
Veri�cation of Benchmarks 17 and 22 of the IFIP WG10.5

Benchmark Circuit Suite

S. Hazelhurst and C.-J. H. Seger

Integrated Systems Design Laboratory

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada V6T 1Z4

5 October 1995

Abstract

This paper reports on the veri�cation of two of the IFIP WG10.5 benchmarks | the multi-

plier and systolic matrix multiplier. The circuit implementations are timed, detailed gate-level

descriptions, and the speci�cation is given using the temporal logic TLn, a quaternary-valued

temporal logic. A practical, integrated theorem-proving/model checking system based on the

compositional theory for TLn and symbolic trajectory evaluation is used to verify the circuits. A

64-bit version of multiplier circuit (Benchmark 17) containing approximately 28 000 gates takes

about 18 minutes of computation time to verify. A 4� 4, 32-bit version of the matrix multiplier

(Benchmark 22) containing over 110 000 gates take about 170 minutes of computation time to

verify. A signi�cant timing error was discovered in this benchmark.

Keywords: symbolic trajectory evaluation, benchmarks, compositional veri�cation, temporal

logic, theorem proving.

1 Introduction

The IFIP WG10.5 Benchmark Circuit suite [3] is a suite of circuits designed to allow comparison

between di�erent veri�cation sites. Descriptions of the circuits are available [7].

This paper reports on the veri�cation of two circuits of the IFIP WG10.5 suite | one is a

multiplier circuit, the other is a systolic matrix multiplier circuit | using a method of veri�cation

developed in the ISD Laboratory at the University of British Columbia. As this work is part of

a larger project, this is a descriptive report of experiments undertaken. It is not a self-contained

report and readers unfamiliar with symbolic trajectory evaluation will need the fuller account of

the theory and discussion of the relationship to other work that can be found in work cited later.

Much of the work. reported here forms the basis of the �rst author's PhD research.

Section 2 brie
y describes the theoretical basis of the work. Section 3 describes the veri�cation

of Benchmark 17 (the multiplier) and Section 4 describes the veri�cation of Benchmark 22 (the

This research was supported by operating grant OGPO 109688 from the Natural Sciences and Engineering Research

Council of Canada, a fellowship from the B.C. Advanced Systems Institute, and by equipment grants from Sun

Microsystems Canada Ltd. and Digital Equipment of Canada Ltd.

1

systolic matrix multiplier). In both cases, the circuits are implemented at a detailed gate-level,

based on the description given in the suite. The veri�cation includes the veri�cation of timing

properties of the circuit. A 64-bit version of multiplier circuit containing approximately 28 000

gates takes about 18 minutes of computation time to verify, while a 4 � 4, 32-bit version of the

matrix multiplier containing over 110 000 gates take about 170 minutes of computation time to

verify (in both cases a DEC Alpha 3000 was used for veri�cation).

2 Theoretical background

2.1 Model and logic

Circuits are modelled by the model (hS; v i;Y), where:

� S, the state space, is a complete lattice under the information ordering v ; and

� Y, the next state function, describes the behaviour of the circuit.

For circuits, S = Cn, where n is the number of components in the circuit, and C is the lattice

shown in Figure 1. L represents a low voltage, H represents a high voltage, X represents an unknown

voltage, and Z represents an overconstrained value.

X

Z

L H

@
@

�
�

�� @@
6

v

Figure 1: The state space C

The circuits are veri�ed by checking whether assertions of the form

j=MhjA ==�g ji

hold of the circuit. A and g are formulas of a temporal logic. A, the antecedent, describes the

input or environment of the circuit, while g, the consequent, describes the output of the circuit.

Informally j=MhjA ==�g ji says that in all runs of the circuit, if A holds, then so does g.

A full description of the temporal logic can be found in an earlier technical report [1]. The novel

feature of this temporal logic is that it is a four-valued logic f?; f ; t;>g | these are truth values,

not values of the circuit.

For the purpose of this technical report, the logic TLn can be de�ned as follows. Let Gn be the

smallest set with the following predicates:{

� The constant predicates: f ; t;?;> 2 Gn;

� 8i 2 f1; : : : ; ng; [i] 2 G.

Here [i] refers to the i-th component of the state space. A formula g is evaluated with respect to a

state by substituting for each [i] which appears in the formula the value of the i-th component of

the state. Formally,

2

� [i](s) =

8
>>>><
>>>>:

? when s[i] � X

f when s[i] � L

t when s[i] � H

> when s[i] � Z

� f(s) = f ;

� t(s) = t;

� ? (s) =?;

� >(s) = >;

The set temporal logic formulas of the logic TLn is given by the following abstract syntax:

TLn ::= Gn j TLn ^̂̂ TLn j :::TLn j NextTLn j TLn UntilTLn

Formulas of the logic are used to specify behaviour of the circuit. The question of veri�cation is to

ask whether the circuit behaviour satis�es these given formulas. We ask whether a sequence of states

� satis�es a formula g, written Sat(�; g). This is formally de�ned. Disjunction and implication can

be de�ned as derived operators. If � = s0s1s2 : : : is a sequence of states, then ��i = sisi+1 : : : .

De�nition 2.1 (Semantics of TLn).

1.If g 2 Gn then Sat(�; g) = g(s0);

2.Sat(�; g ^̂̂ h) = Sat(�; g)^ Sat(�; h);

3.Sat(�;:::g) = :Sat(�; g);

4.Sat(�; Nextg) = Sat(��1; g);

5.Sat(�; gUntilh) =
1
_
i=0

(Sat(��0; g)^ : : :^ Sat(��i�1; g)^ Sat(��i; h)).

Although the formulas of the logic have a restricted syntax, we have shown that all monotonic

predicates can be expressed within the logic.

Informally, j=Mhj g ==�h ji says that all sequences that satisfy g with truth degree t also satisfy

h with degree t.

This presentation of TLn has shown the scalar version of TLn. This de�nition can be extended

to a symbolic version, which by allowing variables to appear in expressions, makes the speci�cations

much more concise.

2.2 Practical issues

To make speci�cations easier to write and read, some shorthands are introduced. The logic TLn is

de�ned for the set Cn, which allows us to represent real circuits which have nodes taking boolean

values. In many circuits, rather than considering the values of individual components, it is con-

venient to group a collection of components together, and consider the collection as a group. A

3

common example is a circuit that manipulates numbers | integers or
oating-point values. Rather

than considering 64 bit-valued nodes, we consider one integer-valued nodes. Thus, we write

[A] + [B] = c+ d+ e

to ask whether the sum of the values on nodes A and B is equal to the sum of the integer variables

c, d and e. Here A and B are shorthand for 64 bit-valued nodes; c, d and e are shorthand for 64

bit-valued variables; and = and + are shorthand for a the composition of many primitive operations

such as conjunction and negation.

We also introduce the shorthand

Global [(s0; t0); : : : ; (sn; tn)] g =
n

^̂̂
j=0

(
tj

^̂̂
k=sj

Nextk g);

which asks whether g holds between sj and tj for j = 0; : : : ; n.

2.3 Veri�cation Methodology

The veri�cation methodology proposed is the integrated use of theorem proving and model checking.

The model checking approach is based on the method of symbolic trajectory evaluation (STE)

proposed by Seger and Bryant [6]. This work developed STE for a restricted temporal logic,

trajectory formulas (TF). The Voss system [5] implements STE e�ciently.

However, model checking has inherent limitations, and there are many circuits that model

checking cannot deal with. Earlier work of ours [2] presented a compositional theory for TF,

and showed that it provided a sound theoretical basis for developing a practical, integrated tool

combining model checking and theorem-proving. The theorem prover implements a number of

inference rules that the veri�er can use to prove results. One of these inference rules is symbolic

trajectory evaluation. The idea is that the veri�cation problem will be broken down into a number

of smaller sub-problems. The individual problems will be veri�ed with STE; these results will then

be combined using the other inference rules. Note that the circuit is not partitioned. While it is

important to be able to identify some structure in the circuit for the compositional approach to be

applicable, it is not necessary to decompose the circuit.

