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Abstract

Heterogeneous Process Migration is a technique whereby an active process is
moved from one machine to another. It must then continue normal execution and
communication. The source and destination processors can have a different archi-
tecture, that is, different instruction sets and data formats. Because of this hetero-
geneity, the entire process memory image must be translated during the migration.

“Tui” is a prototype migration system that is able to translate the memory image
of a program (written in ANSI-C) between four common architectures (m68000,
SPARC, i486 and PowerPC). This requires detailed knowledgeof all data types and
variables used with the program. This is not always possible in non type-safe (but
popular) languages such as C, Pascal and Fortran.

The important features of the Tui algorithm are discussed in great detail. This
includes the method by which a program’s entire set of data values can be located,
and eventually reconstructed on the target processor. Initial performance figures
demonstrating the viability of using Tui for real migration applications are given.

1 Introduction

1.1 What is Heterogeneous Process Migration?

Process Migration can be defined as the ability to move a currently executing process
between different processors which are connected only by a network (that is, not using
locally shared memory). The operating system of the originatingmachine must package
the entire state of the process so that the destinationmachine may continue its execution.
The process should not normally be concerned by any changes in its environment, other
than by obtaining better performance.
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Research into the field of process migration has concentrated on efficient exchange
of the state information. For example, moving the memory pages of a process from the
source machine to the destination, correctly capturing and restoring the state of the pro-
cess (such as register contents), and ensuring that the communication links to and from
the process are maintained. Careful design of an operating system’s IPC mechanism
will ease the migration of a process.

Most process migration systems make the assumption that the source and destina-
tion hosts have the same architecture. That is, their CPUs understand the same instruc-
tion set, and their operating systems have the same set of system calls and the same
memory conventions. This allows state information to be copied verbatim between the
hosts, so that no changes need to be made to the memory image.

Heterogeneous Process Migration removes this assumption, allowing the source
and destination hosts to differ in architecture. In addition to the homogeneous migration
issues, the mechanism must translate the entire state of the process so it may be under-
stood by the destination machine. This requires knowledge of the type and location of
all data values (in global variables, stack frames and on the heap).

This paper examines an experimental Heterogeneous Migration system known as
Tui. A prototype implementation has revealed the issues involved in translating the data
component of a migrating process. Tui does not address the issues normally associated
with homogeneous migration, nor does it address the translation of a program’s instruc-
tions between different architectures.

The remainder of this paper is set out as follows. Section 2 discusses why process
migration is an important feature in a modern operating system. Section 3 discusses ex-
isting heterogeneous migration systems and explains how Tui is different. The majority
of the paper, in section 4, describes the details of the Tui migration algorithm. Section
5 shows the results of some performance tests. Finally, section 6 lists some proposed
improvements to the current prototype implementation, and section 7 discusses some
related work.

2 Motivations

The traditional reasons for using process migration have been identified [21] as :

� Load Sharing among a pool of processors — For a process to obtain as much CPU
time as possible, it must be executed on the processor that will provide the most
instructions and I/O operations in the smallest amount of time. Often this will
mean that the fastest processors as well as those executing a small number of jobs
will be the most attractive. Migration allows a process to take advantage of un-
derutilized resources in the system, by moving it to a suitable machine.

It has been shown that load sharing is not always beneficial [14]. Since most pro-
cesses only require a small amount of CPU time, with respect to the cost of mi-
grating the process, there is no advantage to using migration over simply execut-
ing a job locally or carefully choosing its initial machine. However, the important
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exception is for processes that require a large amount of processing time, for ex-
ample, simulations.

� Improving communication performance — If a process requires frequent com-
munication with other processes, the cost of this communication can be reduced
by bringing the processes closer together. This is done by moving one of the com-
municating partners to the same CPU as the other (or perhaps to a nearby CPU).
This improvement in performance can be significant.

� Availability— As machines in the network become unavailable, users would like
their jobs to continue functioning correctly. Processes should be moved away
from machines that are expected to be removed from service. In most situations,
the loss of a process is simply an annoyance, but at other times it can be disastrous
(such as an air traffic control system).

� Reconfiguration — While administering a network of computers, it is often nec-
essary to move services from one place to another (for example, a name server).
It is undesirable to halt the system for a large amount of time in order to move a
service. A transparent migration system will make this change unnoticeable.

� Utilizing special capabilities — If a process will benefit from the special capabil-
ities of a particular machine, it should be executed on that machine. For example,
a mathematics program will benefit from the use of a special math coprocessor,
or an array of processors in a supercomputer. Without some type of migration
system, the user will be required to make their own decision of where to execute
a process, without the ability to change the location during the lifetime of the pro-
cess. Often users will not even be aware of their program’s special needs.

Although process migration has successfully been implemented in several experi-
mental operating systems, it has not become widely accepted. One reason is that the
mainstream platforms (such as MSDOS, MS Windows and most variants of Unix), do
not have sufficient operating system support for migration. Secondly, the benefits of us-
ing process migration are generally not great enough to justify the cost. That is, moving
a process to another machine may be more costly than not moving it.

Recently, two new areas of computing have created new motivation for the use of
process migration. Both these issues,Mobile ComputingandWide Area Computingwill
now be discussed in more detail. In both cases, heterogeneity plays a significant role.

2.1 Mobile Computing

Mobile Computing is a term used to describe the use of small personal computers that
can easily be carried by a person, for example, a laptop or a hand-held computer. To
make full use of these systems, the user needs to be able to communicate with larger ma-
chines without being physically connected to them, normally done via wireless LANs
or cellular telephones.
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It has been proposed [13] that process migration is important in this area. For exam-
ple, a user may activate a program on their laptop, but in order to save battery power or
to speed up processing, may later choose to transfer the running process onto a larger
compute server. The process would be returned to the smaller machine to display re-
sults.

