
A SIMPLE PROOF CHECKER FOR REAL-TIME SYSTEMS

By

Catherine Leung

B. Sc. (Computer Science) University of British Columbia

a thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science

in

the faculty of graduate studies

computer science

We accept this thesis as conforming

to the required standard

: :

: :

the university of british columbia

June 1995

c Catherine Leung, 1995

In presenting this thesis in partial ful�llment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or by

his or her representatives. It is understood that copying or publication of this thesis for

�nancial gain shall not be allowed without my written permission.

Computer Science

The University of British Columbia

2366 Main Mall

Vancouver, Canada

V6T 1Z4

Date:

Abstract

This thesis presents a practical approach to verifying real-time properties of VLSI designs.

A simple proof checker with built-in decision procedures for linear programming and

predicate calculus o�ers a pragmatic approach to verifying real-time systems in return

for a slight loss of formal rigor when compared with traditional theorem provers. In this

approach, an abstract data type represents the hypotheses, claim, and pending proof

obligations at each step. A complete proof is a program that generates a proof state

with the derived claim and no pending obligations. The user provides replacements for

obligations and relies on the proof checker to validate the soundness of each operation.

This design decision distinguishes the proof checker from traditional theorem provers,

and enhances the view of \proofs as programs". This approach makes proofs robust

to incremental changes, and there are few \surprises" when applying rewrite rules or

decision procedures to proof obligations. A hand-written proof constructed to verify the

timing correctness of a high bandwidth communication protocol was veri�ed using this

checker.

ii

Table of Contents

Abstract ii

List of Tables viii

List of Figures ix

Acknowledgement x

1 Introduction 1

1.1 Verifying Timing Properties with the Proof Checker : : : : : : : : : : : : 2

1.2 Theorem Provers : 4

1.3 Veri�cation Tools and Real-time Properties : : : : : : : : : : : : : : : : : 6

1.4 Thesis Overview : 7

2 Proof Checker Speci�cation 8

2.1 Structure of the Proof Checker : 8

2.1.1 Proof State : 9

2.1.2 Proof Rules : 11

2.2 The Proof Rules and their Soundness : 12

2.2.1 Linear Programming Rule : 13

2.2.2 Predicate Calculus Rule : 14

2.2.3 Instantiation Rule : 15

2.2.4 Skolemization Rule : 15

2.2.5 Induction Rule : 18

iii

2.2.6 De�nition Rule : 19

2.2.7 Postponement Rules : 20

2.2.8 Equality Rule : 23

2.2.9 If Rule : 23

2.2.10 Discrete Rule : 24

2.3 Conclusion : 24

3 Implementation of the Proof Checker 25

3.1 Abstract Data Type for Proof State : 25

3.2 The Proof Rules and some Implementation Techniques : : : : : : : : : : 26

3.2.1 De�ning the Concrete Types : 27

3.2.2 Pattern Matching : 28

3.2.3 Failures : 29

3.3 Linear Programming : 29

3.3.1 Simplex Method : 30

3.3.2 Strict Inequalities (> and <) : 35

3.3.3 Not-equal-to Relations (6=) : 36

3.3.4 Special Cases : 37

3.4 Implementation of Proof Rules : 39

3.4.1 Linear Programming Rule : 40

3.4.2 Predicate Calculus Rule : 41

3.4.3 Skolemization Rule : 42

3.4.4 Instantiation Rule : 43

3.4.5 Induction Rule : 44

3.4.6 De�nition Rule : 45

3.4.7 Postponement Rules : 45

iv

3.4.8 Equality Rule : 47

3.4.9 If Rule : 48

3.4.10 Discrete Rule : 48

3.5 User Interface : 49

3.5.1 Case Analysis over booleans : 49

3.5.2 Case Analysis over integers : 50

3.5.3 Discharged by Unchanged : 50

3.5.4 Printing a State : 52

3.5.5 Print Abbreviation : 52

3.6 Conclusion : 53

4 Veri�cation of Real-time Properties 54

4.1 Synchronized Transitions: a hardware description language : : : : : : : : 55

4.2 Safety Properties and Invariants : 56

4.3 Expressing Real-time Properties : 59

4.4 Summary : 63

5 Verifying STARI 64

5.1 STARI Interfaces : 64

5.1.1 Self-timed FIFOs for STARI : 66

5.1.2 A schedule for STARI : 68

5.2 An ST Program for STARI : 72

5.2.1 The invariant : 74

5.3 The STARI Proof : 77

5.3.1 A snapshot from the proof : 78

5.3.2 Some Proof Techniques : 82

5.3.3 Flaws from Manual Proof : 84

v

5.4 Observations and Experiences : 84

5.4.1 Veri�ed Proof versus Manual Proof : : : : : : : : : : : : : : : : : 84

5.4.2 FL as a meta-language : 85

5.5 Evaluating the Proof and the Proof Checker : : : : : : : : : : : : : : : : 86

6 Conclusion 88

6.1 The Simple Approach to Proof Checking : : : : : : : : : : : : : : : : : : 88

6.2 Proofs as Programs : 90

6.3 The Postponement Rules : 91

6.4 Variable skew version of STARI proof : 92

6.5 Summary : 92

Bibliography 94

Appendices 96

A User Manual 97

A.1 Structure of Proof Checker : 97

A.2 How to Start/Exit the System : 98

A.3 Syntax Used in the Checker : 99

A.4 Proof Rules : 102

A.4.1 To Start/End a proof: (Start proof/Done) : : : : : : : : : : : : 102

A.4.2 The Ten Proof Rules : 104

A.4.3 Proof Debugging: debug mode : 114

A.5 User Interface : 115

A.5.1 Interface Functions : 115

A.5.2 Auxiliary Functions : 120

A.6 Example : 122

vi

B Proof Script for STARI 127

B.1 Proof Script for the Transmitter Transition : : : : : : : : : : : : : : : : : 127

