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Abstract

Many mathematical models arising in science and engineering, including circuit and

device simulation in VLSI, constrained mechanical systems in robotics and vehicle

simulation, certain models in early vision and incompressible 
uid 
ow, lead to com-

putationally challenging problems of di�erential equations with constraints, and more

particularly to high-index, semi-explicit di�erential-algebraic equations (DAEs). The

direct discretization of such models in order to solve them numerically is typically

fraught with di�culties. We thus need to reformulate the original problem into a bet-

ter behaved problem before discretization. Index reduction with stabilization is one

class of reformulations in the numerical solution of high index DAEs. Another class

of reformulations is called regularization. The idea is to replace a DAE by a better

behaved nearby system. This method reduces the size of the problem and avoids the

derivatives of the algebraic constraints associated with the DAE. It is more suitable

for problems with some sort of singularities in which the constraint Jacobian does not

have full rank. Unfortunately, this method often results in very sti� systems, which

accounts for its lack of popularity in practice.

In this thesis we develop a method which overcomes this di�culty through a

combination of stabilization and regularization in an iterative procedure. We call it

the sequential regularization method (SRM). Several variants of the SRM which work

e�ectively for various circumstances are also developed. The SRM keeps the bene�ts

of regularization methods and avoids the need for using a sti� solver for the regularized

problem. Thus the method is an important improvement over usual regularization

methods and can lead to improved numerical methods requiring only solutions to

linear systems. The SRM also provides cheaper and more e�cient methods than the
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usual stabilization methods for some choices of parameters and stabilization matrix.

We propose the method �rst for linear index-2 DAEs. Then we extend the idea to

nonlinear index-2 and index-3 problems. This is especially useful in applications such

as constrained multibody systems which are of index-3. Theoretical analysis and

numerical experiments show that the method is useful and e�cient for problems with

or without singularities.

While a signi�cant body of knowledge about the theory and numerical meth-

ods for DAEs has been accumulated, almost none of it has been extended to partial

di�erential-algebraic equations (PDAEs). As a �rst attempt we provide a comparative

study between stabilization and regularization (or pseudo-compressibility) methods

for DAEs and PDAEs, using the incompressible Navier-Stokes equations as an in-

stance of PDAEs. Compared with stabilization methods, we �nd that regularization

methods can avoid imposing an arti�cial boundary condition for the pressure. This

is a feature for PDAEs not shared with DAEs. Then we generalize the SRM to the

nonstationary incompressible Navier-Stokes equations. Convergence is proved. Again

nonsti� time discretization can be applied to the SRM iterations. Other interesting

properties associated with discretization are discussed and demonstrated.

The SRM idea is also applied to the problem of miscible displacement in porous

media in reservoir simulation, speci�cally to the pressure-velocity equation. Advan-

tages over mixed �nite element methods are discussed. Error estimates are obtained

and numerical experiments are presented.

Finally we discuss the numerical solution of several singular perturbation prob-

lems which come from many applied areas and regularized problems. The problems

we consider are nonlinear turning point problems, a linear elliptic turning point prob-

lem and a second-order hyperbolic problem. Some uniformly convergent schemes

with respect to the perturbation parameter are constructed and proved. A spurious

solution phenomenon for the upwinding scheme is analyzed.
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Chapter 1

Introduction

Many mathematical models arising in science and engineering, including circuit and

device simulation in VLSI, constrained mechanical systems in robotics and vehicle

simulation, certain models in early vision and incompressible 
uid 
ow, lead to com-

putationally challenging problems of di�erential equations with constraints, and more

particularly to high-index, semi-explicit di�erential-algebraic equations (DAEs). The

direct discretization of such models in order to solve them numerically is typically

fraught with di�culties, and most methods proposed in the literature seek to circum-

vent this by employing combinations of problem reformulation, regularization 1 and

special discretization techniques.

We will consider the regularization of such mathematical models and the numer-

ical solution of the resulting regularized formulations. These formulations are often

singular perturbation problems because they typically depend on a small parameter

which provides a measure of the closeness between the regularized and the original

problems. We will also apply our regularization method and idea to other relevant

practical problems.

1.1 Regularization for Di�erential-Algebraic Equations (DAEs)

DAEs are special implicit ordinary di�erential equations (ODEs)

f(x0(t); x(t); t) = 0; (1.1)

1The concept of regularization was introduced by Tikhonov (see [109]). Its idea is that one solves

a better behaved nearby problem instead of solving the original problem to circumvent some sort of

di�culties. See the next section for more details.

1



Chapter 1. Introduction 2

where the partial Jacobian matrix fy(y; x; t) is singular for all relevant values of its

arguments. Here x0 = dx

dt
. An extension to partial di�erential equations is considered

in the next subsection.

DAEs were motivated by applications like network analysis, circuit simulation and

mechanical system simulation starting in the 1970's. They often arise as ordinary

di�erential equations with additional variables and (equality) algebraic constraints.

An extensive list of applications is given in [92].

In the 1980's, DAEs have developed into a highly topical subject of computational

and applied mathematics. Contributions devoted to DAEs have appeared in various

�elds, such as applied mathematics, scienti�c computation, mechanical engineering,

chemical engineering, system theory, etc. Frequently, other names have been assigned

to DAEs, e.g. semistate equations, descriptor systems, singular systems. Gear ([51],

1971) proposed to handle DAEs numerically by backward di�erentiation formulas

(BDF). For a long time DAEs had been considered not to di�er essentially from

regular implicit ODEs in general. Only since about 1980, because of computational

results that could not be brought into line with the above supposition (e.g. Sincovec

et al [103], 1981), the mathematical and particularly the numerical community have

started investigating DAEs more thoroughly. With their famous paper, Gear, Hsu

and Petzold ([52], 1981) started a discussion on DAEs that will surely be carried on

for a while.

The structure of DAEs is very much related to the concept of index, which is a

measure of the amount of singularity of the system. There are several ways to de�ne

index. The most popular one is called di�erential index, which is de�ned as the

minimal number of analytical di�erentiations in t such that (1.1) can be transformed

by algebraic manipulations into an explicit ordinary di�erential system (in the original

unknowns)

x
0 = �(x; t)
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which in turn is called the \underlying ODE ". There are several structural forms

of DAEs which appear frequently in applications (see [92]). The di�erential index of

these structural forms can be found by di�erentiating their algebraic constraints with

respect to t (and substituting into the di�erential equations which complement the

algebraic constraints). For instance,

� Semi-explicit index-1 system

x
0 = f(x; y); (1.2a)

0 = g(x; y); (1.2b)

if gy is invertible.

� Hessenberg index-2 system

x
0 = f(x; y); (1.3a)

0 = g(x); (1.3b)

if gxfy is invertible.

� Hessenberg index-3 system

x
0 = f(x; y); (1.4a)

y
0 = k(x; y; z); (1.4b)

0 = g(x); (1.4c)

if gxfykz is invertible. Mechanical multibody systems with holonomic con-

straints are examples of Hessenberg index-3 DAEs.

In [56] it is pointed out that higher index (� 2) DAEs, in the natural function

space formulations, lead to ill-posed 2 problems because they do not have the usual

2A problem is called ill-posed if it is not well-posed. A problem is called well-posed if it satis�es

three conditions, i.e. the existence, uniqueness and stability of its solution. \Stability" means that

the solution of the problem continuously depends on the \data", which may be initial data, boundary

data, coe�cients in the equation, values of the operator, etc.. Here high-index DAEs fail to satisfy

a stability condition.
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stability property of di�erential equations in general.

Example 1.1 Consider (See [86])

x
0 = y; (1.5a)

0 = x� p(t); (1.5b)

where x(t) and y(t) are scalar functions and p(t) is a given function. This is a very

simple index-2 DAE. The exact solution is x = p(t), y = p
0(t). If we add a small

perturbation � sin!t, � << 1, to the right hand side of the second equation we have

the exact solution

�x = p(t) + � sin!t; �y = p
0(t) + �! cos!t:

Hence �y � y = �! cos!t could be very large if ! � 1=�, i.e. the solution changes a

lot under a small change in the right-hand side of the equation. 2

A numerical method which is directly applied to a complex, ill-posed problem may

generally fail. Therefore, to solve DAEs, we have to stabilize such problems to bring

about continuous dependence on the \data" (or stability). One such approach is to

change the formulation of the problem but not its solution, e.g. in Example 1.1 we

di�erentiate (1.5b) once and obtain

x
0 = y (1.6a)

0 = y � p0(t); x(0) = p(0): (1.6b)

Now (1.6) is of index-1 and becomes a well-posed problem with the same solution as

(1.5). We can solve (1.6) instead of (1.5) and gain well-posedness. However, such a

direct index reduction procedure may cause the well-known drift di�culty (see [29]),

i.e. the approximate solution of (1.6) may be far from satisfying the constraint (1.5b).
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Hence, methods have been designed to prevent moving away from the constraints.

Baumgarte's stabilization [17] and projection invariant methods (cf. [16]) are popular

among such methods. Most of these approaches treat initial value problems, and only

a few apply to boundary value problems. See [29, 58] for various numerical methods

for initial value problems; [93, 7, 15] for boundary value problems; and [16, 9, 35] for

a survey of various stabilization reformulations.

Another approach consists in adding some small perturbation terms (measured

by a small positive parameter �) to the given DAE. The perturbed problem is close

to the original problem (if � is small) and is well-posed. Such an approach is usually

called regularization. This is a natural approach since the high-index DAE is ill-

posed; indeed in [43] a well-known Tikhonov regularization algorithm (see [109])

was applied to solve DAEs. However, such a method seems so general that it is

not su�ciently related to the special structure of the DAE. There are two types of

regularization methods which are probably more interesting for DAE researchers. One

is called parameterization. One such possibility, the pencil regularization, was given

independently by Boyarintsev [24] (or see his newer book [25] published in English)

and Campbell [32]. But the regularized problem is ensured to be well-posed only

for constant coe�cient cases. A further parameterization was proposed by M�arz [85].

Her regularization is aimed at obtaining well-posed index-1 DAEs instead of obtaining

well-posed ODEs. Heuristically, it seems evident that the DAE is less changed if it

is transformed into an index-1 DAE rather than an ODE. M�arz's regularization was

proved to be well-posed for usual structural forms of DAEs. We refer to [59] for

further results in this direction.

Another class of regularization uses the penalty idea (see [84, 91]). It originates

from penalty methods for constrained optimization problems. Note that an algebraic

equation in a DAE can be viewed as a constraint. This method seems more natu-

ral for DAEs. References [68, 70, 69] used the penalty regularization and singular
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perturbation theory to determine the solutions of DAEs when the initial or bound-

ary values are given improperly (i.e. inconsistently). In Chapter 2 we will mention

these methods again with a bit more detail and indicate that M�arz's regularization

is actually a kind of penalty method.

Because the regularization method requires fewer di�erentiations of the constraints

it is perhaps more suitable for DAEs which have singularities, i.e. whose constraints

do not have full rank, e.g. when the matrix gxfy is singular at some isolated points

in the index-2 system (1.3). These problems can be challenging for the methods that

are usually employed and appear frequently in simulation of constrained mechanical

systems. To our knowledge, there has not been a paper in the numerical analysis

literature about this until the recent two preprints [11] and [94] (although a number

of relevant papers appear in the mechanical engineering literature).

From a practical point of view, a number of codes which work well and e�ciently

(at least if the regularization parameter � is not too small) are available for numeri-

cally solving the regularized problems. We also note that the regularization method

requires less smoothness of the coe�cients of the di�erential-algebraic problem than

other stabilization methods. These are the advantages of the regularization method.

The dominant disadvantage in the above regularization methods is that the parame-

ter � must be small enough to maintain the accuracy of the numerical method we use

for the regularized problem at an acceptable level. Hence, a sti� solver is necessary.

Typically in regularization methods, the parameter � must be chosen both \large

enough" and \small enough": large so that the regularized problem would behave

signi�cantly better than the original, and small so that its solution will not di�er too

much from that of the original problem.

We will present a class of new regularization methods, inspired by [19], which we

call sequential regularization method (SRM). The SRM can be viewed as a combina-

tion of the penalty method with Baumgarte's stabilization in an iterative procedure;
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see x2.4 or x3.1 for speci�c instances. It is applicable for DAEs with constraint sin-

gularities. Moreover, the regularization parameter � in the method is not necessarily

small. Thus, a nonsti� solver can be used for solving the regularized problems. Some

variants of the SRM are discussed for index-2 and index-3 DAEs with the goal of sim-

plifying the computations. We will apply the SRM to mechanical multibody systems

as well.

1.2 Regularization for the Incompressible Navier{ Stokes equations

As noted before, DAEs have become a highly topical subject of applied and numerical

mathematics. However, there seems to be still a void in the literature about partial

di�erential equations with constraints (PDAEs). A typical instance of such problems

is the well-known incompressible Navier-Stokes equations:

ut + (u � grad)u = ��u� gradp+ f ; (1.7a)

divu = 0; (1.7b)

uj@
 = b ; ujt=0 = a; (1.7c)

in a bounded two- or three-dimensional domain 
 and 0 � t � T . Here u(x; t)

represents the velocity of a viscous incompressible 
uid, p(x; t) the pressure, f the

prescribed external force, a(x) the prescribed initial velocity, and b(t) the prescribed

boundary values.

The system (1.7) can be seen as a partial di�erential equation with constraint

(1.7b) with respect to the time variable t. Hence, we call it a PDAE. It is easily

veri�ed that it is of index-2 without singularities since the operator divgrad = � is

invertible (under appropriate boundary conditions).

A huge number of methods have been designed to solve the nonstationary incom-

pressible Navier-Stokes equations (1.7). Direct discretizations include �nite di�erence
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and �nite volume techniques on staggered grids (e.g. [65, 26, 66]), �nite element

methods using conformal and nonconformal elements (e.g. [54, 110, 63, 64]) and

spectral methods (e.g. [33]). Another approach yielding many methods has involved

some initial reformulation and/or regularization of the equations, to be followed by

a discretization of the (hopefully) simpli�ed system of equations. Examples of such

methods include pseudo-compressibility methods, projection and pressure-Poisson re-

formulations (e.g. [36, 55, 72, 97, 102, 117]). The two types of regularizations we

mentioned in x1.1 for DAEs were already proposed in the Navier-Stokes context quite

a while ago (cf. [108, 72]). We are interested in the generalization of the SRM to

this problem because the regularized problems can be made essentially nonsti� and

then a more convenient di�erence scheme (e.g. an explicit scheme) in time is possi-

ble. Moreover, the method retains the bene�ts of the penalty method. For example,

computations for the velocity u and the pressure p are uncoupled and an arti�cial

boundary condition for calculating the pressure p is not necessary.

1.3 A Problem in Reservoir Simulation

The idea of the SRM can be applied to a reservoir-simulation problem | miscible

displacement in porous media.

Miscible displacement is an enhanced oil-recovery process that has attracted con-

siderable attention in the petroleum industry. It involves injection of a solvent at

certain wells in a petroleum reservoir, with the intention of displacing resident oil to

other wells for production. This oil may have been left behind after primary produc-

tion by reservoir pressure and secondary production by water
ooding. The economics

of the process can be precarious, because the chemicals it requires are expensive and

the performance of the displacement is by no means guaranteed. Complex physical

behavior in the reservoir will determine whether enough additional oil is recovered
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to make the expense worthwhile. A numerical simulation of the complex process

undoubtedly plays an important role.

Mathematically, the process is described by a convection{ dominated parabolic

partial di�erential equation for each chemical component in the system. By summing

up the component equations, one can obtain an equation that determines the pressure

in the system; this nonlinear equation is elliptic or parabolic, according to whether

the system is incompressible or compressible. Thus, in this problem one encounters

elliptic, parabolic, and near{hyperbolic equations with complicated nonlinear behav-

ior.

For simplicity, we consider the miscible displacement of one incompressible 
uid

by another in a porous reservoir 
 � R2 over a time period [0; T ]. Let p(x; t)

and u(x; t) denote the pressure and Darcy velocity of the 
uid mixture, and c(x; t)

the concentration of the invading 
uid. Then the mathematical model is a strongly

coupled nonlinear system of partial di�erential equations (see [44, 82]):

u = �a(gradp� 
gradd); (x; t) 2 
 � [0; T ]; (1.8a)

divu = q(x; t); (x; t) 2 
� [0; T ]; (1.8b)

�

@c

@t

� div(D(u)gradc) + u � gradc = g(c); (x; t) 2 
� [0; T ]; (1.8c)

with the boundary conditions

u � n = 0; (x; t) 2 � � [0; T ]; (1.9a)

D(u)gradc � n = 0; (x; t) 2 � � [0; T ]; (1.9b)

and initial condition

c(x; 0) = c0(x); x 2 
; (1.10)

where a = a(x; c) is the mobility of the 
uid mixture, 
 = 
(x; c) and d(x) are

the gravity and vertical coordinate, q is the imposed external rates of 
ow, �(x) is
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the porosity of the rock, D is the coe�cient of molecular di�usion and mechanical

dispersion of one 
uid into the other, g = g(x; t; c) is a known linear function of c

representing sources, and n is the exterior normal to the boundary � = @
.

The pressure-velocity equation (1.8a){(1.8b) is elliptic (after eliminating u). The

concentration equation (1.8c) is parabolic, but normally convection- dominated. It is

derived from the conservation of mass which involves the Darcy velocity of the 
uid

mixture, but the pressure variable does not appear in it. Thus a good approximation

of the concentration equation requires accurate solution for the velocity variables.

Mixed �nite element methods have been applied to the pressure-velocity equation,

which can yield velocity solutions one order more accurate than those obtained using

corresponding �nite di�erence and usual �nite element methods [40, 41, 42, 46, 47,

120]. However, the �nite dimensional spaces for the velocity and pressure need to

satisfy the Babuska-Brezzi condition, and the resulting linear system does not have

a positive de�nite coe�cient matrix. Moreover, the number of degrees of freedom in

the linear system doubles that of �nite di�erence or �nite element methods.

We are interested in designing an SRM for the pressure-velocity equation since

the SRM formulation can produce as accurate a velocity approximation as the mixed

�nite element methods, and can avoid the above-mentioned problems in mixed �nite

element methods.

1.4 Regularization for Di�erential Equations without Constraints

Regularization methods are also used to treat di�erential equations without con-

straints when these equations have some sort of singularities or their solutions may

have some sort of discontinuities. Examples are viscous solutions of hyperbolic con-

servation laws [76], shape from shading problems with singularities [34] and transition
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phenomena in semi-conductor device simulation [13]. A frequently considered prob-

lem is the following �rst-order partial di�erential equation

a(u; x; t)
@u

@t

+
nX
i=1

bi(u; x; t)
@u

@xi

+ c(u; x; t) = 0 (1.11)

with appropriate initial and boundary conditions. In general, (1.11) may have some

kind of discontinuous solutions, e.g. a shock wave [76]. Or, if we consider the steady-

state case, (1.11) may have singularities, i.e. bi may vanish at some points, as in the

shape from shading problem [34]. Some regularization techniques have been designed

for solving (1.11). A popular one is

a(u; x; t)
@u

@t

+ �d(u; x; t)�u+
nX
i=1

bi(u; x; t)
@u

@xi

+ c(u; x; t) = 0: (1.12)

The regularized problem often has a physical meaning by itself, e.g. a time-dependent

advection-di�usion equation with a small di�usion term. Another choice could be

�d(u; x; t)(
@
2
u

@t
2
��u) + a(u; x; t)

@u

@t

+
nX
i=1

bi(u; x; t)
@u

@xi

+ c(u; x; t) = 0: (1.13)

This has physical meanings as well, e.g. a tra�c 
ow problem [118] or so-called

overdamped vibration problems [104].

Thus the approximate resolution of (1.11) becomes that of the singular pertur-

bation problem (1.12) or (1.13). Unlike the SRM, the regularization parameter �

has to be small in comparison with the mesh size to ensure that the solution of the

regularized problem be a good approximation of that of the original problem. It is

well-known that there are di�culties in solving these regularized problems numeri-

cally with small �, e.g. the stability problem for the central di�erence scheme and the

accuracy problem for the upwinding scheme in a boundary layer region in which the

derivatives of the solution may be large (see [37, 61]). We will consider some special

cases of (1.12) or (1.13) and focus mainly on uniformly convergent methods. We will

discuss spurious solutions of a simple upwinding scheme as well.
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1.5 Contribution of This Thesis

Our objectives are to propose and to investigate regularization methods for various

di�erential equations with or without constraints. Most attention is paid to ordinary

and partial di�erential equations with constraints (DAEs and PDAEs). We pro-

pose and analyze a regularization method called the sequential regularization method

(SRM). A very important advantage of our regularization method (SRM) is that the

problem after regularization need not be sti�. Hence explicit di�erence schemes can

be used to avoid solving nonlinear systems and they make the computation much

simpler. Improvements over stabilization methods and extra bene�ts for PDAEs are

also achieved.

In Chapter 2, the SRM is presented for linear index-2 DAEs with or without

constraint singularities. A complete theoretical analysis is performed for both cases.

It is proved that the di�erence between the exact solution of a DAE and the cor-

responding iterate becomes O(�s) in magnitude at the sth iteration, at least away

from the starting value of the independent variable t. Hence, the regularization pa-

rameter � need not be very small so the regularized problems are less sti�. By some

choice of parameters the regularized problems can be essentially nonsti� for any �.

As an example, a simple di�erence scheme for solving the regularized problems is

investigated. Implementation techniques are discussed to get an approximation in

the whole region for boundary value problems and to economize storage for initial

value problems. Numerical experiments support our theoretical results. Numerical

examples also show that usual stabilization methods do not work for problems with

constraint singularities. Most parts of this chapter are taken from the paper [11].

In Chapter 3, we extend the SRM to nonlinear problems and to DAEs with index

higher than 2. Again, nonsti�ness of the regularized problems is achieved. Rather
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than having one \winning" method, this is a class of methods from which a num-

ber of variants are singled out as being particularly e�ective methods in certain cir-

cumstances of practical interest. In the case of no constraint singularity we prove

convergence results. The method is also applied to constrained multibody systems.

Numerical experiments con�rm our theoretical predictions and demonstrate the via-

bility of the proposed methods. Most parts of this chapter are taken from the paper

[12].

In Chapter 4, we generalize the SRM to PDAEs, in particular, to the nonsta-

tionary Navier-Stokes equations. The convergence rate O(�s) at the sth iteration is

again proved for this PDAE case in appropriate norms. The SRM not only avoids the

sti�ness of the regularized problems which always occurs in pseudo-compressibility

methods but also avoids providing an unphysical pressure boundary condition which

has to be imposed in stabilization methods. Discretization and implementation issues

of the SRM are considered as well. In particular, a simple explicit di�erence scheme is

analyzed and its stability is proved under the usual step size condition (independent

of the regularization parameter �) of explicit schemes. The stability result also indi-

cates that the step size restriction can be relaxed as the viscosity becomes small. A

numerical example is calculated to demonstrate these results. The SRM formulation

is new in the Navier{Stokes context and it performs well. Most parts of the chapter

are taken from the paper [79].

In Chapter 5, we apply the idea of the SRM to the simulation of miscible displace-

ment in porous media. The problem is modeled by a nonlinear coupled system of two

partial di�erential equations: the pressure-velocity equation and the concentration

equation. Only the approximation of velocity is important for the approximation of

concentration. The SRM idea is used for the pressure-velocity equation. An O(�s)

error estimate at the sth SRM iteration is also proved. A Galerkin �nite element
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method is used for the discretization of the SRM formulation. It is capable of pro-

ducing as accurate a velocity approximation as the mixed �nite element method.

But unlike the mixed �nite element method its sti�ness matrix is symmetric positive

de�nite and its �nite element spaces need not satisfy the so-called Babuska-Brezzi

condition. Most parts of this chapter are taken from the report [82].

Chapter 6 is devoted to numerical methods of some special cases of singular per-

turbation equations in the form of (1.12) or (1.13). Sections x6.1 and x6.3 describe a
collection of papers [79, 115, 107] which re
ects the author's earlier research interests.

We believe that, by considering these special cases, we make steps towards the general

problems (1.12) or (1.13) which are undoubtedly very di�cult. Also, these special

cases have practical meaning in themselves, hence, are worthwhile to be considered

independently. In x6.1, we consider the one dimensional steady-state case of (1.12).

x6.2 covers a special two-dimensional steady-state instance of (1.12) given in [121]

to show that upwind schemes may lead to spurious solutions even for problems with

very smooth solutions. We indicate that this is actually an ill-posed problem when �

is small. Hence, it is not strange that a direct discretization to the problem fails. In

x6.3, we consider the linear one dimensional time-dependent case of (1.13). In this

case, derivatives of the reduced problemmay be discontinuous along the characteristic

curves.

Finally, conclusions and possible future work are contained in Chapter 7.



Chapter 2

Sequential Regularization Methods for Di�erential Algebraic Equations

2.1 Motivation of the SRM for General High Index DAEs

The sequential regularization method (SRM) is motivated from the augmented La-

grangian method applied to constrained multibody systems (index-3 DAEs in general)

by Bayo and Avello [19] and an earlier paper [20]. So we start this chapter by con-

sidering a mechanical system whose con�guration is characterized by the generalized

coordinates q. Let L be the system Lagrangian, de�ned by

L = T � V;

where T and V are the kinetic energy and the potential energy, respectively. Let Q

represent non-conservative forces.

Usually the Lagrangian coordinates are not independent, but rather are interre-

lated through certain constraint conditions. When the connections between bodies

are of holonomic type, these constraint conditions can be expressed mathematically

in the following form:

�(q; t) = 0: (2.1)

Then Hamilton's principle leads to the Euler-Lagrange equations:

d

dt

(
@L

@q
0
)� @L

@q

+ �T

q
� = Q; (2.2)

where � is a vector function whose components are Lagrange multipliers. For general

multibody systems, (2.2) becomes

M(q)q00+ �T

q
� = f(q; q0) (2.3)

15
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with common initial conditions, where M is the mass matrix and �q is the Jacobian

of the constraint equations. (2.3) and (2.1) form the Euler-Lagrange equations for a

constrained multibody system. This is an index-3 DAE if �q has full rank.

We have indicated that direct discretization would not be good in general for

such a higher index DAE. One usual way to treat this problem is index reduction (to

an index-1 DAE or an ODE). The most straightforward transformation of the DAE

(2.3), (2.1) to an index-1 DAE involves replacing the constraint (2.1) with its second

derivative plus initial conditions:

�00 =
d
2�(q(t); t)

dt
2

= 0; (2.4a)

�(q(0); 0) =
d�(q(0); 0)

dt

= 0; (2.4b)

(cf. (1.6)). However, this causes well-known drift di�culties, i.e. the numerical

solution of (2.3), (2.4) may drift away from the original constraints (2.1) as time

proceeds. Hence we have to look for stabilized index reduction methods. A very

popular method called Baumgarte's method proposed in 1972 [17] is a generalization

of (2.4). It replaces (2.4a) with the equation

�00 + a�0 + b� = 0; (2.5)

where a and b are parameters chosen so that the roots of the polynomial

�(� ) = �
2 + a� + b = 0; (2.6)

are both negative, i.e. the initial value problem for the di�erential equation (2.5) for

� is asymptotically stable (see [16]). The system (2.5), (2.3) can be written in the

form 2
4 M �T

q

�q 0

3
5
2
4 q00
�

3
5 =

2
4 f(q; q0)

�(�q)
0
q
0 � (�t)

0 � a�0 � b�

3
5
: (2.7)

The matrix 2
4 M �T

q

�q 0

3
5 (2.8)
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Figure 2.1: planar slider-crank: initial state in solid line, subsequent states in dotted

lines

is nonsingular if �q has full row rank. Hence (2.7) can be integrated using standard

numerical integrators. If �q is rank-de�cient, we have a potential di�culty in solving

(2.7). Baumgarte's method may not work then. The problem is called singular if �q

does not have full rank.

Example 2.1 Consider two linked bars (see Fig. 2.1). One end of one bar is �xed at

the origin, allowing only rotational motion in the plane. The other end of the other

bar slides on the x-axis. The equations of motion form a nonlinear index-3 DAE

p
0 = v

Mv
0 = f �GT

�

g(p) = 0

where xi; yi; �i are the coordinates of the center of mass of the ith bar, and
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p = (x1; y1; �1; x2; y2; �2)
T
:

If the left bar is strictly shorter than the right bar, then the Jacobian matrix G of

the constraint functions of this problem has full rank. The problem is nonsingular. If

the length of these two bars are the same, for example, each with length 2 and mass

1, then we have

M = diagf1; 1; 1=3; 1; 1; 1=3g

f = (0;�9:81; 0; 0;�9:81; 0)T

g =

0
BBBBBBBBBBB@

x1 � cos �1

y1 � sin�1

x2 � 2x1 � cos �2

y2 � 2y1 � sin�2

2 sin�1 + 2 sin �2

1
CCCCCCCCCCCA

G = gp =

0
BBBBBBBBBBB@

1 0 sin�1 0 0 0

0 1 � cos�1 0 0 0

�2 0 0 1 0 sin�2

0 �2 0 0 1 � cos �2
0 0 2 cos �1 0 0 2 cos �2

1
CCCCCCCCCCCA

Clearly, as the mechanism moves left through the point where both bars are upright

(�1 =
�

2
; �2 =

3�
2
) the last row of G vanishes at this one point and a singularity is

obtained. When arriving at this point with no momentum, this is actually a bifurcation

point where two subsequent motion con�gurations are possible. We will consider only

the case where the sliding bar continues to slide along the x-axis past the singularity,

and note that the solution is smooth in the passage through the singularity. 2

In [19], Bayo and Avello proposed to solve the multibody system (2.3) using an

augmented Lagrangian algorithm which is transplanted from the same method in the

optimization context [5]. Their idea is to derive a modi�ed formulation by adding to

the expression of Hamilton's principle three terms:



Chapter 2. Sequential Regularization Methods for Di�erential Algebraic Equations19

� a �ctitious potential

V
� =

X
k

1

2
�k!

2
k
�2
k

(2.9)

� a set of Rayleigh dissipative forces

Gk = �2�k!k�k�0k (2.10)

� a �ctitious kinematic energy term

T
� =

X
k

1

2
�k�

02
k
; (2.11)

where each �k is a very large real number (the penalty), and !k and �k represent

the natural frequency and the damping ratio of the penalized system (mass, dashpot

and spring) corresponding to the constraint �k = 0. Then we get a modi�ed Euler-

Lagrange equation

Mq
00 + �T

q
�(�00 + 2
��0 + 
2�) + �T

q
�
� = f(q; q0) (2.12)

or

(M + �T

q
��q)q

00+ �T

q
�
� = f(q; q0)� �T

q
�((�T

q
)0q0 + (�t)

0 + 2
��0 + 
2�); (2.13)

where �, 
 and � are diagonal matrices that contain the values of the penalties, the

natural frequencies and the damping ratios of the �ctitious penalty systems assigned

to each constraint condition. Because �� is not given in advance Bayo, Jalon and

Serna [20] propose an iteration to solve (2.12) or (2.13) by comparing (2.12) with

(2.3):

�
�

s
= �

�

s�1 + �(�00 + 2
��0 + 
2�)jq=qs�1; s = 1; 2; � � � (2.14)

to get an approximation of �.

In [19] the authors called the whole procedure an augmented Lagrangian algorithm

and claimed that the algorithm works well, however without any theoretical analysis.
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In fact, the algorithm would certainly not work in general. In multibody motions q

usually remains smooth even in passage through singular positions. However, as indi-

cated in later sections, � may be unbounded at the singularity. So the iteration (2.14),

as an approximate procedure to obtain �, is not appropriate in some cases. Also, �00

should not be included in (2.12) in the singular case because unbounded coe�cients

may appear in it. From (2.14) the formulation corresponds to Baumgarte's formula-

tion since when ��
s
gets close to ��

s�1 (2.14) gets close to Baumgarte's stabilization.

