
A Shared 4-D Workspace

Miranda Ko

Peter Cahoon

University of British Columbia

Vancouver, British Columbia

Canada

August 25, 1995

1

Abstract

A Shared four-dimensional workspace is a shared animation of three-

dimensional databases. Since shared animated workspaces are important to

many di�erent types of users, a pilot project was undertaken to implement

a shared, time varying workspace. This software permitted the give and

take of control by users running the same application across an ATM �ber

link running at 100 mbits/sec. The project was divided into two parts.

In the �rst phase, animation of three-dimensional databases in stereo was

implemented. In the second phase, sharing of the animation across the ATM

network was added. This paper dicusses the interfaces to the program and

presents outlines of implementations of the features in each of the project's

two phases.

2

Contents

1 Introduction 4

2 Discussion of the Inventor Scene Database 5

3 First Phase of the Project 6

3.1 Animation : 6

3.1.1 Interface : 6

3.1.2 Outline of the Implementation : : : : : : : : : : : : : 6

3.2 Stereo Viewing : 10

3.2.1 Interface : 10

3.2.2 Outline of the implementation : : : : : : : : : : : : : 10

3.3 Second phase of the project : : : : : : : : : : : : : : : : : : : 10

3.3.1 Interface : 10

3.3.2 Outline of implementation : : : : : : : : : : : : : : : : 11

4 Future Work 15

5 Conclusions 15

6 Acknowledgements 16

7 References 16

List of Figures

1 Top �gure is the server, the bottom is the client : : : : : : : : 17

2 Mode selection : 18

3 Control sharing : 18

3

1 Introduction

As medical scanning moves towards cline-clip Magnetic Resonance Imaging

(MRI) and Computed Tomography (CT) scans, the need for the ability to

view these live has arisen. In a similar manner, the researchers in Metals

and Materials and Mechanical Engineering have the need of viewing a time

history of the temperature pro�le for the injection moulding of aliminum

cans.

Shared animation used to be a time gated sequence of two-dimensional

slices. However, with the 100 Mbit ATM connections on the campus at

UBC and the Vancouver hospitals, it is now possible to have shared three-

dimensional and four-dimensional workspaces. The recent segmentation and

reconstruction software makes it possible to view three-dimensional recon-

structions in a shared workspace across the ATM network. Furthermore, in

the last three months, the reconstruction was extended to include variations

through time. The time axis in most of these cases is based on sampling at

�xed points during the recording sequence.

In view of the demands for a shared four-dimensional workspace in both

the medical and engineering �elds, and with the development of the tech-

nology, a collaborative pilot project was undertaken. The project was di-

vided into two phases. In the �rst phase, animation of three- dimensional

databases in stereo was implemented. The second phase implemented shar-

ing of the stereo animation across the ATM network. The basis for this

shared workspace is an application called SceneViewer by Silicon Graphics

(SGI). This application was implemented using Inventor, a library of objects

and methods used for interactive 3-D graphics written in C++.

This paper will �rst brie
y discusses the Inventor scene database, then

present the interfaces and outlines of the implementations of di�erent fea-

tures implemented at di�erent stages of the project.

4

2 Discussion of the Inventor Scene Database

The inventor scene graph is a
exible visualization tool. Since the scene

graph �le format is a very general description for polygonal objects in ASCII,

translation of other �le formats into this one is a straight forward process.

The scene graph viewer used for displaying these objects comes complete

with navigation tools, lighting models and matierals.

A major drawback of SceneViewer was that there is no animation sup-

port provided. Consequently, the �rst problem addressed by John Hogg was

to rede�ne the node kit to contain a class that incorporated a switch node.

The switch node selects which of a number of subgraphs to display. The key

issue was to build a selection class that took input from a timer, slider, or a

value from the keyboard.

The �nal version had two sliders at the bottom of the panel, one to select

the step size and the other to control playback speed. There was a menu

added that permitted saving the sequence as raster �les, getting the static

geometry associated with the scene graph, setting stereo mode, building the

animation, and clearing the current geometry.

