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Abstract

Sequential regularization methods relate to a combination of stabilization

methods and the usual penalty method for di�erential equations with algebraic

equality constraints. The present paper extends an earlier work [4] to nonlinear

problems and to DAEs with index higher than 2. Rather than having one

\winning" method, this is a class of methods from which a number of variants

are singled out as being particularly e�ective methods in certain circumstances.

We propose sequential regularization methods for index-2 and index-3 DAEs,

both with and without constraint singularities. In the case of no constraint

singularity we prove convergence results. Numerical experiments con�rm our

theoretical predictions and demonstrate the viability of the proposed methods.

The examples include constrained multibody systems.

�The work of this author was partially supported under NSERC Canada Grant OGP0004306.
yThe work of this author was partially supported under a Killam postgraduate grant
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1 Introduction

It is well-known that di�erential-algebraic equations (DAEs) can be di�cult to solve

when they have a higher index, i.e. index greater than one (cf. [9]). Higher index

DAEs are ill-posed in a certain sense, especially when the index is greater than two

[6], and a straightforward discretization generally does not work well. An alternative

treatment is the use of index reduction methods, whose essence is the repeated dif-

ferentiation of the constraint equations until a low-index problem (an index-1 DAE

or ODE) is obtained. But repeated index reduction by direct di�erentiation leads to

instability of the resulting ODE, and this causes drift-o� | the numerical error in

the original constraint grows. Hence, stabilized index reduction methods were pro-

posed to overcome the di�culty. A popular stabilization technique was introduced

�rst in the computation of constrained multibody systems by Baumgarte [7]. Various

improvements and additional techniques have been proposed and analyzed since, see

e.g. [2, 3] and references therein. Another approach is the so-called regularization of

DAEs where a small perturbation term (measured by a small positive parameter �)

is added to the original DAE (see, e.g., [11, 15, 14, 13, 19]). The regularized problem

usually is a singular perturbation problem and the DAE becomes the reduced prob-

lem of this singular perturbation problem. Then a sti� solver is typically needed to

solve the regularized problem. In a recent paper [4], a new method called sequential

regularization method (SRM) was proposed for linear index-2 DAEs with initial or

boundary conditions. It relates to a combination of Baumgarte's stabilization with

the usual penalty method and to a method proposed in [22] in an optimization con-

text. In [4], we have indicated that this method is particularly useful for DAEs with

constraint singularities and that, unlike usual regularization, the regularization pa-

rameter (say, �) does not have to be chosen very small. Therefore the regularized

problem is less sti� and/or more stable. For a given � a linear convergence analysis

yields a much faster convergence rate for the SRM than for the method proposed in

[19]. Furthermore, when there are no constraint singularities the regularized problem

can be made essentially non-sti� for any �, or it can be simpli�ed in other ways.

Because of these facts we believe that our SRM is an important improvement over

the usual regularization methods.

In this paper, we generalize the SRM to nonlinear higher index DAEs, and then

apply it to constrained multibody systems with or without singularities. As in [6, 2],

we consider a nonlinear model DAE of order �

x
(�) = f(x; x0; : : : ; x(��1); t)�B(x; t)y; (1.1a)

0 = g(x; t): (1.1b)

It has index � + 1 if GB is nonsingular for all t, 0 � t � tf , where G = gx. We

are interested in the cases � = 1 or 2. The Euler-Lagrange equations for mechanical

systems with holonomic constraints are in this form with � = 2. The discussion

also involves systems with constraint singularities, i.e. the case where GB is singular
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at some isolated t. A singularity in the constraints (or in the algebraic solution

components) of a DAE may cause various phenomena to occur, including impasse

points and bifurcations [21, 20]. In this paper, however, we consider a class of singular

problems arising from multibody mechanical systems [1, 8, 12] (see the slider-crank

example in x5) and assume that the solution sought is smooth and unique in the

passage through isolated singularity points.

The paper is organized as follows: In x2 we consider index-2 problems without

constraint singularities. SRM variants involving dg

dt
are analyzed in x2.1 (Theorem

2.1). They lead to nonsti� problems; the variant (2.12) with E = I there is partic-

ularly attractive. Iterations not involving dg

dt
are considered in x2.2 (Theorem 2.2).

Here the choice E = I in (2.15), where possible, is recommended.

Index-2 nonlinear problems with constraint singularities are considered in x3. The
SRM (3.2) is proposed for such problems. This variant works well in practice, but

our proofs extend only to the linear case.

In x4 we analyze and discuss various methods for index-3 problems. A number of

SRM variants are possible, combining regularization with Baumgarte's or an invari-

ant's stabilization. Their relative utility depends on the application, and they each

o�er signi�cant advantages in suitable circumstances. Of particular interest, in case

of no constraint singularity, are the methods (4.12) and (4.14){(4.16). The choice

E = I leads to particularly simple iterations. A corresponding convergence result is

given in Theorem 4.1. In case of a possible constraint singularity the SRM (4.23) is

recommended.

These methods are reformulated in x5 for the special case of multibody systems

with holonomic constraints. The \winning" methods are (5.3)-(5.4) with E = I for

the nonsingular case and (5.5)-(5.6) for the case where the constraint Jacobian may

have isolated rank de�ciencies. In x6 we report the results of numerical experiments

con�rming our theoretical predictions and demonstrating the e�ect of the proposed

methods.

2 Nonlinear, nonsingular index-2 problems

We consider the following nonlinear index-2 model problem (� = 1 in (1.1))

x
0 = f(x; t)�B(x; t)y (2.1a)

0 = g(x; t) (2.1b)

where f , B and g are su�ciently smooth functions of (x; t) 2 Rnx � [0; tf ], and

y 2 Rny . We consider this DAE subject to nx � ny boundary conditions

b(x(0); x(tf)) = � : (2:2)

These boundary conditions are assumed to be such that they yield a unique1 and

bounded solution for the ODE (2.1a) on the manifold given by (2.1b). Concretely, if

1locally unique, or isolated solution in a su�ciently large neighborhood would su�ce.