The veri�er interacts with the theorem-prover using FL, an ML-like language; together with

the use of heuristics, this gives the veri�er a
exible and powerful tool for veri�cation.

Recent work of ours [1] has extended STE to TLn Not only has the theory been extended,

but three di�erent techniques for extending the STE-based algorithms were proposed: the direct,

testing machine, and mapping methods

We have also extended the compositional theory (unreported so far). The basic compositional

theory for TLn is found in the table below. The side condition �t(g)vP �t(g1) implies that every

sequence that satis�es g1 also satis�es g; the side condition �t(g2)vP �t(g1)t�
t(h1) implies that

every sequences that satis�es both g1 and h1 will also satisfy g2.

4

Name Rule Side condition

Identity
j=
M
hj g ==�g ji

Time-shift
j=Mhj g ==�h ji

j=
M
hjNext t g ==�Next t h ji

t > 0

Conjunction
j=Mhj g1 ==�h1 ji j=Mhj g2 ==�h2 ji

j=Mhj g1 ^̂̂ g2 ==�h1 ^̂̂ h2 ji

Disjunction
j=Mhj g1 ==�h1 ji j=Mhj g2 ==�h2 ji

j=Mhj g1 ^̂̂ g2 ==�h1 ^̂̂ h2 ji

Consequence
j=Mhj g ==�h ji

j=Mhj g1 ==�h1 ji
�t(g)vP �t(g1);�

t(h1)vP �t(h)

Transitivity
j=Mhj g1 ==�h1 ji j=Mhj g2 ==�h2 ji

j=Mhj g1 ==�h2 ji
�t(g2)vP �t(g1) t�t(h1)

Specialisation
j=Mhj g ==�h ji

j=Mhj�(g) ==��(h) ji
� a specialisation.

Until
j=Mhjg1 ==�h1 ji j=Mhj g2 ==�h2 ji

j=Mhj g1 Untilg2 ==�h1 Untilh2 ji

The example veri�cations shown in the next two sections show the use of the compositional

theory. These examples also can be used to evaluate the three extensions to the STE algorithms.

3 Verifying the multiplier

3.1 Description of circuit

Benchmark 17 of the IFIP WG10.5 Benchmark Suite is a multiplier which takes two n-bit numbers

and returns a 2n bit number representing their multiplication. This description is heavily dependent

on the IFIP documentation.1

Let A = an�1 : : : a1a0 and B = bn�1 : : : b1b0. Then A�B =
P

n�1
i=0 2i(

P
n�1
j=0 2

j
aibj). Implement-

ing this is straightforward: the basic operation is multiplying one bit of A with one bit of B and

adding this to the partial sum. The component which accomplishes this basic operation takes four

inputs:

a One bit of the multiplicand,

b One bit of the multiplier,

c One bit of the partial sum previously computed,

CIN A one bit carry from the partial sum previously computed;

and computes computes a � b+ c+ CIN producing two outputs:

S One bit partial sum, and

COUT One bit carry.

The equations for the output are:

S = a ^ b � (c� CIN)

COUT = a ^ b ^ c _ a ^ b ^ CIN _ c ^ CIN

5

a

b

�

^

q

c

CIN

�

�

�

�

�

�

�

� S

q

q

q

q

�

^ e

�

^ e

�

^ e

�

^ e

COUT

c

b

a

S

CIN

COUT

Figure 2: Base module for multiplier

The implementation of the equations (as given in the IFIP documentation) and the graphical

symbol used to represent these components is presented in Figure 2.

A vector of these components multiplies one bit of B with the whole of A and adds in any

partial answer already computed. It might seem appropriate rather than just having a vector of

these components to also have an adder which added in carries from less signi�cant columns to be

added in to the results of more signi�cant bits. The problem with doing that is that each stage

would be limited by the need for possible carries from the least signi�cant bit to be propagated to

the most signi�cant bit, with concomitant increases in the time and number of gates needed.

The approach used in the implementation is to produce two outputs: the �rst output is the

sum of the bit-wise addition of the two inputs, ignoring the carries; and the second output is the

carries of the bit-wise addition. Both of these outputs are forwarded to the next stage; here the

carries are added in and new carries generated. We can consider the vector of S outputs as one

n-bit number and the vector of COUT outputs as another n-bit number. If we consider stage k by

itself, if the vector of a inputs is ~x, if the b inputs are all the bit y, and if the vector of c inputs is

~z, then we shall have that S + 2k+1COUT = ~xy + z. (This is something that must be proved in

the veri�cation.)

These components are arranged in a grid (Figure 3 shows how a 4 bit multiplier is arranged).

The multiplier contains n stages, each of which multiplies one bit of B with A and adds it to the

partial result computed so far. After k stages, n+k bits of the partial answer have been computed.

The components making up each stage are arranged in columns in the �gure. The components

making up a row compute one bit of the �nal answer; carries from less signi�cant bits are added

in, and any generated carries are output for the more signi�cant rows to take care of.

In the Figure 3, each of the base components is labelled with indices: i : j indicates that the

component is the j-th component of the i-th stage.

Having passed through n stages, the full multiplication has been computed. However as the

�nal stage still outputs two numbers, the carries must now all be added in. Therefore the �nal step

in the multiplier is a row of n� 1 full adders which adds in carries. These full adders are labelled

FA in Figure 3.

1ftp://goethe.ira.uka.de/pub/benchmarks/Multiplier/

6

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

c

b b

a

S

CIN

COUT

0:0

0:1

0:2

0:3

1:0

1:1

1:2

1:3

2:0

2:1

2:2

2:3

3:0

3:1

3:2

3:3

Bh3::0i
h0i h1i h2i h3i

Ah3::0i

b

b

b

b

h1i

h2i

h3i

h0i

Ground

b

b

b

b

b

b

b

b

b

a

S

COUT

CIN

b

a

S

COUT

CIN

b

a

S

COUT

CIN

FA0

FA1

FA2

�
�
�
�_

b

b

b

b

b

b

b

b

-

Outh7::0i

h0i

h1i

h2i

h3i

h4i

h5i

h6i

h7i

Figure 3: Layout of multiplier

7

Integer node Vector of bit nodes

A The four bit integer input

B The four bit integer input

O Output of the or gate

RSi S output of stage i for i = 0; : : : ; 3

hBM(i : 3)(S); : : : ;BM(i : 0)(S);BM(i� 1 : 0)(S); : : : ;BM(0 : 0)(S)i

RCi COUT output of stage i for i = 0; : : : ; 3

hBM(i : 3)(COUT); : : : ;BM(i : 0)(S)

RS4 The output Out

hO;FA2; : : : ;FA0;BM(3: 0)(S); : : : ;BM(0: 0)(S)i

Table 1: Benchmark 17: Correspondence between integer and bit nodes

The implementation of the circuit was done in Voss's EXE format as a detailed gate-level

description of the circuit. A unit-delay model was used, although this is essential neither to the

implementation nor the veri�cation.

3.2 Veri�cation

This section presents a detailed description of the veri�cation of the four bit multiplier presented

in Figure 3. This example is small enough that the complete proof can be described, and this is

useful to show how the inference rules are used. However, the example is big enough that there is

some tedium involved too; it must be emphasised that in practice the veri�cation is done using FL

as the proof script language, which alleviates much of the tedium.

It is also worth mentioning that the veri�cation of a four bit multiplier is well within the capacity

of trajectory evaluation to deal with. Although the proof is not independent of data path width

since issues of timing are important, it may be useful to do the veri�cation for a small bit width

�rst using trajectory evaluation by itself.

Identifying structure Using the inference rules relies on using the properties of integers to

break the limitations of BDDs. Therefore, the �rst step in the proof is to identify some structure,

in particular to identify which collections of nodes should be treated as integers.

Notation: BM(i : j)(x) refers to node x in the basic module i : j; FAi(x) refers to node x of the

full adder FAi. For each stage, we consider the collection of a inputs as an integer, the collection

of b inputs as an integer, and so on : : : Similarly, the collection of S outputs and COUT outputs

are both considered as integers. Table 1 presents the correspondences.

