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Abstract

This report discusses the requirements and design of an event scheduler that facilitates the

synchronization of independent, heterogeneous media streams. The work is motivated by the

synchronization requirements of multiple, periodic, logically independent auditory streams,

but extends naturally to include time-based media of arbitrary type. The scheduler design

creates a framework within which existing synchronization techniques are composed to coor-

dinate the presentation activities of cooperating or independent application programs. The

scheduler is especially e�ective for the presentation of repetitive sequences, and guarantees

long term synchronization with a hardware clock, even when scheduler capacity is temporar-

ily exceeded on platforms lacking real time system support. The implementations of the

scheduler and of several application programs, class libraries and other tools designed to use

or support it are described in detail.
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1 Introduction

There are many open problems in the control of time-based media, ranging from the physical

transport of video streams, through synchronization of sound and image, to real-time inter-

active control of a presentation. This report deals with one particular aspect of time-based

media control; namely, the coordination of presentation between independent applications.

Work in this area was motivated by a number of investigations into the creation of

continuous or periodic auditory displays. Our long term objective is to create a subtle

and continuously present ambient acoustic environment capable of conveying information

concerning the state of a workstation or network, and the progress and behaviour of ongoing

computations. The e�ort began with the implementation of a number of auditory e�ects that

are well known to psychologists but whose e�ectiveness in uncontrolled, noisy environments

is poorly understood [5].

Three observations became apparent during the early implementation work. First, si-

multaneous auditory streams must be coordinated. When independent streams are not

su�ciently separated along some salient dimension such as pitch or timbre, they tend to fuse

perceptually into a single stream [2]. Coordination is therefore required to ensure either that

logically independent streams are su�ciently separated, or that they merge in a predictable

way.

Second, the temporal aspects of musical and other acoustical presentation require a rela-

tively high degree of 
exibility. For example, the timing requirements of digital video, while

extremely demanding in practice, are conceptually very simple. It is only when many video

and audio segments are composed to form a larger presentation that timing requirements

become involved. In contrast, a single synthesized auditory stream can exhibit rhythmic in-

tricacies that cannot be predicted in advance and to which humans are extremely sensitive.

Precise control over the relative timing of its elements is therefore required.

Third, to our knowledge there are no existing solutions to the problem of coordinating

the activities of independent applications. Our search for a suitable implementation platform

revealed many systems for coordinating a diverse range of elements in a uni�ed multime-

dia presentation, but none that address the speci�c problem of coordinating independent

activities.

This report describes the design and implementation of a system that addresses these

requirements. Its principal purpose is to facilitate the creation of a rich acoustic environment,

but the 
exibility it provides for the creation of sophisticated acoustic patterns can be easily

applied to the coordination of a much wider range of activities. The next section reviews

work in a number of related areas that bears on the current problem. Section 3 expands

on the motivation and requirements outlined above. The system design is described in

Section 4, and Section 5 follows with a discussion of the implementation of the system itself

as well as of several application programs that exploit its abilities. We conclude in Section 6

with a summary of the system requirements and design, and a discussion of some promising

directions for future work.

1



2 Related Work

Although we are unaware of other work that addresses the speci�c problem of coordinating

the presentation of heterogeneous media streams between independent applications, there

are several closely related problems for which adequate (and ever improving) solutions exist.

The design proposed in this report relies in some way on many of these solutions.

2.1 Presentation scheduling

The task of coordinating the presentation of multiple, conceptually distinct media streams

is at the heart of many multimedia products and research e�orts. Apple's QuickTime sys-

tem, for example, directly supports the composition and display of multimedia documents

(movies) containing an arbitrary number of tracks of time-based media [3]. Internal syn-

chronization of media streams and a 
exible framework for including modular drivers for

new devices and media types are among the strengths of the design. The system coordinates

the activities of multiple applications to the extent that it mediates contention for hardware

resources, and applications can share movie �les. There is no facility however for synchro-

nizing a stream with another that is already in presentation. In addition, the expressive

power of the synchronization speci�cation does not extend beyond specifying the start and

end points of multiple media tracks relative to the start of the presentation.

An example of a more expressive presentation speci�cation language can be found in

HyTime [10], which de�nes a framework for the design of speci�c document formats that

include spatial, temporal and logical relationships between document components. Unlike

QuickTime, HyTime is a speci�cation only; HyTime compliant software applications are

required to create, query or render documents.

Musical performance software provides another example of presentation scheduling. The

Musical InstrumentDigital Interface (MIDI) standard has facilitated a diverse range of multi-

track sequencing and editing software. The Music Kit developed for NeXTStep workstations

is a very complete example of this genre. It is an object oriented software kit that is designed

around the metaphor of an orchestra. A conductor coordinates the activities of one or more

performers which together constitute an orchestra. Performers have instruments on which

they play parts that are assembled into scores. Each part is composed of a time stamped

collection of notes. A note may initiate, terminate or modify a synthesized voice, in which

case it will contain all of the parameters relevant to the particular synthesis technique, or

it may contain an arbitrary MIDI packet. Scores may be speci�ed in a score �le language

which can be interpreted at performance time or generated dynamically. The score �le

notation supports musical devices such as repeats and codas. A performance in this system

can have any number of conductors directing any number of players to perform possibly

independent scores on their instruments. Instrument classes can be subclassed to produce

new instruments, and there are no restrictions on the way in which an instrument renders

a note. Finally, a conductor can be used as a general purpose noti�er to dispatch messages

between arbitrary objects in a timely fashion. The core of this design is used as the basis
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for our solution.

2.2 Audio and video servers

The AudioFile system [8] is an audio server that operates in a manner analogous to the X

Window System [14]. Multiple local and remote clients communicate with a local server

according to a speci�c protocol, requesting that certain rendering be done on the local work-

station. Clients make requests through a device independent interface; the server mediates

access to the sound generation hardware and maps requests for services not supported by the

local hardware into suitable approximations. AudioFile provides the infrastructure neces-

sary for coordinating auditory streams from independent applications, but does not actually

address the problem of synchronizing independent streams.

Arons describes a framework and set of tools for constructing asynchronous servers for

speech and audio applications [1]. The audio server described is used only for playback

of digital samples, which avoids many of the problems that arise when individual synthe-

sized tones are assembled into a continuous presentation. However, the design is strongly

in
uenced by the need to provide feedback to an application regarding the processing of its

requests.

Many of the issues addressed in this report do not yet arise in the context of video

servers. It is su�ciently di�cult to simply transport the enormous amounts of data involved

(Gemmell and Christodoulakis e�ectively demonstrate the magnitude of the challenge [6])

that most systems are not yet in a position to exploit more sophisticated composition of

multiple streams.

2.3 Media synchronization

In recent years there has been a great deal of interest in the general problem of multimedia

synchronization. This report does not seek to extend this work directly, but rather proposes

a higher level of synchronization that depends on existing solutions. The proposed frame-

work a�ords natural opportunities to utilize formal approaches such as the timed Petri net

approach of Little and Ghafoor [9], the synchronous language model of Horn and Stefani

[7], or the event stamps and restricted blocking of Steinmetz [16]. The framework also has

the 
exibility to exploit more detailed software designs such as the Ttoolkit of Guimaraes et

al. [11] and the feedback techniques for media continuity and synchronization developed by

Ramanathan and Rangan [12, 13].
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3 System Requirements

The work described in this report was motivated by the need to coordinate the auditory

presentation activities of multiple independent application programs. Recall that our long

term goal is to create a rich acoustic environment in which the behaviour or state of devices,

services and ongoing computations is represented through auditory displays.

