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Abstract: Classic radiosity assumes diffuse reflectors in order to consider only
pair-wise exchanges of light between elements. It has been previously shown that
one can use the same system of equations with separable bi-directional reflection
distribution functions (BRDFs), that is BRDFs that can be put in the form of a
product of two functions, one of the incident direction and one of the reflected
direction.

We show here that this can be easily extended to BRDFs that can be approxi-
mated by sums of such terms. The classic technique of Singular Value Decompo-
sition (SVD) can be used to compute those terms given an analytical or experi-
mental BRDF. We use the example of the traditional Phong model for specular-
like reflection to extract a separable model, and show the results in term of close-
ness to ordinary Phong shading. We also show an example with experimental
BRDF data. Further work will indicate whether the quality of linear radiosity
images will be improved by this modification.

Keywords: BRDF, separable BRDF, global illumination, form factors, singular
value decomposition.

1. Introduction

There is no need to repeat here the principles involved in computing global illumina-
tion through the radiosity method (we will use this synecdoche, since it is now well
accepted and understood). We will use here the notation and terminology of Cohen &
Wallace [1] whenever applicable. We will include within the class linear pair-wise
radiosity, or linear radiosity for short, the methods which use an equation of the form:

Bi:Ei+Ri%BjFij @)
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Where R, is only a function of the element i (the reflectance p; in the classic case),
and F;; are only geometric functions of the pairs ij, the form factors. Our goal in this
paper is to show how one can extend considerably the class of reflective behaviours
which still lead to alinear radiosity solution.

2. Separable Models and Form Factors

The starting point for the radiosity equations is the rendering eguation as given for
examplein [1]. The corresponding geometry is shown in Figure (1).
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Figure (1). Geometry of 3-point transport

where G() is ageometric factor:

cosé cosé'
G(x,x") = W (3

and V() isavisibility factor (1 if the points are mutualy visible, 0 if not). Noting that
for Lambertian reflectors we have:

_ p(X)

fi (X', w, w')
and that the radiosity is 77 times the radiance, one obtains:

G(X, X)V(x,x") dA
T

B(x) = E(X) + p(X')l B(x) 4

Note that it has been implicitly assumed that the light sources are Lambertian emitters
aswell, which is not really necessary. To obtain equation (1), one discretizes the sur-
faces into elements. Integrating over A’ for a finite area, one obtains an average
radiosity for A':

R — 1 r ’
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The integration over Sis an integration over A for each of the elements. Using the
subscript i for primed quantities, and j for un-primed, and summing for al j ele-
ments, one obtains equation (1), if B; can be taken to be constant over the element j,
where P; is p; and where the form factors F;; are:

F = A{ JJG(X XYV (X, X")

It has been shown, notably by Neumann & Neumann [5] that we can still use the same
system of equations if the BRDF, instead of being constant as a function of the direc-
tions, is separable, that is can be written as the product of two functions, one a func-
tion of the incoming direction 1 (x, ;) and the other a function of the outgoing direc-
tion O(x, w; ). So that with the notation used before:

f(X,w, ) = 1(X,w) x OX,w')

One should note that if the BRDF is to obey reciprocity, O() and | () should be the
same functions for each point within a constant, but this is not affecting any of the
formulas which follow.

We start again with equation (4), and substitute the separable BRDF. Since O(X', ')
is not a function of the integration variable in the integral over S, we can get it out of
the integral, and obtain:

dA; dA, ()

L(X, ") = Le(X', @) + O(X', w') ! (X', w) L(X, w)G(X,X)V(X,X") dA (6)

To transform this relation between radiances into a relation between radiosities or
irradiances, one need the basic relation:

:g[ L(w) cosé dw

where the integral is over the hemisphere in our case. So if we integrate both sides of
equation (6), we get:

;[ L(X', ') cosb,’ dow' = ;[ Lo(X', ') cOsE," da'

+![0039r' dw' [O(X', ') ! (X', w) L(X, w)G(X,X)V(x,x") dA ]

One can cal:

E(X) = ! Lo(X', ') cos6,’ da'
In other word E(X') is the radiosity due to light emission (note that the distribution
can be anything we want which is integrable). We can also note that only O(X', ") is

affected by the integral over Q, so it al simplifies to:
B(x') = E(X') + [g[ O(X', w') cosf,' dw'] x [l (X', w) L(X,w)G(X, X)V(x,x) dA] (7)



We can define SO(x') = J: O(X', ') cosd,' dw', in effect a normalization of O(X', w').