But Baumgarte's stabilization is not as good as some other stabilization techniques

(see [8]). Moreover, in [19] the authors indicated that the iteration (2.14) is applied

until kq00
s
� q00

s�1k < �, where � is a user-speci�ed tolerance. This criterion is perhaps

applied because they did not know the convergence rate of their iterative procedure.

We do not recommend this criterion because it causes not only unnecessary extra

iterations but also makes a storage-saving implementation di�cult (cf. x2.6).
Our aim is to construct a method for general DAEs which not only avoids the

above shortcomings, but for which we also do not have a Lagrangian and Hamilton's

principle. So another derivation of the algorithm is needed.

In this and the next chapter, we propose a class of algorithms motivated by the

augmented Lagrangian method for more general DAEs of order �,

x
(�) = f(x; x0; : : : ; x(��1); t)�B(x; t)y; (2.15a)

0 = g(x; t): (2.15b)

The DAE (2.15) has index �+1 if GB is nonsingular for all t, 0 � t � tf , where G =

gx. We are interested in the cases � = 1 or 2. The Euler-Lagrange equations (2.3)

for mechanical systems with holonomic constraints are in this form with � = 2. The

algorithm is derived by combining a modi�ed penalty idea (a kind of regularization)

given in [91] with stabilization techniques such as Baumgarte's stabilization or the

stabilization analyzed in [8, 35] in an iterative procedure. We call the method the
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sequential regularization method (SRM) (cf. [11, 12]). The method is applicable for

more general higher index DAEs. More importantly, it works for both boundary

and initial value problems and is justi�ed by a theoretical analysis. The number of

iterations can be determined beforehand depending on the penalty parameter � = 1=�,

the mesh size h and the order of the method used. Since we specify the iteration

number in advance we can design a procedure for the initial value case to perform

the iteration without the need to store all previous approximate values.

The sequential regularization method is actually a functional iteration procedure

in which the di�erence between the exact solution of a DAE and the corresponding

iterate becomes O(�s) in magnitude at the sth iteration, at least away from the

starting value of the independent variable (which we shall call `time'). Hence, unlike

the usual regularization, the perturbation parameter � does not have to be chosen

very small, so the regularized problems can be less sti� and/or more stable.

Next we will propose and analyze the SRM for the linear index-2 case with sin-

gularities. Numerical experiments are given to verify our theoretical results. Some

simple di�erence schemes for the regularized problems and implementation issues for

the SRM are also discussed.

2.2 Linear Index-2 Problems

We �rst write down the linear index-2 problem:

x
0 = A(t)x�B(t)y + q(t); (2.16a)

0 = G(t)x+ r(t) � g(x; t); (2.16b)

where A(t), B(t) and G(t) are su�ciently smooth functions of t; 0 � t � tf , A(t) 2
Rnx�nx , B(t) 2 Rnx�ny , G(t) 2 Rny�nx , and ny � nx. We consider the DAE (2.16)

subject to nx � ny boundary conditions
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�
B0x(0) + �

B1x(tf) = �: (2.17)

These boundary conditions are assumed to be such that they yield a unique solution

for the ODE (2.16a) on the manifold given by (2.16b). In particular, if we were to

replace (2.16b) by its di�erentiated form

0 = Gx
0 +G

0
x+ r

0 =
d

dt

g(x; t); (2.18a)

g(x(0); 0) = G(0)x(0) + r(0) = 0; (2.18b)

and use (2.18a) in (2.16a) to eliminate y and obtain nx ODEs for x, then the boundary

value problem for x with (2.17) and (2.18b) speci�ed has a unique solution. In the

initial value case �
B1 = 0, this means that (2.17) and (2.18b) can be solved uniquely

for x(0). We will give a more precise assumption in Lemma 2.1 below. The problem

(2.16), (2.17) is of index-2 if GB is nonsingular for all t. However, here we allow GB

to be singular at some isolated points of t. For simplicity of exposition, let us say

that there is one singular point t�; 0 < t� < tf . The inhomogeneities are q(t) 2 Rnx

and r(t) 2 Rny . We are only interested in the kind of singularities as in Example 2.1,

where the solution x of (2.16), (2.17) passes through the singularity smoothly.

Returning to Example 2.1 (where B =M
�1
G
T ), we can verify that, although the

matrix GM�1
G
T is singular at the singularity , the matrix M�1

G
T (GM�1

G
T )�1G

is smooth for all t. Also, two types of singular constraints (i.e., with vanishing rows

or with some rows linearly dependent at some points) mentioned in [2] both have a

similar property. Thus, for the linear model (2.16), we assume accordingly:

Assumption 2.1 The matrix function P = B(GB)�1G is smooth, or more precisely,

P is continuous and P 0 is bounded near the singular point t� where we de�ne

P (t�) = lim
t!t�

(B(GB)�1G)(t):
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Because we are only interested in the case where (2.16) has a smooth solution for

x (as is the case in Example 2.1), it is necessary to assume, in view of (2.16b):

Assumption 2.2 The inhomogeneity r(t) satis�es r 2 S; where

S = fw(t) 2 Rny : Gz = w for a smooth function z(t):

We note that Assumptions 2.1 and 2.2 are satis�ed automatically if GB is nonsin-

gular for each t. On the other hand, neither B(GB)�1 nor (GB)�1G alone are smooth

near a singularity in general. We also indicate here that to formulate the SRM (see

x2.4) we only need the continuity of P . The further requirement in Assumption 2.1

on the derivative of P is needed for the regularity of the solution (cf. Lemma 2.1 and

(2.24)) and the stability proof for the regularized problems (cf. x2.5). This require-
ment can be avoided if we make a more general assumption about the regularity and

stability of the original problem (cf. x3.1).
We consider both initial and boundary value problems. In x2.3 we brie
y dis-

cuss the conditioning of the problem (2.16) with singularities. In x2.4 we derive

the sequential regularization method. In x2.5 we estimate the error of the SRM. In

x2.6, we consider some discretization and implementation issues for both initial and

boundary value problems. Finally, in x2.7 several numerical examples demonstrate

our theoretical results.

2.3 Problem Conditioning

Similarly to [15] and to the method of pseudo upper triangular decomposition (PUTD)

described in [2] (cf. x10.6; with the di�erence that we do pivoting to interchange

the row with the singularity of the lowest order and the current row when all the
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other rows vanish at some singular point), there exists a smooth matrix function

R(t) 2 R(nx�ny)�nx , which has full row rank and satis�es

RB = 0; for each t; 0 � t � tf ;

where R can be taken to have orthonormal rows.

As in [15, 16], de�ne the new variable

u = Rx; 0 � t � tf : (2.19)

Then, using (2.16b), the inverse transformation is given by

x = Su�B(GB)�1r; (2.20)

where

S = (I �B(GB)�1G)RT = (I � P )RT
:

By the assumptions at the beginning of this chapter, this transformation is well-

de�ned. Di�erentiating (2.19) and using (2.16a) and (2.20) we obtain the essential

underlying ODE (EUODE):

u
0 = (RA+R

0)Su� (RA+R
0)B(GB)�1r +Rq: (2.21)

Hence the underlying problem of (2.21) is

u
0 = (RA+R

0)Su+ f; (2.22a)

�
B0S(0)u(0) + �

B1S(tf)u(tf) = �1: (2.22b)

We make

Assumption 2.3 The boundary value problem (2.22) is stable, i.e. there exists a

moderate-size constant K such that

kuk � K(kfk+ j�1j);

where kuk = maxtfju(t)j; 0 � t � tfg.
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Similarly to Theorem 2.2 of [15], we have

Lemma 2.1 Let the DAE (2.16) have smooth coe�cients, and assume that Assump-

tions 2.1 and 2.2 hold. If the EUODE (2.21) with boundary conditions (2.22b) has

a unique solution, then there exists a unique solution for the x of problem (2.16)-

(2.17) which is smooth. This implies the unique existence of a smooth By as well.

Furthermore, if Assumption 2.3 holds then there is a constant K such that

kxk � K(kqk+ kB(GB)�1rk+ j�j);

kx0k � K(kqk+ kB(GB)�1rk+ k(B(GB)�1r)0k+ j�j):

Remark 2.1 For problem (2.16) without singularities, we can get

kxk � K(kqk+ krk+ j�j);

kx0k � K(kqk+ krk+ kr0k+ j�j)

as in [15, 16]. 2

The di�erence between the situation here and in the nonsingular case is that

the perturbation inhomogeneities r yield reasonably bounded perturbations in the

solution x only if they are (in general) from the subspace Range (G).

From (2.16a) and (2.20), we can write

y = �(GB)�1G(x0 �Ax� q); t 2 [0; t�) [ (t�; tf ]; (2.23)

which could be unbounded at the singular point t� (whereas By is bounded). Note

that G could be replaced in (2.23) by any appropriate matrix Q with the same size

as G, e.g. Q can be BT .
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Remark 2.2 If B has full rank for each t, then

(GB)�1G = (BT
B)�1BT

P:

Hence, (GB)�1G is smooth. Hence, there exists a unique solution for the y of problem

(2.16)-(2.17) which is smooth and can be expressed as (2.23) for each t. Furthermore,

using Lemma 2.1, we have in this case

kyk � K(kqk+ kB(GB)�1rk + k(B(GB)�1r)0k+ j�j): (2.24)

In the general case, however, we will have to consider By, rather than y alone, in the

theorems of the next section. 2

A Baumgarte stabilization applied to (2.16) consists of eliminating y according

to (2.18),(2.23), and stabilizing (see (2.30) below for the usual form). This gives the

ODE

x
0 = (I �B(GB)�1G)(Ax+ q)�B(GB)�1(G0

x+ r
0)� ��1B(GB)�1(Gx+ r) (2.25)

where � > 0 is a parameter (cf. [17, 8]). If there are no singularities then it fol-

lows from the analysis in [16] that if Assumption 2.3 holds then the boundary value

problem (2.25),(2.17),(2.18b) is also stable. In other words, the \initial value stabi-

lization" works also for the boundary value case, because the new modes introduced

by replacing (2.16b) with (2.18a) are separable and decaying, in agreement with the

additional initial conditions (2.18b).

However, in the singular case (2.25) may not work because the terms B(GB)�1G0

and B(GB)�1r0 are in general unbounded. Therefore, we develop an iterative method

in the next section which builds up an approximation to By and x that avoids going

through unbounded quantities.
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2.4 Derivation of the SRM

There are many discussions on regularization methods for DAEs. A direct regulariza-

tion (cf. the pseudo-compressibilitymethod in the Navier-Stokes context [108, 72, 97])

is:

x
0 = A(t)x�B(t)y + q(t); (2.26a)

��y0 = G(t)x+ r(t): (2.26b)

This formulation is not popular because it requires conditions on A, B and G, for

the purpose of stability of the system, and the existence of the �rst derivative of y,

which is not necessarily true for the original problem (2.16) [86]. It may also change

the properties of the original index-2 problem too much by jumping from index-2

to index-0 (ODE). It seems evident that a regularization with fewer changes of the

original problem (e.g. from index-2 to index-1) might be better. The penalty method

[84, 91, 68, 70] is such a method. It reads

x
0 = A(t)x�B(t)y + q(t); (2.27a)

�E
�1
y = G(t)x+ r(t); (2.27b)

where E 2 Rny�ny is chosen such that BEG has non-negative eigenvalues. Hence, the

system obtained by substituting (2.27b) into (2.27a) is generally stable. For example,

we can choose, relying on Assumption 2.1, E = (GB)�1(hence, BEG = P ). Also,

E = (GB)T could be a good choice in some circumstances. If B =M
�1
G
T for some

positive de�nite matrix M (as in the case of mechanical systems) then it is possible

to choose E = I. Advantages of these choices of E will be discussed in Chapter 3.

For problems with singularities, we suggest using E = (GB)�1 to avoid a turning

point problem. Another approach is parameterization [85, 59]:

x
0 = A(t)x�B(t)y+ q(t); (2.28a)
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0 = G(t)(x+ �x
0) + r(t): (2.28b)

Substituting (2.28a) to (2.28b), we get

�GBy = Gx+ r + �GAx: (2.29)

This implies that parameterization can be seen as an instance of the penalty method

with E = (GB)�1. Recently, [94] has reported a regularization for DAEs with sin-

gularities based on a formulation obtained by the trust-region method in numerical

optimization. All these regularizations require the regularization parameter � to be

very small. Therefore a sti� solver is needed to solve the regularized problem. In this

section, we derive a new regularization method which is called the sequential regular-

ization method [11]. The SRM is an iterative procedure which combines the popular

Baumgarte stabilization or other stabilizations with a modi�ed penalty method. One

purpose for doing so is that the regularized problems of the SRM can be non-sti� or

at least less sti�. Hence, simple discrete schemes (e.g. explicit schemes) can be used.

Other advantages of the method will be discussed in Chapter 3.

The Baumgarte stabilization of (2.16) reads (cf. (2.5))

�1

d

dt

g(x; t) + �2g(x; t) = 0; g(x(0); 0) = 0: (2.30)

Applying the idea of the penalty method to equations (2.16a) with constraints (2.30),

we obtain

x
0 = A(t)x�B(t)y + q(t); (2.31a)

y = y0 +
1

�

E(�1

d

dt

g(x; t) + �2g(x; t)): (2.31b)

where y0 can be seen as an initial guess of the exact solution ye of problem (2.16),

(2.17). If we take y0 = ye then the solution of problem (2.31), (2.17) is exactly the
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same as that of problem (2.16), (2.17). If we take y0 � 0 then (2.31) coincides with

the penalty method (2.27). Given any initial guess y0(t), the solution, say fx1; y1g, of
(2.31), (2.17) is an approximation of the exact solution fxe; yeg of (2.16), (2.17). Using
this solution y1 as a new initial guess, we re-solve problem (2.31), (2.17). We expect

that the solution obtained is a better approximation of the exact solution. Repeating

the procedure, we invent the following iterative algorithm for solving (2.16):

For s = 1; 2; : : : , solve the ODE problem

xs

0 = Axs �Bys + q (2.32)

where

ys = ys�1 +
1

�

E(�1

d

dt

g(xs; t) + �2g(xs; t)); (2.33)

subject to the same boundary conditions (2.17). Note that y0(t) is a given initial

iterate and that � > 0 is the regularization parameter.

We call this algorithm a sequential regularization method (SRM). Note that xs(t)

and ys(t) are de�ned on the entire interval [0; tf ] for each s. For the problem with

singularities, the choice E = (GB)T generates turning point regularized problems

which are complicated to solve and analyze. We thus choose E = (GB)�1 for the

singular case. Noting that B(GB)�1G0 may be unbounded at the singularity we then

choose �1 = 0 to avoid this term. Also, in practice we multiply (2.33) by B and keep

track only of the approximations Bys to the bounded function By, since y may be

unbounded at the singularity. We thus have an SRM variant for the singular case:

For s = 1; 2; : : : , solve the ODE problem

xs
0 = Axs �Bys + q (2.34)

where

Bys = Bys�1 +
1

�

BEg(xs; t); (2.35)
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subject to the boundary conditions (2.17).

If y is desired (at times other than at the singular point t�) then it can be easily

retrieved from By in a post-processing step.

2.5 Convergence Analysis of the SRM

We �rst prove a lemma which will be used to discuss the convergence of the SRM.

Lemma 2.2 Let u, v be the solution of

u
0 = (RA+R

0)Su+ S1v + f1; (2.36a)

�v
0 + 
v = �S2u+ �S3v + f2; (2.36b)

�
B0S(0)u(0) + �

B1S(tf)u(tf) = � � S4v(0)� S5v(tf); v(0) = v0; (2.36c)

where all coe�cients are bounded, � = 1 or � = �, 
 is a positive constant and

Assumption 2.3 holds. Then, for � appropriately small or 
 appropriately large, we

have the following stability inequality

kuk � K(kf1k+ kf2k+ j�j+ jv0j);

kvk � K(�kf1k+ kf2k+ j�j+ jv0j);

where K is a positive constant.

Proof: Let v = (v1; � � � ; vny)T . From (2.36b), we easily have

jvij � �




kS2kkuk+ �




kS3kkvk+ 1




kf2k+ jv0j; i = 1; � � � ; ny:

Hence, taking the maximum of the left hand side for 1 � i � ny and choosing small

� or large 
 appropriately such that �kS3k < 
, we get

kvk � �


 � �kS3kkS2kkuk+ kf2k+ 
jv0j

 � �kS3k : (2.37)
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By using Assumption 2.3, from (2.36a), there exists a positive constant K1 such that

kuk � K1(kS1kkvk+ kf1k+ j�j+ jS4jjv(0)j+ jS5jjv(tfj)

� K1((kS1k+ jS5j)kvk+ kf1k+ j�j+ jS4jjv0j)

� K1�(kS1k+ jS5j)kS2k

 � �kS3k

kuk+K1(kS1k+ jS5j)(kf2k+ 
jv0j)

 � �kS3k

+K1(kf1k+j�j+jS4jjv0j):

Hence, by choosing smaller � or larger 
 such that K1�(kS1k+jS5j)kS2k


��kS3k
< 1, the stability

inequality for u follows. Now the stability inequality for v follows from that for u and

(2.37). 2

Now we estimate the error of the SRM (2.34), (2.35).

De�nition 2.1 J is an integer such that

y0(0) = ye(0); y
0

0(0) = y
0

e
(0); : : : ; y

(J)
0 (0) = y

(J)
e
(0);

where y0(t) is the initial guess of the SRM iteration (2.34), (2.35) and ye(t) is the

exact solution of the original problem (2.16). Set J = �1 if y0(0) 6= ye(0). 2

For initial value problems we may calculate ye
(i)(0); i = 0; 1; : : : in advance by

using the ODE and its derivatives. For boundary value problems we have J = �1 in
general since we don't know ye(0) beforehand.

Theorem 2.1 Let the DAE (2.16) have su�ciently smooth coe�cients, and assume

that Assumptions 2.1, 2.2 and 2.3 hold. Then, for the solution of iteration (2.34),(2.35),

we have the following error estimates ( for J de�ned in De�nition 2.1):

xs(t)� xe(t) = O(�s) +O(�J+2
ps(t=�)e

�t=�);

Bys(t)�Bye(t) = O(�s) +O(�J+1
ps(t=�)e

�t=�);

for 0 � t � tf and s � 1. Here ps(� ) � 0 if s � J+1; otherwise ps(� ) is a polynomial

of degree s � J � 2 with generic positive coe�cients and jps(0)j = j(By0)(J+1)(0) �
(Bye)

(J+1)(0)j.
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Proof: Let us = Rxs and ws = Pxs. Similarly to (2.20), we have

xs = Sus + ws: (2.38)

Furthermore, using (2.34) we obtain

u
0

s
= (RA +R

0)Sus + (RA+R
0)ws +Rq; (2.39a)

�w
0

s
+ ws = �(PA+ P

0)Sus + �(PA+ P
0)ws � �Bys�1 (2.39b)

+ �Pq �B(GB)�1r;

subject to

�
B0S(0)us(0) + �

B1S(tf)us(tf ) = � � �
B0ws(0)� �

B1ws(tf); (2.40a)

ws(0) = �B(0)(G(0)B(0))�1r(0): (2.40b)

The iteration (2.35) for By becomes

Bys = Bys�1 +
1

�

(ws +B(GB)�1r): (2.41)

The proof proceeds along familiar lines of singular perturbation analysis. Accord-

ing to [111, 112] we can construct the asymptotic expansion of ws and us sequentially

for s = 1; 2; : : :, where we use Lemma 2.2 to estimate the remainders. Then, us-

ing (2.41) and (2.38), we get the asymptotic expansion of Bys and xs respectively.

Note that in these expansions the �rst terms are exactly xe and Bye. This process

eventually yields the proof of the theorem. 2

To provide a better understanding about the sequential regularization method we

give in x2.8 a detailed proof for the initial value case with no layers, s � J + 1. In

that proof, the construction of the asymptotic expansion is directly for x and By.

Moreover, the construction method we apply is somewhat di�erent from [111, 112]

and more relevant to the concept of DAEs.



Chapter 2. Sequential Regularization Methods for Di�erential Algebraic Equations33

Next, we consider the SRM (2.32), (2.33). For the initial value problem with E =

I and B = G
T , this corresponds to Algorithm (2.13), (2.14) of [19] for constrained

mechanical systems (although they do it for the corresponding index-3 case) derived

by a penalty-augmented Lagrangian formulation. Bayo and Avello have noted that

under repetitive singular conditions this algorithm may lead to unstable behavior.

For our index-2 case (2.16) with singularity, it appears to be impossible to choose a

matrix E such that problem (2.32),(2.33) is always stable, even if we assume B = G
T .

A numerical example in x2.7 will verify such instability phenomena even for the case of

one singular point. However, for the case where constraints are without singularities,

(2.33) (multiplied by B) may have a bene�t over (2.35). That is, (2.33) yields an

ODE problem for xs which is essentially not a sti� problem. Take E = (GB)�1 as

before and rewrite (2.33) as

Bys = Bys�1 +
1

�

BE(�1

d

dt

g(xs; t) + �2g(xs; t)): (2.42)

Then we give the following error estimation for (2.32), (2.42):

Theorem 2.2 Let the DAE (2.16) have su�ciently smooth coe�cients, and assume

that G has full rank and that Assumptions 2.1, 2.2 and 2.3 hold. Then for the solution

of the iteration procedure (2.32), (2.42) with �1 6= 0, we have the following error

estimates:

xs � xe = O(�s);

Bys �Bye = O(�s)

for 0 � t � tf and s = 1; 2; : : :. Note that no boundary layer terms appear here even

for J = �1 (See De�nition 2.1)!

Proof: Denote us = Rxs and vs = Gxs. Hence

xs = Sus + Fvs; (2.43)
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where S = (I � P )RT and F = B(GB)�1 = PG
T (GGT )�1 are both su�ciently

smooth. From (2.32),(2.42), we get

u
0

s
= (RA+R

0)Sus + (RA+R
0)Fvs +Rq;

(�+ �1)v
0

s
+ �2vs = �(G0 +GA)Sus + �(G0 +GA)Fvs + �GBys�1 + �Gq � �1r

0 � �2r;

with the corresponding boundary conditions, and

Bys = Bys�1 +
1

�

B(GB)�1(�1(vs + r)0 + �2(vs + r)):

Repeating the procedure of the proof of Theorem 2.1 and using Lemma 2.2 again to

estimate the remainder of the asymptotic expansion, we obtain

us � ue = O(�s);

vs � ve = O(�s);

Bys �Bye = O(�s);

where ue = Rxe; ve = Gxe = �r. Hence, using (2.43) and xe = Sue+Fve, we obtain

xs � xe = S(us � ue) + F (vs � ve) = O(�s):

2

Remark 2.3 For the problem (2.32), (2.33) where GB is nonsingular, we have

xs � xe = O(�s); ys � ye = O(�s):

This estimate also holds for E = (GB)T . 2

2.6 Discretization and Implementation Issues

The SRM iteration yields a sequence of ODE problems which are to be solved numer-

ically. We only consider the most di�cult case, i.e. (2.34), (2.35) with singularities.
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Inserting (2.35) into (2.34), the ODE problem to be solved at the sth iteration is

written as the singular-singularly-perturbed problem (see [112, 89])

�x
0

s
+BE(Gxs + r) = �Axs � �(Bys�1 � q); (2.44a)

�
B0xs(0) + �

B1xs(tf ) = � ; G(0)xs(0) + r(0) = 0: (2.44b)

We consider �nite di�erence (or collocation) discretizations of (2.44) on a mesh

� : 0 = t0 < t1 < : : : < tN = tf

hi = ti � ti�1; h = max
1�i�N

hi

and denote by xs
i
, ys

i
the corresponding approximations of xs(ti), ys(ti), respectively.

We now have essentially two small, positive parameters to choose: � and h. We

assume that h is chosen small enough so that the EUODE problem (2.22) may be

considered as nonsti� and that the problem's coe�cients are su�ciently smooth.

In the BVP case the situation is the familiar one, much like the iterative solution of

a nonlinear boundary value ODE using quasilinearization (see, e.g., [14]). Each of the

linear boundary value ODEs (2.44) is discretized on a mesh � using, say, a symmetric

�nite di�erence scheme or some other method. We expect, as h! 0, convergence to

the solution of ( 2.44) and our theory then applies for the entire numerical algorithm.

As an example, we give here a detailed analysis of the convergence of the backward

Euler di�erence scheme for (2.44). A similar discussion and results can easily apply to

the forward Euler di�erence scheme. The results for general higher order collocation

schemes have been described in [11]. Now we write the backward Euler scheme of

(2.44) as follows:

�

x
s

i
� xs

i�1

hi

+BiEi(Gix
s

i
+ ri) = �Aix

s

i
� �(Biys�1(ti)� qi); (2.45a)

�
B0x

s

0 +
�
B1x

s

N
= �; G0x

s

0 + r0 = 0; (2.45b)

Biy
s

i
= Biys�1(ti) +

1

�

BiEi(Gix
s

i
+ ri); (2.46)
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where we represent the value f(ti) of a given function f at mesh point ti by fi.

Multiplying (2.45) by Ri and Pi, respectively, and denoting

u
s

i
= Rix

s

i
; w

s

i
= Pix

s

i

(then xs
i
= Siu

s

i
+ w

s

i
since (2.38) holds), we have

u
s

i
�u

s

i�1

hi
= RiAi(Siu

s

i
+ w

s

i
) + �

Ri�Ri�1

hi
(Si�1u

s

i�1 + w
s

i�1) +Riqi; (2.47a)

�

w
s

i
�ws

i�1

hi
+ w

s

i
= �PiAi(Siu

s

i
+ w

s

i
) + �

Pi�Pi�1

hi
(Si�1u

s

i�1 + w
s

i�1)

��(Biys�1(ti)� qi)�BiEiri; i = 1; � � � ; N; (2.47b)

�
B0(S0u

s

0 + w
s

0) +
�
B1(SNu

s

N
+ w

s

N
) = �; w

s

0 = �B0E0r0 = P0x
e(t0): (2.47c)

At �rst, we consider the stability of the following di�erence scheme corresponding to

(2.47):

L
h

1ui �
ui � ui�1

hi

�RiAiSiui � Ri �Ri�1

hi

Si�1ui�1 = RiAiwi

+
Ri �Ri�1

hi

wi�1 + fi; (2.48a)

L
h

2wi � �

wi � wi�1

hi

+ wi = �PiAiSiui + �

Pi � Pi�1
hi

Si�1ui�1

�PiAiwi + �

Pi � Pi�1
hi

wi�1 + gi; i = 1; � � � ; N; (2.48b)

�
B0S0u0 + �

B1SNuN = �1 = � � �
B0w0 � �

B1wN ; w0 = �2: (2.48c)

Using the discrete maximum principle for the di�erence operator Lh

2, i.e.

z0 � 0 and Lh

2zi � 0 =) zi � 0;8i; (2.49)

we easily get

max
1�j�i

jwjj �M(j�2j+ max
1�j�i

jLh

2wjj): (2.50)

De�ning kzki = max1�j�i jzjj and using (2.48b), we have

kwki �M�(kuki + kwki) +M j�2j+ kgki
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or

kwki �M(�kuki + j�2j+ kgki): (2.51)

Here M stands for a generic constant independent of i, � and h. On the other hand,

L
h

1ui is a one-step di�erence operator of (2.22a) | the underlying problem of (2.21).

Using Assumption 2.3 and Theorem 5.38 of [14], we obtain

kuk1 � K1(j�1j+ max
1�j�N

jLh

1ujj); (2.52)

where kzk1 = max0�j�N jzjj and K1 = K + O(h). Here K is the stability constant

de�ned in Assumption 2.3. Using (2.48a) and (2.48c) we have

kuk1 �M(kwkN + j�2j+ j�j+ kfkN ): (2.53)

Then, using (2.51), yields

kuk1 � M(kfkN + kgkN + k�j+ j�2j) (2.54a)

kwk1 � M(�kfkN + kgkN + k�j+ j�2j): (2.54b)

We thus obtain the stability inequalities (2.54) for the di�erence scheme (2.48) or

(2.47).

Now we discuss the convergence of (2.47). Using (2.54) , we have the estimates:

kus(ti)� usik1 � M(k�ukN + k�wkN ) (2.55a)

kws(ti)�ws

i
k1 � M(k�ukN + k�wkN ); (2.55b)

where �u
i
and �w

i
are local truncation errors for the di�erence scheme (2.47) and they

can be written as

�
u

i
= hifu00s(�1i ) +R

00(�2
i
)[S(ti�1)us(ti�1) + ws(ti�1)]

+ R
0(ti)(Sus + ws)

0(�3
i
)g (2.56a)

�
w

i
= �hifw00s (�1i ) + P

00(�2
i
)[S(ti�1)us(ti�1) + ws(ti�1)]

+ P
0(ti)(Sus + ws)

0(�3
i
)g; (2.56b)
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where ��
i
; �

�

i
2 (ti�1; ti); � = 1; 2; 3. To bound the truncation error, we need the

derivative estimates of us and ws. From the asymptotic expansions of us and ws ( cf.

Theorem 2.1)

us = ue + ��us1 + �
2(�us2 + ~us2) + � � � (2.57a)

ws = we + �( �ws1 + ~ws1) + �
2( �ws2 + ~ws2) + � � � (2.57b)

where ue = Rxe; we = Pxe , �usj and �wsj are functions of regular expansions, ~usj and

~wsj are boundary layer functions whose basic forms are p(t=�) exp(�t=�) (where p is
some polynomial) and �usj = �wsj = 0 for j � s ( since SRM iteration cancels out the

lower terms of regular expansions). We can expect that

ju0
s
j; ju00

s
j; jw0

s
j �M: (2.58)

But

jw00
s
j = O(��1 exp(�t=�) �

8<
: M if t� �

M�
�1 otherwise :

(2.59)

Therefore

k�ukN = O(h); k�wk =
8<
: O(�h) if �� h1 = t1 � t0
O(h) otherwise :

(2.60)

From (2.55), we thus have

kus(ti)� usik1 � Mh (2.61a)

kws(ti)� ws

i
k1 �

8<
: M�h if �� h1

Mh otherwise
(2.61b)

i.e.

xs(ti)� xsi = S(ti)(us(ti)� usi ) + (ws(ti)� ws

i
) = O(h): (2.62)

However, we can not generally get a good approximation for Bye in the whole region

if � is not very small compared with h1 since in this case we generally have

Biy
s

i
= Biys�1(ti) +

1

�

BiEi(Gix
s

i
+ ri)

= Biys�1(ti) +
1

�

BiEi(Gixs(ti) + ri) +
1

�

(ws

i
� ws(ti)) (2.63)

= Biye(ti) +O(�+ exp(�ti=�)) +O(h=�):
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Fortunately, we can get O(h) accuracy locally, i.e. in a smooth region or away

from the layer region, say for ti0 � t � tf . Indeed, considering an equidistant mesh

for simplicity, from (2.47b), we have

L
h

1�w
s

i
= �

�ws

i
��ws

i�1

h

+�ws

i�1 =

�PiAi(Si�u
s

i
+�ws

i
) + �

Pi � Pi�1
h

(Si�1�u
s

i
+�ws

i�1) +O(�w
i
); (2.64)

where �ws

i
= ws(ti) � w

s

i
, �us

i
= us(ti) � u

s

i
and we note that �w

i
= O(�h) for

i0 � i � N . Using the discrete maximum principle for Lh

1 in ti0
� t � tf on the

barrier function

zi = j�ws

i0
j�i�i0 + max

i0�i�N
j�ij ��ws

i
;

where �i(= O(h)) is the right-hand side of (2.64) and � = h=(�+h), and using (2.61),

we get zi � 0 or

j�ws

i
j � j�ws

i0
j�i�i0 + max

i0�i�N

j�ij

� M(h�i�i0 + �h): (2.65)

For � = h
1+�

; �1 < � < 1,

�
i�i0 = exp(�(i� i0)h�) = exp(�(ti � ti0)=h1��):

Taking i1 such that exp(�(ti1 � ti0
)=h1��) � Mh

1+� = M� when h is su�ciently

small, we get

�
i�i0 � exp(�(ti1 � ti0)=h1��) �M� for i � i1;

i.e. j�ws

i
j � M�h; 8i � i1, and any � satisfying � = h

1+�
; �1 < � < 1. Combining

this with (2.61b), we obtain

j�ws

i
j �M�h; 8i � i1: (2.66)

Then, using (2.63) and (2.66), we have the local error estimate

jBiy
s

i
�Biye(ti)j �M(h + �

s); for i1 � i � N: (2.67)
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This means we can get good approximation in a region which is away from the initial

layer.

