
On the Maximum Tolerable Noise for

Reliable Computation by Formulas

William Evans and Nicholas Pippenger*

(wevans@cs.ubc.ca and nicholas@cs.ubc.ca)

Department of Computer Science

The University of British Columbia

Vancouver, British Columbia V6T 1Z4

CANADA

Abstract: It is shown that if a formula is constructed from noisy 2-input NAND gates,

with each gate failing independently with probability ", then reliable computation can or

cannot take place according as " is less than or greater than "0 = (3�
p
7)=4 = 0:08856 : : : .

* This research was partially supported by an NSERC Canada International Fellowship

and an NSERC Operating Grant.

1. Introduction

By a Boolean function we shall mean an element of the free Boolean algebra on

countably many generatorsX1;X2; : : : . We shall identify a Boolean function f that belongs

to the free Boolean algebra on X1; : : : ;Xn with the function f : f0; 1gn ! f0; 1g in the

customary way.

By a formula we shall mean an element of the free algebra with one dyadic operation j
and two constants 0 and 1, generated by countably many variables X1;X2; : : : . A formula

F may be regarded as computing a Boolean function F0 by interpreting the dyadic oper-

ation j as the Boolean function NAND. Speci�cally, we regard the variable Xi in formulas

as computing the corresponding generator Xi for Boolean functions; we regard the con-

stants 0 and 1 in formulas as computing the corresponding constant functions; and if the

formulas F and G compute the functions F0 and G0, then we regard the formula F j G as

computing the function F0 j G0 = :(F0^G0). It is well known that every Boolean function

is computed in this way by some formula (even by a formula not containing constants).

Our interest in this paper is in what von Neumann has called \probabilistic logics",

where in the computation scheme described above, each occurrence of the operation j is
assumed to fail independently with some probability ". In this case we want to keep

track not just of the Boolean values 0 and 1 but of their probabilities. To this end, we

shall regard each formula F as computing a polynomial in the indeterminates X1;X2; : : :

with real coe�cients. We shall set I = [0; 1], and identify such a polynomial f with

the corresponding function F" : I
n ! I. Speci�cally, we shall regard the variable Xi in

formulas as computing the indeterminateXi for polynomials; we shall regard the constants

0 and 1 in formulas as computing the corresponding constant polynomials; and if the

formulas F and G compute the polynomials F" and G", then we regard the formula F j G
as computing the polynomial (1� ")+(1�2")F"G". We observe that F"(p1; : : : ; pn) is the

probability that the formula F (X1; : : : ;Xn) produces the value 1 when each occurrence of

the variable Xi independently assumes the value 1 with probability pi, and when each gate

fails independently with probability ". We shall always assume that " > 0, but we observe

that if we take " = 0 in the polynomial F", and restrict its indeterminates to Boolean

values, it assumes only Boolean values and agrees with the Boolean function F0.

Let �0 > 0 and �1 > 0 be such that �0 + �1 < 1 (or equivalently �0 < 1 � �1). Let

I0 = [0; �0] and I1 = [1 � �1; 1]. We shall say that the formula F ("; �0; �1){computes the

Boolean function f if, for every x1; : : : ; xn 2 f0; 1g, we have

F"(Ix1 ; : : : ; Ixn) � If(x1;:::;xn): (1:1)

1

A few words about this de�nition are in order. Firstly, we have adopted separate

bounds �0 and �1 to the probabilities of error for 0 and 1. Most previous work has adopted

a single bound � = �0 = �1 (so that the condition �0 + �1 < 1 becomes � < 1=2). But this

previous work has dealt largely with \self-dual" situations, wherein 0 and 1 play symmetric

roles. Our situation is not self-dual: the dual of a NAND gate is a NOR gate, and separate

bounds �0 and �1 seem both natural and necessary to obtain the sharpest results. Secondly,

we assume \soft inputs". By requiring (1:1) rather than merely

F"(x1; : : : ; xn) � If(x1;:::;xn); (1:2)

we are allowing the occurrences of variables in the formula to be independently erroneous

observations of the corresponding arguments, with the same error bounds �0 and �1 that

apply to the output of the formula. Most previous work has assumed \hard inputs" by

requiring only (1:2). But our de�nition has an important advantage. The Boolean functions

that are ("; �0; �1){computable form a clone; that is, they include the projection functions

f(X1; : : : ;Xn) = Xi (this is true for any reasonable de�nition) and they are closed under

composition (this is an immediate consequence of (1:1)). The clones of Boolean functions

have been completely classi�ed; see Post [P2].

