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Abstract

The state explosion problem is the fundamental limitation of veri�cation through model check-

ing. In many cases, representing the state space of a system as a lattice is an e�ective way of

ameliorating this problem. The partial order of the state space lattice represents an information

ordering. The paper shows why using a lattice structure is desirable, and why a quaternary

temporal logic rather than a traditional binary temporal logic is suitable for describing prop-

erties in systems represented this way. The quaternary logic not only has necessary technical

properties, it also expresses degrees of truth. This is useful to do when dealing with a state

space with an information ordering de�ned on it, where in some states there may be insu�-

cient or contradictory information available. The paper presents the syntax and semantics of a

quaternary valued temporal logic.

Symbolic trajectory evaluation (STE) [32] has been used to model check partially ordered

state spaces with some success. The limitation of STE so far has been that the temporal logic

used (a two-valued logic) has been restricted, whereas a more expressive temporal logic is often

useful. This paper generalises the theory of symbolic trajectory evaluation to the quaternary

temporal logic, which potentially provides an e�ective method of model checking an important

class of formulas of the logic. Some practical model checking algorithms are brie
y described

and their use illustrated. This shows that not only can STE be used to check more expressive

logics in principle, but that it is feasible to do so.

Keywords: symbolic trajectory evaluation, quaternary logic, model checking, temporal logic,

bilattices

1 Introduction

Model-checking is a well-known automatic veri�cation method that can determine whether a system

has a certain set of properties. The nature of the model that represents the system and the

type of logic used to express properties are choices open to the veri�er. Di�erent choices have
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di�erent advantages and disadvantages | generally the more powerful and expressive the formalism

the easier it is to represent behaviour and properties, and the higher the computational cost in

performing veri�cation.

An underlying problem of all model checking approaches is the state explosion problem | the

number of states of a system increases exponentially with respect to the number of components.

One solution to the problem is representing the state space as a partial order. This allows partial

information to be used e�ectively and reduces the size of representations of models.

The purpose of this paper is to present a general temporal logic suitable for model checking

partially-ordered state spaces. The basis of this logic is a quaternary valued logic for expressing

properties. Section 2 justi�es the use of partially-ordered state space and why the use of partial

information leads to the use of a quaternary-valued logic rather than a two-valued logic.

Section 3 introduces the quaternary logic. Using this as a foundation, Section 4 de�nes the

syntax and semantics of an extended temporal logic, TL. Formulas of the logic are built up from

simple basic blocks, and the meaning of the formulas is de�ned by a satisfaction relation between

formulas and sequences of the underlying state space.

Symbolic trajectory evaluation (STE) is a model checking algorithm which has successfully ex-

ploited partially-ordered state spaces representations [32]. Moreover, STE does not use �x-point

computations of the next-state relation to determine sets of reachable states (symbolic simulation

of the model is used to explore the model's behaviour). Although these properties of STE have

important performance advantages, the price paid for the advantages is that STE algorithms pre-

sented so far use a restricted temporal logic to express properties of systems (for example, negation

and disjunction are not supported). One reason for using this restricted logic (called trajectory

formulas) is that there are e�ciency bene�ts to be gained by sacri�cing expressiveness. A funda-

mental reason, however, is that the technical framework used in previous work is unsatisfactory for

a richer logic. As a more expressive logic is often useful or necessary, and can be e�ciently used,

this is an issue which needs exploration.

Although there may be several model checking algorithms for partially-ordered state spaces,

since in a more restricted setting, symbolic trajectory evaluation proved to be a successful method,

this paper explores how STE can be extended to support the richer logic. Section 5 presents

a decision procedure for a class of formulas of the extended logic. This decision procedure is a

generalised form of symbolic trajectory evaluation presented in earlier work [7, 32].

This STE algorithm is used as the basis for the decision procedures for TL and Section 6 brie
y

describes a number of STE-based model-checking algorithms. Section 7 gives two example veri�-

cations, and section 8 compares the logic, method and results to other work. Section 9 concludes

the paper.

2 Motivation

2.1 Model Checking and state explosion

In traditional symbolic model checking described by Burch et al., a number of boolean variables are

used to describe the state of the system [9]. For example, in a circuit, each state holding component

of the circuit could be represented by a boolean variable or value; the state of the circuit is then

naturally represented as the cross-product of the states of the components.

Suppose at time t, a system is in state hx0; : : : ; xni, and at time t + 1 the system is in state
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hx00; : : : ; x
0
n
i. The behaviour of the system is represented by a next state relation, R, which describes

how the xi and x0
i
are related. By suitable manipulation of R it is possible to determine the set of

reachable states and to perform model checking. See [9, 13] for details.

Although there has been considerable success with this approach, there are limitations on

the size of the circuit that can be dealt with e�ectively. The underlying technology | ordered

binary decision diagrams | can only deal with hundreds of boolean variables. Even moderate

size circuits can be beyond model checking using this approach if the circuit has a non-trivial data

path, especially when an accurate model of time is used. The next state relation may be too large,

or even where the next state relation can easily be computed and stored, computing the set of

reachable states may not be tractable.

Dealing with this problem is one of the key issues in model checking. A number of suggestions

have been made for dealing with the problem (e.g., see discussion in [9, 11, 27]).

The underlying motivation of symbolic trajectory evaluation is that incomplete information is

often su�cient for successful model checking. Computing the exact state of large parts of the circuit

for successive time instants may be irrelevant for checking many formulas. STE allows a `don't

care' value to be given to state holding elements which the veri�er believes are not relevant to the

computation1. This can reduce by orders of magnitude the size of the data structures needed to

represent the behaviour of the circuit.

2.2 Partially-ordered state spaces

Formally, the state space of the model is represented by hS; v i, a complete lattice under the

partial order v , and the behaviour of the model is represented by the next-state function Y which

is monotonic with respect to the partial order. Sequences of states can also be (partially) ordered

by extending the partial order on states element-wise to sequences.

Consider an example of a system which can be in one of �ve states. A next state function Y

describes the behaviour of the system.

The state space could be represented by a set containing �ve elements. However, there is an

advantage in representing the state space with a more sophisticated mathematical structure. In

this example, we represent the state space with the lattice shown in Figure 1 (note that this is

just one possible lattice). States s4{s8 are the `real' states of the system, and the other states

are mathematical abstractions. The partial ordering of the lattice is an information ordering: the

higher up in the ordering we are in the model, the more we know about which state the system

is in. For example, the model being in state s1 corresponds to the system being in state s4 or

s5. Y can be extended to operate on all states of the lattice. State s9 represents a state that has

contradictory information.

For circuit models, the lattice representing the state space has a natural and intuitive basis.

Each state holding component has a value drawn from the set fX;L;H;Zg. L and H represent

low and high voltages; X represents an unknown value; and Z represents an overconstrained value.

These values can be represented e�ciently. There is a natural partial order between these values:

X contains less information than L and H which in turn have less information than Z. The state

of the circuit is the cross-product of the states of the individual state components.

1In practice, this is done the other way round. State holding components which are relevant are given boolean

values, and the rest are automatically assigned the `don't care' values
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Figure 1: Example Lattice State Space

Through the judicious use of X values, the number of boolean variables needed to describe

the behaviour of the circuit can be minimised, increasing the size of the circuits that can be dealt

with directly. Since STE computes the next state function and the reachable states using symbolic

simulation, this type of mathematical structure can be e�ectively used.

2.3 Motivation for a quaternary logic

The purpose of model checking is to determine whether a model has a certain property. Ideally,

we would like our veri�cation method to answer this `yes' or `no'. Unfortunately, the performance

bene�t gained by using only partial information compromises this goal. In the example above, while

every property we can express will be true or false of states s4{s8, there will be some properties

which are neither true nor false of states s0{s3, since there is insu�cient information about those

states.

Furthermore, state s9 plays an important role too. A state like s9 represents states about

which inconsistent information is known. Although such states don't occur in `reality', they are

some times artifacts of a veri�cation process. A human veri�er may introduce conditions which

are inconsistent with each other or the operation of the real system. These conditions could lead

to worthless veri�cation results | ones that while mathematically valid tell us nothing about the

behaviour of the system and may give veri�ers a false sense of security. Since it may not be possible

to detect these inconsistencies directly, it is useful to have states in which inconsistent properties

can hold at the same time. In such states, a property and its negation may both hold, and we

should have a way of expressing this.