B.2 Proof Script for the FIFO Transition : 148

B.3 Proof Script for the Receiver Transition : : : : : : : : : : : : : : : : : : : 171

B.4 Proof Script for the Protocol : 193

vii

List of Tables

3.1 Linear Programming Rule : 40

3.2 Predicate Calculus Rule : 41

3.3 Skolemization Rule : 42

3.4 Instantiation Rule : 43

3.5 Induction Rule : 44

3.6 De�nition Rule : 45

3.7 Postponement Rules : 46

3.8 Equality Rule : 47

3.9 If Rule : 48

3.10 Discrete Rule : 49

3.11 Case Analysis over Booleans : 50

3.12 Case Analysis over Integers : 51

3.13 Discharged by Unchanged : 52

viii

List of Figures

2.1 An example of a proof tree. : 9

3.2 A system of linear relations. : 30

3.3 Pseudocode for Linear Programming. : 38

4.4 A synchronous communication circuit. : : : : : : : : : : : : : : : : : : : 55

5.5 STARI communication : 65

5.6 A self-timed FIFO : 67

5.7 Stage-to-stage transfer times : 71

5.8 A Synchronized Transitions program for STARI : : : : : : : : : : : : : : 75

5.9 The invariant for STARI : 76

5.10 A branch from the STARI proof tree. : 79

6.11 Identity Properties and Cancellation Law of reals : : : : : : : : : : : : : 89

A.12 De�nition of Boolean type, Integer type, and Real type. : : : : : : : : 101

ix

Acknowledgement

I would like to thank my supervisor, Mark Greenstreet, for his time and patience, and

his support. What he has taught me is beyond the technical material from the M.Sc.

program. This thesis would not be here without him. Thank you, Mark.

I am grateful to Scott Hazelhurst and Carl Seger for their assistance in using FL,

and for many useful discussions and suggestions throughout the course of this research.

My second reader, Norm Hutchinson, has provided valuable comments for this thesis.

Special thanks to Scott for being a friend, and for being there during the good and bad

times.

Thanks to Je� Joyce and Nancy Day for taking the time to discuss HOL with me.

Nancy took the time to generate a proof for the example in the User Manual using HOL

as a comparison to my proof checker. Thank you, Sree Rajan, for the discussions on PVS

and taking the time to verify the same proof in PVS.

I would like to thank Jack Snoeyink for his guidance in my early days as a graduate

student. Many thanks to Helene Wong, Xiaomei Han, Mohammad Darwish, and all

members of ISD lab for all the supports and encouragements.

x

Chapter 1

Introduction

Veri�cation is an essential part of the design process. To ensure that a system is func-

tionally correct, designers try to systematically capture requirements and show that they

are satis�ed. Formal methods can assist this process when the speci�cation is amenable

to mathematical formalization and practical techniques are available to carry out the

proofs. In particular, this thesis examines the application of formal methods to the veri-

�cation of real-time systems. Speci�cations of timing correctness can often be expressed

using simple predicates that includes linear inequalities. These are readily expressed in

precise and familiar mathematical notation. On the other hand, the proofs that these

requirements are satis�ed are often lengthy. This thesis presents a proof checker that can

be used to ensure the soundness of such proofs.

The work presented in this thesis is motived by a manual proof constructed to ver-

ify the timing correctness of a high bandwidth communication protocol, STARI [16].

STARI (Self-Timed At Receiver's Input) is a signaling technique for interchip communi-

cation that combines synchronous and asynchronous design methods. Although STARI

is interesting in its own right, the manual proof is more tedious than it is profound, and

its length makes it untrustworthy. Hand-written proofs often contain implicit assump-

tions and unstated arguments. Both can lead to errors. Even stated arguments can be

wrong. This motivates developing mechanized tools to verify such proofs. Examining

the manual proof for STARI, it appears that only a few, simple proof techniques were

employed which suggests that a simple proof checker could be written to certify such

1

Chapter 1. Introduction 2

proofs. To test this hypothesis, such a proof checker was written.

A proof checker takes a proof as input, veri�es each step of the proof and certi�es

the resulting proof. This thesis presents a proof checker designed to verify proofs of

real-time properties. The remainder of the introduction includes a discussion on some

techniques used to formulate proofs for verifying real-time properties and a survey on

existing theorem provers. The chapter concludes with an overview of the thesis.

1.1 Verifying Timing Properties with the Proof Checker

Many existing theorem provers are either extremely tedious and/or require skilled users.

The thesis presented here is that a simpler proof checker, with a minimal set of inference

rules, is powerful enough to verify correctness proofs for real-time systems. This proof

checker, unlike many other traditional theorem provers which embed profound mathe-

matical theories, is more accessible to engineers who are more interested in the result

of the veri�cation than the proofs involved. The fact that there is a simple mapping

between the structures of proofs constructed from the proof checker and those of the

manual proofs simpli�es proof construction. The proof checker is domain speci�c. It

is implemented to verify real-time properties in VLSI design. A decision procedure for

linear inequalities is incorporated into the system for this purpose.