The case in which computation is to be done by noisy NAND gates is one considered by

von Neumann [N]. He was considering circuits rather than formulas, and he was employing

di�erent input-output conventions (using bundles of wires rather than single wires), so his

quantitative results are not strictly comparable to ours. But a straightforward adaptation

to NAND gates of an argument he gives for formulas using MAJORITY gates shows that

reliable computation is possible if " < (3
p
22 � 14)=6 = 0:01187 : : : . We do not know of

any larger lower bound to the threshold in the literature.

Pippenger [P1] showed that formulas in which all gates have at most k inputs cannot

compute reliably unless " � (1 � 1=k)=2, and Evans and Schulman [ES1] improved this

bound to " � (1 � 1=
p
k)=2. For k = 2, these results give upper bounds to the threshold

of 1=4 = 0:25 and (1� 1=
p
2)=2 = 0:1464 : : : .

Hajek and Weller [HW] showed that for k = 3, the threshold is exactly 1=6, and

Evans and Schulman [ES2] (see also Evans [E], Chapter 5) generalized this result to�
1� 2k�1=

�
k�1
k�1

2

��
=2 for all odd k � 3.

In this paper we shall prove the following two results. Let "0 = (3 �
p
7)=4 =

0:08856 : : : .

2

Theorem 1.1: Suppose " < "0, and de�ne x�, x0 and x+ by

x0 =
�1 +

p
4(1� ")(1 � 2") + 1

2(1� 2")

and

x� =
1�

p
4(1� ")(1 � 2") � 3

2(1� 2")
:

Then if �0 and �1 satisfy

x� < �0 < x0 < 1� �1 < x+;

every Boolean function can be ("; �0; �1){computed by some formula.

Theorem 1.2: If " > "0 and �0 + �1 < 1, then any Boolean function that is ("; �0; �1){

computed by a formula essentially depends on at most one argument.

2. Lower Bound

We shall begin with a crude argument that shows that reliable computation is possible

if " < (3
p
22 � 14)=6 = 0:01187 : : : . This result is due in essence to von Neumann [N],

though he does not state it explicitly. In his discussion of computation with NAND gates,

he states a slightly weaker result, but he is employing a di�erent model at that point, and

his results are strictly speaking incomparable to the ones presented here. But the bound

of (3
p
22� 14)=6, which we shall present as Theorem 2.1, results from adapting to NAND

gates precisely the arguments that von Neumann gives for 3-input MAJORITY gates.

Theorem 2.1: If " < (3
p
22� 14)=6 and

1�
p
1� 72"

12
< � <

1 +
p
1� 72"

12
;

then every Boolean function can be ("; �; �)-computed by some formula.

Proof: Consider an arrangement of 3 NAND gates in a balanced binary tree of depth 2,

with 4 inputs. Suppose that each of the inputs assumes some Boolean value X, except

that the inputs may each independently be in error with probability at most #. Suppose

further that each of the 3 gates correctly computes the NAND, except that each gate may

independently fail with probability at most ". Then, except with probability at most 3",

this arrangement computes the OR of the ANDs of its two pairs of inputs, and this will be

the value X unless at least 2 of the 4 inputs are in error, which happens with probability

at most
�
4

2

�
#
2 = 6#2. Thus if 3"+6#2 < #, this arrangement may be used to reduce error

levels from # at its inputs to 3"+6#2 at its output. Since 3"+6#2 is convex in #, its graph

3

lies below that of # in the interval (x�; x+) bounded by the two solutions of 3"+6#2 < #,

which are given by x� = (1 �
p
1� 72")=12.