In previous work using STE [32], a simple two valued temporal logic was used. No distinction

was made between a property being false and there being too little information to know whether

it is true. Among others, disjunction and negation of formulas was not allowed. Although its

expressiveness was limited, it was expressive enough for many problems (e.g., see [3, 17]). The

advantage of the simplicity of this logic is that the model-checking technique is very e�cient, and

the theory of compositionality of results simple [25]. A particular advantage of this temporal logic is

that formulas have the useful property that for each formula there exists a unique weakest sequence

of states satisfying the formula. This leads to a very e�cient model-checking algorithm.

The disadvantage is that the logic is not as expressive as other logics. For many systems,

the simple logic is adequate. However, there are some properties which, while possible to cast as

trajectory formulas, would be far easier to describe in a richer logic. And there are useful properties
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which cannot be expressed as trajectory formulas. Examples of where the richer logic is needed

include the veri�cation of an IEEE 
oating point multiplier [1] and current work of ours verifying

some circuits in the IFIP WG10.2 Benchmark-Circuits Suite for Hardware-Veri�cation. Simple

examples will be given later in this paper. That STE can support a richer logic has been known

for some time, although no work has been published on the topic. This paper examines how STE

can be used to model check a richer logic.

Representing the state space as a lattice means that checking whether a property holds of a state

can yield four results: true (the property does hold), false (the property does not hold), unknown,

and inconsistent (the property holds and does not hold). A two-valued logic cannot express this,

whereas a four-valued logic can. This is a major motivation for moving to a four-valued domain.

This important philosophical point is supplemented by an important pragmatic one. The in-

troduction of negation into a two-valued temporal logic violates monotonicity constraints | a four

valued logic has the right technical properties for a richer logic. The next section introduces the

mathematical foundations for such a logic. As shown later, this richer logic can be checked using

algorithms based on symbolic trajectory evaluation.

3 The quaternary logic Q

This section describes the four-valued logic. The four values represent truth, falsity, unde�ned (or

unknown) and overde�ned (or inconsistent). Such a logic was proposed by Belnap, and has since

been elaborated upon and di�erent application areas discussed in a number of other works [21, 34].

This section �rst gives some mathematical background, based on [20, 30], and then de�nitions are

given and justi�ed.

An interlaced bilattice is a set together with two partial orders, � and �, such that the set

is a complete lattice with respect to both partial orders, and the meets and joins of both partial

orders are monotonic with respect to the other partial order.

In our application domain, we are interested in the interlaced bilattice Q = f?; f ; t;>g where
the partial orders are shown in Figure 2. f and t represent the boolean values false and true, ?
represents an unknown value, and > represents an inconsistent value. B denotes the set ff ; tg (so
B � Q). � and � are of type Q�Q ! B. The partial order � represents an information ordering

(on the truth domain), and the partial order � represents a truth ordering. (Note, the symbol v
is used for comparing states and the symbol � is used to compare truth values).

?

>

f t

@
@

�
�

�
�

@
@

-

6

�

�

Figure 2: The bilattice Q

Note that Q is a complete lattice with respect to each partial order, and that the natural

distributivity laws hold with respect to meets and joins of the partial order. The technical properties
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Figure 3: Conjunction, disjunction and negation operators for Q

of Q make it suitable for model-checking partially-ordered state spaces.

For representing and operating on Q as a set of truth values, there are natural de�nitions for

negation, conjunction and disjunction, namely the weak negation operation of the bilattice and the

meet and join of the Q with respect to the truth ordering [20].

These de�nitions are shown in Figure 3, and have the following pleasant properties.

� The de�nitions are consistent with the de�nitions of conjunction, disjunction and negation

on boolean values.

� E�ciency of implementation. The quaternary logic is represented by a dual-rail encoding, i.e.

a value in Q can be represented by a pair of boolean values, where ?= (F; F ); f = (F; T ); t =

(T; F );>= (T; T ). If a is represented by the pair (a1; a2) and b by the pair (b1; b2) then a^ b
is represented by the pair (a1^b1; a2_b2), a_b by the pair (a1_b1; a2^b2) and :a = (a2; a1).

These operations on Q can be implemented as one or two boolean operations.

� These operations have their natural distributive laws, and also obey De Morgan's laws.

The de�nition of Q is not without problems, but it is the `classical' de�nition, and is convenient.

Other de�nitions are possible too. In this paper, =) is used to mean implication in the traditional,

boolean sense; ) is reserved as a derived Q-operator.

4 An Extended Temporal Logic

The extended temporal logic, TL, allows one symbolic formula to represent a large collection of

scalar formulas concisely; this, together with the representation of the state space as a lattice makes

model checking e�cient for a class of formulas. The following sections introduce the scalar and

symbolic versions of TL. A specialised version TLn which is suitable for a circuit model is also

described.

4.1 Scalar version of TL

The model structure (hS; v i;R;Y) represents the system under consideration. S, a complete

lattice under the information ordering v , represents the state space. R � S, the set of realisable
states, represents those states which correspond to states the system could actually attain | S�R
are the `inconsistent' states. R must be a lower semi-lattice which is downward closed (if x 2 R,
and y v x then y 2 R). Y:S ! S is a monotonic next state function. Let X be the least element

in S.
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A Q-predicate over S is a function mapping from S to the bilattice Q. A Q-predicate, p
is monotonic if s v t =) p(s)� p(t) (monotonicity is de�ned with respect to the information

ordering of Q). A Q-predicate is a generalised notion of predicate, and to simplify notation, the

term `predicate' is used in the rest of this paper.

Example 4.1 Take as an example, the state space S given in Figure 1. De�ne g; h : S ! Q by:

g(s) =

8>><
>>:

? when s = s0

f when s 2 fs1; s2; s4; s5; s6g
t when s 2 fs3; s7; s8g
> when s = s9

and h(s) =

8>><
>>:

? when s 2 fs0; s2; s6g
f when s 2 fs1; s4; s5g
t when s 2 fs3; s7; s8g
> when s = s9

Figure 4 depicts these de�nitions graphically. g and h are Q-predicates. The same state space and

functions will be used in subsequent examples.
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Figure 4: De�nition of g and h

Note that in the example, s3 is the weakest state for which g(s) = t. In a sense, s3 partially

characterises g, and we use this idea as a building block for characterising predicates, motivating

the next de�nition. Given a predicate p, we are interested in the pairs (sq; q) where sq is the weakest

state for which p(s) = q.

De�nition 4.1 (sq; q) 2 S�Q is a de�ning pair for a predicate g if g(sq) = q and 8s 2 S; g(s) = q

implies that sq v s.

Example 4.2 (s3; t) is a de�ning pair for g. If g(s) = t then s3 v s. However, there is no de�ning

pair (sf ; f) for g since there is no unique weakest element in S for which g takes on the value f . On

the other hand (s1; f) is a de�ning pair for h.

De�nition 4.2 If g:S ! Q then D(g) = f(sq; q) 2 S � Qj(sq; q) is a de�ning pair for gg, is the
de�ning set of g.

Example 4.3 ()

D(g) = f(s0;?); (s3; t); (s9;>)g
D(h) = f(s0;?); (s1; f); (s3; t); (s9;>)g

7



If a monotonic predicate has a de�ning pair for every element in its range, then its de�ning set

uniquely characterises it (see Lemma 4.1). Such monotonic predicates are called simple predicates

and form the basis of our temporal logic.

De�nition 4.3 A monotone predicate g:S ! Q is simple if 8q 2 g(S); 9(sq; q) 2 D(g).

Example 4.4 In our example, h is simple since every element in the range of h has a de�ning pair.

g is not simple since there is no de�ning pair (sf ; f). Informally, it is not simple since we can't use

a single element of S to characterise the values for which g(s) = f .

Note that simple predicates need not be surjective; we only require that if q is in the range of a

simple predicate, there is a unique weakest element is S for which the predicate attains the value

q. A trivial result used a number of times here is that the bottom element of S must be one of the

de�ning values for every predicate: this has the consequence that every element in S is ordered (by

being at least as large as) with respect to one of the de�ning values of each monotonic predicate.

Lemma 4.1 If g; h:S ! Q are simple, then D(g) = D(h) implies that g � h.

Proof: See Section A.1

This result is used later to show the generality of our de�nitions.

De�nition 4.4 Let G be the set of simple predicates.

We now use G to construct the temporal logic.

De�nition 4.5 (The Scalar Extended Logic | TL) The scalar version of TL is de�ned by

TL ::= G j TL and TL j notTL j NextTL j TL UntilTL

The semantics of a formula is given by the satisfaction relation Sat (Sat : S! � TL! Q). Given a

sequence ~s and a TL formula g, Sat returns the degree to which ~s satis�es g.