3



we were to replace (2.1b) by its di�erentiated form

0 = Gx
0 + gt (=

dg

dt
) (2.3a)

g(x(0); 0) = 0 (2.3b)

and use (2.3a) in (2.1a) to eliminate y and obtain nx ODEs for x, then the boundary

value problem for x with (2.2) and (2.3b) speci�ed has a unique solution. In the

initial value case (i.e. b is independent of x(tf)), this means that (2.2) and (2.3b) can

be solved uniquely for x(0).

In this section we consider the case whereGB is nonsingular. Generalizing the idea

in [4], we have the following SRM formulation for the nonlinear index-2 di�erential-

algebraic problem (2.1): for s = 1; 2; : : : ;

x
0

s
= f(xs; t)�B(xs; t)ys; (2:4)

where

ys = ys�1 +
1

�
E(xs; t)(�1

d

dt
g(xs; t) + �2g(xs; t)); (2:5)

subject to the boundary conditions (2.2) and (2.3b). Note that y0(t) is a given

initial iterate which we assume is su�ciently smooth and bounded and that � > 0 is

the regularization parameter. The regularization matrix E is nonsingular and has a

uniformly bounded condition number; possible choices are E = I, E = (GB)�1 and

others (e.g. E = (GB)T , cf. [4, 19]). We note that if we take y0 � y then x1 � x,

where x and y are the solution of (2.1). If we take y0 � 0, then one SRM iteration

is the usual penalty method (cf. [17, 18, 13]). As customary for the penalty method,

we assume:

H1 The problem (2.4), (2.5),(2.2),(2.3b) has a unique solution and the solution is

bounded if ys�1 is bounded.

Assumption H1 is generally true for initial value problems. For general boundary

value problems, we expect that H1 would hold for most practical cases since (2.4)

(with (2.5) plugged in) may be seen as a perturbed problem of (2.1) according to the

proof of Theorem 2.1 (see below), where the perturbation and its �rst derivative are

both small if � is small.

To analyze the SRM, we assume the following perturbation inequality: For 0 �
t � tf ,

kx̂(t)� x(t)k � M max
0���tf

(j�(� )j+ j�0(� )j); (2.6a)

kŷ(t)� y(t)k � M max
0���tf

(j�(� )j+ j�0(� )j); (2.6b)

where k � k is some lp norm (say, maximum norm), and x̂ and ŷ satisfy the following

perturbed version of (2.1):

x̂
0 = f(x̂; t)�B(x̂; t)ŷ; (2.7a)

0 = g(x̂; t) + �(t) (2.7b)
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with the same boundary conditions as (2.2). For initial value problems, (2.6) has

been proved in [10], pp. 478-481. It is actually the de�nition of the perturbation index

introduced in [10]. Furthermore, (2.6) also holds for boundary value problems if we

impose some boundedness conditions on the corresponding Green's function (cf. [5]).

The case �1 6= 0 in (2.5) is su�ciently di�erent from the case �1 = 0 to warrant

a separate treatment.

2.1 The case �1 = 1

Now we estimate the error of the sequential regularization method (2.4)-(2.5). We

prove a theorem which says that the error after s SRM iterations is O(�s) (i.e., each

iteration improves the error by O(�)) everywhere in t.

Theorem 2.1 Let all functions in the DAE (2.1) be su�ciently smooth and the above

assumptions hold. Then, for the solution of iteration (2.4),(2.5) with �1 6= 0, we have

the following error estimates:

xs(t)� xe(t) = O(�s);

ys(t)� ye(t) = O(�s);

for 0 � t � tf and s � 1.

Proof: Let vs = g(xs; t). Then, from (2.4),

v
0
s
= G(xs; t)x

0
s
+ gt(xs; t) = G(xs; t)f(xs; t)�G(xs; t)B(xs; t)ys + gt(xs; t):

Using (2.5), we thus have

(�(GBE)�1 + I)v0
s
+ �2vs = �(GBE)�1(Gf + gt)� �E

�1
ys�1; (2.8a)

vs(0) = 0: (2.8b)

Therefore it is not di�cult to get

vs = g(xs; t) = O(�); v0
s
= g(xs; t)

0 = O(�); (2:9)

if ys�1 is bounded (which implies that xs is bounded).

For s = 1, we have

x
0

1 = f(x1; t)�B(x1; t)y1

g(x1; t) = O(�); g(x1; t)
0 = O(�)

since y0 is chosen to be bounded. From assumption (2.6), we immediately get

x1 � xe = O(�); y1 � ye = O(�): (2:10)
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Then it is easy to see that y1 is bounded. So for s = 2, we obtain

x
0

2 = f(x2; t)�B(x2; t)y2

g(x2; t) = O(�); g0(x2; t) = O(�)

By using assumption (2.6) again, this yields

x2 � xe = O(�):

Hence it can be veri�ed, by substituting (2.3a),(2.1a) for the exact solution, that the

right hand side of (2.8a) becomes O(�2). So, from (2.8), we can get

g(x2; t) = O(�2); g0(x2; t) = O(�2):

Applying assumption (2.6), it follows that

x2 � xe = O(�2); y2 � ye = O(�2): (2:11)

This also gives the boundedness of y2.

We can repeat this procedure, and, by induction, conclude the results of the

theorem. 2

From (2.8) it is clear that there is no sti�ness here, so we can choose � > 0 very

small, so small in fact that one SRM iteration would su�ce for a desired accuracy,

and discretize the regularized ODE possibly using a nonsti� method like explicit

Runge-Kutta. This gives a modi�ed penalty method

[I + �
�1
BEG]x0 = f �By0 � �

�1
BE(gt + �2g) (2:12)

where B;E; g etc, all depend on x, with the subscript s = 1 suppressed.