In general for any x and w we can write:
L(X, w) = K x O(X, w)

for some positive constant K (since O() is the function giving the distribution of the
reflected light at x), and multiplying both sides by cosé dw and integrating:

B(x) = K x SO(x)
The ratio of these two equations gives the relationship between L(x, w) and B(x):
B(x) x O(X, w)
SO(x)
We can use thisto replace L(X, w) in equation (7).
All told, we then obtain:

L(x, w) =

O(x, w)
SO(x)

B(x') = E(X') + S)(x’)-! B(Xx) I (X', w) G(x, xX)V(x,x") dA 8

which is the new version of equation (4).

We can now discretize (8) as we did for (4). Integrating over A for each element,
averaging B(x) over A" and summing over all elements:

% I B(x')dA' = % J’ E(X)dA
1 2

O(x, w)
SO(x)

+ J'SO(x)dA'JA' B(x) (X', w) G(x, X" )V(x,x") dA

all elements A'

Using the same indices as before, and the same assumption about B(x) = Bj = con-
stant over A, one gets:

B =FE +SO]ZIB]A|1U’

where the new form factors are:

Fy = ’*H

Notice that the relation: Fj; x A = Fj; x A; dways valid for diffuse reflectors, is here
only trueif Oj(w) = Ii(w) and SO; = SO;. For different materials thisis not going to
be true, and even for the same material, first reciprocity has to apply, and since the
same w corresponds to different direction ini and j frames of references, this would
be true only for special cases.

| =E + S0 ZBF,,
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3. Sum of Separable Models

The basic problem with separable models is that very few rea surfaces exhibit
behaviour compatible with a straight separable model®. Neumann & Neumann pre-
sented an ingenious exception, the lacquer model, where a Lambertian reflector was
covered by alayer of absorptant material (which obey Beer’s law, but that is not nec-
essary). This model, however, when implemented, gives a reflecting behaviour quite
unsatisfactory compared to most real materials (see paper by Lewis[4] ).

Let us see what happens if we represent the BRDF as a sum of M separable compo-
nents. The equation is now at point X':

M’
f(X,@,0)= 3 1(X, @) X O(X', &)
m=1

Similarly at point x:

f(X, w,) = % I m(X, @) X Op(X,")
m=lL

Substituting in equation (2), we have now:

L(X, ') = Le(X', ') + [ MZ Iy (X', @) X Oy (X', @) L(X, w)G(X, X' )V (X,X") dA (10)

m=1
Theintegral over S can how be separated into M’ integrals of the form:
![ Iy (X', @) X Oy (X', @) L(X, @) G(X, X)V(X,X') dA
In each of these integrals O (X', w') is not dependent on A and therefore can be

removed from the integral:
Om(X', w’)‘b[ I m(X', @) *x L(X, 0)G(X, X)V(X,X) dA
We can now as before multiply by cosé,'dw’ and integrate:
v
B(x") = E(X) + > [SOm(X) [ Im(X,w) L(X, @)G(X,X)V(X,X') dA]
m=1

We can also replace L(x, w) by:

S Opx,)
L(x, w) = B(x) "
gl SOm(x)
which gives;
M’ % Om(xv w)
B(xX') = E(X) + > [SOm(X) [ B(X) I (X', w) ”‘:,;7 G(x, X" )V(x,x') dA]
e > SOn()

1 Of course Lambertian reflectors are also rather rare, but you have to start somewhere.



Again using theindicesi and j, and replacing by the element averages (we will use m
and n for the indices of the separable elements for element i and j, respectively):

Z Ojn(w)
B =E+ z SO.mz B A M im(@) o G(x, X)V(x, X') dAdA;
Z &)Jn

Thisisequivalent to having M x N pairsij, with the pair equation:

B.m—E,m+SO.mJZBJ A I!’J im(@) ";(Dj)n

n=1

G(x, X)V(x,x) dAdA;  (11)

or:
Bim = Eim + SOim Z B Fim,jn

The constraint on E;, isE; = Z Eim. Of course putting for example E; = E; and all

othersto O will do. We have now M x N form factors:

Fimin = ; [t g Oinl®) G, )i, x') dA A,
| zgjjn

We can modify the equations to obtain a slightly better form, by multiplying B; by
Q.
— " in equation (11). Denoting:

jn

we can write:
Bim = Eim + mim Z BjnFim,jn
J

where the form factor is modified to be:

Fim,jn = AI JJ im(@) Jn( )G(X,X')V(X,X') dA; dA;

and therefore much more similar to the one given in equation (9).

