can be retriangulated independently.

The triangulation hierarchy is a sequence of successively simpli�ed triangular subdivisions. This

hierarchy is used to �nd the region containing a given test point. At each level of the hierarchy, the search

algorithm locates the region containing a given test point by searching the through a set of candidates. The

parents of that region become the new candidates for the search at the next level. To optimize the search

algorithm, the number of levels and the size of the set of search candidates or parents should be minimized.

The degree of a vertex a�ects the size of the set of search candidates and the number of vertices removed

a�ects the height of the hierarchy. The size of a set of independent vertices with degree at most 11 would
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Figure 4.1: Neighbourhood of a vertex

be at least n=18 where n is the number of vertices in the current triangulation. The proof is below.

Notation

V = vertices

Vhigh = fvi 2 V j deg(vi) > 11g

Vlow = fvi 2 V j deg(vi) � 11g

nv = number of vertices

ne = number of edges

nt = number of triangles

nh = number of edges in hull (minimum 3)

Proof

nt � ne + nv � 1 = 0 (Euler's formula)

3nt + nh = 2ne (counting edges)

nt = 2(ne � nh)=3

2(ne � nh)=3� ne + nv � 1 = 0 (substitute nt in Euler's formula)

2ne � nh � 3ne + 3nv � 3 = 0

ne = 3nv � nh � 3

ne � 3nv � 6 (minimum nh is 3)

average degree = 2ne=nv

� 2(3nv � 6)=nv

< 6
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3jVlowj+ 12jVhighj < 6jV j (total degree)

9jVhighj < 3jV j (subtract 3jV j)

jVhighj < nv=3

jV j � jVhighj � nv � nv=3

jVlow j � 2nv=3

jVlow j=12 � nv=18 (vertex and 11 neighbours)

Kirkpatrick's optimal search algorithm has a O(n) preprocessing time, O(lgn) search time and O(n)

space.

4.2 Hierarchical TINs

A hierarchical TIN attempts to combine the useful features of a hierarchical data structure with a TIN. The

result should be able to approximate the surface at di�erent resolutions while keeping the bene�ts associated

with TINs, such as irregularly-distributed vertices, e�cient storage and better handling of visibility and

drainage problems. This section reviews di�erent approaches of forming a hierarchical TIN.

G�omez and Guzm�an [GG79] present a model for three-dimensional surface representation that uses a

tree of triangles. If the surface represented by a planar triangle does not satisfy a prespeci�ed error tolerance

it is subdivided. Figure 4.2 shows the four child triangles formed by adding new vertices to the three edges

of the parent triangle. This hierarchical model uses more vertices to describe areas of rough terrain but the

Figure 4.2: Subdividing a triangle into four children

surface of this model is not continuous. Discontinuities can appear along the edge shared by a triangle that

is subdivided and a neighbouring triangle that is not subdivided.

De Floriani, Falcidieno, Nagy and Pienovi [DFFNP84] present a di�erent hierarchical structure. A

triangle is subdivided by inserting the vertex that will minimize the interpolation error of the remaining

vertices within that triangle. Figure 4.3 shows the three child triangles formed by the edges connecting the

new vertex to the three vertices of the parent triangle. This model includes more points in rough areas

Figure 4.3: Subdividing a triangle into three children

and it forms a continuous surface at each level of the hierarchy. The major problem with this model is its

tendency to form elongated triangles that can lead to inaccuracies in numerical interpolation [dBD95a]. In

Section 4.2.1, this hierarchy is used as a method for building a TIN from a DEM.
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These two structures are modi�ed in an attempt to address the problems of surface discontinuities

and elongated triangles.

Scarlatos and Pavlidis [SP90] aim to triangulate while looking more carefully at the terrain features

that are being approximated. They also wish to avoid thin triangles that can appear in other hierarchical

triangulations. The re�nement technique they present inserts vertices and splits edges of a single triangle to

approximate pit or peak points and ridge or channel lines. Scarlatos and Pavlidis compare their technique to

the hierarchical structure presented by De Floriani, Falcidieno, Nagy and Pienovi. They �nd a substantial

decrease in the number of thin triangles because their technique allows edge splitting. Their technique

also results in a decrease in the number of levels in the hierarchy required to achieve a given degree of

approximation because each triangle can be subdivided into more than three children.

De Floriani and Puppo [DFP92] re�ne each triangle by inserting new vertices along the edges of

the parent triangle and then inserting vertices in the interior. These new vertices are connected in a local

Delaunay triangulation. Elongated triangles are avoided but the union of the triangles in these local trian-

gulations do not necessarily form a global Delaunay triangulation. The surface is continuous at each level of

the hierarchy but discontinuities may appear if areas from di�erent levels of the hierarchy are combined.

The triangulation hierarchy presented with Kirkpatrick's optimal search algorithm was modi�ed by

de Berg and Dobrindt [dBD95a, dBD95b] to be used for polyhedral terrains or TINs. They present a method

for displaying terrains combining areas with di�erent levels of detail. The details of our implementation of

their method are described in Section 4.5.

The other hierarchical TINs presented above replace a single triangle with a set of triangles. These

hierarchies have the advantage of a tree structure but the disadvantage of either producing skinny triangles

or surface discontinuities. The hierarchical TIN presented by de Berg and Dobrindt replaces a group of

triangles with another group of triangles. This hierarchy is not a tree but a directed acyclic graph which

makes it more di�cult to combine parts. But it has the advantage of allowing the use of a global Delaunay

triangulation at every level.

An importance value is assigned to each vertex so that peaks, passes, pits and other points important

to the shape of the terrain would not be deleted. Vertices are then selected and removed in order of increasing

importance. Their method also allows the users to select a set of \�xed" vertices that are never removed.