These concepts can be extended to allow a program to move between workstations
as its owner moves. A person may be using a home computer, with a large number of
windows on their screen. By remotely connecting to the computers at their place of
work, they will be able to continue executing those programs in their office. If they
choose to move between offices, the window system (and programs) could potentially
follow them.

2.2 Wide Area Computing

For a computer to be part of the internet, it must understand the internet communication
protocols. Since there are no constraints on other software, such as operating systems
and programming languages, an enormous amount of heterogeneity exists.

The one limitation of global computing, which will never be resolved, is the prop-
agation delay that is suffered over wide area networks. At best, data can only be trans-
mitted at the speed of light, causing noticeable delays. If a program makes frequent use
of remote data, its performance will suffer.

Process migration can help alleviate this problem by moving the program closer to
the data, rather than moving the data to the program [20]. Typically, a program would
start executing on the user’s local machine. If it later makes frequent accesses to remote
data, the migration system will reduce the delay by moving the process to a machine that
is physically closer to the data. This makes a lot of sense in the case where the program
is smaller than the data.

3 Heterogeneous Migration and the Tui System

3.1 Existing Systems

Before discussing the purpose of this research, it is necessary to look at the various
classes of Heterogeneous Migration or Mobility systems already in existence. The dis-
cussion focusses on the unit of information being migrated and describes how that in-
formation can be moved. Further references are given in section 7.

Heterogeneous migration systems can be divided into these categories:

1. Passive object – The process (or object) contains only passive data. There is no
executable code to be moved. This situation requires that data can be converted
from the source machine’s format to that of the destination machine.

2. Active object, migrate when inactive – The process has executable code as well
as data. Migration may only occur when the code is not active. For example, in
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an object based system, objects will remain inactive unless an outside agent re-
quests some action. Assuming that migration only occurs during these idle peri-
ods, moving a process is simply a matter of translating data. It is assumed that
the executable code is available on the destination machine.

3. Active object, interpreted code – If a process is currently executing code by us-
ing an interpreter, moving the process involves translating the state of the inter-
preter and all the data values it may access. If these values (that is, variables, pa-
rameters, temporaries and other miscellaneous values on the call stack) are stored
in a machine independent fashion, then migration is straight forward.

4. Active object, native code – If the active program is compiled into native ma-
chine code, then fetching the active state is more difficult. Each machine has its
own method of storing a program’s values. Differences are obvious in the lay-
out of each stack frame, the usage of registers and the structure of the executable
code.

3.2 Emerald

The Emerald system [5] [21] [28] is an object oriented programming language and run-
time system that supports movement of processes (active objects) between machines of
different architectures (the category of active objects with native code). Emerald pro-
vides each object with a uniform view of the outside world, regardless of where is it
located. Consequently, operating system heterogeneity is no longer a problem.

To obtain a version of the machine code that can be executed on the destination ma-
chine, there must exist a precompiled version of the object for each target architecture.
When migration takes place, the machine code is loaded directly into memory. This is
by far the simplest solution.

The most complex component of the migration algorithm involves locating and de-
termining the type of the data. When an object is moved, its instance data (global data
for that object) and the local data (generated by procedure calls) are retrieved from mem-
ory. They are then packaged and converted so they can be reinstated on the destination
machine.

Emerald is a type-safe language where each data value is considered to be an ob-
ject, and can be referenced by the use of an object ID (rather than requiring the use of
pointers). Consequently, locating the data and determining its type is straightforward,
so long as the necessary type information is generated by the Emerald compiler.

3.3 Purpose of Tui

Althoughthe Emerald migration system works well, the primary limitationis in the pop-
ularity of the language. By far the majority of existing software, and programmer expe-
rience, is in older languages such as C, Pascal, COBOL and Fortran. Having the abil-
ity to migrate programs written in more common languages will make migration much
more widely available.
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For these languages, the data conversion component of the migration algorithm be-
comes more complex. It must allow for difficulties such as the misuse of pointers, type
casting and lack of explicit type information. The less type-safe the language, the more
difficult it becomes to locate and assign a type to the data. These problems do not appear
in the Emerald system.

Although it is possible to say that non type-safe programming languages tend to gen-
erate non-migratible programs, it is useful to approach each problem on an individual
basis. For example, a program written using C may be non-migratible due to the way
that one small part of the program has been written. Rewriting this section of code in
a different way will ensure that migration is possible. Alternatively, the language com-
piler and run-time system could generate extra type information to clarify the type of a
piece of data.

The following example of C code demonstrates this:

main()
{

union {
int a;
float b;

} u;

u.a = 1;
u.b = 23.45;

}

Upon migrating this program, the migration system must be aware of the most re-
cent assignment to the union. Either the integer 1 or the floating point number 23.45 is
translated, but since they share the same memory location, the migration system does
not know how to interpret the data. In this case, several solutions are possible:

� Modify the compiler to maintain a ‘union tag’ that records which element of the
union was most recently accessed.

� Internally convert unions into structs, so elements have distinct memory loca-
tions.

� The programmer must refrain from using the union type.

Our aim is to discover and attempt to solve the problems that make common lan-
guages unattractive for heterogeneous migration. Clearly is not possible to migrate all C
programs, without sacrificing performance (if we were to tag all data values, migration
would always be possible, although very inefficient). Tui will enable us to determine
the possibilities and limitations of heterogeneous migration, to the extent of identifying
how much of the migration process can be automated, and what limitations are placed
on the programmer’s coding style.

6



Ideally, the migration algorithm, in conjunction with the language compiler, is able
to successfully migrate a process with no extra intervention from the programmer. That
is, any existing software should be migratible without the need to alter the source code.
If this is not possible, the compiler or migration system must warn the programmer of
features in the program that are not migratible. As a last resort, a written document will
describe any non-migratible language features that are not detectable by the compiler.