Suppose g; h are TL formulas. Informally, if g is simple a sequence satis�es g if g holds of the

initial state of the sequence. Conjunction has a natural de�nition. A sequence satis�es not g if it

doesn't satisfy g. A sequence satis�es Next g if the sequence obtained by removing the �rst element

of the sequence satis�es g. A sequence satis�es g Untilh if there is a k such that the �rst k � 1

su�xes of the sequence satisfy g and the k-th su�x satis�es h.2 Note that in the de�nition below,

the de�nitions of conjunction and negation are the operations in the quaternary logic.

Notation: Let ~s = s0s1s2 : : : be a sequence in S. For convenience, let ~si = sisi+1 : : :.

De�nition 4.6 Semantics of TL

1. If g 2 G then Sat(~s; g) = g(s0).

2. Sat(~s; g and h) = Sat(~s; g)^ Sat(~s; h)

3. Sat(~s; notg) = :Sat(~s; g)

2In the special case of g and h being simple, this boils down to saying that g is true of the �rst k� 1 states in the

sequence, and h is true of the k-th state.
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4. Sat(~s; Nextg) = Sat(~s1; g)

5. Sat(~s; g Untilh) = _1
i=0(Sat(~s0; g)^ : : :^ Sat(~si�1; g)^ Sat(~si; h))

Note that we have the strong version of the until operator: g need never hold, and h must eventually

hold.

Using these operators we can de�ne other operators as shorthand.

De�nition 4.7 (Other operators) Some that we shall use are:{

� Disjunction: g or h = not ((not g) and (noth)).

� Sometime: Exists g = TrueUntil g. (Some su�x of the sequence satis�es g.)

� Always: Globalg = not (Existsnot g). (No su�x of the sequence does not satisfy g, hence

all must satisfy g).

� Weak until: g UntilWh = (g Untilh) or (Global g). (This doesn't demand that h ever be

satis�ed.)

We also have bounded versions of Global , Exists , UntilWand Until , a generalised version of

Next and a periodic operator Periodic which we can be used to test the state of the system

periodically. Other operators | for example, periodic versions of the until operators etc. | are

possible too.

If q = Sat(�; g) then we say that � satis�es g with truth value q. If q � Sat(�; g), then we say that

� satis�es g with truth value at least q.

One of the key properties of the satisfaction relation is that it is monotonic.

Lemma 4.2 The satisfaction relation is monotonic. For all ~s; ~t 2 S!, if q = Sat(~s; g) and ~s v ~t,

then q � Sat(~t; g)

Proof: If g is simple, this follows since g is monotonic. Otherwise the result follows from the

monotonicity of the operators of Q.

Although the basis of the logic is G, the set of simple predicates, Lemma 4.3 shows that all

monotonic predicates can be expressed in TL.

Lemma 4.3 For all monotonic predicates p : S ! Q, 9p0 2 TL such that p � p0.

Proof: See Section A.1.
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4.2 Symbolic version

Describing the properties of a system explicitly by a set of scalar formulas of TL would be far too

tedious. Symbolic formulas allow a concise representation of a large set of scalar formulas since a

symbolic formula represents the set of all possible instantiations of that symbolic formula.

TL is extended to symbolic domains by allowing variables to appear in the formulas. Let V be

a set of variable names fv1; : : : ; vng.

De�nition 4.8 (The Extended Logic | TL) The syntax of the set of symbolic TL formulas,
_TL, is de�ned by:{

_TL ::= G j V j _TL and
_TL j not _TL j Next _TL j _TL Until

_TL

The derived operators are de�ned in a similar way to De�nition 4.7. For convenience, where there

is little chance of confusion, we write TL rather than _TL.

The satisfaction relation is now determined by a sequence, a formula, and an interpretation

of the variables. An interpretation, �, is a mapping from variables to the set of boolean values

ff ; tg. Let � = f�j�:V ! ff ; tgg be the set of all interpretations. Given an interpretation � of the

variables, there is a natural, inductively de�ned interpretation of TL formulas. For a given � 2 �,
�(g) = g if g 2 G

�(not g) = not�(g)

�(g1 and g2) = �(g1) and �(g2)

�(Next g) = Next�(g)

�(g1 Untilg2) = �(g1) Until�(g2)

This can be expressed syntactically: if �(vi) = bi replace each occurrence of vi with bi, written as

�(g) = g[b1=v1; : : : ; bn=vn].

The symbolic satisfaction relations, SATq, determine, for di�erent degrees of truth, for which

interpretations of variables a sequence satis�es a formula.

De�nition 4.9 (Satisfaction relations for _TL) A number of satisfaction relations are de�ned.

� For q = f ; t;>,
SATq(~s; g) = f� 2 �jq = Sat(~s; �(g))g:

� For q = f ; t;>,
SATq"(~s; g) = f� 2 �jq � Sat(~s; �(g))g:

Note that if g is a (symbolic) formula and � an interpretation, then SATq(~s; g) � �, while

Sat(~s; �(g)) 2 Q. Informally,

� SAT>"(~s; g) is the set of interpretations for which g and :g hold. Such results are undesirable

and veri�cation algorithms should detect and 
ag them. SAT>"(~s; g) = SAT>(~s; g).

� SATt(~s; g) is the set of interpretations for which g is (sensibly) true. SATt"(~s; g) = SAT>(~s; g)[
SATt(~s; g).

� SATf (~s; g) is the set of mappings for which g is (sensibly) false. SATf"(~s; g) = SAT>(~s; g)[
SATf (~s; g).

Thus each satisfaction relation de�nes a set of interpretations for which a desired relationship

holds. Sets of interpretations can be represented e�ciently using ordered binary-decision diagrams

(BDDs) [6].
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4.3 Circuit models as state spaces

In practice, the model-checking algorithms described here are applied to circuit models. The state

space for such a model represents the values which the nodes in the circuit take on, and the next

state function can be represented implicitly by symbolic simulation of the circuit. The nodes

in a circuit take on high (H) and low (L) voltage values. It is useful, both computationally and

mathematically, to allow nodes to take on unknown (X) and inconsistent or over-de�ned (Z) values.

The set C = fX;L;H;Zg forms a lattice, the partial order given in Figure 5.

X

Z

L H

@
@

�
�

�
�

@
@

6

v

Figure 5: The partial order for C

The special case of the state space being a cross-product of quaternary sets need be treated

no di�erently to the general case (when the state space is an arbitrary lattice) as all the above

de�nitions apply. However, it is convenient to establish new notation. Let S = Cn for some n.

Typically in this case R = fX;L;Hgn (node values can be unknown or have well-de�ned values,

but cannot actually be in an inconsistent state).

Let Gn be the smallest set with the following predicates:{

� The constant predicates: f ; t;?;> 2 Gn;

� 8i 2 f1; : : : ; ng; [i] 2 G.

Here [i] refers to the i-th component of the state space. A formula g is evaluated with respect to a

state by substituting for each [i] which appears in the formula the value of the i-th component of

the state. Formally,

� [i](s) =

8>><
>>:

? when s[i] � X

f when s[i] � L

t when s[i] � H

> when s[i] � Z

� f(s) = f ;

� t(s) = t;

� ? (s) =?;

� >(s) = >;

Note that all members of Gn are simple and hence monotonic. The semantics of TLn is the

de�nition of the semantics of TL (De�nition 4.6), replacing G with Gn; this is reproduced below

for completeness.
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De�nition 4.10 Semantics of TLn

1. If g 2 G then Sat(~s; g) = g(s0);

2. Sat(~s; g and g) = Sat(~s; g)^ Sat(~s; h);

3. Sat(~s; notg) = :Sat(~s; g);

4. Sat(~s; Nextg) = Sat( ~s1; g);

5. Sat(~s; g Untilh) = _1
i=0(Sat(~s0; g)^ : : :^ Sat(~si�1; g)^ Sat(~si; h)).

These de�nitions are useful because in practice properties of interest are built up from the set of

predicates which say things about individual state components. Lemma 4.4 shows that restricting

the basis of TLn to G is not a real restriction, since using the operators such as conjunction we can

construct any simple predicate.

Lemma 4.4 (Power of G) If p is a simple predicate over Cn, then there is a predicate gp 2 TLn
such that p � gp.

Proof: See Section A.1.

The combined impact of Lemma 4.3 and Lemma 4.4 is that the logic TLn is powerful enough to

describe all monotonic state predicates over Q, something which is not true for trajectory formulas.

The de�nition of the symbolic version of TLn is exactly the same as the general de�nitions

(De�nitions 4.8 and 4.9), substituting Gn for G.