4.2.1 Measuring Vertex Importance

De Berg and Dobrindt use a method for assigning an importance value to each vertex mentioned by

Lee [Lee91]. Lee reviews four methods for building TINs from DEMs. These methods are summarized

in this section.

The Skeleton method [FL79] uses peaks, pits, passes, ridges and valleys to form the skeleton of the

TIN. A 3�3 point window is used to de�ne peak and pit points. The center point of a 3�3 point window is

de�ned to be a peak if it is a relative local maximum. Similarly, the center point is de�ned to be a pit if it is

a relative local minimum. A 2�2 point window is used to de�ne ridge and valley points. A point appears in

four 2� 2 windows. It is de�ned to be a ridge point if it is never the minimum point of these four windows.

Similarly, a point is de�ned to be a valley point if it is never the maximum point. Ridge and valley lines are

formed by connecting ridge and valley points. Next, the Douglas-Peucker algorithm for line simpli�cation

described in Section 3.1.1 is used to reduce the number of points needed to describe these lines. Support

points are then added to improve di�erences in elevation. This complex method was excluded from Lee's

comparison because it required too many tolerances.

The Filter method [CG89] discards points that can be closely interpolated by the points in its 3� 3

grid neighbourhood. Since each point is visited only once this method is faster than the other methods in

Lee's review. The disadvantage of this method is that only local information is used to select the points.

The Hierarchy method [DFFNP84] recursively subdivides each triangle by inserting the point with

the largest di�erence between the original and interpolated elevations. This method does not use a Delaunay
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triangulation and tends to produce long and thin triangles but it has the advantage of a hierarchical data

structure.

The Drop Heuristic method [Lee89] iteratively discards the point which will cause the least di�erence

in elevation when dropped. The advantage of this method is that it uses the Delaunay neighbours rather

than the grid neighbours of a vertex to �nd its importance in a global context. Unfortunately, this method

is susceptible to drift; small errors introduced by discarding points can accumulate into large errors.

The Filter method, the Hierarchy method and the Drop Heuristic method each have two possible

stopping conditions. Vertices can be inserted or deleted until either the TIN reaches a pre-set number of

points or the TIN reaches a pre-set tolerance of elevation error.

The Drop Heuristic method can be considered a TIN simpli�cation method instead of a method for

building a TIN from a DEM because it begins by connecting the entire DEM into a TIN. The Hierarchy

method can also be considered a TIN simpli�cation method because it has no constraints on the distribution

of its input data. The Skeleton and the Filter methods are not TIN simpli�cation methods because they

require gridded data as input but they are of interest to us because of their di�erent de�nitions of important

points.

4.2.2 Removing Vertices

Kirkpatrick simpli�es the levels in his triangular subdivision hierarchy by removing vertices and retriangu-

lating their neighbourhoods. In de Berg and Dobrindt's modi�cation, these two tasks must be completed

while retaining a Delaunay triangulation.

Midtb� [Mid94] studies three algorithms for removing vertices from a Delaunay triangulation. He

describes a simple algorithm for retriangulating the neighbourhood of a deleted vertex. This algorithm

uses pairs of edges along the hull of the neighbourhood to form triangles. The radius of the circumcircle

of each potential triangle is calculated and an edge is added to complete the triangle with the smallest

radius. This process is repeated until the neighbourhood is completely retriangulated. The simple algorithm

retriangulates a neighbourhood with d vertices with a worst case running time of O(d2) while the other

two algorithms he describes have worst case running times close to O(d logd). But the average d is small

enough that the actual running times for the simple algorithm are faster than the running times for the

other algorithms he tested.

4.3 Delete Simpli�cation Methods

We wish to simplify a TIN so the hierarchy described by Kirkpatrick and modi�ed by de Berg and Dobrindt

can be used. We describe a set of delete simpli�cation methods that meet this constraint. The sim-

pli�cation is formed in two steps. The �rst step selects a set of vertices to be deleted. The second step

deletes these vertices and retriangulates their neighbourhoods. These two steps can be repeated for further

simpli�cation.

Since our method of deleting vertices places constraints on how these vertices are selected, we will

present the two steps of the simpli�cation in the reverse order. Section 4.3.1 provides the details on how

selected vertices are deleted from the TIN and Section 4.3.2 provides the details on how vertices are selected.

4.3.1 Deleting Vertices and Retriangulating Neighbourhoods

If a vertex is deleted from a triangulation, its neighbourhood must be retriangulated. A local retrian-

gulation is a retriangulation that does not a�ect the triangles outside of the neighbourhood. A local

retriangulation is always possible, but there is no guarantee that there will be any local retriangulation that

can satisfy a given triangulation criteria.
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If a vertex is deleted froma Delaunay triangulation, the retriangulation required to form the Delaunay

triangulation of the remaining vertices is a local retriangulation [Mid94]. The triangles outside of the

neighbourhood are una�ected so the retriangulation must be local. The proof is below.

Notation

V = set of vertices including vdel

t = any triangle on V

vdel = deleted vertex

Proof

t is Delaunay on V , 8vi 2 V jvi outside circumcircle of t

t is Delaunay on V , t 2 Delaunay triangulation of V

if t does not have vdel as a vertex then

t 2 Delaunay triangulation of V

) t is Delaunay on V

) 8vi 2 V jvi outside circumcircle of t

) 8vi 2 V � fvdelgjvi outside circumcircle of t

) t is Delaunay on V � fvdelg

) t 2 Delaunay triangulation of V � fvdelg

We will be using the simple fast retriangulating algorithm described by Midtb� [Mid94].