A theorem prover takes a theorem statement as input, applies di�erent inference

rules, and outputs a proof. Often, the built-in inference rules correspond to fundamental

axioms of mathematics, allowing the theorem prover to be used to develop a wide variety

of theories. Automated application of these inference rules releases users from tedious

reasoning, and allows them to focus on more high-level issues. Some theorem provers,

which place emphasis on automation, have built-in heuristics to search through inference

rules and decide which ones to apply for di�erent scenarios. These theorem provers make

Chapter 1. Introduction 3

multiple proof steps with minimal human interaction. Others, focusing on generality,

require more human guidance.

From a survey of existing theorem provers, it was noted that unpredictable output

from inference rules can be frustrating in proof development. The proof checker described

here avoids this problem because the user provides the expected result of each step. The

use of a functional meta-language as the user interface to the proof checker makes this

approach practical: the user does not have to repeatedly type enormous expressions;

instead, functions can be written in the metalanguage to compute intended results and

other inputs to the checker. Inference rules are only used to verify if the suggested output

is a valid replacement of the preceding formula. This allows the user to control the exact

structure output from an inference rule. This design decision eases the construction and

manipulation of expressions, allows the user to locate the problem when a proof breaks

down, and enhances the process of proof debugging.

The proof checker contains functions which allow the user to de�ne abbreviations for

large expressions. The pretty-printer, when printing a formula, replaces large expressions

with equivalent user-de�ned abbreviations. This avoids printing out large, incomprehen-

sible expressions, and allows user to better understand the meaning of expressions instead

of confusing them with uninformative details.

Proof scripts can be written in modules that can be instantiated and reused. Thus if

similar reasoning is required in various places in the proof, only one piece of `code' needs

to be constructed and similar arguments can be expressed as instantiations of this single

module de�nition. In addition to reducing the tedium of proof construction, this also

allows the proof to be structured hierarchically.

When verifying timing properties of VLSI designs, the system is modeled as a Syn-

chronized Transitions program, and invariants are used to establish safety properties.

A continuous model of time is employed: times are represented as real numbers, not

Chapter 1. Introduction 4

integers. Unlike discrete models of time, no time interval can be overlooked. Real-time

constraints are enforced by adding real-valued auxiliary variables, which are used for

bookkeeping in the veri�cation and not represented by wires or voltage in the implemen-

tation. The same approach is presented in [11] where the auxiliary variables are called

timers.

1.2 Theorem Provers

The popularity of proof checking and theorem proving tools has increased as formal

methods have come to play an increasingly important role in hardware design and veri�-

cation. Existing theorem provers are distinguished by the mathematical formalisms that

they are based upon, the algorithms that are used to reason about these formulas, and

the choice of batch-oriented versus interactive user interfaces.

HOL [7], the Higher Order Logic system, was developed at Cambridge University in

the early 1980's. It is an LCF-based [6, 12] 1 theorem prover for formal speci�cation and

veri�cation in higher-order logic. The entire system is based on the �ve fundamental

Peano axioms and the abstraction axiom; users typically extend the system with built-in

decision procedures to suit the application. There are no pre-determined application-

speci�c concepts built into the system. For these reasons, the system is general and

exible. However, for the same reason, the system requires highly skilled users to guide

the proof.

EHDM [22] and PVS [10, 22, 26, 27] were developed in SRI International at 1984

and 1991 respectively. EHDM uses a speci�cation language based on typed higher order

logic with a rich type system. The veri�cation system includes a parser, pretty-printer,

1LCF (Logic for Computable Functions) is an interactive reasoning tool which uses abstract data types

to protect the soundness of theorems manipulated by the inference rules. Proof tactics or strategies

are communicated to the system through a metalanguage (In the HOL system, ML is used as the

metalanguage).

Chapter 1. Introduction 5

type-checker, proof checker, and various documentation aids. The proof checker involved

is not interactive; instead, it is guided by proof descriptions which are included as part of

the speci�cation text by the user. EHDM allows modularization of speci�cations which

supports a form of hierarchical veri�cation. PVS is an LCF-style theorem prover based

on many of the concepts of EHDM. The PVS speci�cation language has an even richer

type system including dependent types and predicate sub-types. Decision procedures in

PVS include arithmetic, equality, predicate calculus, and a simple form of temporal logic.

The Boyer-Moore Prover [4] is a batch-oriented, heuristic theorem prover. The Boyer-

Moore theorem prover deals with a subset of quanti�er free �rst-order logic and consists of

an ad hoc collection of heuristic proof techniques. Decision procedures are embedded into

the system to increase its e�ciency and predictability. To prove a theorem, the system

assumes the negation of this theorem; in a series of simpli�cations, this negation is broken

into a set of supposedly simpler formulas. Recursively the simpli�er tries to write the

hypotheses to non-F (a predicate not logically equivalent to the constant False) by a form

of backwards chaining. When the goal to be proven is not suitable for these techniques,

this approach can spend large amounts of time failing to �nd a proof. This complicates

the addition of new decision procedures [3]. Furthermore, a signi�cant amount of tedious

human e�ort can be required in the exploratory phase of proof development to �nd an

initial decomposition of the theorem that is amenable to the prover's heuristics.