The following bit vectors variables are used:

a stands for the bit vector ha3; : : : ; a0i;

b stands for the bit vector hb3; : : : ; b0i (a and b are the inputs to the circuit);

c stands for the bit vector hc7; : : : ; c0i;

d stands for the bit vector hd2; : : : ; d0i.

If N is a bit vector, then Nhii refers to the i-th least signi�cant bit (so Nh0i is the least

signi�cant bit), and Nhi::ji refers to the (sub)bit vector hNhii; : : : ; Nhjii. We also use the short

hand that RCi = d is short for RCih2::0i = d (RCi is four bits wide, d is three bits wide).

8

De�ning this correspondence has two advantages: the level of abstraction is raised since the

veri�er can think in terms of integers rather than bit vectors; and the veri�er can use properties of

integers to prove theorems without having to convert everything into BDDs.

Anomalies in circuit implementation There are a number of aspects of the circuit that can

be criticised and improved. The most obvious is that BM(i : 3)(COUT) = 0 for all i. In turn, this

means that one of the inputs to the or gate is always 0, i.e. RS4h7i depends entirely on FA2(COUT).

The only advantage of this implementation is that it makes the circuit description (slightly) more

regular. The cost is the extra circuitry and time required to perform the computation. Furthermore,

this implementation makes the proof more complicated. The �nal step in the proof below will be

to show that since RS3+24RC3 = ab that RS4 = ab; this is only true because the one input to the

or gate is zero. Therefore, as the proof is constructed, we shall prove that BM(i; 3)(COUT) = 0,

complicating the proof slightly. A better implementation would have meant a simpler proof.

The Proof

Stage 0 The �rst step is to show the �rst stage performs the correct multiplication/addition.

j=
M

By STE

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]h0i=b0)

==� Global [(3; 100)] ([RS0] + 21[RC0]=abh0i ^̂̂ [RC0]h3i=0) ji

(1)

To make STE as e�cient as possible, we use as little information as possible by considering only

one bit of b. However, at a later stage we shall want to use all the bits of b, so the next step is

to include the rest of b in the result. There are a number ways of doing this. One would be to

use the identity rule to show that B has any value imposed on it and then use conjunction with

Result 1. However, in this case it is easier to use one of the rules of consequence and strengthen

the antecedent.

j=M By rule of consequence from Result 1

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(3; 100)] ([RS0] + 21[RC0]=abh0i ^̂̂ [RC0]h3i=0) ji

(2)

This use of the rule of consequence is motivated by the fact that the antecedent of Result 2 uses

more information than that of Result 1

Stage 1 The �rst step is to show Stage 1 performs the correct multiplication/addition. Note,

the proof is done for arbitrary input for RS0 and RC0 rather than the actual input. This important

because STE is used to do the proof; if the actual input (which is function of A and B) were used,

in general STE would not be able to cope.

9

j=
M

By STE

hjGlobal [(3; 100)]

[A]=a ^̂̂ [B]h1i=b1 ^̂̂ [RS0]=ch3::0i ^̂̂ [RC0]=d ^̂̂ [RC0]h3i=0

==� Global [(6; 100)]

[RS1] + 22[RC1]=ch3::0i+ 21d+ 21abh1i ^̂̂ [RC1]h3i=0 ji

(3)

In proving this result, STE is used; this implies that BDDs are used to represent data as this

is necessary for STE. However, once the proof is done, the result is only stored symbolically, and

the BDDs used to represent Result 3 are garbage collected.

Having proved this, we now combine Results 2 and 3 using a combination of transitivity and

specialisation. This is useful to do since we know something about the values of RS0 and RC0; it

is feasible to do since the consequent of Result 3 is strictly dependent on the nodes RS0 and RC0

| this means that Generalised Transitivity Theorem (GTT) can be used | informally, this says

that ch3::0i+ 21d = abh0i.

j=
M

By Generalised Transitivity

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(6; 100)]

[RS1] + 22[RC1]=abh0i+ 21abh1i ^̂̂ [RC1]h3i=0 ji

(4)

Now we have the output of stage 1 solely in terms of a and b. This can be rewritten into a more

elegant form. The proving system has integer rewriting procedures which automatically rewrites

abhn�1::0i+ 2nabhni as abhn::0i. This is done by the theorem prover, and applying the rule of

consequence yields the next result:

j=M By rule of consequence

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(6; 100)]

[RS1] + 22[RC1]=abh1::0i ^̂̂ [RC1]h3i=0 ji

(5)

Stages 2 and 3 The steps are exactly the same as stage 1.

j=
M

By STE

hjGlobal [(6; 100)]

[A]=a ^̂̂ [Bh2i]=b2 ^̂̂ [RS1]=ch4::0i ^̂̂ [RC1]=d ^̂̂ [RC1]h3i=0)

==� Global [(9; 100)]

[RS2] + 23[RC2]=ch4::0i+ 22d+ 22abh2i ^̂̂ [RC2]h3i=0 ji

(6)

j=
M

By Generalised Transitivity (Results 5 and 6)

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(9; 100)]

[RS2] + 23[RC2]=abh1::0i+ 23abh2i ^̂̂ [RC2]h3i=0 ji

(7)

10

j=M By rule of consequence from Result 7

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(9; 100)]

[RS2] + 23[RC2]=abh2::0i ^̂̂ [RC2]h3i=0 ji

(8)

j=M By STE

hjGlobal [(9; 100)]

[A]=a ^̂̂ [B]h3i=b3 ^̂̂ [RS2]=ch5::0i ^̂̂ [RC2]=d ^̂̂ [RC2]h3i=0

==� Global [(12; 100)]

[RS3] + 24[RC3]=ch5::0i+ 23d+ 23abh3i ^̂̂ [RC3]h3i=0 ji

(9)

j=
M

By Generalised Transitivity (Results 8 and 9)

hjGlobal [(0; 100)] ([A]=a ^̂̂[B]=b)

==� Global [(12; 100)]

[RS3] + 24[RC3]=abh2::0i+ 23abh3i ^̂̂ [RC3]h3i=0 ji

(10)

j=
M

By By rule of consequence from Result 10

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(12; 100)]

[RS3] + 24[RC3]=ab ^̂̂ [RC3]h3i=0 ji

(11)

The adder stage The �nal step in the proof is to ensure that the last, adder stage, adds in

the carries correctly. Here possible carries in the least signi�cant bit must be passed to the most

signi�cant bit. For large bit widths, this adder stage may take tens or hundreds of nanoseconds, so

timing may be important here.

j=
M

By STE

hjGlobal [(12; 100)] ([RS3]=ch6::0i ^̂̂ [RC3]=d ^̂̂ [RC3]h3i=0)

==� Global [(22; 100)] ([RS4]=(ch6::0i+ 24d)h7::0i) ji

(12)

Now, using general transitivity, we have:

j=M By Generalised Transitivity (Results 11 and 12)

hjGlobal [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(22; 100)] ([RS4]=ab) ji

(13)

Again, the automatic rewrite systems recognises that ab is an eight bit number, and so rewrites

abh7::0i as ab. This concludes the proof.

The appendix has the FL proof script for the multiplier example.

11

Bit width Number of gates D Time (s) T Time (s)

4 135 3:9 5:4

8 473 9:8 15:0

16 1841 36:0 60:8

32 7265 168:7 371:4

64 28865 1081:9 > 6000

Table 2: Veri�cation times for Benchmark 17 multiplier

Experimental results and comments This IFIP WG10.5 Benchmark 17 multiplier was veri�ed

for a number of bit widths (the n bit width case multiplies two n-bit numbers and produces a 2n bit

number). The time taken to perform the veri�cation on a DEC Alpha 3000 is shown in Table 2: the

column labelled `D Time' shows the time taken using the direct method, and the column labelled

`T Time' shows the time taken using the testing machine approach (all times shown in seconds).

These results are useful for evaluating the testing machine approach.