The node is the basic building block used to create three-dimensional

scene databases in Inventor. Each node holds a piece of information, such

as a surface material, shape description, geometric transformation, light, or

camera. All 3D shapes, attributes, cameras, and light sources present in a

scene are represented as nodes.[1]

An ordered collection of nodes is referred to as a scene graph. The scene

graph is stored in the Inventor database. Inventor takes care of storing and

managing the scene graph in the database. The database can contain more

than one scene graph.[1]

5

3 First Phase of the Project

The �rst phase of the project consisted of the implementation of animation

and stereo viewing.

3.1 Animation

3.1.1 Interface

The viewer provides a menu option to turn animation on and o� (Figures 1

and 2).

There are scroll bars and type-in boxes for the animation step number

and the speed of animation. One can go to any animation step and control

the speed of animation by either dragging the scroll bar or entering a valid

number directly into the type-in box. Whenever one of the scroll bar values

or the type-in box value changes, the other will be updated automatically.

3.1.2 Outline of the Implementation

This section discusses how to extend the SceneViewer application to make

it capable of animating. The capability of animation is achieved by mod-

i�cations to the format of the data �les and the SceneViewer class, which

were used in the SceneViewer application.

1. Modi�cations of the format of data �les

The data �les are basically the same as those used for running the

SGI's SceneViewer application except that a user-de�ned node-kit is

added to the end of the �le. This node-kit is called SeqKit.

Node-kits are groups of nodes. They organize a number of Inventor

nodes into subgraph that has a higher level of meaning for program-

mers. SeqKit is composed of the following parts (optional - not neces-

sary for animation):

6

� seqSeparator: It contains a SoSeparator node.

- SoSeparator - group node that saves and restores

traversal state. It performs a push

(save) of the traversal state before

traversing its children and a pop

(restore) after traversing them. This

isolates the separator's children from

the rest of the scene graph. [2]

seqSeparator is used to separate the animation object from the

rest of the scene graph so that its own transformation, material,

etc. will not a�ect the other part of the scene graph.

� transform (optional): It contains a SoTransform node.

- SoTransform - node defines a geometric 3D transformation

consisting of (in order) a (possibly) non-

uniform scale about an arbitrary point, a

rotation about an arbitrary point and

axis, and a translation. [2]

transform is used to specify the transformation for the animation

object.

� seqMaterial (optional): It contains a SoMaterial node.

- SoMaterial - node defines the current surface material

properties for all subsequent shapes. It sets

several components of the current material

during traversal. [2]

seqMaterial is used to specify the material used for the animation

object.

� seqSelector: It contains a SoSwitch node.

7

- SoSwitch - group node usually traverses only one or

none of its children. There is a whichChild

field that specifies the index of the child

to traverse, where the first child has

index 0. [2]

seqSelector is used to group all the animation steps together with

the steps being the children. The whichChild �eld is usually ini-

tialized as 0.

� seqGeometry (optional): It contains a SoSeparator node.

- SoSeparator - see description for seqSeparator.

seqGeometry de�nes the geometry for the grid of the animation

object.

2. Modi�cations of the class SoSceneViewer

Several functions and an animation sensor were added to the SceneViewer

class to make the SceneViewer application capable of animating when

it is provided with the appropriate data �les. The animation sensor

is an Inventor object called SoAlarmSensor. Here is a description of

SoAlarmSensor:

- SoAlarmSensor - is like an alarm clock. It is scheduled to go

off at a specified time. It has a callback

function associated with it. When the specified

time is reached or passed, the callback

function is invoked. [2]

In this program, the callback function associated with the sensor is

a function that calls another function which is responsible for �nding

the next animation step in the data �le and rescheduling the sensor.

8

When the user switches on animation through the interface, the call-

back function associated with that menu option will schedule the an-

imation sensor to occur after an arbitrary time from now. When the

time is reached, the callback function is invoked and the next anima-

tion step will be found. Then the sensor will be rescheduled.