4.3.2 Selecting Vertices

If the retriangulation is local and no two vertices in the set of vertices to be deleted are adjacent, each

delete and retriangulate operation is independent. This allows us to delete a set of vertices without worrying

about the interactions among pairs of delete and retriangulate operations. Our retriangulating algorithm

may work on some intersecting neighbourhoods of adjacent vertices but will work on all neighbourhoods of

independent vertices.

Each of the following methods uses a di�erent importance measure to select vertices. All three of

the measures are local; they only use the neighbourhood of the vertex to measure its importance.

The only criteria for selecting vertices in Kirkpatrick's [Kir83] original triangulation hierarchy is the

degree of the vertex. We name this method the degree delete simpli�cation method. We deleted a set

of independent vertices with degree equal or less than 11. This simpli�cation method only uses a binary

measure for each vertex.

This method does not use elevation information to select the vertices. We do not expect this method

will form accurate simpli�cations but it is included for comparison purposes.

The next two methods use a \atness" measure to select vertices with low importance.

The volume delete simpli�cationmethod uses the di�erence in volume as the \atness" measure.

The absolute di�erence in the volume under the neighbourhood of the vertex with and without the vertex is

computed. If the absolute di�erence is small, deleting that vertex will have a relatively small e�ect on the

model.
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This method is similar to the algorithms evaluated by Lee [Lee91] and Kumler [Kum94]. Those

algorithms built TINs from DEMs and used the absolute di�erence in elevation at grid locations. By

calculating the di�erence in volume, this method considers the di�erence in elevation at all points and not

just the di�erences at vertices of a TIN or DEM.

The normal delete simpli�cation method uses the normal vectors of the triangular facets to

compute the \atness" measure. The unit normal of each triangle in the neighbourhood of the vertex is

computed. Another unit normal is formed by the average of these normals. The mean of the dot products of

each individual unit normal and the average unit normal forms the \atness" measure. Equal unit normals

have a dot product of one. If the mean of the dot products is near one, the terrain around that vertex is at

and deleting that vertex will have a relatively small e�ect on the model.

This \atness" measure is harder to interpret than the measure used by the volume method. We

know the best \atness" value is one but we do not know what range of values to expect in our experiments.

4.4 Insert Simpli�cation

We wanted to test the delete simpli�cation methods against another type of simpli�cation method.

Garland and Heckbert [GH95] examine the greedy insertion algorithm which we rename the insert

simpli�cation method. The insert simpli�cation method builds a simpli�cation of a TIN by repeatedly

inserting the vertex with the largest associated error. This error is measured as the height between the

current TIN and the vertex. The process is continued until the desired number of vertices is reached. The

initial TIN is the at plane de�ned by four vertices at elevation zero.

This simpli�cation method does not guarantee that the hierarchy described by de Berg and Dobrindt

can be formed.

4.5 Rendering Terrain with Varying Levels of Detail

We implemented a program to render a terrain with varying levels of detail based on de Berg and Do-

brindt's [dBD95a, dBD95b] hierarchy for TINs. Each of the delete simpli�cation methods in Section 4.3

generates a sequence of terrain models which can be used to form the hierarchy. This hierarchy can be

used to form a terrain using less data, resulting in faster rendering. It can also be used to form a terrain

with non-uniform levels of simpli�cation. These models and the links between them are stored in the data

structures explained below.

4.5.1 Data Structures

As the TIN is simpli�ed, vertices are deleted and their star-shaped neighbourhoods are retriangulated. A

simpli�ed TIN can be re�ned by reversing this process. These re�nements are stored by the hierarchy. Each

triangle belongs to a group of triangles that form the retriangulated neighbourhood of a deleted vertex. These

triangles are re�ned by inserting the deleted vertex and restoring the triangulation. In our implementation,

each triangle has a link to its group polygon and each polygon has links to the its unre�ned reject triangles,

the accept vertex that is used to re�ne these triangles and its re�ned accept triangles. The triangle links

are shown in Figure 4.4 and the polygon links are shown in Figure 4.5, Figure 4.6 and Figure 4.7.

We implemented a program to render terrain with varying levels of detail in C++. The header �les

for the four classes are in the sections below.

Vertex

class _vertex {

public:
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Figure 4.4: Links from triangles to their group polygon.

Figure 4.5: Links from the polygon to its reject triangles.

/* constructor */

_vertex();

/* access functions */

void set_v(float v0, float v1, float v2);

void set_level(int level0);

/* returns true

if distance from v0 to implicit vertex

less than

product of level of implicit vertex and d0 */

int test_accept(const _vertex &v0, float d0) const;

/* render triangle specified by implicit vertex, v1 and v2 */

void draw(const _vertex &v1, const _vertex &v2) const;

};

Triangle

class _triangle {

public:

/* constructor */

_triangle();

/* access function */

void set(_vertex *v0, _vertex *v1, _vertex *v2,
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Figure 4.6: Link from the polygon to its accept vertex.

Figure 4.7: Links from the polygon to its accept triangles.