3.1 Synchronization

Consider the situation in which two independent applications choose to represent some aspect

of their behaviour by generating a rhythmic acoustic pattern. It is easy to demonstrate

that two rhythmic patterns will fuse to form a single more complex percept unless the two

components are well separated along a salient dimension such as pitch or timbre [5]. In the

absence of more sophisticated system resources, independent applications will not have the

means to ensure this separation. Even if this was possible, the need to shift pitch or timbre

to ensure separation may con
ict with the coding of the information being conveyed. A

suitable compromise is to synchronize the rhythmic phase of auditory streams to ensure that

any two or more streams will always generate the same complex pattern when presented

simultaneously. This will dramatically reduce the space of possible rhythms that can be

generated by a �xed set of programs, allowing the possibility of becoming familiar with many

common combinations. A mechanism for achieving phase synchronization of independent

auditory streams would therefore be useful.

3.2 Modular media handlers

There are three ways to address the phase synchronization problem. First, applications can

perform their own phase calculations based on a global clock and a convention that establishes

when the �rst cycle began. This has the disadvantage of requiring every application to

provide its own scheduling infrastructure, although the use of a well designed shared library

for this purpose would minimize the disadvantage. Second, a separate process could be used

to coordinate scheduling, sending signal messages to applications to trigger presentation. If

the time required for each message is roughly constant then the extra delay introduced by

the messaging will be equivalent to a small global phase shift, which is inconsequential since

the phase origin will ordinarily be chosen arbitrarily.

Both of these approaches, however, do not address the issue of resource contention.

Mediation of visual display resources, for example, is commonly accomplished through a

window system in which a separate process coordinates which windows will be displayed and

which will be partially hidden. To prevent applications from drawing on parts of the screen

they do not own, drawing is normally accomplished by sending suitable instructions to the

window server process which then decides which parts are actually visible. Consider how the

synchronization approaches outlined in the previous paragraph must be integrated into such

a system. When the time for the next presentation element is signalled (either by a global
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clock event or a message from a scheduler process), the presentation must be accomplished

by sending a request to the window or audio server, including a potentially large amount of

data as would be required for a large image or a high quality audio sample.

A third possibility is to have the media dispatched by the scheduler itself. With this

arrangement, display actions are scheduled in advance with the display server (where the

display may be visual, auditory or tactile) and all necessary data is delivered as part of the

scheduling process. When all actions are scheduled for immediate execution, the scheduler

behaves exactly like a conventional window or audio server. Actions scheduled for a later

time bene�t from more timely presentation since the overhead of acquiring the data has

already been incurred. Even more precise presentation scheduling is then possible since the

scheduler may be provided with the initial start up characteristics of the display device and

can cue the action su�ciently far in advance. The bene�t of accounting for start up time

may be negligible for a small image, say, but will be far more signi�cant in the case of a

video clip presentation that involves starting a VCR.

The value of providing the scheduler with presentation data in advance increases dramat-

ically when repetitious patterns, acoustic rhythms for example, must be generated. In this

case, only one cycle of data need be sent to the scheduler which can retain it for periodic

dispatch.

According to this view, all of the hardware resource mediation software is gathered to-

gether into a single scheduler process. A monolithic implementation of such a process would

preclude the possibility of adding new display devices, or new media types that use existing

devices, without signi�cant redesign. It is therefore essential that the system architecture

support a modular design for media handlers that can be integrated into an existing scheduler

according to a standard protocol.

3.3 Module interaction

The preceding discussion of resource contention considered only the problem of mediating

access of application programs to a display resource. Given the requirement for modular

media handlers, it is also necessary to mediate access of modules that rely on the same

display device. For example, most popular sound cards use the same basic hardware to

achieve precise play back of digitized samples as to create synthesized tones. However the

characteristics of these two media are very di�erent and would best be controlled by di�erent

modules. A similar comment can be made concerning the relation between still image and

video display. A mechanism for implementing a policy of priority and preemption is therefore

required.

The requirements listed in this section are concerned only with the highest level of syn-

chronization: the relative start times of presentation elements. The processing of a video

clip, for example, is considered complete when the instruction to display the �rst frame is

dispatched. Clearly such operations as the timely presentation of video or the coordination

of a video stream with a sound track require synchronization at a �ner granularity. This

will also require interaction between modules. However, details of interaction at this level
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are not considered here. There are many existing and sophisticated solutions for this level

of synchronization (QuickTime for example), and we are principally concerned with the

composition of these mechanisms at the inter-application level. Section 5, which discusses

implementation, indicates how the facilities of a system like QuickTime can be exploited

directly in the coordination of presentations between applications.

3.4 Feedback and performance

Even though application programs need not perform their own presentation scheduling,

they should retain the ability to synchronize other actions with the presentation. A simple

acknowledgement message sent from the scheduler at the time of dispatch, identifying the

display action performed, facilitates this without incurring the overhead of transferring a

substantial amount of data at the moment the action is taken.

Finally, performance and overhead are important concerns for every aspect of the system

design. Most importantly, a suitable policy must be adopted when the display demands of

application programs exceed the capacity of the system. The following section presents the

design of a system that addresses the requirements outlined here.
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Figure 1: Event Scheduler Framework

4 Event Scheduling

The event scheduler is the heart of the media coordination system and establishes the frame-

work within which a collection of modules cooperate. Scheduling functions in the current

version are limited to sorting events by time stamp and dispatching them at the proper

times, however even this simple arrangement o�ers considerable 
exibility. As we shall see,

there are also natural places within the existing framework to integrate more sophisticated

scheduling algorithms. The scheduling framework, illustrated in Figure 1, is described in

this section.

4.1 Events and sequences

The event is the common unit of currency in the system. An event has a type, a time stamp

and a pointer to data of unspeci�ed format. When the scheduler's clock reaches or surpasses

the time stamp of an event, the event is dispatched to the appropriate handler as determined

by the type identi�er. The module then takes some action based on the associated data,

usually resulting in the presentation of visual or auditory material.

A sequence is a collection of events ordered by time stamp. In this context, the time
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stamp of an event is used slightly di�erently: it speci�es the dispatch time of the event

relative to the start time of the sequence, rather than in absolute terms. A sequence is

created with a period, a repetition count and an absolute time indicating when it should

�rst be scheduled . It is rescheduled once each period until the repetition count, which is

decremented by one each time, reaches zero. Figure 2 illustrates how events and sequences

are composed.

4.2 Event and sequence queues

The interaction between event dispatching and sequence scheduling is coordinated by means

of two priority queues. The event queue is simply a list of events ordered by absolute time

stamp. The scheduler sets an alarm for the time of the �rst event's time stamp and then

sleeps. When the alarm is signalled, the scheduler dispatches the event to the appropriate

module and the process is repeated. When an application program schedules an event

directly, the absolute time stamp is determined from the scheduler's own notion of the time

and a delay speci�ed by the application, and the event is inserted into the proper position

in the queue. If its proper position is at the head of the queue, then the scheduler's next

alarm is reset.

The processing of sequences is only slightly more involved. The sequence queue is a

list of sequences to be scheduled. Each sequence in the list has an absolute time stamp

indicating when it is to be scheduled, and the list is ordered by time stamp. Just as for

event processing, the scheduler sets an alarm for the time of the �rst sequence's time stamp

and then sleeps. When the alarm is signalled, the sequence is scheduled and its repetition
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Figure 3: Event and Sequence Queues

count is decremented by one. If the count remains positive, the sequence period is added to

the absolute time stamp and the sequence is inserted into the queue according to the new

value.

A sequence is scheduled simply by adding its absolute time stamp to the relative time

stamps of each of its events and inserting the events into the event queue according to the new

values. Figure 3 illustrates the interaction between the event and sequence queues. While

the simplicity of this mechanism permits an e�cient implementation, it o�ers a great deal

of 
exibility. Events of di�erent media types can be mixed to form a precisely synchronized

presentation. Rhythmic patterns are generated simply by giving a repetition count greater

than one (a negative value is used to indicate unbounded repetition). The scheduler supports

a number of simple operations on sequences that can be used to synchronize them and to

modify the relative timing of the events they contain. The application of media speci�c

modi�cations to sequence events is also supported.

This combination of absolute and relative time stamps produces an important character-

istic of the scheduler in its treatment of synchronized sequences. When a synchronization

operation is applied to a set of sequences (as described in Section 4.4), their absolute se-

quence queue time stamps are adjusted to produce the type of synchronization requested.

