
Optimal Algorithms to Embed Trees

in a Point Set �

Prosenjit Bosey Michael McAllisterz Jack Snoeyinkx

Department of Computer Science, University of British Columbia,

Vancouver, BC, V6T 1Z2

Abstract

We present optimal �(n logn) time algorithms to solve two tree embedding problems whose

solution previously took quadratic time or more: rooted-tree embeddings and degree-constrained

embeddings. In the rooted-tree embedding problem we are given a rooted-tree T with n nodes

and a set of n points P with one designated point p and are asked to �nd a straight-line

embedding of T into P with the root at point p. In the degree-constrained embedding problem

we are given a set of n points P where each point is assigned a positive degree and the degrees

sum to 2n� 2 and are asked to embed a tree in P using straight lines that respects the degrees

assigned to each point of P . In both problems, the points of P must be in general position and

the embeddings have no crossing edges.

1 Introduction

The problem of deciding whether a set of points admits a certain combinatorial structure, as well

as computing an embedding of that structure on the point set, has been a recurrent theme in many

�elds. The list of problems falling into this category is virtually endless. We mention a few of the

structures that are current topics of research.

The triangulation of a point set is a structure that has spurred much research because of its

many applications in areas such as �nite element methods, graphics, medical imaging, Geographic

Information Systems (GIS), statistics, scattered data interpolation, and pattern recognition, to

name a few [14, 15].

The combinatorial structure of interest in this paper is the tree, which is well-studied in the

literature. For example, the study of spanning trees of a set of points has a long history. From

a graph drawing perspective (see [5] for a survey of graph drawing), the traditional questions ask

whether a (rooted or free) tree T = (V;E) can be embedded in the plane such that some criterion is

satis�ed: e.g., that the area of the resulting embedding is small [4, 9], that the symmetry present in

the tree is revealed in the embedding [11], or that T is isomorphic to the minimum-weight spanning

�This paper appears in the proceedings of Graph Drawing '95 and as technical report TR-95-22 from the Depart-

ment of Computer Science, University of British Columbia.
yPartially supported by an NSERC and a Killam Postdoctoral Fellowship
zPartially supported by an NSERC Postgraduate Fellowship
xPartially supported by an NSERC Research Grant and a B.C. Advanced Systems Institute Fellowship.

1

tree [6, 13] or proximity graph [1, 2] of the points in which the vertices are embedded. In essence,

the tree is given as input; one needs to construct a set of points in which to embed the tree such

that it satis�es the criterion.

The two tree embedding problems that we study have a slightly di�erent perspective: the points

are given as input, and the tree may or may not be. We say that an n-node tree T = (V;E) can

be straight-line embedded onto a set of n points P , if there exists a one-to-one mapping �:V ! P

from the nodes of T to the points of P such that edges of T intersect only at nodes. That is, edges

(�(u1); �(v1)) \ (�(u2); �(v2)) = ;; for all u1v1 6= u2v2 2 E. We show, in the �nal section, that to

obtain a straight-line embedding of any tree in a set of n points requires
(n logn) time.

The �rst problem, called the rooted-tree embedding problem, was originally posed by Perles at

the 1990 DIMACS workshop on arrangements: Given n points P in general position and an n-node

tree T rooted at node �, can T be straight-line embedded in P with � at a speci�ed point p 2 P?

Perles showed that this was possible if p was on the convex hull of P , which is the smallest convex set

containing the points P . Pach and T�or}ocsik [17] showed that it could if p was not the deepest point

of P , obtained by repeatedly discarding points on the convex hull. Finally, Ikebe et al. [8] showed

that there was always such an embedding. All three algorithms use quadratic time. We show that

one can use a deletion-only convex hull structure [3, 7] to obtain O(n log2 n) time and then improve

this to �(n logn) time. If p is the point with greatest y-coordinate then the O(n log2 n) algorithm

can embed the tree such that all paths from the root to a leaf are vertically monotone.