Suppose now that � 2 (x�; x+). Since the set of ("; �; �)-computable Boolean functions

forms a clone, and since NAND function generates the clone of all Boolean functions, it

will su�ce to show that the NAND function is ("; �; �)-computable. Consider now a single

NAND gate. Suppose that its inputs assume the values X and Y , except that each input

may independently be in error with probability at most �. Suppose further that the gate

correctly computes the NAND function, except that it may fail with probability at most

". The gate will produce the NAND of X and Y , except with probability at most 2�+ ".

Now if " < (3
p
22 � 14)=6, then we can choose �0 > x� such that 2�0 + " < x+

(indeed, the threshold (3
p
22� 14)=6 was determined by �nding the value of " for which

2x� + " = x+). By repeated use of the error-reducing arrangement described above, we

can reduce the errors at the inputs from � to at most �0; a NAND gate will increase the

error to at most 2�0+ " < x+; and further repeated use of the error-reducing arrangement

will restore the error in the output to at most �. 4

Our main lower bound, Theorem 1.1, is obtained by stretching every last bit of slack

from the argument given above. (That we have indeed gotten the last bit out is of course

shown by the matching upper bound in the next section.) A key feature of the tightened

argument is that it is no longer possible merely to argue with upper bounds to probabilities

of failure and error. We shall be relying on e�ects whereby errors cancel each other out, so

we shall also need exact values for probabilities of failure and lower bounds to probabilities

of error. This type of argument �rst appears in the work of Hajek andWeller [HW] (Section

IV, Proposition 3). A consequence of this style of argument is that the constructed formulas

may su�er increased probability of error, for certain inputs, if their gates enjoy a decreased

probability of failure.

Theorem 1.1: Suppose " < "0, and de�ne x�, x0 and x+ by

x0 =
�1 +

p
4(1� ")(1 � 2") + 1

2(1� 2")

and

x� =
1�

p
4(1� ")(1 � 2") � 3

2(1� 2")
:

Then if �0 and �1 satisfy

x� < �0 < x0 < 1� �1 < x+;

every Boolean function can be ("; �0; �1){computed by some formula.

4

We begin by considering the formula F (X) = X j X, with polynomial F"(X) =

(1� ")� (1� 2")X2. We shall be interested in analyzing the composition of F with itself.

This analysis is simpli�ed by a renormalization: set � = (1�")(1�2") and �(X) = ��X2.

We then have F"(X) = �
�
(1� 2")X

�
=(1� 2"), so that the problem of composing F" with

itself is transformed into that of composing its conjugate � with itself. (This transformation

may be thought of as scaling certain probabilities by a factor of (1�2").) We observe that

the condition 0 < " < "0 corresponds to the condition 3=4 < � < 1.

To study the iteration of �, we begin by �nding its �xed points, which are the roots

of the equation �(X) = X. These are

�0 =
�1 +

p
1 + 4�

2
;

�1 =
�1�

p
1 + 4�

2
:

The �xed point �1 is negative, and thus does not correspond to a scaled probability; it will

not concern us further. The �xed point �0 is the one we are interested in (see �gure 1). The

derivative of � there is negative: we have �0(�0) = ��, where � = 2�0 = �1 +
p
1 + 4�.

Conversely, � = �=2 + �
2
=4. We observe that the condition 0 < " < "0 corresponds to the

condition 1 < � <
p
5� 1.