The Larch Prover [13], like the Boyer-Moore Prover, deals with a subset of �rst-order

logic and is based on equational term-rewriting. It does not employ heuristics to derive

subgoals automatically. The Larch Prover was originally used to debug a speci�cation or

a set of invariants, therefore its focus is aimed at locating where and when a proof breaks

down. The theorem prover works e�ciently with large sets of large equations, however,

the inference rules can yield huge expressions as a result.

Chapter 1. Introduction 6

1.3 Veri�cation Tools and Real-time Properties

Several proof techniques have been developed to model real-time systems and verify

their timing properties using the theorem provers described in the previous sections.

For example, the semantics of Duration Calculus has been encoded in the logic of PVS.

Duration Calculus is an interval temporal logic for reasoning about real-time systems.

This approach has been applied to a few small examples. For example, safety properties

of a design of a leaking gas burner have been veri�ed using this tool. [27, 26]

The Larch Prover has been used to verify safety properties of circuits using invari-

ants. The system to be veri�ed is modeled as a Synchronized Transitions program [29].

Synchronized Transitions is a guarded command language, which is also used in the ap-

proach presented in this thesis. (See section 4.3.) Protocols are used to capture essential

properties of the transitions in the program. This approach can be extended to model

real-time system as is explained in greater detail in Chapter 4.

UNITY is a guarded command language based on an interleaving model of concur-

rency. It has many features in common with Synchronized Transitions. In [8], it is shown

how UNITY can be used to specify designs ranging from architecture independent pro-

grams to architecture speci�c ones. This language has been used to specify a real-time

design which was then veri�ed by the Boyer-Moore theorem prover. [14]

HOL-UNITY is an implementation of the logic for UNITY in the HOL theorem

prover. UNITY programs and properties have been expressed in higher order logic in

HOL [2]. In UNITY logic, there are two safety properties: unless and invariant and

two progress properties: ensures and leadsto. A tactic for automating proofs of such

properties was developed in HOL-UNITY. Although the proof of the progress properties

of the lift-control program presented in [2] does not involve real-time properties, it might

be possible to extend this approach to reason about real-time properties using methods

Chapter 1. Introduction 7

like those present in [14]. However, this would require a practical theory of the reals

constructed from the HOL axioms. Researchers have explored ways of implementing a

decision procedure for elementary real algebra in HOL. In [18], the di�culties of con-

structing such a theory are described along with a solution. It explains how a theory

rich enough to reason about polynomial inequalities can be implemented in HOL. With a

theory of elementary real arithmetic, HOL could be used to reason about timing relations

in real-time systems.

Time separation of events in concurrent systems can be determined by modeling

the system as a cyclic connected graph. An initial graph is formulated with its nodes

representing events and its arcs labeled with delay information. Tight upper and lower

bounds for each event can be determined using an algorithm presented in [20]. This

approach has been used to verify speci�c instances of STARI [19].

1.4 Thesis Overview

The remainder of this thesis explains the theory behind the proof checker and the ver-

i�cation technique, and presents an example of how the checker is applied to verifying

STARI. Chapter 2 describes how a proof is structured, presents the ten proof rules and

two decision procedures in the proof checker, and presents arguments for their soundness

(and thus the soundness of the checker). Chapter 3 describes the implementation of the

checker and shows that it implements the speci�cation presented in Chapter 2. Chap-

ter 4 discusses the approach employed to model real-time systems and verify their timing

properties. The STARI example is presented in Chapter 5. Chapter 6 summarizes this

investigation and suggests possible enhancements to the proof checker.

Chapter 2

Proof Checker Speci�cation

A proof checker is a program that veri�es the soundness of a proof. A proof is represented

by a sequence of proof states that are manipulated by a small set of proof rules. The

soundness of the checker depends only on the soundness of these rules. This chapter

describes the structure of the proof checker and justi�es the soundness of each proof rule.

2.1 Structure of the Proof Checker

The proof checker is implemented as an LCF style theorem prover [12, 6]: proof states

are represented by an abstract data type, and these states are created and manipulated

by a small set of rules. A functional metalanguage allows the user to de�ne other proof

methods using the fundamental proof rules of the checker. By protecting the proof state

with an abstract data type, the soundness of a proof depends only on the soundness of

the built-in rules and not on any machinery that the user may build on top of them.

The checker veri�es backward proofs. A proof is viewed as a tree: the claim is the

root; edges are labeled by proof rules; and the leaves represent simple tautologies. The

conjunction of all the children of a node implies the node itself. A proof starts with the

claim of the theorem as the one pending proof obligation to be discharged; proof rules

are applied to reduce the claim into simple obligations that are decidable by the built-in

procedures of the checker. Figure 2.1 shows an example of a proof tree. P is the claim to

be proven, Q^R implies P by rule#1, and P is broken down into Q and R. By rule#2,

Q is rewritten as S, and by rule #3 and #4, S and R are veri�ed to be tautologies.

8

Chapter 2. Proof Checker Speci�cation 9

P

Q R

S tautology

tautology

rule #1

rule #2

rule #3

rule #4

Figure 2.1: An example of a proof tree.

A proof script de�nes a traversal of the proof tree. Such traversals can be in an

arbitrary order starting from the root, which allows the user to choose the order in which

obligations are simpli�ed and discharged. At each step of the proof, the pending proof

obligations are maintained as a list. These obligations correspond to non-leaf nodes that

have not yet been broken down into simpler obligations. Although the tree structure is

not explicitly represented by the proof state, it could be reconstructed from the sequence

of proof rules in the proof script.