For the choice E = (GB)�1, let P = BEG = B(GB)�1G be the associated

projection matrix. Multiplying (2.12) by 1
1+��1

P and by I�P , respectively, and then

adding together, we have

x
0 = f �

1

1 + ��1
By0 �

�
�1

1 + ��1
B(GB)�1[Gf + gt + �2g]

So the obtained iteration is similar to Baumgarte's stabilization

x
0 = f �B(GB)�1[Gf + gt + �2g] (2:13)

In fact, the single SRM iteration tends to (2.13) in this case when �! 0. Indeed, the

parameter �2 is the usual Baumgarte parameter, and choosing �2 > 0 obviously makes

equation (2.8a) asymptotically stable for the drift vs. For both of these methods

we can apply post-stabilization instead, i.e. take �2 = 0 but stabilize after each

discretization step [2, 3].

For reasons of computational expense, it may be better to choose E = I in (2.12).

The obtained iteration is simple, although a possibly large matrix (with a special

structure) must be \inverted".
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Example 2.1 The choice of E = I was utilized in [16] for the time-dependent, in-

compressible Navier-Stokes equations governing 
uid 
ow. The advantage gained is

that no treatment of pressure boundary conditions is needed, unlike methods based on

Baumgarte-type stabilizations which lead to the pressure-Poisson equation. 2

2.2 The case �1 = 0

For this case the drift equation (2.8) is clearly sti� for 0 < �� 1. If we assume

y0(0) = ye(0); y
0

0(0) = y
0

e
(0); : : : ; y

(m)
0 (0) = y

(m)
e

(0); (2:14)

where m = �1 if y0(0) 6= ye(0), then we can prove the same result as of Theorem 2.1

for s � m + 1 by a similar procedure. We omit the proof (see also Theorem 3.1 of

[4]), but state the theorem:

Theorem 2.2 Let the assumptions of Theorem 2.1 plus (2.14) hold. In addition,

suppose that the matrix function E(x; t) has been chosen so that GBE is positive

de�nite. Then, for the solution of iteration (2.4),(2.5) with �1 = 0, we have the

following error estimates:

xs(t)� xe(t) = O(�s);

ys(t)� ye(t) = O(�s);

for 1 � s � m + 1 and 0 � t � tf . The convergence result holds for all s (i.e. also

for s > m+ 1) away from an initial layer of size O(�) in t.

Note that we may choose y0 satisfying (2.14) for some m � 0 by expressing y in

terms of x at t = 0 for initial value problems, but this starting procedure generally

does not work for boundary value problems.

Taking �2 = 1 without loss of generality, we obtain the iteration

x
0

s
= f �Bys�1 � �

�1
BEg(xs; t) (2.15)

This is a singular, singularly perturbed problem (so � should not be taken extremely

small compared to machine precision even if a sti� solver is being used). If GB is

positive de�nite then we may choose E = I, and this yields a very simple iteration in

(2.15) which avoids the inversion necessary in stabilization methods like Baumgarte's.

However, if an explicit discretization method of order p is contemplated then approx-

imately p SRM iterations like (2.15) are needed, because one must choose � = O(h),

where h is the step size.

3 Nonlinear, singular index-2 problems

Next we consider the nonlinear index-2 problem (2.1) with an isolated singular point

t
?, i.e. GB is singular at t?. For simplicity, we assume that B and g are independent
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of t. Denote P (x) = B(GB)�1G. Motivated by constrained multibody systems (see

x4), we assume P (x) to be di�erentiable in t, but @P

@x
(x) may be unbounded. For

this reason, we consider only the case �1 = 0 in this section (cf. [4]). In the drift

equation (2.8) we then have essentially the singularly perturbed operator �v0+GBEv

to consider. The choices of E = I or E = (GB)T yield a turning point problem,

which complicates the analysis, even in the linear case [4], and degrades the numerical

performance as well in our experience. Therefore, we choose E = (GB)�1. In the

sequel we will be careful to evaluate the e�ect of E only when its singularity limit is

well-de�ned, as e.g. in P (x).

A direct generalization of [4] would give the SRM formulation (2.4) where instead

of updating y (because y may be unbounded at t�) we update By by

B(xs)ys = B(xs�1)ys�1 �
1

�
B(xs)(G(xs)B(xs))

�1
g(xs): (3:1)

However, (3.1) needs to be modi�ed, since we may have RangeB(xs) 6= RangeB(xs�1).

So we use the projection P (xs) to move from RangeB(xs�1) to RangeB(xs). Then we

consider the following SRM formulation for singular problems:

x
0

s
= f(xs; t)�B(xs)ys; (3.2a)

B(xs)ys = P (xs)B(xs�1)ys�1 +
1

�
B(xs)(G(xs)B(xs))

�1
g(xs); (3.2b)

where xs satis�es the boundary condition (2.2).

If the assumptions given at the beginning of this section and in Theorem 2.2 re-

main valid, then the result of Theorem 2.2 (which generalizes the results of Theorem

2.1) still holds. Unfortunately, for the singular problem, assumption (2.6) may not

be true in general. To see this, consider one iteration, i.e. s = 1. The accuracy for

the approximation of x depends on the extent that the bound (2.6a) holds. Numer-

ical experiments show that we can get a pretty good approximation of x near the

singularity. But the situation for By is worse, and the bound (2.6b) often does not

hold. Indeed, assume for the moment that we have a good, smooth approximation of

x, say xs = x̂, i.e. (2.7) holds with �; �
0 = O(�), and B(x̂)ŷ is de�ned by (3.2b) for

some B(xs�1)ys�1. From (2.7) we have

B(x̂)ŷ = P (x̂)f(x̂; t) + �; (3:3)

where � = B(x̂)(G(x̂)B(x̂))�1�0. It is not di�cult to �nd that the exact B(x)y from

(2.1) satis�es

B(x)y = P (x)f(x; t): (3:4)

Yet, even if � is small, B(x̂)ŷ may not be a good approximation of By because @P

@x

may be unbounded at the singular point so that P (x̂) is not a good approximation

of P (x).
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Example 3.1 In (2.1) let x = (x1; x2), g(x) = � cosx1 � cos x2, and G = B
T =

( sinx1 sinx2 ). Then P (x) = (sin2 x1 + sin2 x2)
�1
�

sin2 x1 sinx1 sinx2
sinx1 sinx2 sin2 x2

�
.