Note that if g is a formula of TLn in which > does not syntactically appear, Sat(�; g) = >
only if there exists i; j such that �i[j] = Z. Thus, if g is a formula with this restriction, and Z

does not appear in � then SATt"(�; g) = SATt(�; g). This property is important since we are most

interested in the SATt relation. As shown in the next section, there is a good decision procedure

for the relation SATt"; using this property we can extend the result to SATt.

5 Symbolic Trajectory Evaluation { STE

Symbolic trajectory evaluation (STE) is a model checking algorithm for checking partially-ordered

state spaces. It was �rst presented in [8] and a full description of STE can be found in [32]. In

these presentations, the algorithm is applied only to trajectory formulas, a restricted, two-valued

temporal logic. In practice it has been applied successfully in hardware veri�cation. This paper

generalises STE in two important respects:

1. It presents the theory for the quaternary logic.

2. It presents the theory for the full class of TL. In particular it deals with disjunction and

negation.

For readability, proofs are deferred to the appendix.
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5.1 Preliminary

Let the model structure of the system be M = (hS; v i;R;Y). S! is the set of sequences of the

state space. Informally, the trajectories are all the possible runs of the system; formally, a trajectory,

�, is a sequence compatible with the next state function: 8i � 0;Y(�i)v �i+1: The partial order on

S is extended point-wise to sequences. Let ST be the set of trajectories and, RT = f� 2 R!\ST g is
the set of realisable trajectories. RT represents those trajectories corresponding to real behaviours

of a system.

As manipulating sets of sequences is very important, �rst we build up some notation for ma-

nipulating and referring to such sets.

De�nition 5.1 (Notation) If A and B are subsets of a lattice L on which a partial order v is

de�ned, then A t B = fa t b : a 2 A; b 2 Bg. If g:L ! L, then g(A) = fg(a) : a 2 Ag, and
similarly, g(hA;Bi) = hg(A); g(B)i.

De�nition 5.2 If S is a lattice with partial order v and A;B � S!, then AvP B if 8b 2 B; 9a 2
A such that av b. Where the types can be inferred readily, we write AvB rather than AvP B.

Informally, the motivation for this de�nition is that formulas of the logic can be represented by the

set of sequences which satisfy them. vP can be used to represent a type of logical implication.

Suppose that A is a set of sequences such that any sequence larger than any sequence in A has

property g, and that B is a set of sequences such that any sequence larger than any sequence in B

has property h. If AvP B then every sequence which has property h also has property g since if

� is larger than some sequence in B it must also be larger than some sequence in A. How this is

used is a major result of this section.

Lemma 5.1 If S is a lattice with partial order v , then v P is a preorder (i.e., it is re
exive and

transitive).

5.2 Scalar Trajectory Evaluation

Recall the de�nition of de�ning pair and de�ning set from Section 4.1. The de�ning set of a simple

predicate characterises that predicate. We can use this as a building block to �nd a characterisation

of all temporal predicates.

Some formulations of temporal logic give the semantics of a formula by the giving the set of

sequences which satisfy it. In practice it may not be possible to use this de�nition directly since

such sets are likely to be extremely large. The advantage of our approach is that since sequences

are partially ordered, the minimal sequences which satisfy a formula can be used to represent the

entire set, which in turn means that the set of minimal sequences can be used to characterise a

formula. These sets are called de�ning sequence sets. In our experience with veri�cation using

STE, there are many formulas which have small de�ning sequence sets.

This section shows how to construct de�ning sequence sets using the de�ning pairs of simple

predicates as the starting point. The de�ning sequence sets of a formula are a pair of sets where the

�rst set of the pair contains those sequences, �, for which t� Sat(�; g), and the second set contains

those sequences for which f � Sat(�; g). These sets are constructed using the syntactic structure

of TL formulas. If a formula is simple its de�ning sequence sets are constructed directly from the
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de�ning set of the formula. For compound formulas, these sets are constructed by performing set

manipulation described below.

The two fundamental operations used are join and union, and it is worth discussing how they are

used. First, if we know how to characterise sequences that satisfy g1 and those that satisfy g2, how

do we characterise sequences which satisfy g1 and g2? Let q 2 Q and suppose that �1 and �2 are

the weakest sequences such that q � Sat(�i; gi). Let �
J = �1 t �2. Clearly, q � Sat(�J ; g1 and g2).

Moreover, suppose q � Sat(�0; g1 and g2), then it must be that q � Sat(�0; g1) and q � Sat(�0; g2).

Thus �1 v �0 and �2 v �0 since the �i are the weakest sequences such that q � Sat(�i; gi). But,

since �J = �1 t �2, �
J v �0. Thus �J is the weakest sequence satisfying g1 and g2.

What about characterising sequences which satisfy g1 or g2? At �rst it may seem that this is

analogous, and we should just use meet instead of join. However, this is not symmetric: since we

are characterising a predicate by the weakest sequences which satisfy it, taking the meets will lose

information. While it will be the case that if q � Sat(�0; g1 or g2) then �1 u �2 � �0, the converse

does not hold in general. This means that to characterise g1 or g2 we need to use both �1 and �2.

Since the law of the excluded middle does not hold in the quaternary logic, we need to char-

acterise both the sequences which satisfy a predicate with value at least t and those that satisfy a

predicate with value at least f .

De�nition 5.3 (De�ning sequence set) Let g 2 TL. De�ne the de�ning sequence sets of g as

�(g) = h�t(g);�f(g)i, where the �q(g) are de�ned recursively by:

1. If g is simple, �q(g) = fsXX : : : : (s; q) 2 Dg; or (s;>) 2 Dgg. This says that provided a

sequence has as its �rst element a value at least as big as s then it will satisfy g with truth

value at least q. Note that �q(g) could be empty.

2. �(g1 or g2) = h�t(g1) [�t(g2);�
f(g1) t�f (g2)i

Informally, if a sequence satis�es g or h with a truth value at least t then it must satisfy

either g or h with truth value at least t. Similarly if it satis�es g or h with a truth value at

least f then it must satisfy both g and h with a truth value at least f .

3. �(g1 and g2) = h�t(g1) t�t(g2);�
f(g1) [�f (g2)i

This case is symmetric to the preceding one.

4. �(notg) = h�f(g);�t(g)i

This is motivated by the fact that for q = f ; t, � satis�es g with truth value at least q if and

only if it satis�es not g with truth value at least :q.

5. �(Nextg) = hfX� : � 2 �t(g)g; fX� : � 2 �f (g)gi

s0s1s2 : : : satis�es Next g with truth value at least q if and only if s1s2 : : : satis�es g with at

least value q.

6. �(g1 Until g2) = h�t(g1 Until g2);�
f(g1 Until g2)i, where

� �t(g1 Until g2) = [1
i=0(�

t(Next 0 g1) t : : :t�t(Next (i� 1) g1)t�t(Next i g2))

� �f(g1 Until g2) = t1
i=0(�

f(Next 0 g1) [ : : :[�f (Next (i� 1) g1) [�f (Next i g2))
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Here we consider the until operator as a series of disjunctions and conjunctions and apply the

motivation above when constructing the de�ning sequence sets.

Note that it may be that �1; �2 2 �q(g) where �1 v �2. As a practical matter it would be preferable

for only �1 to be a member of �q(g). However, this redundancy does not e�ect what is presented

below.

An important consequence of this de�nition is that for each formula g of TL, �(g) characterises

g: all sequences which satisfy g must be greater than one of the sequences in �t(g). The lemma

below formalises this (the proof is in Section A.2).

Lemma 5.2 Let g 2 TL, and let � = �0~�. For q = t; f , q � Sat(�; g) i� 9�g 2 �q(g) with �g v �.

The de�ning sequence sets contains the set of the minimal sequences which satisfy the formula.

These sequences are not necessarily trajectories. Given an arbitrary sequence it is possible to �nd

the weakest trajectory larger than it.

De�nition 5.4

Let � = s0s1s2 : : :. Let �(�) = t0t1t2 : : : where

ti =

�
s0 when i = 0

Y(ti�1) t si otherwise

t0t1t2 : : : is the smallest sequence larger than �. s0 is a possible starting point of a trajectory, so

t0 = s0. Any run of the machine which starts in s0 must be in a state at least as large as Y(s0)

after one time unit. So t1 must be the smallest state larger than both s1 and Y(s0). By de�nition

of join, t1 = Y(s0) t s1 = Y(t0) t s1. This can be generalised to ti = Y(ti�1) t si.