Since the time stamps of sequence events are relative, this adjustment is re
ected in the com-

putation of absolute event queue time stamps for each event when the sequence is scheduled.

Each relative time stamp is added to the absolute start time of the sequence to determine

an absolute dispatch time for the event. Similarly, when subsequent iterations of a sequence

are re-inserted into the sequence queue, the new absolute sequence time stamp is computed

by adding the period to the old absolute time stamp. The local clock is not involved in the

computation of these absolute time stamps; it is only compared against them to determine if

an event is due for dispatch or a sequence for scheduling. In other words, precise calculation

of absolute time stamps does not depend on meeting real time constraints. This results

in the following behaviour: if the computational limits of the machine are temporarily ex-
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ceeded and a number of queue processing deadlines are missed, calculation of subsequent

time stamps will be una�ected by the delay. Once computational load decreases su�ciently,

processing will continue relative to the local clock as if there had been no imprecision. This

allows sequence synchronization to be maintained even on platforms that cannot guarantee

hard real time performance.

Finally, the initial scheduling time for a sequence can be speci�ed in one of two ways. As

for events, the time can be given as an o�set from the time at which the scheduler receives the

request. The fact that it is not possible to request an action at an absolute time implies that

the relative timing of events that are scheduled individually cannot be precisely controlled.

However, sequences exist for precisely this purpose. Similarly, operations are provided to

coordinate the timing of individual sequences. These policies allow events and sequences to

be synchronized across a network without concern for the synchronization of local clocks.

The scheduler can also be instructed to begin scheduling a sequence at the next integral

period boundary. It records a global start time, t0, during its initialization. When it receives

a request at time tr to schedule a sequence of period p in this way, it computes the �rst

schedule time ts as

ts =

&
tr � t0

p

'
p + t0: (1)

All sequences scheduled by this mechanism have their phases synchronized at time t0. If two

sequences are synchronized in this way, and their periods pi and pj have a greatest common

divisor gcd , they will combine to form a more complex pattern with period pipj=gcd. This

provides a simple solution to the phase synchronization problem.

4.3 Signals

It is often useful for an application to know when elements of its presentation have been

dispatched. In interactive applications, for example, it is sometimes convenient to postpone

decisions about presentation content as long as possible. In this situation an application

might be signalled near the end of a segment that it is time to schedule the next one.

To accomplish dispatch noti�cation, two additional pieces of information are recorded

for each event: a signal port (Internet address and port number) and an integer signal

value. The scheduler signals an application by sending the signal value (in standard network

byte order) to the address speci�ed by the signal port immediately prior to dispatching the

associated event to a media handler. A negative signal value indicates that no signal is to

be sent. The semantics of the signal values are left completely to the application, which can

interpret signal values however it likes.

This mechanismwas designed primarily to provide an application with timely noti�cation

that events it previously scheduled have been dispatched. However, a number of additional

functions are possible. For example, a set of applications may all conform to a convention

that ascribes speci�c semantics to speci�c signal values. Each application may then choose

to have signals sent not only to itself but to one or more of the others in the set, facilitating

more sophisticated coordination of application behaviour. Applications on di�erent machines
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can coordinate their activities through a common scheduler accessed remotely, although the

precision of the coordination will depend on the magnitude of network latencies.

4.4 Sequence operations

When the scheduler receives a request to schedule a sequence, it �rst assigns the sequence

a unique identi�er and returns it to the requesting application. The application can subse-

quently use this identi�er to request that operations be applied to the sequence.

Sequence operations are divided into three categories: synchronization, time scaling, and

media speci�c operations. Only one synchronization operation is provided: a client may

supply a list of sequence identi�ers to be synchronized. The scheduler simply adjusts the

sequence queue time stamp of each sequence to the earliest time in the list and resorts the

queue. Recall that a sequence may also be synchronized with a common time of origin when

it is �rst registered with the scheduler.

Three time scaling operations are available. The �rst allows a sequence period to be scaled

by a constant factor. The second scales the relative time stamps of the sequence events by the

same constant factor. Since these two operations are independent, it is possible to create a

sequence whose scheduling period is shorter than its actual duration, in which case successive

iterations of the sequence simply overlap. The third operation speci�es a list of scale factors.

The ith element of the list is used to scale the time stamp of the ith sequence event. If the

list is too short, it is extended with ones; if it is too long, its tail is ignored. This operation

provides the means to adjust the relative placements of events within a sequence without

interrupting its periodic execution.

All three time scaling operations may be applied to a list of sequence identi�ers. The

implementation actually stores the scale factors separately from the time stamps for each

sequence or event, performing the multiplications at the time of scheduling. This allows

absolute (that is, relative to the original time value) as well as relative (that is, relative to

the current time value) scaling.

Media speci�c operations consist of a list of tag-data pairs, where the data is of arbitrary

format and size. These operations are applied by forwarding them to the appropriate media

handler for each event. Recall that events have an associated data block that is media

dependent; these operations have the e�ect of modifying this data. Media speci�c operations

can be applied to a list of identi�ers.

This set of operations is relatively small, but has been su�cient to meet the needs of the

applications described in Section 5. Additional operations can be easily added as the need

arises. All operations are applied in place in the sequence queue, resulting in uninterrupted

periodic scheduling.

4.5 Graceful degradation

Section 4.2 summarized the way in which the scheduler re-establishes synchronization with

the local clock after periods of activity that exceed the capacity of the system to keep pace.
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Here we consider the behaviour of the system during those periods.

The best way to achieve graceful degradation of a media stream usually depends on

the type and purpose of the stream. The scheduler is not provided with this information

regarding the streams it coordinates, so it must adopt a uniform strategy for all streams.

The approach we have chosen gives a measure of control over the degradation process to

the applications scheduling the streams. Each event can be given a delay threshold by

the originating application. The threshold value is examined by the scheduler only when

dispatching events from the event queue. If the current time is greater than the sum of the

event time stamp and its delay threshold, then the event is simply discarded. A negative

value indicates that an event should never be discarded. Typically an application will assign

small threshold values to events initiating actions of short duration, larger values to events

initiating longer duration actions, and a negative value to events signalling the termination

of actions. It would also be possible to let the media handler for an event decide whether to

discard it based on the given delay threshold. This has the advantage of making the discard

decisions more media dependent, but at the expense of additional processing that will make

the event even later before the decision is made.

Delay thresholds can also be applied to the sequence queue. When a sequence has

surpassed its delay threshold its events are not inserted into the event queue, but it is still

re-inserted into the sequence queue if its repetition count remains greater than zero.

4.6 Media handlers

The initial design includes a number of speci�c media handler modules that are necessary

to support target applications. The synth handler is by far the most complex, and is used

to control auditory synthesis using a digital signal processor (DSP). The handler is designed

to use the lower levels of the NeXTStep Music Kit (described earlier), which allow the com-

position of simple synthesis elements to form sophisticated synth patches, each of which can

synthesize a single complex voice. The synth handler manages a pool of synth patches that

it uses to dispatch voice synthesis events. It also supports multiple DSPs, balancing the load

as necessary between them. A virtual DSP is used when all others are at capacity to ensure

that updates to active synth patches are applied correctly. The handler can dynamically

adjust the number of DSPs it uses, migrating synth patches to other DSPs (including the

virtual DSP) as necessary. A more complete description of the synth handler is given in

Section 5.3.1.

The sample handler is used to render digital audio samples on the DSP. Although a single

DSP can synthesize twenty or more 44.1 KHz stereo voices simultaneously, the software does

not support digital sample playback concurrently with synthesis. If no DSP is free, the

sound handler therefore noti�es the synth handler that it must reduce its DSP usage by one.