_polygon *group0,

int queue0);

void set_queue(int queue0);

int get_queue() const;

_polygon *get_group() const;

/* render triangle using _vertex::render(_vertex, _vertex) */

int draw() const;

};

Polygon

class _polygon {

public:

/* constructor */

_polygon();

/* access functions */

void set_accept(_vertex *reject0);

int add_reject(_triangle *tr0);

int add_accept(_triangle *ta0);

/* if all reject triangles in queue and reject vertex accepted

then remove all reject triangle and insert all accept triangles

else remove and render any reject triangles in queue */

int draw(const _vertex &v0, float d0) const;
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};

Level

class _level {

public:

/* constructor */

_level();

/* access functions */

int set_size(int nt0);

int set_triangle(int i,

_vertex *v0, _vertex *v1, _vertex *v2,

_polygon *g0,

int q0) const;

void set_queue(int q0) const;

/* for each triangle in the queue

if the triangle has no associated polygon

then render the triangle

else process the polygon using _polygon::draw(_vertex, float) */

int draw(const _vertex &v0, float d0) const;

};

4.5.2 Rendering

Each time the TIN is simpli�ed, another level in the hierarchy is formed. The original TIN forms the lowest

level and each simpli�cation forms a higher level. The level of a vertex is equal to the highest level of

hierarchy that still includes that vertex.

Initially, each triangle in the highest level of the hierarchy is inserted in a queue. To render the

terrain, each triangle in the queue is processed. A triangle is processed by either rendering the triangle or

replacing the triangle and the other reject triangles in its polygon with the set of accept triangles. The union

of the enqueued triangles and the rendered triangles will always cover the terrain.

If all the reject triangles of a polygon are in the queue, the accept vertex can be tested. In our

implementation, the vertex is accepted if the distance between the accept vertex and a user-de�ned center

of detail is less than the product of the level of the accept vertex and a user-de�ned detail dropo� distance.

This test includes vertices from the lower levels of the hierarchy close to the centre of detail while allowing

only vertices from higher levels further away. Other tests based on local polygon information can also be

used.

Three of the four possible cases are illustrated in Figure 4.8, Figure 4.9 and Figure 4.10. The fourth

case occurs when the enqueued triangle is in the lowest level of the hierarchy. No more re�nement can be

done so it is rendered. Enqueued triangles have a grey �ll style and rendered triangles have a grid �ll style.

In every case, the area covered before and after the triangle's group polygon is processed is the same.

The results of this rendering method are displayed in three �gures. Figure 4.11 shows the initial

terrain model with 20002 triangular facets. It has a high level of detail, even in the background where it

is not needed. This terrain model is repeatedly simpli�ed to form the model shown in Figure 4.12. This

simpli�ed model has a low level of detail. The hierarchy is used to form the terrain model in Figure 4.13. It

combines areas of high detail in the foreground with areas of low detail in the background.
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Figure 4.8: Only one of the three triangle in this polygon is in the queue. It is removed from the queue and

rendered.
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Figure 4.9: All three of the triangles in this polygon are in the queue but the reject vertex is not accepted.

All three triangles are removed from the queue and rendered.

Figure 4.10: All three of the triangles in this polygon are in the queue and the reject vertex is accepted. All

three triangles are removed from the queue and �ve new triangles are inserted into the queue.
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Figure 4.11: The initial terrain model with 20002 triangular facets.
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Figure 4.12: A simpli�ed model with 3360 triangular facets.
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Figure 4.13: A terrain model combining regions of varying levels of detail from the hierarchy of the initial

terrain model and its simpli�cations. It has 5280 triangular facets.
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Chapter 5

Surface Accuracy

To evaluate the e�ectiveness of these simpli�cation methods, we examined their accuracy and their speed.

Lee [Lee91] and Kumler [Kum94] evaluate surface accuracy by computing the di�erences in elevation between

the original surface and the approximate surface at a set of test points. In our surface evaluations, we used

measures of curvature as well as elevation.

Lee [Lee91] reviews and evaluates four methods for building TINs from DEMs. Each approximate

TIN surface is compared to the original DEM surface by computing the elevation di�erence at each DEM

point. In addition to measuring the mean and standard deviation of the di�erences, Lee analyses the spatial

pattern of the di�erences. He uses Moran's index, a spatial autocorrelation coe�cient, to measure how

clustered or how randomly the di�erences are distributed. Tests for the signi�cance of randomization and

normality are also used. He �nds that none of the four methods he reviews has a clear overall advantage.

It is interesting to note that the Drop Heuristic, a TIN building method that is closely related to the delete

simpli�cation methods, has the best Moran's index values.

Kumler [Kum94] compares eight di�erent TIN and DEM construction methods. He uses DLGs as

the source data. Each approximate DTM surface is compared to the original terrain by computing the

elevation di�erences at points in three test sets. The �rst test set is the set of DLG spot heights included

in each DLG data �le. Kumler created the other two sets of test points for his comparison. The second set

is created by using a set of coarse grid points \jiggled" so that each point falls on a DLG contour line. The

third set is created by obtaining a set of dispersed, irregularly-distributed points and visually estimating

the elevations with approximate interpolation between contour lines. Although he believes that TINs \look

better" than DEMs, he �nds that DEMs estimate spot heights better than TINs. He suspects that TINs

may \look better" because TINs are better at modelling derivative statistics such as slope and aspect.

In attempting to �nd a basis for quantitative comparison of landscapes, Evans [Eva72] describes the

�eld of general geomorphometry. Geomorphometry is the measurement and analysis of land-form character-

istics applicable to any continuous rough surface. Evans calls for simple variables that are standardized for

comparison, integrated and statistically stable. He also prefers to use point measures rather than measures

de�ned in relation to an arbitrary area. He presents �ve basic variables for general geomorphometry.

� altitude, z

� gradient, z0
v

� aspect, z0
h

� vertical convexity, z00
v

� horizontal convexity, z00
h
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Lee and Kumler only use altitude as a basis for comparing surfaces. The other four variables, all derivative

statistics, are ignored.

We wanted to use both elevation and a derivative statistic to evaluate the accuracy of the simpli�-

cation methods. We decided that mean curvature was a good derivative statistic because it is a meaningful

characteristic value of the shape operator reviewed in Section 5.2. Elevation can be interpolated directly

from a TIN surface but mean curvature is only de�ned at a point on a surface with continuous second partial

derivatives. To overcome this obstacle, we �t a degree three B-spline surface to the surface of the TIN.