The second problem, degree-constrained embedding or dc-embedding, is similar, although the

tree T is not speci�ed. Consider a point set P = fp1; p2; : : : ; png in general position in the plane

where each pi is assigned a positive integral value di as its degree; the degrees satisfy
P

n

i=1 di = 2n�2.

Can some tree T be straight-line embedded on the set of points P such that a tree node of degree

di maps to point pi, for all i? Tamura and Tamura (now Ikebe) [20] showed that such a tree

always exists and presented an O(n2 log n) time algorithm to compute one. We present an optimal

�(n logn) time algorithm for this problem.

Similar embedding problems can be posed for planar graph embeddings in a set of points;

these problems remain open. The problem of embedding a tree into a set of points with vertically

monotone paths from the root to all leaves in �(n logn) time is also open.

2 Hull Trees

Our algorithms for embedding trees use segments from the convex hull of the unassigned points as

tree edges; the convex hull property prevents our tree edges from intersecting. Consequently, we

need e�cient access to the convex hull of points. Moreover, we need the ability to delete points

from the convex hull as we embed tree vertices at them. Overmars and van Leeuwen [16] describe

a data structure to store the convex hull that permits arbitrary insertion and deletion of points

into the set of points. In our algorithms, we do not need to insert points into the convex hull but

simply delete them; we opt for hull trees [3, 7], which provide better amortized time complexities

for point deletions. This section provides a brief introduction to hull trees.

A hull tree of a set of n points P stores the upper or lower convex hull of P ; the entire convex

hull of P can be represented by two hull trees. A hull tree for P 's upper hull is a binary tree in

which each leaf is a point of P and internal nodes represent an edge in the upper hull of the node's

2

leaves (�gure 1). Each internal node in the tree stores

� the upper hull edge between the leaves in the node's left subtree and the node's right subtree.

� the number of leaves in its subtree.

� in the dc-embedding problem, each leaf has a degree value given in the problem's input. An

internal node to the hull tree stores the sum of the degrees of the leaves in its subtree.

If the hull tree is initially balanced then it maintains an O(logn)

(10,15)

(7,15)

(2,5)

1 4 5 8 9 12 13 16

5

15

7

10
2

Figure 1: Top level of a hull

tree (above) and upper hull

edges (below).

height.

We use two of the hull tree operations described by Hershberger

and Suri [7]: point deletion and set partition. The point deletion

operation removes a point from the hull tree. Each of the hull

edges at internal nodes from the point's leaf node to the root of the

hull tree may need to be recomputed as a result of the deletion; a

bottom-up merge of hulls along the path to the root accomplishes

this task.

In the set partition operation, we are given a vertical line and

we want to split, or partition, the hull tree into two parts: one

hull tree for the points left of the vertical line and one hull tree for

the remaining points. Assume that the vertical line goes through

a point q. The path from the root to the leaf for q in the hull tree

contains all the hull edges that cross the vertical line. Split the

hull tree along this path, duplicating the path in each part to maintain connectivity. As with the

deletion operation, recompute the hull edges that appear along the path in each part to get two

hull trees. Finally, use the point deletion operation to remove the duplicated point from one of the

hull trees as necessary.

Each of the hull tree operations use O(logn) amortized time. The set partition operation takes

O(logn) time to divide the hull tree into two parts and to duplicate the path. The remaining time

in the set operation is the same as in point deletion; it is the time required to recompute the hull

edges along one path. Create a potential function for the hull tree by assigning each internal node

a value equal to the number of hull edges that appear above the node's edge. The initial potential

of the tree is O(n logn). When recomputing the hull edges, we either keep the same edge or the

replacement hull edge has fewer hull edges below it thus lowering the overall cost of the tree. If

we �nd the replacement hull edge at a node v by walking along the two hulls of the left and right

subtrees of v then updating the edges along the path takes O(logn+k) time where k is the number

of hull edges over which we walked and the amount by which the potential function decreases.

Consequently, the path update takes O(logn) amortized time.