The eventual aim is to have a complete system where the programmer can take their
existing programs and use Tui to migrate their software, or use Tui’s suggestions to im-
prove its migratibility.

4 The Tui Migration Algorithm

The “Tui Heterogeneous Process Migration System” exists in a prototype form. It is
able to migratetype safe ANSI-C programs between four different architectures: So-
laris executing on a SPARC processor (i.e. Sun 4), SunOS on an m68020 (i.e. Sun 3),
Linux on an i486 and AIX on a PowerPC. A program is considered to be type safe if it
is possible to uniquely determine the type of each data value within the program.

This section gives a complete description of the Tui algorithm, with focus placed on
the interesting features. First, an overview of the algorithm is given, with a details of
how the four major components interact. Next, each of these components is described
in greater detail.

4.1 Overview of Tui

Figure 1 shows how a process is migrated within the Tui environment. The following
sequence of steps must occur for a program to be compiled, executed on the source ma-
chine, then migrated to a destination machine of a different architecture:

1. A program (written in ANSI-C) is compiled, once for each architecture. A mod-
ified version of the Amsterdam Compiler Kit (ACK) [36] is able to produce bi-
naries for each of the four machine types supported by Tui.

2. The program is executed on the source machine, in the standard way (such as
from the command line).

3. When the process has been selected for migration, themigroutprogram is called
upon to checkpoint that process. Given the Process ID and the name of the ex-
ecutable file (containing type information),migrout will fetch the memory of
the process and scan the global variables, stack and heap to locate all data values.
Finally, all these values are converted into an intermediate form and written to a
file on disk.

4. On the destination machine, themigrin program takes the intermediate file and
creates a new process. It is assumed that the program has been compiled for the
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"migrout" "migrin"

Machine A: SPARC Machine B: Intel 386

Compiler

Original
User Process

Migrated
User Process

Intermediate
Representation

SPARC/prog
386/prog
m68000/prog

Figure 1: The Tui Migration System
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target architecture so that the complete text segment, and type information for
the data segment is available. After reconstructing the global variables, heap and
stack, the process is restarted from the same point of execution as when it was
checkpointed.

To make migration in Tui useful, an ANSI-C run time environment exists. Since
each of the four architectures runs a different version of Unix, this library hides any in-
consistencies. It was not possible to use the standard set of libraries, as Tui requires that
processes have the same view of the operating system on both the source and destina-
tion machines. The Tui ANSI-C library operates by directly accessing the machine’s
system calls.

Most variants of Unix do not allow migration, so movement of communication links
and files (other than stdin, stdout) is not easy. However, a simple remote file server, that
allows migratible clients, has been constructed.

The following sections describe the compiler and the executable files it produces,
themigrout program, themigrin program, and the intermediate file format.

4.2 Compiler Requirements and Changes

To create programs that can be migrated by Tui, the compiler must ensure that suffi-
cient type and location information is available to the other components of the system
(migrin andmigrout). Also, it must avoid generating code that is inherently non
migratible.

There were two main criteria for choosing a suitable compilation system. Firstly,
the compiler must support a wide range of target architectures, and hopefully more than
one source language. Secondly, the entire source code for the compiler, assembler and
linker had to be available (for all architectures), so that modifications to their output
could be made.

Three different compilers were considered. Thegcc compiler [33] was the obvious
choice as it can generate code for most common architectures. However, modifying the
compiler and its related tools was considered too difficult due to the complexity of the
source code. Thelcc compiler [15] was considered, due to its wide range of target
architectures and its ease of modification. However, it became obvious that important
changes had to be made to the assembler and linker, which were not supplied as part of
the package.

The compiler that was eventually chosen was ACK (The Amsterdam Compiler Kit).
This system is very easy to modify, and contains source code for all components. It has
frontends for languages such as C, Pascal, Modula-2 and Fortran, as well as backends
for architectures such as SPARC, m68020, i386 and PowerPC. The major drawback of
ACK is that it is only available at a cost.

4.2.1 Features of ACK generated code

The structure of ACK has proven to be well suited to generating migratible code. It
is desirable that an executable program has exactly the same structure on all target ma-
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chines. That is, each program is compiled to contain the same set of symbols (procedure
and variable names), and each procedure contains the same set of local variables and
temporaries. The storage location and size of these entities may differ widely between
machines, for example, local variables may be stored on the stack, or in registers.

Since ACK frontends generate intermediate code [35], the differences between the
various executable files is minimal. The majority of optimizations are performed on
intermediate code, with the backends being primarily responsible for performing target
instructionselection, as well as a small amount of peephole optimization. The optimiza-
tion problems of code motion [34] are not relevant here.

ACK front ends generatestabs format [23] debugging information. These describe
the type and location of all data values, using a compact ASCII encoding. Also, the
mapping between source code line numbers and target machine addresses is recorded.
Normally this information is used by debugging tools to allow the programmer to study
an active program’s data values. Tui uses these values in a similar, but more automatic
fashion.

4.2.2 Modifications to ACK

The basic type information used by debuggers is not sufficient to correctly migrate a
program. There are several important additions to the stabs format that Tui requires
in order to successfully translate all data values. Aside from these additions, there are
several other trivial modifications that were made (for example, the ACK backends were
altered to correctly indicate which machine registers were used to store local variables).

The three major additions will now be discussed in more detail.

� Preemption points.

When a process is migrated to a machine of a different architecture, we must deal
with the fact that the corresponding point of execution (program counter) will
have a different location within the text segment. To solve this, we select a set
of logical points within the program at which migration is allowable. When per-
forming themigrout operation to checkpoint a process, we must ensure exe-
cution stops at one of thesepreemption points. Upon restarting the process, the
correct program counter value can be determined. Clearly, the program must have
an identical set of preemption points on each target architecture.