The PSEUDO code for the function that is responsible for �nding the

next animation step and rescheduling the sensor is:

Get the current animation step from scroll bar for

animation step number

Increment the current step

IF incremented current step exceeds maximum number of

animation steps

wrap around to 0

Search for SeqKit in the data file

Get part seqSelector

Set the child to be traversed to the incremented step

number

Update scroll bar and type-in box for animation step

number

Render screen

Reschedule sensor

To switch o� animation, the sensor is unscheduled.

To support going to any animation step entered from the type-in box

and scroll bar, a function which is responsible for �nding and display-

ing the appropriate step in the data �le was needed. It will be called

whenever the type-in box or scroll bar value changes.

The PSEUDO code for the function is:

9

Get the current animation step from scroll bar

for animation step number

Search for SeqKit in data file

Get part seqSelector

Set the child to be traversed to the value got

from scroll bar

Render screen

3.2 Stereo Viewing

3.2.1 Interface

The viewer provides a menu option to turn stereo viewing on and o� (Figures

1, 2, 3 top).

Note: The monitor must be in stereo mode while running the program.

Two set and unset utilities were written to change the modes

before and after viewing.

3.2.2 Outline of the implementation

The render area of the viewer is actually that of an Inventor viewer object.

Stereo viewing is switched on and o� by setting the Inventor viewer in the

corresponding mode. This is done by calling a member function of the In-

ventor viewer.

3.3 Second phase of the project

Second phase of the project consisted of the implementations of shared an-

imation and viewing.

Note: The sharing of viewing is implemented only for the

Examiner Viewer, which is the default viewer.

3.3.1 Interface

Only one of the two sides in a connection can have control at any time. In

particular, only one side is able to start and stop the animation and change

10

the direction of viewing at anytime. The window of the control side has a

menu bar on top, manipulation buttons on the right, rotation sliders on the

left, scroll bars and type-in boxes at the bottom of the viewer (Figure 1,

top). The server window only has the scroll bars and type-in boxes at the

bottom (Figure 1, bottom). When the side that has control releases control

using the Release Control option in the topbar Control menu (Figure 3),

the two windows will be switched.

Sharing of animation includes:

1) Starting animations on both sides at the same time.

2) When control side changes either the step number or speed by the scroll

bar or type-in box, the corresponding thing will be changed on the other side.

Sharing of viewing includes:

1) When control side changes the direction of viewing, the other side will

also be changed.

3.3.2 Outline of implementation

1. Idea of implementing \Sharing"

Whenever something happenes on the control side, corresponding data

will be written to the socket. The other side which does not have con-

trol will be checking for the presence of data in the socket continuously.

The program will read and process the data if there are any.

2. Additional functions

To make the program capable of sharing things between two sides, the

following features were added:

� A �le that contains functions which deal with socket connections.

These functions include:

11

(a) A function that creates a socket and then listens for connec-

tion requests.

(b) A function that connects to a speci�ed host.

� A �le that contains a function which processes data whenever

the socket has data in it. Based on the data in the socket, the

function determines the operations performed on the other side.

Then it requests the local viewer to do the same thing by calling

the appropriate function.

� An application event handler function was added to the �le that

contains the function \main". Since only one side is able to con-

trol the viewing of a scene at anytime, control over the viewing

using the left and middle mouse buttons on the side that does

not have control is disbaled. Thus, a function which processes

X events di�erently than Inventor does is required. This is the

application event handler.

The PSEUDO code for the application event handler is:

IF the viewer does not have control

IF there is a mouse button press

IF it is left or middle mouse button press

RETURN TRUE

(that is the event is handled)

ELSE

RETURN FALSE

(that is the event is not handled.

Inventor will handle it afterwards)

� A function which updates the type-in box and scroll bar values.

If the function which processes socket data determines that the

corresponding values have changed on the other side based on the

socket data, it will call this function with the new values.

12

� A function which updates the position and orientation of the cam-

era used by the viewer. The camera is the thing that controls the

direction of viewing. If the function which processes socket data

determines that the camera's position or orientation has changed

on the other side based on the socket data, it will call this func-

tion with the new values.