In the same way that there is a set of minimal sequences which satisfy a formula, there is a set of

minimal trajectories which satisfy a formula. A set which contains this set of minimal trajectories

can be computed from the de�ning sequence sets. The de�ning trajectory sets are computed by

�nding for each sequence in the de�ning sequence sets the smallest trajectory bigger than the

sequence.

De�nition 5.5 (De�ning trajectory set) T (g) = hT t(g); T f(g)i, where T q(g) = f�(�) : � 2
�q(g)g.

Note that by construction, if �g 2 T q(g) then there is a �g 2 �q(g) with �g v �g. T (g) characterises

g by characterising the trajectories which satisfy g. This is formalised in the following lemma which

is proved in Section A.2.

Lemma 5.3 Let g 2 TL, and let � = �0~� be a trajectory. For q = t; f , q � Sat(�; g) if and only

if 9�g 2 T q(g) with �g v �.

The existence of de�ning sequence sets and de�ning trajectory sets provides a potentially e�cient

method for veri�cation of properties which can be phrased as:

Do all trajectories that satisfy formula g also satisfy formula h?
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The formula g, the antecedent, can be used to describe initial conditions or `input' to the system.

The consequent, h, describes the `output'. This method is particularly e�cient when the cardinal-

ities of the de�ning sets are small. The veri�cation approach is formalised in Theorem 5.4 (which

is proved in Section A.2). Section 5.3 shows how this result is used in practice. These antecedent,

consequent pairs are called assertions.

Theorem 5.4 Let g; h 2 TL; q 2 B.
�q(h)v T q(g) if and only if for every trajectory � with q � Sat(�; g) it is the case that q � Sat(�; h)

The proof is given in the appendix.

De�nition 5.6 If g 2 TL, and 9�g 2 �t(g) such that 8� 2 �t(g); �g v �, then �g is known as the

de�ning sequence of g. If the �g is the de�ning sequence of g, then �g = �(�g) is known as the

de�ning trajectory of g.

Finite formulas with de�ning sequences are known as trajectory formulas. Seger and Bryant

characterise these syntactically.

There are two useful special cases of Theorem 5.4. First, if A is a formula of TL with a

well-de�ned de�ning sequence �A, and h 2 TL, then 8� 2 �t(h); � v �A if and only if, for every

trajectory � for which t� Sat(�;A) it is the case that t� Sat(�; h)

Second, let A and C be formulas of TL with well-de�ned de�ning sequences �A and �C . Then

�C v �A if and only if, for every trajectory � which q � Sat(�;A) it is the case that q � Sat(�; C).

This is essentially the result of Seger and Bryant generalised to the four valued logic.

5.3 Veri�cation with STE

We �rst have to decide how to deal with inconsistent information, i.e. whether to use the SATt

or SATt" relations for veri�cation. Ideally, given an antecedent g and consequent h we want

to know whether every realisable trajectory that `properly' satis�es g also `properly' satis�es h:

8� 2 RT ; t = Sat(�; g) implies that t = Sat(�; h). In general g and h are symbolic and so we want

to know for which interpretations of variables the result holds. Formally this is put as:

De�nition 5.7 [g ==>h] = f� 2 � : 8� 2 RT ; t = Sat(�; �(g)) implies that t = Sat(�; �(h))g.

Ideally such veri�cation assertions should hold for all interpretations of variables.

De�nition 5.8 j=
M
[g ==>h] = ([g ==>h] = �)

Note that j=
M
[g ==>h] if and only if 8� 2 RT ; SATt(�; g) implies that SATt(�; h). An alternative

approach is to treat inconsistency more robustly (which is what happens in STE de�ned on a

two-valued logic). We could use these de�nitions.

De�nition 5.9 [g==�h] = f� 2 � : 8� 2 ST ; t� Sat(�; �(g)) implies that t� Sat(�; �(h))g

and

De�nition 5.10 j=
M
[g==�h] = ([g==�h] = �)
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Note that j=
M
[g==�h] if and only if 8� 2 ST ; SATt"(�; g) � SATt"(�; h)).

While the ==� relation does not capture exactly the notion of correctness that we want, The-

orem 5.4 provides a decision procedure for this: j=
M
[g==�h] exactly when �t(h)vP T t(g). And,

for circuit models we can use this as a basis for proving the more re�ned notion of satisfaction.

When S = Cn and R = fX;L;Hgn, and only formulas of TLn not syntactically containing >
are considered, computing these veri�cation results is simpli�ed. In the rest of this section we only

consider this class of TLn. We use the following two facts:

1. � 2 RT if and only if, Z does not appear in � (for all i; j, �i[j] 6= Z).

2. If � 2 RT , SAT>(�; g) = ; and SATt(�; g) = SATt"(�; g)

We compute j=
M
[g ==>h] as follows. First, compute T t(g). It is easy to determine whether

T t(g) � RT using Fact 1. If not, then there are inconsistencies in the antecedent which should

be 
agged for the user to deal with before veri�cation continues. Thus we may assume that

T t(g) � RT .

j=
M
[g==�h]

= 8� 2 ST ; (SATt"(�; g) � SATt"(�; h)) By de�nition

=) 8� 2 RT ; (SATt"(�; g) � SATt"(�; h)) RT � ST
=) 8� 2 RT ; (SATt(�; g) � SATt(�; h)): By Fact 2.

= j=
M
[g ==>h]

This result is useful because in this important special case, e�cient STE-based algorithms can be

used. The rest of this paper uses this result implicitly. The main computational task is to determine

j=
M
[g==�h]. By placing sensible restrictions on the logic used and checking for inconsistency in

the de�ning trajectory set of the antecedent, we can then deduce j=
M
[g ==>h] from j=

M
[g==�h].

6 Model Checking Algorithms

Section 5 presents a theoretical decision procedure for the logic. This section outlines practical

model checking algorithms based on existing symbolic trajectory evaluation algorithms [32]. The

algorithms presented below model check results of the form j=
M
[A==�h] where A is a trajectory

formula and h 2 TL.

Scope of veri�cation algorithms

Theorem 5.4 presents a general veri�cation methodology based on STE. However, there is a trade-o�

between the power of the logic and the computational cost of decision procedures. For the purpose

of this paper, we restrict antecedents to be trajectory formulas, which has very important practical

implications for e�ciency. As our experience with STE shows that the main need is for enriched

consequents, this is a justi�able trade-o�; enriching the antecedents is left for future research.

This section sketches three decision procedures for assertions of the form j=
M

[A ==>g]. In

each case, A must be a trajectory formula. The �rst procedure is the most general | g can be any

formula of TL. The two other procedures deal with �nite subsets of TL (not allowing the operators

Global and Exists ). In the examples shown in the Section 7, all three approaches are shown to be

feasible. More experimental evidence is needed to determine their advantages and disadvantages.
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6.1 Direct Modi�cation of STE

For trajectory formulas, using the method of Bryant and Seger verifying j=
M

[A==�C] entails

computing �A and �C and comparing the two. In principle, exactly the same approach could be

taken to verify j=
M

[g==�h] for arbitrary g and h. Note, that in principle the fact that both g

and h could contain `in�nite' temporal operators is not a problem. Since the state space is �nite,

all sequences must contain repeated elements. Hence two in�nite sequences can be compared by

comparing suitably long �nite pre�xes. In practice, this would be too expensive and probably no

better than other model checking approaches.

Verifying j=
M
[A==�h] where A is a trajectory formula is much easier since T t(A) has exactly

one element, and because A is �nite. Checking whether �t(h)vP T t(A) means checking whether

9� 2 �t(h) such that � v �A; this can often be checked e�ciently, particularly when h is �nite.

6.2 Use of testing machines

The second approach transforms the problem of determining whether j=
M

[A==�h] is true into

the problem of determining whether j=
M0

[A0==�C] holds of M0 where A0 and C are trajectory

formulas. A0, C and M0 are all computed automatically from A, h and M. Intuitively, extra

testing circuitry is added to the circuit to be tested to observe the values in the circuit being

veri�ed and compute whether h holds of its observation. Once M 0 and C have been found, this can

be done by using standard STE algorithms. This idea is very similar to the idea of using satellites

or observers [4].

This method is applicable to cases where the consequent is �nite. Its great advantage is that

the simplicity of the approach allows a uniform way for constructing the testing machines. The

cost of the method is the construction of the testing circuitry, composing it with the model, and

then the extra cost in performing trajectory evaluation on M0 (which is bigger than M).