2.1.1 Proof State

A proof state in the checker is composed of a claim, a hypothesis list, an obligation list,

and a postponed list.

� The claim is the main goal or theorem to be proven. This �eld associates the

theorem to be proven with its proof.

� The hypothesis list contains the hypotheses of the proof. These are stated at the

beginning of the proof. No element can be added to or removed from this list once

the proof is started.

Chapter 2. Proof Checker Speci�cation 10

� The obligation list is the list of pending proof obligations that must be discharged

before the claim can be declared proven. Initially, this list contains exactly one

element: the claim. The size of the list changes as obligations are broken down or

discharged. The proof is complete when this list becomes empty.

� The postponed list contains all unveri�ed assumptions made along the course of

the proof. Initially, this list is empty. An obligation can be moved to or removed

from this list with the Postponement rules described in Section 2.2.7. Moving a

proof obligation to the postponed list is the only way a proof obligation can be

discharged without actually proving it. When a proof is completed, all obligations

remaining on the the postponed list are printed, and it is the user's responsibility

to verify them.

Each proof state represents an implication: 8v:(Hyp(v)^ Post(v)) Obl(v)), where

Hyp(v) represents the list of hypotheses; Post(v), the list of objects being postponed;

Obl(v), the list of obligations, and v is the set of variables over these three predicates.

The pending obligations are implied by the hypotheses and the postponed objects. It

states what remains in order to prove the theorem.

Initially, a proof state contains one obligation, the claim. The hypothesis list gives

the context of the proof and de�nes the variables that appear in the proof. As mentioned

above, the postponed list is initially empty. Therefore, an initial proof state can be

viewed as the implication, 8v:(Hyp(v)) Claim(v)). This is the theorem to be veri�ed.

The proof is complete when all obligations are discharged and no postponed object

remains on the postponed list. The last state of a proof gives the implicit implication of

the form, 8v:(Hyp(v)^ ;) ;). An empty list is equivalent to the boolean value True;

accordingly, the implication above is logically equivalent to True.

Chapter 2. Proof Checker Speci�cation 11

2.1.2 Proof Rules

There are two types of proof rules: discharge rules and replacement rules. Discharge rules

verify that an obligation is a tautology and remove it from the obligation list. Replace-

ment rules, after verifying that the replacement is sound, replace one or more pending

obligations with one or more new obligations provided by the user. A replacement is

sound if and only if the new proof state implies the old one. Replacement rules often

substitute a set of old obligations with a new set, where the new set logically implies the

old set, and leave the remaining elements of a proof state unchanged. The new obliga-

tions are not required to be equivalent to the old obligations. Thus, the proof checker is

conservative, i.e., failure to verify a proof does not imply the negation of the theorem.

Using the notation introduced in the previous section, replacement rules can replace

a set of old obligations with a set of new obligations only if the following holds:

(8v0:(Hyp(v0) ^ Post(v0))) Obl
0(v0))) (8v:(Hyp(v)^ Post(v))) Obl(v))

where Hyp(v), Post(v) and Obl(v) are the list of old obligations, the

list of old postponements and the list of old hypotheses over the

variable set, v, and

Hyp
0(v0), Post0(v0) and Obl

0(v0) are the list of new obligations,

the list of new postponements and the list of new hypotheses

over the variable set, v0.

The set of variables v and v
0 can di�er, since new variables (i.e. skolem constants) can

be introduced by the Skolem rule. (See Section 2.2.4).

We conclude that (8v0:(Hyp(v0)^Post0(v0))) Obl
0(v0))) (8v:(Hyp(v)^Post(v)))

Obl(v)) holds throughout the course of a proof. We can extend this to view the entire

proof as a sequence of implications:

True

Chapter 2. Proof Checker Speci�cation 12

� 8vn:(Hyp(vn) ^ Postn(vn)) True)

� 8vn:((Hyp(vn) ^ Postn(vn))) Obln(vn))

) 8vn�1:((Hyp(vn�1) ^ Postn�1(vn�1))) Obln�1(vn�1))

) : : :

) 8v1:((Hyp(v1) ^ Post(v1))) Obl(v1))

� 8v1:(Hyp(v1)) Claim(v1)):

Thus, a complete proof establishes True) (8v1:(Hyp(v1)) Claim(v1))), which is the

original claim.

The user is required to provide the rewritten forms of pending obligations for replace-

ment rules. This feature prevents surprises as to how obligations will be rewritten and

provides robustness to proofs. Sometimes, the exact form of an obligation is critical to

applying a proof rule. With this feature, the user always knows the exact form of each

expression. As the system is enhanced, old proofs will not break because expressions

will still be rewritten to the same form. This feature also facilitates proof debugging.

After correcting an error, the user can re-execute previously veri�ed parts of the proof

script in \gullible mode" where proof steps replace obligations quickly without checking

for soundness. Any proof states derived from proof rules executed in gullible mode are

marked as untrustworthy. Thus, when the entire proof is debugged, it must be executed

again with every step checked for the theorem to be certi�ed by the checker.

2.2 The Proof Rules and their Soundness

This section presents the proof rules and gives justi�cations for each one. Appendix A.4

presents the syntax and usage of the proof rules.