The proof script itself is short (250 lines, about 100 of which are declarations) and straight-

forward to write, relying only on simple properties of integers. Once structure in the circuit is

identi�ed by associating integers with collections of bit valued nodes, the veri�cation no longer has

to deal with bits, and at no stage does the veri�cation have to concern itself with how the full

adders or the base components are actually implemented.

The reason why STE cannot deal with the veri�cation by itself is not because of the size of

the circuit; the problem is that there is no good variable ordering for the multiplication of two

bit vectors. However, good variable orderings are de�nitely possible for verifying the individual

components of the multiplier with STE, and good heuristics to �nd good ordering can easily be

automated.

4 Matrix Multiplier

A �lter circuit based on a design of Mead and Conway is Benchmark 22 of the IFIP WG10.5

suite [4]. The �lter is a matrix multiplication circuit for band matrices. A band matrix of band

width w is a matrix in which zeros must be in certain positions (the matrices contain natural

numbers), and the maximum number of non-zero items in a row or column is w. This circuit

is called 2Syst. Section 4.1 discusses the speci�cation of the circuit; Section 4.2 discusses its

implementation; Section 4.3 presents its veri�cation; and Section 4.4 analyses and comments on

the veri�cation. Sections 4.1 and 4.2 rely heavily on the benchmark documentation.2

4.1 Speci�cation

The suite documentation does not give a general speci�cation of the circuit (it does give a general

implementation), but presents the case of w = 4. A circuit implemented for a band-width of w

can be used to multiply matrices of any size | larger matrices just take longer to multiply; the

documentation does not consider the general case, and gives only speci�cation for 4� 4 matrices.

2ftp://goethe.ira.uka.de/pub/benchmarks/2Syst/

12

Let A and B be the two 4� 4 matrices given below:

A =

2
664

a11 a12 0 0

a21 a22 a23 0

a31 a32 a33 a34

0 a42 a43 a44

3
775 B =

2
664

b11 b12 b13 0

b21 b22 b23 b24

0 b32 b33 b34

0 0 b43 b44

3
775 ;

and let C = A� B be the matrix:

C =

2
664
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

3
775

The external interface of the 2Syst circuit is shown in Figure 4. The coe�cients of matrix A are

input on the inputs a0, : : : , a3, the coe�cients of B are input on b0, : : : , b3, and the coe�cients

of C, the result, is output in outputs c0 to c6. (What this picture, taken from the documentation,

does not show is that the circuit is clocked and there should be a pin for clock input too.)

b3

b2

b1

b0

a3

a2

a1

a0

-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

c6

c5

c4

c3

c2

c1

c0

2Syst

Figure 4: Black box view of 2Syst

Timing

The timing of when and where the inputs must be applied and the outputs become available is

critical. The timing for the inputs is presented in Table 3. In clock cycles 0 to 3, all the inputs are

initialised by having zero applied to them. Then, for the next ten cycles the matrix coe�cients are

input to the circuit. For example, in cycle 9, the coe�cients a23, a42, b32 and b42 are input on pins

a0, a3, b0, and b3 respectively, while all other pins have zero applied to them.

Table 4 shows when and where the coe�cients of the output matrix can be found. The spec-

i�cation gives some freedom in timing here. It requires that the output be given in clock cycles

t0; : : : ; t6, but does not specify values for the tj ; and, while t0 < t1 : : : < t6, the tj need not be

consecutive clock cycles. This gives some latitude in the implementation of the circuit.

4.2 Implementation

The matrix multiplication C = A�B can be de�ned in di�erent ways. Assuming for simplicity that

A and B are both r�r matrices, the usual de�nition of C is through de�ning each cij =
P

r

k=1 aikbki.

13

clock a0 a1 a2 a3 b0 b1 b2 b3

0� 3 0 0 0 0 0 0 0 0

4 0 a11 0 0 0 b11 0 0

5 0 0 a21 0 0 0 b12 0

6 a12 0 0 a31 b21 0 0 b13

7 0 a22 0 0 0 b22 0 0

8 0 0 a32 0 0 0 b23 0

9 a23 0 0 a42 b32 0 0 b24

10 0 a33 0 0 0 b33 0 0

11 0 0 a43 0 0 0 b34 0

12 a34 0 0 0 b43 0 0 0

13 0 a44 0 0 0 b44 0 0

Table 3: Inputs for the 2Syst circuit

cycle c0 c1 c2 c3 c4 c5 c6

t0 c11

t1 c12 c21

t2 c13 c22 c31

t3 c14 c23 c32 c41

t4 c24 c33 c42

t5 c34 c43

t6 c44

Table 4: Outputs of the 2Syst circuit

An alternative de�nition is useful in implementing parallel hardware to perform the multiplication:

matrix multiplication can also be de�ned by the recursive equation 14.

c

(1)

ij
= 0

c

(k+1)

ij
= c

(k)

ij
+ aikbkj

cij = c

(r+1)

ij

(14)

The entries in arrays A and B are n-bit numbers. If the band-width of the matrices is w,

the maximum number of non-zero terms in any cij is w, which means that each entry in cij is of

bit-width m = 2n+ r� 1.

The basic operation of Equation 14 is performing an addition and a multiplication; this is

modelled in the implementation, where the basic cell has an integer multiplier and adder to perform

this. The external interface of these cells is shown in Figure 5. The cell has three inputs: C In is

an m bit number, containing a partial sum; and A In and B In are n bit data which are either zero

or coe�cients of the A and B matrices. A Out, B Out are two n-bit output values and C Out is an

m-bit output. If in one clock cycle A In, B In and C In have the values a, b and c respectively, then

at the start of the next cycle: A Out = a; B Out = b; C Out = ab+ c.

14

�
�	

@
@R

6

�
�	

@
@R

A Inhn::1� 0i

C Outhm::1� 0i

B Inhn::1� 0i

B Outhn::1� 0i

C Inhm::1� 0i

6 A Outhn::1� 0i

Figure 5: Cell representation

Thus, the cell has two purposes: it acts as a one clock-cycle delay bu�er for coe�cients of

the matrices (which are passed on to neighbouring cells), and performs the basic operation of an

addition and multiplication.

Figure 6 shows how the cells are implemented. Each cell contains a multiplier, an adder, and

three registers. The multiplier is the one discussed and veri�ed in the previous section, and the

adder is a conventional 2n-bit adder. Each register has an input, an output, and a clock and

select pin. By connecting the select and clock pins to the same global clock, the registers become

positive-edge triggered: when the clock rises the value at the register's input is latched, output,

and maintained until the clock rises again.

These cells are connected in a systolic array: each clock cycle cells performs an addition and

multiplication and then passes its results to its neighbours for use in the next cycle. The cells are

arranged as presented in Figure 7, and the timings given in Table 3 are designed so that cells get

the right inputs at the right time. A simple example will illustrate how this works. To help the

description, each cell in the systolic array has been labelled by i : j.

The circuit is implemented in Voss's EXE format as a detailed gate level description, using a

unit delay model. The implementation is based on the VHDL program given in the benchmark

suite documentation.

Example 4.1.

Consider the computation of c21 = a21b11 + a22b21. In the �rst three clock cycles the circuit is

initialised so that at the start of the fourth cycle, all inputs have value zero.

Cycle 4:b11 is input on b1 (input B In of Cell 1:0). (a11 is also input in this cycle, but in the example,

we only consider values contributing to c21).

Cycle 5:Cell 1:0 will have passed b11 to its neighbour, so that b11 now becomes an input for Cell 1:1.

a21 is input on a2 (the A In input of Cell 0:2).

Cycle 6:Cell 1:1 will have passed b11 to the B In input of Cell 1:2, and Cell 0:2 will have passed a11

to the A In input of Cell 1:2. At this stage, the C In input of Cell 1:2 has the value 0. Cell

15

��

@@
Mult

��

@@
Adder

��@@ S

Reg

q qq

��

��@@ S

Reg

q qq

��

��@@ S

Reg

q qq

��

clock

C In ��
m

O
��
2n

B In ��
nq

A In ��
n

C Out

B Out

A Out

m

n

n

Figure 6: Implementation of cell

1:2 therefore computes a11b11. At the same time, b21 appears as input on b0, which is input

B In of Cell 0:0.