Clearly, at a singularity point x = (0; �) the value of P depends on the direction

from which it is approached. Thus,
@P

@x
is unbounded, even though P is a di�eren-

tiable function of t.

Letting further f = (sinx2 � sinx1)
�1 ( sinx1 2 sin x2 � sinx1 )

T
, and given the

initial conditions x1(0) = ��=2; x2(0) = �=2, the exact solution is

x(t) = ( t� �=2 t+ �=2 )
T
; y = (sin x2 � sinx1)

�1

So, as t crosses t
� = �=2, y(t) blows up but By = (sinx2� sinx1)

�1 ( sinx1 sinx2 )
T

remains bounded. However, it is easy to perturb x(t) slightly and smoothly in such a

way that the perturbed By blows up at t = t
�
, still satisfying (2.7) with a small �. 2

Note that for the linear model problem (see [4]), P � P (t) is independent of

x. Hence we do not have the above di�culty in the linear case. For the nonlinear

problem, the accuracy near the singular point is reduced and no longer behaves like

O(�s) for more than one iteration. However, we do expect O(�s) accuracy away from

the singular point, assuming that no bifurcation or impasse point is encountered by

the approximate solution, because once we pass the singular point, Theorem 2.2 with

m = �1 can be applied again.

4 The SRM for nonlinear higher-index problems

We next generalize the SRM to the more general problem (1.1). Particularly, we

consider the index-3 problem (� = 2). The Euler-Lagrange equations for multibody

systems with holonomic constraints yield a practical instance of the problem. The

SRM formulations presented in this section are easy to generalize for more general

problems (1.1). The index-3 problem reads:

x
00 = f(x; x0; t)�B(x; t)y; (4.1a)

0 = g(x; t); (4.1b)

with given 2(nx � ny) boundary conditions,

b(x(0); x(tf); x
0(0); x0(tf)) = 0: (4:2)

The meaning of G, B and the stabilization matrix E below remain the same as in

the index-2 problems considered in previous sections.
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4.1 The case of nonsingular GB

We �rst use an idea from [4], viz. a combination of Baumgarte's stabilization with a

modi�ed penalty method, to derive the SRM for the nonlinear index-3 problem (4.1).

Then we apply a better stabilization [2] to generate a new SRM which is expected

to have better constraint stability. Finally, we seek variants which avoid evaluation

of complicated terms in the second derivative of the constraints. Here \stabilization"

means stabilized index reduction.

At �rst consider, instead of (4.1b), the Baumgarte stabilization

�1
d
2

dt2
g(x; t) + �2

d

dt
g(x; t) + �3g(x; t) = 0; (4.3a)

g(x(0); 0) = 0;
d

dt
g(x(0); 0) = 0; (4.3b)

where �j; j = 1; 2; 3 are chosen so that the roots of the polynomial

�(� ) =
3X

j=1

�j�
3�j

are all negative. Following the same procedure as in [4] or in x2, we can write down

an SRM for (4.1): for s = 1; 2; : : : and y0 given,

x
00

s
= f(xs; x

0

s
; t)�B(xs; t)ys; (4:4)

where xs satis�es boundary conditions (2.2) and (4.3b) and ys is given by

ys = ys�1 +
1

�
E(xs; t)(�1

d
2

dt2
g(xs; t) + �2

d

dt
g(xs; t) + �3g(xs; t)): (4:5)

It is not di�cult to repeat the approach of x2 for the present case. Under as-

sumptions similar to the index-2 case, i.e. (2.6) with a change to include �00(� ) at the

right hand side (cf. [10]) and H1 with the addition that the derivative of the solution

is also bounded, we readily obtain extensions of Theorems 2.1 and 2.2 for the cases

�1 6= 0 and �1 = 0 (with �2 6= 0), respectively. We do not allow for �1 = �2 = 0 since

in this case equations (4.4),(4.5) have di�erent asymptotic properties. Note that the

SRM (4.4),(4.5) with �1 = 0 avoids computing gxx; however, the obtained iteration

now calls for solving problems which become sti� when � gets small, and to avoid gxx

one should use a non-sti� discretization method.

Another way to generalize the SRM to higher index problems is based on invariant

stabilization. Its advantages over Baumgarte's stabilization have been discussed in [2,

3]. We �rst describe this stabilization. By two direct di�erentiations of the constraints

(4.1b), we can eliminate y and get an ODE

x
00 = ~f(x; x0; t); (4:6)
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for which the original constraint (4.1b) together with its �rst derivative give an in-

variant. The idea of the method is to reformulate the higher index DAE (4.1) as a

�rst order ODE (cf. (4.6)):

z
0 = f̂ (z; t) (4:7)

with an invariant

0 = h(z; t); (4:8)

where

z =

�
z1
z2

�
=

�
x

x
0

�
; f̂(z; t) =

�
z2

~f (z; t)

�
; h(z(t); t) =

 
g(x(t); t)
d

dt
g(x(t); t)

!
(4:9)

and to consider the stabilization families

z
0 = f̂ (z; t)� 
F (z; t)h(z; t); (4:10)

where F = D ~E for some appropriate matrix functions D and ~E such that ~E and

HD are nonsingular, and H = hz. The ODE (4.10) coincides with Baumgarte's

stabilization for the index-2 problem (2.1) with D = B and ~E = E = (HD)�1.

One choice for D here is D = H
T , but others will be mentioned below. Note that

(4.10) has the same solution as the original problem (4.1) for any parameter value


. Although the method has better constraint stabilization, both the evaluation of ~f

and that of H involve gxx which may be complicated to calculate in practice. Next,

we derive SRM iterations based on this stabilization.

One SRM variant is obtained by writing (4.7) as

z
0 = f̂(z; t)�D� (4.11)

which, together with (4.8) gives an index-2 DAE, and apply the methods of x2 directly.

An obvious choice for �0 is the exact �0 = � � 0. Choosing �1 = 0, D =

�
G

T 0

0 G
T

�
say, and E = I, we obtain the simple, though potentially sti�, iteration

z
0

s
= f̂(zs)�D�s (4.12a)

�s = �s�1 +
1

�
h(zs) (4.12b)

Next, we present an SRMmethod based on invariant stabilization which avoids the

computation of ~f . In fact, we can avoid gxx altogether using the new stabilization.