Evaluating the surface accuracy consisted of four steps. We �rst interpolated a set of gridded test

points from the original TIN and the simpli�ed TIN by locating the triangle that contains the xy point and

using the three vertices of that triangle to linearly interpolate the z coordinate. We then �tted a B-spline

surface to both these interpolated sets. At each test point, we calculated the elevation and mean curvature.

Finally, we computed the correlation coe�cients of the elevations and curvatures.

The following sections provide a background to these steps. Section 5.1 describes parametric curves

and parametric surfaces. Section 5.2 reviews the de�nition and calculation of curvature and Section 5.3

reviews the use of the correlation coe�cient. Kumler's comparison notes the importance of testing simpli�-

cation methods over a wide range of study areas [Kum94]. Our approach to choosing study areas is outlined

in Section 5.4.

5.1 Parametric Curves and Surfaces

This section describes a representation of curves and surfaces [FvDFH90]. We start by reviewing parametric

curves and then extend the curve de�nition to parametric surfaces. We conclude by describing the properties

of the speci�c surface we used, the B-spline surface.

5.1.1 Parametric Curves

Polylines are �rst-degree, piecewise linear approximations to curves. Large numbers of points may be needed

to achieve reasonable accuracy. Parametric curves use higher-degree functions as a representation of curves.

They are still only approximations, but they use less storage than linear functions.

Cubic polynomials are most often used because lower-degree polynomials give too little exibility in

controlling the shape of the curve and higher-degree polynomials can introduce unwanted wiggles and also

require more computation. The cubic polynomials that de�ne a curve segment Q(t) =
�
x(t) y(t) z(t)

�
are of the following form.

x(t) = axt
3 + bxt

2 + cxt + dx

y(t) = ayt
3 + byt

2 + cyt+ dy

z(t) = azt
3 + bzt

2 + czt+ dz; 0 � t � 1

This is rewritten in matrix form.

T =
�
t
3

t
2

t 1
�

C =

2
664

ax ay az

bx by bz

cx cy cz

dx dy dz

3
775

Q(t) = T �C

A curve segment is de�ned by constraints on endpoints, tangent vectors and continuity between

adjoining curve segments. If two curve segments join together, the curve has G0 geometric continuity. If
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the directions (but not necessarily the magnitudes) of the two segments' tangent vectors are equal at a join

point, the curve has G1 geometric continuity. If the tangent vectors of two curve segments are equal at the

segments' join point, the curve has �rst-degree continuity and is said to be C1 continuous. If the direction

and magnitude of the dn=dtn[Q(t)] through to the nth derivative are equal at the join point, the join is called

C
n continuous.

The coe�cient matrix C can be rewritten as C = M � G where M is the basis matrix and G is the

geometry vector. The coe�cients of geometry vector, G1; G2; G3 and G4, are also vectors.

Q(t) =
�
x(t) y(t) z(t)

�

= T �C

= T �M �G

=
�
t
3

t
2

t 1
�
2
664

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

3
775

2
664

G1

G2

G3

G4

3
775

B-spline Curves

Cubic B-splines are de�ned by four control points. They have C1 and C
2 continuity and come close but

generally do not interpolate their control points. The continuity conditions are achieved by sharing control

points between segments. A spline with m + 1 control points P0; P1; : : : ; Pm has m � 2 curve segments

Q3; Q4; : : : ; Qm. Curve segment Qi(t) with a curve parameter t is de�ned between ti = i�3 and ti+1 = i�2

and depends on points Pi�3; Pi�2; Pi�1 and Pi. The index i ranges from 3 to m.

Ti =
�
(t� ti)

3 (t� ti)
2 (t� ti) 1

�

MBs =
1

6

2
664

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
775

GBsi
=

2
664

Pi�3

Pi�2

Pi�1

Pi

3
775

Qi(t) = Ti �MBs �GBsi
; ti � t � ti+1

5.1.2 Parametric Surfaces

Parametric surfaces are a generalization of parametric curves. By replacing the constant vector coe�cients

of the geometry matrix G with parametric curves, a surface of two variables is formed.

Si =
�
(s � si)

3 (s � si)
2 (s � si) 1

�

G =

2
664

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

3
775

Ti =
�
(t � ti)

3 (t � ti)
2 (t � ti) 1

�

Q(s; t) = S �M �G �M
T
� T

T
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B-spline Surfaces

Just as the degree 3 B-spline curve has C1 and C2 continuity, the B-spline surface has C1 and C2 continuity.

This means its �rst and second partial derivatives will be continuous. Other parametric surfaces interpolate

their control points but they cannot easily provide the required level of continuity.

The one variable in �tting the a B-spline to the grid of interpolated points is the grid spacing of the

points. Using a small grid spacing and a large number of points will results in a surface that has many at

areas corresponding to the planar triangular facets. Using a large grid spacing will result in triangular facets

in the TIN that are not represented by any point in the grid.

5.2 Computing Curvature

This section reviews the de�nition and calculation of curvature [O'N66]. We used mean curvature as our

derivative statistic to measure surface accuracy.

The shape of a curve can be measured by its curvature and torsion functions. The curvature vector

of a point on a curve represents the turning of the curve at that point. The torsion vector of a point on

a curve represents the twisting of the curve at that point. The analogous measurement of a surface M is

its shape operator S. The shape operator of a point on a surface represents the bending of the surface at

that point. Surfaces with the same shape operator are congruent.