3 Embedding a rooted-tree with the root on the convex hull

Before embedding a rooted-tree in a set of points where any of the points can be designated to

embed the root, we consider the simpler problem where the root of the tree is designated to appear

at a speci�ed point of the convex hull. In this restricted case, we embed the tree and preserve the

3

order of the children about each tree node. Ikebe et al. [8] and Pach and T�or}ocsic [17] each provide

a quadratic time algorithm whose time can be reduced to O(n log2 n). After brie
y sketching this

lower complexity algorithm, we present an O(n logn) algorithm.

Ikebe et al. embed a tree T into a set of points P with the root at a point p on the convex

hull of P by locating rays `0; `1; : : : ; `m from p such that there are exactly jTij points between `i�1

and `i where T1; : : : ; Tm are the subtrees of the root of T . The lines `1; : : : ; `m are found by linear

time median search. The subtrees T1; : : : ; Tm are then recursively embedded in the points between

adjacent `i. This leads to an algorithm with a �(n2) worst-case time.

If the points of P are placed in a convex hull maintenance structure that supports deletions

in O(logn) amortized time [3, 7] then we can �nd the lines `i without resorting to a full median

search. Let TL be the leftmost subtree of T and let TR be T nTL. Assume that jTLj � jTRj. Delete,

one at a time, jTLj points from the convex hull that appear as the left neighbour of p. These

are precisely the points between `0 and `1. Rebuild the convex hull maintenance structure for the

deleted points; recursively embed TL in the new convex hull structure and TR in the convex hull

structure left after the deletions. The revised complexity of the algorithm is O(n log2 n) from the

recurrence T (n) = T (n� k) + T (k) + O(min (k; n� k) logn) where 1 � k � n� 1.

This O(n log2 n) embedding algorithm can guarantee that all paths in the embedding from the

root � to each leaf is vertically monotone if p is the highest point of P . When the algorithm

recursively embeds TL, it selects the deleted points with greatest y-coordinate as the root for TL.

Similarly, when the root � has degree 1, the algorithm chooses the point of P with second greatest y-

coordinate as the root for the single subtree of �. The the deleted points with greatest y-coordinate

is found in O(jTLj) time; the point of P with second greatest y-coordinate is found in O(logn)

time by keeping the points of P sorted by y-coordinate in a balanced tree and updating the tree

along with the convex hull maintenance structure. The time recurrence and time complexity for

the algorithm remain unchanged.

The cost of recomputing convex hulls in the variant of Ikebe et al.'s algorithm remains an

expensive operation. Our algorithm uses the same notion of isolating the points for one subtree

but only uses vertical separation lines and the upper hull of the points, assuming that p lies on

the upper hull. When the root of the tree is not in, or immediately adjacent to, the isolated set

of points, the algorithm embeds the tree along a path on the upper hull to reach the subset. By

handling the leftmost or rightmost subtree of the root and then deleting the points used along

the upper hull, the algorithm prevents embedded tree edges from crossing. Since all division lines

are vertical, the set partition operation on hull trees in section 2 divides the hull tree in O(logn)

amortized time and provides a better time complexity.

Theorem 1 Suppose that we are given an n-node tree T with root node � and a set of n points

P in general position with the point p on the upper hull UH (P). There is an algorithm that takes

O(n logn) time to straight-line embed T in P with � at point p.

Proof: Create a balanced hull tree for the upper hull of P and label each point of P with

a value of any; the label can take the values left, right, or any. When we solve subproblems

recursively, the hull trees and labels are not recomputed or reset.

Let TL be the leftmost subtree of �, let �0 be the root of TL (then �0 is the child of � in T),

and let TR be T n TL. Let ` be a vertical line that has jTRj � 1 points of P n fpg to its right.

4

Finally, let q be the left neighbour of p on UH (P), if it exists, as in �gure 2. If � has degree

one then TR is only �. Embed � at p. To complete the embedding, let r be the neighbour of p

on UH (P) as dictated by p's label, where a label of any dictates either neighbour along UH (P).

We prove later that there is such a neighbour on UH (P) in the label's direction. Delete p

from UH (P) and recursively embed TL rooted at �0 into the point set P n fpg with �0 going

to r.