Now the important practical questions are: for the BRDFs that one might actualy
want to use, how well can we separate them, and what is the size of M and N? In
effect we multiply the size of the problem by the average of M x N for all the pairs
of elements. The additional cost of computing form factors is not that bad, since the
visibility function is the same for al pairsim, jn. One must however, keep in mind
that the alternatives can be much worse, from considering all triples of patches in the



full solution, which multiplies the number of form factors by n and the size of the

solution by n? [3] to using various basis functions for input or output radiosity as for
instancein Sillion et al (up to 200 coefficients) [7].

There are various ways to achieve an analytical sum of product decomposition of
functions, from Taylor series expansion to spherical harmonics, but there is a numeri-
cal approach that has the advantage of being simple, almost universal, optima under
some conditions, and applicable to experimentally-measured BRDFs as well.

4. Singular Value Decomposition

Singular value decomposition (SVD) is a technique which given A a P x Q matrix?,
P = Q, decompose it into the product of three matrices:

A=U W VT

where U is a P x Q column orthonormal matrix , V is a Q x Q column (and row)
orthonormal matrix, and W isa Q x Q diagonal matrix. This decomposition is unique
within row permutations. For more details see Golub [2] and for code see Numerical
Recipes in C [6]. The result of SVD can be seen as writing each element of A as a
weighted sum of the rows of U and the columns of VT, where the weights are the
diagonal elements of W:

Q
A = kZkak x Ui X Vi (12)

If we take the M largest elements (in magnitude) of W, we then obtain an approxima-
tion of A with M products per element. The SVD guarantees that the result will be
optimal in the least-square sense for this number of terms.

The technique applies to functions in the following way. Given afunction f(x, y), we
chose P values x; of the abscissaand Q values y; of the ordinate. The elements of the
matrix A are:
A = T(xi,y))

Clearly each row of A corresponds to samples at constant x, and each column to sam-
plesat constant y. After applying SVD to A, equation (12) means that all the samples
can be approximated by the sum of the weighted products of M elements of a row U
and M elements of arow of V. These rows are only functions of x and y respectively.

We can then fit a function to each relevant row of U, g,(x) such that g, (x;) = U; and
fit afunction to each relevant row of V, hy(y) such that h,(y;) =V and we have:

M
f(x.y) = ngkk 9k(X) x hi(y)

In other words we have expressed f (X, y) asasum of separated terms.

The samples have to be chosen so that more weight is given to ranges that are impor-
tant for the function at hand. The error made comes from both the SVD and the fit
with the basis functions used. In both cases these errors are known from their

2. Usually the dimensions are noted M x N, but we do not want to promote confusion with the num-
ber of separate factorsin the BRDF.



respective methods. In our case we want to take a function of four variables and sepa-
rate it into sum of products of two two-variable functions. Fortunately the method is
very much the same. We chose P pairs (8;¢) for the incoming direction and Q pairs
(6j9;) for the outgoing direction. direction. For each tuple of pairs, we compute:

Ay =16, 0.6, 9)

Again the pair should be chosen according to the function at hand. In practice for
functions known analytically, we picked random direction whose projections on the
unit circle are uniformly distributed. The justification is that according to the Nusselt
analog they represent a uniform distribution in the diffuse form factor.

For experimental data, one should obtain or extract by interpolation a P x Q array of
values.