If we do not eliminate y by di�erentiations, then f̂(z; t) in the stabilization (4.10)

becomes

f̂ (z; t) =

�
z2

f(z; t)�B(z1; t)y

�
: (4:13)

Since y is not known in advance, we use an iterative SRM procedure to calculate y

as in [8, 4]. The solutions of the iterative procedure no longer satisfy (4.1) precisely.
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Hence the iterative procedure has to be a regularization procedure and the parameter

in (4.10) is changed to 
 = 1
�
to emphasize that it must be chosen su�ciently large.

These lead to the following SRM formulation (for simplicity of notation, we only

consider the special case where B and g are independent of t):

z
0
s
=

�
z1s
z2s

�0
=

�
z2s

f(zs; t)�B(z1s)ys�1

�
�

1

�
F (zs)h(zs); (4:14)

where zs satis�es boundary conditions (4.2), (4.3b) and h = (g(z1); G(z1)z2)
T . Thus

the Jacobian of h is

H =

�
G(z1) 0
L(z) G(z1)

�
; where L = z

T

2 gxx(z1):

We choose D and ~E so that

F = BE

�
I 0
0 I

�
=

�
BE 0
0 BE

�
(4:15)

where, as in x2.2, E is chosen such that GBE is symmetric positive de�nite. Updating

y by

ys = ys�1 +
1

�
E(z1s)G(z1s)z2s (4:16)

yields that the second part of the original index-3 system holds exactly, i.e.

z
0

2s = f(zs; t)�B(z1s)ys:

Next we analyze the convergence of (4.14){(4.16). Again we assume that the

solutions of (4.14), (4.2), (4.3b) exist uniquely and are bounded if ys�1 is bounded

(see assumption H1). Assumption (2.6) changes a bit: We �rst rewrite the system

(4.1) as

z
0

1 = z2; (4.17a)

z
0

2 = f(z; t)�B(z1)y; (4.17b)

0 = g(z1): (4.17c)

Then we assume the following perturbation bound,

kẑ(t)� z(t)k � M max
0���tf

(j�(� )j+ j�0(� )j+ j�00(� )j+ j�(� )j+ j�0(� )j); (4.18a)

kŷ(t)� y(t)k � M max
0���tf

(j�(� )j+ j�0(� )j+ j�00(� )j+ j�(� )j+ j�0(� )j);(4.18b)

where ẑ and ŷ satisfy a perturbed problem of (4.17),

ẑ
0

1 = ẑ2 + �(t); (4.19a)

ẑ
0

2 = f(ẑ; t)�B(ẑ1)ŷ; (4.19b)

0 = g(ẑ1) + �(t); (4.19c)
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with the same boundary conditions (4.2). Again, for the initial value problems,

(4.18) can be easily proved by following the technique presented in [10], and this can

be extended for boundary value problems as well.

Similarly to the proof of Theorem 2.1, let ws = h(zs) =

�
vs

v
0
s

�
, where vs = g(z1s).

From (4.14), we get

�v
0

s
= �GBE(zs)vs + �G(z1s)z2s (4.20a)

�v
00

s
= �GBE(zs)v0s � LBE(zs)vs + �[Lz2s +Gf(zs)�GB(zs)ys�1] (4.20b)

with the initial conditions ws(0) = 0. Applying (4.20a) and then (4.20b) for s = 1,

we obtain h1; h
0
1 = O(�) if y0 satis�es (2.14) for m � 0. Therefore (4.14), (4.16)

becomes

z
0

11 = z21 + �; (4.21a)

z
0

21 = f(z1; t)�B(z11)y1; (4.21b)

g(z11) = �; (4.21c)

where �; �
0
; �

00 = O(�) and � = �1
�
BEv1. To use (4.18), we have to estimate �.

But from (4.20a) we obtain v1 = O(�2) since G(z11)z21 = �
0 = O(�). So � = O(�).

Furthermore, from the initial conditions of ws, v
0
1(0) = 0, and di�erentiating (4.20a)

once, we get v01 = O(�2) similarly. From this it follows that �
0 = O(�). Applying

(4.18) to (4.21) we immediately have

z1 = ze +O(�); y1 = ye +O(�);

where fze; yeg is the exact solution of the index-3 problem. Then following the proof

procedure of Theorem 2.1, we obtain:

Theorem 4.1 Let all functions in the DAE (4.1) be su�ciently smooth and the above

assumptions (particularly (4.18)) hold. Assume in addition that y0 satis�es (2.14).

Then, for the solution of iteration (4.14){(4.16), the following error estimates hold:

zs(t)� ze(t) = O(�s); (4.22a)

ys(t)� ye(t) = O(�s) (4.22b)

for 1 � s � m+ 1.

Remark 4.1 We note that, unlike Proposition 2.2 of [2], we do not assume

kH(z)f̂(z)k2 � 
0kh(z)k2

to discuss the stability and accuracy of the constraints. Also, from (4.20), we see the

di�erence of the constraint stability or accuracy between SRM formulations based on

Baumgarte's stabilization and the new stabilization. For the former, we only have

v
0

1 = G(z11)z
0

11 = G(z11)z21

13



So if we obtain G(z11)z21 = O(�) then v1 = O(t�). This can be much worse than what

we get from (4.20a). 2

Remark 4.2 For s > m we expect initial layer terms in the estimates (4.22) (cf.