Cycle 7:Cell 1:2 will have passed a11b11 to Cell 0:1 as its C In input. Cell 0:0 will have passed on b21

to Cell 0:1 as its B In input. a22 appears on a1, which is the A In input of Cell 0:1. Cell 0:1

computes a11b11 + a22b21.

Cycle 8:Cell 0:1 outputs a11b11 + a22b21 on its C Out port (which is c4).

4.3 Veri�cation

The veri�cation task can be divided into two parts, the veri�cation of the individual components,

and using the veri�cation of the components to show that whole array is correct.

Verifying the cells

The veri�cation of a cell must show the multiplier, adder and registers all work correctly. Each cell

must be veri�ed individually. This section describes the veri�cation of Cell u:v, and assumes for

the sake of this exposition that the clock cycle is 200ns, and the bit-width is 4.

In the discussion below, the A Inuv and B Inuv are four-bit nodes, while all variables are 12 bit

values. To simplify notation, in all the discussion below, a and b are short hands for ah3::0i and

bh3::0i respectively.

It turns out that it useful to divide this proof into three parts:

� Given value a on A Inuv , b on B Inuv , and c on C Inuv , one clock cycle later ab+ c appears

on C Outuv;

16

��	@@R

6
��	@@R

6
��	@@R

6
��	@@R

6

��	@@R

6
��	@@R

6
��	@@R

6
��	@@R

6

��	@@R

6
��	@@R

6
��	@@R

6
��	@@R

6

��	@@R

6
��	@@R

6
��	@@R

6
��	@@R

6

6
0

6
0

6
0

6
0

6
0

6
0

6
0

3:3

2:2

1:1

0:0

2:3 3:2

1:2 2:1

0:1 1:0

1:3 3:1

0:2 2:0

0:3 3:0

c3

c2

c1

c0

c4

c5

c6

a0

a1

a2

a3

b0

b1

b2

b3

Figure 7: Systolic array

� Given value a on A Inuv , one cycle later a appears on A Outuv ; and

� Given value b on B Inuv , one cycle later b appears on B Outuv .

When the cells are connected together, port C Inuv is connected to C Out(u+1)(v+1), port A Outuv is

connected to A Inu(v+1), and B Outuv is connected to B In(u+1)v. Therefore, the above veri�cation

conditions are rewritten as:

� Given value a on A Inuv , b on B Inuv , and c on C Out(u+1)(v+1), one clock cycle later ab + c

appears on C Outuv ;

� Given value a on A Inuv , one cycle later a appears on A Inu(v+1); and

� Given value b on B Inuv , one cycle later b appears on B In(u+1)v.

Of course, it is possible to combine all three into a one, stronger result. However, having three

weaker results makes the proof more
exible since at some stages the proof needs only the weaker

result, and using a stronger result would clutter things up and be more ine�cient.

The costliest part of the proof is to show the multiplier works correctly. As Section 3 showed

how the Benchmark 17 multiplier can be veri�ed, for the purpose of this section, Result 15 is

assumed (in the actual veri�cation, the multiplier for each cell is reveri�ed).

j=
M

By various rules

hjGlobal [(0; 100)] ([A Inuv]=a ^̂̂ [B Inuv]=b)

==� Global [(22; 100)] ([Ouv]=ab) ji

(15)

17

In the cell, the clock has an important e�ect; to include information of when clocking happens, the

rule of consequence is often used to strengthen the antecedent of a result. For convenience, let

Clockk = Global [(200k; 200k+ 99); (200(k+ 1); 200(k+ 1) + 99)] ([clock]= f) ^̂̂

Global [(200k+ 100; 200k+ 199)] ([clock]=t)

which is the information about clocking which is needed in the proof of the k-th cycle.

Using this idea, Result 15 is transformed strengthening the antecedent, as well as taking into

account the input on C In. Although, this is not useful for its own sake, it is useful in using the

essence of Result 15.

j=
M

By Rule of consequence

hjGlobal [(0; 100)] [A Inuv]=a ^̂̂ [B Inuv]=b ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clock0

==� Global [(22; 100)] ([Ouv]=ab) ji

(16)

In the next step we show that the adder works correctly and that the output of the adder is latched

for the appropriate time. This can be done with one trajectory evaluation. Note that the time

interval in the consequent could be made bigger, but the one given su�ces.

j=M By STE

hjGlobal [(22; 100)] ([Ouv]=dh7::0i ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clock0)

==� Global [(200; 300)] ([C Outuv]=c+ dh7::0i) ji

(17)

Results 16 and 17 are now combined by specialising the latter result (substituting ab for d), and

using transitivity. Note that this is just a special case of General Transitivity.

j=M By GTT

hjGlobal [(0; 100)] ([A Inuv]=a ^̂̂ [B Inuv]=b ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clock0)

==� Global [(200; 300)] ([C Outuv]=c+ ab) ji

(18)

Result 18 is the core result that has to be proved about the cell. The next two results show that

the cell also acts as one cycle delay bu�ers for values of the A and B matrices. Both of these results

can easily be done using STE alone.

j=M By STE

hjGlobal [(0; 100)] ([A Inuv]=a ^̂̂ Clock0)

==� Global [(200; 300)] ([A Inu(v+1)]=a) ji

(19)

j=M By STE

hjGlobal [(0; 100)] ([B Inuv]=b ^̂̂ Clock0)

==� Global [(200; 300)] ([B In(u+1)v]=b) ji

(20)

18

Overall veri�cation

Once each of the cells has been individually veri�ed, the proofs about the individual cells must be

combined to prove that the systolic array as a whole works correctly.

The proof is modelled on how the systolic array computes its results; in its development the

proof traces the behaviour of the circuit as it uses its inputs, computes results, and outputs the

answers.

Consider the operation of one cell, Cell u:v. It has three input neighbours from which it gets

values (the boundary cells are special cases and easily taken care of):

� Cell u:(v � 1), its A-left-neighbour from which it gets a value of the A matrix,

� Cell (u� 1):v, its B-right-neighbour from which it gets a value of the B matrix, and

� Cell (u+ 1):(v + 1) its C-down-neighbour from which it gets a partial sum;

and three output neighbours to which it gives values:

� Cell u:(v + 1), its A-right-neighbour, to which it gives a value of the A matrix,

� Cell (u+ 1):v, its B-left-neighbour, to which it gives a value of the B matrix, and

� Cell (u� 1):(v � 1) its C-up-neighbour, to which it gives a partial sum;

At the beginning of clock cycle k, none, some, or all of the following will be known about Cell

u:v's input neighbours (recall that a clock cycle is 200 time units long), where the Ij are antecedent

TL formulas, and the �x are integer expressions:

j=Mhj I1 ==�Global [(200k; 200k+ 100)] [A Inuv]=�a ji (21)

j=
M
hj I2 ==�Global [(200k; 200k+ 100)] [B Inuv]=�b ji (22)

j=
M
hj I1 ==�Global [(200k; 200k+ 100)] [C Out(u+1)(v+1)]=�c ji (23)

If all three results are known, then we use conjunction on Results 21{23, and introduce new clocking

information. For convenience, let

I4 = I1 ^̂̂ I2 ^̂̂ I3 ^̂̂ Clockk :

This is the conjunction of I1, I2 and I3 and contains necessary clocking information for the k-th

cycle. Then we have:

j=
M

By Conjunction and Rule of Consequence

hj I4

==� Global [(200k; 200k+ 100)]

[A Inuv]=�a ^̂̂ [B Inuv]=�b ^̂̂ [C Outuv]=�c: ji

(24)

Then Result 18 is time-shifted forward by k-clock cycles to get:

j=M By time-shifting

hjGlobal [(200k; 200k+ 100)]

([A Inuv]=a ^̂̂ [B Inuv]=b ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clockk)

==� Global [(200(k+ 1); 200(k+ 1) + 100)] ([C Outuv]=c+ ab) ji

(25)

19

Using General Transitivity on Results 24 and 25 leads to:

j=M By GTT

hj I4

==� Global [(200(k+ 1); 200(k+ 1) + 100)] ([C Outuv]=�c + �a�b) ji

(26)

This is a proof of what Cell u:v computes in the k-th cycle. In proving what happens in the (k+1)-

th cycle, Result 26 is used in the proof of the behaviour of Cell (u+ 1):(v + 1), which is Cell u:v's

up-C-neighbour.