Placing preemption points within a program is an interesting issue. Points must
be placed often enough so that the process will stop withinan insignificantamount
of time (excluding the possibility of system calls that could block). However,
having too many preemption points will require an excessive amount of infor-
mation, or may even lead to a situation where the process can not be started at an
equivalent point. For example, if a preemption point for a SPARC processor is
placed within a sequence of instructions that perform a multiply operation, there
is no way of locating the corresponding point within the program on a VAX pro-
cessor, since it only requires one instruction to perform multiplication.
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With these limitations in mind, it was decided that it is sufficient to place preemp-
tion points at the beginning of a loop, and at the end of each compound statement.
The program will be halted within a very small amount time since no loop can re-
peat without passing through a preemption point (assuming the process was not
blocked inside the operating system). Also, each machine’s target optimizer is
permitted to manipulate any code within a basic block, but it must not move code
across preemption points.

� Call points

Although careful placement of preemption points can minimize the number of
temporary values (partial results of a computation) that we must know about when
the program is checkpointed, there is still the possibility that temporaries might
exist across procedure calls. The following example illustrates this:

x = foo(y) + bar(y)

In this code fragment, the result offoo(y) needs to be saved somewhere while
bar(y) is being calculated. However, if the process is preempted during the
call tobar, it is necessary to retrieve the value offoo(y) from its temporary
location (on the stack or in a register). Upon reconstructing the process at the
target machine, the temporary is restored so that the calculation will complete
correctly.

This is achieved by generating acall point stabs at each procedure call. This spec-
ifies the address of the call instruction, the number of temporaries (partially eval-
uated expressions), the number of parameters being passed, and the type and lo-
cation details of each of these values. Although the information about parameters
is already specified as part of the callee’s stabs information, there are some proce-
dures (such asprintf), where only the caller is aware of how many parameters
are being passed and what their types are.

� Stack frame details

During themigrin process, Tui must reconstruct each stack frame that existed
before migration occurred. At compile time, a special stabs string is output at the
beginning of each procedure. This specifies the size of the stack frame (that is,
how many bytes are used for information such as local variables) as well as which
registers were saved on the stack upon entry to that procedure.

4.3 “Migrout” : Checkpointing the Process

The following description of themigrout process is divided into four main phases.
Firstly, the type and location information (generated by the compiler), is entered into
Tui’s internal data structures. Next, the migrating process is halted, and its memory im-
age is copied into Tui’s address space for easy access. Thirdly, the type information is
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used as a guide for scanning this memory, and locating all data values. Finally, these
values are translated into an intermediate format for transmission to themigrin com-
ponent of Tui.

4.3.1 Reading the type information

The stabs debugging information associated with a program is specified in a manner
that follows the structure of that program. The executable file’s symbol table contains a
section for eachobject file (.o file) that makes up the executable. Within each section,
the global variables and procedures are listed, with their appropriate type and location
information. For procedures, the same type of information is given for parameters, lo-
cals and temporaries. Although the type information is specified in a one dimensional
format within the file, Tui creates a multidimensional structure for internal use.

The stabs debugging format strings are converted into more appropriate type struc-
tures. These structures, known astype trees, are similar to those used inside most com-
pilers. They are able to represent all of the basic types as well as pointers, arrays and
structures. To prevent name clashes, each symbol is prepended with the name of its
enclosing file, and for local values, the procedure name.

Figure 2 shows the ASCII stabs strings for the given set of C declarations. It then
shows the corresponding type tree entries.

Global: i
Type: 

Global: ch
Type:

Global: a
Type: 

Pointer to:

Basic type:
    char

array 0 to 15
of type:

Basic type:
    int

C declarations
    char *i;
    char ch;
    int a[16];

stabs strings

    a:G14=ar1;0;15;1;

    i:G13=*2;    
    ch:G2;

Type Tree

Figure 2: stabs strings and the type tree

In addition, two extra tables are required. The first table records the preemption
points, each entry containing a single address for that point. The second table performs
a similar operation, but for call points. In both cases, the table index is used as machine
independent representation of the point’s address.
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4.3.2 Halting the Process

Haltinga program is more complex than in homogeneous migration. The Unixptrace
system call is used to place the process into thetrace state.migroutmay now make
a copy of the memory and registers. However, we must ensure that the process is in a
consistent state (at a preemption point). The exact code for implementing this is ma-
chine dependent.

The current version of Tui stops the process, places a breakpoint instruction atevery
preemption point, then continues execution of the process until a breakpoint trap occurs.
For large processes, it would be more efficient to insert only one breakpoint, but it is not
always easy to determine which preemption point will be reached next.

As a final step, Tui fetches copies of the stack and data segments of the process,
which includes the heap segment, into its own address space. The process can now be
killed.

4.3.3 Scanning the memory

While searching the memory of the process, in an effort to locate all the data values, we
must ensure that each value is detected exactly once. This is done by maintainingavalue
table that records the starting address, size and type of each piece of data. Eventually,
all useful data values will be known, and any type inconsistencies can be reported. For
example, if a particular word in memory is thought to contain an integer valued global
variable, but a pointer reference to that memory suggests that it contains a float.

Firstly, the global variables are scanned, and their details are entered into the value
table. Global variables are very simple to deal with since their locations are fixed and
their types are well defined. Therefore, no type consistency problems can arise.

Local variables (contained within stack frames) are scanned in a similar way. The
frames are examined, starting at the most recent procedure activation. At each point, Tui
queries the program’s type information to obtain a list of the procedure’s stack or register
based values. Since stack based values are specified as offsets from the procedure’s
frame pointer, the absolute addresses must be calculated. Special care is also taken to
maintain a correct idea of the current register set, especially since they are often saved
on the stack across procedure calls.