Theorem 2.2 and Theorem 3.1 of [4]). 2

4.2 The case for constraint singularities

For the singular case we allow that GB may be singular at some isolated point t�

as described in the introduction x1. The situation here is similar to that for index-2

problems. An examination of the drift equations (4.20) suggests that here, too, the

choice E = (GB)�1 is preferable to E = I or E = (GB)T . The iteration for ys is

modi�ed as well. Still assuming for simplicity that g and B do not depend explicitly

on t, this gives in place of (4.14){(4.16) the iteration

z
0

1s = z2s �
1

�
B(GB)�1g(zs) (4.23a)

z
0

2s = f(zs; t)� ŷs (4.23b)

ŷs = P (zs)ŷs�1 +
1

�
P (zs)z2s (4.23c)

Also, as indicated in x3 for index-2 problems, we cannot expect O(�s) approxima-

tion near the singular point any more. But we do expect that (4.22) holds away from

the singular point, because the singularity is in the constraint and the drift mani-

fold is asymptotically stable (following our stabilization). A numerical example in x6
will show that we do get improved results by using SRM iterations for the singular

problem.

5 The SRM for constrained multibody systems

Constrained multibody systems provide an important family of applications of the

form (4.1) and (2.1). We consider the system

q
0 = v (5.1a)

M(q)v0 = f(q; v)�G(q)T� (5.1b)

0 = g(q) (5.1c)

where q and v are the vectors of generalized coordinates and velocities, respectively;

M is the mass matrix which is symmetric positive de�nite; f(q; v) is the vector

of external forces (other than constraint forces); g(q) is the vector of (holonomic)

constraints; � is the vector of Lagrange multipliers; and G(q) = d

dq
g. For notational

simplicity, we have suppressed any explicit dependence of M , f or g on the time t.

We �rst consider the problem without singularities.
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Corresponding to (4.1) in x4, we have B = M
�1
G

T , so GB = GM
�1
G

T . Other

quantities like h and H retain their meaning from the previous section. In some

applications it is particularly important to avoid terms involving gxx, since its com-

putation is somewhat complicated and may also easily result in mistakes and rugged

terms. So [3] suggests post-stabilization using the stabilization matrix

F = M
�1
G

T (GM�1
G

T )�1
�
I 0
0 I

�
(5:2)

twice, instead of involving H, at the end of each time step or as needed. They �nd

that this F performs very well in many applications. However, while this stabilization

avoids the gxx term in F , gxx is still involved in obtaining ~f , although only through

matrix-vector multiplications (see (4.6)). The SRM formulation (4.14){(4.16) enables

us to avoid the computation of ~f in the absence of constraint singularities. For the

multibody system (5.1) we write the iteration as follows:

For s = 1; 2; : : :, �nd fqs; vsg by

q
0

s
= vs �

1

�
BE(qs)g(qs) (5.3a)

v
0

s
= M

�1
f(qs; vs)�B(qs)�s�1 �

1

�
BEG(qs)vs (5.3b)

Then update � by

�s = �s�1 +
1

�
EG(qs)vs: (5:4)

It is easy to see that in this SRM formulation the gxx term is avoided com-

pletely. Moreover, since GM
�1
G

T is positive de�nite, we can choose E = I in

(5.3),(5.4), obtaining a method for which Theorem 4.1 applies which avoids com-

puting (GM�1
G

T )�1. Although it requires an iterative procedure, a small number of

iterations (p if an explicit discretization method of order p is used) typically provide

su�cient accuracy. Numerical experiments will show the O(�s) error estimate.

Next we consider the singular problem, i.e. the matrix GM
�1
G

T is singular at

some isolated point t�, 0 < t
�
< tf . A typical example of singular multibody systems

is the two-link slider-crank problem (see Figure 5.1) consisting of two linked bars of

equal length, with one end of one bar �xed at the origin, allowing only rotational

motion in the plane, and the other end of the other bar sliding along the x-axis.

Various formulations of the equations of motion for this problem appear, e.g., in

[12, 8, 4, 19]. In our calculations we have used the formulation of [4], to make sure

that the problem is not accidentally too easy. It consists of 6 ODEs and 5 constraints,

with the last row of the Jacobian matrix G vanishing when the mechanism moves left

through the point where both bars are upright (�1 =
�

2 ; �2 =
3�
2 , where xi; yi; �i are

the coordinates of the centre of mass of the ith bar). The last row of G vanishes at

this one point and a singularity is obtained. We note that the solution is smooth in

the passage through the singularity with a nonzero velocity.
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Figure 5.1: planar slider-crank: initial state in solid line, subsequent states in dotted

lines

When we attempt to integrate this system using a stabilization method like [2]

which ignores the singularity, the results are unpredictable, depending on how close

to the singular time point the integration process gets when attempting to cross it.

In fact, radically di�erent results may be obtained upon changing the value of an

error tolerance. (Similar observations are made in [19].) In some instances a general

purpose ODE code would simply be unable to \penetrate the singularity", and yield a

solution which, after hovering around the upright (singular) position for a while, turns

back towards the initial position (solid line in Figure 5.1). Such a motion pattern

may well look deceptively plausible.

Methods which do not impose the constraints on the position level (e.g. methods

consisting of di�erentiating the constraints once and solving the obtained index-2

problem numerically, or of projecting only on the velocity-level constraint manifold)

perform particularly poorly here (cf. numerical results in [19]). This is easy to explain:

The position-level constraint corresponds to ensuring that the two bars have equal

length. If this is not strictly imposed in the process of numerical solution, inevitable

numerical errors due to discretization may yield a model where the lengths are not

close enough to being equal, and this leads to the lock-up phenomena described e.g.

in [12], which have a vastly di�erent solution pro�le.

We now wish to generalize the SRM to the problem (5.1) with singularities

since we have seen its success for the linear index-2 case in [4]. From the two-link

slider crank problem, we �nd that, although GM
�1
G

T is singular at t
�, P (q) �
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M
�1
G

T (GM�1
G

T )�1G and M
�1
G

T (GM�1
G

T )�1g are smooth as functions of t for

the exact solution or functions q satisfying the constraints, whileM�1
G

T (GM�1
G

T )�1,

M
�1
G

T (GM�1
G

T )�1Gq and the derivative
dP (q)
dq

are not. Also, as indicated in [4], � is

no longer smooth, whileB� is since we assume the solution q to be su�ciently smooth.

We only include terms which are most possibly smooth in the SRM formulation.