The sound handler uses that DSP to play the sound and then releases it back to the synth

handler. Currently this sort of module interaction is done in an ad hoc fashion. A more

sophisticated module subsystem, similar to the Component Manager of Apple's QuickTime

system, would be required for a more extensible implementation.
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The current implementation also includes DPS , video and IPC handlers. The DPS

handler forwards Display PostScript code to the NeXTStep window server in the context

of a window owned by the scheduler. The video handler sends simple commands (such as

play, pause and stop) to a video disk player connected through a serial port, and the IPC

handler forwards simple messages to external processes. These have been included as a proof

of concept and have not been used extensively by application programs.
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5 Implementation

The design outlined in the previous section has been implemented on a NeXT workstation

and has undergone a number of major revisions, progressing each time toward greater gen-

erality and 
exibility, in response to the requirements of new applications. This section

describes the implementation environment and major system software components, includ-

ing libraries and application programs that have been designed to both support and exploit

the scheduling system.

5.1 Implementation environment

The scheduler has been implemented under the NeXTStep operating system. The choice

of software platform was in
uenced by two criteria: the need to rapidly prototype 
exible

interactive applications, and the existence of a sophisticated sound synthesis package that

is easily integrated with other development tools. The NeXTStep development application

tools, such as InterfaceBuilder, ProjectBuilder, Mig (the Mach interface generator) and

MallocDebug, and the services and classes of the standard Application Kit, allow prototype

applications to be assembled very quickly. The Music Kit was described brie
y in Section 2.1.

It was originally part of NeXTStep and is now a public domain o�ering maintained by

CCRMA at Stanford University. It allows 
exible low level control of the DSP synthesis

hardware, but is most commonly used by applications through a set of Objective-C classes

that includes Orchestra, Conductor, Performer, Instrument, Score, Part, Note and many

other more specialized classes. It has been tuned to the NeXTStep platform, making use of

features of the underlying Mach kernel, such as multi-threading and �xed priority scheduling,

to achieve precise performance. These characteristics make it a perfect choice for our needs.

Although NeXTStep emulates 4.3 BSD Unix very closely, we have chosen to make several

parts of the scheduler implementation dependent on speci�c features of Mach. For example,

Mach threads are exploited for a number of purposes, and the Mach interface generator is

used to build RPC stubs for the server and client library. However, no facilities are used

that do not have an e�ective counterpart in standard Unix. It would therefore be straight

forward to port the scheduler to a Unix platform. Since most of the media handlers are

platform dependent, the dependence of the remainder of the scheduler on NeXTStep was

not seen as a signi�cant limitation of the prototype system.

5.2 Scheduler implementation

The implementation of the scheduler follows directly from the design presented in Section 4.

Figure 4 illustrates how the elements of the design are composed. The main thread, shown

as a rectangle in the �gure, controls most of the scheduler and media handler functions. Two

separate threads are used as noti�ers for the event and sequence queues. When the event

queue is non-empty, an event noti�er thread is created that simply sleeps until shortly before

the event time stamp is reached at which time it sends a message to the scheduler indicating
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Figure 4: Scheduler Implementation Components

that the next event should be dispatched. The sequence noti�er functions in the same way.

These noti�ers could be easily replaced using the interval timer and signal mechanisms of

Unix.

The event scheduler portion of the main thread contains the event and sequence queues

and operates on their contents in response to client requests and noti�er messages. It is

also responsible for initializing the set of media handlers and for dispatching events to the

appropriate handler. Media handlers are hooked into the scheduler at two points. First, a

table of event type identi�ers is maintained. For each identi�er, the table contains pointers to

an initialization and a dispatch function. During initialization, the scheduler steps through

this table, calling each initialization function in the order in which it �nds them. When an

event is dispatched, the event type is used as an index to locate the appropriate dispatch

routine. Events are implemented as a header structure that identi�es the type and contains

a pointer to a separate block of type dependent data. The scheduler can therefore treat

events uniformly, leaving all type dependent processing to the dispatch routines.

In addition to the obligatory initialization and dispatch functions, handlers have the

option of extending the API with type speci�c requests. For example, the synth handler

adds a routine to shift the pitch of a sequence. This involves adding a declaration to the

Mig API speci�cation and providing the corresponding function that will be called when the

new operation is invoked by a client. Since they are invoked from within the main thread

of the scheduler, these functions can operate on internal scheduler structures in whatever

manner they choose. Most commonly, however, they are designed to process selected events

from a sequence. The routine that shifts the pitch of a sequence, for example, modi�es the

frequency parameter of synth events and ignores all other event types.

Initialization, dispatch and API extension functions must be linked with the scheduler

and are invoked from its thread. A more 
exible design would allow new handlers to be

loaded and terminated dynamically. However, although all of the handlers in the existing

implementation share the main execution thread with the scheduler, the design admits other

possibilities. For example, the initialization of a handler may involve creating a separate

thread or process, establishing contact with an external server, and so on. The dispatch
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function would then act as a communications stub, forwarding the request to be handled

either asynchronously or externally.

While there is considerable 
exibility in utilizing external services, one should exploit

it with caution. Recall that one of the design goals of the scheduler is to centralize all

media presentation activity to facilitate more precise timing. The concept of modular media

handlers was introduced to do away with the unpredicatable overhead of communicating

data between processes. The use of threads, which execute asynchronously but share a

common data space, represents a useful compromise. If a handler is added whose events

initiate prolonged computation, it is be best to have the dispatch routine create a separate

thread, allowing the scheduler to return to client requests while the new thread continues to

process the event.

The event scheduler API is described in Section 5.4.

5.3 Media handlers

The previous section (5.2) outlined the way in which media handlers are integrated with the

event scheduler. Here we provide details of each module in the existing implementation.

5.3.1 Synth handler

Synthesis algorithms are implemented in the Music Kit by composing various kinds of simple,

low lever oscillators and combinators called unit generators. The network of unit generators

that implements a particular algorithm is encapsulated in a synth patch. In terms of the

Music Kit Objective-C classes, a tone is synthesized by giving a Note to a SynthInstrument

that in turn realizes the note using a SynthPatch. Synth patches respond to three types

of notes. A note-on initiates a continuous tone that is actively maintained by the synth

patch, a note-update allows the characteristics of an active tone to be modi�ed without

interrupting it, and a note-o� simply terminates the tone. Each tone is given a unique

note tag that allows note-update and note-o� events to be associated with the correct tone.

SynthInstrument is a subclass of Instrument , whose other subclasses allow notes to be sent

to MIDI devices, written to score �les, and so on.

The synth handler manages synth patches directly, bypassing the more abstract Music

Kit classes such as Conductor , Instrument , Part , Score and Performer that are intended

mainly for musical performance. The Orchestra class deals with physical DSP resources, so

it is retained.

The performance objectives of the synth handler design are to maximize DSP utilization

and to minimize the delay in initiating, modifying or terminating a tone. The �rst objective

is achieved by making the guarantee that a request will always be executed if su�cient DSP

resources are available or can be made so without interrupting other active tones. Delays are

reduced by maintaining pools of free resources rather than creating and terminating them

on demand.

One additional criterion in
uences the design. Suppose that the DSP is currently oper-

ating near its capacity and that two new tone generation requests are received. One is for a
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tone that is to be terminated shortly after it begins and the other is for a tone of long and

potentially unbounded duration. If only one request can be serviced, it might make sense to

discard the short tone and initiate the longer one since this results in correct steady state

behaviour. However, the duration of a tone is not speci�ed (and may not even be known)

at the time of its initiation, so it is not possible to implement this policy. To deal more

accurately with this situation, the synth handler introduces the notion of a virtual DSP and

provides the means to transfer active tones between it and the real one. This allows requests

that cannot be immediately serviced by the real DSP to be simulated on the virtual one,

properly applying update and termination requests as they are received. When DSP re-

sources become available again, tones can be moved from the virtual DSP with their current

set of parameters. Although it has not yet been tested, the same facility allows tones to be

balanced between multiple DSPs when more than one is available.