Once an accurate SRM solution, say fx�
i
; B(ti)y

�

i
g, has been determined outside

the initial layer it may be possible to obtain an accurate solution everywhere by ap-

plying a few SRM iterations numerically solving (2.44a) ( changing BEG to �BEG)
subject to the terminal value

x(tf) = x
�

N
; (2.68)

and choosing By0 satisfying B(tf)y0(tf) = B(tf)y
�

N
. This procedure is feasible pro-

vided that the terminal value problem (2.44a),(2.68) is well-conditioned (which holds

if the terminal value problem for the EUODE (2.22a) is well-conditioned).

For the IVP case, where (2.44b) reduces to

x(0) = �x given; (2.69)

we may, of course, proceed in the same way as for the BVP case. But now a few things

are easier. Firstly, for this case we can calculate Bye(0) and then choose By0 to be

exact at t = 0. In fact, as indicated earlier we can also do this for higher derivatives

of By at the initial value by repeated di�erentiation of (2.16). Such a preparation of

the initial iterate By0 allows removing the layer error terms (or the condition ti � �)

in the error estimates (2.61).

Secondly, one may use a more convenient di�erence scheme to integrate the IVP

(2.44a),(2.69). If the EUODE is su�ciently nonsti� to warrant use of a nonsti�

integration method then this can be an attractive possibility here. Note, though,

that �hi=� must be in the absolute stability region of the method (see (2.39b)).

Thus, an explicit Runge-Kutta method of order p, for instance, may necessitate (at

least) p SRM iterations in order for the error in the estimates of Theorem 2.1 to be

of the same order as the error in the numerical approximation.
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The most important di�erence between the IVP and BVP cases is that the iterative

method described here does not appear to be necessarily optimal or even natural in

the IVP context, certainly not from the storage requirement point of view: Note that

the entire approximation of Bys�1 on [0; tf ] needs to be stored. The situation here

is similar to that encountered with other functional iteration methods like waveform

methods.

However, this di�culty can be resolved by rearranging the computation, assuming

that the number of the SRM iterations, m, is chosen in advance. Thus, at each time

step i, 1 � i � N , we calculate sequentially the quantities x1
i
; By

1
i
; x

2
i
; By

2
i
; : : : ; x

m

i
; By

m

i
.

To do this using a one-step scheme, say, we need only the corresponding quantities

locally, over the mesh subinterval [ti�1; ti), and By
0
i
. For the latter we may use, for

instance, y0
i
� ye(0), i.e. By

0
i
= B(ti)y

0
0; 0 � i � N . The storage requirements are

now independent of N and other typical IVP techniques such as local error control

may be applied as well.

2.7 Numerical Experiments

We now present a few very simple examples to demonstrate our claims in the previous

sections. Throughout this section we use a constant step size h and set tf = 1. To

make life di�cult we choose h so that there is an i such that ti = t� (if there is

a singularity). In the implementation we monitor the size of the pivot in a Gauss

elimination procedure for GB and slightly perturb ti away from t� when needed. At

a given time t, we use 0ex0 to denote the maximum over all components of the error in

x
s while 0ey0 denotes the maximum over all components of the error in Bys. Similarly,

0
drift

0 denotes the maximum residual in the algebraic equations.

We �rst look at a boundary value problem.
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Example 2.2 Consider the DAE (2.16) with

A =

0
@�1 1

0 0

1
A
; B = �

0
@ 0

1� 2t

1
A
; q =

0
@� sin t

0

1
A

G = ( 1� 2t 1� 2t ) ; r = �(1� 2t)(e�t + sin t)

subject to

x1(1) + x2(0) = 1=e:

The exact solution is xe = ( e�t sin t ), ye =
cos t
1�2t

. A singularity is located at t = 1=2,

where ye becomes in�nite while Bye stays bounded. We start computing with the iterate

y0(t) � 0.

In Table 2.1 we list errors when using the midpoint scheme

x
s

i
� xs

i�1

hi

= A
i�

1

2

x
s

i�
1

2

�Bys
i�

1

2

+ q
i�

1

2

By
s

i�
1

2

= By
s�1

i�
1

2

+ �
�1
B
i�

1

2

E
i�

1

2

(G
i�

1

2

x
s

i�
1

2

+ r
i�

1

2

)

where xs
i�

1

2

=
xs
i
+xs

i�1

2
(but no such relation is necessary for ys). We apply this scheme

with hi = h = :01 for various values of �.

It is indicated in [11] that this scheme has 2nd order accuracy in ex and in ey,

except for the case � � h when the error's order in By drops to 1. This is evident

in the error column for t = 1:0. Note also the O(�) improvement per SRM iteration

when this term dominates the error (i.e. when �s � h
2).

We note that the approximation for By at points within the initial layer is not

accurate. To get a better approximation within the initial layer ( i.e. near the initial

point t = 0), we solve a terminal value problem (2.44a) (changing BEG to �BEG),
(2.68), as described in x2.6. Then we apply the SRM for the given problem with the

improved values for By0. In Table 2.2 we list the computed results after 3 iterations.

They are obviously much better than the comparable ones in Table 2.1.

2
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� iteration error at ! t=.01 t=.1 t = .3 t=.5 t=1.0
1e-1 1 ex .38e-1 .35e-1 .56e-1 .52e-1 .39e-1

ey .96 .40 .14 .34e-1 .66e-1
drift .87e-2 .49e-1 .51e-1 .0 .61e-1

2 ex .92e-2 .37e-1 .89e-2 .65e-2 .72e-2
ey .91 .96e-2 .14 .34e-1 .65e-2
drift .90e-2 .32e-1 .61e-2 .0 .72e-2

3 ex .94e-2 .19e-1 .12e-1 .63e-2 .15e-2
ey .87 .20 .30e-1 .43e-1 .85e-3
drift .86e-2 .16e-1 .43e-2 .0 .74e-3

1e-2 1 ex .38e-2 .60e-2 .53e-2 .44e-2 .38e-2
ey .67 .30e-2 .40e-2 .48e-2 .62e-2
drift .65e-2 .80e-2 .38e-2 .0 .55e-2

2 ex .45e-2 .10e-3 .88e-4 .77e-4 .64e-4
ey .45 .32e-3 .70e-4 .44e-4 .23e-4
drift .44e-2 .15e-4 .14e-4 .0 .68e-4

3 ex .30e-2 .55e-5 .52e-5 .59e-5 .11e-4
ey .30 .18e-2 .26e-4 .18e-4 .67e-5
drift .29e-2 .17e-5 .26e-5 .0 .56e-5

1e-3 1 ex .13e-2 .58e-3 .52e-3 .45e-3 .39e-3
ey .17 .47e-2 .41e-3 .49e-3 .62e-3
drift .17e-2 .79e-3 .38e-3 .0 .54e-3

2 ex .30e-3 .71e-4 .75e-5 .72e-5 .12e-4
ey .30e-1 .17e-1 .34e-4 .13e-4 .54e-5
drift .30e-3 .51e-4 .20e-5 .0 .65e-5

3 ex .65e-4 .15e-3 .70e-5 .70e-5 .12e-4
ey .70e-2 .33e-1 .12e-3 .14e-4 .56e-5
drift .69e-4 .11e-3 .21e-5 .0 .59e-5

Table 2.1: SRM errors for Example 2.2 using the midpoint scheme

Next we consider initial value problems.

Example 2.3 Consider the same DAE as for Example 2.2 with the same exact solu-

tion but with initial values x1(0) = 1, x2(0) = 0 speci�ed. From these initial conditions

we can calculate y(0) = 1 in advance, and we choose the initial guess y0(t) � 1. Ta-

bles 2.3 and 2.4 display error results for � = :1 and h = :001 using the backward

Euler and the forward Euler schemes, respectively. As explained in x2.6 we calculate

all iterates at each step before proceeding to the next.

These tables show a signi�cant improvement with each SRM iteration and no

strong initial layer e�ect, as predicted by theory.

2
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� error at ! t=.01 t=.1 t = .3 t=.5
1e-1 ex .62e-2 .54e-2 .39e-2 .28e-2

ey .48e-2 .45e-2 .44e-2 .54e-2
5e-2 ex .76e-3 .58e-3 .32e-3 .17e-3

ey .22e-2 .18e-2 .10e-2 .50e-3
1e-2 ex .57e-4 .49e-4 .35e-4 .26e-4

ey .10e-3 .85e-4 .52e-4 .32e-4
1e-3 ex .49e-4 .42e-4 .31e-4 .23e-4

ey .56e-4 .46e-4 .30e-4 .19e-4

Table 2.2: SRM errors for Example 2.2 using the shooting-back technique

iteration error at ! t=.001 t=.1 t = .3 t=.5 t=1.0
1 ex .20e-5 .72e-2 .37e-1 .63e-1 .11

ey .20e-2 .12 .15 .12 .59e-1
drift .15e-5 .60e-2 .16e-1 .76e-4 .15

2 ex .20e-5 .51e-2 .13e-1 .10e-1 .25e-2
ey .20e-2 .68e-1 .45e-2 .20e-1 .80e-2
drift .15e-5 .42e-2 .58e-2 .14e-4 .67e-2

3 ex .20e-5 .35e-2 .23e-2 .16e-2 .76e-3
ey .20e-2 .32e-1 .26e-1 .10e-1 .37e-2
drift .15e-5 .29e-2 .12e-2 .10e-5 .12e-2

Table 2.3: SRM errors for Example 2.3 using backward Euler

Example 2.4 Here we investigate the use of the modi�ed formula (2.42) instead of

(2.35). First, we solve the previous example numerically using (2.42). In Table 2.5

we record error values at the singularity point t = :5 after 3 SRM iterations, starting

with y0(t) � 1 and using as before � = :1 and h = :001 (cf. Tables 2.5).

From these results it is clear that the SRM with (2.42) does not work well when

�1 6= 0: large errors in By are obtained near the singularity and these adversely

a�ect the accuracy in x as well. However, the comparison changes when there is no

singularity in the constraints: We now replace the algebraic constraint in Example

2.3 by

x1 + x2 � e�t � sin t = 0

leaving everything else the same (including the singularity in B). In Table 2.6 we

record maximum errors in x and By over all mesh points (denote those 'exg' and
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iteration error at ! t=.001 t=.1 t = .3 t=.5 t=1.0
1 ex .50e-6 .71e-2 .36e-1 .63e-1 .11

ey .20e-2 .12 .15 .12 .60e-1
drift .50e-6 .60e-2 .16e-1 .76e-4 .15

2 ex .50e-6 .51e-2 .12e-1 .10e-1 .44e-2
ey .20e-2 .68e-1 .41e-2 .20e-1 .70e-2
drift .50e-6 .42e-2 .58e-2 .14e-4 .67e-2

3 ex .50e-6 .35e-2 .43e-2 .18e-2 .98e-3
ey .20e-2 .32e-1 .26e-1 .97e-2 .46e-2
drift .50e-6 .29e-2 .12e-2 .11e-5 .12e-2

Table 2.4: SRM errors for Example 2.3 using forward Euler

(�1; �2) ! (0; 1) (h; 1) (1; 1)
method ex ey ex ey ex ey

backward Euler .16e-2 .10e-1 .80e-3 .20e+1 .15 .37e+3
forward Euler .18e-2 .96e-2 .25e-2 .18e+1 .64 .15e+4

Table 2.5: Errors near singularity using modi�ed formula (2.42)

'eyg', respectively) for the starting iterates y0(t) � 1 and y0(t) � 0 (the latter does

not agree with the exact ye(0)).

(�1; �2) ! (0; 1) (h; 1) (1; 1)
y0 method exg eyg exg eyg exg eyg
� 1 backward Euler .46e-2 .44e-1 .45e-2 .43e-1 .22e-3 .28e-3

forward Euler .45e-2 .44e-1 .44e-2 .43e-1 .19e-3 .23e-3
� 0 backward Euler .22e-1 .97 .22e-1 .94 .12e-3 .75e-3

forward Euler .22e-1 .97 .22e-1 .94 .19e-3 .75e-3

Table 2.6: Errors for problem without singularity using modi�ed formula (2.42)

The modi�ed method (corresponding to (�1; �2) = (1; 1) in Table 2.6 is seen to

work better for problems without singularities.

2

The above calculations all agree with our theoretical results described in x2.5 and
x2.6.
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2.8 More about the Proof of Theorem 2.1

To provide a better understanding about the sequential regularization method we now

give a detailed proof of Theorem 2.1 for the initial value case with no layers, s � J+1.

J is some positive integer de�ned in De�nition 2.1. In this proof, the construction of

the asymptotic expansion is directly for x and By. Moreover, the construction method

we apply is somewhat di�erent from [111, 112] and more relevant to the concept of

DAEs. The same idea is applied to prove the convergence of the SRM for Navier-

Stokes equations in Chapter 4. For s > J+1, additional initial layer expansions have

to be developed. However, the construction of these layer expansions is precisely the

same as in [111, 112] and so it is omitted here. In case that (2.17) are initial conditions

(i.e. �
B1 = 0) our assumptions imply that (2.17) together with (2.18b) specify x(0),

say

x(0) = �x (2.70)

At �rst, consider the case s = 1 of (2.34),(2.35):

�x
0

1 +B(GB)�1(Gx1 + r) = �Ax1 � �By0 + �q;

with the initial conditions (2.70). This is a singular-singularly-perturbed problem

(see [112, 89]). Let

x1 = x10 + �x11+ � � � + �
s
x1s + � � �

Comparing the coe�cients of like powers of �, we thus have

B(GB)�1Gx10 = �B(GB)�1r (2.71a)

B(GB)�1Gx11 = �x010 +Ax10 �By0 + q; (2.71b)

B(GB)�1Gx1i = �x01i�1 +Ax1i�1; 2 � i � s+ 1; (2.71c)

where (2.71a) satis�es (2.70) and (2.71b) and (2.71c) satisfy homogeneous initial

conditions corresponding to (2.70). Now, (2.71a) has in�nitely many solutions in
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general. To realize the construction, we should choose x10 to satisfy (2.71a) and to

ensure that the solution of (2.71b) exists. We choose x10 to be the solution xe of

problem (2.16)-(2.17), i.e.

x
0

10 = Ax10 �Bye + q; (2.72a)

0 = Gx10 + r; (2.72b)

�
B0x10(0) = �: (2.72c)

So x10 = xe and (2.71b) has the following form

B(GB)�1Gx11 = B(ye � y0): (2.73)

Now we choose x11 and a corresponding y01 to satisfy

x
0

11 = Ax11 �By01 (2.74a)

Gx11 = GB(ye � y0); (2.74b)

�
B0x11(0) = 0: (2.74c)

Noting that Bye = �x0e + Axe + q is smooth, we have GB(ye � y0) 2 S. Hence,

using Lemma 2.1, there exists a smooth solution x11 of (2.74), and x11 satis�es (2.73).

Indeed, using (2.74b) and De�nition 2.1, we have G(0)x11(0) = 0, so x11(0) = 0. And,

from (2.74b) again,

(GB)�1Gx11 = ye � y0; for each t 2 [0; t�) [ (t�; tf ]:

That is,

B(GB)�1Gx11 = B(ye � y0); t 2 [0; t�) [ (t�; tf ]: (2.75)

Taking the limit of (2.75) at t�, we thus get that x11 satis�es (2.73) for each t 2 [0; tf ].
Moreover, from De�nition 2.1, we have

y01(0) = y
0

01(0) = � � � = y

(s�1)
01 (0) = 0; s � J + 1:
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Also we note that By01 is smooth.

Generally, supposing we have got x1i�1; By0i�1 and

y0i�1(0) = y
0

0i�1(0) = � � � = y

(s�i+1)
0i�1 (0) = 0

for i � 2, we choose x1i, y0i satisfying

x
0

1i = Ax1i �By0i;

Gx1i = (GB)y0i�1;

�
B0x1i(0) = 0:

By the same argument as before, we obtain that x1i satis�es (2.71c) for 2 � i � s+1,

and

y0i(0) = y
0

0i(0) = � � � = y

(s�i)
0i (0) = 0; s � J + 1:

Also, By0i is smooth. Next we denote the asymptotic solution

�x1s+1 = x10 + �x11 + � � �+ �
s
x1s + �

s+1
x1s+1

and

z1s+1 = x1 � �x1s+1:

Then

�z
0

1s+1 + Pz1s+1 = �Az1s+1 + �
s+2(�x01s+1 +Ax1s+1);

z1s+1(0) = 0

Let u1s+1 = Rz1s+1 and w1s+1 = Pz1s+1. Hence, we have (cf. (2.38))

z1s+1 = Su1s+1 + w1s+1

and

u
0

1s+1 = (RA+R
0)Su1s+1 + (RA +R

0)w1s+1 +O(�s+1);
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�w
0

1s+1 + w1s+1 = �(PA+ P
0)Su1s+1 + �(PA+ P

0)w1s+1 +O(�s+2);

u1s+1(0) = 0; w1s+1(0) = 0:

Using Lemma 2.2, we get w1s+1 = O(�s+2) and u1s+1 = O(�s+1), i.e.

z1s+1 = O(�s+1):

Therefore,

x1 = x10 + �x11 + � � �+ �
s
x1s +O(�s+1): (2.76)

Noting x10 = xe, we thus obtain

x1 � xe = O(�): (2.77)

Then, by using (2.35),(2.76),(2.71),(2.72a) and (2.74a), it follows that

By1 = By0 +
1

�

B(GB)�1(Gx1 + r)

By1 = By0 +
1
�
(Px10 +B(GB)�1r + �Px11 + � � �+ �

s
Px1s +O(�s+1))

= Bye + �By01+ � � � + �
s�1
By0s�1 +O(�s)

(2.78)

or

By1 �Bye = O(�): (2.79)

Now we look at the second iteration s = 2 of (2.34), (2.35):

�x
0

2 +B(GB)�1(Gx2 + r) = �Ax2 � �By1 + �q;

with initial conditions (2.70). Let

x2 = x20 + �x21 + �
2
x22 + � � � :

Noting that (2.78) gives us a series expansion for By1 we obtain,

B(GB)�1Gx20 = �B(GB)�1r; (2.80a)

B(GB)�1Gx21 = �x020 +Ax20 �Bye + q; (2.80b)

B(GB)�1Gx2i = �x02i�1 +Ax2i�1 �By0i�1; 2 � i � s+ 1 (2.80c)
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Again, (2.80a) satis�es initial conditions (2.70) and (2.80b) and (2.80c) satisfy the

corresponding homogeneous ones. As the case of s = 1, we choose x20 = xe. We thus

have

B(GB)�1Gx21 = 0:

Then x21 is constructed to satisfy

x
0

21 = Ax21 �By11; (2.81a)

Gx21 = 0; (2.81b)

�
B0x21(0) = 0: (2.81c)

Obviously x21 = 0 since (2.81) is uniquely solvable for x21 by Lemma 2.1. In general,

similarly to the case of s = 1, we choose x2i satisfying

x
0

2i = Ax2i �By1i; (2.82a)

Gx2i = �(GB)(y0i�1 � y1i�1); (2.82b)

�
B0x2i(0) = 0: (2.82c)

for 2 � i � s+ 1. By applying Lemma 2.2 and the same argument as in the case of

s = 1 we get

x2 = xe + �x21 + �
2
x22 + � � � + �

s
x2s +O(�s+1) (2.83)

or

x2 � xe = O(�2): (2.84)

Then, using (2.35),(2.80),(2.81a),(2.82a), (2.83) and (2.78), we conclude

By2 = By1 +
1

�

B(GB)�1(Gx2 + r)

= Bye + �
2
By12 + � � �+ �

s�1
By1s�1 +O(�s) (2.85)

or

By2 �Bye = O(�2) (2.86)
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We can repeat this procedure, and, by induction, complete the proof for s � J+1.

2



Chapter 3

SRM for Nonlinear Problems

In the previous chapter we derived the sequential regularization method and gave a

detailed continuous and discrete analysis for linear index-2 DAEs. The method relates

to a combination of stabilization and penalty-like methods. In this chapter we extend

the method to nonlinear index-2 and index-3 problems (� = 1 and � = 2 in (2.15)),

including constrained multibody systems. A number of variants are proposed, and

particularly e�ective methods are singled out in certain circumstances. All results

obtained here are certainly applicable to the linear case.

The chapter is organized as follows: In x3.1 we consider problems without con-

straint singularities. Two SRM variants are discussed. One variant involving dg

dt

(corresponding to (2.32), (2.33)) leads to nonsti� problems. Taking E = I is particu-

larly attractive. The other variant, corresponding to (2.32), (2.33) with �1 = 0, does

not involve dg

dt
. The choice E = I, if possible (otherwise one can choose E = (GB)T ),

makes the computation particularly simple. Problems with constraint singularities

are considered in x3.2. The SRM corresponding to (2.34), (2.35) is proposed for such

problems. This variant works well in practice, but our proofs to date extend only to

the linear case.

In x3.3 we analyze and discuss various methods for index-3 problems. A number

of SRM variants are possible, combining regularization with Baumgarte's stabiliza-

tion or with invariant stabilization [8]. Of particular interest, in case of no constraint

singularity, are the methods (3.47) and (3.33){(3.35) which corresponds to invariant

52
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stabilization. The choice E = I leads to particularly simple iterations. A corre-

sponding convergence result is given in Theorem 3.3. In case of a possible constraint

singularity, the SRM (3.41) is recommended.

These methods are reformulated in x3.4 for the special case of multibody systems

with holonomic constraints. The \winning" methods are (3.44)-(3.45) with E = I

for the nonsingular case and (3.46)-(3.47) for the case where the constraint Jacobian

may have isolated rank de�ciencies. In x3.5 we report the results of numerical exper-

iments con�rming our theoretical predictions and demonstrating the e�ectiveness of

the proposed methods.

3.1 Nonlinear, Nonsingular Index-2 Problems

The nonlinear index-2 DAE (� = 1 in (2.15)) reads:

x
0 = f(x; t)�B(x; t)y; (3.1a)

0 = g(x; t); (3.1b)

where f , B and g are su�ciently smooth functions of (x; t) 2 Rnx � [0; tf ], and

y 2 Rny . We consider this DAE subject to nx � ny boundary conditions

b(x(0); x(tf)) = � : (3.2)

These boundary conditions are assumed to yield a unique1 and bounded solution for

the ODE (3.1a) on the manifold given by (3.1b). Concretely, if we were to replace

(3.1b) by its di�erentiated form (denoting G = @g

@x
)

0 = Gx
0 + gt (=

dg

dt

) (3.3a)

g(x(0); 0) = 0 (3.3b)

1locally unique, or isolated solution in a su�ciently large neighborhood would su�ce.
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and use (3.3a) in (3.1a) to eliminate y and obtain nx ODEs for x, then the boundary

value problem for x with (3.2) and (3.3b) speci�ed has a unique solution. In the initial

value case (i.e., when b is independent of x(tf)), this means that (3.2) and (3.3b) can

be solved uniquely for x(0).

In this section, we consider the case where GB is nonsingular. Generalizing the

idea in x2.4, we have the following SRM formulation for the nonlinear index-2 DAEs

(3.1), (3.2): for s = 1; 2; : : : ;

x
0

s
= f(xs; t)�B(xs; t)ys; (3.4)

where

ys = ys�1 +
1

�

E(xs; t)(�1

d

dt

g(xs; t) + �2g(xs; t)); (3.5)

subject to the boundary conditions (3.2) and (3.3b). Note that y0(t) is a given

initial iterate which we assume is su�ciently smooth and bounded and that � > 0 is

the regularization parameter. The regularization matrix E is nonsingular and has a

uniformly bounded condition number; possible choices are E = I, E = (GB)�1 and

others (e.g. E = (GB)T , cf. [11, 94]). We note that if we take y0 � y then x1 � x,

where x and y are the solution of (3.1). If we take y0 � 0, then one SRM iteration

is the usual penalty method (cf. [84, 91, 69]). As customary for the penalty method,

we assume:

Assumption 3.1 The problem (3.4), (3.5),(3.2),(3.3b) has a unique solution and

the solution is bounded if ys�1 is bounded.

Assumption 3.1 is generally true for initial value problems. For general boundary

value problems, we expect that it would hold for most practical cases since (3.4)

(with (3.5) plugged in) may be seen as a perturbed problem of (3.1) according to the

proof of Theorem 3.1 (see below), where the perturbation and its �rst derivative are

both small if � is small.
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To analyze the SRM, we assume the following perturbation inequality: For 0 �
t � tf ,

kx̂(t)� x(t)k � M max
0���tf

(j�(� )j+ j�0(� )j); (3.6a)

kŷ(t)� y(t)k � M max
0���tf

(j�(� )j+ j�0(� )j); (3.6b)

where k � k is some lp norm (say, the maximum norm), and x̂ and ŷ satisfy the

following perturbed version of (3.1):

x̂
0 = f(x̂; t)�B(x̂; t)ŷ; (3.7a)

0 = g(x̂; t) + �(t) (3.7b)

with the same boundary conditions as (3.2). For initial value problems, (3.6) has

been proved in [58], pp. 478-481. It is actually the de�nition of the perturbation

index introduced in [58]. Furthermore, (3.6) also holds for boundary value problems

if we impose some boundedness conditions on the corresponding Green's function (cf.

[14]).

The case �1 6= 0 in (3.5) is su�ciently di�erent from the case �1 = 0 to warrant

a separate treatment.

3.1.1 The case �1 = 1

Now we estimate the error of the sequential regularization method (3.4)-(3.5). We

prove a theorem which says that the error after s SRM iterations is O(�s) (i.e., each

iteration improves the error by O(�)) everywhere in t. This result coincides with that

of the linear case.

Theorem 3.1 Let all functions in the DAE (3.1) be su�ciently smooth and the above

assumptions hold. Then, for the solution of iteration (3.4),(3.5) with �1 6= 0, we have
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the following error estimates:

xs(t)� xe(t) = O(�s);

ys(t)� ye(t) = O(�s);

for 0 � t � tf and s � 1.

Proof: Let vs = g(xs; t). Then, from (3.4),

v
0

s
= G(xs; t)x

0

s
+ gt(xs; t) = G(xs; t)f(xs; t)�G(xs; t)B(xs; t)ys + gt(xs; t):

Using (3.5), we thus have

(�(GBE)�1 + I)v0
s
+ �2vs = �(GBE)�1(Gf + gt)� �E�1

ys�1; (3.8a)

vs(0) = 0: (3.8b)

Therefore it is not di�cult to get

vs = g(xs; t) = O(�); v0
s
= g(xs; t)

0 = O(�); (3.9)

if ys�1 is bounded (which implies that xs is bounded from Assumption 3.1).

For s = 1, we have

x
0

1 = f(x1; t)�B(x1; t)y1
g(x1; t) = O(�); g(x1; t)

0 = O(�)

since y0 is chosen to be bounded. From assumption (3.6), we immediately get

x1 � xe = O(�); y1 � ye = O(�): (3.10)

Then it is easy to see that y1 is bounded. So for s = 2, we obtain

x
0

2 = f(x2; t)�B(x2; t)y2
g(x2; t) = O(�); g0(x2; t) = O(�)
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By using assumption (3.6) again, this yields

x2 � xe = O(�):

Hence it can be veri�ed, by substituting (3.3a),(3.1a) for the exact solution, that the

right hand side of (3.8a) becomes O(�2). So, from (3.8), we can get

g(x2; t) = O(�2); g0(x2; t) = O(�2):

Applying assumption (3.6), it follows that

x2 � xe = O(�2); y2 � ye = O(�2): (3.11)

This also gives the boundedness of y2.

We can repeat this procedure, and, by induction, conclude the results of the

theorem. 2

From (3.8) it is clear that there is no sti�ness here, so we can choose � > 0 very

small, so small in fact that one SRM iteration would su�ce for any desired accuracy,

and discretize the regularized ODE, possibly using a nonsti� method like explicit

Runge-Kutta. This gives a modi�ed penalty method

[I + �
�1
BEG]x0 = f �By0 � ��1BE(gt + �2g) (3.12)

where B;E; g etc, all depend on x, with the subscript s = 1 suppressed.

For the choice E = (GB)�1, let P = BEG = B(GB)�1G be the associated

projection matrix. Multiplying (3.12) by 1
1+��1

P and by I�P , respectively, and then

adding together, we have

x
0 = f � 1

1 + �
�1
By0 � �

�1

1 + �
�1
B(GB)�1[Gf + gt + �2g]

Thus the iteration obtained is similar to Baumgarte's stabilization

x
0 = f �B(GB)�1[Gf + gt + �2g] (3.13)
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In fact, the single SRM iteration tends to (3.13) in this case when � ! 0. Indeed,

the parameter �2 is the usual Baumgarte parameter, and choosing �2 > 0 obviously

makes equation (3.8a) asymptotically stable for the drift vs. As indicated in [12], for

both of these methods we can apply post-stabilization instead, i.e. take �2 = 0 but

stabilize after each discretization step [8, 9].

For reasons of computational expense, it may be better to choose E = I in (3.12).

The iteration obtained is simple, although a possibly large matrix (with a special

structure) must be \inverted".

Example 3.1 The choice of E = I is utilized in Chapter 4 (see also [80]) for the

time-dependent, incompressible Navier-Stokes equations governing 
uid 
ow. The

advantage gained is that no treatment of pressure boundary conditions is needed, unlike

methods based on Baumgarte-type stabilizations which lead to the pressure-Poisson

equation. 2

3.1.2 The case �1 = 0

For this case the drift equation (3.8) is clearly sti� for 0 < � � 1. As in x2.5, we
denote J such that

y0(0) = ye(0); y
0

0(0) = y
0

e
(0); : : : ; y

(J)
0 (0) = y

(J)
e
(0); (3.14)

where J = �1 if y0(0) 6= ye(0), then we can prove the same result as Theorem 3.1

for s � J + 1. Note that we may choose y0 satisfying (3.14) for some m � 0 by

expressing y in terms of x at t = 0 for initial value problems. But this starting

procedure generally does not work for boundary value problems. Hence we state and

prove the theorem for initial value problems and comment on the boundary value

case following the proof.
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Theorem 3.2 Let the assumptions of Theorem 3.1 plus (3.14) hold. In addition,

suppose that the matrix function E(x; t) has been chosen so that GBE is positive

de�nite. Then, for the solution of iteration (3.4),(3.5) with �1 = 0, we have the

following error estimates:

xs(t)� xe(t) = O(�s);

ys(t)� ye(t) = O(�s);

for 1 � s � J + 1 and 0 � t � tf .