6.3 Use of mapping information

The third approach determines whether j=
M
[A==�h] holds by computing ' = [A==�C] where C is

a trajectory formula. This works by constructing C in such a way as to extract enough information

from �A by using extra boolean variables in the consequent. Performing trajectory evaluation

determines for which interpretations of these extra variables the veri�cation holds. From the set

of interpretations, we can compute whether h holds. If for each interpretation of variables in A

there is an interpretation of variables in C such that the composed interpretation is in ' and if this

interpretation satis�es h, then the veri�cation condition holds.

This method may entail the use of many extra boolean variables, creating larger BDDs and

thereby slowing down trajectory evaluation considerably. This needs experimental testing.

7 Examples

The focus of this paper is theoretical { the introduction of the new logic in Sections 3 and 4 and a

decision procedure for the logic in Section 5. To illustrate the use of the logic, two small examples

are given. The three di�erent approaches discussed in the previous section were used. Extensive

experimental work needs to be done to assess the advantages, disadvantages and limitations of all

three approaches. Work is currently under way on this and optimising the implementations of the
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Figure 6: A CSA Adder

algorithms. The results are presented only to show that all three approaches are feasible, and the

times quoted should be viewed in that light.

The Voss tool

A key reason why STE is an e�cient veri�cation method is that the cost of performing STE is

more dependent on the size of the formula being checked than the size of the system model.

STE uses BDDs for e�cient manipulation of boolean expressions. Using BDDs, boolean expres-

sions have canonical forms making comparison of expressions very e�cient. Though BDDs have

practical limitations, the use of BDD-based methods has extended by orders of magnitude the size

of systems that can be tackled by model-checkers.

The Voss system [31], a formal hardware veri�cation system developed at the University of

British Columbia, consists of three major components: an e�cient implementation of BDDs; an

event driven symbolic simulator with comprehensive delay and race analysis capabilities; and a

general purpose, functional language. The language, called FL, is strongly typed, polymorphic,

and fully lazy. Every object of type boolean in the system is internally represented as a BDD.

Consequently, FL is a very convenient language for developing prototype veri�cation methodolo-

gies that require BDD manipulations. Voss has been used to perform STE e�ciently on large,

sophisticated circuits [1, 3, 17].

7.1 Example 1

The �rst example shows the veri�cation of the carry-save adder (CSA) [22] shown in Figure 6.

De�ne the formulas A and h by:

A = (J = j)^ (K = k) ^ (L = l)

h = Next (M +N = j + k + l)

We wish to verify that j=
M

[A ==>h]. This was veri�ed using all three algorithms presented in

the previous section. Table 1 summarises the performance of the algorithms in verifying a 64-bit

CSA (approximately 360 gates). The time given was obtained by running the example on a DEC

Alpha 3000. In all cases, the time spent actually performing trajectory evaluation is approximately

10{15% of the overall time | the rest of the time was spent in reading in the model to be veri�ed

and other computation involved in the algorithm.

The current implementations of the algorithms are fairly crude. We need to gather more ex-

perience on larger and more varied examples before being able to determine the advantages and

disadvantages of the di�erent approaches. The purpose of these experiments was to perform some
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Algorithm Time (s)

1 Direct 3.8

2 Testing Machine 3.6

3 Mapping information 2.6

Table 1: Experimental results

preliminary evaluation of these approaches, and we believe the experimental results shows that all

of them are promising.

7.2 Example 2

The second example shows the veri�cation of a B8ZS encoder. This is a very simple circuit but

this is an example which it would be very di�cult to do in traditional STE and illustrates some

points about the style of veri�cation.

7.2.1 Description of circuit

Bipolar with eight zero substitution coding (B8ZS) is a method of coding data transmission used in

certain networks. Some digital networks use Alternate Mark Inversion: zeros are encoded by `0', and

ones are encoded alternately by `+' and `�'. The alternation of pluses and minuses is used to help

resynchronise the network. If there are too many zeros in a row (over �fteen { something common

in data transmission) the clock may wander. B8ZS encoding is used to encode any sequence of

eight zeros by a code word. If the preceding 1 was encoded by `+', then the code word `000+{0{+'

is substituted; if the preceding 1 was encoded with a `�', then the code word `000{+0+{'. Using

this encoding, the maximum allowable number of consecutive zeros is seven.

The implementation of the circuit is taken from the design of a CMOS ZPAL implementation of

the encoder (and corresponding decoder) by Advanced Micro Devices [2]. The encoder comprises

two parts. One PAL detects strings of eight zeros and delays the input stream to ensure alignment.

If the �rst PAL detects eight zeros, the second PAL encodes the data depending on whether eight

zeros have been detected or not. Figure 7 gives an external view of the encoder. The inputs are

a reset line (active low), and NRZ IN which provides the input. There are two outputs, PPO and

NPO which as a pair represent the encoding: (1,0) is the `+' encoding of a one, (0, 1) is the `�'
encoding of a one, (0; 0) encodes a zero, and (1, 1) is not used. Output emerges six clock cycles

after input. All input and output lines are serial.

7.2.2 Veri�cation

There are two questions one could ask in veri�cation:

1. Does the implementation meet its speci�cation? Here we want to check that the output we

see on NPO and PPO is consistent with the input.

2. Does the implementation have the properties that we expect? (Speci�cation validation) In

particular is it the case that:
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Figure 7: B8ZS Encoder

� At no stage are there eight consecutive (PPO, NPO) pairs which encode a zero;

� At no stage are there �fteen or more consecutive zeros on the PPO output; and

� At no stage are there �fteen or more consecutive zeros on the NPO output.

Checking that the implementation meets the speci�cation is a bit tricky, and shows the need for

a richer logic than the set of trajectory formulas. With trajectory formulas, the obvious way

to perform veri�cation is to examine the output and check to see that the output produced is

determined by the �nite state machine which the PALs implement. However, the equations of the

FSM are complicated and non-intuitive. Veri�cation that the implementation is `correct' doesn't

give us information about the speci�cation. Worse, essentially the veri�cation conditions would

be a duplicate of the implementation, increasing the likelihood of an error being duplicated. And

there don't seem to be easier, higher level ways of expressing correctness using trajectory formulas

since the circuit has the property that the n-th output bit is dependent on the �rst input bit.

Using the richer logic, a far better way of verifying the circuit is to show that the input can be

inferred from the output. Suppose that we want to check the k-th output bit pair (recall that the

output is encoded as the (PPO, NPO) pair). If this bit pair is in the middle of one of the code

words then the (k � 6)-th bit must be a zero. Otherwise the (k � 6)-th input bit can be inferred

directly from the value of the bit pair.

The testing machine method was used in veri�cation. To test that the bits are correctly trans-

lated, we de�ne a set of reachable states and show that the encoder enters one of the reachable

states after it is reset. We show that if the encoder is in a reachable state and runs one time unit it

enters another reachable state. Then we show that if the encoder starts in a reachable state then

the output of the ninth input bit is correctly interpreted. The computational cost of all of this is

approximately 30s on a Sun 10/51.

The second step is to check that the implementation has properties that cannot be directly

inferred from the speci�cation. In particular we want to show that at no stage are there eight or

more zeros consecutively produced by the encoding of PPO and NPO and also that if we look at

PPO and NPO individually that at no stage are there �fteen or more zeros consecutively. These

conditions can be expressed succinctly in TL, while they could not be expressed as a trajectory

formula. The major restriction here is that using testing machines, the antecedent can only be

a �nite formula. We cannot check that this result holds for arbitrary input. What we can show

is that given arbitrary input of length n the circuit has the properties we expect. Using testing
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machines, veri�cation for n = 100 presents no problem (10s on a Sun 10/51). The direct method

could verify the general case.

This example illustrates some interesting points about veri�cation. However, it is not a good

example for trajectory evaluation; since the state space of the circuit is quite small (fewer than 20

state holding components), other veri�cation methods work well.

8 Related Work

Temporal logics are now well-established formalisms for specifying correctness properties of systems.

Since automatic model checking algorithms were �rst proposed in the early 1980s [12], much progress

has been made and there are now many successful techniques based on BDDs (e.g. [9]) and tableaux

(e.g. [5]).

The key distinguishing feature of our temporal logic is that it is a four-valued logic. Although

four-valued logics have been used in other areas of computer science, we believe having a four-valued

temporal logic is a novel contribution. Its utility and justi�cation is that it is the appropriate

technical setting for model checking partially-ordered state spaces.

This use of a multi-valued logic is very di�erent to the research in the use of multi-valued logics

for circuits where the focus is on circuit components which can take on many values (unlike current

technology where components typically take on one of two values). Our use of a lattice to represent

the state space is a representational convenience for modelling purposes. Furthermore, we carefully

distinguish between the lattice used to represent the state space, and the lattice used to represent

the logic in which we reason about the state space.