At each point where a procedure call was made, Tui locates the associated call point
information to determine which temporaries and arguments were stored on the stack
for the duration of that call. It is most likely that the arguments will be scanned twice,
once from the caller’s perspective and once as the parameters of the callee’s frame. As
previously mentioned, this is necessary for procedures that allow a variable number of
arguments. Also, it can help to ensure consistency between caller and callee.

To locate data values in the heap, Tui follows any pointers that were found in either
the global or local variables (in a similar fashion to a garbage collector). At this point,
we must determine whether the data being pointed to is already in the value table. If
so, the type of the existing data must match the base type of the pointer. This process is
continued recursively until pointers have been followed.
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The value table itself has many features worth discussing. Insertions and lookups
can be random, since pointers may refer to any memory location. Also, we often wish
to locate the adjacent entries, as well as to make aninorder traversal of the entire table.
A splay tree [32] has been used for this purpose.

When a new data value is discovered, it is important to consider any data that already
exists at the same memory address, and any data that precedes or follows this new value.
The following list of cases has been noted. In each case, Tui must check and report any
type inconsistencies, and must be able to detect when two data values are in fact the
same item, or one is part of another.

� If there is already some data at the address, we normally expect it to have the same
type as the new data, otherwise the process could not have been type safe. For
example, this fragment of code is non migratible since it violates this property.

{
int a;
char *b = &a;

}

� If the data that precedes the new item overlaps with it, then the new item must be
a subelement of the old item. That is, if the base address of the newly discovered
data item falls within the range of addresses already covered by an existing item.
For example,

{
int a[10];
int *b = &a[5];

}

Sincea is entered into the table first,*b will be consumed bya.

� If the new data item consumes the successive data item, then the new item is en-
tered into the table, and the old entry will be discarded. This would happen in the
previous code fragment, if*b was scanned beforea.

� In some special cases, it is possible that two data items are located at the same
address, but have different types. For example,

{
struct {

int a;
char b;

} st;

int *p = &st.a;
}
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In this case, one data item is the whole struct, and the other is the elementst.a.
If the two types can be merged correctly, then largest of the two items will remain
in the value table.

4.3.4 Translating to the Intermediate Form

The final stage ofmigrout is to traverse the value table and encode all data values
from the memory of the process into the intermediate file. Section 4.5 gives full details
of the intermediate file format.

The only difficulty of this phase is that we must represent the relationship between
the different data items. That is, some data values will be (or will contain) pointers to
other data values. During the scanning phase, the location of all these references was
recorded in a table.

Each entry in the value table is assigned a unique number. When a reference is made
to a data item, the pointer is encoded by specifying this machine independent number,
rather than the machine specific address. This is similar to the idea of using object iden-
tifiers in a language like Emerald.

The interesting problem that does not arise in Emerald is that pointers may refer
to a subelement of a composite data item. If this sharing relationship is not preserved,
the subelement will be encoded twice, and there would be no way for the destination
machine to restore the data structure to its original state. For example:

{
char buffer[10];
char *p = &buffer[4];

}

In Tui, pointers are encoded as a pair of numbers (Object ID, offset), where theoffset
states how many indivisible subelements must be skipped in order to locate the correct
value. In the above example, theObject ID would be whichever unique number was
associated with thebuffer array, andoffset would be 4.

We must also consider the case of composite data items, that contain other compos-
ite data. For example,

{
struct {

int a;
int b;

} c[10];

int *p = &c[2].b;
}

In this case, the offset forp would be 5, since the structure contains two subele-
ments, andp refers to the second element of the third instance of that struct within the
arrayc.
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4.4 “Migrin” : Reconstructing the Process

To restart a process on the destination machine, themigrin algorithm must obtain the
program’s type and location information in the same manner as formigrout. Next,
it reads through the intermediate file and places all the data values in their appropriate
locations. This is less complex than formigrout since the intermediate file can be
read sequentially. There is no need to discover the location of data items, therefore a
value table is not used.

Global variables are placed directly into their absolute memory locations. Virtual
stack and heap pointers are maintained, with all new values being added to the end of
the appropriate segment. Although the ordering of data items on the stack is vital, it is
not so important for heap values. However, it is convenient formigrin to keep data
values in the order that they appeared in the source process.

Pointers also cause problems when placing data values into memory. It is not possi-
ble to determine the final value of a pointer until the object it refers to has been assigned a
memory location. Consequently, a table is used to record all pointers, and once all data
values have been dealt with, the pointers are converted from their (Object ID, offset)
pairs into machine addresses.

As a last step, the process is restarted by loading the program’s binary file into mem-
ory, then writing the newly constructed data and stack segments into the address space
(usingptrace). The preemption point number that represents the continuation ad-
dress of the process is converted into the correct machine dependent address. Finally,
the correct register values are given to the process, and it continues execution.

4.5 The Intermediate Representation

The intermediate file is a machine independent representation of the value table. It lists
all data values in a well defined storage format, and if necessary, states the type of the
values and the relationship between them. The file format has not yet been optimized
to any great extent.

All data values (int andfloat) are encoded using the native storage format for
Sun 4 machines. That is, big endian two’s complement integers and IEEE floating point
values. Since Sun 3 and PowerPC machines also use this format, the Intel 386 is the only
machine that needs to perform any format conversion.

The data items are listed in the order:procedures, global variables, heap values and
stack. This is the order in which they appear within the address space of all architectures
currently supported by Tui.

� Procedures — The name of each procedure is listed, since it is possible for a
pointer to refer to a procedure. No other information is given about the text seg-
ment.

� Global variables — The variable’s name and value are specified. It is necessary
to include the name, since variables may appear in a different order on differ-
ent architectures. Also, some symbols may exist on one machine, but not on the

16



other, these will typically be machine dependent values and not normally mean-
ingful to migrate.

� Heap values — These do not have names, and the destination machine can not
determine the type of the data in advance. Therefore, values are listed alongside
their stabs type number. It is necessary that all architectures use a common type
numbering system.