Proof: We derive the result for the case s � J + 1 = 2. Following the proof, we

will comment on additional generalizations. The key is again the basic drift equation

(3.8), which we rewrite here as

�v
0

s
+ (GBE)vs = �(Gf + gt �GBys�1); (3.15a)

vs(0) = 0: (3.15b)

where quantities are evaluated as before, at (xs; t), unless otherwise noted.

For s = 1, given the boundedness of y0 we obtain as before

v1 = O(�)

To obtain a similar result for v01, however, a di�erent procedure from that of Theorem

3.1 is needed. Note that at t = 0, the condition y0(0) = y(0) implies

(Gf + gt �GBy0)jt=0 = 0

Hence from (3.15a), v01(0) = 0. Di�erentiating (3.15a) with respect to t and using

v1 = O(�), we get

�v
00

1 + (GBE)v01 = O(�); v
0

1(0) = 0

and this yields

v
0

1 = O(�)
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From assumption (3.6) we then get (3.10).

Subtracting (3.1a) from (3.4) and using (3.10) gives also

x
0

1 = x
0 +O(�)

and boundedness of y01 is obtained from a di�erentiation of (3.5).

For s = 2, given the boundedness of y1 (by (3.10)) and y1(0) = y(0), we get as for

s = 1

v2 = O(�); v
0

2 = O(�)

and hence also

x2 = x+O(�)

This yields that the right hand side of (3.15a) is O(�2), so

v2 = O(�2)

Now comes the delicate part. To obtain an O(�2) estimate also for v02, so that the

estimate (3.6) can be used to complete the proof, we di�erentiate the drift equation

again, obtaining

�v
00

2 + (GBE)v02 = O(�2) + �(Gf + gt �GBy1)0

and v02(0) = 0 obtained as for the s = 1 case. We are then left to show that

F (x2; t) := (Gf + gt �GBy1)0 = O(�) (3.16)

For this purpose we must estimate v001 �rst. Using the condition y
0

0(0) = y
0(0), and

also x1(0) = x(0), x01(0) = x
0(0) (obtained from (3.4)), we can obtain

(Gf(x1; t) + gt(x1; t)�GB(x1; t)y0)0jt=0 = 0

Hence v001(0) = 0 from (3.15a) once di�erentiated. Di�erentiating (3.15a) twice we

now obtain precisely as when estimating v01 above,

v
00

1 = O(�)
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The boundedness of all needed quantities can also be obtained in the same way as

before. Finally, we note

v
0

1 = Gx
0

1 + gt(x1; t) = Gf(x1; t) + gt(x1; t)�GB(x1; t)y1

Ready to show (3.16), we now write

F (x2; t) = [(Gf(x2; t)�Gf(x1; t))+(gt(x2; t)�gt(x1; t))+(GB(x1; t)�GB(x2; t))y1�v01]0

Our previous estimates allow the conclusion that x2 = x1 + O(�), x02 = x
0

1 + O(�),

hence we can �nally conclude the estimate (3.16) and obtain the result of the theorem

for s = 2.

The proof proceeds in a similar manner for larger J . Generally, one needs the

estimate v
(j)
1 = O(�), 1 � j � J + 1, and this necessitates (3.14). 2

Remark 3.1 The convergence result holds for all s (i.e. also for s > J+1, assuming

su�cient smoothness) away from an initial layer of size O(�) in t. This is so because

E is chosen so that we can express the solution for small � as a smooth outer solution

which is bounded in terms of the right hand side as before, plus an initial layer of

width O(�). Conditions (3.14) then ensure that the layer error is bounded by O(�J+1)

for the �rst J + 1 iterations. 2

Remark 3.2 For boundary value problems, there is no obvious technique to ensure

J > �1. For a given J , the results of Theorem 3.2 and Remark 3.1 can be extended

as in Chapter 2. This requires a di�erent proof technique, though. Basically, an

asymptotic expansion for xs and ys is constructed, where the �rst term is the exact

solution x; y. This latter proof technique follows more along traditional singular

perturbation lines (see [112, 89, 69]), and is not as close to Theorem 3.1 and to DAE

concepts. 2
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Taking �2 = 1 without loss of generality, we obtain the iteration

x
0

s
= f �Bys�1 � ��1BEg(xs; t) (3.17)

This is a singular, singularly perturbed problem (so � should not be taken extremely

small compared to machine precision even if a sti� solver is being used). If GB is

positive de�nite then we may choose E = I, and this yields a very simple iteration in

(3.17) which avoids the inversion necessary in stabilization methods like Baumgarte's.

However, if an explicit discretization method of order p is contemplated then approx-

imately p SRM iterations like (3.17) are needed, because one must choose � = O(h),

where h is the step size.

3.2 Nonlinear, Singular Index-2 Problems

In this section we consider the nonlinear index-2 problem (3.1) with an isolated sin-

gular point t?, i.e. GB is singular at t?. For simplicity, we assume that B and g are

independent of t. Denote P (x) = B(GB)�1G. Motivated by constrained multibody

systems (see Example 2.1), we assume P (x) to be di�erentiable in t, but @P

@x
(x) may

be unbounded. For this reason, we consider only the case �1 = 0 in this section (cf.

Chapter 2 for the linear case). In the drift equation (3.8) we then have essentially

the singularly perturbed operator �v0 + GBEv to consider. The choices of E = I or

E = (GB)T yield a turning point problem (i.e., at least one of eigenvalues of the ma-

trix GBE vanishes at the point t?), which complicates the analysis, even in the linear

case , and degrades the numerical performance as well in our experience. Therefore,

we choose E = (GB)�1. In the sequel we will be careful to evaluate the e�ect of E

only when its singularity limit is well-de�ned, as e.g. in P (x).

A direct generalization of the linear case in Chapter 2 would give the SRM for-

mulation (3.4), (3.5) where instead of updating y (because y may be unbounded at
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t
�) we update By by

B(xs)ys = B(xs�1)ys�1 +
1

�

B(xs)(G(xs)B(xs))
�1
g(xs): (3.18)

However, (3.18) needs to be modi�ed, since we may haveRangeB(xs) 6=RangeB(xs�1).

So we use the projection P (xs) to move from RangeB(xs�1) to RangeB(xs). Then we

consider the following SRM formulation for singular problems:

x
0

s
= f(xs; t)�B(xs)ys; (3.19a)

B(xs)ys = P (xs)B(xs�1)ys�1 +
1

�

B(xs)(G(xs)B(xs))
�1
g(xs); (3.19b)

where xs satis�es the boundary condition (3.2).

If the assumptions given at the beginning of x3.1 and in Theorem 3.2 remain valid,

then the result of Theorem 3.2 still holds. Unfortunately, for the singular problem,

assumption (3.6) may not be true in general. To see this, consider one iteration, i.e.

s = 1. The accuracy for the approximation of x depends on the extent that the bound

(3.6a) holds. Numerical experiments show that we can get a good approximation of

x near the singularity. But the situation for By is worse, and the bound (3.6b)

often does not hold. Indeed, assume for the moment that we have a good, smooth

approximation of x, say xs = x̂, i.e. (3.7) holds with �; �0 = O(�), and B(x̂)ŷ is de�ned

by (3.19b) for some B(xs�1)ys�1. From (3.7) we have

B(x̂)ŷ = P (x̂)f(x̂; t) + �; (3.20)

where � = B(x̂)(G(x̂)B(x̂))�1�0. It is not di�cult to �nd that the exact B(x)y from

(3.1) satis�es

B(x)y = P (x)f(x; t): (3.21)

Yet, even if � is small, B(x̂)ŷ may not be a good approximation of By because @P

@x

may be unbounded at the singular point so that P (x̂) is not a good approximation

of P (x).
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Example 3.2 In (3.1) let x = (x1; x2), g(x) = � cosx1 � cos x2, and G = B
T =

( sinx1 sinx2 ). Then P (x) = (sin2 x1 + sin2 x2)
�1

0
@ sin2 x1 sinx1 sinx2

sinx1 sin x2 sin2 x2

1
A.

Clearly, at a singular point x = (0; �), the value of P depends on the direction from

which it is approached. Thus, @P

@x
is unbounded, even though P is a di�erentiable

function of t.

Further letting f = (sinx2 � sin x1)
�1 ( sinx2 2 sin x2 � sin x1 )

T , and given the

initial conditions x1(0) = ��=2; x2(0) = �=2, the exact solution is

x(t) = ( t� �=2 t+ �=2 )
T
; y = (sin x2 � sinx1)

�1

Thus, as t crosses t� = �=2, y(t) becomes unbounded, but

By = (sinx2 � sinx1)
�1 ( sinx1 sinx2 )

T

remains bounded. However, it is easy to perturb x(t) slightly and smoothly in such a

way that the perturbed By becomes unbounded near t = t
�, still satisfying (3.7) with

a small �. 2

Note that for the linear model problem (see Chapter 2), P � P (t) is independent
of x. Hence we do not have the above di�culty in the linear case. For the nonlinear

problem, the accuracy near the singular point is reduced and it no longer behaves like

O(�s) for more than one iteration. However, we do expect O(�s) accuracy away from

the singular point, assuming that no bifurcation or impasse point is encountered by

the approximate solution .

3.3 SRM for Nonlinear Higher-index Problems

We now generalize the SRM to the more general problem (2.15). In particular, we

consider the index-3 problem (� = 2). The Euler-Lagrange equations for multibody

systems with holonomic constraints yield a practical instance of the problem. The
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SRM formulations presented in this section are easy to generalize for more general

problems (2.15) (index � + 1). The index-3 problem reads:

x
00 = f(x; x0; t)�B(x; t)y; (3.22a)

0 = g(x; t); (3.22b)

with given 2(nx � ny) boundary conditions,

b(x(0); x(tf); x
0(0); x0(tf)) = 0: (3.23)

The meaning of G, B and the stabilization matrix E below remain the same as in

the index-2 problems considered in previous sections.

3.3.1 The case of nonsingular GB

We �rst use the idea from previous sections, viz. a combination of Baumgarte's stabi-

lization with a modi�ed penalty method, to derive the SRM for the nonlinear index-3

problem (3.22). Then we apply a better stabilization [8] to generate a new SRM

which is expected to have better constraint stability. Finally, we seek variants which

avoid evaluation of complicated terms in the second derivative of the constraints.

First consider, instead of (3.22b), the Baumgarte's stabilization

�1

d
2

dt
2
g(x; t) + �2

d

dt

g(x; t) + �3g(x; t) = 0; (3.24a)

g(x(0); 0) = 0;
d

dt

g(x(0); 0) = 0; (3.24b)

where �j; j = 1; 2; 3 are chosen so that the roots of the polynomial

�(� ) =
3X

j=1

�j�
3�j

are all negative. Following the procedure of previous sections, we can write down an

SRM for (3.22): for s = 1; 2; : : : and y0 given,

x
00

s
= f(xs; x

0

s
; t)�B(xs; t)ys; (3.25)
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where xs satis�es boundary conditions (3.23) and (3.24b) and ys is given by

ys = ys�1 +
1

�

E(xs; t)(�1

d
2

dt
2
g(xs; t) + �2

d

dt

g(xs; t) + �3g(xs; t)): (3.26)

It is not di�cult to repeat the approach of x3.1 for the present case. Under

assumptions similar to the index-2 case, i.e. (3.6) with a change to include �00(� )

at the right hand side (cf. [58]) and Assumption 3.1 with the addition that the

derivative of the solution is also bounded, we readily obtain extensions of Theorems

3.1 and 3.2 for the cases �1 6= 0 and �1 = 0 (with �2 6= 0), respectively. We do not

allow �1 = �2 = 0 since in this case equations (3.25),(3.26) have di�erent asymptotic

properties. Note that the SRM (3.25),(3.26) with �1 = 0 avoids computing gxx;

however, the iteration obtained now calls for solving problems which become sti�

when � gets small, and to avoid gxx one should use a non-sti� discretization method.

This formulation with E = I and �1 6= 0 is the same as that proposed in [20, 19]

using the augmented Lagrangian method.

Another way to generalize the SRM to higher index problems is based on invariant

stabilization. Its advantages over Baumgarte's stabilization have been discussed in

[8, 9]. We thus prefer the way based on this stabilization. Theoretical evidence is

also mentioned in Remark 3.4. We �rst describe this new stabilization. By two direct

di�erentiations of the constraints (3.22b), we can eliminate y and get an ODE

x
00 = ~

f(x; x0; t); (3.27)

for which the original constraint (3.22b) together with its �rst derivative give an

invariant. The idea of the method is to reformulate the higher index DAE (3.22) as

a �rst order ODE (cf. (3.27)):

z
0 = f̂ (z; t) (3.28)

with an invariant

0 = h(z; t); (3.29)



Chapter 3. SRM for Nonlinear Problems 67

where

z =

0
@ z1

z2

1
A =

0
@ x

x
0

1
A
; f̂(z; t) =

0
@ z2

~
f (z; t)

1
A
; h(z(t); t) =

0
@ g(x(t); t)

d

dt
g(x(t); t)

1
A (3.30)

and to consider the stabilization families

z
0 = f̂(z; t)� 
F (z; t)h(z; t); (3.31)

where F = D
~
E for some appropriate matrix functions D and ~

E such that ~
E and

HD are nonsingular and H = hz. The ODE (3.31) coincides with Baumgarte's

stabilization for the index-2 problem (3.1) with D = B and ~
E = E = (HD)�1. One

choice for D is D = H
T , but others will be mentioned below. Note that (3.31) has

the same solution as the original problem (3.22) for any parameter value 
. Although

the method has better constraint stabilization, both the evaluation of ~
f and that of

H involve gxx which may be complicated to calculate in practice.

Next, we present an SRM method based on invariant stabilization which avoids

the computation of ~f . In fact, we can avoid gxx altogether using the new stabilization.

If we do not eliminate y by di�erentiations, f̂ (z; t) in the stabilization (3.31) becomes

f̂(z; t) =

0
@ z2

f(z; t)�B(z1; t)y

1
A
: (3.32)

Since y is not known in advance, we use an iterative SRM procedure to calculate y as

in [20, 11]. The solutions of the iterative procedure no longer satisfy (3.22) precisely.

Hence the iterative procedure has to be a regularization procedure and the parameter

in (3.31) is changed to 
 = 1
�
to emphasize that it must be chosen su�ciently large.

These lead to the following SRM formulation (for simplicity of notation, we only

consider the special case where B and g are independent of t):

z
0

s
=

0
@ z1s

z2s

1
A
0

=

0
@ z2s

f(zs; t)�B(z1s)ys�1

1
A� 1

�

F (zs)h(zs); (3.33)
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where zs satis�es boundary conditions (3.23), (3.24b) and h = (g(z1); G(z1)z2)
T . Thus

the Jacobian of h is

H =

0
@ G(z1) 0

L(z) G(z1)

1
A
; where L = z

T

2 gxx(z1):

We choose D and ~
E so that

F = BE

0
@ I 0

0 I

1
A =

0
@ BE 0

0 BE

1
A (3.34)

where, as in x3.1, E is chosen such that GBE has non-negative eigenvalues. Updating

y by

ys = ys�1 +
1

�

E(z1s)G(z1s)z2s (3.35)

implies that the second part of the original index-3 system holds exactly, i.e.

z
0

2s = f(zs; t)�B(z1s)ys:

Next we analyze the convergence of (3.33){(3.35). Again we assume that the

solutions of (3.33), (3.23), (3.24b) exist uniquely and are bounded if ys�1 is bounded

(see Assumption 3.1 ). Assumption (3.6) changes slightly: We �rst rewrite the system

(3.22) as

z
0

1 = z2; (3.36a)

z
0

2 = f(z; t)�B(z1)y; (3.36b)

0 = g(z1): (3.36c)

Then we assume the following perturbation bound,

kẑ(t)� z(t)k �M max
0���tf

(j�(� )j+ j�0(� )j+ j�00(� )j+ j�(� )j+ j�0(� )j); (3.37a)

kŷ(t)� y(t)k �M max
0���tf

(j�(� )j+ j�0(� )j+ j�00(� )j+ j�(� )j+ j�0(� )j); (3.37b)
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where ẑ and ŷ satisfy a perturbed problem of (3.36),

ẑ
0

1 = ẑ2 + �(t); (3.38a)

ẑ
0

2 = f(ẑ; t)�B(ẑ1)ŷ; (3.38b)

0 = g(ẑ1) + �(t); (3.38c)

with the same boundary conditions (3.23). Again, for initial value problems, (3.37)

can be easily proved by following the technique presented in [58], and this can be

extended for boundary value problems as well.

Similarly to the proof of Theorem 3.1, let h(zs) =

0
@ vs

ws

1
A, where vs = g(z1s),

ws = G(z1s)z2s. From (3.33), we get the drift equations (cf. (3.15))

�v
0

s
= �GBE(zs)vs + �ws (3.39a)

�v
00

s
= �GBE(zs)v0s � LBE(zs)vs + �[Lz2s +Gf(zs)�GB(zs)ys�1] (3.39b)

with the initial conditions vs(0) = 0, ws(0) = 0. Applying (3.39a) and then (3.39b)

for s = 1, we obtain v1 = O(�); w1 = O(�). Then (3.39a) further yields

v1 = O(�2); v
0

1 = O(�)

Comparing (3.38) with (3.33){(3.35), we have to bound

� = v1; � = ���1BEv1

and their derivatives appearing in (3.37). We already have that

� = O(�2); �0 = O(�); � = O(�)

The procedure that follows continues to be similar to the one employed in the proof

of Theorem 3.2, so we only sketch it here for s = 1. From (3.39a) we obtain v01(0) = 0.

Using the condition y0(0) = y(0) gives

[Lz21+Gf(z1)�GB(z1)y0]jt=0 = 0
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so, from (3.39b), also w01(0) = 0. Di�erentiating (3.39b) we get

�w
00

1 +GBE(z1)w
0

1 = O(�); w
0

1(0) = 0

hence w01 = O(�). Di�erentiating (3.39a) we next have

�v
00

1 +GBE(z1)v
0

1 = O(�2); v
0

1(0) = 0

so v01 = O(�2). This implies

�
0 = O(�); �

00 = O(�)

We can now use (3.37) and obtain the desired conclusion for s = 1,

z1 = z +O(�); y1 = y +O(�);

where fz; yg is the exact solution of the index-3 problem. Then, continuing to follow

the proof procedure of Theorem 3.2, we obtain:

Theorem 3.3 Let all functions in the DAE (3.22) be su�ciently smooth and assume

the above assumptions (particularly (3.37)) hold. Assume in addition that y0 satis�es

(3.14). Then, for the solution of iteration (3.33){(3.35), the following error estimates

hold:

zs(t)� ze(t) = O(�s); (3.40a)

ys(t)� ye(t) = O(�s) (3.40b)

for 1 � s � J + 1.

Remark 3.3 Extensions of this theorem to the boundary value case and to s > J+1

away from an initial layer are possible, similarly to the extensions for Theorem 3.2

contained in Remarks 3.1 and 3.2. 2
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Remark 3.4 We note that, unlike Proposition 2.2 of [8], we do not assume

kH(z)f̂(z)k2 � 
0kh(z)k2

to discuss the stability and accuracy of the constraints. Also, from (3.39), we see the

di�erence of the constraint stability or accuracy between SRM formulations based on

Baumgarte's stabilization and the new stabilization. For the former, we only have

v
0

1 = G(z11)z
0

11 = G(z11)z21 = w1

So if we obtain w1 = O(�) then v1 = O(t�). This can be much worse than what we

get from (3.39a). 2

3.3.2 The case for constraint singularities

For the singular case GB may be singular at some isolated point t� as described in

the previous sections. The situation here is similar to that for index-2 problems. An

examination of the drift equations (3.39) suggests that here, too, the choice E =

(GB)�1 is preferable to E = I or E = (GB)T . The iteration for ys is modi�ed as

well. Still assuming for simplicity that g and B do not depend explicitly on t, this

gives, in place of (3.33){(3.35) the iteration

z
0

1s = z2s � 1

�

B(GB)�1g(zs) (3.41a)

z
0

2s = f(zs; t)� ŷs (3.41b)

ŷs = P (zs)ŷs�1 +
1

�

P (zs)z2s (3.41c)

Also, as indicated in x3.2 for index-2 problems, we cannot expect O(�s) approxi-

mation near the singular point any more. But we do expect that (3.40) holds away

from the singular point, because the singularity is in the constraint and the drift

manifold is asymptotically stable (following our stabilization). A numerical example
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in x3.5 will show that we do get improved results by using SRM iterations for the

singular problem.

3.4 SRM for Constrained Multibody Systems

Constrained multibody systems provide an important family of applications of the

form (3.22) and (3.1). We consider the system

q
0 = v (3.42a)

M(q)v0 = f(q; v)�G(q)T� (3.42b)

0 = g(q) (3.42c)

where q and v are the vectors of generalized coordinates and velocities, respectively;

M is the mass matrix which is symmetric positive de�nite; f(q; v) is the vector

of external forces (other than constraint forces); g(q) is the vector of (holonomic)

constraints; � is the vector of Lagrange multipliers; and G(q) = d

dq
g. For notational

simplicity, we have suppressed any explicit dependence of M , f or g on the time t.

We �rst consider the problem without singularities.

Corresponding to (3.22) in x3.3, we have B = M
�1
G
T , so GB = GM

�1
G
T .

Other quantities like h and H retain their meaning from the previous section. In

some applications it is particularly important to avoid terms involving gxx, since its

computation is somewhat complicated and may also easily result in mistakes and

rugged terms. So [9] suggests post-stabilization using the stabilization matrix

F =M
�1
G
T (GM�1

G
T )�1

0
@ I 0

0 I

1
A (3.43)

twice, instead of involving H, at the end of each time step or as needed. They �nd

that this F performs very well in many applications. However, while this stabilization

avoids the gxx term in F , gxx is still involved in obtaining ~
f , although only through
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matrix-vector multiplications (see (3.27)). The SRM formulation (3.33){(3.35) en-

ables us to avoid the computation of ~
f in the absence of constraint singularities. For

the multibody system (3.42) we write the iteration as follows:

For s = 1; 2; : : :, �nd fqs; vsg by

q
0

s
= vs � 1

�

BE(qs)g(qs) (3.44a)

v
0

s
= M

�1
f(qs; vs)�B(qs)�s�1 � 1

�

BEG(qs)vs (3.44b)

Then update � by

�s = �s�1 +
1

�

EG(qs)vs: (3.45)

It is easy to see that in this SRM formulation the gxx term is avoided com-

pletely. Moreover, since GM�1
G
T is positive de�nite, we can choose E = I in

(3.44),(3.45), obtaining a method for which Theorem 3.3 applies, which avoids com-

puting (GM�1
G
T )�1. Although it requires an iterative procedure, a small number of

iterations (p if an explicit discretization method of order p is used) typically provide

su�cient accuracy. Numerical experiments will show the O(�s) error estimate.

Next we consider the singular problem, i.e. with the matrix GM�1
G
T being sin-

gular at some isolated point t�, 0 < t
�
< tf . A typical example of singular multibody

systems is the two-link slider-crank problem (see Example 2.1 and Figure 2.1) con-

sisting of two linked bars of equal length, with one end of one bar �xed at the origin,

allowing only rotational motion in the plane, with the other end of the other bar

sliding along the x-axis.

Various formulations of the equations of motion for this problem appear, e.g., in

[60, 19, 11, 12, 94]. In our calculations we have used the formulation in Example

2.1 (see [11]), to make sure that the problem is not accidentally too easy. It consists

of 6 ODEs and 5 constraints, with the last row of the Jacobian matrix G vanishing

when the mechanism moves left through the point where both bars are upright (�1 =

�

2
; �2 =

3�
2
, where xi; yi; �i are the coordinates of the center of mass of the ith bar).
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The last row of G vanishes at this point and a singularity is obtained. We note that

the solution is smooth in the passage through the singularity with a nonzero velocity.

When we attempt to integrate this system using a stabilization method like [8]

which ignores the singularity, the results are unpredictable, depending on how close

to the singular time point the integration process gets when attempting to cross it.

In fact, radically di�erent results may be obtained upon changing the value of the

error tolerance. (Similar observations are made in [94].) In some instances a general

purpose ODE code would simply be unable to \penetrate the singularity" and yield

a solution which, after hovering around the upright (singular) position for a while,

turns back towards the initial position (solid line in Figure 2.1). Such a pattern of

motion may well look deceptively plausible.

Methods which do not impose the constraints on the position level (e.g. methods

consisting of di�erentiating the constraints once and solving the resulting index-2

problem numerically, or of projecting only on the velocity-level constraint manifold)

perform particularly poorly (cf. numerical results in [94]). This is easy to explain:

The position-level constraint corresponds to ensuring that the two bars have equal

length. If this is not strictly imposed in the process of numerical solution, inevitable

numerical errors due to discretization may yield a model where the lengths are not

close enough to being equal, and this leads to the lock-up phenomena described e.g.

in [60], which have a vastly di�erent solution pro�le.

We now wish to generalize the SRM to problem (3.42) with singularities since we

have seen its success for the linear index-2 case. From the two-link slider crank prob-

lem, we �nd that, although GM�1
G
T is singular at t�, P (q) �M

�1
G
T (GM�1

G
T )�1G

and M�1
G
T (GM�1

G
T )�1g are smooth functions of t for the exact solution or func-

tions q satisfying the constraints, whileM�1
G
T (GM�1

G
T )�1,M�1

G
T (GM�1

G
T )�1Gq

and the derivative dP (q)

dq
are not. Also, as indicated in [11], � is no longer smooth,

while B� is since we assume the solution q to be su�ciently smooth. We only include
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terms which are (most possibly) smooth in the SRM formulation.

Applying (3.41), we obtain the method

q
0

s
= vs � 1

�

M
�1
G
T (GM�1

G
T )�1g(qs); (3.46a)

v
0

s
= M

�1
f(qs; vs; t)� �̂s; (3.46b)

�̂s = P (qs)�̂s�1 +
1

�

P (qs)vs (3.47)

As we indicated in x3.2, we do not expect O(�s) accuracy near the singular point.
However, we do expect that the SRM iteration would improve the accuracy and

that we still expect to get O(�s) accuracy away from the singular point. Numerical

experiments in x3.5 will show such improvements.

3.5 Numerical Experiments

We now present a few examples to demonstrate our claims in the previous sections.

Throughout this section we use a constant step size h. To make life di�cult we choose

h when we can so that there is an i such that ti = t
�, namely, there is a mesh point

hitting the singularity point t�, for singular test problems. At a given time t, we use

0
ex

0 to denote the maximum over all components of the error in xs. Similarly, 0drift0

denotes the maximum residual in the algebraic equations.

Example 3.3 Consider the DAE (2.16),(2.17) with

f =

0
@ 1� e�t

cos t+ e
t sin t

1
A
; B =

0
@ x1
x2

1
A

g =
1

2
(x21 + x

2
2 � e�2t � sin2 t):

subject to x1(0) = 1; x2(0) = 0.

The exact solution is xe = ( e�t; sin t ), ye = e
t. This is a problem without

singularities.
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Using an explicit second order Runge-Kutta method with h = 0:001 we test various

choices of E and �1 (always taking �2 = 1) of the SRM formulation in x3.1. We list

the computational results in Table 3.1. Observe that, for �1 6= 0, the SRM works well

methods � iteration error at ! t=.1 t=.5 t=1.0
�1 = 1 1e-8 1 ex .11e-7 .94e-7 .19e-6
E = I drift .79e-8 .56e-7 .14e-6
�1 = 1 1e-8 1 ex .11e-7 .92e-7 .18e-6

E = (GB)T drift .78e-8 .53e-7 .14e-6
�1 = 1 1e-8 1 ex .11e-7 .95e-7 .19e-6

E = (GB)�1 drift .80e-8 .58e-7 .15e-6
Baumgarte ex .45e-6 .16e-6 .35e-6

drift .40e-6 .70e-7 .29e-6
�1 = 0 5e-3 1 ex .60e-2 .11e-1 .11e-1
E = I drift .54e-2 .80e-2 .13e-1

2 ex .11e-3 .26e-3 .22e-3
drift .96e-4 .20e-3 .27e-3

3 ex .32e-5 .65e-5 .46e-5
drift .29e-5 .47e-5 .54e-5

4 ex .26e-6 .23e-6 .28e-6
drift .13e-6 .51e-7 .12e-6

�1 = 0 5e-3 1 ex .70e-2 .12e-1 .13e-1
E = (GB)T drift .64e-2 .13e-1 .15e-1

2 ex .22e-3 .65e-3 .31e-3
drift .20e-3 .49e-3 .29e-3

3 ex .11e-4 .16e-4 .69e-5
drift .10e-4 .10e-4 .52e-5

4 ex .85e-6 .91e-7 .29e-6
drift .75e-6 .77e-6 .14e-6

�1 = 0 5e-3 1 ex .51e-2 .66e-2 .10e-1
E = (GB)�1 drift .46e-2 .49e-2 .12e-1

2 ex .35e-4 .11e-3 .21e-3
drift .30e-4 .79e-4 .24e-3

3 ex .86e-6 .23e-5 .47e-5
drift .77e-6 .17e-5 .53e-5

4 ex .26e-6 .18e-6 .26e-6
drift .26e-7 .31e-7 .13e-6

Table 3.1: Errors for Example 3.3 using the explicit second order Runge-Kutta scheme

for various choices of E. Its error is as good as Baumgarte's method whose parameter

corresponds to the �2 of the SRM. For �1 = 0, we see that the error improves at a rate

of about O(�) for various choices of E, including E = I. (Observe the errors at t = 1;

the error situation near t = :1 is di�erent because of an initial layer.) Such an error
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improvement continues until the accuracy of the second order explicit Runge-Kutta

method, i.e. O(h2), is reached. 2

The next two examples are problems with singularities. In the index-2 case of the

Baumgarte stabilization the worst term is B(GB)�1gt for the type of the singularities

in this paper. To show what happens when the Baumgarte method does not work

well, we choose nonautonomous problems (i.e. gt 6= 0) as index-2 singular examples.

Example 3.4 Consider the nonlinear DAE (2.16) with

f =

0
@ 1 + (t� 1

2
)et

2t+ (t2 � 1
4
)et

1
A
; B =

0
@ x1
x2

1
A

g =
1

2
(x21 + x

2
2 � (t� 1

2
)2 � (t2 � 1

4
)2)

subject to the initial condition x1(0) = �1
2
; x2(0) = �1

4
.

The exact solution is xe = ( t� 1
2
; t

2 � 1
4
), ye = e

t. A singularity is located

at t� = 1
2
. Using this example we test the SRM formulations of x3.2. We list the

computational results in Table 3.2, where we take h = � = 0:001 for the case of

�1 = 0, and h = 0:001; � = 10�10 for the case of �1 6= 0, and use the explicit

second order Runge-Kutta scheme to easily see the iteration improvement (Ij stands

for results of the jth iteration).

From Table 3.2, we see the error's deterioration for the Baumgarte method and

the SRM with �1 6= 0. The SRM with �1 = 0 performs better in the singular case. 2

Next we try an example in which y is unbounded at the singularity.