Otherwise � has degree at least 2 and there are three possibilities:

� line ` intersects edge (p; q) as shown in �gure 2

� line ` is to the left of point q

� line ` is to the right of point p

If ` intersects edge (p; q) then partition UH (P) along ` into two upper hulls, UH (PL) to the

left of ` and UH (PR) to the right of `. Recursively embed TL rooted at �0 into the set PL at

point q and embed TR rooted at � into the set PR at point p.

If ` lies to the left of q then we shift the root of T and the embedding point in P leftward

until we obtain the previous case. The shift assigns point q a label of right and recursively

embeds T , now rooted at �0, into P at the point q.

We must ensure that � is eventually embedded at p after the shift. In the recursive call, TR

is the rightmost child of �0 in T and the dividing line `0 lies to the left of `. Consequently, either

TL n �
0 is embedded completely left of the vertical line through q with �0 still to be embedded

at q, or the root of T is shifted left during the embedding of TL. Assume the former case since

the latter case eventually leads to it as the root of T continues to shift left. Then the remaining

upper hull to the right of q is identical to UH (P) right of q since all deletions in the embedding

of TL occur to the left q. In particular, p is still the right neighbour of q on the upper hull.

Once TL n �
0 is embedded, �0 is a leaf with TR as its only child. The algorithm embeds �0 at q

and the label at q, still right since the root shifts in T were leftward, generates a recursive call

to embed TR into the remaining points with � going to point p.

p

q

`

�

�
0

TL

TR

PR
PL

Figure 2: Divided tree T and point set P .

In the �nal case, ` lies to the right of p. If R is the rightmost subtree of � in T then the

vertical line that has exactly jRj nodes to its right lies to the right of ` so we can embed T

rooted at � into P at point p by descending R rather than TL as above with left and right

interchanged.

Each of the above steps is accomplished in O(logn) amortized time. When the root is a leaf

of the tree, a point gets deleted from the hull tree in amortized O(logn) time. For the remaining

5

steps, we �nd the separating line ` with a binary search down the hull tree in O(logn) time.

Once we have the separating line, we either partition the point set for TL and TR in O(logn)

time to get two hull trees for the recursive subproblems or the root of T is shifted.

Each step either embeds a point of T into P or shifts the root of T in one direction and does

not reverse that direction until the root that started the shifting is embedded into P . Each of

these actions occurs O(n) times for an overall O(n logn) time complexity.

Finally, the initial hull tree for UH (P) is computed in O(n logn) time and the points of P

receive their initial labels in O(n) time.

A sample embedding appears in �gure 3.

(a) (b)

p

(c)

p

�

Figure 3: A rooted-tree (a), a point set with distinguished

point p (b), and the embedding of the tree (c).

4 Embedding a rooted-tree

In this section we simplify the case analysis of Ikebe et al. [8] and apply our new algorithm to

compute a straight-line embedding of T in P with the root of T at a speci�ed point. Following

Ikebe et al., we no longer attempt to preserve the ordering of children at a vertex in this embedding.

We begin by improving a quadratic-time algorithm used by previous researchers [8, 17] to embed

trees with two nodes mapped to adjacent hull vertices.

Theorem 2 Suppose that we are given an n-node tree T with distinguished nodes � and � (� 6= �),

and a set of n points P in general position having edge (p; q) on the convex hull CH (P). There is

an algorithm that, in O(n logn) time, embeds T in P with � at p and � at q.

Proof: Assume that we have a convex hull maintenance structure for P that supports deletions

of hull vertices in amortized O(logn) time; such a structure can be built initially in O(n logn)

time [3, 7]. Let T� be the induced subtree of T n� that contains � and let T� be the complement,

T n T�.

We can �nd a line through p with jT� j � 1 points on one side and q on the other side by

repeatedly deleting the point of the hull adjacent to p that is di�erent from q. When done, delete

p and apply theorem 1 to embed T� in the deleted points with � at p. This takes O(jT� j logn)

time.

Point q is on the hull of the points that remain. Let p0 be the hull vertex adjacent to q

where the open segment pp0 does not intersect the hull. Let �0, the child of � in subtree T�,

be the root of T�. Recursively embed T� with �0 at p0 and � at q. The total time required for

data structure building, point deletion, and tree embedding is O(n logn).