Next consider the formula G(X) = (X j X) j (X j X). Since G(X) = F
�
F (X)

�
,

the corresponding polynomial is G"(X) = F"

�
F"(X)

�
or, after renormalization 	(X) =

�
�
�(X)

�
= � � (� � X

2)2 (see �gure 1). We shall be interested in the �xed points of

	, which are the roots of the equation 	(X) = X. These are four in number (counted

according to multiplicity). Two of them, �0 and �1, are inherited from �, and are thus the

roots of the polynomial X � �(X) = X
2 +X � �. The remaining two are therefore the

roots of the polynomial
�
X �	(X)

�
=(X2 +X � �) = X

2 �X + (1� �). The discriminant
of this quadratic is 4� � 3. Thus if 0 < " < "0, so that 3=4 < � < 1, the two additional

�xed points �� and �+ of 	 are real and distinct:

�� =
1�

p
4� � 3

2
:

5

�00
0

�

� �00
0

�

��
�

�+

Figure 1: The functions � and 	 and their �xed points (� = 0:05).

Now the derivative of 	 at �0 is, by the chain rule, 	0(�0) = �0
�
�(�0)

�
�0(�0) =

(��)2 = �
2
> 1. Thus the graph of 	 crosses the diagonal from below to above at �0.

Since this graph begins above the diagonal at 0 ((0) = � � �
2
> 0, since � < 1), and is

again below the diagonal at � ((�) = � � (�� �2)2 < �, since �� �2 > 0), the graph must

cross the diagonal from above to below at remaining �xed points �� and �+. In particular,

we must have

0 < �� < �0 < �+ < 1� 2";

as well as 	0(��) < 0 and 	0(�+) < 0.

At this point we have a qualitative picture of the behavior of 	 under iteration. The

polynomial 	 has a repulsive �xed point at �0 and attractive �xed points at �� and �+.

The interval [0; �0) is the basin of attraction of ��; thus any point in this interval converges

under iteration to ��. Similarly, the interval (�0; 1�2"] is the basin of attraction of �+. The
convergence in either case is uniform on compact sets, so we have the following proposition.

Proposition 2.2: If I� � [0; �0) and I+ � (�0; 1 � 2"] are closed intervals, and J� and J+

are closed intervals such that �� 2 J� and �+ 2 J+, then there exists a natural number L

such that

	(L)(I�) � J�

and

	(L)(I+) � J+;

where 	(L) denotes the L-th iterate of 	.

6

Proposition 2.2 will be used to reduce errors. To accomplish computation we shall need

to analyze the formula H(X;Y) = X j Y , corresponding to the polynomial H"(X;Y) =

(1� ") � (1� 2")XY or, after renormalization,
(X;Y) = � �XY .

Proposition 2.3: There exist closed intervals J� and J+ such that

�� 2 J� � [0; �0)

and

�+ 2 J+ � (�0; 1� 2"];

and I+ such that

�+ 2 I+ � (�0; 1 � 2"];

and such that

(J�; J+) � I+:

Proof: Since �� and �+ are roots of the monic polynomial X2 � X + (1 � �), we have

�� �+ = 1� � = 1� �=2� �2=4. Since �0 is a root of the polynomial X2 +X � �, we have
�
2
0 = � � �0 = (�=2 + �

2
=4)� �=2 = �

2
=4. Thus we have �20 � �� �+ = �

2
=2 + �=2� 1 > 0,

since � > 1. This yields

(��; �+) > �(�0) = �0:

By continuity,
 maps points (X;Y) with X su�ciently close to �� and Y su�ciently close

to �+ into the basin of attraction of x+. 4

We are now ready to prove Theorem 1.1. We �rst note that the quantities x0, x� and

x+ de�ned there are, after renormalization, the �xed points �0, �� and �+.

As in the proof of Theorem 2.1, it will su�ce to show that the NAND function is

("; �0; �1){computable.

By virtue of Proposition 2.3, we can �nd � > 0 su�ciently small that, if we set

J� = [�� � �; �� + �], J+ = [�+ � �; �+ + �], I� = [0; �0 � �] and I+ = [�0 + �; 1 � 2"],

then we have

(J�; J+) � I+:

By the symmetry of
, we have

(J+; J�) � I+:

We can also ensure, by decreasing � if necessary, that

(J�; J�) � I+

7

and

(J+; J+) � I�:

(This follows from the continuity of
 and the identities
(��; ��) = �(��) = �+ and

(�+; �+) = �(�+) = ��.)