Similarly, if Result 21 is known, then precondition strengthening is used to introduce new

clocking information to get:

j=M By Rule of consequence

hj I1 ^̂̂ Clockk

==� Global [(200k; 200k+ 100)] [A Inuv]=�a ji

(27)

Then Result 19 is time-shifted by k clock cycles to get:

j=
M

By STE

hjGlobal [(200k; 200k+ 100)] ([A Inuv]=a) ^̂̂ Clockk

==� Global [(200(k+ 1); 200(k+ 1) + 100)] ([A Inu(v+1)]=a) ji

(28)

General Transitivity between Results 27 and 28 then yields:

j=M By Rule of consequence

hj I1 ^̂̂ Clockk

==� Global [(200(k+ 1); 200(k+ 1) + 100)] ([A Inu(v+1)]=�a) ji

(29)

This shows what Cell u:v passes to its A-right neighbour at the end of the k-th cycle, and this

result will be used to prove properties of Cell u : (v + 1) in the (k + 1)-th cycle. A similar result

shows that in the k-th Cell u:v also passes on the value input on its B In port,

j=M By various rules

hj I2 ^̂̂ Clockk

==� Global [(200(k+ 1); 200(k+ 1) + 100] ([B In(u+1)v)]=�b) ji

(30)

FL Proof script The FL proof script which performs the proof uses the approach outlined

above. First, the behaviour of each cell is individually veri�ed. Then, the proof proceeds by

proving properties of the circuit in each clock cycle.

A two dimensional array of proofs is kept: at the start of the k-th cycle, the array's (u; v) entry

contains proofs of what the output of Cell u:v input neighbour's are at the end of the (k � 1)-th

cycle. The proof then uses this information to infer as much as possible about the output of Cell

u:v at the end of the k-th cycle, and this information is then used to update the array of proofs so

that Cell u:v's output neighbours can use this information in the (k + 1)-th cycle.

20

Start of
cycle

c 0
Cell 3:0

c 1
Cell 2:0

c 2
Cell 1:0

c 3
Cell 0:0

c 4
Cell 0:1

c 5
Cell 0:2

c 4
Cell 0:3

7 c11

8 c12 c21

9 c13 c31

10 c14 c22 c41

11 c23 c32

12 c24 c42

13 c33

14 c34 c43

15

16 c44

Table 5: Benchmark 22: Actual output times

4.4 Analysis and comments

The FL proof script uses STE and the inference rules to prove what the output of the circuit is at

di�erent stages { this is summarised in Table 5.

Comparison between Tables 4 and 5 shows that even given the ability for the designer to choose

the values of t1; : : : ; t6, the implementation does not meet the speci�cation.

There are two possibilities. The easier and probably better solution would be to change the

speci�cation, in accordance with the results shown in Table 5. However, another solution would be

to place one cycle delay bu�ers on the outputs c 0, c 1, c 5 and c 6; the amount of extra circuitry

is small, would not slow down the circuit, and would lead to a more elegant speci�cation.

The proof script, including the proof of the correctness of all the multipliers and declarations,

is approximately 650 lines long. The program itself is straightforward, although the use of a two

dimensional array does not show o� a functional, interpreted language at its best. The complete

veri�cation of a 4� 4 systolic array of 32 bit multipliers takes just over 10 hours of CPU time on a

DEC Alpha 3000 using the testing machine approach, and just under three hours using the direct

method.

This veri�cation uses the testing machine algorithm for STE, showing the weakness of using

testing machines. The data structure needed to represent the model of the circuit is approximately

4M in size, making composition of circuit and testing machines di�cult. While other implementa-

tions of machine composition are possible, the sheer size of the circuits remains an inherent problem.

A similar problem can be seen in the veri�cation of the multiplier (Table 2). Since both the size of

the circuitry and the number of trajectory evaluations is quadratic in the bit-width, if every time

trajectory evaluation must be done, circuit composition must be too, the resulting algorithm will

be at least quartic. This explains why the veri�cation of large bit widths becomes so expensive for

testing machines.

5 Conclusion

This report has shown that using a quaternary-valued logic TLn and its compositional theory, a

practical integrated theorem-proving/model checking algorithm can be implemented that e�ectively

21

veri�es large circuits. The two benchmark circuits were veri�ed with moderate human intervention

and very reasonable computational cost.

References

[1] S. Hazelhurst and C.-J. H. Seger. Model Checking Partially Ordered State Spaces. Technical

Report 95-18, Department of Computer Science, University of British Columbia, July 1995.

Available by anonymous ftp as ftp://ftp.cs.ubc.ca/pub/local/techreports/1995/TR-95-18.ps.gz.

[2] S. Hazelhurst and C.-J.H. Seger. A Simple Theorem Prover Based on Symbolic Trajectory

Evaluation ad BDD's. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 14(4):413{422, April 1995.

[3] T. Kropf. Benchmark-Circuits for Hardware-Veri�cation. In R. Kumar and T. Kropf, editors,

TPCD'94: Proceedings of the Second International Conference on Theorem Provers in Circuit

Design, Lecture Notes in Computer Science 901, pages 1{12, Berlin, September 1994. Springer-

Verlag.

[4] C. Mead and L. Conway. Introduction to VLSI Design. Addison-Wesley, Reading, Mas-

sachusetts, 1980.

[5] C.-J.H. Seger. Voss | A Formal Hardware Veri�cation System User's Guide. Technical Re-

port 93-45, Department of Computer Science, University of British Columbia, November 1993.

Available by anonymous ftp as ftp://ftp.cs.ubc.ca/pub/local/techreports/1993/TR-93-45.ps.gz.

[6] C.-J.H. Seger and R.E. Bryant. Formal Veri�cation by Symbolic Evaluation of Partially-Ordered

Trajectories. Journal of Formal Methods in Systems Design, 6:147{189, March 1995.

[7] J. Staunstrup and T. Kropf. IFIP WG10.2 Benchmark Circuits for Hardware Veri�cation. URL:

http://goethe.ira.uka.de/benchmarks/.

A FL Code for Multiplication Proof

// miscellaneous

let high_bit = entry_width - 1; // 0..entry_width-1

let max_time = 800;

let out_time = 3;

//---------------- Node, variable declarations

let A = Nnode AINP;

let B = Nnode BINP;

let RS i = Nnode (R_S i);

let RC i = Nnode (R_C i)<<(high_bit-1)--0>>;

let TopBit i = Nnode (R_C i)<<high_bit>>;

let a = (Nvar "a")<<(entry_width-1)--0>>;

let b = (Nvar "b")<<(entry_width-1)--0>>;

22

let c = Nvar "c";

let d = (Nvar "d")<<(high_bit-1)--0>>;

let partial {n :: int} = c <<(n+high_bit)--0>>;

// BDD variable ordering for each stage of multiplier

let m_bdd_order {n::int} =

n = 0

=> order_int_1 [b, a]

| n=entry_width

=> order_int_1 [partial n, d]

| order_int_1 [b<<n>>, a, partial n, d];

let zero_cond i = ((TopBit i)==('0))??;

let interval n =

n <= entry_width

=> [('(n*out_time), 'max_time)]

| [('(n*out_time+2*entry_width), 'max_time)];

let InputAnts = Always (interval 0)

(((A == a) ??) and ((B == b) ??));

let OutputCons =

let lhs = RS entry_width in

let rhs = (a * b)<<(2*entry_width-1)--0>> in

Always (interval (entry_width+1)) ((lhs==rhs)??);

// Antecedent for row n of the multiplier

let MAnt {n::int} =

n = 0

=> Always (interval 0)

(((A == a)??) and

((B<<n>> == b<<n>>)??)