Applying (4.23), we obtain the method

q
0

s
= vs �

1

�
M

�1
G

T (GM�1
G

T )�1g(qs); (5.5a)

v
0

s
= M

�1
f(qs; vs; t)� �̂s; (5.5b)

�̂s = P (qs)�̂s�1 +
1

�
P (qs)vs (5:6)

As we indicated in x3, we do not expect O(�s) accuracy near the singular point.

However, we do expect that the SRM iteration would improve the accuracy and that

we still get O(�s) accuracy away from the singular point. Numerical experiments in

x6 will show such improvements.

6 Numerical experiments

We now present a few examples to demonstrate our claims in the previous sections.

Throughout this section we use a constant step size h and select the simple initial

iterate y0 � 0. To make life di�cult we choose h when we can so that there is an i

such that ti = t
�, namely, there is a mesh point hitting the singularity point t�, for

singular test problems. At a given time t, we use 0
ex

0 to denote the maximum over

all components of the error in xs. Similarly, 0drift0 denotes the maximum residual in

the algebraic equations.

Example 6.1 Consider the DAE (2.1),(2.2) with

f =

�
1� e

t

cos t+ e
t sin t

�
; B =

�
x1

x2

�

g =
1

2
(x21 + x

2
2 � e

�2t � sin2 t):

subject to x1(0) = 1; x2(0) = 0.

The exact solution is xe = ( e�t; sin t ), ye = e
t
. This is a problem without

singularities.

Using an explicit second order Runge-Kutta method with h = 0:001 we test various

choices of E and �1 (always taking �2 = 1 in our computations) of the SRM formu-

lation in x2. We list the computational results in Table 6.1. Observe that, for �1 6= 0,

the SRM works well for various choices of E. Its error is as good as Boumgarte's
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method whose parameter is taken corresponding to �2 of the SRM. For �1 = 0, we

see that the error improves at a rate of about O(�) for various choices of E, including

the simplest E = I. (Observe the errors at t = 1; the error situation near t = :1

is di�erent because of the existence of an initial layer.) Such an error improvement

continues until the accuracy of the second order explicit Runge-Kutta method, i.e.

O(h2), is reached. 2

The next two examples are for problems with singularities. In the index-2 case

of the Baumgarte stabilization the worst term is B(GB)�1gt for the type of the

singularities we discuss in this paper. So, to show what happens when the Baumgarte

method does not work well, we choose nonautonomous problems (i.e. gt 6= 0) as

index-2 singular examples.

Example 6.2 Consider the nonlinear DAE (2.1) with

f =

�
1 + (t� 1

2)e
t

2t+ (t2 � 1
4)e

t

�
; B =

�
x1

x2

�

g =
1

2
(x21 + x

2
2 � (t�

1

2
)2 � (t2 �

1

4
)2)

subject to the initial condition x1(0) = �1
2
; x2(0) = �1

4
.

The exact solution is xe = ( t� 1
2
; t

2 � 1
4
), ye = e

t
. A singularity is located

at t
� = 1

2
. Using this example we test the SRM formulations of x3. We list the

computational results in Table 6.2, where we take h = � = 0:001 for the case of

�1 = 0, and h = 0:001; � = 10�10 for the case of �1 6= 0, and use the explicit

second order Runge-Kutta scheme to easily see the iteration improvement (Ij stands

for results of the jth iteration).

From Table 6.2, we see error deterioration for the Baumgarte method and the

SRM with �1 6= 0. The SRM with �1 = 0 performs better in the singular case. 2

Next we try an example in which y is unbounded at the singularity.

Example 6.3 Consider the nonlinear DAE (2.1) with

f =

�
�x1 + x2 � sin(t)� (1 + 2t)

0

�
; B =

�
0

x1

�

g = x
2
1 + x1(x2 � sin(t)� 1 + 2t);

subject to the initial condition x1(0) = 1; x2(0) = 0.

The exact solution is xe = ( 1� 2t; sin t ), ye = � cos t=(1 � 2t). Taking the

same parameters and using the same method as before, we get the results listed in

Table 6.3. Clearly, the SRM with �1 = 0 performs well for this situation as well,

while Baumgarte's method blows up upon hitting the singularity. 2
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Our next example tests the formulation (4.14){(4.16) or (5.3){(5.4) for index-3

problems.

Example 6.4 This example is made up from Example 2 in [3], which describes a

two-link planar robotic system. We use the notation of (5.1). Let q = (�1; �2)
T
and

M =

�
m1l

2
1=3 +m2(l

2
1 + l

2
2=3 + l1l2c2) m2(l

2
2=3 + l1l2c2=2)

m2(l
2
2=3 + l1l2c2=2) m2l

2
2=3

�
;

where l1 = l2 = 1, m1 = m2 = 3 and c2 = cos �2. The constraint equation is

g(q) = l1 sin �1 + l2 sin(�1 + �2) = 0:

We choose the force term

f =

�
(l1 cos �1 + l2 cos(�1 + �2)) cos t� 3 sin t

l2 cos(�1 + �2) cos t+ (1� 3
2
c2) sin t

�

which yields the exact solution �1 = sin t, �2 = �2 sin t and � = cos t. Because M

is symmetric positive de�nite and B = M
�1
G

T
we can take E = I in the SRM

formula (5.3){(5.4). Again we use the second- order explicit Runge-Kutta scheme,

and set h = 0:001; � = 0:005. The results are listed in Table 6.4, where eq and ev

stand for maximum errors in q and v = q
0
, resp., and pdrift and vdrift stand for

drifts at position level and velocity level, resp. We see that the accuracy is improved

signi�cantly by the �rst two iterations. The third iteration is unnecessary here, because

the error is already dominated by the Runge-Kutta discretization error. Qualitatively

similar results are obtained for E = (GB)T and E = (GB)�1. More interestingly,

though, for E = I we neither form nor invert GM
�1
G

T
, so a particularly inexpensive

iteration is obtained.

2

Next we solve for the dynamics of the slider-crank mechanism described in x5. To
recall, this is a nonlinear index-3 DAE with isolated, \smooth" singularities.