Internal design

When synth patches are created they are allocated real DSP memory. Their existence is

therefore bound to the availability of the DSP hardware. Implementation of the virtual DSP

requires that synthesis elements of some sort remain intact when the DSP is relinquished

and synth patches are deallocated. Tones are therefore represented internally by synth nodes

that encapsulate their data. A synth node may optionally control a synth patch for use in

rendering the note on the DSP. The virtual DSP is implemented simply by allowing synth

nodes to function without active synth patches. Since synth nodes and patches are created

for di�erent reasons and at di�erent times, they must be managed separately.

Figure 5 illustrates the internal structures of the synth handler. Three synth queues are

used to manage synth nodes. A node is said to be active if the tone with which it was most
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recently associated has been initiated and not terminated. The tone will be audible if the

node controls a synth patch and silent otherwise. The �rst queue contains the set of active

nodes that control synth patches (i.e., those that are producing audible tones), while the

second contains active nodes for which there are currently insu�cient DSP resources. They

can be regarded as the queues for the real and virtual DSPs respectively. Even though both

queues contain active synth nodes, their contents are divided in this way to facilitate the

movement of nodes from the virtual to the real queue. When a synthesis request is received

for which there are insu�cient resources, the new synth node is placed in the virtual DSP

queue. When a node in the active queue becomes inactive, its synth patch can be given

immediately to one of the virtual queue nodes and that node moved to the active real queue.

The inactive synth queue is used to maintain a pool of unused synth nodes. When a

synthesis request is received, a synth node is taken from this pool, updated according to the

details of the request, given a synth patch if one is available, and inserted into one of the

active queues. Only when this pool is empty must a new node be created. Similarly, when

a tone is terminated, the corresponding synth node can be returned to this pool without

needing to free the resources it controls. Each synth node contains three Note objects (on,

update and o�) and an amplitude envelope object, so both initialization and termination are

relatively expensive. The pool is initially empty, so creation of new nodes is at �rst relatively

frequent. A steady state is soon reached, however, in which most new synthesis requests can

be serviced by nodes from the pool.

Synth patch management

Management of synth patches is made somewhat more complicated by the fact that they

come in several varieties. Recall that the network of unit generators encapsulated by a

synth patch determines the synthesis algorithm that it implements. The synth handler

manages three kinds of synth patches: Wave, a simple sinusoidal tone; Fm, a frequency

modulation algorithm; and Pluck , a complex algorithmwhose tones emulate plucked stringed

instruments. Since each of these synth patch classes has di�erent DSP memory requirements,

the type cannot be changed without deallocating the original patch. It is therefore necessary

to maintain a separate pool for each type of synth patch.

The portion of Figure 5 labelled \Free patch pool" shows the queues used for this purpose

(there are only three in the existing implementation, but more can be easily added). Initially

no synth patches have been created and these queues are empty. As synthesis requests are

received, patches are created to service them. When a tone is terminated, it no longer

requires DSP resources and its synth patch can then be returned to the free patch queue

corresponding to its type. When subsequent synthesis requests arrive, patches of the required

type can be taken from this pool.

If there are no free patches of the correct type to service a synthesis request, a new

one is normally created. If there are no free patches of any type and insu�cient DSP

resources remain to create a new one, then the request cannot be allocated a patch and the

corresponding synth node is placed in the virtual synth queue. However, if the right type

of patch is not available and a new one cannot be created, but the pool contains unused
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patches of other types, then the option is available of freeing an unused patch, releasing

DSP resources to be used in the creation of a patch of the required type. A decision must

then be made as to what kind of patch to release. An inappropriate choice (as an arbitrary

one is likely to be) may cause considerable ine�ciency. Suppose that the DSP is capable of

supporting n separate patches, and that n�1 patchs of typeWave have been allocated but are

currently unused. Suppose further that two additional auditory streams, one using the Pluck

class and the other using Fm are interleaved in such a way that requests for the two classes

strictly alternate. Suppose �nally that we arbitrarily decide to deallocate Pluck patches

�rst, because they consume the most resources, followed by Fm and then Wave patches.

When the �rst of the alternating requests is received, a new Pluck patch will be allocated,

exhausting the remaining DSP resources. When the next request is received, the Pluck patch

will be deallocated and replaced by an Fm patch. The next request will deallocate the Fm

patch replacing it with a Pluck patch, and so on. Had we simply deallocated a Wave patch

(or two) in response to the second request, patches of both types could have been retained

and the overhead of patch creation and termination avoided.

To improve this behaviour, a least recently used patch queue is maintained. Each patch

node contains two sets of queue pointers: one for the free patch queue of the corresponding

type, and one for the least recently used queue. When a synth node becomes inactive, its

patch node is returned to the appropriate free pool and also linked to the end of the least

recently used queue. Then, when a decision must be made as to which unused patch to

deallocate, the least recently used patch will be chosen from the head of the queue and

unlinked from an arbitrary position in the free patch queue for its class.

Synth handler performance

The design decisions discussed here combine to give the synth handler an extremely high

capacity. A single DSP is capable of sustaining roughly �fteen Fm tones, twentyWave tones,

or some intermediate combination. However, when tones are of relatively short duration,

many more logical streams can be interleaved. Occasionally the streams will overlap in such

a way as to produce a burst of activity that the DSP cannot handle, but the absence of a

few voices among �fteen or twenty is rarely noticeable.

The performance of the synth handler has not been systematically evaluated, but informal

experimentation suggests that forty or �fty auditory streams of the sort required by the

application programs described below can be sustained on a single DSP without noticeable

degradation. It appears that the limits of the scheduler will be reached before those of

the synth handler. It is likely that rigorous performance evaluation would lead to many

improvements in the internal design, but the existing implementation is already capable of

producing auditory displays of far greater complexity than we currently require.

5.3.2 Other handlers

The original prototype of the event scheduler was designed speci�cally for sound synthe-

sis, resulting in synthesis facilities that were not separated cleanly from other scheduling
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functions. The newer design (described in this report) provides a framework that allows

di�erent media types to share the same scheduling mechanism. However, most of our work

still relies primarily on tone synthesis. The remaining media handlers are very simple and

were implemented more to test the new framework than for serious use at this time.

Sample handler

The sample handler is used to play digital audio samples and works with Sound objects that

are de�ned and implemented in the NeXTStep Sound Kit. They can either be transferred

directly from the client as a block of type dependent data, or can be initialized from a �le

whose name is provided by the client. The former approach is somewhat platform dependent

since the data is communicated in its raw form, while the latter assumes that the server has

access to the desired �le.

A sound event is dispatched simply by instructing the Sound object to play itself. The

details of forwarding the digital sample data to the DSP hardware are handled by the Sound

Kit. However, the sound cannot be played if the DSP has been claimed by the Music Kit

for synthesis purposes. As part of the dispatch process, the sample handler must therefore

preempt the DSP if required (the Music and Sound Kits do not automatically cooperate in

this way). It does this through a pair of API extensions provided by the synth handler. If

necessary, the synth handler is requested to relinquish the DSP and move its active synth

patches to its virtual DSP queue. When the sound is �nished the DSP is returned to the

synth handler.

Although this approach can result in the frequent and nearly complete interruption of a

complex auditory display, it still provides more seamless interaction between the Music and

Sound Kits than was previously possible.

DPS handler

The DPS (Display PostScript) handler forwards arbitrary Display PostScript code to the

NeXTStep window server in the context of a window owned by the scheduler. It is possible

to give the scheduler access to the windows owned by client applications, but the technical

details are too cumbersome to warrant implementation as part of this simple proof of concept.

Existing applications that synchronize graphical and auditory display do so by utilizing the

signal mechanism described in Section 4.3 and doing their own drawing upon receipt of each

signal.

To achieve the goals discussed in the introduction, the scheduler would need to be more

tightly integrated with media presentation facilities such as the window server. Ideally, the

window server, Music Kit, Sound Kit, and so on would all be implemented as statically linked

modules of the event scheduler. This would introduce an additional delay in the presentation

of unsynchronized material, but the simplicity of the scheduling facilities would make the

delay minimal. The bene�ts of having a centralized synchronization mechanism would in

most cases outweigh the disadvantages imposed by this delay.
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Video handler

The video handler is used to control an external laser disc player connected to a serial port.