The shape operator Sp(v) at a point p on the surface is de�ned for all vectors v tangent to the surface

at that point. At each point p on the surface there are two unit normals U and �U and two corresponding

shape operators Sp and �Sp.

The normal curvature k(u) in the u direction is the dot product of the shape operator and the vector

u.

k(u) = S(u) � u

If the normal curvature is positive the surface bends toward the normal. If the normal curvature is negative

the surface bends away from the normal. The normal curvature of a sphere with a radius r and an outward

oriented normal is �1=r for any vector u at any point.

The minimum and maximum values of the normal curvature at a point are called the principal

curvatures k1 and k2. The vectors in which these values occur are called the principal vectors. These

principal vectors are orthogonal.

The Gaussian curvature K is the product of the two principal curvatures. The formula for Gaussian

curvature is calculated from constants formed from the �rst and second partial derivatives of the surface M

with parameters s and t at that point.

Constants

E = Ms �Ms

F = Ms �Mt

G = Mt �Mt

U = (Ms �Mt)=W

W = kMs �Mtk

l = U �Ms2

m = U �Mst

n = U �Mt2

K =
ln�m

2

EF � F 2
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The mean curvature is the average of the two principal curvatures. The formula for mean curvature H at a

point is de�ned by the same constants that were used to compute the Gaussian curvature.

H =
Gl + En� 2Fm

2(EG� F 2)

These two formulae do not require the calculation of the principal curvatures.

It is infeasible to use the shape operator as a measure of surface accuracy because it is a operator,

not a single number. But both the Gaussian curvature and the mean curvature are meaningful characteristic

values of the shape operator. Gaussian curvature is independent of the orientation of the normal but mean

curvature is dependent. Since we wanted a derivative statistic that was dependent on the direction of the

normal and since we could easily orient the surface, we chose to use mean curvature.

5.2.1 Computing Curvature on a B-spline Surface

We can easily calculate the �rst and second partial derivatives at each interpolated test point on the B-spline

surface. We can then substitute these values into the above formula to calculate the mean curvature. We

calculate a �rst partial derivative as an example below.

Q(s; t) = S �MBs �G �MBs

T
� T

T

=
�
s
3

s
2

s 1
�
�MBs �G �MBs

T
�
�
t
3

t
2

t 1
�T

Qs(s; t) =
�
3s2 2s 1 0

�
�MBs �G �MBs

T
�
�
t
3

t
2

t 1
�T

Qs(0; 0) =
�
0 0 1 0

�
�MBs �G �MBs

T
�
�
0 0 0 1

�T

=
1

6

�
�3 0 3 0

�
�G �

1

6

�
1 4 1 0

�T

5.3 Computing Correlation

To evaluate surface accuracy, we computed the linear regression correlation coe�cients of the elevations

and the mean curvatures at test points on the B-spline surfaces �tted to the original and simpli�ed TINs.

The correlation coe�cient r [MM89] measures the strength of the linear association between a set of n

observations of two variables x and y with means x and y and standard deviations sx and sy.

r =
1

n� 1

X
i

(
xi � x

sx
)(
yi � y

sy
)

The coe�cient is a unitless number between -1 and 1. A positive value indicates a positive association and

a negative value indicates a negative association. A value of -1 or 1 indicates a perfect positive or negative

linear association.

The square of the correlation coe�cient r is the fraction of the variation of x that is explained by

the least squares regression of y on x. Correlation is a symmetrical relationship so this statement is also true

if x and y are interchanged. The slope b of the regression line of y on x can be expressed in terms of the two

standard deviations and the correlation coe�cient.

b = r
sy

sx

5.3.1 Using Correlation to Evaluate Surface Accuracy

The correlation coe�cient only measures linear association. Identical surfaces should not only have a perfect

linear association but should also have a regression line passing through the origin with slope of one. By

de�nition, the regression line passes through the point (x; y). The standard deviations sx and sy must be
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Name Hammond Fenneman

ashby Ashby Gap, VA C5 5

belle Belle Creek, MT-WY C4 13

camas Camas, WA-OR B3 low 24

crater Crater Lake West, OR C6 23

eloise Eloise, FL A1 3

entriken Entriken, PA C5 6

hogans Hogansburg, NY B2 7

honolulu Honolulu, HI B6 low

jabez Jabez, KY C3 11

jackson Jackson, SC A2 3

newbrit New Britain, CO B4 low/C4 low 9

tiefort Tiefort Mountains, CA B5 low 22

Table 5.1: Study Areas

equal for a regression line with perfect positive association to have a slope of one. The means x and y must

be equal for a regression line with slope one to pass through the origin. While checking the correlation

coe�cients, we also checked the di�erence in means and standard deviations to ensure that these additional

conditions were almost met.

5.4 Choosing Study Areas

We wanted to study the e�ectiveness of the delete simpli�cation methods over a large range of terrain types.

Fenneman [Fen28] describes the physiographic divisions of the United States. He lists 25 homoge-

neous provinces, designated by the initial geological structure, the erosion process and the stage reached in

the cycle of changes by erosion. This information captures the history of the terrain as well as the topography.

These provinces extend into Canada and Mexico but are speci�c to North America.

Hammond [Ham64] prepares a map of the land form of the United States using indices of four

properties. He chooses properties that describe the visual aspects and the land-use possibilities of the

surface. The four properties are frequency of gentle slope, local relief, pro�le type and surface material.

The combination of the indices of these four properties form a classi�cation system that divides the United

States into over 300 regions. These regions each fall into a class de�ned by the ninety-six combinations of

the indices. Twenty-one of the ninety-six classes appear in signi�cant quantity in the United States. This

classi�cation system can easily be extended to the land form of other countries with the possibility that new

combinations of indices may appear.