5. Decomposition of Phong M odel

To test the practicality of this solution, we made a preliminary study for an analytical
formulation, namely Phong shading. We used a reciproca version of Phong shading
[4] for which the BRDF has the simple form:

fi(w, ') =k (cosa)"

where a is the angle between the bisector of (w, ") and the normal to the surface (the
Z axisin its local frame). Of course cosa is known as N.H in the trade; this is the
"Blinn" modified version of Phong. We chose this because it is popular, used by most
renderers, adjustable to high glossiness through the value of n, and a difficult case.
The only redeeming value here is that it is isotropic. The process was to take a user-
defined number of samples in incoming and outgoing directions (the size of the
matrix), an exponent n, and the number of terms t to be used in the approximation.
Once the SVD was done, the first t rows of U and thefirst t rows of V werefitted to a
bicubic equation (16 coefficients) by least square (actually using SVD again). The
choice of bicubic is quite arbitrary, and we have not yet explored better basis func-
tions. As mentioned above, each direction is chosen randomly, with projections uni-
formly distributed over the unit circle.

n Size Number RMS Max RMS Max
P=Q | of Terms | after SVD A after fit A

1 40 5 0.011 0.087 0.019 0.17
1 40 10 0.00088 0.00095 0.016 0.14
4 40 5 0.029 0.27 0.032 0.27

4 40 10 0.0046 0.041 0.016 0.077
8 40 5 0.050 0.55 0.052 0.55
8 40 10 0.0091 0.096 0.019 0.12
32 40 5 0.088 0.91 0.10 0.92
32 40 10 0.039 0.40 0.073 0.34
32 40 15 0.013 0.080 0.069 0.33

The table shows the results for a range of exponents and number of terms (separate
components M) kept. As expected, for small exponents the BRDF is easy to separate,
and is approximated within a few percent with 5 terms. Even when n =8, 10 terms
give a 2% accuracy. For an exponent of 32, 15 terms are necessary to do a good job.
Notice that the fit of the separated functions is sometimes responsible for most of the
RMS error. As mentioned before we have not yet spent much time on this aspect of



the fit. Note that the maximum difference between computed and fitted values can be
alarmly high. We suspect that more weight has to be put on the direction pairs causing
a specular highlight. Also the fit used here did not use isotropy of the input or force
isotropy of the result.

Of course the numbers here are not telling the whole story. The symmetry, or lack
thereof, of the recovered functions can be important in many cases. What we have to
offer for now is some images computed with the separated BRDFs. Figure (2) shows
spheres shaded by a built-in Phong shader (non-reciprocal), a reciprocal interpreted
one (for sanity check), and a diffuse surface. The specular surfaces have a small
ambient term added (0.1). Theeyeisat (0, -20, 0), the balls al around the origin, and
there are two directional light sources, one at (0.4, -0.9, 1) and the other at (-0.87, 0.5,
1). One can see that the separated functions (in this case with n=8 and 5 terms
selected) do a decent specular surface. Remember that you can put this BRDF into
your favourite radiosity-based renderer at very little added cost.

Figure (2): Phong model, origina and reconstructed, with two lights.
Upper left: non-reciprocal Phong, upper right: reciprocal Phong, lower
left: separated reciprocal Phong, lower right: diffuse.

6. Decomposition of Experimental Data

Asaquick test we used Greg Ward's experimental data[8]. It camein two flavours, a
raw data file with 27330 experimental pairs of directions (file g50bw. br df ), and a
"filtered" one with 2647 data pairs (file g50bw. r du). To use this data we inserted
the values into a quad tree where the node are (8, ¢) bins, and split the nodes when
they had too many data points. At the end the nodes with enough data points (typi-
cally 40 to 50) were used. The centre pair value of each node was the sample values
used for building the matrix. The reflectance values were determined by interpolation
for these samples. Usually a 50 x 50 matrix is output. The following table show
some results.
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Data Size Number RMS Max RMS | Max
Points P=Q | of Terms | after SVD A after fit A
2647 50 5 0.021 0.29 0.031 | 0.30
2647 50 10 0.011 0.083 0.029 | 0.25
27330 50 5 0.033 0.35 0.18 5.2
27330 50 10 0.019 0.35 0.18 5.2

It can be noted that the filtered data works well, when the raw data fails. In fact in the
latter case the situation does not improve with more terms. Better use of these experi-
mental dataistied in with reconstruction from irregularly sampled data, atopic we are
currently investigating.

7. Conclusions

We have shown that expressing BRDFs as sums of separable functions leadsto asim-
ple implementation within linear radiosity systems. We have aso shown how singular
value decomposition helps us produce these sums from analytical or experimental
data. The experiments with Phong BRDF and Greg Ward's experimental data are
promising, but there is still a lot to explore in order to fine tune the approach. The
next step, obvioudly, is to incorporate this into a linear radiosity system, and we have
done so starting with rad, the program from S.N. Pattanaik (images to follow).
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