Example 3.5 Consider the nonlinear DAE (3.1) with

f =

0
@�x1 + x2 � sin(t)� (1 + 2t)

0

1
A
; B =

0
@ 0

x1

1
A

g = x
2
1 + x1(x2 � sin(t)� 1 + 2t);
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methods error at ! t=.1 t = .3 t = .5 t= .7 t= 1.0
�1 = 1 ex .39e-6 .13e-5 .12e-3 .14e-3 .76e-4

drift .24e-6 .16e-6 .10e-7 .39e-6 .75e-6
�1 = 0 (I1) ex .46e-3 .32e-3 .43e-4 .49e-3 .20e-2

drift .24e-3 .89e-4 .18e-8 .20e-3 .22e-2
�1 = 0 (I2) ex .81e-6 .11e-5 .41e-5 .29e-5 .68e-5

drift .24e-6 .30e-6 .15e-10 .13e-5 .76e-5
�1 = 0 (I3) ex .23e-6 .26e-6 .34e-6 .29e-6 .29e-6

drift .90e-9 .11e-8 .78e-13 .35e-8 .18e-7
�1 = 0 (I4) ex .23e-6 .26e-6 .36e-6 .27e-6 .29e-6

drift .47e-11 .33e-11 .10e-12 .29e-11 .28e-10
Baumgarte ex .43e-6 .45e-6 .34e-3 .39e-3 .21e-3

drift .24e-6 .16e-6 .61e-7 .24e-6 .75e-6

Table 3.2: Example 3.4 { bounded y and singularity at t� = :5

subject to the initial condition x1(0) = 1; x2(0) = 0.

The exact solution is xe = ( 1� 2t; sin t ), ye = � cos t=(1 � 2t). Taking the

same parameters and using the same method as before, we get the results listed in

Table 3.3. Clearly, the SRM with �1 = 0 performs well for this situation, while

methods error at ! t=.1 t = .3 t = .5 t= .7 t= 1.0
SRM (�1 = 0) ex .40e-6 .25e-6 .14e-6 .46e-7 .60e-7

(I3) drift .25e-8 .76e-9 .16e-15 .28e-9 .40e-9
Baumgarte ex .49e-7 .15e-6 .93e+1 NaN NaN

drift .39e-7 .59e-7 .52e+13 NaN NaN

Table 3.3: Example 3.5 { unbounded y and singularity at t� = :5

Baumgarte method blows up upon hitting the singularity. 2

Our next example tests the formulation (3.33){(3.35) or (3.44){(3.45) for index-3

problems.

Example 3.6 This example is made up from Example 2 in [9] (see Figure 3.1),

which describes a two-link planar robotic system. We use the notation of (1.11). Let
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Figure 3.1: Two-link planar robotic system

q = (�1; �2)
T and

M =

0
@m1l

2
1=3 +m2(l

2
1 + l

2
2=3 + l1l2c2) m2(l

2
2=3 + l1l2c2=2)

m2(l
2
2=3 + l1l2c2=2) m2l

2
2=3

1
A
;

where l1 = l2 = 1, m1 = m2 = 3 and c2 = cos �2. The constraint equation is

g(q) = l1 sin �1 + l2 sin(�1 + �2) = 0:

We choose the force term

f =

0
@ (l1 cos �1 + l2 cos(�1 + �2)) cos t� 3 sin t

l2 cos(�1 + �2) cos t+ (1� 3
2
c2) sin t

1
A

which yields the exact solution �1 = sin t, �2 = �2 sin t and � = cos t. Because M is

(symmetric) positive de�nite and B =M
�1
G
T we can take E = I in the SRM formula

(3.44){(3.45). Again we use the second- order explicit Runge-Kutta scheme, and set

h = 0:001; � = 0:005. The results are listed in Table 3.4, where eq and ev stand for

maximum errors in q and v = q
0, resp., and pdrift and vdrift stand for drifts at the
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position and velocity level, resp. We see that the accuracy is improved signi�cantly

by the �rst two iterations. The third iteration is unnecessary here, because the error

is already dominated by the Runge-Kutta discretization error. Qualitatively similar

results are obtained for E = (GB)T and E = (GB)�1. More interestingly, though, for

E = I we neither form nor invert GM�1
G
T , so a particularly inexpensive iteration

is obtained.

methods � iteration error at ! t=.1 t=.5 t=1.0
E = I 5e-3 1 eq .41e-4 .66e-3 .26e-2

ev .75e-2 .74e-2 .69e-2
pdrift .22e-4 .28e-4 .22e-4
vdrift .49e-2 .41e-2 .27e-2

2 eq .13e-6 .66e-6 .36e-6
ev .19e-5 .81e-6 .20e-4

pdrift .42e-9 .13e-7 .17e-6
vdrift .91e-7 .21e-5 .21e-4

3 eq .10e-6 .58e-6 .12e-5
ev .86e-6 .10e-5 .16e-5

pdrift .96e-11 .60e-9 .48e-8
vdrift .10e-8 .99e-7 .59e-6

Table 3.4: Errors for Example 3.6 using SRM (3.45)-(3.46)

2

Next we solve for the dynamics of the slider-crank mechanism described in Exam-

ple 2.1. this is a nonlinear index-3 DAE with isolated, \smooth" singularities.

Example 3.7 We take h = � = 0:0001 and use the explicit second order Runge-

Kutta method again. Singularities are located at (�1; �2) = (�
2
;
3�
2
) (i.e., each time

the periodic solution passes this point). Corresponding to the case shown in [94], we

choose �1(0) =
7�
4
and �01(0) = 0 and compute

�1 = �1 � 3�

2
; �2 = �2 +

�

2
;

�
0

1 and �
0

2. Using the formulation (3.47), (3.46), we calculate until t = 70 without any

di�culty (see Figure 3.2).
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Figure 3.2: Solution for slider-crank problem with singularities

We also list the drift improvement as a function of the SRM iteration in Table

3.5.

iteration number position drift at t=30 velocity drift at t = 30
1 .669e-8 .671e-4
2 .730e-11 .731e-7

Table 3.5: Drifts of the SRM for the slider-crank problem

If we use the SRM formulations considered in xx3.3 and 3.4 for problems with-

our singularities, or one of the usual stabilization methods with strict tolerances, the

results become wildly di�erent from the correct solution after several periods.

Next we calculate the acceleration of the slider end in the horizontal direction

under the initial data �1(0) =
�

4
and �01(0) = 2

p
2. The same problem was discussed

in [19]. The result shown in [19] is not perfect since the maximum and minimum

values in each period appear to di�er. Our result looks better (see Figure 3.3). 2



Chapter 3. SRM for Nonlinear Problems 82

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

Time(s)

X
 a

cc
el

er
at

io
n 

of
 c

ra
nk

 e
nd

 (
m

/s
^2

)
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Chapter 4

SRM for the Nonstationary Incompressible Navier-Stokes Equations

4.1 DAE Methods for Navier-Stokes Equations

While a signi�cant body of knowledge about the theory and numerical methods for

DAEs has been accumulated, not much has been extended to partial di�erential-

algebraic equations (PDAEs). The incompressible Navier-Stokes equations form, in

fact, an example of a PDAE: to recall, these equations read

ut + (u � grad)u = ��u� gradp+ f ; (4.1a)

divu = 0; (4.1b)

uj@
 = b ; ujt=0 = a; (4.1c)

in a bounded two- or three-dimensional domain 
 and the time interval 0 � t � T .

Here u(x; t) represents the velocity of a viscous incompressible 
uid, p(x; t) the pres-

sure, f the prescribed external force, a(x) the prescribed initial velocity, and b(t)

the prescribed velocity boundary values. The system (4.1) can be seen as a partial

di�erential equation with constraint (4.1b) with respect to the time variable t. Com-

paring with the DAE form (3.1) p corresponds to y, the grad operator corresponds

to the matrix B and the div operator corresponds to the Jacobian matrix G. It is

easily veri�ed that (4.1) has index-2 since the operator divgrad = � (corresponding

to the matrix GB) is invertible (under appropriate boundary conditions). Indeed,

the pressure-Poisson reformulation of (4.1) (see, e.g., [55]) corresponds to a direct

index reduction of the PDAE, i.e. a di�erentiation of the constraint with respect to

t followed by substitution of ut from the momentum equations.

83
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In this chapter we propose and analyze a sequential regularization method (SRM)

for solving the incompressible Navier-Stokes equations. The method is de�ned as

follows: with p0(x; t) an initial guess,

for s = 1; 2; � � � ; solve the problem

�(us)t � grad(�1(divus)t + �2divus) + �(us � grad)us
= ���us � �gradps�1 + �f ; (4.2a)

usj@
 = b;usjt=0 = a; (4.2b)

ps = ps�1 � 1

�

(�1(divus)t + �2divus): (4.2c)

This method is an extension of the SRM which was proposed and analyzed in

previous chapters for ordinary DAEs, especially for the index-2 DAEs (3.4), (3.5).

Here we can take E = I even for �1 = 0 because (4.1) corresponds to (3.1) with

B = G
T . It is indicated in x3.1 that if we take �1 6= 0 then certain restrictions on

choosing the initial iterate (cf. ( 3.14)) do not apply and, more importantly, the

equation for xs is essentially not sti� if the original problem is not sti�. Hence,

a non-sti� time integrator can be used for any regularization parameter �. For the

Navier-Stokes application (4.2) we therefore choose �1 > 0 so that we can still take � to

be very small even when we use an explicit time discretization. So one SRM iteration

is often good enough. However, we should not ignore the choice �1 = 0 because x3.1
also indicates that with this choice the computation can be particularly simple. For

(4.2), when �1 > 0, although we use explicit time discretization, a symmetric positive

de�nite system relevant to the discretization of the operator I+ �1

�
graddiv still needs

to be inverted. If we take �1 = 0, then we do not need to solve any system to obtain

the discrete solution. In this case, (4.2) is not sti� only for relatively large �. So more

than one SRM iterations are required generally. In the sequel, the convergence proof
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and discretization stability analysis in x4.3 and x4.4 are mainly for the case of �1 > 0.

The discussion for the case of �1 = 0 can essentially be carried out in a similar way.

We will remark on this case in x4.3 and x4.4 and provide a numerical veri�cation in

x4.4.
The importance of the treatment of the incompressibility constraint has long

been recognized in the Navier-Stokes context. A classical approach is the projec-

tion method of [36], where one has to solve a Poisson equation for the pressure p

with the zero Neumann boundary conditions which is, however, non-physical. Re-

cently, a re-interpretation of the projection method in the context of the so-called

pressure stabilization methods, or more generally, \pseudo - compressibility methods"

has been given in [97]. Some convergence estimates for the pressure can be obtained

(cf. [101, 96]). In his review paper [97], Rannacher lists some well known examples

of \pseudo-compressibility methods" (which are actually regularization methods):

divu+ �pt = 0; in 
� [0; T ); pjt=0 = p0; (arti�cial compressibility)

divu+ �p = 0; in 
� [0; T ); (penalty method)

divu� ��p = 0; in 
� [0; T ); @p

@n
j@
 = p0 (pressure stabilization):

If we generalize Baumgarte's stabilization to this PDAE example (4.1), we get

ut + (u � grad)u = ��u� gradp+ f ; (4.3a)

(divu)t + 
divu = 0: (4.3b)

Eliminating ut from (4.3), we obtain an equation for p:

��p+ 
divu� divf(u � grad)u� ��u� fg = 0:

We then �nd that this stabilization can be seen as a kind of pressure stabilization

with 
 = �
�1. Although it works, since we do not have a singularity here, it still sets

up a non-physical boundary condition for the Poisson equation for p. Also, in this

formulation, equations for u and p are not uncoupled.
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In the SRM formulation (4.2) we do not need to set up boundary conditions for p.

So it should be more natural than various pressure-Poisson formulations. This method

relates to the idea of penalty methods but, unlike them, the regularized problems are

not sti� for �1 > 0 or less sti� for �1 = 0 since we can choose � to be relatively

large. Hence, more convenient (nonsti�) methods can be used for time integration,

and nonlinear terms can be treated easily. We will indicate in x4.4 that � has little to
do with the stability of the discretization there, i.e. the stability restriction is satis�ed

for a wide range of � for �1 > 0. We also indicate there that, in the case of small

viscosity, the usual time step restrictions for the explicit schemes can be loosened.

A similar procedure following [5] (Uzawa's iterative algorithm ) in the framework

of optimization theory and economics has actually appeared in the Navier-Stokes

context for the stationary Stokes equations (i.e. without the nonlinear term and the

time-dependent term in (4.1)) with �1 = 0 using the augmented Lagrangian idea,

see Fortin and Glowinski [50]. (Also see [54] for a related discussion.) Note that,

in their procedure, ��1 in (4.2c) is replaced by a parameter �. They prove that

� = �
�1 is approximately optimal. For the nonlinear case, they combine Uzawa's

algorithm with a linearization iteration. They claim convergence but �nd it hard to

analyze the convergence rate because their analysis depends on the spectrum of an

operator which is non-symmetric in the nonlinear case. For the nonstationary case

(4.1), the augmented Lagrangian method cannot be applied directly. Therefore, [50]

�rst discretizes (4.1a) with respect to the time t (an implicit scheme is used). Then

the problem becomes a stationary one in each time step. Hence, Uzawa's algorithm

can be applied and converges in each time step. So, for the nonstationary case, their

iterative procedure is, in essence, to provide a method to solve the time-discretized

problem. Thus, their iterative procedure has little to do with time-discretization,

or in other words, they still do time-discretization directly for the problem (4.1).

Consequently an implicit scheme is always appropriate because of the constraints
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(4.1b), and a linearization is always needed to treat the nonlinear case.

These properties are not shared by our method. We will prove that the conver-

gence results of the SRM in the previous chapter still hold for the PDAE case (4.2).

Hence, the solution sequence of (4.2) converges to the solution of (4.1) with the error

estimate of O(�s) after the sth iteration. Therefore, roughly speaking, the rate is

about O(�). We prove the convergence results using the method of asymptotic ex-

pansions which is independent of the optimization theory and is also applicable to the

steady-state case. In addition, when the �nite element method is used, the di�culty

of constructing test functions in a divergence-free space to decouple the u; p system

can be avoided by using the formulation of the SRM.

We indicate here that, as many others do, we include the viscosity parameter �

in the error estimates. So the estimates could deteriorate when � is very small. This

is because we have an unresolved technical di�culty, associated with our inability

to obtain an appropriate upper bound for the nonlinear term and with the weaker

elliptic operator ��u (which is dissipative) as � ! 0. In the SRM formulation, a

supplementary dissipative term ��2graddivus is introduced without perturbing the

solution. As indicated in [50] for the stationary case, the relative advantage of such

methods may therefore become more apparent for small values of the viscosity.

The chapter is organized as follows: In x4.2 we de�ne some preliminaries and

discuss regularity properties of the solution of (4.2). The convergence of the SRM

for Navier-Stokes equations is proved in x4.3. Finally, in x4.4 a simple di�erence

scheme is discussed and some numerical experiments are presented. These numerical

experiments are only exploratory in nature.

To summarize, our objective in this chapter is to present a method for the non-

stationary Navier-Stokes equations from the viewpoint of DAE regularization, and to

provide a way to apply a DAE method to PDAEs. It appears that such a formulation

is new in the Navier-Stokes context and it is worthwhile because:
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� Since � need not be very small, the regularized problems in the sequence (4.2)

are more stable/less sti�. So more convenient di�erence schemes, e.g. explicit

schemes in time, can be used under theoretical assurance. If we take �1 > 0,

this is also true for small �.

� The problem of additional boundary conditions, which arises in the pressure-

Poisson formulation and projection methods, does not arise here. Finite element

methods can be used easily and the elements do not have to conform to the

incompressibility condition to separate the variables u and p.

4.2 Preliminaries and the Properties of the Regularized Problems

Before we begin our analysis, we �rst describe some notation and assumptions. As

usual, we use Lp(
), or more simply Lp, to denote the space of functions which are

pth-power integrable in 
, and

kukp = (

Z



nX
i=1

u

p

i dx)
1

p

as its norm, where u = (u1; � � � ; un). We denote the inner product in L2 by (�; �) and
let k � k � k � k2. C1 is the space of functions continuously di�erentiable any number

of times in 
, and C1

0 consists of those members of C1 with compact support in 
.

Hm is the completion in the norm

kukHm = (
X

0�j�j�m

kD�uk2) 12 :

We will consider the boundary conditions to be homogeneous, i.e. b � 0 in (4.1c), to

simplify the analysis. Nevertheless, through the inclusion of a general forcing term,

the results may be generalized to the case of nonhomogeneous boundary values. We

are interested in the case that (4.1) has a unique solution and the solution belongs to

H2, where the arbitrary constant which the pressure p is up to is determined byZ


p(x; �) dx = 0: (4.4)
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Hence, some basic compatibility condition is assumed (cf. [63]):

aj@
 = 0; diva � 0: (4.5)

Furthermore, we assume

sup
t2[0;T ]

kfk �M1; kakH2 �M1; (4.6)

where M1 is a positive constant.

We take p0 in (4.2) satisfying (4.4). Hence, it is easy to see that ps satis�es (4.4)

for all s.

For simplicity, we only consider the two-dimensional case. We can treat the three-

dimensional case in the same way, possibly with some more assumptions. Throughout

the chapter M represents a generic constant which may depend on � as we have

explained in the introduction. We will also allow M to depend on the �nite time-

interval T since we are not going to discuss very long time behavior in this chapter.

At �rst, we write down some inequalities:

� Poincar�e inequality:

kuk � 
kgrad uk; if uj
 = 0: (4.7)

More generally (see [87]), for u 2 H1(
)

kuk � C
(kgrad uk+ j
Z


u dxj): (4.8)

� Young's inequality:

abc � 1

p

a
p +

1

q

b
q +

1

r

c
r (4.9)

if a; b; c > 0; p; q; r > 1 and 1
p
+ 1

q
+ 1

r
= 1.

� H�older's inequality: Z


jf jjgjjhjdx � kfkpkgkqkhkr (4.10)

if p; q; r > 1 and 1
p
+ 1

q
+ 1

r
= 1.
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� Sobolev's inequality in two-dimensional space:

kuk4 � 

1

4

1 kuk
1

2kgrad uk 12 ; (4.11)

where 
1 = 2 if 
 = R2.

Suppose that w stands for the di�erence of two solutions of the SRM (4.2). Thenw

satis�es the homogeneous problem (4.27) (see next section). Hence, using the estimate

in Lemma 4.2, uniqueness of the solution of the SRM (4.2) is easy to consider. The

existence can be analyzed by following the standard existence argument for Navier-

Stokes equations (e.g. [108, 62]) and that of penalized Navier-Stokes equations (e.g.

[28]). Hence we assume the existence of the solution of the SRM and concentrate on

the proof of the convergence of the method. Before we do so, we derive the following

regularity results of the solution.

Lemma 4.1 For the solution fus; psg of (4.2) there exists a constant �0 such that

when � � �0 we have the following estimates

kusk2H1 +

Z
T

0
(
�1

�
2
k(divus)tk2H1 +

�2

�
2
kdivusk2H1 + k(us)tk2 + k�usk2 + kpsk2H1) dt

�M [kak2
H1 +

Z
T

0
(kfk2 + kgradps�1k2) dt]: (4.12)

Proof: For simplicity of notation we denote us as v here. The proof for the case

�1 = 0 is just the same as that in [28]. So we only consider the case �1 > 0. Hence,

without loss of generality, we take �1 = 1 and �2 = �. We then write (4.2) as

vt � 1

�

grad((divv)t + �divv) + (v � grad)v

= ��v� gradps�1 + f ; (4.13a)

vj@
 = 0;vjt=0 = a; (4.13b)

ps = ps�1 � 1

�

((divv)t + �divv): (4.13c)
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The proof follows the ideas in [28]. Multiplying (4.13a) by v and integrating with

respect to the space variables on the domain 
, we get

1

2

d

dt

kvk2 + 1

2�

d

dt

kdivvk2 + �

�

kdivvk2 + �kgradvk2

= �((v � grad)v;v)� (gradps�1;v) + (f ;v)

� �

2�
kdivvk2 + 
1�

2�
kvk2kgradvk2 + �

2

kvk2 + 


�

kgradps�1k2 + 


�

kfk2;

where we use �((v � grad)v;v) = 1
2
((divv)v;v). Then let c = min(�

�
;
�

2

) and Y =

kvk2 + 1
�
kdivvk2. Using Poincar�e's inequality (4.7), we obtain

d

dt

Y + cY +
1

2
(� � 
1�

�

Y )kgradvk2 � 


�

(kfk2 + kgradps�1k2): (4.14)

Note that Y (0) = kak2. Write (4.14) as

d

dt

(�� 
1�

�

Y )� 
1�

2�
kgradvk2(�� 
1�

�

Y ) � �

1�
��

(kgradps�1k2 + kfk2):

Applying a standard technique for solving linear di�erential equations and taking �

appropriately small (� �0) so that

� � 
1�

�

Y (0) � �

2
and



1�

��

Z
T

0
(kfk2 + kgradps�1k2) dt � �

4
;

we get

�� 
1�

�

Y (t) � �

4
8t 2 [0; T ]: (4.15)

Then, using the same technique and (4.14), we have

Y � kak2 exp(�ct) +M exp(�ct)
Z

t

0
(kfk2 + kgradps�1k2) exp(cz) dz

� M [kak2 +
Z

t

0
(kfk2 + kgradps�1k2) dz]: (4.16)

Thus, (4.12) holds for kuk2. Integrating (4.14) directly and using (4.15) yields

Z
t

0
kgraduk2 dz �M [kak2 +

Z
t

0
(kfk2 + kgradps�1k2) dz]: (4.17)
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To prove other estimates for (4.12) we de�ne the operator

Aw = �1
�

grad((divw)t + �divw)� ��w = g; (4.18)

where w satis�es wj@
 = 0 and wjt=0 = a. Let

q = �1
�

((divw)t + �divw):

Then we have (noting divwjt=0 = 0)

���w + gradq = g; (4.19a)

divw = ��
Z

t

0
q exp(��(t� z)) dz (4.19b)

This is a general nonhomogeneous Stokes problem. Using the results described in

[28] (or cf. [108]), we get

k�wk+ kgradqk �M [kgk+ �

Z
t

0
kgradqk exp(��(t� z)) dz]: (4.20)

Applying Gronwall inequality, it is easy to obtain

kgradqk �M(kgk+ �

Z
t

0
kgradqk dz) (4.21)

and Z
t

0
kgradqk2 dz �M

Z
t

0
kgk2 dz =M

Z
t

0
kAwk2 dz: (4.22)

It thus follows that

k�wk �M(kgk+ �

Z
t

0
kgk dz) =M(kAwk+ �

Z
t

0
kAwk dz); (4.23)

and then Z
t

0
k�wk2 dz �M

Z
t

0
kgk2 dz =M

Z
t

0
kAwk2 dz: (4.24)

From (4.19b) and (4.22), we thus have

1

�
2

Z
t

0
kgraddivwk2 dz =

Z
t

0
kgradqk2 dz �M

Z
t

0
kAwk2 dz: (4.25)
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Then

1

�
2

Z
t

0
kgrad(divw)tk2 dz �M

Z
t

0
kAwk2 dz (4.26)

follows from (4.18).

Now taking the scalar product of (4.13a) with Av, we have

1

2�
k(divv)tk2 + �

2�

d

dt

kdivvk2 + �

2

d

dt

kgradvk2 + kAvk2

= �((v � grad)v; Av)� (gradps�1; Av) + (f ; Av):

Note that

�((v � grad)v; Av) � kvk4kgradvk4kAvk � 

1

2

1 kvk
1

2kgradvkk�vk 12kAvk

� �(kAvk2+ k�vk2) + 

2
1

16�3
(kvk2kgradvk2)kgradvk2

� �[kAvk2+M
2kAvk2 +M

2
�
2(

Z
t

0
kAvk dz)2] + 


2
1

16�3
(kvk2kgradvk2)kgradvk2;

where we use (4.23) for the last inequality. Recall that we have estimates for kvk2

and
R
t

0 kgradvk2 dz. Therefore, taking �(1 +M
2) < 1

4
, it is not di�cult to obtain

kgradvk+ 1

�

Z
t

0
k(divv)tk2 dz +

Z
t

0
kAvk2 dz

� M [kgradak2 +
Z

t

0
(kfk2 + kgradps�1k2) dz + �

2

Z
t

0
kAvk2 dz]

Taking � such that M�
2
< 1, we then get (4.12) for

R
t

0 kAvk2 dz and kgradvk.
Noting (4.25), (4.26), from (4.2c), (4.12) also holds for

R
t

0 kgradpsk2 dz. Applying

the inequality (4.8) and noting that ps satis�es (4.4), yields the bound for
R
t

0 kpsk2 dz.
Hence, from (4.2c) we can obtain (4.12) for

R
t

0 kdivvk2 dz and then
R
t

0 k(divv)tk2 dz.
We thus complete the proof. 2

From this lemma, we see that if we choose p0 such that
R
t

0 kgradp0k2 dz is bounded
then, by induction, all terms in the left of (4.12) are bounded for any given s.
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4.3 Convergence of the SRM

In this section, we estimate the error of the SRM (4.2) in the solution of (4.1) by using

the asymptotic expansion technique as in the proof of Theorem 2.1 of Chapter 2 (see

x2.8). Note that, in the Navier Stokes context, the asymptotic expansion method was

used in [54] to obtain a more precise estimate for a penalty method for the stationary

Stokes equations and in [108] to calculate a slightly compressible steady-state 
ow.

We will mainly consider the case �1 > 0. Hence, we take �1 = 1 and �2 = � for

convenience. The result for �1 = 0 will be described in Remark 4.3. At �rst we

discuss a couple of linear auxiliary problems. Then we go to the proof.

4.3.1 Two linear auxiliary problems

We discuss two linear problems in this section. One is

�wt � grad(divw)t � �graddivw + �(w � grad)U

+�(V � grad)w = ���w � �gradq + �f ; (4.27a)

wj@
 = 0; wjt=0 = 0; (4.27b)

where U, V and q are given functions. The other is

wt + (V � grad)w + (w � grad)V = ��w � gradp+ f; (4.28a)

(divw)t + �divw = g; (4.28b)

wj@
 = 0;wjt=0 = a; (4.28c)

where V, g and a are given functions, a satis�es the compatibility conditions (4.5)

and g satis�es (4.4). Now we show some properties of these two problems which will

be used later in the proof of the convergence of SRM.

Lemma 4.2 For the solution of problem (4.27), if U and V satisfy

k � k2
H1 +

Z
T

0
k � k2

H2 dt �M; (4.29)
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then we have the following estimate

�kwk2 + kdivwk2 �M�

Z
t

0
(kfk2 + kqk2) ds; (4.30a)

�kgradwk2 +
Z

t

0
(�kwtk2 + kdivwtk2) ds �M�

Z
t

0
(kfk2 + kqk2) ds: (4.30b)

Proof: Multiplying (4.27a) by w and then integrating on the domain 
 yields

1

2
�

d

dt

kwk2 + 1

2

d

dt

kdivwk2 + �kdivwk2 + ��kgradwk2

= ��((w � grad)U;w)� �((V � grad)w;w) + �(q; divw) + �(f ;w)

� �kgradUkkwk24 +
�

2
kdivVkkwk24 + �(q; divw) + �(f ;w) (using (4.10))

� �


1

2

1 (kgradUk+
1

2
kdivVk)kwkkgradwk+ �(q; divw) + �(f ;w) (using (4.11))

� 1

2
��kgradwk2 + �
1

2�
(kgradUk+ 1

2
kdivwk)2kwk2 + �(q; divw) + �(f ;w);

where we have used ��((V � grad)w;w) = �

2
((divV)w;w). Therefore, we have

d

dt

(�kwk2 + kdivwk2)� C(t)(�kwk2 + kdivwk2)

� ���kgradwk2 � (�+ C(t))kdivwk2 + 2�(q; divw) + 2�(f ;w)

� ���kgradwk2 + �

�



2
kwk2 + �



2

�

kfk2 + �

1

�

kqk2

� �



2

�

kfk2 + �

1

�

kqk2; (4.31)

where

C(t) =

1

�

(kgradUk+ 1

2
kdivVk)2:

Noting that wjt=0 = 0 and divwjt=0 = 0, we thus get (4.30a).

Now, multiplying (4.27) by wt, then integrating with respect to x over 
, we get

�kwtk2 + kdivwtk2 + �

2

d

dt

kdivwk2 + ��

d

dt

kgradwk2 =

�((w � grad)U;wt) + �((V � grad)w;wt) + �(q; divwt) + �(f ;wt): (4.32)
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We use the inequalities listed in the previous section to estimate the right-hand side

of (4.32) and have the following:

�((w � grad)U;wt) � �

4
kwtk2 +M�(kgradwk2 + kwk2);

�((V � grad)w;wt) � �

4
kwtk2 +M� sup




jVj2kgradwk2;

�(f ;wt) � �

4
kwtk2 +M�kfk2;

�(q; divwt) � �

2
kdivwtk2 +M�kqk2;

where the bounds of sup
 jUj and sup
 jVj can be obtained by using the inequality

sup



j � j �Mk� � k

(see, e.g. [119]). Then, similarly to the procedure for obtaining (4.30a), we obtain

(4.30b). 2

Next we consider problem (4.28).

Lemma 4.3 There exists a solution for problem (4.28). Moreover, for the solution

of (4.28), we have the following estimate:

kwkH1 +
Z

T

0
(kwk2

H2 + kwtk2 + kpk2H1) dt �M (4.33)

if
R
T

0 kfk2 dt and
R
T

0 kgk2H1 dt are bounded.

Proof: First, we can solve divw from (4.28b) (noting that divwjt=0 = 0):

divw = g1; (4.34)

where

g1 = exp(��t)
Z

t

0
g exp(�s)ds (4.35)

satis�es (4.4) since g does. By applying Corollary 2.4 in [54, p.23], the problem

divw = g1; (4.36a)

wj@
 = 0 (4.36b)
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has many solutions. We pick one and denote it as wp. Then �w := w �wp satis�es

the linearized Navier-Stokes equations in the form of (4.28a) with a proper force term

(denoted by �f) and

div �w = 0; �wj@
 = 0 and �wjt=0 = a�wpjt=0:

By noting that divwpjt=0 = g1jt=0 = 0, the basic compatibility conditions like (4.5)

for �w are satis�ed. From (4.35) and the assumption for g,
R
T

0 (kg1k2H1+k(g1)tk2) dt is
bounded. Hence, based on the estimates for the solution of (4.36) (see [1] and [54]),

it is not di�cult to get

kwpkH1 +
Z

T

0
(k(wp)tk2 + kwpk2H2) dt �M: (4.37)

Thus
R
T

0 k�fk2 dt is bounded. Simulating the regularity argument of [62] or [63]

(multiplying the linearized Navier-Stokes equations by �w, �wt and P��w where P is

a projection operator (cf. [62]), respectively), we can obtain

k �wkH1 +

Z
T

0
(k �wk2

H2 + k �wtk2 + kpkH1) dt �M: (4.38)

Therefore, (4.33) follows from (4.37) and (4.38). Using the estimate (4.38) and fol-

lowing a global existence argument (e.g. [62] or [108]), the existence of the solution

for �w can be obtained. We thus have the results of the lemma . 2

Remark 4.1 The uniqueness of the solution of (4.28) follows from the standard ar-

gument for Navier-Stokes equations (cf. [108]). 2

4.3.2 The error estimate of SRM

In this section we prove the convergence of iteration (4.2) based on the same procedure

described in the proof of Theorem 2.1 of Chapter 2 (see x2.8) . We describe our results

in the following theorem.
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Theorem 4.1 Let u and p be the solution of problem (4.1), and us and ps be the

solution of problem (4.2) at the sth iteration. Then there exists a constant �0 such

that when � � �0 we have the following error estimates for all t 2 [0; T ]:

ku� uskH1 � M�
s
; (4.39a)

(

Z
T

0
kp� psk2 dt) 12 � M�

s
; (4.39b)

where T is any given �nite number and s = 1; 2; � � �.