Kumler [Kum94] uses these two terrain classi�cation systems to select DLGs that represent the

variety of terrain types found in the United States. His 25 study areas cover 18 of 25 Fenneman provinces

and 20 of 21 Hammond classes. The 12 DEMs listed in Table 5.1 were created from a subset of these DLGs.

The 12 DEM grids were roughly 300� 450 with a 30 meter grid spacing. A set of 15000 point TINs

was formed by taking one random point from each 3 � 3 grid square. Each point was perturbed between

0.00 and 0.99 meters in both x and y coordinates to avoid degenerate cases in the Delaunay triangulation.

We de�ned these TINs to be the original surfaces.

5.5 The Experiment

Each delete simpli�cation method required two parameters. The delete percentage is the maximum

percentage of vertices to delete at each iteration of a delete simpli�cation. The stopping percentage

is the percentage of vertices remaining in the TIN when the iterations stop. We tested the three delete
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simpli�cation methods with delete percentages of 10% and 20% and a stopping percentage of 5% over the

set of 12 TINs. We plotted the elevation and curvature correlation coe�cients against the number of vertices

for each TIN with a constant correlation range.

The insert simpli�cation method was used for comparison purposes. It was implemented by Will

Evans.
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Chapter 6

Results

6.1 Speed

We examined the speed of the delete simpli�cation methods by plotting the times required by the two steps

in each method. The select time is the time required to select a percentage of vertices to be deleted. The

delete time is the time required to delete these vertices and retriangulate their neighbourhoods. We plotted

the mean select time and the mean delete time against the number of vertices for each delete simpli�cation

method. The mean times were used because we did not feel that the select and delete times depended on

the type of terrain. The delete percentage was 20%.

6.1.1 Select Times
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Figure 6.1: Time to select 20% of the vertices using the three delete methods

In Figure 6.1, the time to select 20% of n vertices appeared to be linear for all three methods.
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The volume method and normal method select vertices in two steps. The �rst calculates a \atness"

value for each vertex. The second selects a set of non-adjacent vertices with the best \atness" values. The

size of the set is controlled either by specifying this size or by specifying a threshold \atness" value.

If a threshold \atness" value is used, each vertex is checked only once. If a vertex v is not adjacent

to a selected vertex and the \atness" value of v is better than the threshold, then v is selected. This method

selects a set of vertices from a n point TIN in O(n) running time, but the number of vertices with \atness"

values better than the threshold may vary with the type of terrain.

We decided to specify the size of the set of vertices to be selected so that the speed and accuracy of

di�erent delete simpli�cation methods and di�erent terrains could be easily compared. A �xed percentage

of the current vertices was selected. A vertex is eligible if it has not been selected and it is not adjacent to

a selected vertex. This method repeatedly selects the eligible vertex with the best \atness" value until the

speci�ed number of vertices is selected.

To quickly �nd the vertex with the best \atness" value, we used a heap. It takes O(logn) time to

insert a single element into a heap of size n. Since we build the heap by repeatedly inserting elements, the

total time to build the heap of n elements is be O(n logn). After building the heap, the vertex with the

best \atness" value can be found in O(1) time. After �nding the best vertex, it is deleted from the heap.

The time to repair the heap after a single element is deleted is O(logn). Therefore, the total cost to �nd

and delete a �xed percentage of vertices from the heap is O(n logn). Since both heap build and heap �nd

and delete times are O(n logn), the select time must be O(n logn). But both the volume method and the

normal method in Figure 6.1 appear to be O(n) indicating that the constants associated with the O(n) time

to compute the \atness" value of each vertex outweigh the constants associated with the O(n logn) time

to order and select the vertices using the heap. Even though the time to select vertices appears linear, it is

actually O(n logn).

In our experiments, the time to select vertices depends on the time to compute the \atness" values

rather than the time to order the \atness" values. This means that the \atness" value can a�ect both

the speed and accuracy of the simpli�cation methods. As the number of vertices is increased, the time to

select vertices will eventually depend on the O(n logn) time to order the \atness" values, not the O(n)

time to compute the \atness" values. At this point, the \atness" value will only a�ect the accuracy of the

simpli�cation method.

The degree method selected vertices by calculating the degree of each vertex and selecting vertices

less than or equal to a �xed maximum degree. This algorithm is similar to the threshold method described

above using the maximum degree as a threshold. Its time cost is O(n).

6.1.2 Delete Times

The mean delete times appeared to be linear. The speed of the algorithm we used to retriangulate the

neighbourhood of a deleted vertex depended on the degree of the vertex. The average degree of a vertex is

less than 6 so the average time to delete a single vertex is O(1) and the time to delete a �xed percentage of

vertices is O(n). This is supported by Figure 6.2.

The mean delete times were lower than the mean select times. This indicates that signi�cant improve-

ments to the select speed would result in signi�cant improvements to the overall speed of the simpli�cation

method.

6.2 Accuracy

We examined the accuracy of the simpli�cation methods by plotting the correlation coe�cients for both

elevation and mean curvature against the number of vertices.
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Figure 6.2: Time to delete 20% of the vertices using the three delete methods

6.2.1 Elevation

We plotted the elevation correlation coe�cients against the number of vertices in the TIN. We used the

logarithm of the di�erence between the correlation coe�cient and one instead of the correlation coe�cient.

This transformation of the vertical axis provides more detail at correlation values close to one. Figure 6.3

shows a graph using a linear scale and Figure 6.4 shows the transformed scale. The vertical axis ranges

from 0.99 to 0.9999, indicating that the correlation of the elevation of the simpli�ed surface and the original

surface is good.