Let �0 = (1 � 2")�0 and �1 = (1 � 2")(1 � �1) be the renormalized versions of �0

and 1 � �1. By virtue of Proposition 2.2, we can �nd L su�ciently large that, if we set

K� = [0; �0] and K+ = [�1; 1� 2"], then we have

	(L)(K�) � J�

and

	(L)(K+) � J+:

We can also ensure, by increasing L if necessary, that

	(L)(I�) � K�

and

	(L)(I+) � K+:

These four inclusions, taken together with the four in the preceding paragraph, imply

that the formulaG(L)
�
H
�
G
(L)(X)

�
;H
�
G
(L)(Y)

��
("; �0; �1){computes the NAND function

X j Y . 4

It is clear that as " tends to "0, the parameter L in the proof of Theorem 1.1 tends

to in�nity. It is of some interest to consider the rate of growth of L in this situation, as

it corresponds roughly to the factor by which the depth of reliable formulas with noise

exceed the depth of formulas without noise. We shall not attempt to state or prove a

precise result, but merely sketch an analysis of the situation.

Let us set � = "0�". Then the equation � = (1�")(1�2") yields � = 3=4+�(�). The

equation � = �1+
p
1 + 4� yields � = 1+�(�). The critical case is that in which the two

inputs of a NAND gate have opposite values. >From the proof of Proposition 2.3 we have

�
2
0 � ���+ = �=2 + �

2
=2 � 1 = �(�). Since the partial derivatives of
(X;Y) at X = ��

and Y = �+ are �(1), we must take � = �(�) in order to have
(��+�; �+��) � �0+�.

Since the distance �+ � �0 = �(
p
4� � 3) = �(

p
�) is large compared with � = �(�),

the value of L will be determined by the number of iterations of 	 needed to increase the

8

distance X � �0 from a value of order �(�) to one of order �(
p
�). Since each application

of 	 increases this distance by a factor of about 	0(�0) = �
2 = 1 +�(�), we must take

L = �

�
1

�
log

1

�

�
= �

�
1

"0 � "
log

1

"0 � "

�
:

3. Upper Bound

In this section we shall show that the construction given in the proof of Theorem 1.1

is the best possible, in the sense that no construction can yield a larger threshold. We do

this by proving Theorem 1.2, which we restate here.

Theorem 1.2: If " > "0 and �0 + �1 < 1, then any Boolean function that is ("; �0; �1){

computed by a formula essentially depends on at most one argument.

Since the set of ("; �0; �1){computable Boolean functions forms a clone, and since every

Boolean function that depends essentially on more than one variable generates a clone that

contains functions depending on arbitrarily many variables, Theorem 1.2 will follow from

the following theorem.

Theorem 3.1: For every " > "0 and �0 + �1 < 1, there exists a natural number n such

that any Boolean function that is ("; �0; �1){computed by a formula essentially depends on

fewer than n arguments.

For every formula F , we shall de�ne the rank %(F) to be the length of the shortest

path from an occurrence of a variable to the root in F (with the understanding that this

is 1 if there is no occurrence of a variable); thus, %(F) is de�ned by induction on the

structure of F by (1) %(Xi) = 0 for each variable Xi, (2) %(c) = 1 for each constant

c 2 f0; 1g, and (3) %(F j G) = 1 +minf%(F); %(G)g.

We shall now use an argument �rst presented by Pippenger [P1] to reduce the problem

of formulas reliably computing functions with many arguments to the problem of formulas

with large rank reliably computing functions of a single argument.

Consider a formula F on the variables X1; : : : ;Xn. Associate with each occurrence A

of a variableXi in F the length `(A) fromA to the root in F , and the weight �(A) = 2�`(A).

Clearly, the sum of the weights of all occurrences of variables in F is at most 1. Let �i

denote the sum of the weights of the occurrences of the variable Xi. Then
P

1�i�n
�i � 1,

so there must exist some i in the range 1 � i � n such that �i � 1=n. For any occurrence

A of Xi in F , we have �(A) � �i � 1=n, and thus `(A) � log2 n.