Proof: At �rst, consider the case s = 1 of (4.2). Let

u1 = u10 + �u11 + � � �+ �
mu1m + � � �

Comparing the coe�cients of like powers of �, we thus have

grad((divu10)t + �divu10) = 0; (4.40a)

grad((divu11)t + �divu11) = (u10)t + (u10 � grad)u10

���u10 + gradp0 � f ; (4.40b)

grad((divu1i)t + �divu1i) = (u1i�1)t +
i�1X
j=1

(u1j � grad)u1i�1�j

���u1i�1 ; 2 � i � m+ 1; (4.40c)

where (4.40a) satis�es (4.2b) and (4.40b) and (4.40c) satisfy the homogeneous initial

and boundary conditions corresponding to (4.2b). Now (4.40a) has in�nitely many

solutions in general. We should choose u10 not only to satisfy (4.40a) but also to

ensure that the solution of (4.40b) exists. A choice of u10 is the exact solution u of

(4.1), i.e.

(u10)t + (u10 � grad)u10 = ��u10 � gradp + f ; (4.41a)

(divu10)t + �divu10 = 0; (4.41b)

u10j@
 = 0; u10jt=0 = a: (4.41c)
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Note that divu10jt=0 = diva = 0 and p is taken to satisfy (4.4). So u10 � u and

(4.40b) has the form

grad((divu11)t + �divu11) = grad(p0 � p): (4.42)

Now we choose u11 and a corresponding p11 to satisfy

(u11)t + (u10 � grad)u11 + (u11 � grad)u10 = ��u11 � gradp11; (4.43a)

(divu11)t + �divu11 = p0 � p; (4.43b)

u11j@
 = 0; u11jt=0 = 0: (4.43c)

Again we have divu11jt=0 = 0 and let p11 satisfy (4.4). According to Lemma 4.3, u11

and p11 exist .

Generally, supposing we have u1i�1, p1i�1 for i � 2, choose u1i, p1i satisfying

(u1i)t + (u10 � grad)u1i + (u1i � grad)u10

= ��u1i � gradp1i �
i�1X
j=1

(u1j � grad)u1i�1�j ; (4.44a)

(divu1i)t + �divu1i = �p1i�1; (4.44b)

u1ij@
 = 0; u1ijt=0 = 0; (4.44c)

where we note that divu1ijt=0 = 0 and p1i satis�es (4.4). Applying Lemma 4.3, all

u1i and p1i; i = 0; 1; � � �, exist and satisfy (4.33).

Next we estimate the remainder of the asymptotic expansion after the (m+ 1)th

power of �. Denote

�u1m = u10 + �u11 + � � �+ �
m+1u1m+1 (4.45)

(�u1m also satis�es (4.33)) and

w1m = u1 � �u1m: (4.46)

Then w1m satis�es

�(w1m)t � grad(divw1m)t � �graddivw1m



Chapter 4. SRM for the Nonstationary Incompressible Navier-Stokes Equations 100

+�(w1m � grad)u1 + �(�u1m � grad)w1m = ���w1m �

�
m+2f(u1m+1)t +

m+1X
i=0

[(u1i � grad)u1m+1�i]� ��u1m+1g; (4.47a)

w1mj@
 = 0; w1mjt=0 = 0: (4.47b)

Using regularity we have for u1i, �u1m and u1 (see (4.12)) and Lemma 4.2 , we obtain

kw1mk = O(�m+1) and kgradw1mk = O(�m+1). Therefore

u1 = u10 + �u11 + � � �+ �
mu1m +O(�m+1): (4.48)

in the H1-norm for the spatial variables. Noting u10 � u, we thus obtain

u1 � u = O(�): (4.49)

Furthermore, according to Lemma 4.2, we have

kdivw1mk = O(�m+ 3

2 ); (

Z
T

0
k(divw1m)tk2 dt) 12 = O(�m+ 3

2 ):

Then, by using (4.2c),(4.48),(4.41b), (4.43b), (4.44b) and the estimates for divw1m

and (divw1m)t, it follows that

p1 = p + �p11 + � � �+ �
m
p1m +O(�m+ 1

2 ) (4.50)

or

p1 � p = O(�): (4.51)

in the sense of the L2-norm for both spatial and time variables, i.e. (
R
T

0 k � k2 dt)
1

2 .

Now we look at the second iteration s = 2 of (4.2). Let

u2 = u20 + �u21 + � � �+ �
mu2m + � � � :

Noting that (4.50) gives us a series expansion for p1 we obtain

grad((divu20)t + �divu20) = 0; (4.52a)
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grad((divu21)t + �divu21) = (u20)t + (u20 � grad)u20

���u20 + gradp� f ; (4.52b)

grad((divu2i)t + �divu2i) = (u2i�1)t +
i�1X
j=1

(u2j � grad)u2i�1

���u2i�1 � gradp1i�1; 2 � i � m+ 1: (4.52c)

Again, (4.52a) is combined with the initial and boundary conditions (4.2b), and

(4.52b) and (4.52c) are combined with the corresponding homogeneous ones. As in

the case of s = 1, we again choose u20 = u. We thus have

grad((divu21)t + �divu21) = 0: (4.53)

Then u21 is constructed to satisfy

(u21)t + (u20 � grad)u21 + (u21 � grad)u20 = ��u21 � gradp21; (4.54a)

(divu21)t + �divu21 = 0; (4.54b)

u21j@
 = 0; u21jt=0 = 0: (4.54c)

Obviously u21 = 0 and p21 = 0 is the solution of (4.54) and (4.4).

In general, similarly to the case of s = 1, we choose u2i; p2i to satisfy

(u2i)t + (u20 � grad)u2i + (u2i � grad)u20 = (4.55a)

��u2i � gradp2i �
i�1X
j=1

(u2j � grad)u2i�1�j; (4.55b)

(divu2i)t + �divu2i = p1i�1 � p2i�1; (4.55c)

u2ij@
 = 0; u2ijt=0 = 0 (4.55d)

for 2 � i � m + 1, where p2i satis�es (4.4). By the same procedure as for s = 1

we obtain error equations similar to (4.47) with the addition of a remainder term

grad(p1� �p1m) in the right-hand side, where �p1m stands for the asymptotic expansion

(4.50) of p1. Applying Lemma 4.2 again, we get

u2 = u20 + �u21 + � � �+ �
mu2m +O(�m+1): (4.56)
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Noting u21 � 0,

u2 � u = O(�2): (4.57)

Then, using (4.2b),(4.56),(4.54b) and (4.55c), we conclude

p2 = p + �p21 + � � �+ �
m
p2m +O(�m+ 1

2 ) (4.58)

or

p2 � p = O(�2): (4.59)

since p21 � 0.

We can repeat this procedure, and, by induction for s (choosing m larger than s),

conclude the results of the theorem. 2

Remark 4.2 Corresponding to Theorem 2.1, we expect that the error estimates (4.39)

also hold for the SRM (4.2) with �1 = 0, at least, away from t = 0. 2

Remark 4.3 In Theorem 4.1, we �nd that the result for p is in a weaker normR
T

0 k � k2 dt. This is because we have di�culty in estimating the �rst order time-

derivative of the right-hand side of (4.47), or concretely, the term
R
T

0 k(u1m+1)ttk2 ds.
In [63] (Corollary 2.1) it is shown that

R
T

0 k(u1m+1)ttk2 ds may be unbounded as t! 0

if we only assume the local compatibility conditions (4.5). In the case that this integral

is bounded for 0 < t < T , we can get

kp� psk+ (

Z
t

0
k(p � ps)tk2 ds) 12 �M�

s
: (4.60)

Otherwise, we only can expect that (4.60) holds away from t = 0 by following the

argument in [63]. 2

Remark 4.4 Multiplying (4.27) by Aw, where A is the operator de�ned by (4.18),

and following the later steps of the proof of Lemma 4.1, we can get
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1

�
2

Z
T

0
(kgrad(divw)tk2 + �kgraddivwk2) dt

�M

Z
T

0
(kfk2 + kgrad qk2) dt:

Using this result to estimate the remainders of the asymptotic solutions in the proof

of Theorem 4.1, we obtain

(
Z

T

0
kp� psk2H1 dt)

1

2 �M�
s
: (4.61)

2

4.4 Discretization Issues and Numerical Experiments

In previous sections, we have proposed the SRM and performed some basic analysis

on it. The SRM yields a sequence of PDEs which are to be solved numerically. The

problem at the sth iteration can be written as:

�(us)t � grad(�1(divus)t + �2divus) + �(us � grad)us
= ���us + �rs; (4.62a)

usj@
 = 0;usjt=0 = a; (4.62b)

where rs(t) is the known inhomogeneity

rs = �gradps�1 + f : (4.63)

A variational formulation of (4.62) gives:

Find us 2 H1
0 such that

�

d

dt

(us; �) + �1

d

dt

(divus; div�) + �2(divus; div�)

+��(gradu
s
;grad�) + b(us;us; �) = �(rs; �); 8� 2 H1

0; (4.64a)

usjt=0 = a ; divusjt=0 = 0; (4.64b)
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where the trilinear form

b(u;v;w) = ((u � grad)v;w):

From (4.64) we see that the �nite element method in the spatial variables, com-

bined with time discretizations, can be easily adopted. Note that we do not need to

construct divergence-free test functions to separate the variables u and p. Neverthe-

less, in this section, we are not going to discuss �nite element methods further. Some

discussions on using the SRM with the �nite element method will be given in the

next chapter for a problem in reservoir simulations. Some numerical experiments are

also given there. Here we only consider a very simple �rst-order di�erence scheme

(forward Euler scheme in the time direction) in two dimensional space, as an initial

attempt towards the discretization of the sequential regularization method for the

PDAE. Concretely, we consider a rectangular domain such that an equidistant mesh

can be used. Let (u; v)T stand for the approximation of us, and let k; hx; hy denote

step sizes in time and spatial direction, respectively. Without loss of generality, we

assume that hx = hy = h and that the domain is a unit square. Thus, mesh points

can be expressed as

xi = ih; i = 0; 1; � � � ; I; yj = jh; j = 0; 1; ; � � � ; J ; tn = nk; n = 0; 1; � � � ; N; N = [T=k]:

The di�erence scheme reads:

�u _t � �1(u�x _x + v�y _x) _t = �2(u�x _x + u�y _x)

��(uu�x + vu�y) + ��(u�x _x + u�y _y) + �ru; (4.65a)

�v _t � �1(u�x _y + u�y _y) _t = �2(u�x _y + u�y _y)

��(uv�x+ vv�y) + ��(v�x _x + v�y _y) + �rv; (4.65b)

uj@
 = 0; vj@
 = 0; ujt=0 = au; vjt=0 = av; (4.65c)
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where

u = u
n

i;j
;

u _t =
u
n+1
i;j
� un

i;j

k

;

u _x =
u
n

i+1;j � uni;j
h

;

u�x =
u
n

i;j
� un

i�1;j

h

:

u _y and u�y can be de�ned accordingly and the de�nitions for v are similar.

Obviously, this is a �rst-order scheme explicit in time, where the nonlinear term is

discretized somewhat arbitrarily. The scheme is easy to implement. Next we discuss

its stability. For simplicity, we analyze the linear case (corresponding to the Stokes

equations) �rst, and consider the full nonlinear equations (4.65) in Remark 4.7 below.

We write the linear case of (4.65) as follows :

�u _t � �1(u�x _x + v�y _x) _t = �2(u�x _x + u�y _x) + ��(u�x _x + u�y _y) + �ru; (4.66a)

�v _t � �1(u�x _y + u�y _y) _t = �2(u�x _y + u�y _y) + ��(v�x _x + v�y _y) + �rv; (4.66b)

uj@
 = 0; vj@
 = 0; ujt=0 = au; vjt=0 = av: (4.66c)

Here we take �1 = 1 and �2 = �. The result for the case of �1 = 0 will be given in

Remark 4.6.

The following theorem gives the stability estimate for (4.66) in the sense of the

discrete L2-norm:

kwhk2
h
= h

2
I�1X
i=0

J�1X
j=0

(wi;j)
2
; (4.67)

where wh = (wi;j); i = 0; 1; � � � ; I � 1; j = 0; 1; � � � ; J � 1.

Theorem 4.2 Let u and v be the solution of (4.66) and

A = �(kuk2
h
+ kvk2

h
) + ku�x + v�yk2h + ��(ku�xk2h + ku�yk2h + kv�xk2h + kv�yk2h): (4.68)
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If �k

h2
� 1� c, where c is any constant in (0; 1), then

A+ k

N�1X
n=0

k(u�x + v�y) _tk2h �M� max
0�tn�T

(kruk2h + krvk2h) (4.69)

where M is a generic constant dependent on � and c.

Proof: We �rst write down the following identities and inequalities:

� some di�erence identities [75]:

(� )�x = � �x + ��xE
�1
x
 ; (4.70a)

(� ) _x = � _x + � _xE
1
x
 ; (4.70b)

2�� _t = (�2) _t � k(� _t)
2
; (4.70c)

�� _x�x = (�� _x)�x � (��x)
2
; (4.70d)

where the translation operator Ei

x
�(x; y; t) = �(x+ ih; y; t).

� an di�erence inequality [75]:

hk��xkh � 2k�kh (4.71)

� a discrete version of the Poincar�e inequality (cf. [66]):

k�k2
h
� k��xk2h + k��yk2h (4.72)

if � satis�es homogeneous boundary conditions.

Multiplying (4.66a) by au+bu _t and (4.66b) by av+bv _t and adding, then summing

for all (i; j); i = 1; � � � ; I � 1; j = 1; � � � ; J � 1 where we use the di�erence identities

(4.70) (omitting lots of tedious algebraic manipulations), we obtain
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�a(kuk2
h
+ kvk2

h
) _t +

1

2
(�b+ a)(ku�x + v�yk2h) _t +

1

2
��b(ku�xk2h + ku�yk2h + kv�xk2h + kv�yk2h) _t

+�(b� ak)(ku _tk2h + kv _tk2h) + a�ku�x + v�yk2h + (b� 1

2
(b�+ a)k)k(u�x + v�y) _tk2h

+��a(ku�xk2h + ku�yk2h + kv�xk2h + kv�yk2h)�
1

2
��bk(ku�x _tk2h + ku�y _tk2h + kv�x _tk2h + kv�y _tk2h)

�M�(kruk2h + krvk2h) +
1

2
��a(kuk2

h
+ kvk2

h
) +

1

2
�b�(ku _tk2h + kv _tk2h);

where � > 0 can be chosen less than c=b. Applying (4.71) and (4.72), we get

h
2((ku�x _tk2h + ku�y _tk2h + kv�x _tk2h + kv�y _tk2h) � 4(ku _tk2h + kv _tk2h)

and

kuk2
h
+ kvk2

h
� ku�xk2h + ku�yk2h + kv�xk2h + kv�yk2h;

respectively. Then we can choose a and b such that

b� ak � � k
h
2
� 1

2
b� > 0; b� 1

2
(b�+ a)k > 0

and obtain

(A) _t + d��A+ k(u�x + v�y) _tk2h �M�(kruk2h + krvk2h);

where d is a constant independent of k, h, � and �. From this inequality, it is not

di�cult to see that (4.69) holds. 2

Remark 4.5 From (4.69) of Theorem 4.2, we �nd that the value of � will not a�ect

the stability of the di�erence scheme. This means that the forward Euler scheme in the

time direction works for any value of �. Also, the time step restriction k � (1�c)h2=�
is actually loosened in the case of small viscosity (or large Reynolds number) which

people are often interested in. This implies that the explicit scheme (4.66) to which

an appropriate discretization of the nonlinear term (see the next remark) is added

works very well. It enables us not only to avoid the complicated iteration procedure

for nonlinear equations but also to choose the time step fairly widely in the case of

small viscosity. 2
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Remark 4.6 We have mentioned before that sometimes we may like to take �1 = 0

to avoid solving any algebraic system. Following the same procedure as the proof of

Theorem 4.2, we can get the stability condition for the case of �1 = 0. That is,

k � m�h
2, where m is a positive constant independent of �,h and �. We thus see

that the stability of (4.66) with �1 = 0 depends on the parameter �. This coincides

with our experience with sti� problems discretized by explicit schemes. Fortunately,

using the SRM, we do not need to take � very small. So the time step restriction is

not much worse than the usual one corresponding to an explicit scheme applied to a

non-sti� problem. 2

Remark 4.7 For the nonlinear case (4.65), when the viscosity � is not small, we

expect similar results since the nonlinear term can be dominated by the viscous term.

When the viscosity is small, however, the scheme (4.65) is unstable. Although numer-

ical computations indicate that we do get better stability if we increase �2, i.e. some

kind of dissipation e�ect is obtained (we must note that such dissipation becomes small

when the incompressibility condition is close to being satis�ed), we suggest using spa-

tial discretizations with better stability properties, e.g. upwinding schemes (cf. [102]),

in the case of small viscosity. 2

Remark 4.8 Applying corresponding di�erence identities for a nonuniform mesh

(see e.g. [106]), the results of Theorem 4.2 may be generalized to di�erence schemes

(4.66) on a nonuniform mesh. Hence, the di�erence scheme may be used for problems

de�ned on more general domains. 2

Next we explain our theoretical results by calculating the solution of an arti�cial

example.

Example 4.1 Consider the Navier-Stokes equations (4.1) with the exact solution
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u = (u; v)T

u = 50x2(1� x)2y(1� y)(1� 2y)[1 + exp(�t)];

v = �50y2(1 � y)2x(1� x)(1� 2x)[1 + exp(�t)];

p = [�x(x
2
+ 2) � y(y

2
� 2) +

1

3
][1 + exp(�t)]2

As indicated in x2.6 of Chapter 2, to carry out the SRM iterations, we do not

need to store the entire approximation of ps�1 on [0; T ] for calculating us. Assuming

that the number of the SRM iterations is chosen in advance, we can rearrange the

computational order to make the storage requirements independent of N , where N

represents the number of the mesh lines in the t direction. We �rst use constant

steps k = 0:01 and h = 0:1. At a given time t, we use `eu0 to denote the absolute

discrete L2-error in us while `ep0 denotes the absolute discrete L2-error in ps. Table

4.1 summarizes the computational results of the di�erence scheme (4.65) with �1 =

�2 = 1 and viscosity � = 0:1.

� iteration error at ! t = k t = 1.0 t = 2.0 t = 3.0 t = 4.0 t = 5.0
5e-1 1 eu 4.65e-3 2.69e-1 1.55e-1 1.31e-1 1.15e-1 1.08e-1

ep 2.49e-1 1.96e-1 1.57e-1 1.36e-1 1.25e-1 1.21e-1
2 eu 2.16e-3 2.53e-2 3.12e-2 3.18e-2 3.12e-2 3.06e-2

ep 1.80e-1 9.28e-2 7.37e-2 6.74e-2 6.48e-2 6.35e-2
3 eu 2.15e-3 1.77e-2 2.28e-2 2.48e-2 2.55e-2 2.57e-2

ep 1.80e-1 8.81e-2 6.69e-2 6.10e-2 5.91e-2 5.83e-2
1e-3 1 eu 2.14e-3 1.73e-2 2.21e-2 2.41e-2 2.48e-2 2.50e-2

ep 1.80e-1 8.78e-2 6.61e-2 6.01e-2 5.82e-2 5.75e-2

Table 4.1: SRM errors for � = 0:1 without upwinding

We notice that the errors improve as the iteration proceeds until �s reaches the

discretization accuracy O(h), where s is the number of iterations.

For small viscosity, say � = 0:001, the di�erence scheme (4.65) does not work.

The errors blow up around t = 1. When we increase �2, say to 50, we do get pretty

good results around t = 1; however, the errors still blow up at a later time. This
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suggests that the scheme is not stable for small viscosity �. So we next discretize

the nonlinear term using the upwinding scheme given in [102]. For the case of small

viscosity, e.g. � = 0:001, we get good results (see Table 4.2).

� iteration error at ! t = k t = 1.0 t = 2.0 t = 3.0 t = 4.0 t = 5.0
5e-1 1 eu 4.66e-3 2.26e-1 2.50e-1 2.29e-1 2.13e-1 2.03e-1

ep 2.58e-1 1.06e-1 6.67e-2 5.45e-2 5.12e-2 5.04e-2
2 eu 2.16e-3 7.74e-2 8.78e-2 9.13e-2 9.34e-2 9.53e-2

ep 1.84e-1 8.81e-2 6.22e-2 5.39e-2 5.11e-2 5.02e-2
3 eu 2.14e-3 7.69e-2 8.71e-2 9.06e-2 9.29e-2 9.48e-2

ep 1.83e-1 8.78e-2 6.21e-2 5.39e-2 5.11e-2 5.01e-2
1e-3 1 eu 2.14e-3 7.69e-2 8.72e-2 9.07e-2 9.29e-2 9.49e-2

ep 1.83e-1 8.78e-2 6.21e-2 5.39e-2 5.11e-2 5.01e-2

Table 4.2: SRM errors for � = 0:001 with upwinding

Recall that according to Remark 4.5, in the case of small viscosity, the time step

size can be increased to some extent without adverse stability e�ects. To demonstrate

this, we take k = h = 0:1, and � = 0:001. The numerical results in Table 4.3 support

our claim.

� iteration error at ! t = k t = 1.0 t = 2.0 t = 3.0 t = 4.0 t = 5.0
1e-3 1 eu 2.18e-2 8.61e-2 9.43e-2 9.70e-2 9.86e-2 9.99e-2

ep 1.83e-1 8.83e-2 6.26e-2 5.42e-2 5.13e-2 5.03e-2

Table 4.3: SRM errors for � = 0:001 with a pretty large time step k = h = 0:1

Although we use explicit schemes for SRM (4.2) with �1 > 0, we still have to

solve a banded symmetric positive de�nite system. An alternative is to take �1 = 0

to avoid solving any algebraic systems. Table 4.4 shows the computational results of

the di�erence scheme (4.65) with �1 = 0 and �2 = 1. We take viscosity � = 0:1,

h = 0:1 and k = 0:0005. Good results are obtained except for the pressure near t = 0

(cf. Remark 4.4) .
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� iteration error at ! t = k t = 1.0 t = 2.0 t = 3.0 t = 4.0 t = 5.0
5e-1 2 eu 5.64e-3 3.57e-2 2.94e-2 2.71e-2 2.62e-2 2.60e-2

ep 2.92e-0 9.70e-2 7.03e-2 6.17e-2 5.87e-2 5.77e-2

Table 4.4: SRM errors for � = 0:1 with �1 = 0



Chapter 5

SRM for the Simulation of Miscible Displacement in Porous Media

5.1 Introduction

As explained in Chapter 1, miscible displacement occurs in the tertiary oil-recovery

process which can enhance hydrocarbon recovery in the petroleum reservoir. Numer-

ical simulation plays an important role for this process because solvents (or chem-

icals) are expensive and experiments are hardly possible. Mathematically, misci-

ble displacement in porous media is modeled by a nonlinear coupled system of the

pressure-velocity equation and the concentration equation with appropriate boundary

and initial conditions. The pressure-velocity equation is elliptic, while the concen-

tration equation is parabolic, but normally convection-dominated. Accuracy for ve-

locity approximation is important to obtain a good approximation for concentration

since the concentration equation only includes the velocity variable. Mixed �nite el-

ement methods for the pressure-velocity equation have been applied for this purpose

[40, 41, 42, 46, 47, 120]. We are interested in applying the idea of the SRM to this

equation since it has bene�ts over mixed �nite element methods.

The SRM formulation for the pressure-velocity equation is a direct application

of the sequential regularization method for time-dependent problems (see previous

chapters). The velocity variable is involved in the linear systems only and the pres-

sure variable is obtained by substitutions (without solving any linear systems) at each

iteration level. We notice that the same formulation can also be obtained from the

augmented Lagrangian method (originated from Uzawa's algorithm) [50, 31]. Unlike

112
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the augmented Lagrangian method using spectral analysis to discuss the convergence

rate for discretized problems, we use asymptotic methods directly for the di�erential

problems. The asymptotic method is easier to use for more general and more com-

plicated problems than spectral analysis because the latter is scarcely possible for

non-symmetric operators. We will later prove that our iterative schemes can improve

the error to O(�s) at the sth iteration level, where � is a small positive number. In

other words, the convergence rate of our iterative procedure is about O(�). The-

oretical convergence analysis and numerical experiments show that the number of

iterations is extremely small, usually 2.

The organization of this chapter is as follows. In x5.2, we describe our SRM

iteration for the time-discretized problem (the di�erential problem in spatial vari-

ables) and its advantages. In x5.3, we show its convergence . Then in x5.4 we give

a fully-discretized scheme using the Galerkin �nite element method for the problem

formulation where the SRM is used for the pressure-velocity equation. Finally, in

x5.5, we present numerical examples to demonstrate the e�ectiveness and accuracy

of our method.

5.2 SRM Formulation

To recall, we again write down the model problem. Consider the miscible displacement

of one incompressible 
uid by another in a porous reservoir 
 � R2 over a time period

[0; T ]. Let p(x; t) and u(x; t) denote the pressure and Darcy velocity of the 
uid

mixture, and let c be the concentration of the invading 
uid. Then the mathematical

model is a coupled nonlinear system of partial di�erential equations

u = �a(gradp� 
gradd); (x; t) 2 
 � [0; T ]; (5.1a)

divu = q(x; t); (x; t) 2 
� [0; T ]; (5.1b)

�

@c

@t

� div(D(u)gradc) + u � gradc = g(c); (x; t) 2 
� [0; T ]; (5.1c)
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with the boundary conditions

u � n = 0; (x; t) 2 � � [0; T ]; (5.2a)

D(u)gradc � n = 0; (x; t) 2 � � [0; T ]; (5.2b)

and the initial condition

c(x; 0) = c0(x); x 2 
; (5.3)

where a = a(x; c) is the mobility of the 
uid mixture (we will later denote it as a(c)),


 = 
(x; c) and d(x) are the gravity and vertical coordinate (we will later denote 


as 
(c)), q is the imposed external rates of 
ow, �(x) is the porosity of the rock, D is

the coe�cient of molecular di�usion and mechanical dispersion of one 
uid into the

other, g = g(x; t; c) is a known linear function of c representing sources, and n is the

exterior normal to the boundary � = @
.

We assume that the mobility is bounded below and above by positive constants

0 < m0 � a(c) �M0;

and its gradient is bounded above by a positive constant. For existence of p, we

assume that the mean value of q is zero and for uniqueness we suppose p has mean

value zero.

In recent years much attention has been devoted to the numerical simulation

of this problem. In this chapter we are interested in solving the velocity-pressure

equation (5.1a)-(5.1b) using the idea of the SRM for the time-discretized problem.

The method considered herein is a direct application of the sequential regularization

method (see previous chapters but without the sense of regularization) and is closely

related to the augmented Lagrangian method [50, 31] (without the augmented La-

grangian framework). We will analyze the method using the technique presented in

previous chapters, in particular Chapter 3. These analyses give the convergence of

the iterative procedure and its convergence rate at the same time.
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After a time discretization, we obtain the following system for u and p at the

current time step:

u = �a(~c)(gradp � 
(~c)gradd); (x; t) 2 
� [0; T ]; (5.4a)

divu = q(x; t); (x; t) 2 
� [0; T ]; (5.4b)

where ~c is an approximation of c assumed to be known. Taking � to be a small

positive number, we replace the system (5.1a), (5.1b), (5.2a) by the following iterative

method: for s = 1; 2; � � � ; �nd fus; psg such that

a(~c)�1us � 1

�

grad(divus � q)

= �(gradps�1 � 
(~c)gradd); (x; t) 2 
 � [0; T ]; (5.5a)

us � n = 0; (x; t) 2 � � [0; T ]; (5.5b)

and

ps = ps�1 � 1

�

(divus � q); (x; t) 2 
� [0; T ]; (5.6)

where the initial guess p0 is required to satisfy the zero mean value property:
R
p0dx =

0. Thus ps has mean value zero from (5.6) and (5.5b). We note that, by taking p0 � 0,

each iteration is a kind of penalty method.

This iterative procedure has the following salient features:

1. We solve a small system (5.5) for the velocity u, and obtain the pressure p from

(5.6) directly. We will show that the accuracy of such a method is O(�s) at the

sth iteration level. Note that the system (5.5) is well-posed since, unlike the

usual penalty method, we need not take � very small.



Chapter 5. SRM for the Simulation of Miscible Displacement in Porous Media 116

2. The velocity-pressure equation was recently solved by the mixed �nite element

method [40, 41, 42, 46, 47, 120], in which the discrete spaces for u and p need

to satisfy the Babuska-Brezzi condition, and the resulting linear system has a

nonpositive de�nite coe�cient matrix. In our method, u and p are obtained

from equations (5.5) and (5.6) separately, and compatibility conditions between

the discrete spaces of u and p are not needed. Moreover, system (5.5) leads to

a symmetric positive de�nite coe�cient matrix.

3. When the standard �nite element method [38, 39, 44, 45, 48, 98, 99] is applied

for the pressure equation, the velocity needs to be obtained by �nite di�erencing

the pressure variable, which gives less accuracy. Note that the accuracy of the

approximate velocity is important, since the concentration equation involves the

velocity only. The velocity in our method is obtained directly, without �nite

di�erencing.

4. The discrete version of our SRM formulation (5.5)-(5.6) gives the same accu-

racy for the velocity as the mixed method and requires the solution of well-

conditioned linear systems like Galerkin methods. Note that our numerical

experiments will show that a few (much less than 10) iterations are usually

enough for our iterative procedure.

5.3 Convergence Analysis

Before we begin our analysis, we �rst describe some notation to be used throughout

the rest of the paper. As in Chapter 4, we use Lp(
), or simply Lp, to denote the

space of functions whose pth power is integrable in 
, with the norm

kukp =
 Z




nX
i=1

juijp dx
! 1

p

;
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where u = (u1; � � � ; un). We will omit the subscript p in the norm notation when

p = 2. Hm is the closure of C1
0 (
) in the norm

kukHm =

0
@ X

0�j�j�m

kD�uk2
1
A

1

2

:

In addition, we de�ne the divergence space H(div) = fw 2 L2(
)2 : divw 2 L2(
)g
with the following norm:

kukH(div) =
�
kuk2 + kdivuk2

� 1

2
:

We shall denote by (�; �) and h�; �i the inner products in 
 and on �, respectively.

For a normed linear space B with norm k � kB and a su�ciently regular function

g : [�; �]! B, we de�ne

kgkL2([�;�];B) = (
Z

�

�

kg(�; t)k2
B
dt)

1

2 and kgkL1([�;�];B) = sup
��t��

kg(�; t)kB:

If [�; �] = [0; T ], we simplify the notation as kgkL2(B) and kgkL1(B), respectively. We

shall also denote generic constants by M and K , which may be di�erent at di�erent

occurrences.

Before stating our convergence theorem, we �rst give a lemma.

Lemma 5.1 There exists a unique solution fu; pg to the problem

u = �a(~c)(gradp � f); (x; t) 2 
 � [0; T ]; (5.7a)

divu = q; (x; t) 2 
 � [0; T ]; (5.7b)

u � n = 0; (x; t) 2 �� [0; T ]; (5.7c)

where p and q have mean value zero. Furthermore, there exits a constant M1 such

that the following estimates hold:

kukH(div) + kpkH1 �M1[kqk+ kfkH(div)]; 8t 2 [0; T ]: (5.8)
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Proof: Substituting (5.7a) into (5.7b) and (5.7c) we see that p satis�es a Poisson

equation with Neumann boundary condition

�div(agradp) = q � div (af); in 
;

a

@p

@n
= af � n on �:

Noting the zero mean value of p and using the standard results for the Poisson equa-

tion, we obtain the uniqueness and existence of p and the estimate

kpkH1 �M
h
kqk+ kfkH(div) + kf � nkH�1=2(�)

i
:

An application of the trace inequality [54](p.28)

kf � nkH�1=2(�) � kfkH(div); 8f 2 H(div )

leads to the inequality (5.8) for p. Then the existence, uniqueness and the estimate

(5.8) for u follow directly. 2

We are now ready to describe our convergence theorem and prove it using a similar

technique as Chapter 3.