Chapter 2. Proof Checker Speci�cation 13

2.2.1 Linear Programming Rule

Linear programming is built into the checker to provide a decision procedure for systems

of linear inequalities. In a real-time system, timing constraints can be checked by this

proof rule. Linear programming is also used to verify ranges in case analysis. Many

arithmetic relations (or equalities) can be veri�ed by linear programming as well.

Linear programming [23] is a continuous optimization technique, typically with an

uncountable number of feasible points. A feasible point in a system of linear inequalities

is a point which satis�es each of the inequalities. A linear program is infeasible if no such

point exists. In this implementation, the coe�cients for linear inequalities are expressed

as rational numbers. The existence of a feasible point implies the existence of a rational

feasible point in the same system; therefore operations over the set of rational numbers

are su�cient to determine a system's feasibility.

Systems of linear inequalities are represented as sets of predicates. For example, x � z

can be deduced from x � y and y � z. In this example, x � y, y � z, and x � z are

viewed as three boolean predicates. The LP rule is used to reason about systems of

the form a ^ b ^ c) d, where a, b, c, and d are linear inequalities. (The number of

inequalities in a system is not �xed.) We note that if d is a linear inequality, so is :d.

The conjunction of inequalities a ^ b ^ c ^ :d is a linear program which is feasible if

and only if there is some assignment to the variables appearing in a, b, c, and :d, such

that all four inequalities are satis�able. Likewise, if the linear program is infeasible, then

:(a^b^c^:d) is a tautology (i.e. it holds for all assignments of the variables appearing

in the inequalities), and (a^ b^ c)) d can be discharged. Discharging an obligation can

be expressed in the notation we introduced earlier as follows. The proof state:

s = (8v:(Hyp(v)^ Post(v))) Obl(v))

where Obl(v) = o1(v) ^ o2(v) ^ � � � ^ oi(v) ^ � � � ^ on(v), and

Chapter 2. Proof Checker Speci�cation 14

oi(v) = the clause to be discharged.

can be rewritten as

s
0 = (8v:(Hyp(v)^ Post(v))) Obl

0(v))

where Obl0(v) = o1(v) ^ o2(v) ^ � � � ^ oi�1(v) ^ oi+1(v) ^ � � � ^ on(v)

after oi(v) is veri�ed to be a tautology. With the same reasoning given in Section 2.1.2,

it can be seen that s
0) s since Obl

0(v)) Obl(v) (in this case, Obl0(v) is logically

equivalent to Obl(v)).

2.2.2 Predicate Calculus Rule

Boolean manipulation is essential in constructing proofs. It allows reasoning in a subset

of �rst order logic. The PC rule takes a list of obligations ([a, b, c]) and replaces it with

another list of obligations ([d, e]), upon veri�cation that (d ^ e)) (a^ b^ c) is a simple

tautology. The list of replacement predicates can be empty in which case the original

obligations are discharged if their conjunction is a simple tautology.

The soundness of the PC rule can be justi�ed in the following fashion. Note that the

obligation list represents a conjunction of obligations. Since conjunction is commutative

and associative, the order of the obligations in the list is not signi�cant. Therefore,

without loss of generality, oi(v) � � � oi+m(v) are selected to be the old obligations to be

replaced.

Consider a state s of the form

s = 8v:(Hyp(v)^ Post(v)) Obl(v))

where Obl(v) = o1(v) ^ o2(v) ^ � � � ^ oi(v) ^ � � � oi+m(v) ^ � � � ^ on(v).

Soundness requires that the successive state implies the current state. The proposed

successive state, s0, is of the form

Chapter 2. Proof Checker Speci�cation 15

s
0 = 8v:(Hyp(v)^ Post(v)) Obl

0(v))

where Obl0(v) = o1(v) ^ o2(v) ^ � � � ^ o

0

i
(v) ^ � � � ^ o

0

i+m
^ � � � ^ on(v)

such that (o
0

i
(v) ^ � � � ^ o

0

i+m
(v))) (oi(v) ^ � � � ^ oi+m(v)).

The new list of obligations is inserted in place of the old obligation with the lowest index.

With some boolean manipulation, we can see that s0) s given that the two predicates

are quanti�ed over the same set of variables. Since no new variables are introduced by

the PC rule, the implication holds, and therefore the rule is sound.

2.2.3 Instantiation Rule

The Instantiate rule provides a way to extract speci�c cases from universally quanti-

�ed expressions. It provides arguments of the following form:

All As are B

C is an A

C is B.

It discharges obligations of the form 8i:f(i)) f(k), where k is a constant. This

proof rule is often used after retrieving a hypothesis (or hypotheses). It can also be used

to replace an existentially quanti�ed obligation with a suitable witness. The justi�cation

for the rule is equivalent to that presented in section 2.2.1 for linear programming as

both discharge tautologies.

2.2.4 Skolemization Rule

The Skolem rule is symmetric to the Instantiate rule. It provides arguments of the

following form:

Chapter 2. Proof Checker Speci�cation 16

A is B

A can be anything

everything is B.

This rule is often used to remove quanti�ers from an expression. Without quanti�ers,

the expression is built up from linear arithmetic predicates and atomic formulas using

simple logical connectives, where reasoning can be done with the other nine proof rules.