The type dependent event data contains the speci�c laser disc command and any relevant

parameters. It can therefore be used to control any feature o�ered by the player. Although

laser disc technology supports random frame access, a signi�cant delay is sometimes incurred

if the read head must seek past many tracks. This kind of device speci�c information could

be incorporated in the video handler to ensure that segments are cued su�ciently far in

advance. The existing implementation, however, does not yet do this.

IPC handler

The IPC (interprocess communication) handler allows arbitrary messages to be forwarded

to external processes. The type speci�c data contains an internet address, port number and

byte stream. The handler attempts to open a TCP/IP connection with that address and,

if successful, sends the byte stream across the connection. It does not currently attempt to

relay a reply back to the original client. This facility is separate from the signal that can be

associated with any event, although it is closely related. The main di�erence is that signal

values are restricted to integers while the IPC handler can forward arbitrary messages.

5.4 Client libraries

Two client libraries have been produced for use in making requests of the event scheduler.

The �rst is implemented in standard ANSI C, providing access to the scheduler through a

function call interface. Much of the code in this library is actually generated from an interface

speci�cation �le using the Mach interface generator. The second library builds on the �rst,

using Objective-C to construct a class hierarchy based on the more important scheduler

abstractions. The function call library is both versatile and e�cient, but it is awkward

to use directly. For example, type dependent event data of arbitrary size are handled by

separating them from the standard event header and giving their size explicitly. To send

the type dependent data of an event sequence, which may contain an arbitrary number of

events each with an arbitrary amount of additional data, the type dependent portions are

concatenated and passed to the API function as a single block. The Objective-C library, on

the other hand, allows application programs to work with more natural abstractions such

as events, sequences, scheduling and dispatch. The class implementations handle the details

of contacting the scheduler, martialling data for communication, providing additional bu�er

space and so on. Section 5.4.2 outlines the services provided by each Objective-C class.

5.4.1 Standard C library

The standard C client library implements the basic event scheduler API. There are four

categories of server request: internal noti�cation, sequence scheduling, sequence schedule

modi�cation, and miscellaneous operations. Standard scheduler services and API extensions
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provided by speci�c media handlers are both included. The �rst argument of every rou-

tine identi�es the server port to be contacted, and each function returns a value of type

kern_return_t indicating success or failure of the call. Other return values are handled by

pass-by-reference arguments.

The following sections introduce API requests in each category, giving the complete

calling sequence and a brief description of the operation. This should not however be regarded

as a complete or authoritative reference manual since minor changes in the implementation

may be introduced as the need arises.

Internal noti�cation

The internal noti�er threads signal the server using two reserved API functions.

processEvents ( port_t server )

This request is reserved for use by the event noti�er thread. It signals the server that

the next event in the event queue should be dispatched, as described in Section 4.2.

processSchedule ( port_t server )

This request is reserved for use by the sequence noti�er thread. It signals the server

that the next sequence in the sequence queue should be scheduled, as described in

Section 4.2.

Sequence scheduling

Two calls are provided for dispatching sequences immediately or scheduling them for later

or repeated dispatch. There are no corresponding requests for the dispatch or scheduling of

individual events; a single event is dispatched or scheduled by encapsulating it in a sequence

of length one and passing it to one of these functions.

dispatchSequence ( port_t server, ES_Sequence sequence,

unsigned int sequenceCnt, ES_Data data, unsigned int dataCnt,

port_t signalPort )

Schedule the given sequence immediately, as described in Section 4.2. The sequence

events are inserted into the event queue immediately, bypassing the sequence queue.

The sequence is speci�ed through the sequence structure and and its size in bytes given

by sequenceCnt . Type dependent event data are concatenated into a single block and

speci�ed by the data and dataCnt values. Each event in a sequence can independently

specify a signal value and a port to which it should be sent when the event is dispatched.

It is sometimes convenient to be able to override the signal destination, however. If a

positive value is given for the signalPort argument, that value is copied to the signal

port entry of each event before the event is queued.

scheduleSequence ( port_t server, ES_Sequence sequence,

unsigned int sequenceCnt, ES_Data data, unsigned int dataCnt,
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int delay, int reps, int period, int sync,

port_t signalPort, ScheduleHandle *item )

Insert the given sequence into the sequence queue for subsequent scheduling. The

sequence is speci�ed by the sequence and sequenceCnt values, and the type speci�c

event data for each event in the sequence is concatenated into a single block and

identi�ed by data and dataCnt . The initial delay in milliseconds is given by delay, reps

indicates the number of repetitions to be scheduled (a value less than zero indicates

unbounded repetition), and period is the scheduling period of the sequence. If sync is

non-zero, the initial delay is adjusted as indicated by equation 1 (page 10) to match the

phase of the schedule with a standard chosen arbitrarily by the server. If signalPort is

a positive value, that value is copied to the signal port entry of each event before the

sequence is queued. A unique identi�er is generated for the newly scheduled sequence

and is returned through the item argument.

Modifying scheduled sequences

Once a sequence has been queued, its parameters and those of its events can be modi�ed

without removing it from the sequence queue or otherwise disturbing its periodic scheduling.

Most media handler speci�c API extensions are added in this category.

scaleSequenceTiming ( port_t server, ScheduleHandle sequence,

double eventFactor, double periodFactor, int mode )

Scale the period and event time stamps of a sequence. The period of the given sequence

is scaled by periodFactor and the time stamp of each of its events is scaled by event-

Factor . If mode has the value ES_RELATIVE, then the current values are multiplied by

the given factors. If it has the value ES_ABSOLUTE, then the new values are computed

as the product of the original unscaled values and the given factors. This mechanism

could be implemented by storing a copy of the original period or time stamp. In the

existing implementation, however, a separate scaling factor is maintained and the orig-

inal time stamp is multiplied by that scaling factor to determine the new time stamp.

With this arrangement, the relative mode multiplies the new factor into the existing

one while the absolute mode simply replaces the old factor by the new.

syncSequences ( port_t server, ScheduleHandle sequence1,

ScheduleHandle sequence2 )

Synchronize the given pair of sequences by replacing the larger sequence queue time

stamp with the smaller one and reinserting the modi�ed sequence in the correct posi-

tion. A planned change will provide greater 
exibility by adjusting the second sequence

time stamp to match the �rst. Multiple sequences are synchronized by repeated calls,

a process that is automated by the EventSequence class described below.

shiftSequence ( port_t server, ScheduleHandle sequence, int amount )

Change the phase of the given sequence by adjusting its sequence queue time stamp

by amount milliseconds and reinserting it in the correct position.
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unSchedule ( port_t server, ScheduleHandle item )

Terminate a scheduled sequence by removing it from the sequence queue and freeing

any associated scheduler resources.

scaleSequenceAmp ( port_t server, ScheduleHandle sequence,

double factor, int mode )

This is a synth handler extension to the API. It scales the amplitudes of every synth

event in the given sequence by factor . The value of mode determines whether the

scaling is relative or absolute, as described for the scaleSequenceTiming entry above.

scaleSequenceFreq ( port_t server, ScheduleHandle sequence,

double factor, int mode )

This is a synth handler extension to the API. It scales the frequencies of every synth

event in the given sequence by factor . The value of mode determines whether the

scaling is relative or absolute, as described for the scaleSequenceTiming entry above.