Theorem 5.1 Let fu; pg be the solution of system (5.4a), (5.4b), and (5.2a) and

fus; psg the solution of (5.5)-(5.6). Then we have

ku� uskH(div) + kp� pskH1 � (
M1�

1 �M1�
)skp0 � pk; s = 1; 2; � � � : (5.9)

Here M1 is from Lemma 5.1 and we assume M1� <
1
2
.

Proof: We �rst consider the case s = 1 of (5.5)-(5.6). Write (5.5a) and (5.6) as

a(~c)�1u1 + gradp1 = 
(~c)gradd

divu1 � q = �(p0 � p1):
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Then subtracting equations (5.4a) and (5.4b), we have

a(~c)�1(u1 � u) + grad(p1 � p) = 0 (5.10a)

div (u1 � u) = �(p0 � p1): (5.10b)

Using Lemma 5.1, we obtain

ku1 � ukH(div) + kp1 � pkH1 �M1�kp0 � p1k: (5.11)

Writing p0 � p1 = p0 � p+ p � p1, we immediately have

ku1 � ukH(div) + kp1 � pkH1 � M1�

1�M1�
kp0 � pk: (5.12)

Now we look at the second iteration s = 2. At �rst, we can get equations similar to

(5.10a) and (5.10b):

a(~c)�1(u2 � u) + grad(p2 � p) = 0 (5.13a)

div (u2 � u) = �(p1 � p2): (5.13b)

Applying Lemma 5.1 again, we have

ku2 � ukH(div) + kp2 � pkH1 �M1�kp1 � p2k

�M1�(kp1 � pk+ kp2 � pk): (5.14)

Noting M1� < 1 and using the estimate of kp1 � pk (see (5.12)), yield

ku2 � ukH(div) + kp2 � pkH1 � (
M1�

1�M1�
)2kp0 � pk: (5.15)

We can repeat this procedure, and by induction, conclude the results of the theorem.

2

From Theorem 5.1 we see that the convergence rate of our iterative scheme (5.5)-

(5.6) is about O(�). This implies that the number of iterations needed to achieve

a prescribed accuracy is very small. The fast convergence of our method makes it

dramatically di�erent from penalty-like methods.
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5.4 The Galerkin Approximation and Its Error Estimates

In this section, we approximate the velocity-pressure iterative scheme (5.5) and the

concentration equation (5.1c) by using the standard Galerkin method. We only pro-

vide a brief description about this approximation. More details are in [82].

Let W = fw 2 H(div) : w � n = 0 on �g. The variational form of (5.5) can be

written into the following: �nd us : [0; T ]!W such that

(a�1(c)us;w) +
1

�

(divus; divw)

= (ps�1 +
1

�

q; divw) + (
(c)gradd;w); 8w 2W: (5.16)

The weak form of the concentration equation (5.1c) reads: �nd c : [0; T ] ! H1(
)

such that

(�
@c

@t

; z) + (D(u)gradc;gradz) + (u � gradc; z) = (g(c); z); 8z 2 H1(
); (5.17)

(c(x; 0); z) = (c0(x); z); 8z 2 H1(
): (5.18)

For hu > 0 and an integer k � 0, with respect to the velocity-pressure equation,

we introduce �nite element spaces Wh �W and Yh = fy : y = divw for w 2Whg
associated with a quasi-regular subdivision of 
 into triangles or rectangles of diameter

less than hu. Similarly, we denote by Zh � H
1(
) the �nite-dimensional space for

the concentration equation with grid size hc and approximation index l. Assume that

the following approximation properties hold:

inf
wh2Wh

kw �whk � Khk+1
u
kwkHk+1; w 2W; (5.19)

inf
wh2Wh

kdiv (w �wh)k � Kh
k+1
u

(kwkHk+1 + kdivwkHk+1); w 2W; (5.20)

inf
zh2Zh

kz � zhk � Khl+1
c
kzkHl+1; z 2 H1(
); (5.21)

where K is a constant. The space Wh can be taken to be the vector part of the

Raviart-Thomas [100] space of index k, or Brezzi-Douglas-Marini [30] space of index

k + 1.
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Given a partition of [0; T ]; 0 = t0 < t1 < � � � < tN = T , we denote Jn =

[tn; tn+1];�tn = tn+1� tn; and �t = maxf�tng. Let fpn;un; cng and fPn;Un; Cng be
fp;u; cg and its approximation at time level tn. We de�ne our approximation scheme

at time tn(n = 0; 1; 2; � � �) by the following.
Step 1: Given Cn, �nd fUn; Png 2 Wh � Yh as follows. Take the initial guess

�
P0 = 0. For s = 1; 2; � � � ; iteratively obtain �Us 2Wh and �

Ps 2 Yh such that

(a�1(Cn) �Us;w) +
1

�

(div �Us; divw)

= ( �Ps�1 +
1

�

q; divw) + (
(Cn)gradd;w); 8w 2Wh; (5.22a)

�
Ps = �

Ps�1 � 1

�

(div �Us � q): (5.22b)

Let Un = �Us and Pn = �
Ps for some integer s.

Step 2: When Un is known, �nd Cn+1 2 Zh such that

(�
Cn+1 � Cn

�tn
; z) + (D(Un)gradCn+1;gradz) + (Un � gradCn+1; z)

= (g(Cn+1); z); 8z 2 Zh: (5.23)

Note that in step 1 of the scheme, the initial guess could be more e�ciently taken

as �
P0 = Pn�1 for n � 1 and �

P0 = 0 for n = 0. Our numerical experiments will show

that the number of iterations can be generally taken to be s = 2 for the range of

perturbation parameter � = 10�3 to 10�5.

The following error estimates of the above approximation are proved in [82].

Theorem 5.2 Let fp;u; cg be the solution to Problem (5.1c)-(5.1b), and fP;U; Cg
the solution to the scheme (5.22)-(5.23) with s iterations at each time step. Then

there exists a constant K, for �t su�ciently small, such that the following error

estimates hold at time step tm ( m = 0; 1; 2; � � � ; N):

kPm � pmk+ kUm � umkH(div) + kCm � cmk
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� Ks[�
s + h

l+1
c
kckL1([0;tm];Hl+1) + h

l+1
c
kctkL2([0;tm];Hl+1) + (5.24)

+hk+1
u

(kukL1([0;tm];Hk+1) + kdivukL1([0;tm];Hk+1)) + �t(kutkL2([0;tm];L2) + kcttkL2([0;tm];L2))];

(
m�1X
n=0

�tnkCn+1 � cn+1k21)1=2

� Ks[�
s + h

l

c
kckL1([0;tm];Hl+1) + h

l+1
c
kctkL2([0;tm];Hl+1) + (5.25)

+hk+1
u

(kukL1([0;tm];Hk+1) + kdivukL1([0;tm];Hk+2)) + �t(kutkL2([0;tm];L2) + kcttkL2([0;tm];L2))]:

This theorem tells us that for su�ciently small perturbation parameter �, the error

estimates for the velocity, pressure and concentration are optimal.

5.5 Numerical Experiments

In this section, we present some numerical examples to show how well our iterative

scheme performs, and how the parameter � a�ects the number of iterations needed

and accuracy required. For simplicity, we will just consider the pressure-velocity

equation, since the concentration equation has been analyzed previously [40, 41, 42,

45, 46, 47, 48, 98, 99, 120].

Consider the elliptic problem with Neumann boundary condition

u = �a(gradp� f); x 2 
;

divu = q(x); x 2 
;

u � n = 0; x 2 �;

where 
 is a square and � its boundary. More general domains 
 will not present

technical problems.

The approximation scheme takes the form: Find Us 2Wh, for s = 1; 2; � � � ;

(a�1Us
;w) + 1

�
(divUs

; divw) = (P s�1 + 1
�
q; divw) + (f ;w); 8w 2Wh; (5.26)

P
s = P

s�1 � 1
�
(divUs � q): (5.27)
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Figure 5.1: One element with velocity on each edge and pressure at the center

Partition the domain 
 into a set of squares of side length h. We take the space

Wh to be the vector part of the Raviart-Thomas [100] space of index 0. Thus

Wh = (P1 
P0)� (P0 
P1);

where Pk is the set of one variable polynomials of order less than or equal to k.

Consequently, the approximate pressure P s lies in the space of piecewise constants.

Partitioning the domain into triangles or rectangles or applying higher order approx-

imation polynomials can be treated analogously.

Let U s

�
denote the constant value of the 
ux in the positive x or y-direction on

the edge �; � = L, R, B, T (representing left, right, bottom, and top, respectively),

of each element. See Figure 5.1. Consider w to be the basis function (1 � x; 0) (on
the standard reference square). Applying the trapezoidal rule to (5.26) we have
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1

2
a
�1
L
U
s

L
h
2 � U

s

R
� U s

L
+ U

s

T
� U s

B

�h

1

h

h
2

= �
�
P
s�1 +

qL + qR + qT + qB

4�

�
1

h

h
2 +

1

2
fLh

2
; (5.28)

where q� is the value of q at the middle point of edge �. Similarly, letting w =

(x; 0); (0; 1� y); (0; y), and simplifying we have the following linear system for each

element.

�h
2
a
�1
L
U
s

L
� 2(U s

R
� U s

L
+ U

s

T
� U s

B
)

= �2�h
�
P
s�1 +

qL + qR + qT + qB

4�

�
+ �h

2
fL; (5.29a)

�h
2
a
�1
R
U
s

R
+ 2(U s

R
� U s

L
+ U

s

T
� U s

B
)

= 2�h

�
P
s�1 +

qL + qR + qT + qB

4�

�
+ �h

2
fR; (5.29b)

�h
2
a
�1
B
U
s

B
� 2(U s

R
� U s

L
+ U

s

T
� U s

B
)

= �2�h
�
P
s�1 +

qL + qR + qT + qB

4�

�
+ �h

2
fB; (5.29c)

�h
2
a
�1
T
U
s

T
+ 2(U s

R
� U s

L
+ U

s

T
� U s

B
)

= 2�h

�
P
s�1 +

qL + qR + qT + qB

4�

�
+ �h

2
fT : (5.29d)

Note that equation (5.27) has the discrete version on each element:

P
s = P

s�1 � 1

�

�
U
s

R
� U s

L
+ U

s

T
� U s

B

h

� qL + qR + qT + qB

4

�
: (5.30)

From equations (5.29) we can easily form the element sti�ness matrix. Then

assembling all the element matrices and taking into account the boundary condition

we obtain the sti�ness matrix. The force vector can be obtained in an analogous way.

All velocity and pressure errors are measured for iterates fUs
; P

sg against the
exact solution under the L1 norm, i.e.

kUs � uk1
kuk1 and

kP s � pk1
kpk1 :
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The initial guesses are always chosen to be zero, so all errors are 1.00 before the

iterative procedure starts.

Example 5.1 Let the velocity u and the pressure p satisfy (x = (x; y)T)

divu = � [cos(�x) + cos(�y)] ; x 2 
;

u = �
2
4gradp�

0
@ 1

�

� 1
�

1
A
3
5
; x 2 
;

u � n = 0; x 2 �;

where 
 = [0; 1] � [0; 1], and � = @
. The true solutions for the velocity u and the

pressure p are given by

u =

0
@ sin(�x)

sin(�y)

1
A
;

p =
1

�

(cos(�x) + cos(�y) + x� y):

The pressure p and external 
ow rate q = divu are chosen in such a way that they

both have mean value zero.

Example 5.2 Let the velocity u and the pressure p satisfy the nonhomogeneous prob-

lem

divu = ab
3(eby � ebx); x 2 
;

u = �a
2
4gradp �

0
@ �x

y

1
A
3
5
; x 2 
;

u � n = g; x 2 �;

where 
 = [0:5; 1]� [0:5; 1], � = @
; a = 0:05; and b = 10. The function g is chosen

such that the true solutions for the velocity u and the pressure p are given by

u = �a
0
@ b

2
e
bx + x

�b2eby � y

1
A
;

p = b

�
e
bx � eby

�
:
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� = 10�1 � = 10�2 � = 10�3

iteration velocity pressure velocity pressure velocity pressure
0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.14E-2 9.71E-3 1.53E-3 8.67E-4 2.69E-4 4.08E-5
2 2.69E-4 4.00E-5 1.29E-4 1.25E-4 1.28E-4 1.26E-4
3 1.29E-4 1.25E-4 1.28E-4 1.26E-4 - -
4 1.28E-4 1.26E-4 - - - -

Table 5.1: Numerical results for Example 5.1 with grid size = 1
40

� = 10�4 � = 10�5 � = 10�6

iteration velocity pressure velocity pressure velocity pressure
0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.42E-4 1.16E-4 1.29E-4 1.25E-4 1.29E-4 1.26E-4
2 1.28E-4 1.26E-4 1.28E-4 1.26E-4 - -

Table 5.2: Numerical results for Example 5.1 with grid size = 1
40

For Example 5.1, the results with (uniform) grid size 1
40

are shown in Tables 5.1

and 5.2. The results of Example 5.2 with (uniform) grid size 1
40

and 1
80

are shown in

Tables 5.3. More examples and results can be found in [82].

From Tables 5.1 through 5.3 we conclude that our iterative method performs as

well as the theory predicts. In particular, it can achieve the same accuracy as mixed

�nite element methods (at least for velocity), while the linear systems to be solved

are symmetric and positive de�nite. Also, the computational work of our method is

much smaller than that of mixed methods, since the number of iterations required is

usually very small.

� = 10�3 grid size = 1
40

grid size = 1
80

iteration velocity pressure velocity pressure
0 1.00 1.00 1.00 1.00
1 1.18E-3 5.85E-3 3.23E-4 1.61E-3
2 1.02E-3 5.42E-3 2.00E-4 1.24E-3

Table 5.3: Numerical results for Example 5.2



Chapter 6

Numerical Methods of Some Singular Perturbation Problems

In this chapter, we discuss the numerical solutions of some singular perturbation

problems which are all special cases of the regularizations (1.12) and (1.13), and have

practical meanings in themselves as we indicated in x1.4. In xx6.1 and 6.3 we will

construct and analyze uniformly convergent methods for these singular perturbation

problems. So we �rst describe the de�nition of the method ( cf. [90]).

De�nition 6.1 If u is the solution of a singular perturbation problem with a parame-

ter � and uh is an approximation obtained using a uniformly convergent method, then

there exist two constants �0 and h0 independent of � and h such that when 0 < � < �0

and 0 < h < h0 we have an inequality of the form

ku� uhk � Ch
p
; (6.1)

or in a weaker version (cf. [79])

ku� uhk � C(hp + �
r); (6.2)

where C > 0, p > 0 and r > 0 are independent of � and of the mesh width h, and k � k
is some appropriate norm. 2

We use M to represent generic (in the sense of O(1)) positive constants indepen-

dent of � and of the mesh width h. Some of these constants will also be denoted by

m0, m1, m2, M0 and M1, etc.

127
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6.1 One Dimensional Quasilinear Turning Point Problems

In this section, we consider the following two-point boundary value problem with

Dirichlet data at the endpoint:

��u00 � b(x; u)u0+ c(x; u) = 0; x 2 I = [�1; 1]; (6.3a)

u(�1) = U�; u(1) = U+; (6.3b)

where � � 1 usually and b(x; u) may be zero at some isolated points. Such prob-

lems are usually called turning point problems. Constructing uniformly convergent

methods for problem (6.3) is generally very hard. We will consider a simpler case in

which we know the point, say x�, at which b(x; u(x)) = 0 and bx(x; u) 6= 0 for all u in

the vicinity of the solution. There are two types of turning point problems. They are

called repulsive and attractive turning point problems corresponding to the negative

and positive sign of d

dx
b(x; u(x))jx=x�, respectively.

The rest of the section is devoted to the two types of turning point problems and is

actually a summary of two papers [79, 115] written by the author and his collaborator.

We assume that the problem which we consider (in the form of (6.3)) has a unique

solution. We also assume that the coe�cients of problem (6.3) are su�ciently smooth

(usually C2(I �R) is enough).

6.1.1 A repulsive turning point problem

In this section, we assume

cu(x; u) � c0 � 0 on [�1; 1]�R (6.4)

Hence, a maximum principle holds for (6.3). By constructing a barrier function it is

not di�cult to get

max
�1�x�1

juj � r; (6.5)
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where r = max�1�x�1 jc(x; 0)j=c0 + max(jU�j; jU+j). Furthermore we make the fol-

lowing assumptions

b(0; u) = 0; bx(0; u) < 0 for juj � r; (6.6a)

b(x; u) 6= 0 for juj � r and x 6= 0: (6.6b)

According the condition (6.6) there exists a small positive number � such that

bx(x; u) � �b0 < 0 for jxj � � (6.7a)

b(x; u) � b�1 > 0 for � 1 � x � �� (6.7b)

b(x; u) � �b1 < 0 for � � x � 1; (6.7c)

where �, b0, b�1 and b1 are positive constants independent of �. We �rst give the

bounds on the derivatives of the solution which is useful in the proof of uniform

convergence:

ju(i)(x)j �M(1 + �
�i exp(�m0(x+ 1)=�) for x 2 [�1; �]; (6.8a)

ju(i)j �M for jxj � �; (6.8b)

ju(i)(x)j �M(1 + �
�i exp(�m0(1� x)=�) for x 2 [�; 1]; (6.8c)

where � is su�ciently small. (6.8a) and (6.8c) are a direct application of the result

for problems without turning points which is derived by [113] and [77] independently.

(6.8b) is proved in [79] by examining the Newton's sequence. This result means that

the repulsive turning point problem does not have any interior layers.

Next we consider how the solution v(x) of the reduced problem:

b(x; v)v0� c(x; v) = 0;�1 < x < 1; (6.9a)

c(0; v(0)) = 0: (6.9b)

approaches the solution u(x). As in [21] (Remark 2.11), applying (6.8b) and results

in [83], we have

ju(x)� v(x)j �M(�+ exp(�m0(x+ 1)=�)) for x 2 [�1;��]; (6.10a)
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ju(x)� v(x)j �M� for x 2 [��; �]; (6.10b)

ju(x)� v(x)j �M(�+ exp(�m0(1� x)=�)) for x 2 [�; 1]; (6.10c)

Now we start to construct an almost uniformly convergent algorithm. In the

construction, we combine the initial-value technique [67] (a modi�cation is given in

[81]) with the idea in [23]. We want to indicate here that [67, 81, 23] are all for

problems without turning points.

We �rst rewrite (6.3) as

�u
00+ (f(x; u))0 � g(x; u) = 0; x 2 I = [�1; 1]; (6.11a)

u(�1) = U�; u(1) = U+; (6.11b)

where f(x; u) =
R
u

0 b(x; s) ds and g(x; u) = c(x; u)� fx(x; u). Integrating (6.11a), we
get

�u
0 + f(x; u) =

Z
x

0
g(t; u(t)) dt+K for � 1 < x < 1; (6.12)

where the integration constant is K = �u
0(0). Let

E(x) =

Z
x

0
g(t; u(t)) dt:

Then problem (6.3) is reduced to the following equivalent nonlinear initial value prob-

lems:

�u
0

1 + f(x; u1) = E(x) +K; �1 � x < 0; (6.13a)

u1(�1) = U�; (6.13b)

and

�u
0

2 + f(x; u2) = E(x) +K; 0 < x � 1; (6.14a)

u2(1) = U+: (6.14b)
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Replacing E(x) by

�
E(x) =

Z
x

0
g(t; v(t)) dt;

where v(t) is the solution of the reduced problem (6.9), and neglecting K in (6.13a)

and (6.14a), we obtain the approximate problems:

�y
0

1 + f(x; y1) = E(x); �1 � x < 0; (6.15a)

y1(�1) = U�; (6.15b)

and

�y
0

2 + f(x; y2) = E(x); 0 < x � 1; (6.16a)

y2(1) = U+: (6.16b)

It is proved in [79] that

jui(x)� yi(x)j �M� for 0 < jxj � 1 and i = 1; 2: (6.17)

Finally we consider the numerical solution of (6.15) and (6.16). Note that by

using the change of variable �x = �x the numerical method for problem (6.15) will

follow from that for problem (6.16), so we proceed considering only problem (6.16).

For convenience we write (6.16) as

�y
0

2 �m1xy2 = �xe(x; y2); 0 < x � 1; (6.18a)

y2(1) = U+; (6.18b)

where e(x; y) = d(x; y) + m1y. In the expression d(x; y) = (f(x; y) + �
E(x))=x is

bounded and m1 is a positive constant to be determined below.

On the interval [0; 1], introduce an arbitrary mesh fxi; i = 1; 2; � � � ; N; with xN =

1g. Integrating problem (6.18) on the subinterval [xi; xi+1], and replacing function
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e(x; y2(x)) by e(xi+1; y2(xi+1)) , suggests a di�erence scheme:

y
h

2;i = kiy
h

2;i+1 + (1 � ki)e(xi+1; y
h

2;i+1)=m1; (6.19a)

y
h

2;N = U+; i = 1; 2; � � � ; N � 1; (6.19b)

where ki = exp(�1
2
m1�

�1(x2
i+1 � x2i )). According to the idea of [23], we can choose

a suitable mesh

xi =

8<
: 1 + (�=m) ln(1 �N � i)h1(1 � �)); i = N �N1; � � � ; N; xN�N1

= 1 � h�
xi;maxi(xi � xi�1) = h2; i = 1; � � � ; N �N1 � 1;

(6.20)

where h� = �j ln �j=m and h1 = 1=N1. We have the following error estimate (see [79]):

Theorem 6.1 Let y2(xi) and y
h

2;i be the solutions of problems (6.18) and (6.19),

respectively, i = 1; � � � ; N . Under the mesh (6.20), taking

m1 � �fu(x; u) = �b(x; u);

then we have

max
1�i�N

ju2(xi)� uh2;ij �Mh; (6.21)

where h = max(h1; h2).

Applying the samemethod, we can also get a numerical solution yh1;i; i = �N; � � � ;�1,
of problem (6.15) such that

max
�N�i��1

jy1(xi)� yh1;ij �Mh: (6.22)

Let

y
h

i
=

8>><
>>:
y
h

1;i for i = �N; � � � ;�1
v(0) for i = 0

y
h

2;i for i = 1; � � � ; N
(6.23)

be an approximation of the solution u(x) of problem (6.3), where v(0) can be solved

from c(0; v(0)) = 0. Applying (6.17), (6.10b) , (6.21) and (6.22), we have

max
�N�i�N

ju(xi)� yhi j �M(h + �): (6.24)
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Therefore, the numerical method we propose is an almost uniformly convergent

method. In [79], a technique is given to modify the method to achieve uniform

convergence. A numerical example is also given in [79].

6.1.2 An attractive turning point problem

In this section, we shall extend the results from [114] and [78]. We make the following

assumptions:

i) b(x; u) = xb1(x; u); c(x; u) = xc1(x; u) + "c2(x; u);

ii) b1(x; u); ck(x; u);2 C2(I �R); k = 1; 2;

iii) b1(x; u) � b� > 0; x 2 I; u 2 R;
iv) jck;u(x; u)j � c

�
; k = 1; 2; x 2 I; u 2 R:

Moreover, we shall assume that � is su�ciently small. Note that, unlike the previous

section, the maximum principle may not hold since we do not assume (6.4) here. The

corresponding reduced problem has a discontinuous solution consisting of two smooth

curves, u+ and u�, which satisfy:

b1(x; u�)u
0

� � c1(x; u�) = 0; u�(�1) = U�:

By � denote +
p
� and by k � k1 denote the maximum norm in C(I). To consider

uniformly convergent methods, we shall estimate the solution u(x) and its derivatives

and the quantities:

v� � (u� u�)(k)(x); for k = 0; 1; 2 and x 2 I�;

where

I� = [�1; 0]; I+ = [0; 1]:

We collect these estimates in the following theorem.

Theorem 6.2

j(xv�(x))0j � M(�V (x)); x 2 I�;
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j(xv�(x))00j � M(� + �
�1
V (x)); x 2 I�;

�ju00(x)j � M(� + V (x)); x 2 I;

�ju000(x)j � M(� + �
�1
V (x)); x 2 I;

where

V (x) = exp(�m0

�

jxj);

with an positive constant m0 independent of ".

2

From the estimates we see that the attractive turning point problem has an interior

layer but no boundary layers. This theorem is built on several lemmas whose proofs

are very technical. To show how technical these proofs are we prove one lemma below.

We refer to [115] for complete details.

Lemma 6.1 ju(x)j �M:

Proof: Let

p(x) =

8<
: jxj; x 2 In[��; �]:

x
2

2�
+ �

2
; x 2 [��; �]:

We can easily verify that

p 2 C1(I); max(jxj ; �) � p(x) � 1

2
max(jxj ; �): (6.25)

Next, consider the following Riccati initial value problem

P (�) := ��
0 + xb�� +M0p(x) + ��

2 = 0; (6.26)

�(0) = 0: (6.27)

It has a uniformly bounded solution. Indeed, by applying Newton's method to (6.26),

(6.27) (cf.[88] or [79]), with the initial guess:

�0(x) = �
Z

x

0

M0

�

p(t) exp(� b�
2�
(x2 � t2))dt;
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the conditions of the Newton{Kantorovich theorem are satis�ed since:

k�0(x)k1 �M;

kP 0(�0)
�1k �M�;

k�1 � �0k1 �M�;

kP 00(�)k � 2:

Here, k �k is the operator norm corresponding to k �k1. Hence, there exists a solution
�(x) to (6.26), (6.27), such that

k�� �0k1 �M�;

thus � is bounded uniformly in �. Furthermore, we have

x�(x) � 0 for x 2 I: (6.28)

Indeed, because of the maximum principle and

��
0 + xb�� = �M0p(x)� ��2 � 0; �(0) = 0;

�(x) � 0 for x � 0 and �(x) � 0 for x � 0:

Let

'(x) = exp[

Z
x

0
�(t) dt]:

It holds that

0 < m0 � '(x) �M; '
0(x) = �(x)'(x) = O(1): (6.29)

Note that ' is a solution to the following equation:

�'
00 + xb�'

0 +M0p(x)' = 0:

Let us now consider an auxiliary problem:

�u
00 + xb1(x; u(x))u

0� c(x; u) = 0; (6.30)

u(�1) = U�; u(1) = U+; (6.31)
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and let us make the transformation u(x) = z(x)'(x). Then z(x) satis�es :

�z
00 + [2��(x) + xb1(x; u(x))]z

0� �c(x; z) = 0; (6.32)

z(�1) = U�

'(�1) ; z(1) =
U+

'(1)
; (6.33)

where

�c(x; z) = �[�'00(x) + xb1(x; u(x))'
0(x)]'(x)�1z + '(x)�1c(x; z'(x))

= M0p(x)z � x[b1(x; u(x))� b�]�(x)z + '(x)�1c(x; z'(x)):

Choosing M0 su�ciently large and using (6.25) and (6.28) we have

�cz(x; z) = M0p(x)� x�(x)(b(x; u(x))� b�) + cu(x; z'(x))

� m2max(jxj; �):

Hence, the problem (6.32), (6.33) satis�es the maximum principle and therefore has

a unique solution z, such that

jz(x)j � jz(�1)j+ jz(1)j+max
x2I

j'�1c(x; 0)j
m2max(jxj; �) �M:

This shows that (6.30), (6.31) has a unique solution which is equal to u�. Then (6.29)

completes the proof. 2

The numerical method is closely related to that from [114]. The same special

non{equidistant mesh Ih is used. It has the following mesh points:

xi = �(ti); ti = �1 + 2i

n

; i = 0(1)n;

n = 2n0; n0 2 N;

where

�(t) =

8>>>>><
>>>>>:

!(t) := ��t


�t
; t 2 [0; �0]

�(t) := �(t� �0)
3 + 1

2
!
00(�0)(t� �0)

2

+!0(�0)(t� �0) + !(�0); t 2 [�0; 1]

��(�t); t 2 [�1; 0]

:
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�0 is an arbitrary parameter from (0,1),


 = �0 + �

1

3 ;

� is determined from �(1) = 1, so that � 2 C2(I�) and � 2 C1(I), and the parameter

� is chosen from (0; 
�1(1��0)
�2]. It may look as if � is arti�cial, but its part ! is a

suitable rational approximation to the logarithmic function representing the inverse

of the interior layer function V (x) for x � 0. Then � is just a smooth extension of !.

Let

hi = xi � xi�1; i = 1(1)n;

�hi =
1

2
(hi + hi+1);

and let wh denote a mesh function on Ih n f�1; 1g, which will be identi�ed with the

Rn�1{vector:

w
h = [w1; w2; : : : ; wn�1]

T
; (wi := w

h

i
):

Moreover, let us introduce the following standard �nite{di�erence operators:

D
0

�wi = �(wi�1 � wi)=�hi;

D
00
wi = [(wi�1 � wi)=hi + (wi+1 �wi)=hi+1]=�hi:

We shall use the following discrete L1{norm:

kwhkh1 =
n�1X
i=1

�hijwij:

For all this cf. [114]. Finally, the constants M will now be independent of Ih as well.

Before discretizing the problem (6.3), as in the previous section, we rewrite (6.3a)

in the following conservation form:

Tu := ��u00 � f(x; u)0 + g(x; u) = 0; x 2 I; (6.34)
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where

f(x; u) =

8<
: f�(x; u); x 2 I�
f+(x; u); x 2 I+

; g(x; u) =

8<
: g�(x; u); x 2 I�
g+(x; u); x 2 I+

;

f�(x; u) =

Z
u

u�(x)
xb1(x; s)ds;

g�(x; u) = c(x; u)� xb1(x; u�(x))u0�(x) +
Z

u

u�(x)
(xb1(x; s))xds

= c(x; u)� xc1(x; u�(x)) +
Z

u

u�(x)
(xb1(x; s))xds:

Then the discrete problem corresponding to (6.34), (6.3b) is given by:

T
h
wi = 0; i = 1(1)n � 1; (6.35)

where

T
h
wi =

8<
: T

h

�wi; i = 1(1)n0

T
h

+wi; i = n0 + 1(1)n � 1
;

T
h

�wi = �"D00
wi �D0

�f�(xi; wi) + g�(xi; wi);

and where w0 and wn should be replaced by U� and U+ respectively. The discretiza-

tion is a generalization of that for the mildly nonlinear case considered in [114] and

[78].

Let us introduce the following assumption in addition to i)� iv):

v) gu(x; u) = (xb1(x; u))x + cu(x; u) � g� > 0; x 2 I; u 2 R:

The following error estimate is proved in [115].