Universal quanti�ers, in this checker, are always over all integers. Existentially

quanti�ed expressions 9i:P (i) can be de�ned as :8i::P (i) and manipulated by the

Instantiate rule and the Skolem rule as universally quanti�ed expressions. In this ap-

proach, the Skolem rule provides an existential witness given an existentially quanti�ed

predicate, and the Instantiate rule discharges an existentially quanti�ed obligation

given an instance.

The concept behind skolemizing a universally quanti�ed expression is to choose a

constant which can be of any arbitrary value to substitute the quanti�er [17]. This

constant is called a skolem constant. To avoid clashes between the representation of a

skolem constant and previously de�ned variables, the skolem constant cannot be a free

variable in the target obligation, or any of the hypotheses on the hypothesis list.

It is su�cient to check the target obligation and the hypothesis list for free variables.

In our notation, skolemizing an expression is viewed as moving the universal quanti�er

to the outermost scope.

First, consider a state with an empty postponed list and an obligation. We claim that

8z:(Hyp(z)) 8x:p(x; z))

� 8 x:8z:(Hyp(z)) p(x; z))

provided that x and z are disjoint. This shows that it is necessary to examine the

hypothesis list for the free variable x while skolemizing 8x:p(x; z).

Chapter 2. Proof Checker Speci�cation 17

To justify the need to examine the target obligation for colliding free variables, con-

sider the state 8z:(Hyp(z)) (8x:8y:p(x; y; z))).

8z(Hyp(z)) (8x:8y:p(x; y; z)))

� 8 x:8z:(Hyp(z)) (8y:p(x; y; z)))

It would be illegal to move the quanti�er y to the outer scope using the same skolem

constant, x, since

8 x:8 x:8z:(Hyp(z)) p(x; x; z))

� 8 x:8z:(Hyp(z)) (8x:p(x; x; z)))

6= 8z(Hyp(z)) (8x:8y:p(x; y; z)))

Now, consider a state with two obligations.

8z:(Hyp(z)) ((8x:p(x; z))^ (8y:q(y; z))))

� (8 x:8z:(Hyp(z)) p(x; z))) ^ (8 y:8z:(Hyp(z)) q(y; z)))

� (8 x:8z:(Hyp(z)) p(x; z))) ^ (8 x:8z:(Hyp(z)) q(x; z)))

� 8 x:8z:(Hyp(z)) (p(x; z) ^ q(x; z)))

This shows that using the same skolem constant for two separate obligations is a legal

operation in the proof checker.

Note that the postponed list serves as a bu�er to hold obligations that are not in

focus at the current step. This list is introduced for the convenience of users of the

proof checker, and it is not necessary to distinguish the contents of this list from those

of the obligation list when reasoning about logical soundness of the proof checker. (See

Section 2.2.7).

Consider a proof state,

Chapter 2. Proof Checker Speci�cation 18

s = 8v:(Hyp(v)^ Post(v)) Obl(v))

where Obl(v) = o1(v) ^ o2(v) ^ � � � ^ (8 z:P (z)) ^ � � � ^ on(v).

Applying the Skolem rule produces

s
0 = 8v0:(Hyp(v0) ^ Post(v0)) Obl

0(v0))

where Obl(v) = o1(v) ^ o2(v) ^ � � � ^ P (z) ^ � � � ^ on(v).

v
0 = v [z.

This transformation is sound given the reasoning above, because the hypotheses and the

set of variables appearing in these hypotheses (a subset of v) do not change.

2.2.5 Induction Rule

Mathematical induction provides another way to reason about universally quanti�ed

assertions. Given an assertion P (k) that is universally quanti�ed over the integer variable

k, we do three things to prove it by induction. Prove that the base case, P (b), is a

tautology. Then, prove that given that the expression holds for cases from b to n, (where

n > b) P (n + 1) holds too. We call this inducting up. The �nal step is to induct

downwards by proving that cases b down to n imply P (n � 1) (where n < b). This is

called strong induction. As opposed to weak induction, the induction step is implied by

all previous cases. Strong induction is equivalent to weak induction [9].

The Induction rule takes a universally quanti�ed obligation, 8i:P (i), and breaks it

into three clauses:

1. The base case, P (base).

2. Induction step going upwards,

8n:(n > base) ^ (8i 2 fbase; n� 1g:P (i))) P (n),

where i and n are not free variables in P .

Chapter 2. Proof Checker Speci�cation 19

3. Induction step going downwards,

8n:(n < base) ^ (8i 2 fn+ 1; baseg:P (i))) P (n),

where i and n are not free variables in P .

We claim that the conjunction of these three clauses is logically equivalent to the initial

obligation. Therefore, the replacement is sound.

Consider a state s.

s = 8v:((Hyp(v)^ Post(v))) Obl(v))

where Obl(v) = o1(v) ^ o2(v) ^ � � � ^ oi(v) ^ � � � ^ on

Given that o
0

1 ^ o

0

2 ^ o

0

3 , oi(v),

s
0 = 8v:((Hyp(v)^ Post(v))) Obl

0(v))

where Obl0(v) = o1(v) ^ o2(v) ^ � � � ^ o

0

1
(v) ^ o

0

2
(v) ^ o

0

3
(v) ^ � � � ^ on

is logically equivalent to s by the reasoning given in Section 2.1.2.

2.2.6 De�nition Rule

In any proof, there is a set of hypotheses which gives the context of the proof and de�nes

the variables that appear in the proof. The Definition rule takes a hypothesis, H,

from the hypothesis list and rewrites an obligation, O, as H) O.