9

Suppose now that F ("; �0; �1){computes a Boolean function f that essentially

depends on the n arguments X1; : : : ;Xn. In particular, f essentially depends on

Xi. Then there exist Boolean constants c1; : : : ; ci�1; ci+1; : : : ; cn such that g(X) =

f(c1; : : : ; ci�1;X; ci+1; : : : ; cn) essentially depends on X (and thus is either the projec-

tion function g(X) = X or the complement function g(X) = :X). Since the constants 0

and 1 are formulas that ("; �0; �1){compute the Boolean constant functions, the formula

G(X) = F (c1; : : : ; ci�1;X; ci+1; : : : ; cn) ("; �0; �1){computes g(X). And since all occur-

rences A of Xi in satisfy `(A) � log2 n, we have %(G) � log2 n. Thus Theorem 3.1 will

follow from the following theorem.

Theorem 3.2: For every " > "0 and �0 + �1 < 1, there exists a natural number k � 1 such

that any formula that ("; �0; �1){computes a projection function or a complement function

has rank less than k.

To prove this theorem, we observe that if a formulaG ("; �0; �1){computes a projection

function or a complement function, then G"(�0) and G"(1 � �1) must di�er by at least

1� �0� �1 > 0. Thus it will su�ce to establish a bound to jG"(�0)�G"(1� �1)j that tends
to zero as %(G) tends to in�nity.

To do this, we shall use the inequality

jG"(�0) �G"(1 � �1)j �
Z 1��1

�0

jG0
"
(X)j dX;

where the prime denotes di�erentiation with respect to X. Since %(G) � 1, G contains

at least one gate, which implies that " � G"(X) � 1 � " for all 0 � X � 1. Since G

("; �0; �1){computes some function, we must have �0 � " and �1 � ". Since �0 � 0 and

1� �1 � 1� ", we have
Z 1��1

�0

jG0
"
(X)j dX �

Z 1�"

0

jG0
"
(X)j dX:

Letting 	 denote the renormalized version of G" as in Section 2, we have

G"(X) = 	
�
(1� 2")X

�
=(1� 2"):

Using � = (1� ")(1 � 2"), we obtain

Z 1�"

0

jG0
"
(X)j dX =

1

1� 2"

Z
�

0

j	0
"
(X)j dX

�
�

�

1� 2"

�
sup

0�X��

j	0
"
(X)j:

10

Thus it will su�ce to establish a bound to j	0
"
(X)j that tends to zero uniformly for 0 �

X � � as %(G) tends to in�nity.

To do this, we shall de�ne a \Tent Function" � : [0; �]! [1� �; 1] by

�(x) =

8<
:
(1� �) + 2x; x 2 [0; �=2];

1� 2(2x� �)=�; x 2 [�=2; �].

This function rises linearly from a minimum of 1� � at 0 to a maximum of 1 at �=2, then

falls linearly back to 1� � at �. We shall need the following \Tent Lemma".

Lemma 3.3: If � < 1, then

x�(y) + y �(x) � � �(� � xy)

for all x; y 2 [0; �].

The proof of this lemma is technical and will be deferred to an appendix (Section 6).

Here we shall use it to complete the proof of Theorem 3.2.

Let G be any formula. We shall show that

j	0(X)j � �
�
	(X)

�
�
%(G)

=(1 � �): (3:1)

Since � < 1, this will complete the proof of Theorem 3.2.

We �rst observe that if %(G) =1, then G contains no occurrences of the variable X,

so 	0(X) = 0. On the right-hand side, we have 0 � 	(X) � �, so �
�
	(X)

�
� 1� �, and

we may agree that �1 = 0. For the rest, we shall show by induction on k that if %(G) � k,

then

j	0(X)j � �
�
	(X)

�
�
k
=(1� �): (3:2)

If k = 0, then G is an occurrence of the variable X, so 	0(X) = 1. On the right-hand side,

we have 0 � 	(X) � �, so �
�
	(X)

�
� 1��, and we may agree that �0 = 1. If k � 1, then

G is of the form C j D for some formulas C and D with %(C) � k � 1 and %(D) � k � 1.