6

Tβ

TαTm

η

ν

|Tβ ||Tα|

|Tm|
p

q
r

Figure 4: Partitioning T at a centroid � and embedding in P

Now we can embed a rooted-tree T in a point set P with the root at a chosen point p. The

basic idea is illustrated in �gure 4: Use a centroid node to partition T into a subtree Tm and two

forests T� and T� such that we can �nd in P the vertices of an empty triangle 4pqr with rays from

p, q, and r that divide P into convex sets in which Tm, T� and T� can be embedded according to

theorems 1 or 2. The partition of the tree in
uences the partition of the point set, and vice versa.

Some special cases (when the point p is on the convex hull, the root is a centroid, or a forest is

empty) are handled along the way.

Theorem 3 Given an n-node tree T with root node � and a set of n points P in general position,

we can embed T in P with � at a chosen point p 2 P in O(n logn) time.

Proof: If p is on the convex hull CH (P), then we can use the algorithm of theorem 1. Otherwise,

sort the points of P radially around p.

Let � be a centroid node of T|that is, if we remove � and

|Tβ ||Tα|

p

b|Tm|

c

	p

a

Figure 5: Find bisector `p, then
*
pb and *pc

its incident edges from T , then we are left with connected

subtrees with at most jT j=2 nodes [10]. For our purposes,

the size of a subtree is the number of nodes other than �

that it contains. Let subtree Tm be a maximum-size subtree

of T n�. We now determine forests T� and T� and three rays

from p that form angles � � whose interiors contain jT�j,

jTmj � 1, and jT�j points, as in �gure 5.

First, �nd a line `p through p that bisects the points|

each open halfspace contains (n � 1)=2 points. To see that

such a line exists, consider the integer function D(�) whose

value is the di�erence between the number of points in the left and right halfspaces of a line

through p at angle �. By our general position assumption, the value of D changes by �1 when

the line hits or passes a point. Since D(�) = �D(� + �), the function D(�) has a zero.

Second, choose a point a 62 P on `p and a point b 2 P left of *pa so that the interior of angle

6 apb contains jTmj � 1 points and is as large as possible. Recall that jTmj does not count � if

� 2 Tm. There are essentially two choices|a can be chosen on either side of p, and then b is

determined as the the jTmjth point counterclockwise around p from *pa. If there is a point of P

on *pa then perturb a into 6 apb. When done, the lines !pa and
 !
pb determine two opposite angles

as in �gure 5: angle 6 apb has jTmj� 1 points not including b, and the opposite has at least jTmj

points.

Third, enumerate the sizes of subtrees of T n � as jTmj, n1, n2, . . . , nk , and let N(i) =

1 + n1 + n2 + � � �+ ni. Choose a point c in the angle opposite 6 apb that is the N(i)th point

7

clockwise from *pa, for some 0 � i � k. Such an index i exists because the angle contains at

least jTmj points and N(j + 1) �N(j) = nj � jTmj. Now let T� consist of the subtrees T n �

with sizes n1; : : : ; ni and let T� be the rest of the subtrees.

In two special cases we can �nish the embedding easily:

|Tβ ||Tα|

p q
r

b

c

|Tm|−1
q ′

r′

a

Figure 6: Finding (q; r)

If � = �, we embed � into p and embed Tm, T�, and T�

by the algorithm of theorem 1. If � has degree 2, then T�

is empty|in this case, we embed � into c and embed T�

and Tm into their appropriate angles with (c; b) connecting

� to Tm. Whether � goes with T� or with Tm, it can be

embedded at p according to theorem 2.

Otherwise, determine the convex hull of points inside

6 bpc, including b and c but not p. We can assume, without

loss of generality, that node � is in Tm or T�. Let (q; r) be

the hull edge that intersects *ap and is closer to p. Note that

triangle 4pqr is empty of points of P , as in �gure 6.