3. Modi�cations of the function \main"

Socket connection is handled by function \main".

Note: server has control at the beginning of the program.

The PSEUDO code to set up the socket connection is:

Check if program is run as server or client

IF program is run as server

Create two sockets for listening for connection

requests

One of the sockets is for reading and the other is

for writing

Initialize viewer to have control

ELSE (program is run as client)

Create two sockets for connections to server. The

address of the socket for reading is the same as

that of the server's writing socket and the address

of the socket for writing is the same as that of the

server's reading socket. Initialize viewer not to

have control.

In addition, an application handler (refer to sectionAdditional Func-

tions) must be registered with the viewer after creating the viewer so

that X events are handled properly.

13

Lastly, before entering Inventor's main loop as usual at the end of

the function, registration of a new source of events with the Intrinsics

read routine is necessary. This new source of events is the socket for

reading. After the registration, whenever there is data in the speci-

�ed socket, the function that processes data in socket (refer to section

Additional Functions) will be invoked. As a result, things can be

shared.

4. Modi�cations of the class SoSceneViewer

To implement the sharing of animation, the callback function asso-

ciated with the menu option that turns animation on and o� was

modi�ed.

The PSEUDO code for the function is:

IF local viewer has control

Write data to the socket to inform the other side

to turn on or off animation

Schedule the animation sensor if to turn on

animation

Unschedule the animation sensor if to turn off

animation

As the other side is continuously reading the socket and the time for

writing to and reading from the socket is negligible, both sides start

animation at approximately the same time.

To share the type-in box and scroll bar values for both the anima-

tion step number and the speed of animation, the control side informs

the other side of any value changes by writing the new values to the

socket. Then when the process socket data function (refer to section

Additional Functions) processes that piece of data on the other side,

the function that updates the scroll bar and type-in box values (refer

14

to section Additional Functions) will be called.

The sharing of viewing is achieved by attaching �eld sensors to the

position and orientation �elds of the camera of the viewer that is

currently having control. These sensors are Inventor objects called

SoFieldSensor. The following is a description of SoFieldSensor:

- SoFieldSensor - sensor class that can be attached to

Inventor fields. Field sensors detect

changes to fields, calling a callback

function whenever the field changes. [2]

The callback function in this program writes both the new position

and orientation of the camera to the socket to inform the other side.

Then the function that updates the camera's position and orientation

(refer to section Additional Functions) will be called when the pro-

cess socket data function processes that piece of data.

4 Future Work

Animation and viewing are the two of the features that shared across the

ATM now. There are many other features that can possibly be shared. For

instance, �le operations (open, save, etc.), light creations and manipulations.

5 Conclusions

In this report, the methods for creating a four-dimensional shared workspace

were developed. First, the interfaces and the outlines of the implementation

of the animation and stereo viewing features were presented. Then the inter-

face of the program after establishing the socket was illustrated. Finally, all

the necessary changes to the program and an outline of the implementation

of the sharing of animation and viewing were discussed.

15

6 Acknowledgements

This research was supported by the Natural Sciences and Engineering Re-

search Council of Canada. Many thanks to John Hogg for his initial devel-

opment of the Scenegraph animation software. This portion of the project

was supported by Dr. Steven Cockroft in Metals and Materials Engineering

and by BHP Research in Australia. Thanks to Roger Tam for his advice

and help in the second phase of this project. Thanks to Stan Jang for his

socket code which served as a basis for establishing the socket in this project.

Lastly, I am grateful to Dr. Peter Cahoon. His suggestions and comments

led to many improvements in this project.

7 References

[1] The Inventor Mentor: Programming Object-Oriented 3D Graphics with

Open InventorTM , Release 2: Addison-Wesley Publishing Company.

[2] Open Inventor C++ Reference Manual.

16

Figure 1: Top �gure is the server, the bottom is the client

17

 BBuild ...

 Pick Next

 Get Geometry

 Clear Geometry

 Animate a

 Stereo s

 Capture c

Figure 2: Mode selection

Release
ControlR

Figure 3: Control sharing

18

19