Miscellaneous operations

Requests that control the over all behaviour of the scheduler or that do not a�ect speci�c

events or sequences are grouped together in this category.

newEventTag ( port_t server, int *tag )

Acquire a unique event tag from the server.

setDebugLevel ( port_t server, int level )

Set the current debugging level to the given value. A value of zero generates no

output, a value of one produces a trace of every scheduler request (both name and

arguments), and values greater than one generate additional information as appropriate

for speci�c functions. Note that this debugging mechanism is independent of the

showState request, described next.

showState ( port_t server, int level )

Display the internal state of the server, according to the given debugging level. Higher

levels generate more information. Currently, basic information including the server

port, its start time, current debug level and current event tag are always shown. Levels

greater than zero will show the state of the synth handler at a corresponding level (a

more complete implementation would require that every media handler register a state

display function { currently only the synth handler is included). Levels greater than

one will display the contents of the sequence queue and levels greater than two will

include the contents of the event queue.

resetServer ( port_t server )

Reset the event scheduler, emptying its queues and resetting its timers.
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terminateActive ( port_t server )

This is a synth handler extension to the API. It simply terminates the active synth

patches (a useful operation since note-o� events sometimes get lost during develop-

ment).

terminateSchedules ( port_t server )

Terminate all active sequences by emptying the sequence queue and freeing the asso-

ciated resources.

addDSP ( port_t server )

Claim the DSP and move active synth nodes from the virtual DSP queue to the real

queue as long as DSP resources remain (as described in Section 5.3.1).

removeDSP ( port_t server )

Move all active synth nodes to the virtual DSP queue and relinquish the real DSP (as

described in Section 5.3.1).

5.4.2 Objective-C class library

The classes in this library do not extend the basic functionality of the event scheduler, but

they make it much simpler to communicate with it and automate a number of useful proce-

dures. They permit an application program to concern itself with the familiar abstractions

of events, sequences and scheduling rather than with the details of compiling type depen-

dent data blocks and encapsulating individual events within sequences. For example, the

statement

[[[Tone alloc] init] dispatchSelf];

will cause a 440.0 Hz tone (A) to be generated for a period of one second, provided that the

event scheduler is running, without any additional initialization or processing. Additional

Tone methods allow its parameters to be adjusted as required.

Each event class is discussed brie
y below, providing a good overview of the capabilities

of the class library. However, this section is not meant to be a complete reference manual

for the library.

The library can certainly be used on its own, overriding defaults as necessary to produce

the desired events. It is most useful, however, when used in conjunction with the event

modeller (Section 5.5).

Event

The Event class provides the basic unit of currency. An Event object can be used directly

to register a signal with the scheduler, since a signal can be associated with every kind of

event, but it cannot be used to generate additional presentation. A subclass of Event is

provided for each media handler to coordinate the manipulation of type dependent data and

procedures. Event itself provides the scheduling and dispatch routines that are common to

all event types. Every event object can be given a unique name for use with event �les.
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EventSequence

An EventSequence is used to assemble a collection of Events and handle the details of

martialling type dependent event data for scheduling or immediate dispatch. They can

be created and modi�ed programmatically, but it is more common to build a sequence

using the event modeller (Section 5.5), saving it to an EventFile. This �le can then be

used to initialize an EventSequence object that can be dispatched simply by invoking its

dispatchSelf method, or can be scheduled for delayed or repeated execution with the

appropriate variant of the scheduleWithDelaymethod. Every sequence object can be given

a unique name for use with event �les.

SynthEvent

A SynthEvent is a subclass of Event that manages the additional parameters associated with

tone synthesis. It o�ers methods for accessing and modifying all of the parameters associated

with the three supported synthesis methods (Wave, Fm and Pluck, Section 5.3.1), but its

scheduling and dispatch capabilities are inherited from Event and remain unmodi�ed.

Tone

Synthesized tones can be of unbounded duration, allowing note-on events to be dispatched

without a corresponding note-o� . When the duration of a tone is known in advance, however,

the Tone class provides a more convenient way to generate it. A Tone object combines two

SynthEvents, one a note-on event and the other a note-o� , in an EventSequence in which

the relative time stamp of the �rst event is zero and the time stamp of the second is the

duration of the tone. The tone is dispatched or scheduled by requesting the corresponding

service of the EventSequence it contains.

SampleEvent

Digital audio samples are controlled by the SampleEvent subclass of Event . It can be

provided with sound data in one of three ways: a Sound object (de�ned by the Sound Kit)

can be passed directly, initialized from a given �le, or the �le name itself can be forwarded

to the event scheduler which will create and initialize its own object. The class is very

simple, providing only the means to query or set the source of sound sample data. All other

scheduling functions are inherited from Event .

DPSEvent

The DPSEvent subclass of Event is a minimal implementation that allows the DSP handler

of the event scheduler (Section 5.3.2) to be tested. Its type dependent data consists of a

single text string that is intended to contain valid PostScript code. The scheduling meth-

ods inherited from Event handle the details of forwarding the type dependent data to the

scheduler; DPSEvent implements methods only for setting and querying the text string.
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IPCEvent

Like DPSEvent , IPCEvent is a minimal implementation that allows the IPC handler of the

event scheduler (Section 5.3.2) to be tested. It allows an address and a byte stream to be

set; the methods inherited from Event forward this data to the scheduler as part of an IPC

operation request.

EventFile

The EventFile class coordinates the archiving of the classes described above. Each class

is responsible for implementing readFromFile and writeToFile methods that invoke the

corresponding method in the parent class then read or write the subclass dependent data

in a human readable form. A collection of events and sequences can be combined in an

EventFile object, then archived in one operation by sending the object a saveTo:file

request. Similarly, a new EventFile object can be initialized with the statement

[[EventFile alloc] initFromEventFile:�lename];

Once created or initialized, the component events and sequences can be retrieved by name,

modi�ed, scheduled, and so on.

The modeller application, described below in Section 5.5, is intended primarily for the

interactive construction and editing of event �les. A complex auditory display can be easily

incorporated into an application by having it initialize an EventFile object from a �le created

by the modeller, then sending its components requests to schedule or dispatch themselves

with the appropriate timing parameters.

SignalView

The View class of the NeXTStep Application Kit is used generate custom drawing classes. It

manages the details of contacting the window server, establishing a local coordinate system,

providing default responses to mouse and keyboard events, negotiating drag and drop proto-

cols with other views and applications, and so on. The Application Kit allows an application

to register ports and timers with its event handling service. When the timer expires or a

message is detected at the port, the Kit generates a corresponding event in the event queue

for the application which can then respond in whatever fashion it chooses.

The SignalView class is a subclass of View that contacts the event scheduler during its

initialization, and registers the scheduler port with the Application Kit. This port can then

be speci�ed when a sequence is scheduled or dispatched. The result is that each time an

event from the sequence is dispatched, the SignalView object detects the resulting signal

and invokes a default response (which is to do nothing). Like View , SignalView is meant

to be subclassed; a subclass would then override the signal response method to provide its

own response. The response is usually to move to the next step in a display sequence or to

use the signal value to calculate new geometry or colour. The ability to specify a signal port

when scheduling a sequence, rather than using the default port recorded in each event, was

introduced to allow greater 
exibility in directing signal streams to di�erent SignalViews.
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EventScheduler

The EventScheduler class has not yet been implemented, although it is required to make

the event class library complete. The port used for communication with the event scheduler

must currently be created by an application that wishes to use it. It is then shared among

event class objects by means of a global variable. Furthermore, the miscellaneous scheduler

operations introduced on page 24 are not encapsulated in any existing event class.

The EventScheduler class is needed to address these oversights. Any application requiring

the services of the event scheduler would �rst initialize an EventScheduler object. This

would initiate contact with event scheduler, launching it if it is not currently running. The

applications that use the scheduler do not currently take this last step, choosing instead to

terminate if the scheduler cannot be located, since the code to properly locate and launch

the executable is somewhat involved and would have to be replicated for each application.

Providing this ability in a library class would be a signi�cant improvement.

The initialization sequence of each event class should then be modi�ed to fetch the

scheduler port handle from the EventScheduler object (which can name itself in a private

application name space using a facility provided by the Application Kit), doing away with

the need for a global variable. Additional methods would export the miscellaneous scheduler

operations such as DSP and debugging control. Finally, the class should provide the means of

terminating and re-establishing contact with the scheduler, allowing applications to continue

if the scheduler crashes and must be restarted (this would of course be especially useful during

development).