Finally, determine q0 2 P such that the open region bounded by *pa, pq, and
*
qq0 contains

jTmj � 1 points; this can be done by sorting points right of *ap radially around q. The slope of
*
qq0 lies between the slopes of*rq and

*
pb for the following reasons: If q0 is not left of*rq (dotted in

�gure 6) then the open region bounded by *pa, pq, and
*
qq0 does not include any point of P from

6 cpb. If
*
qq0 does not intersect

*
pb, then the open region bounded by *pa, pq, and

*
qq0 includes all

points inside 6 apb.

Similarly, determine r0 2 P such that the interior of the open region bounded by *pa, pr, and
*
rr0 contains jT�j points. The slope of

*
rr0 lies between the slopes of *pc and *qr. Thus, the three

unbounded regions de�ned by 4pqr, *pa,
*
qq0, and

*
rr0 are convex.

We use theorems 1 or 2 to embed T�, Tm, and T� in the appropriate regions with � at p, the

root of Tm at q, and � at r. Sorting, computing convex hull structures, and embedding each

take O(n logn) steps.

5 Finding degree-constrained embeddings

A problem similar to the rooted-tree embedding of section 3 is to �nd a tree with non-crossing

straight line edges in a set of points when the vertex degree for each point in the plane is given but

the tree itself is not provided. Tamura and Tamura [20] called this a degree-constrained embedding

(dc-embedding), proved that such an embedding exists if and only if the sum of the degrees for n

points is 2n� 2, and provided an algorithm to �nd a dc-embedding in O(n2 logn) time. Using hull

trees and partitions, we obtain an O(n logn) time algorithm for the same problem:

Theorem 4 If we are given n points P = fp1; p2; : : : ; png in general position where each point is

labeled with a positive integer di such that
P

n

i=0 di = 2n � 2 then there is an algorithm that takes

O(n logn) time to �nd a dc-embedding on P .

Proof: Create a deletion only upper hull maintenance structure for the points of P as described

in section 2. For the convenience of the proof, assume that the names of the points in P are

sorted by x-coordinate: pi < pj for i < j. Assume that n > 1. Finally, let S(j) = 2j�1�
Pj

i=1
di.

8

The upper hull of P falls into one of three categories:

1. there is a point of degree 1 and a point of degree greater than 1 on the hull

2. all points on the hull have degree 1

3. all points on the hull have degree greater than 1

(b)

1 1
1

pk

left subproblem right subproblem
(c)

2 3
pk

`

a b

left subproblem right subproblem

(a)

1
2

3

1
2

2
3

Figure 7: Three cases of recursion for the dc-embedding algorithm.

In the �rst case, there must exist two such points that are adjacent along the hull. Join these

points by an edge, delete the point of degree 1 from the hull, and decrease the degree of the

other point by 1 (see �gure 7a). The rest of the dc-embedding is then built recursively.

If all the hull points have degree 1 then either n = 2, or d2 � 2, or there exists an index k

such that S(k � 1) > 0 and S(k) � 0. If n = 2 then join the two vertices and stop. If d2 � 2

then join p1 to p2 by a tree edge, delete p1 from the upper hull UH (P), decrease d2 by 1, and

recurse. If d2 = 1 then S(2) = 1 > 0 and S(n� 1) = 0 so the third condition holds for some

1 < k < n. By de�nition, S(k) = S(k� 1) + 2� dk which implies that dk � 3. Partition P and

UH (P) at pk with pk belonging to both smaller sets (see �gure 7b). In the left subset, assign pk

a degree of S(k�1)+1 which is at least 1 and at most dk�1. In the right subset, assign pk the

remaining degree from dk. Compute a dc-embedding for each subset recursively; the resulting

trees will be connected through pk.

Finally, if all the hull points have degree greater than 1 then there exists an index k such

that S(k) = 0 since S(1) < 0 and S(n � 1) � 0 and the di�erence S(j)� S(j � 1) increases

by at most 1 whenever pj has degree 1. Let ` be a vertical line between pk and pk+1 and let a

and b be the left and right endpoints of the upper hull edge of P that intersects ` (�gure 7c).