)

| Always (interval n)

(((A == a)??) and

((B<<n>> == b<<n>>)??) and

((RS (n-1) == (partial (n-1)))??) and

((RC (n-1) == d)??) and

(zero_cond (n-1)));

// Consequent of row n of the multiplier

let res_of_row n =

let power n = Npow ('2) ('n) in

let lhs = (RS n) + (power (n+1))*(RC n) in

let rhs =

n=0

=> a * b <<0>>

| ((partial (n-1))+(power n) * d) + (power n)* a * (b <<n>>) in

((lhs == rhs)??);

23

let Con_of_stage n =

let power n = Npow ('2) ('n) in

let lhs = (RS n) + (power (n+1))*(RC n) in

let rhs = a * b<<n--0>> in

Always (interval (n+1))

((lhs == rhs)?? and (zero_cond n));

let MCon {n::int} = Always (interval (n+1))

((res_of_row n) and (zero_cond n));

let Mthm n =

let bdd_order = (m_bdd_order n) in

let ant = MAnt n in

let con = MCon n in

prove_voss bdd_order multiplier ant con;

let preamble_thm =

let start = Mthm 0 in

Precondition InputAnts start;

letrec do_proof_main_stage n m previous_step =

let curr = Mthm n in

let curr' = GenTransThm previous_step curr in

let current = Postcondition (Con_of_stage n) curr' in

n = m

=> current

| do_proof_main_stage (n+1) m current;

let main_stage = do_proof_main_stage 1 high_bit preamble_thm;

let adder_proof =

let post_ant_cond =

(((RS high_bit) == (partial high_bit))??) and

(((RC high_bit) == d)??) and

(((TopBit high_bit) == ('0))??)

in

let post_ant = Always (interval entry_width) post_ant_cond

in

let power = Npow ('2) ('entry_width) in

let rhs = ((partial high_bit) + power * d)<<(bit_width-1)--0>> in

let post_con_cond = ((RS entry_width) == rhs)?? in

let post_con = Always (interval (entry_width+1))

post_con_cond in

prove_voss (m_bdd_order entry_width) multiplier post_ant post_con;

let proof = GenTransThm main_stage adder_proof;

24

B FL Code for Matrix Multiplier Proof

// miscelleneous

let high_bit = entry_width - 1; // 0..entry_width-1

let max_time = entry_width < 10 => 100 | 10*entry_width;

let clock_time = max_time; // half a clock cycle

let out_time = 3;

//----------------

let prove_result = prove_voss_fsm;

let prove_result_static = prove_voss_static;

//---------------- Node, variable declarations

//----- global

let Clock = Bnode CLK;

//----- individual cells

let A u v = Nnode (AINP u v); let B u v = Nnode (BINP u v);

let IN_C u v = Nnode (C_Inp u v); let OUT_C u v = Nnode (C_Out u v);

let M = make_fsm sys_array;

let RS u v i = Nnode (R_S u v i);

let RC u v i = Nnode (R_C u v i)<<(high_bit-1)--0>>;

let TopBit u v i = Nnode (R_C u v i)<<high_bit>>;

let a = (Nvar "a")<<(entry_width-1)--0>>;

let b = (Nvar "b")<<(entry_width-1)--0>>; let c = Nvar "c";

let d = (Nvar "d")<<(high_bit-1)--0>>; let e = Nvar "e";

let partial {n :: int} = e <<(n+high_bit)--0>>;

// BDD variable ordering for each stage of multiplier

let m_bdd_order {n::int} =

n = 0

=> order_int_1 [b, a]

| n=entry_width

=> order_int_1 [partial n, d]

| order_int_1 [b<<n>>, a, partial n, d];

// timings

let DuringInterval n f = During (n*out_time, max_time) f;

letrec ClockAnt n =

let range = 0 upto (n-1) in

let false_range = map (\x.(('(2*x*clock_time),

'(2*x*clock_time+clock_time-1))))

range in

let true_range = map (\x.('(2*x*clock_time+clock_time),

'(2*(x+1)*clock_time-1)))

(butlast range) in

25

(Always false_range ((Clock == Bfalse)??)) and

(Always true_range ((Clock == Btrue)??));

let InputAnts u v = DuringInterval 0

((A u v '= a) and (B u v '= b));

let zero_cond u v i = TopBit u v i '= ('0);

// Antecedent for row n of the multiplier

let MAnt u v {n::int} =

n = 0

=> DuringInterval 0

((A u v '= a) and

((B u v)<<n>> '= b<<n>>))

| DuringInterval n

((A u v '= a) and

((B u v)<<n>> '= b<<n>>) and

(RS u v (n-1) '= (partial (n-1))) and

(RC u v (n-1) '= d) and

(zero_cond u v (n-1));

// Consequent of row n of the multiplier

let res_of_row u v n =

let power n = Npow ('2) ('n) in

let lhs = (RS u v n) + (power (n+1))*(RC u v n) in

let rhs = n=0

=> a * b <<0>>

| ((partial (n-1))+(power n) * d) + (power n)* a * (b <<n>>) in

lhs '= rhs;

let Con_of_stage u v n =

let power n = Npow ('2) ('n) in

let lhs = (RS u v n) + (power (n+1))*(RC u v n) in

let rhs = a * b<<n--0>> in

DuringInterval (n+1)

((lhs '= rhs) and (zero_cond u v n));

let MCon u v {n::int} = DuringInterval (n+1)

((res_of_row u v n) and (zero_cond u v n));

let Mthm u v n =

let bdd_order = (m_bdd_order n) in

let ant = MAnt u v n in

let con = MCon u v n in

prove_result bdd_order M ant con;

let preamble_thm u v =

print (nl^"Doing preamble"^nl) seq

let start = Mthm u v 0 in

(start catch start) seq

Precondition (InputAnts u v) start;

26

letrec do_proof_main_stage u v n m previous_step =

let curr = Mthm u v n in

let curr' = GenTransThm previous_step curr in

let current = Postcondition (Con_of_stage u v n) curr' in

(print (nl^" Doing M["^(int2str u)^", "^(int2str v)^

"]("^(int2str n)^")"^nl^nl) seq

(current catch current))

seq

(n = m

=> current

| do_proof_main_stage u v (n+1) m current);

let main_stage u v = do_proof_main_stage u v 1 high_bit (preamble_thm u v);

let adders_proof u v =

let post_ant_cond =

((RS u v high_bit) '= (partial high_bit)) and

((RC u v high_bit) '= d) and

((TopBit u v high_bit) '= ('0))

in

let post_ant = DuringInterval entry_width post_ant_cond in

let power = Npow ('2) ('entry_width) in

let rhs = ((partial high_bit) + power * d)<<(bit_width-1)--0>> in

let post_con_cond = (RS u v entry_width) '= rhs in

let post_con =

During (entry_width*(out_time+2), clock_time)

post_con_cond in

let bdd_order = m_bdd_order entry_width in

(print "Doing adder" seq (post_con catch post_con)) seq

prove_result bdd_order M post_ant post_con;

let cell_out_time = [('(2*clock_time), '(3*clock_time))];

let register_proof u v =

let c_ant = (((RS u v entry_width) '= (partial entry_width))

and ((IN_C u v) '= c)) in

let c_ant' =

(ClockAnt 2) and

(During (entry_width*(out_time+2), clock_time)

c_ant) in

let c_rhs = (partial entry_width) + c in

let c_con = (OUT_C u v) '= c_rhs in

let c_reg = prove_result

(order_int_1 [c, partial entry_width])

M

c_ant'

(Always cell_out_time c_con)

in

((print "Doing register") seq c_con catch c_con)

seq

c_reg;