� Stack values — These are listed within their respective frames. Each frame is
identified by the name of the procedure and the number of the call point that cre-
ated the frame. Parameters, local variables, temporaries and arguments are listed
in an order that is consistent among all machines. No variable names are needed.

One interesting optimization has been made to the way in which integers are en-
coded. The number of bytes used to represent integers depends entirely on the value of
the number, and not the size that it had on the source machine, or will have on the des-
tination machine. That is, small values (such as 5) can be encoded in one byte, whereas
larger values require more.

Because of this, a program is not required to have the same size for each data type
across all machines (however, the current 4 processors do have this property). When
migrin reads a data value from the intermediate file, it then decides whether the target
storage location is large enough to hold that value. If so, the program can be migrated.
For example, if the source machine uses 4 byte integers, but the destination machine
has 2 byte integers, then a program can still be migrated as long as all values are small
enough to fit into 2 bytes. This has the advantage of allowing more programs to migrate,
however, it may cause failure at runtime.

5 Performance Tests

To fully test the performance of the Tui algorithms, three different test programs (for
Tui to migrate) have been created. Each is designed to test the complexity of the var-
ious components of Tui. Since the implementation is currently in prototype form, the
absolute running times are not as important as the relative growth in complexity that
occurs when the program size increases. These tests help to identify the components of
Tui that will require the most optimization.

The three programs are:

� fibonacci – An inefficient recursive implementation of the Fibonacci algo-
rithm that creates a large number of stack frames, each with a small number of
local variables and temporaries. A single preemption point is placed so that mi-
gration will occur whenn stack frames are active (n is the input parameter). This
program testsmigrout’s efficiency when scanning the stack.
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� tree – Builds a binary tree ofn nodes. Numeric values are selected randomly
and then inserted into the tree. Once construction of the tree has completed, mi-
gration will occur. This program tests Tui’s ability to scan the heap space in a
random order.

� arrays – 50 large character arrays are dynamically allocated on the heap and
then filled with characters. This test demonstrates the efficiency of encoding and
reconstructing extremely large areas of memory.

5.1 Components of the migrin and migrout algorithms

To demonstrate that Tui can correctly function on the four supported architectures, the
tree program was migrated. Figures 3 to 6 show the time taken by each of the main
components of both themigrin andmigrout algorithms. In these tests, the number
of tree nodes varies from 100 to 6400, doubling in each step. Therefore, if the cost of
migration doubles from one problem size to the next, the complexity is linear. Although
only thetree program is analyzed,fibonacci andarrays will be similar, given
the small input sizes.

The exact machines are:

� Sun 4/75 (SPARCStation 2)

� Sun 3/60

� i486 running at 50Mhz

� PowerPC 601 running at 66 Mhz

All measurements are averaged over 5 runs on an otherwise idle CPU. The machines
have sufficient memory to avoid paging.

In this analysis, the total execution time is divided into the major components of
bothmigrout andmigrin. We must pay attention to the relative costs between the
components and the growth of each component as the problem size increases. The fol-
lowing list gives an explanation of each cost.

� Symbols – The time required to convert the debugging information (in stabs
format) into the internal type structures. This is dependent on the amount of type
information for the program, and not on the size of the process being migrated.
It is therefore constant for all input sizes.

� Reading core – The time required to copy the data and stack segments from
the migrated process into Tui’s address space. This is dependent on the underly-
ing operating system’s implementation of theptrace system call. It exhibits a
small cost that grows slightly as the process size increases.

� Scanning – The scanning of the memory segments and the construction of the
value table. This cost depends on the number of individual data values that are
located, not the size of those values.
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Figure 3: “tree” on Sun 4

� Encoding – The data values must be marshalled into the intermediate file. This
cost depends on the total size of all data values, as well as the operating system’s
performance when writing to files.

� Rebuilding – This is the only component of themigrin algorithm that has
been analyzed. Given the intermediate file, the new data and stack segments are
constructed. The other components ofmigrin, such as building type structures
and reading/writing core memory is the same as formigrout.

It can be seen that scanning, encoding and rebuilding are the major components of
the migration cost. The cost of reading symbols is constant for a given program, and the
cost of reading the process core is small enough to ignore. We next study how the cost
of the three major components increases as the input size becomes extremely large.

5.2 Asymptotic Growth in Migration time

To examine Tui’s performance when migratingrealistic programs, each of the three tests
was configured so that it would create a large memory image. Figures 7 to 9 show the
contribution of the major costs (scanning, encoding and rebuilding) for various input
sizes. Note that the input size axis is linear and also that figure 8 has a truncated range
due to its bad performance on large input sizes. The following list gives an explanation
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of the performance for each of the three programs. To avoid paging problems, all tests
were performed on the same large machine.

� tree – This program has linear performance for all three components. This is
expected for encoding and rebuilding, but is not guaranteed for scanning, since
each splay tree insertion could have shown the worst case performance of O(lg n).
However, for this program, each insertion is being performed in very close to con-
stant time.

� fibonacci – Again, the encoding and rebuildingcomponents are linear, but the
scanning cost is O(n2). This is becausemigrout scans the stack in an approxi-
mately linear fashion (in order of addresses). Insertion of new data items into the
splay tree is in an increasing order. This results in a splay tree that resembles a
linear linked list.

� arrays – Since there are only 50 arrays, the scanning component requires an in-
significant amount of time to locate them. However, since each array is large, the
encoding and rebuilding components are significant, although they will always
have O(n) complexity.
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5.3 Improving Performance

If Tui is to be used in a realistic environment, the total running time must be minimal.
From the previous analysis, we determine that small programs can be migrated within 5
seconds, causing a slight disturbance to the user. However, with larger (more realistic)
programs, the delay could increase by several orders of magnitude. Even though these
delays wouldbe intolerable for interactive use, for long distance and wireless computing
the cost of migration may still be insignificant when compared to the cost of executing
the program over expensive communication links.