5.5 Event modeller

The basic function of the event modeller has been introduced in previous sections. In sum-

mary, the modeller provides a graphical interface through which one can construct and test

events and sequences of arbitrary complexity. The results can then be saved to an event

�le that applications can access using the EventFile class of the Objective-C client library

(Section 5.4.2). Existing �les can be loaded and modi�ed, and multiple �les can be edited

simultaneously. This latter features enables a limited template mechanism. Useful sequence

templates can be constructed and saved in template �les. These can later be loaded and

sequences or individual events can be copied from the template �le and pasted into another

�le for a customized application.

Figure 6 shows the panel used to construct and display event �les. The implementation

lacks such conveniences as palettes of events and sequence types, but as a prototype project

it serves its purpose adequately. Objects are currently divided into three categories: events,

tones and sequences. Selecting a category displays the items it contains. When a sequence or

tone is selected, its components are shown in the third column of the browser. New objects

can be added or deleted with the buttons provided, and renamed using the text �eld. The

type of object added depends on the item currently selected. For example, if the sequence

category is selected, but no particular sequence has yet been chosen, an add request will

produce a new sequence with a default name. If a particular sequence is then chosen and
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Figure 6: Event File Construction and Display
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another add request is made, an event will be added to the selected sequence. The name

assigned here is used in retrieving speci�c events or sequences from an Event�le object.

The Play button requests immediate dispatch of the selected tone, event or sequence.

The controls at the bottom of the window allow a sequence or event to be registered with the

scheduler for repeated presentation. The actual period of the selected sequence is provided

as the default in this portion of the display, but can be adjusted as necessary.

Once a sequence has been registered, various operations can be performed on it using the

controls shown in Figure 7. Currently active sequences are shown in the scroller at the top

right of the window, and may be selected either individually or in combination. The example

shown in the �gure has two active rhythmic sequences (created for the auditory streaming

application described in Section 5.7). They can be synchronized by selecting them both

and pressing the Sync button. The Remove button terminates the sequence scheduling, and

the Commit and Revert buttons are used to save the modi�cations or revert to the original

sequence parameters. The remaining controls allow the timing of a sequence to be shifted

or scaled, and the pitch and amplitude of a sequence's synth events to be adjusted (the fact

that these last two synth handler speci�c operations are hard coded into the general sequence

operations panel re
ects the scheduler's modest beginnings as a monolithic sound server).

When the timing and period lock switch is selected, the timing and period scale factors are

constrained to be equal. This ensures that the events will occupy the same proportion of the

sequence, preventing such things as sequence overlapping on repeated iterations. Finally,

sequences are always registered with a signal port owned by the modeller, even if the events

are created with di�erent port identi�ers. This allows the signal value �eld at the bottom of

the panel to display the last value received.

Events are modi�ed using an event inspector panel. Since events can be of various types,

di�erent inspectors are required, each sharing the same basic event information. However,

the current implementation provides only a synth event inspector. The framework exists

for providing additional inspectors, but they have not yet been added. Figure 8 shows the

collection of controls used to maintain the timing parameters and type information of a

synth event. Figure 9 shows the controls for the remaining synthesis parameters. Not all

parameters are used for all synthesis algorithms; those that are unneeded are ignored. The

Test button at the top of Figure 8 is useful for adjusting the parameters of a tone. When

the button is pressed, a tone is initiated according to the current selection of parameters.

As the parameters are subsequently adjusted, the tone is immediately updated to re
ect the

changes. When the tone sounds right, it can be disengaged (using the Test button again)

and the con�guration saved to the SynthEvent .

The most signi�cant de�ciency of the current modeller implementation is that sequence

timing must be crafted by editing the time stamp value of each event directly using the event

inspector. This process can be time consuming, and confusing for complex sequences. It

is easy to imagine a direct manipulation sequence editor in which events are dragged from

a palette or from the event �le display onto a time line representing the sequence. The

rough timing of a sequence could be produced very quickly, and the scheduler's sequence

time scaling operations could be used to �ne tune the timing as the sequence was repeatedly
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Figure 7: Schedule Inspector Controls
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Figure 8: Event Inspector Controls
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Figure 9: Synth Inspector Controls
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presented. A stand alone prototype of such a sequence editor has been partially implemented.

5.6 Command line tools

The facilities of the interactive modeller are su�cient for most purposes, but it is occasionally

useful to be able to build scripts of operations to be applied in a given sequence. This ability

has proven useful, for example, in stress testing the scheduler. A small collection of command

line tools has been constructed for this purpose. In most cases the tool is simply a command

line wrapper around a client library event class that initializes an object and invokes a speci�c

method with a set of parameters taken from the command line.

esState <value>

Print the current server state at the level speci�ed by value. A value of zero generates a

terse summary; a value of one includes the synth handler status; a value of two displays

most queue contents; and a value of three includes the event queue.

esDebugLevel <value>

Change the debugging level to the given value. A value of zero turns o� debugging

output; a value of one produces a trace of scheduler requests; and higher values generate

additional function speci�c information.

esReset (no arguments)

Reset the server, emptying its queues and resetting its timers.

sequence <event file> <delay> <reps> [<sync>]

Read a sequence from the given event �le and register it with the event scheduler using

the given delay, repetition count and optional synchronization mode.

unSchedule <sequence handle>

Remove the sequence identi�ed by the given handle from the sequence queue.

noteOn <frequency>

Initiate a tone of the given frequency.

noteO� <note tag>

Terminate the tone identi�ed by the given tag.

esAddDSP (no arguments)

Claim the DSP, moving active synth nodes from the virtual queue to the real one as

described in Section 4.2.

esRemoveDSP (no arguments)

Move active synth nodes from the real synth queue to the virtual one, as described in

Section 4.2, and relinquish the DSP.
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5.7 Interactive applications

A number of interactive applications have been constructed using these facilities (their pur-

pose and implications are discussed at some length in a separate report [5]). Implementations

of Shepard's Tones [15] and of the Tritone Paradox [4] utilize the ability of the synth handler

and Music Kit to synthesize complex spectra of arbitrary description to create auditory illu-

sions in which relative pitch discrimination cues have been eliminated. A third application

reproduces a series of e�ects, as summarized by Bregman [2], to demonstrate the phenomenon

of auditory streaming in which logically independent auditory streams can be made to fuse

into a single percept, or to divide into separate ones, by making small adjustments to salient

acoustic parameters. This implementation e�ort was extremely e�ective in demonstrating

the need for greater software support in the creation of a rich acoustical environment. A

fourth application provides an experimental \workshop" for exploring the parameters within

which the synchronization of sound and image creates the illusion of visual capture (that is,

that the actions of the image appear to create the sound).

In each case, the event sequences were created using the modeller and imported into the

application. The visual capture application makes extensive use of the signaling feedback

facility of the scheduler.
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6 Conclusions

This report has presented the motivating factors, requirements and design of an event sched-

uler that facilitates the synchronization of independent, heterogeneous media streams. The

design supports the following principal features:

� data is delivered to the scheduler prior to actual dispatch, reducing overhead at the

time of dispatch;

� periodic sequences of events can be accurately scheduled without the need to deliver

data for each repetition;

� modular media handlers mediate hardware resource contention and allow the scheduler

to be extended to support new media and hardware device types; and

� long term synchronization with the hardware clock is guaranteed, even when the sched-

uler capacity is temporarily exceeded on platforms lacking real time system support.

The scheduler has been used successfully in support of several interactive applications.

This work provides a high level framework for coordinating system resources, although

the current implementation leaves considerable room for utilizing existing solutions more

e�ectively. New media synchronization and scheduling algorithms can easily be incorporated

in additional media handler modules, but a mechanism for coordinating module interaction

is needed.

The scheduler itself also leaves room for extension and improvement. For example, addi-

tional scheduling operations will be suggested as new applications are designed. Perhaps the

most promising area for improvement is to provide the scheduler with a scripting language

through which procedural speci�cations, utilizing primitives provided by individual media

handlers, may be executed according to a given schedule. Simple periodic event sequences

o�er considerable 
exibility, but lack features such as conditional execution and automatic

modi�cation of event parameters following each iteration.
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