With all three delete simpli�cation methods, the correlation coe�cients decrease as the number of

vertices in the TIN decreases. This was expected, as a TIN with fewer vertices cannot represent all of the

detail present in the original TIN. The correlation decreases slowly at �rst but tends to deteriorate faster

when the TIN simpli�cation has fewer than 30% of the original vertices.

The volume method tends to yield better correlation coe�cients than the normal method but both

are better than the degree method. This is not surprising since the degree method works independently of

the z coordinate data. There is a quality versus speed tradeo� between the volume and the normal methods;

the normal method works faster but with less accuracy.

Changing the delete percentage from 20% to 10% created some interesting e�ects. Figure 6.5 shows

the correlation coe�cients of the TINs simpli�ed with the degree delete simpli�cation method in 10% steps

were slightly worse than the correlations coe�cients of the TINs simpli�ed in 20% steps. But the results

using the normal method and the volume method are di�erent. Figure 6.6 shows the normal method with

10% steps is initially better than the 20% steps but eventually becomes worse and Figure 6.7 shows that

the volume method with 10% steps is better than the 20% steps at all levels. Selecting a smaller percentage

of vertices would increase the accuracy because the selected vertices would have better importance values.

But deleting a smaller percentage of vertices results of more simpli�cations. Errors due to drift can appear

because the importance of a vertex is measured in relation to the current simpli�cation of the terrain model

instead of the original terrain model.

37



0.99

0.992

0.994

0.996

0.998

1

02000400060008000100001200014000

co
rr

el
at

io
n

vertices

degree
normal
volume

Figure 6.3: Linear scale on the elevation correlation axis

Two other studies [Lee91, Kum94] �nd that the insert simpli�cation method is better than other

tested methods at minimizing mean and maximum elevation error. But Figure 6.8 the performance of the

volume delete simpli�cation method is very close to, and sometimes better than, the performance of the

insert simpli�cation method. Both methods have O(n logn) running times but the volume method has the

advantage of the simpli�cation hierarchy.

The terrains with the higher correlations tended to be the terrains with high relief. An example is

shown in Figure 6.9. But not all terrains with high relief had high correlations. This was the only di�erence

observed when evaluating the simpli�cation methods over the di�erent terrains.

6.2.2 Mean Curvature

We plotted the mean curvature correlation coe�cients against the number of vertices in the TIN. Figure 6.10

and Figure 6.11 show the same logarithmic transformation on the vertical axis for the mean curvature

correlation coe�cients. The scale of axis had to be changed because the correlation of mean curvature was

much lower than the correlation of elevation. Almost every method dropped below 0.9 before the model is

simpli�ed to 40% of the original vertices.

The correlation coe�cients again decreased as the number of vertices decreased but in this instance

the decrease was smoother. Unlike the elevation correlations, there was no sudden deterioration at 30% of

the original vertices.

The di�erences between volumemethod and the normalmethod were much smaller. On some graphs,

including Figure 6.12, the normal method even outperformed the volume method. Both methods were much

better than the degree method.

Changing the delete percentages had a di�erent set of e�ects than those observed when plotting ele-

vation correlations. The mean curvature correlations of the degree method in Figure 6.13 were slightly better

when using a 20% delete percentage compared to a 10% delete percentage. But the 10% delete percentage

was better when used with the normal method in Figure 6.14 and the volume method in Figure 6.15.
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Figure 6.4: Logarithmic scale on the elevation correlation axis

The overall range of mean curvature correlations was lower than expected. This could be the result

of our choice of grid spacing for the control points of the B-spline surface. An alternative approach would

be to use natural neighbour interpolation to �t a surface through the vertices of the TIN. Implementing this

method would be more complicated but we would avoid the problems of �nding an appropriate grid spacing.
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Figure 6.5: Elevation correlations using the degree method with two delete percentages
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Figure 6.6: Elevation correlations using the normal method with two delete percentages
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Figure 6.7: Elevation correlations using the volume method with two delete percentages
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Figure 6.8: Comparing the elevation correlations of the insert method and the delete simpli�cation methods
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Figure 6.9: A terrain with higher elevation correlations and higher relief
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Figure 6.10: Linear scale on the mean curvature correlation axis
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Figure 6.11: Logarithmic scale on the mean curvature correlation axis
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Figure 6.12: A terrain with better performance when using the normal method
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Figure 6.13: Mean curvature correlations using the degree method with two delete percentages
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Figure 6.14: Mean curvature correlations using the normal method with two delete percentages
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Figure 6.15: Mean curvature correlations using the volume method with two delete percentages
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Chapter 7

Conclusion

We described a set of TIN simpli�cation methods that we named delete simpli�cation methods. They allow

the use of the triangulation hierarchy introduced by Kirkpatrick and modi�ed by de Berg and Dobrindt to

form a TIN with varying levels of detail.

We also investigated di�erent variables that can be used to measure surface accuracy. Acting on

the recommendations of Evans [Eva72] and Kumler [Kum94], we chose to use a derivative statistic, mean

curvature, in addition to elevation to grade the performance of our simpli�cation methods. Since mean

curvature is only de�ned at a point on a surface with continuous second partial derivatives, we were also

required to �t a B-spline surface to a TIN.

One variant of the delete simpli�cation methods, the volume method, formed simpli�cations with

elevation and mean curvature correlations equal to or better than the greedy method. It has the added

advantage of the hierarchical triangulation mentioned above.

The use of mean curvature as a variable to measure surface accuracy did not signi�cantly alter our

evaluation of the performance of these simpli�cation methods. However, we recommend that any future

comparisons of simpli�ed terrains should be aware of these other surface characterization variables.
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