Letting � and � be denote the renormalized versions of C" and D", we have

j�0(X)j � �
�
�(X)

�
�
k�1

=(1� �) (3:3)

and

j�0(X)j � �
�
�(X)

�
�
k�1

=(1� �) (3:4)

11

by inductive hypothesis. We have 	(X) = � � �(X)�(X), so that 	0(X) =

�
�
�0(X)�(X) + �(X)�0(X)

�
, and therefore

j	0(X)j � j�0(X)j�(X) + �(X) j�0(X)j:

Applying the inductive hypotheses (3:3) and (3:4) and using Lemma 3.3 yields (3:2) and

therefore (3:1). 4

4. Conclusion

There are three obvious ways in which the upper bound we have established might be

strengthened. Firstly, we have assumed that all gates are NAND gates. Of course, if one

seeks to compute all Boolean functions with two-input gates of a single type, one must use

either NAND gates or NOR gates (to which, by duality, our result also applies). But we do

not know how to increase the threshold by using other two-input gates, and we conjecture

that the same threshold applies to formulas in which gates may compute various two-

argument functions in any combination. Secondly, we have assumed \soft inputs"; that is,

we have assumed that the arguments of the function being computed by a formula are only

available in noisy versions that may be as unreliable as the formula itself. Of course, this

assumption has the attractive feature of making the class of reliably-computable functions

closed under composition. But most previous upper bounds to reliable computation hold

even with \hard inputs", and we conjecture that the same threshold applies to formulas

for which the inputs are completely reliable. Thirdly, we have dealt with formulas rather

than circuits. But most previous upper bounds to reliable computation were eventually

shown to apply even for circuits, and we conjecture that the same threshold applies to

circuits.

The reader may have noticed that our arguments do not address the question of

whether reliable computation is possible when the failure probability is exactly equal to

the threshold. We conjecture that it is not, but the argument given in Section 3 breaks

down in this case.

Finally, for the range of failure probability where reliable computation is possible, it

would be of intertest to determine whether the factor by which the depth of formulas is

increased has the order of growth discussed at the end of Section 2.

12

5. References

[E] W. S. Evans, Information Theory and Noisy Computation, Ph. D. Thesis, Computer

Science, University of California, Berkeley, 1994.

[ES1] W. Evans and L. J. Schulman, \Signal Propagation, with Application to a Lower

Bound on the Depth of Noisy Formulas", Proc. IEEE Symp. on Foundations of Comp.

Sci., 34 (1993) 594{599.

[ES2] W. Evans and L. J. Schulman, \The von Neumann Threshold for Component Noise

in Boolean Formulas", MS, 7 pp.

[HW] B. Hajek and T. Weller, \On the Maximum Tolerable Noise for Reliable Computation

by Formulas", IEEE Trans. Info. Theory, 37 (1991) 388{391.

[N] J. von Neumann, \Probabilistic Logics and the Synthesis of Reliable Organisms from

Unreliable Components", in: C. E. Shannon and J. McCarthy (editors), Automata

Studies, Princeton University Press, 1956, pp. 43{98.

[P1] N. Pippenger, \Reliable Computation by Formulas in the Presence of Noise", IEEE

Trans. Info. Theory, 34 (1988) 194{197.

[P2] E. L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Princeton Uni-

versity Press, Princeton, NJ, 1941.

6. Appendix: Proof of the Tent Lemma

Lemma 3.3: Suppose 0 < � < 1, and set � = �=2 + �
2
=4. De�ne � : [0; �]! [1� �; 1] by

�(x) =

8<
:
(1� �) + 2x; x 2 [0; �=2];

1� 2(2x� �)=�; x 2 [�=2; �].