There are several optimizations that should be made to the current prototype version
of Tui that will substantially improve performance.

� Reading the debugging symbols and creating the type tree is a fixed cost that can
be avoided by preprocessing that data. If the tree can be built at compile time,
then bothmigrin andmigrout only need to read the type tree directly from a
file, rather than translating it from the stabs format.

� As seen in the case of the fibonacci program (migration time of O(n
2)), the splay

tree is not always the best structure for storing the value table. For random ac-
cesses (as in the tree program), performance is almost optimal, but for inserting
stack values in sequential order, the performance is at its worst.

The solution is to use a table into which the global and stack variables are added.
This is done in address order, so that all additions to the table are O(1). When
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scanning the heap space, accesses must be randomly ordered, therefore the table
should be converted into a balanced splay tree.

� The whole program would benefit from a more efficient coding style. That is, ex-
cessive debugging information could be removed, and the remaining code should
be optimized by the programmer.

� Use of faster computers in the future will reduce the total running cost. This cost
will become insignificant in comparison to the large cost of executing programs
or accessing remote data.

6 Enhancement – Dealing with non-migratible language
features

The current implementation of Tui is only a prototype. It has been shown to function
correctly when migrating a moderate range of simple programs, but it has not yet been
tested on randomly chosen software. The primary advantage of Tui, over the Emerald
mobility system, is that it focusses on languages that are not type safe (such as ANSI-
C). Tui must either successfully migrate any program, or must inform the user of why
this is not possible. Therefore, a extensive survey of ANSI-C programs and language
features must be made.

There are several points in time at which a program may be declared to be non-
migratible.

� Compile time — The compiler will detect a language feature that is guaranteed
to make the program non-migratible. A special compiler warning will be given,
allowing the programmer to reconsider the use of that feature. It is expected that
most problems will be detected at this phase.

� Run time — A run time check will notice that an illegal action has taken place.
This is not a desirable time to perform checks, due to performance degradation.

� Migrate time - If Tui detects a type inconsistency during migration, a detailed re-
port of the clash is given. This will normally only happen if the program contains
a type error that was not detected at compile time or run time.

Examples

The following list shows several of the non-migratible features of ANSI-C that have
been identified to date.

� sizeof — This operator returns the number of bytes of memory storage that a
variable of a given type requires. Since this value depends entirely on the host
machine, it may become incorrect after migration. One solution is to disallow
the use ofsizeof, since it suggests that the program might be non-portable.
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However, it must still remain legal in situations such as allocating memory with
malloc.

� Void pointers — When a pointer value is assigned to avoid *, we no longer
know the type of the data that is being pointed to. The solution is to enlarge each
void pointer with a tag that specifies the pointer’s base type. Every time an as-
signment is made to a void pointer, the correct type number must also be stored.
Upon retrieving a value, a run time type check ensures type consistency. This
solution involves extra code generation for tagging and checking pointers.

� argv array — This list of arguments is similar to a normal C array, but since
the size varies at run time, it is not possible to correctly specify the type. Extra
migration time code will fetch theargc variable to complete the type details.

� Pointer casting — Casting between non-void pointer types is normally consid-
ered non-migratible since we are creating a type inconsistency. That is, the orig-
inal pointer implies that the addressed memory has one type, whereas the newly
created pointer implies a different type. In some situations (such as thememcpy
procedure), it is necessary to create achar * from whatever pointer type is
passed in. The procedure can now access the data as a raw sequence of bytes.

A solution to this problem is to detect the scope of the cast, and to allow casting
that only affects the current procedure. That is, if an illegal assignment is made,
but the lifetime of the resulting value is contained within a single procedure, then
removing preemption points from that procedure will solve the problem. On the
other hand, if the pointer is stored in a global variable or on the heap, or is passed
to another procedure, then conflicting type information may exist at migration
time.

To complete the study of non-migratible features, we intend to survey other lan-
guages such as Pascal, Modula-2 and Fortran (ACK already supports these languages).
It is expected that the problems and solutions will be similar to those of C, but a few
new problems may arise.

7 Related Work

There is very little previous work that is directly related to heterogeneous process mi-
gration. As previously stated, only Emerald is known to support the transfer of active
programs between different architectures. There are however many areas of research re-
lated to heterogeneous migration. This section gives a list of such areas, showing their
relationship to heterogeneous migration.

� Traditional Migration Systems — Process migration is not a new topic, and has
been studied extensively since the late 1970s. Examples of process migration sys-
tems are V [9][37], Charlotte [4], DEMOS/MP [27], Sprite [12], Condor [8] and
Accent [40]. A good summary of these and other systems is given in [25].

25



Much of the previous research has involved finding new and improved methods
of transferring the state of the process from one machine to another. In all of these
systems, the process can only be migrated between homogeneous machines. The
Tui system assumes that the underlying operating system is capable of some type
of homogeneous migration, and adds the further option of allowing processor het-
erogeneity.

� Object mobility — The idea of process migration has been incorporated into dis-
tributed object oriented systems. However, it has become more relevant to mi-
grate on a per-object basis (or in groups of objects), rather than moving a whole
program. Migration in this form is more commonly known asMobility, that is, the
object is mobile. Examples of such systems are: Emerald [5] [21] [28], DOWL
[3], DCE++ [29], and COOL [22]. As previously mentioned, Emerald is the only
system that permits heterogeneous mobility of active code.

� Debugging — Source level debugging is one of the most closely related topics
to heterogeneous process migration. Compilers generate extensive amounts of
information describing such things as the type and location of all variables, and
the location of each source code statement. A debugger such asdbx orgdb uses
this information to aid the programmer in studying a process.