Syntactically and semantically, TL looks much like logics such as CTL [13]. However it does

not have the 8 and 9 operators. Since the next state function is deterministic, there is no need to

reason about di�erent paths. In a deterministic system, there is no distinction between linear-time

and branching-time. This doesn't quite close the issue, since as alluded to earlier, we can use a

lattice structure to represent non-determinism (and with circuit models we successfully represent

input non-determinism). This entails converting a non-deterministic model with a 
at state space

into a deterministic lattice model. What then are the semantics in the original model? This is a

subtle point and all the examples that STE has been used in, this issue has not arisen. However,

it raises an important question for future research.

The new techniques of model checking have greatly increased the size of the models that can be

checked. However, the state explosion problem cannot be avoided and other techniques are needed

to deal with many real problems. Abstraction is one popular idea | instead of verifying property

f of model M , we verify property fA of model MA and the answer we get helps us answer the

original problem. The system MA is an abstraction of the system M .

Typically, the behaviour of an abstraction is not equivalent to the underlying model. The

abstractions are conservative in thatMA satis�es fA implies that M satis�es f (but not necessarily

the converse). Some examples of abstraction methods are [15, 19, 23, 24, 28].

In hardware veri�cation, abstraction is particularly needed in dealing with the data path of

circuits. A drawback of abstraction is that it takes e�ort to both come up with the suitable

abstraction (which is di�cult to do automatically, but see [14, 33]) and prove that the abstraction

is conservative (in which progress has been made in automatically checking). For an example of

this type of proof see [10].
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A great advantage of STE-based approaches is that the lattice structure of the state space

allows simple and implicit use of abstractions of the model. Essentially the choice of antecedent

determines the amount of information about the behaviour of the model which will be used. This

type of abstraction is di�erent to the abstractions described above | the methods are orthogonal.

These abstractions are potentially very powerful, but require a higher degree of sophistication of

use. STE also has the advantage that the abstractions are tailored to the particular veri�cation

assertions being checked: for each assertion a di�erent abstraction is used. Furthermore, the use of

abstraction in STE does not a�ect accuracy of timing. For low level veri�cation, this may be very

important.

The use of a four-valued logic complements this: in traditional conservative approximation ap-

proaches proving that a property does not hold of an abstraction says nothing about the underlying

model. In our approach we can use f and ? to distinguish between a property not holding and the

abstraction being too weak to prove the property we are interested in.

9 Conclusion

Representing large state spaces with a lattice is an e�ective way of ameliorating the state explosion

problem. The four-valued temporal logic TL is the appropriate technical framework for expressing

properties of models which have a partially-ordered state space. Symbolic trajectory evaluation

can be used to model check these models. This paper is primarily theoretical and has presented the

underlying theory, and only sketched the practical algorithms which can be used for veri�cation.

This work is part of a larger project to use symbolic trajectory evaluation for veri�cation.

Important issues are combining the use of theorem-proving and model checking, and the use of a

compositional theory for generalised STE [1, 26].

Other areas for research include:

� Practical experience with the logic and the development of e�cient tools for veri�cation.

� The development of a compositional theory for the logic.

� Non-determinism. First, we need a deeper understanding of the process of converting a non-

deterministic model with a 
at state space into a deterministic model with a lattice state

space. Second, it would be interesting to investigate the theoretical and practical e�ects of

allowing the lattice-structured model to deal with non-determinism explicitly through the use

of a next state relation rather than a next state function.

� Determining how applicable other model-checking approaches would be for this framework of

lattice-structured models and truth domains.
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A Technical results

A.1 Auxiliary results

Proof of Lemma 4.1

Lemma A.1 If g; h:S ! Q are simple, then D(g) = D(h) implies that g � h.

Proof: To emphasise that D(g) = D(h), we set D = D(g). Let s 2 S.
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Let E =fq 2 Q : (sq; q) 2 D ^ sq v sg
e = tE

1. g(s)� e

Since:

g is simple, 9sp 2 S such that (sp; g(s)) 2 D.

sp v s by de�nition of de�ning pair.

=) g(s) 2 E by de�nition of E

=) g(s)� t E by de�nition of join.

2. e � g(s)

Since:

By monotonicity of g, 8(sq ; q) 2 E; sq v s =) q = g(sq)� g(s)

=) tE � g(s)

Thus g(s) = e. Similarly, h(s) = e.

=) g(s) = h(s)

As s was arbitrary g � h.

Note that the proof does not rely on the particular structure of Q; it only relies on Q being a

complete lattice.

Proof of Lemma 4.3

First, equivalence must be formally de�ned. If p is a monotonic predicate, then p:S ! Q. If

p0 2 TL, then its meaning is given by the satisfaction relation. However, where p0 contains no

temporal operator it can also be considered as a function from S to Q since its meaning is given

by the degree to which the �rst elements of sequences satisfy it. Formally p � p0 if 8s 2 S; p(s) =
Sat(sXX : : : ; p0).

Let p:S ! Q be an arbitrary monotonic predicate. Partition S according to the value of p:

S? = fs 2 S : p(s) =?g.
Sf = fs 2 S : p(s) = fg.
St = fs 2 S : p(s) = tg.
S> = fs 2 S : p(s) = >g.

Some of these sets may be empty. Now, for each s 2 S, we de�ne �s:S ! Q as follows:

�s(t) =

�
t; s v t

?; s 6v t
A:1

Note that each �s is simple. We de�ne as auxiliary operators, >x = x ^ > and<x = :(>x).
Recall that >^ ?= f so these de�nitions yield:

>x =

�
f ; when x = f ;?
>; when x = t;>

<x =

�
t; when x = f ;?
>; when x = t;>
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Further de�ne �f (t) = or (s2S
f
)�s(t), �t(t) = or (s2St)

�s(t) and �>(t) = or (s2S>)�s(t). For the

purpose of this lemma, de�ne or ; =?. Thus,<( or ;) = t.

De�ne p0(t) by p0(t) = �t(t) and <�f (t) and<�>(t) or >�>(t). Intuitively, the �rst terms checks

whether p(s) is a least t and not at least f and not at least >. The second term asks checks whether

p(s) is >.
Finally, the lemma we want to prove.

Lemma A.2 Let p : S ! Q be a monotonic predicate. Then 9p0 2 TL such that p � p0.

Proof: De�ne p0(t) by

p0(t) = �t(t) and <�f (t) and <�>(t) or > �>(t)

� Suppose t 2 S?. Thus p(t) =?. By de�nition, �f (t) = �t(t) = �>(t) =?.
Therefore p0(t) =? ^t ^ t _ f =?= p(t),

� Suppose t 2 Sf . Thus p(t) = f . By de�nition, �f (t) = t; �t(t) = �>(t) =?.
Therefore p0(t) =? ^> ^ t _ f = f = p(t).

� Suppose t 2 St. Thus p(t) = t. By de�nition, �t(t) = t; �f (t) = �>(t) =?.
Therefore p0(t) = t ^ t ^ t _ f = t = p(t).

� Suppose t 2 S>. Thus p(>) = >. By de�nition, �>(t) = t;<�>(t) = >�>(t) = >.
=) p0(t) = �t(t) ^ (<�f (t)) ^ > _ >

� ? ^ ? ^> _ >
= f _ > = >
= p(t)

=) p0(t) = p(t).

All the �s are simple as are the constant predicates ?; f and t, so given an arbitrary monotonic

predicate p we are able to de�ne it from simple predicates using conjunction, disjunction and nega-

tion { showing we can consider any monotonic state predicate as a short-hand for a formula of TL.

Proof of Lemma 4.4

Lemma A.3 (Power of G) If p is a simple predicate over Cn, then there is a predicate gp 2 TLn
such that p � gp.

Proof: For each (sq; q) 2 D(p), let sq = hpq;1; : : : ; pq;ni.
For each x 2 C; i = 1; : : : ; n, de�ne �(x; [i]): Cn! Q by

�(x; [i]) =

8>><
>>:

t; when x = X

? or not [i]; when x = L

? or [i]; when x = H

? or (not [i] and [i]); when x = Z

Note that �(L; [i]) and �(H; [i]) = �(Z; [i]). Given a state s, �(px;i; [i])(s) returns t if s's i-th

component is at least as large as the i-th component of the p's de�ning value for x, and ? otherwise.
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Now de�ne �x(s) = and
n

i=1(�(x; [i])(s)).

=) �x(s) =

�
t; if px v s

?; otherwise
This is exactly the de�nition of Equation A.1. Thus, adopting the de�nitions of the previous sec-

tion, if we de�ne p0(t) = �t(t) and (<�f (t)) and (<�>(t)) or >�>(t); we have by Lemma 4.3 that

p0 � p.

