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Introduction

A stable representation of an object means that the
representation is unique, i1s independent of the sam-
pling geometry, resolution, noise, and other small dis-
tortions in the data, and is instead linked to the shape
of the object. Stable representations help characterize
shapes for comparison or recognition; skeletal (or me-
dial axis) and volume primitive models have been pop-
ular in vision for the same reason. Piecewise polyhe-
dral representations, e.g., tetrahedra, and voxel repre-
sentations, e.g., octrees, generally tend to be unstable.

We propose a rep-
resentation for 3D ob-
jects based on the
set union of over-
lapping sphere primi-
tives. This union of
spheres (UoS) model
has some attractive
properties for com-
puter graphics, com-
putational vision, and
scientific visualization
[1, 2]. This communi-
cation briefly explains
how we can obtain a
stable UoS model for objects from volumetric data, i.e.,
data in which we can test if a given point is inside the de-
fined object or outside. This constraint makes the prob-
lem of object reconstruction more manageable (Figure
1). In the absence of such inside-outside information,
reconstructing an object is a tough problem [3]. For
our method, the input is a discrete set of points on the
boundary of an object defined in 3D discrete volumetric
data such as a CT scan or MRI. The boundary points
may be obtained by choosing a threshold (or isovalue)
in the data or by other edge-detection methods.

Figure 1: Brain from one slice
of MRI head data represented
as a union of circles.

The Algorithm

Our method has two steps [4]. In the first step, we
generate a UoS representation which is truthful to the
input volumetric data in the following sense: (a) all
inside voxels are included in at least one sphere, (b)
no outside voxel is within any sphere, (¢) all boundary
points are on the surface of at least one sphere, (d) no
boundary point is inside any sphere. In the second step,
we simplify this representation to make it stable and
to reduce the number of primitives. This allows faster
display and facilitates comparison of objects by reducing
them to nearly the same number of primitives.

Step I: The dense UoS representation is obtained
using the Delaunay tetrahedralization (DT) as follows:

1. Calculate the DT of the boundary points.

2. Compute the circumscribing sphere to each tetra-
hedron.

3. Use the empty sphere property (ESP) of the DT
to verify from the original data which spheres are
inside the defined object. This makes use of the
fact that any circumscribing sphere contains either
only outside voxels or only inside voxels. This is
true because if any sphere contains both inside and
outside voxels, it will contain a boundary point as

well; and this is forbidden by the ESP of the DT.

Spheres generated in this fashion satisfy all the truth-
fulness criteria previously mentioned. The properties
of the sphere representation are closely linked to the
properties of the underlying tetrahedra representation.
Whereas the method is easy to implement, the worst
case complexity of the algorithm is O(n?) in both time
and number of primitives, where n is the number of
boundary points. However, the highest number of prim-
itives observed in our experiments so far has been about
4n.

Step II: We simplify the dense sphere representa-
tion as generated above by clustering similar or close-
by spheres and eliminating redundant or non-significant
spheres. Many point clustering algorithms could be
used. We defined a new clustering method which uses
the fact that the underlying primitives are spheres and
not points, and gives a better handle on the error intro-
duced during simplification. It is based on the concept



of sphericity which is a measure of how well a group of
spheres can be represented by a single sphere. Spheric-
ity can be defined as the ratio of the volume of union
of spheres in the group to the volume of the smallest
bounding sphere. For computational convenience, we
define sphericity as the ratio of the radius of the largest
sphere in the group to the radius of the smallest en-
closing sphere. In either case, sphericity is a number
between 0 (very non-spherical) and 1 (perfectly spheri-
cal).

The simplification algorithm processes the spheres
from the largest to the smallest. In every iteration,
using the largest remaining sphere, the algorithm cal-
culates a new sphere such that the sphericity > o (a
user defined threshold, generally close to 1), and it en-
closes a maximum number of remaining spheres. All
the spheres within the newly created sphere are then
deleted and the iterations continue until all the spheres
in the original representation have been taken care of.
The time complexity of the algorithm is O(n?), n be-
ing the number of spheres in the representation to be
simplified.

We have used the algorithm to simplify a variety of
objects. It generally yields a stable representation and
can be applied with different values of sphericity thresh-
old ¢. In the extreme cases, when ¢ = 0, we get a single
sphere as the output, and when o = 1, we get the orig-
inal representation itself as the output. For any inter-
mediate value of o, we get some intermediate number
of spheres in the output. Since the algorithm ensures
that all the generated spheres have a sphericity > o,
it puts a bound on the simplification error. However,
like most clustering algorithms, it does not guarantee
preservation of topology.

Application to Object Registration

We used the stability property of the UoS representa-
tion for the problem of object registration: Given two
representations, determine if they represent the same
object, and if they do, find the transformation from one
to the other. To register objects, we first match a suffi-
cient number of spheres from the UoS representation of
one object to the other, and then from the matches find
the most likely transformation using the method of least
squares. The matches between the spheres of two rep-
resentations A and B are obtained by formulating the
problem as a minimum weight bipartite graph matching
(also known as “assignment”) problem. First, we assign
distances from every sphere a € A to every sphere b € B
according to a pre-defined metric (which is a function
of the size of the sphere, and its location with respect
to the coordinate frame determined from principal mo-
ments). Next, we do a minimum weight matching on
the resulting bipartite graph. This problem has been

widely studied and can be solved exactly in O(n?) time,
where n is the number of nodes (in our case, the number
of spheres in the simplified representation) in the bipar-
tite graph. The results on the experimental data look
promising. To determine matches in a bipartite graph
with about 400 nodes in total, an IRIS Crimson takes
about 1.5 seconds.

Implementation

The described algorithms have been implemented (for
2D and 3D) in the C language and compiled for SGI
and IBM RS/6000 machines. Some of the results are
shown in images accessible through the URL address
<http://www.cs.ubc.ca/spider/ranjan/>.

Conclusion

Union of spheres (UoS) representation has many desir-
able properties for graphics, vision, and visualization.
In this communication, we described how we can gen-
erate and simplify a UoS representation for volumetric
data. The derived representation can be used to charac-
terize and compare shapes; we applied it to the problem
of object registration and the results are encouraging.
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