27

// one_proof u v: proves that the (u,v)-th cell works

// correctly

let one_proof u v =

// Prove that multiplier parts work (unclocked)

let m_stage = main_stage u v in

(m_stage catch m_stage) seq

// take into account clocking and the partial sum input

let new_ants= InputAnts u v and

(ClockAnt 2) and

(DuringInterval 0 (IN_C u v '= c)) in

let new_thm = Precondition new_ants m_stage in

// show the adder part of the ceol works

let a_proof = adders_proof u v in

(a_proof catch a_proof) seq

// Add clocking to the adder proof

let comp_proof = GenTransThm new_thm a_proof in

// Show that the registers work

let r_proof = register_proof u v in

((r_proof catch r_proof)

seq

// stick them all together

let result = (normaliseCon (GenTransThm comp_proof r_proof)) in

result);

letrec make_cell_row_list p_proc u v =

v=array_depth

=> []

| let res = p_proc u v in

print (snd (time res)) seq

(res seq (res:(make_cell_row_list p_proc u (v+1))));

letrec make_proof_list p_proc u =

u = array_width

=> []

| (make_cell_row_list p_proc u 0):(make_proof_list p_proc (u+1));

let cell_proof_list = make_proof_list one_proof 0;

// Show that the cells also progate their A and B inputs

let one_proof_propagateA u v =

let ants = (DuringInterval 0 (A u v '= a)) and (ClockAnt 2) in

let ab_con = A u (v+1) '= a in

let ab_reg =

prove_result (m_bdd_order 0) M ants

(Always cell_out_time ab_con) in

ab_reg;

let one_proof_propagateB u v =

28

let ants = (DuringInterval 0 ((B u v) '= b)) and (ClockAnt 2) in

let ab_con = (B (u+1) v) '= b in

let ab_reg =

prove_result (m_bdd_order 0) M ants

(Always cell_out_time ab_con) in

ab_reg;

let Apropagate_proof_list = make_proof_list one_proof_propagateA 0;

let Bpropagate_proof_list = make_proof_list one_proof_propagateB 0;

let cell_proof u v = el (v+1) (el (u+1) cell_proof_list);

let Apropagate_proof u v = el (v+1) (el (u+1) Apropagate_proof_list);

let Bpropagate_proof u v = el (v+1) (el (u+1) Bpropagate_proof_list);

let em_thm = ([],[],[]);

//---

// The *_proof_list contains all the proofs that the individual

// components of the hardware work correctly. The rest of the

// proof shows that when connected together they produce

// the right matrix multiplication result

letrec InsertActiveTheorem addfn ({u::int},{v::int},{new_thm::theorem}) [] =

[(u, [(v, addfn new_thm em_thm)])]

/\ InsertActiveTheorem addfn (u,v,new_thm)

((au, alist):brest) =

letrec PutActiveTheoremIn ({v::int}, {new_thm::theorem}) []

= [(v, addfn new_thm em_thm)]

/\ PutActiveTheoremIn (v, new_thm) ((av, avlist):vrest) =

v = av

=> (av, addfn new_thm avlist):vrest

| (av, avlist):

(PutActiveTheoremIn (v, new_thm) vrest)

in u = au

=> (au, PutActiveTheoremIn (v, new_thm) alist):brest

| (au, alist):

(InsertActiveTheorem addfn(u,v,new_thm) brest);

letrec RetrieveTheorem {u::int} {v::int} [] = ([],[],[])

/\ RetrieveTheorem u v ((au, alist):brest) =

letrec GetActiveTheorem v [] = ([],[],[])

/\ GetActiveTheorem v ((av, avlist):vrest) =

v = av

=> avlist

| GetActiveTheorem v vrest in

u = au

=> GetActiveTheorem v alist

| RetrieveTheorem u v brest;

let InsertActiveList add_fn thm_list current =

29

itlist (\x.\y.InsertActiveTheorem add_fn x y) thm_list current;

load "iospecs.fl";

let InputForCells _ _ = [];

let addfirst x (a,b,c) = (x:a,b,c);

let addsecond x (a,b,c) = (a,x:b,c);

let addthird x (a,b,c) = (a,b,x:c);

let InputAtStage n the_lists =

val (avals, bvals) = el (n+1) the_inputs in

let left_list = map (\x.setInput A {x::int} 0 n (el (x+1) avals))

(0 upto (array_depth-1))

in

let right_list =

map (\x.setInput B 0 x n (el (x+1) bvals))

(0 upto (array_width-1)) in

let down_list =

(map (\x.setInput IN_C (array_depth-1) {x::int} n ('0))

(0 upto (array_width-1)))@

(map (\x.setInput IN_C x (array_width-1) {n::int} ('0))

(0 upto (array_depth-2))) in

let res1 = InsertActiveList addfirst left_list the_lists in

let res2 = InsertActiveList addsecond right_list res1 in

InsertActiveList addthird down_list res2;

let start_step = InputAtStage 0 [];

let this_step = start_step; let num_step = 0;

let PropagateVal addfn row col ok1 {ok2::bool} res old_list =

ok1 AND ok2

=> InsertActiveTheorem addfn (row, col, res) old_list

| old_list;

let PropagateRes row col all res res_l =

let c_index = "C"^(num2str(array_width-col-1+row)) in

all AND (row*col = 0)

=> (c_index, res, (row, col)): res_l

| res_l;

letrec ProcessStageRow n {row::int} [] so_far = so_far

/\ ProcessStageRow n row ((col, colthms):rest)

(prop_list, res_l) =

let make_step (a, b, c) =

let ok a n = length a > n in

let all_thms = (Identity(ClockAnt ((n+1)*2))):(a@b@c) in

let ab_inps = (a@b) in

let all = ok all_thms 3 in

let curr_gen = all

=> Conjunct [cell_proof row col, Apropagate_proof row col,

Bpropagate_proof row col] |

30

length ab_inps = 2

=> Conjunct

[Apropagate_proof row col,Bpropagate_proof row col] |

ok a 0

=> Apropagate_proof row col

| Bpropagate_proof row col in

let curr_thm = Transform (TimeShift (2*n*clock_time))

curr_gen in

let inps = Conjunct all_thms in

let res = normaliseCon (GenTransThm inps curr_thm) in

let new_l = PropagateVal addfirst

row (col+1) (col<(array_width-1))

(ok a 0) res prop_list in

let new_r = PropagateVal addsecond

(row+1) col (row<(array_depth-1))

(ok b 0) res new_l in

let new_d = PropagateVal addthird

(row-1) (col-1) ((row*col) > 0)

all res new_r in

let new_rl = PropagateRes row col all res res_l

in

empty ab_inps

=> (prop_list, res_l)

| (new_d, new_rl)

in

ProcessStageRow n row rest (make_step colthms);

letrec ProcessStageProof n [] so_far = so_far

/\ ProcessStageProof n ((row,rowthms):rest) so_far =

let current = ProcessStageRow n row rowthms so_far in

(print ("Doing row "^(int2str row)^nl)) seq

(current catch current) seq

ProcessStageProof n rest current;

let do_step n start_step =

letrec perform m curr_step =

let current = ProcessStageProof m (InputAtStage m curr_step)

([], []) in

(print ("Performing step "^(int2str m)^nl^nl)) seq

(current catch current) seq

m = n

=> [snd current]

| (snd current):(perform (m+1) (fst current)) in

perform 0 start_step;

let output_list = do_step 15 [];

// present results

let ShowRes t res_list = el (t+1) res_list;

let Show t node =

31

let res = ShowRes t output_list in

find (\(x,y,a,b).(x=node) AND ((a*{b::int}) = 0)) res;

let OutputOfArray row col =

let strip (Always r f) = f in

val (a, th, b, c) = Show (outputFor row col)

("C"^(num2str(3+row-col))) in

strip (con_of th);

letrec PrintRowOutput row col =

(col = array_width+1)

=> nl^nl

| ("("^(int2str row)^" ,"^(int2str col)^") :"^

(el2str (OutputOfArray row col))^nl)

^(PrintRowOutput row (col+1));

letrec PrintOutput row =

row = array_depth + 1

=> nl

| (PrintRowOutput row 1) ^ (PrintOutput (row+1));

32