A.2 Proofs from Section 5

Proof of Lemma 5.2

First, an auxiliary result.

Lemma A.4 If g 2 TL; � 2 �q(g), then q � Sat(�; g).

Proof: Let g 2 TL; (� = s0s1s2 : : :) 2 �q(g). Proof by structural induction.

1. If g is simple, Sat(�; g) = q or Sat(�; g) = > by de�nition of Sat.

2. Let g = g1 and g2. By de�nition Sat(�; g) = Sat(�; g1) ^ Sat(�; g2).

Suppose q = t, i.e. � 2 �t(g). Then, � = �1 t �2 for some �1 2 �q(g1), �2 2 �q(g2). By

induction, q � Sat(�1; g1); q � Sat(�2; g2). By monotonicity q � Sat(�; g1); q � Sat(�; g2). Thus,

by de�nition q � Sat(�; g).

Suppose q = f , i.e. � 2 �f(g). Then, either (or both) � 2 �q(g1) or � 2 �q(g2). Suppose

(without loss of generality) that � 2 �q(g1). By induction f � Sat(�1; g1). Trivially, ?
� Sat(�2; g2). Thus, f ^ ? � Sat(�1; g1) ^ Sat(�2; g2) = Sat(�; g). But f ^ ?= f which

concludes the proof.

3. Let g = not g1. Then � 2 �:q(g1). By induction :q � Sat(�; g1). Since Sat(�; g) = :Sat(�; g1).
this implies that :q � :Sat(�; g). Hence q � Sat(�; g).

4. Let g = Next g1. Then by construction of � it must be that s0 = X and that s1s2 : : : 2 �q(g1).

By induction q � Sat(s1s2 : : : ; g1). Thus q � Sat(Xs1s2 : : : ; Next g1).

5. Suppose g = g1 Until g2.

By de�nition Sat(~s; g1 Until g2) = _1
i=0(Sat(~s0; g1) ^ : : : ^ Sat(~si�1; g1) ^ Sat(~si; g2)). Let

� 2 �q(g) be given.

(a) Suppose q = t, i.e. � 2 �t(g1 Until g2).

Then 9i such that � 2 �t(Next 0 g1) t : : :t�t(Next (i� 1) g1) t�t(Next i g2).

Thus, 8j = 0; : : : ; i� 1; 9�i 2 �t(Next j g1) such that �j v �.

By induction, t� Sat(�j ; Next j g1)

Therefore, t � Sat(�; Next j g1)

Similarly t� Sat(�; Next i g2)

Thus, t � Sat(�; (Next0 g1) ^ : : :^ (Next (i� 1) g1)^ (Next i g2)).

So, t � Sat(�; g1 Until g2).
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(b) Suppose q = f , i.e. � 2 �f (g1 Until g2).

Then 8i = 0; : : : ; 9�i with
�i v �

�i 2 �f(Next 0 g1) [ : : :[�f (Next (i� 1) g1) [�f (Next i g2)

By induction f � Sat(�i; Next 0 g1 and Next (i� 1) g1 and Next i g1).

Therefore, by de�nition of g1 Until g2, f � Sat(�i; g1 Until g2)

Lemma A.5 Let g 2 TL, and let � = �0~�. For q = t; f , q � Sat(�; g) i� 9�g 2 �q(g) with �g v �.

Proof: (=)) Assume that q � Sat(�; g). The proof is by structural induction.

1. Suppose g is simple. Then q � g(�0). Since g is simple there exists q0 2 fq;>g with (sq0 ; q
0) 2

D(g) and sq0 v �0. Thus, sq0X : : : v �. But sq0X : : : 2 �q(g) by de�nition of �q(g).

2. Suppose g = g1 and g2.

(a) Suppose q = t. Then t � Sat(�; g1) and t� Sat(�; g2). By induction, 9�1 2 �t(g1); �2 2
�t(g2) with �1; �2 v �. Therefore, �1t�2 v �. But, by de�nition of �(g),�1t�2 2 �t(g).

(b) Suppose q = f . Then either (or both) f � Sat(�; g1) or f � Sat(�; g2). Without loss of

generality assume f � Sat(�; g1). By induction, 9�1 2 �f(g1) with �1 v �. By de�nition

of �(g),�1 2 �f (g).

3. Suppose g = not g1. If q � Sat(�; g), then :q � Sat(�; not g1). By induction 9� 2 �:q(g1)

with � v �. But by de�nition of �(g), � 2 �q(g).

4. Suppose g = Next g1. If q � Sat(�; g), then q � Sat(~�; g1). By induction 9� 2 �q(g1) with

� v ~�. By construction of �(g), X� 2 �q(g). Since Xv �0, X� v �.

5. Suppose g = g1 Until g2

(a) Suppose q = t. Then 9i such that t � Sat(�; Next0 g1) ^ : : :^ Sat(�; Next (i � 1) g1) ^
Sat(�; Next i g2))

Thus, t � Sat(�; Next i g2) and

8j = 0; : : : ; i� 1; t� Sat(�; Next j g1)

Thus, by induction:

(1) 9�i 2 �t(Next i g2) such that �i v �

(2) 8j = 0; : : : ; i� 1; 9�j 2 �t(Next j g1) such that �j v �

Hence, � = �0t : : :t �i 2 �t(Next 0 g1)t : : :t�
t
Next (i� 1) g1t�

t
Next i g2 and � v �.

Thus, � 2 �t(g1 Until g2) and � v �.

(b) Suppose q = f . Then 8i; f � Sat(�; Next0g1)^: : :̂ Sat(�; Next (i�1)g1)^Sat(�; Next ig2)).
Thus 8i, either f � Sat(�; Next i g2) or 9j 2 0; : : : ; i� 1 such that f � Sat(�; Next j g1).

Thus by induction 8i, either 9�0
i
such that �0

i
2 �f (Next i g2) with �0

i
v �, or 9�j 2

�f(Next j g1) and �j v �.
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In either case, 8i by construction

9�i 2 �f (Next0 g1) [ : : :[�f (Next (i� 1) g1) [�f(Next i g2)

with �i v �. Hence as S is a complete lattice,

� = t1
i=0�i 2 �f(g1 Until g2) and � v �.

((=) Let g 2 TL; � 2 S!, and assume that 9�g 2 �q(g) such that �g v �.

By Lemma A.4, q � Sat(�g; g). By the monotonicity of Sat, q � Sat(�; g).

Proof of Lemma 5.3

Lemma A.6 Let g 2 TL, and let � = �0~� be a trajectory. For q = t; f , q � Sat(�; g) if and only

if 9�g 2 T q(g) with �g v �.

(=)) Suppose q � Sat(�; g).

By lemma 5.2, 9�g 2 �q(g) such that �g v �.

Let �g = �(�g). Note that �g 2 T q(g) by construction and that �g v �g.

�g v �: the proof is by induction (we use �[i] to refer to the i-th state in �).

1. �g[0] = �g[0]v �[0]

2. Assume �g[i]v �[i].

3. Since � is a trajectory,

Y(�g[i])vY(�[i])v �[i+ 1]

Since �g v �,

�g[i+ 1]v �[i+ 1]. Therefore, �g[i+ 1] = �g[i+ 1]tY(�g[i])v �[i+ 1].

((=) Suppose 9�g 2 T q(g) such that �g v �.

By transitivity, �g v �. As �g 2 T q(g); 9�g 2 �q(g) such that �g v �g.

By lemma 5.2, q � Sat(�g; g).

By monotonicity q � Sat(�; g).

Proof of Theorem 5.4

Theorem A.7 Let g; h 2 TL; q 2 B.
�q(h)v T q(g) if and only if for every trajectory � with q � Sat(�; g) it is the case that q � Sat(�; h)

Proof: (=)) Suppose 8�g 2 T q(g); 9�h 2 �q(h) with �h v �g.

Suppose q � Sat(�; g).

By lemma 5.3 9�g 2 T q(g) such that �g v �.

By assumption then, 9�h 2 �q(h), with �h v �g. By transitivity, �h v �.

By lemma 5.2, q � Sat(�; h).

((=) Suppose for all trajectories �, q � Sat(�; g) implies that q � Sat(�; h).

Let �g 2 T q(g).
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Then by lemma A.4 and monotonicity, q � Sat(�g; g).

By assumption, q � Sat(�g; h).

By lemma 5.2, 9�h 2 �q(h) such that �h v �g.

As �g was arbitrary, the proof follows.
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