Although debuggers are similar in style to the Tui system, they have some ma-
jor limitations. They are able to give the user a good representation of the pro-
gram’s data, but they are not always exact. For example, if a C program contains a
union data type, the debugger will either refuse to show the data, or will show all
possible options, requiring the programmer to decide on the correct value. Also,
if generic pointers (such asvoid * in C) are used, the debugger will not be able
to dereference the pointer unless the user performs explicit type casting.

Recently, work has progressed in the field of debugging optimized code [11] [19].
Whereas traditional debuggers have only been able to correctly debug unopti-
mized programs, it has been recognized that many errors do not become obvious
in this situation. TheDWARF debugging format [1] is a newly developed format
that is capable of expressing the structure of an optimized program.

� Binary Translation — Binary Translation is a technique that is used to convert
machine code from one architecture to another. For example, one of its main uses
was in the introduction of DEC’s Alpha processor [31]. There was a desire to
convert existing VAX software to the Alpha platform, without using the original
source code. Another system [30] talks about emulating complex instruction set
machines by using binary translation within a RISC environment.

In the context of heterogeneous process migration, binary translation could be
used to migrate the executable program code to a different architecture. Even
though the simple solution of recompiling the program from the source code has
been chosen, Tui could also take advantage of binary translation.
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� Data Marshalling Packages — For software that is expected to function cor-
rectly in a distributed environment, it is vital that the heterogeneity present in the
data storage formats be taken into account. Any data that is externally visible
must be in a form that all consumers can interpret.

Several general packages are available to automate the data translation process.
Given some form of data description, these systems will generate suitable func-
tions for translating between a machine’s native data format and some interme-
diate format. Two of the most common systems are Sun’s XDR [24] and ISO’s
ASN.1 [2].

Tui does not take advantage of any standard system, since the packaging the whole
data structure is handled as part ofmigrout, and the translation of single data
values is trivial in the four machines support by Tui.

One solution [18] has addressed the issue of transmitting cyclic data structures
within the CLU programming environment (XDR and ASN.1 cannot correctly
deal with cycles). This problem has also been solved by Tui by the use of the
value table and the method of encoding pointers.

� Garbage Collection — A garbage collector is capable of scanning through the
program’s memory, searching for, and freeing areas that are no longer being used.
A good overview of traditionalgarbage collection techniques is given in [10], and
some of the more recent issues are discussed in [17]. See [6] and [38] for some
further examples.

Most existing garbage collection algorithms are not accurate enough to correctly
migrate a program. In many cases, it is assumed that all data items are distinct (as
in object oriented programming), and that marking the data is somehow possible.
Also, it is necessary for pointers to be clearly identified in some manner (such as
tagging), so they are not confused with other data values.

One system [7] allows garbage collection to function withinC programs, but with-
out proper type information, an educated guess must be made to identify point-
ers. Any pointer sized data value in a register or on the stack is considered to po-
tentially be a pointer. The memory allocator is used to decide whether the value
points to a valid memory block or not. The limitation of this system is that we
can never be totally sure of whether a data item is a pointer, or simply an integer.
Although an incorrect guess is not fatal for a garbage collection system, it will
not suffice for a migrator.

In a second system [16], the compiler is extended so that an extra garbage collec-
tor function is automatically generated for each standard function in the program.
When garbage collection takes place, the entire stack is traversed on a frame by
frame basis, with the appropriate function being called for each. These functions
perform collection by following any pointers that are present in that frame. As
with the Emerald migration system, this algorithm will only function correctly in
a strongly typed environment.
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� Heterogeneous Distributed Shared Memory — TheMermaid system [39] [41]
allows distributedshared memory (DSM) to function between heterogeneous ma-
chines. That is, a group of processes residing on different machines are able to
share a consistent view of a segment of memory. Unlike traditionalDSM, the ma-
chines may have different data formats, requiring that the segment is translated
as it is moved between machines.

This system uses information provided by the compiler to determine the types of
the data being shared. It then generates stubs to perform the necessary conver-
sion. Using customized conversion code is said to be more efficient than using
general conversion facilities such as XDR and ASN.1. Problems with unconvert-
ible data values, pointer correctness and variations in data sizes are raised, but not
addressed.

The methods used in Mermaid will be useful for process migration, although they
are for a rather simplified environment. Primarily, Mermaid does not address the
vital aspect of converting the active components of the process (such as registers
and stack). Secondly, it is limited to a well defined segment of memory, rather
than the whole process image.

� Checkpointing — Checkpointing and migration are very similar. The main dif-
ference is that checkpointing requires that a process can be restarted after a long
period of time, whereas migration assumes that the current external state will not
change. For example, a checkpointing system may need to rollback any files that
were being written to. A migration system would assume that the files remained
consistent.

In most cases, a checkpointing algorithmassumes that the process will be restarted
on exactly the same machine that it started on. This implies that heterogeneity is
not an issue. However, if we wish to restart it on a different machine, with a dif-
ferent architecture, then the problem is identical to that of heterogeneous process
migration.

Several checkpointing systems have been created for Unix systems [8] [26], but
they only function in a homogeneous environment.

8 Summary

The Tui Heterogeneous Process Migration system is able to move a process between
machines of different architecture. It uses type information that is generated when the
migratible program is compiled. The bulk of the work involves locating and determin-
ing the type of each data value within the process. This data is marshalled into an inter-
mediate form so that the process may be reconstructed on the destination machine.

The algorithms for checkpointing and reconstructing a process image have been de-
scribed, with most focus placed on those features that are unique to heterogeneous mi-
gration. Performance measurements have shown that migration is possible within a tol-
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erable amount of time, although further optimizations to the data structures and algo-
rithms will be necessary.

Tui has been designed to migrate ANSI-C programs, although other languages such
as Pascal and Fortran would be similar. These languages are not type-safe, so locat-
ing data is not always possible. Proposed future work will involve categorizing non-
migratible language features, and attempting to eradicate them.
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