Then

x�(y) + y �(x) � � �(� � xy)

for all x; y 2 [0; �].

Proof: Setting (x; y) = � �(� � xy) � x�(y) � y �(x), we see that our task is to prove

 (x; y) � 0 (6:1)

over the square 0 � x � �, 0 � y � �. Since the de�nition of � breaks into two cases,

we can partition the square into regions according to the cases of � that appear in the

de�nition of . These regions are delimited by the lines x = �=2 and y = �=2, which

13

separate the cases of �(x) and �(y), and by the hyperbola xy = �
2
=4, which separates the

cases of �(� � xy). These three curves, together with the four lines bounding the square,

partition the square into six regions, and it will su�ce to prove (6.1) for each region (see

�gure 2).

0 �

�

�=2

�=2

0

xy = �2=4

Figure 2: Partition of [0; �]� [0; �] accord-

ing to the cases of � that appear in the

de�nition of (� = 0:05).

Within each region, (x; y) is bilinear, that is, of the form a + bx + cy + dxy. The

graph of (x; y) thus forms a surface that has non-positive curvature at every point (since

the Hessian determinant is �d2 � 0). Thus (x; y) cannot have a local extremum, and

must assume its minimum over any bounded region on the boundary of the region. Thus

it will su�ce to prove (6.1) for each of the six lines x = 0, x = �=2, x = �, y = 0, y = �=2,

y = �, and for the hyperbola xy = �
2
=4 (where in each case only the segment of the curve

included in the square x; y 2 [0; �] is relevant).

Let us consider �rst the hyperbola xy = �
2
=4. We must have either x � �=2 or

y � �=2, and we may assume without loss of generality that x � �=2 (the other case being

symmetric). We shall compare (x; y) on the hyperbola with (�=2; y). In increasing x to

�=2, the term � �(��xy) can only decrease to � �
�
�� (�=2)y

�
(since (��xy) assumes its

maximum value 1 on the hyperbola); the term �x�(y) can only decrease to �(�=2)�(y)
(since �(y) is non-negative); and the term �y �(x) can only decrease to �y �(�=2) (since
�(x) is increasing in the range 0 � x � �=2). Thus the truth of (6.1) on the hyperbola

follows from the truth of (6.1) on the lines x = �=2 and y = �=2, which we have already

undertaken to prove.

14

It remains to prove (6.1) for the six line segments. Since the restriction of a bilinear

form to a horizontal or vertical line segment is linear in the remaining variable (that is,

of the form a + bx or a + by), must assume its minimum over such a line segment at

one of the end points of the segment. Thus it will su�ce to prove (6.1) at the nine points

determined by x 2 f0; �=2; �g and y 2 f0; �=2; �g.

For x = y = �=2, we have � � xy = �=2. In this case, (6.1) is satis�ed with equality.

This leaves the eight points on the boundary of the square.

First let us consider the three points with x = 0 (the points with y = 0 being sym-

metric). In this case we have

y �(0) = y(1 � �)

� � (1� �)

� � (1� �)

= � �(�);

where we have used the inequalities y � � and � � �.

Before proceeding further, let us note that for 0 � y � �=2, we have

�(y) � 2y=�; (6:2)

since �(y) = (1� �) + �(2y=�) is a convex combination of 2y=� and 1, and 2y=� � 1.

Next let us consider the point x = �=2, y = � (the point y = �=2, x = � being

symmetric). In this case we have

(�=2)�(�) + � �(�=2) = (�=2)(1� �) + �

� � (1� �) + �

= � (2=�) (� � ��=2)

� � �
�
� � �(�=2)

�
;

where we have used the inequalities �=2 � � and (6.2) for y = � � �(�=2).

Finally let us consider the point x = y = �. In this case we have

2� �(�) = 2� (1 � �)

� 2� (1 � �)

= �
�
2(� � �

2)=�
�

� � �(� � �
2);

where we have used the inequalities � � � and (6.2) for y = � � �
2. 4

15