Theorem 6.3 The discrete problem (6.35) has a unique solution wh and the following

estimate holds:

kwh � uhkh1 �M
1

n

[�+ exp(�n)];

where

u
h = [u(x1); u(x2); : : : ; u(xn�1)]

T
:

2

A numerical example is given in [115].
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6.2 Notes about Spurious Solutions of Upwind Schemes

6.2.1 Inadequacy of Yavneh's argument

First order upwind schemes have been found by several researchers to yield spurious

solutions. Such behavior has been attributed to the excessive arti�cial viscosity intro-

duced by the numerical scheme, to multiple solutions of the nonlinear set of algebraic

equations that is obtained from the discretization, and to poor resolution by grids

that are too coarse (cf. [121, 27]). A simple example in [61] also shows that an upwind

scheme may lead to a spurious solution near a boundary layer. Yavneh in his Ph.D.

thesis [121] (also see [27]) claimed that the spurious solution may occur even in cases

where none of the above apply, and that such behavior is seen to occur even in the

linear scalar advection-di�usion equation, despite the fact that the truncation-error

tends to zero with the mesh-size throughout the entire domain, the solution being

smooth everywhere. However, his proof is incomplete. Yavneh considers a linear

advection-di�usion equation

���u +
1

r
2
u� = 0; (6.36a)

u(a; �) = ui ; u(b; �) = uo (6.36b)

over the circular disk 0 < � � 2�; 0 < a < r < b. Here

�u = urr +
1

r

ur +
1

r
2
u��

is the Laplacian in polar coordinates and � > 0. The unique solution (the uniqueness

comes from the maximum principle) is

u =
ln[( r

a
)uo( b

r
)ui ]

ln b

a

:

In order to see what might go wrong with the numerical solution of this problem,

we rewrite the equation in Cartesian coordinates

Lu = ���u� y

x
2 + y

2
ux +

x

x
2 + y

2
uy = 0; (6.37a)
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ujx2+y2=a = ui; ujx2+y2=b = uo; (6.37b)

where �u = uxx + uyy.

As is well known, discretization of this equation by central �nite di�erences loses

its stability when � is small compared to the product of the mesh-size and the ab-

solute value of either coe�cient of the �rst derivatives in the equation. A common

practice is to retain stability by increasing the absolute values of the coe�cients of

the discretized second derivatives. A particular method of this type is the �rst order

upwind di�erence scheme. This sort of discretization gives a second-order central

di�erence scheme to the following equation:

��1~uxx � �2~uyy � y

x
2 + y

2
~ux +

x

x
2 + y

2
~uy = 0 (6.38)

with the same boundary conditions as (6.37b),where

�1 = �+
hjyj

2(x2 + y
2)
; �2 = �+

hjxj
2(x2 + y

2)
:

We plot the relationship of these continuous and discrete equations as follows:

Problem (6:37)  � Upwind scheme (first order)

" jj
Problem (6:38)  � Corresponding central scheme

Yavneh considers the case � < h=2r ( � � h=2r is not interesting since in this case
the central di�erence scheme is stable) and shows that the di�erence between the

solutions of problems (6.37) and (6.38) has a lower positive O(1) bound throughout

the domain except near the boundaries as the mesh-size tends to zero. Based on this

result, he then claims that the �rst order upwind scheme yields a spurious solution

of problem (6.37). From the above diagram, we see that the argument is incomplete

since we do not know if the central di�erence scheme is a good approximation for

problem (6.38). The proof of this fact is not that obvious since we no longer know if
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the solution of (6.38) is smooth. (6.38) is a partial turning point problem whose layer

property could be complicated.

6.2.2 Our explanation

In this section, we show that the stability constant of problem (6.36) depends on �.

The smaller the parameter �, the closer the problem is to being ill-posed. Hence,

we can expect that any direct discretization (of course, including upwind schemes)

on the problem would be unstable when � is su�ciently small . Therefore, it is not

strange that the �rst order upwind scheme fails for this problem.

Let's consider (6.36) with a forcing term f(x; y). Suppose that u(x; y) is a solution

of the problem, i.e.

Lu = f(x; y) (6.39)

and u satis�es boundary conditions (6.36b). We construct

u
�(x; y) = u(x; y) + (r2 � a2)(b2 � r2); (6.40)

which satis�es the boundary conditions and

Lu
� = f(x; y) + �(12(x2 + y

2)� 4(a2 + b
2)): (6.41)

In other words, if we make a small perturbation �(12(x2 + y
2) � 4(a2 + b

2)) to the

right-hand side of the equation, the solution changes a lot (by (r2 � a
2)(b2 � r2)).

That means the problem (6.39),(6.36b) is not well-posed as � is small. Then we may

not expect its approximation (direct discretization) to be stable. Indeed we can prove

that any di�erence scheme will not be stable (as � is small).

Suppose we have a discretization (consistent with order hr)

Lhuh = f(x; y); Bhuh = 0 (discrete BC)

also

Lhu
�

h
= f(x; y) + �(12(x2 + y

2)� 4(a2 + b
2))
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Bhu
�

h
= 0

Then

Lh(uh � u�h) = �(12(x2 + y
2)� 4(a2 + b

2))

Bh(uh � u�h) = 0

If (Lh; Bh) is stable, or more precisely, if the coe�cient matrix Ah of the linear

algebraic system corresponding to the discretization satis�es

kA�1
h
k1 �M; (6.42)

where M is a generic positive constant independent of � and h, we get

uh � u = O(hr)

u
�

h
� u� = O(hr)

uh � u�h = O(�)

Hence

u� u� = O(� + h
r)

This is a contradiction since u�u� = (r2�a2)(b2�r2). So (Lh; Bh) can not be stable.

In fact, we can show

Claim 1

kA�1
h
k � O(

1

max(�; hr)
): (6.43)

Proof: If � � h
r and kA�1

h
k1 = O(1=��), � < 1, then

uh � u = O(
h
r

�
�
) � O(�1��);

u
�

h
� u� � O(�1��); uh � u�h = O(�1��):
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Therefore,

u� u� = O(�1��)

can be arbitrarily small. This is a contradiction in (6.40). So we must at least have

kA�1
h
k1 = O(1=�). On the other hand, if � � h

r, we can prove that

kA�1
h
k1 � O( 1

h
r
):

Thus (6.43) is proved. 2

For the �rst order upwind scheme, we actually can prove

Claim 2

kA�1
h
k = O(

1

max(�; h)
): (6.44)

Before we prove this claim, we �rst write down the scheme and then prove a

discrete maximum principle. The scheme is

��
ui+1;j�ui;j

hxi
� ui;j�ui�1;j

hxi�1

1
2
(hxi + hxi�1)

� �
ui;j+1�ui;j

hyj
� ui;j�ui;j�1

hyj�1

1
2
(hyj + hyj�1)

8>>>>>>><
>>>>>>>:

� yj

x2
i
+y2

j

ui+1;j�ui;j

hxi
+ xi

x2
i
+y2

j

ui;j�ui;j�1

hyj�1
(forx > 0; y > 0)

� yj

x2
i
+y2

j

ui;j�ui�1;j

hxi�1
+ xi

x2
i
+y2

j

ui;j�ui;j�1

hyj�1
(forx > 0; y < 0)

� yj

x
2
i
+y2

j

ui+1;j�ui;j

hxi
+ xi

x
2
i
+y2

j

ui;j+1�ui;j

hyj
(forx < 0; y > 0)

� yj

x2
i
+y2

j

ui;j�ui�1;j

hxi�1
+ xi

x2
i
+y2

j

ui;j+1�ui;j

hyj
(forx < 0; y < 0)

9>>>>>>>=
>>>>>>>;
= 0: (6.45)

Lemma 6.2 The di�erence scheme (6.45) has a discrete maximum principle, that

is,

Lhuh � 0 and uhj�h � 0 =) uh � 0;

where �h represents all the mesh points on the boundaries x2+y2 = a
2 and x2+y2 = b

2.

Proof: Suppose that uh � 0 is not true. Then there exists an interior point (xs; yt)

of the domain such that us;t < 0. Furthermore we can choose us;t such that us;t =
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mini;j ui;j and at least at one adjacent point ui;j of us;t the rigorous inequality ui;j >

us;t holds. Hence (for simplicity, we only consider x > 0; y > 0 case),

Lhuhjs;t < ��
us;t�us;t

hxs
� us;t�us;t

hxs�1

1
2
(hxs + hxs�1)

� �
us;t�us;t

hyt
� us;t�us;t

hyt�1

1
2
(hyt + hyt�1)

� yt

x
2
s
+ y

2
t

us;t � us;t
hxs

+
xs

x
2
s
+ y

2
t

us;t � us;t
hyt�1

= 0:

This is a contradiction to Lhuh � 0, which completes the proof. 2

Now we prove Claim 2.

Proof: We construct the barrier function

wh = juoj+ juij+M1

b
2 � x2 � y2
max(�; h)

max
i;j

jLhuhj; (6.46)

where h = max(hx; hy), while hx = maxi hxi; hy = maxj hyj . Then it is easy to verify

that

Lh(wh � uh) � 0; wh � uhj�h � 0

when M1 is su�ciently large. Using the discrete maximum principle we obtain

wh � uh � 0:

We thus have

juhj � wh = juoj+ juij+M1

b
2 � x2 � y2
max(�; h)

max
i;j

jLhuhj:

This means

kA�1
h
k1 �M

1

max(�; h)
: (6.47)

So (6.44) follows from (6.47) and Claim 1. 2

Hence, the �rst order upwind scheme for problem (6.39),(6.36b) is not convergent

when � is small compared with mesh-size h. Of course, it produces a spurious solution

in general. For Yavneh's example (f(x; y) � 0 in (6.39)), numerical calculation veri�es

the appearance of the spurious solution. From the result of Claim 2 we expect that a



Chapter 6. Numerical Methods of Some Singular Perturbation Problems 145

good second-order scheme would converge if � is smaller than h but much larger than

h
2. Numerical calculation in [121] veri�es this too.

Note that, in polar coordinates, the �rst order upwind scheme converges since its

truncation error has a factor � (because the derivatives of u with respect to � are all

zero). In Cartesian coordinates, no such behavior exists.

6.3 A Linear Hyperbolic-Hyperbolic Singularly Perturbed Initial-Boundary

Value Problem

Previous to this work, we discussed several singularly perturbed problems of hyper-

bolic type in joint papers [105, 106], constructed some di�erence schemes according

to the properties of the problems, established discrete energy inequalities for the solu-

tions of di�erence problems, and, based on the inequalities, proved that the di�erence

schemes are uniformly convergent in the sense of the discrete energy norm. But in

those papers the equations considered did not include a �rst derivative term with

respect to the space variable x. Here we discuss a more complete initial-boundary

value problem:

L�u � �(utt � uxx) + a(x; t)ut+ b(x; t)ux + c(x; t)u

= f(x; t); (x; t) 2 G � f0 < x < l; 0 < t � Tg (6.48a)

u(s; 0) = �(x); ut(x; 0) =  (x); (0 � x � l) (6.48b)

u(0; t) = 0; u(l; t) = 0; (0 � t � T ) (6.48c)

where a(x; t); b(x; t); c(x; t); f(x; t); �(x) and  (x) are su�ciently smooth functions

and a(x; t) � a0 > 0 for all (x; t) 2 �
G. Moreover, b(x; t); f(x; t); �(x) and  (x) satisfy

the following compatibility conditions:

C1: �(0) = 0;  (0) = 0; �(l) = 0;  (l) = 0;

C2: �00(0) = 0; b(0; 0)�0(0) = f(0; 0); �00(l) = 0; b(l; 0)�0(l) = f(l; 0):
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The subcharacteristics of the reduced operator

L0w = a(x; t)wt+ b(x; t)wx + c(x; t)w (6.49)

are timelike (cf.[53]) with respect to the characteristic directions of equation (6.48a),

that is,

jb(x; t)j=a(x; t) < 1 for (x; t) 2 �
G: (6.50)

For simplicity we assume that b(x; t) � b0 > 0. Hence, (6.50) becomes

b(x; t) < a(x; t) for (x; t) 2 �
G: (6.51)

The reduced problem of (6.48) is

L0u0 = f(x; t); (6.52a)

u0(x; 0) = �(x); u0(0; t) = 0; (6.52b)

where L0 is de�ned as (6.49).

Therefore, the solution of problem (6.48) has boundary layer at t = 0 and x = 1.

The reduced problem (6.52) is a �rst order hyperbolic initial-boundary problem in

a semi-bounded region D = f(x; t); x � 0; t � 0g. According to [22], under the

conditions C1 and C2, the �rst partial derivatives of the solution u0(x; t) of (6.52) are

continuous, but the second derivatives are discontinuous along the characteristic line.

In order to construct the asymptotic solution, it is necessary that u0(x; t) 2 C2( �D).

We will give a method to overcome the di�culty without additional compatibility

conditions.

This section is a summary of the joint paper [107]. In what follows we �rst give

an energy estimate of the solution of problem (6.48). Then, the asymptotic solution

is constructed under the compatibility conditions C1 and C2 and uniform validity is

proved in the sense of the energy norm. Thirdly, an exponentially �tted di�erence

scheme for problem (6.48) is proposed and a discrete energy inequality is established.
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Finally, we show that the discrete problem is uniformly convergent in the sense of

discrete energy norm.

6.3.1 Construction of asymptotic solution and its remainder estimate

We �rst give the following energy inequality which will be used in estimating the

remainder of the asymptotic expansion.

Lemma 6.3 Let u(x; t) be the solution of (6.48), and let the conditions we described

previously be satis�ed. Then as � is su�ciently small, we have

kuk+ �kutk+ �kuxk �MK(G; �); (6.53)

where

K(G; �) = kfk �G + k�k+ �k�0k+ �k k;

kuk = [

Z
l

0
u
2
dx]

1

2 ; kfk �G = [

Z
�G
f
2
dxdt]

1

2 :

Proof: Multiplying equation (6.48a) by 2�a�1ut + u, then integrating the obtained

equation in the region Gt = f(x; s)j0 � x � l; 0 < s � tg, and performing the

standard argument for the energy method, we thus have (6.53). 2

Next we construct the asymptotic solution. As we indicated before, under the

compatibility conditions C1 and C2, the solution u0(x; t) of the reduced problem

belongs to C1(D), but not C2(D). In order to realize the iterative procedure of the

asymptotic solution, the continuity of the second derivatives of u0(x; t) is needed.

However, this usually gives rise to the increase of the compatibility conditions. In

this section, we construct the asymptotic solution under the conditions C1 and C2

without adding other ones. By making some transformations on (6.52) so the initial

and boundary conditions become homogeneous and the right-hand function becomes

equal to zero in the neighborhood of t = 0, we obtain a problem in which all compat-

ibility conditions we need are satis�ed. Then based on the transformed problem, an
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approximate problem for (6.48) is constructed and the solution of its reduced problem

belongs to C2(D). Then an asymptotic expansion can be constructed.

Now we deal with problem (6.52). Let u0(x; t) = w0(x; t) + �(x), noting that

�(0) = 0, then

L0w0 = F (x; t); w0(x; 0) = 0; w0(0; t) = 0; (6.54)

where operator L0 is de�ned as (6.49) and F (x; t) = f(x; t) � L0�. Introduce a

function !(y) 2 C1 satisfying

!(y) =

8<
: 0 (0 � y � 1

2
)

1 (y � 1)

and 0 � !(y) � 1. De�ning �
F = !(t=�)F (x; t), we have

F (x; t)� �
F (x; t) = (1 � !( t

�

))F (x; t) =

8<
: F (x; t) (0 � t � �=2)

0 (t � �)

Therefore, �F (x; t) and F (x; t) have di�erence only in the region f0 � t � �; 0 � x �
1g. Replacing F (x; t) by �

F (x; t), problem (6.54) is changed into

L0 �w0 = �
F (x; t) = !(

t

�

)(f(x; t)� L0�); (6.55a)

�w0(x; 0) = 0; �w0(0; t) = 0: (6.55b)

Problem (6.55) for any � > 0 satis�es all compatibility conditions we need. Thus

�w0 is su�ciently smooth. Transforming back, i.e. letting �u0 = �w0 + �, we obtain an

approximate problem for (6.52)

L0�u0 = �
f(x; t) (6.56a)

�u0(x; 0) = �(x) ; �u0(0; t) = 0; (6.56b)

where

�
f(x; t) = !(

t

�

)f(x; t) + (1� !( t
�

))L0�:
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Here �u0(x; t) is su�ciently smooth since �w0 and � are. From the appendix of [22], we

have

u0 � �u0 = O(�): (6.57)

Now we can get an approximate problem of (6.48)

L��u = �
f (x; t); (6.58a)

�u(0; x) = �(x); �ut(0; x) =  (x) ; �u(0; t) = �u(l; t) = 0: (6.58b)

Using the energy inequality (6.53), we can get

ku� �uk = O(�
1

2 ): (0 � t � T ) (6.59)

Note that problem (6.49) is the reduced problem of (6.58). Hence, the reduced prob-

lem of (6.58) has enough smoothness such that the usual procedure to construct the

asymptotic expansion can be performed. For example, we can construct the asymp-

totic expansion of (6.58) in the form of

�u(x; t) = ~u(x; t) + z;

where

~u(x; t) = �u0(x; t) + �v

(0)
0 (x; � ) + v

(l)
0 (�; t) + �v

(l)
1 (�; t); � = t=�; � = (l � x)=�;

�u0 is the solution of (6.49) and v
(0)
0 ; v

(l)
0 and v

(l)
1 satisfy the following equations

(v
(0)
0 )�� + a(x; 0)(v

(0)
0 )� = 0;

(v
(0)
0 )� (x; 0) + (�u0)t(x; 0) =  (x); lim

�!1
v

(0)
0 = 0;

(v
(l)
0 )�� + b(l; t)(v

(l)
0 )� = 0;

v

(l)
0 (0; t) + �u0(l; t) = 0; lim

�!1

v

(l)
0 (�; t) = 0
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and

(v
(l)
1 )�� + b(l; t)(v

(l)
1 )� =

�bx(l; t)(v
(l)
0 )� + a(l; t)(v

(l)
0 )t + c(l; t)v

(l)
0

v

(l)
1 (0; t) = 0; lim

�!1

v

(l)
1 = 0;

respectively. Using the energy inequality (6.53) and estimating carefully, we have the

following bound

kzk = k�u(x; t)� ~u(x; t)k �M(�
1

2 + �

1

2 + ��
�1 + �

2
�
�2): (6.60)

Denote the asymptotic expansion of problem (6.48) as

~u1(x; t) = u0(x; t) + �v

(0)
0 (x; � ) + v

(l)
0 (�; t) + �v

(l)
1 (�; t):

Applying (6.57),(6.59) and (6.60) and taking � = �

2

3 , we �nally obtain

ku(x; t)� ~u1(x; t)k �M�

1

3 : (6.61)

Remark 6.1 If the coe�cients, right-hand side and initial values of problem (6.48)

satisfy enough compatibility conditions such that the solution u(x; t) 2 C
3(G), then

we can construct the asymptotic solution without needing the function !(t=�). The

asymptotic solution is still ~u1 (replacing �u0 by u0 in the equations for v
(0)
0 and v

(l)
0 ).

Moreover, we have the following remainder estimate

ju(x; t)� ~u1(x; t)j �M�

1

2 : (6.62)

2

6.3.2 Di�erence scheme and its uniform convergence

Taking uniform meshes in the directions of x and t, we obtain a discrete region

�
Gd = f(xi; tj); i = 0; � � � ; N; j = 0; � � � ; [T=k]; xi = ih; tj = jkg, where h and k
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are mesh sizes and Nh = l. Denoting ud(x; t) as the approximate value of u(x; t),

we establish the di�erence scheme of problem (6.48) by using the exponential �tting

idea:

L
(h;k)
�

u
d(x; t) � 
1(x; t; k)u

d
�t�t(x; t)� 
2(x; t; h)udx�x(x; t) + a(x; t)ud�t

+b(x; t)ud�x(x; t) + c(x; t)ud(x; t) = f(x; t); (x; t) 2 Gd (6.63a)

u
d(x; 0) = �(x); ud(x; k)� ud(x; 0) = k (x); (6.63b)

u
d(0; t) = u

d(l; t) = 0; (6.63c)

where

(x; t) = (xi; tj); u
d

x�x = (ud
x
)�x; u

d
�t�t = (ud�t )�t;


1(x; t; k) =
a(x; t)k exp(�a(x; t)k=�)
1 � exp(�a(x; t)k=�) ;


2(x; t; h) =
b(x; t)h exp(�b(x; t)h=�)
1 � exp(�b(x; t)h=�) ;

u
d

�x(x; t) =
u
d(x; t)� ud(x� h; t)

h

;

u
d
�t (x; t) =

u
d(x; t)� ud(x; t� k)

k

;

u
d

x
(x; t) =

u
d(x+ h; t)� ud(x; t)

h

:

For this di�erence schemewe can establish the following discrete energy inequality.

Lemma 6.4 Let ud(x; t) be the solution of (6.63) and let mesh sizes h and k satisfy

inequality b(x; t)h � a(x; t)k for all (x; t) 2 �
Gd. Then when �,h and k are su�ciently

small we have

kudk2
s
+ k
1ud�tk2s + k

p

1
2u

d

�xk2s �MK(h; k; �); (6.64)

where

K(h; k; �) = hk

JX
j=1

NX
i=1

f
2 + k
1ud�tk21 + k

p

1�u

d
�tk21 + k

p

1
2u

d

�xk21 + kudk21;

kvk2
s

= h

NX
i=1

v(ih; sk)2; s = 1; � � � ; J; J = [T=k]; � = k=�:
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Proof: Essentially, the proof is a simulation of the continuous case but much more

complicated because of the �tting factors 
1 and 
2. A sketch of the proof is in [107].

2

Remark 6.2 If �tting factors are not used, then the condition b(x; t)h � a(x; t)k can

be removed in the proof. 2

Next we prove the uniform convergence. We assume that enough compatibility

conditions are satis�ed so that the solution u(x; t) of problem (6.48) belongs to C3( �G).

Based on the asymptotic expansion we may assert that the following estimates

j@
k
u(x; t)

@x
i
@t

k�i
j �M(��i + �

1�(k�i)); 0 � k � 3; 0 � i � k (6.65)

hold. For convenience we also assume

c1k � h � c2k; c1 > 0; a(x; t)=b(x; t) � c2 > 0: (6.66)

Using derivative estimate (6.65), it is not di�cult to verify

L
(h;k)
�

(u(x; t)� ud(x; t)) = O(
h

�
2
+
k

�

);

(u� ud)jt=0 = 0; (u� ud)jt=k = min(
k
2

�

; k);

(u� ud)jx=0 = 0; (u� ud)jx=l = 0:

Applying discrete energy inequality (6.64), yields

ku� udks �M(
h

�
2
+
k

�

): (6.67)

On the other hand, we can obtain

L
(h;k)
x

(~u1 � ud) = L
(h;k)
�

(u0 + �v

(0)
0 + v

(l)
0 + �v

(l)
1 )� f

= O(�+ h+ k + exp(�m0

l � x
�

); (m0 > 0)
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and

(~u1 � ud)jt=0 = O(�); (~u1�t � ud�t )jt=k = O(1);

(~u1 � ud)jx=0 = O(�n); (~u1 � ud)jx=l = 0;

where n is an arbitrary positive number. First making a change of variable such that

the boundary value conditions become homogeneous, then using the discrete energy

inequality (6.64), we have

k~u1 � udks �M(
q
max(�; h) + k + �

n
=h): (6.68)

Hence, from the remainder estimate (6.62) of the asymptotic solution ~u1, we obtain

another error estimate

ku� udks �M(
q
max(�; h) + k + �

n
=h): (6.69)

Combining (6.67) with (6.69) we achieve our uniformly convergent estimate.

Theorem 6.4 Supposing that (6.66) is satis�ed and the solution of (6.48) u(x; t) 2
C

3( �G). Then the solution ud(x; t) of the discrete problem (6.63) uniformly converges

to u(x; t) in the sense of the discrete energy norm, i.e.

ku� udks �Mh

1

5 ; s = 0; 1; � � � ; J: (6.70)

Proof: Using (6.69), (6.66) as �5=2 � h and using (6.67), (6.66) as �5=2 � h, we

have (6.70) immediately. 2

Remark 6.3 If we apply the remainder estimate (6.61) and corresponding procedure

there we may discuss the uniform convergence under the compatibility conditions C1

and C2 only. 2



Chapter 7

Conclusion and Future Work

7.1 Summary and conclusions

The main focus of the thesis is on constrained ordinary di�erential equations (DAEs),

constrained partial di�erential equations (PDAEs), and their applications. A new

class of methods for solving high index DAEs has been developed, which we call the

Sequential Regularization Method or SRM for short. These methods o�er signi�cant

advantages over some known solution techniques, such as regularization and stabiliza-

tion methods, and are applied to the nonstationary Navier-Stokes equations governing

incompressible 
uid 
ow and to a mathematical model of reservoir simulation.

High index DAEs (index � 2) are usually di�cult to discretize directly [29, 86].

We thus need to reformulate the original problem as a better behaved problem before

discretization. Index reduction with stabilization is a popular reformulation for the

numerical solution of semi-explicit high index DAEs. Another class of reformulations

is regularization, where the DAE is replaced by a better behaved nearby problem.

Such a method reduces the size of the system to be solved and avoids the deriva-

tives of the algebraic constraints associated with the DAE problem. Regularization

is particularly suitable for problems with certain singularities where the constraint

Jacobian does not have full rank. Unfortunately, this approach often yields very sti�

problems, which accounts for its lack of popularity in practice. The SRM is proposed

to overcome this di�culty. It keeps the bene�ts of regularization methods and avoids

the need to use sti� solvers for the regularized problems, because the regularization

154



Chapter 7. Conclusion and Future Work 155

parameter does not need to be very small. Thus, we obtain an important improvement

over usual regularization methods which leads to easier numerical methods (explicit

time discretization for regularized problems). The SRM also provides cheaper and

more e�cient alternatives to the usual stabilization methods for some choices of pa-

rameters and stabilization matrix. We �rst propose and analyze the method for linear

index-2 DAEs. Then we extend it to nonlinear index-2 and index-3 DAEs. This is

especially useful in applications such as constrained multibody systems which are

of index-3. Numerical experiments show that the method is useful and e�cient for

problems with and without singularities.

While a signi�cant body of knowledge about the theory and numericalmethods for

DAEs has been accumulated, almost none has been extended to partial di�erential-

algebraic equations (PDAEs). As a �rst attempt we provide a comparative study be-

tween stabilization and regularization (or pseudo-compressibility) methods for DAEs

and PDAEs, using the Navier-Stokes equations as an instance of PDAEs. Compared

with stabilization methods, regularization methods can avoid imposing an arti�cial

boundary condition for the pressure p. This is a feature for PDAEs not shared with

DAEs. We generalize the SRM to the nonstationary incompressible Navier-Stokes

equations. Similar to DAEs, explicit schemes in the time direction can be used for

the PDAE because of the reduced sti�ness (taking the regularization parameter rel-

atively large) or even essential nonsti�ness obtained for some choice of parameters.

Unlike usual regularization methods, the time step restriction for the explicit scheme

can be independent of the regularization parameter �. The time step restriction is

further loosened for the case of small viscosity. A simple discretization (such as the

forward Euler di�erence in time and a �rst-order scheme in space) is analyzed and

implemented. Numerical results support our theoretical results. The method works

for both two- and three-dimensional problems.

In recent years considerable attention has been devoted to numerical reservoir
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simulation, e.g. miscible displacement in porous media. We have applied the SRM

idea to the pressure-velocity equation in its 2-dimensional mathematical model equa-

tions. This procedure is �rst analyzed at the di�erential level and then discretized by

�nite element methods. Theoretical analysis and numerical experiments show that

this procedure converges at the rate of O(�) per iteration, where � is a small positive

number. The fast convergence rate makes our iterative method dramatically di�erent

from penalty methods . In addition, the perturbation parameter � does not have to be

carefully chosen, unlike the case for other iterative methods. Indeed, our numerical

experiments show that two iterations are usually enough for a variety of problems.

Compared with mixed �nite element methods, the discrete version of our scheme can

provide the same accurate approximations for velocity and pressure, which is crucial

in reservoir problems since velocity is intimately involved in the concentration equa-

tion. However, in contrast to mixed �nite element methods, our scheme requires only

the solution of symmetric positive de�nite linear systems which have a smaller number

of degrees of freedom corresponding to the velocity variable. Since our method com-

pletely decoupled the velocity and pressure variables, the so-called Babuska-Brezzi

condition is not needed in constructing the �nite dimensional spaces for velocity and

pressure. The method is easily applied to three-dimensional problems.

Another topic of this thesis is singular perturbation problems, which come from

many applied areas and regularized problems. We discuss numerical solutions of

several singular perturbation problems. Uniformly convergent schemes with respect to

the perturbation parameter � are constructed and analyzed for nonlinear repulsive and

attractive turning point problems and a second-order hyperbolic problem. We are the

�rst to be able to construct uniformly convergent schemes for these problems. Also,

an interesting spurious solution phenomenon from an upwinding scheme is analyzed

for an elliptic turning point problem. We �nd that the spurious solution is caused by

a mild instability of the problem (the constant for the stability inequality is of O(1
�
)).
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This type of instability is not as serious as supersensitivity [73, 74]. It can be handled

by using higher order upwinding schemes as long as their accuracy hr � � when � is

not too small.

7.2 Discussion of future work

The results of this thesis can be extended in a number of directions.

E�cient simulation of kinematic chains with closed loops

The kinematic chain problem is an example of multibody systems, such as robot

manipulators. Consider a chain consisting of n links. The numerical simulation of

the problem is usually treated as two separate problems: (i) the forward dynamics

problem for computing system accelerations, and (ii) the numerical integration prob-

lem for advancing the state in time. In recent years, many di�erent algorithms have

been proposed for solving the forward dynamics problem with tree structure (without

closed loops), ranging in computational complexity from O(n3) (e.g. the composite

rigid body method (CRBM) [116]) to O(n) (e.g. the articulated{body method (ABM)

[49]). However, it has never been possible to construct an O(n) algorithm for the chain

problem with many closed loops. The SRM (plus explicit discretization) opens up a

way to do this. According to the idea of the SRM, we can remove the extra constraints

caused by closed loops and incorporate them into external force terms of the system.

The reformulated problem has the same structure as that of the problem without

closed loops. We thus expect to develop and test an O(n) algorithm for closed-loop

chains.

Fully nonlinear DAEs

Consider a fully nonlinear index-� DAE

x
(�) = f(t; x; x0; � � � ; x(��1); y);
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0 = g(t; x);

(i.e. where algebraic variables y appear nonlinearly together with the di�erential

variables x.) Some mechanical multibody systems are in this form with � = 2, e.g.

the motion of a point mass on a parabolic orbit with the forces of gravitation and

Coulomb friction (see [4]). The SRM can be applied to this problem. For instance,

corresponding to the index-2 problem (with � = 1) we have: for s = 1; 2; � � �,

x
0

s
= f(t; xs; ys);

ys = ys�1 +
1

�

e(g(t; xs));

where the function e should be chosen such that the matrix fyeggx has positive eigen-

values.

E�cient simulation of real 
uid problems using SRM

Because the computations for u and p are uncoupled and explicit time discretiza-

tion can be used, we expect that the SRM incorporated with a �nite di�erence or

�nite element discretization would provide a cheap and e�cientmethod for simulating

more realistic 
uid problems. For long time simulations, a reinitialization technique

(e.g. projecting back to the divergence free space after a number of time steps)

may be useful. A comparative study between the SRM and other methods would be

interesting.

Solving the system resulting from the discretization of the operator I +

�1

�
graddiv

This operator comes from using SRM to solve the nonstationary Navier-Stokes

equations with �1 6= 0. The system is easily made to be banded symmetric positive

de�nite. Hence a direct method can be used to solve it. An interesting observation is

that the usual iterative methods do not work well. This is probably due to the lack

of ellipticity of the system. Some research on solving this problem using multigrid
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and domain decomposition techniques (at least for � not too small) is about to be

completed by Arnold, Falk and Winther [3]. Based on a technique described in [57],

iterative methods (including multigrid) would be feasible under some pre-processing

of the system (to increase the ellipticity). This was also suggested by W. Hackbusch

in a private communication.
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