Partition P and its upper hull along `, join points a and b by a tree edge, decrease the degrees

of points a and b by 1 each, and recursively �nd the dc-embedding for the subsets of P left and

right of `.

The time complexity of each step is O(logn) amortized time. The index k that satis�es

the given conditions is found through a binary search in the hull tree in O(logn) time. The

deletions and hull partitions of the steps are each done in O(logn) amortized time.

Each of the steps occurs O(n) times since it either embeds a tree edge or partitions the convex

hull where the partition vertex becomes a leftmost or rightmost hull vertex and is ineligible for

a later partition.

A sample dc-embedding appears in �gure 8.

6 Lower Bounds

In this section, we provide
(n logn) lower bounds on quadratic algebraic decision trees for com-

puting a straight-line embedding of a tree onto a set of n points and for computing a dc-embedding

9

2

5

4

43

2

5

4

43

Figure 8: A sample dc-embedding. Unlabelled vertices have degree 1.

on n points. Theorem 5 establishes the optimality of our algorithms for solving these problems.

The same bound can be established with a reduction to the unit cost RAM model used by Paul

and Simon [18] for their lower bound on sorting.

Theorem 5 Finding a straight-line embedding of any tree T with n nodes into a set P of n points

requires
(n logn) time.

Proof: An Euler tour of a tree T embedded into a set of n points gives a chain on 2n points

in which no segments cross. A careful implementation of Melkman's algorithm [12] will then

compute the convex hull of P in O(n) time. The
(n logn) lower bound for computing the

convex hull of P [19] implies the same lower bound for the tree embedding problem.

References

[1] P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints and representable trees. In

R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in
Computer Science, pages 340{351. Springer-Verlag, 1995.

[2] P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. Report TR-SOCS-93.9, School of

Comp. Sci., McGill Univ., Montreal, Quebec, Canada, 1993.

[3] B. Chazelle. On the convex layers of a planar set. IEEE Transactions on Information Theory, IT-
31:509{517, 1985.

[4] P. Crescenzi and A. Piperno. Optimal-area upward drawings of AVL trees. In R. Tamassia and I. G.

Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages
307{317. Springer-Verlag, 1995.

[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated

bibliography. Comput. Geom. Theory Appl., 4:235{282, 1994.

[6] P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard.

In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 49{56, 1994.

[7] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT, 32:249{267,
1992.

[8] Y. Ikebe, M. Perles, A. Tamura, and S. Tokunaga. The rooted tree embedding problem into points in

the plane. Discrete & Computational Geometry, 11:51{63, 1994.

[9] G. Kant, G. Liotta, R. Tamassia, and I. Tollis. Area requirement of visibility representations of trees.

In Proc. 5th Canad. Conf. Comput. Geom., pages 192{197, Waterloo, Canada, 1993.

[10] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-

Wesley, second edition, 1973.

10

[11] J. Manning and M. J. Atallah. Fast detection and display of symmetry in trees. Congressus Numeran-
tium, 64:159{169, 1988.

[12] A. Melkman. On-line construction of the convex hull of a simple polyline. Information Processing
Letters, 25:11{12, 1987.

[13] C. Monma and S. Suri. Transitions in geometric minimum spanning trees. In Proc. 7th Annu. ACM
Sympos. Comput. Geom., pages 239{249, 1991.

[14] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams. John Wiley & Sons, 1992.

[15] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.

[16] M. Overmars and J. van Leeuwen. Maintenance of con�gurations in the plane. Journal of Computer
and System Sciences, 23:166{204, 1981.

[17] J. Pach and J. T�or}ocsik. Layout of rooted trees. In W. T. Trotter, editor, Planar Graphs, volume 9 of

DIMACS Series, pages 131{137. American Mathematical Society, 1993.

[18] W. Paul and J. Simon. Decision trees and random access machines. Logic and Algorithmics, Mono-

graph 30, L'Enseignement Math�ematique, 1987.

[19] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, New

York, NY, 1985.

[20] A. Tamura and Y. Tamura. Degree constrained tree embedding into points in the plane. Information
Processing Letters, 44:211{1214, 1992.

11