Example 6.5 We take h = � = 0:0001 and use the explicit second order Runge-

Kutta method again. Singularities are located at (�1; �2) = (�
2
;
3�
2
) (i.e., they occur

each time the periodic solution crosses this point). Corresponding to the case shown

in [19], we choose �1(0) =
7�
4 and �

0
1(0) = 0 and compute

�1 = �1 �
3�

2
; �2 = �2 +

�

2
;

�
0
1 and �

0
2. Using the formulation (5.6), (5.5), we calculate until t = 70 without any

di�culty (see Figure 6.1).

We also list the drift improvement as a function of the SRM iteration in Table

6.5.
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Figure 6.1: Solution for slider-crank problem with singularities

If we use the SRM formulations considered in xx4 and 5 for problems with no sin-

gularities, or one of the usual stabilization methods with strict tolerances, the results

become wildly di�erent from the correct solution after several periods.

Next we calculate the acceleration of the slider end in the horizontal direction

under the initial data �1(0) =
�

4 and �
0
1(0) = 2

p
2. The same problem was discussed

in [8]. The result shown in [8] is not perfect since the maximum and minimum values

in each period appear to di�er. Our result looks better (see Figure 6.2). 2
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methods � iteration error at ! t=.1 t=.5 t=1.0

�1 = 1 1e-8 1 ex .11e-7 .94e-7 .19e-6

E = I drift .79e-8 .56e-7 .14e-6

�1 = 1 1e-8 1 ex .11e-7 .92e-7 .18e-6

E = (GB)T drift .78e-8 .53e-7 .14e-6

�1 = 1 1e-8 1 ex .11e-7 .95e-7 .19e-6

E = (GB)�1 drift .80e-8 .58e-7 .15e-6

Baumgarte ex .45e-6 .16e-6 .35e-6

drift .40e-6 .70e-7 .29e-6

�1 = 0 5e-3 1 ex .60e-2 .11e-1 .11e-1

E = I drift .54e-2 .80e-2 .13e-1

2 ex .11e-3 .26e-3 .22e-3

drift .96e-4 .20e-3 .27e-3

3 ex .32e-5 .65e-5 .46e-5

drift .29e-5 .47e-5 .54e-5

4 ex .26e-6 .23e-6 .28e-6

drift .13e-6 .51e-7 .12e-6

�1 = 0 5e-3 1 ex .70e-2 .12e-1 .13e-1

E = (GB)T drift .64e-2 .13e-1 .15e-1

2 ex .22e-3 .65e-3 .31e-3

drift .20e-3 .49e-3 .29e-3

3 ex .11e-4 .16e-4 .69e-5

drift .10e-4 .10e-4 .52e-5

4 ex .85e-6 .91e-7 .29e-6

drift .75e-6 .77e-6 .14e-6

�1 = 0 5e-3 1 ex .51e-2 .66e-2 .10e-1

E = (GB)�1 drift .46e-2 .49e-2 .12e-1

2 ex .35e-4 .11e-3 .21e-3

drift .30e-4 .79e-4 .24e-3

3 ex .86e-6 .23e-5 .47e-5

drift .77e-6 .17e-5 .53e-5

4 ex .26e-6 .18e-6 .26e-6

drift .26e-7 .31e-7 .13e-6

Table 6.1: Errors for Example 6.1 using the explicit second order Runge-Kutta scheme
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methods error at ! t=.1 t = .3 t = .5 t= .7 t= 1.0

�1 = 1 ex .39e-6 .13e-5 .12e-3 .14e-3 .76e-4

drift .24e-6 .16e-6 .10e-7 .39e-6 .75e-6

�1 = 0 (I1) ex .46e-3 .32e-3 .43e-4 .49e-3 .20e-2

drift .24e-3 .89e-4 .18e-8 .20e-3 .22e-2

�1 = 0 (I2) ex .81e-6 .11e-5 .41e-5 .29e-5 .68e-5

drift .24e-6 .30e-6 .15e-10 .13e-5 .76e-5

�1 = 0 (I3) ex .23e-6 .26e-6 .34e-6 .29e-6 .29e-6

drift .90e-9 .11e-8 .78e-13 .35e-8 .18e-7

�1 = 0 (I4) ex .23e-6 .26e-6 .36e-6 .27e-6 .29e-6

drift .47e-11 .33e-11 .10e-12 .29e-11 .28e-10

Baumgarte ex .43e-6 .45e-6 .34e-3 .39e-3 .21e-3

drift .24e-6 .16e-6 .61e-7 .24e-6 .75e-6

Table 6.2: Example 6.2 { bounded y and singularity at t� = :5

methods error at ! t=.1 t = .3 t = .5 t= .7 t= 1.0

SRM (�1 = 0) ex .40e-6 .25e-6 .14e-6 .46e-7 .60e-7

(I3) drift .25e-8 .76e-9 .16e-15 .28e-9 .40e-9

Baumgarte ex .49e-7 .15e-6 .93e+1 NaN NaN

drift .39e-7 .59e-7 .52e+13 NaN NaN

Table 6.3: Example 6.3 { unbounded y and singularity at t� = :5

methods � iteration error at ! t=.1 t=.5 t=1.0

E = I 5e-3 1 eq .41e-4 .66e-3 .26e-2

ev .75e-2 .74e-2 .69e-2

pdrift .22e-4 .28e-4 .22e-4

vdrift .49e-2 .41e-2 .27e-2

2 eq .13e-6 .66e-6 .36e-6

ev .19e-5 .81e-6 .20e-4

pdrift .42e-9 .13e-7 .17e-6

vdrift .91e-7 .21e-5 .21e-4

3 eq .10e-6 .58e-6 .12e-5

ev .86e-6 .10e-5 .16e-5

pdrift .96e-11 .60e-9 .48e-8

vdrift .10e-8 .99e-7 .59e-6

Table 6.4: Errors for Example 6.4 using SRM (5.3)-(5.4)

24



iteration number position drift at t=30 velocity drift at t = 30

1 .669e-8 .671e-4

2 .730e-11 .731e-7

Table 6.5: Drifts of the SRM for the slider-crank problem
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