Soundness of this rule is shown as follows. Consider states s and s
0.

s = 8v:((Hyp(v)^ Post(v))) Obl(v))

s
0 = 8v:((Hyp(v)^ Post(v))) Obl

0(v))

where Hyp(v) = h1(v) ^ � � � ^ hi(v) ^ � � � ^ hn(v),

Obl(v) = o1(v) ^ o2(v) ^ � � � ^ oj(v) ^ � � � ^ om, and

Obl
0(v) = o1(v) ^ o2(v) ^ � � � ^ (hi(v)) oj(v)) ^ � � � ^ om.

Chapter 2. Proof Checker Speci�cation 20

It can be shown by simple predicate calculus that s and s
0 are logically equivalent, since

all variables within the two expressions are within the same scope.

2.2.7 Postponement Rules

The set of Postponement rules increases the exibility of proof checking. It allows the

user to discharge an obligation without verifying it with the built-in proof rules when the

required reasoning is outside the scope of the proof checker. When the prove is done, a

list of such obligations is produced, and it is up to the user to verify them using other

methods. The Postponement rules also provide a lemma mechanism. When a lemma

appears more than once in a proof, the lemma can be moved to the postponed list. The

lemma can be retrieved from this list each time it is needed. After the last use, the

postponed lemma can be moved back onto the obligation list to be discharged with one

sequence of proof steps. These rules can be used when sketching out basic structures of

proofs. Tedious proof steps can be left unjusti�ed until the exact components of a proof

are formulated. Note that the content of the postponed list requires veri�cation given

the hypotheses.

Each postponed object in the list is tagged with a name. An obligation is tagged with

a name before it is put onto the list, and these `lemmas' are referenced by names instead

of indices. The rules for manipulating the postponed list are described below:

Rule #1 discharges an obligation by moving it to the postponed list. The user provides

a name with which to tag this obligation; The rule moves the obligation from

the obligation list to the postponed list if the name is not already used or if the

obligation implies the postponed object with the same name. If there is an object

on the postponed list with the same name, and this object implies the obligation,

then the obligation is removed from the obligation list and the postponed list is

Chapter 2. Proof Checker Speci�cation 21

unchanged. If the name refers to a postponed object and neither of the relations

hold, the rule fails.

The soundness of this rule is presented for each case separately. For the case where

the proposed name does not exist in the postponed list, consider the following state:

s = 8v:(((Hyp(v)^ Post(v))) Obl(v)) ^ (Hyp(v)) Post(v)))

where Obl(v) = (o1(v) ^ o2(v) ^ � � � oi(v) � � � ^ on(v)), and

Post(v) = (p1(v) ^ p2(v) ^ � � � ^ pj(v) ^ � � � ^ pm(v)).

Applying this rule produces the state:

s
0 = 8v:(((Hyp(v)^ Post

0(v))) Obl
0(v)) ^ (Hyp(v)) Post

0(v)))

where Obl
0(v) = o1(v) ^ o2(v) ^ � � � ^ oi�1(v) ^ oi+1(v) ^ � � � ^ on(v), and

Post
0(v) = oi(v) ^ p1(v) ^ p2(v) ^ � � � ^ pm(v).

If pj(v) is an object on the postponed list with the proposed name and oi(v))

pj(v), then

s = 8v:(((Hyp(v)^ Post(v))) Obl(v)) ^ (Hyp(v)) Post(v)))

where Obl(v) = (o1(v) ^ o2(v) ^ � � � oi(v) � � � ^ on(v)), and

Post(v) = (p1(v) ^ p2(v) ^ � � � ^ pj(v) ^ � � � ^ pm(v)).

Applying this rule produces the state:

s
0 = 8v:(((Hyp(v)^ Post

0(v))) Obl
0(v)) ^ (Hyp(v)) Post

0(v)))

where Obl
0(v) = o1(v) ^ o2(v) ^ � � � ^ oi�1(v) ^ oi+1(v) ^ � � � ^ on(v), and

Post
0(v) = oi(v) ^ p1(v) ^ p2(v) ^ � � � ^ pj�1(v) ^ pj+1 ^ � � � ^ pm(v).

If pj(v) is an object on the postponed list with the proposed name and pj(v))

oi(v), then

s = 8v:(((Hyp(v)^ Post(v))) Obl(v)) ^ (Hyp(v)) Post(v)))

where Obl(v) = (o1(v) ^ o2(v) ^ � � � oi(v) � � � ^ on(v)), and

Post(v) = (p1(v) ^ p2(v) ^ � � � ^ pj(v) ^ � � � ^ pm(v)).

Chapter 2. Proof Checker Speci�cation 22

Applying this rule produces the state:

s
0 = 8v:(((Hyp(v)^ Post

0(v))) Obl
0(v)) ^ (Hyp(v)) Post

0(v)))

where Obl
0(v) = o1(v) ^ o2(v) ^ � � � ^ oi�1(v) ^ oi+1(v) ^ � � � ^ on(v), and

Post
0(v) = p1(v) ^ p2(v) ^ � � � ^ pj�1(v) ^ pj+1 ^ � � � ^ pm(v).

In all three cases, s and s
0 are logically equivalent and the replacement preserves

the required state implication described in section 2.1.2.

Rule #2 retrieves a pending lemma from the postponed list. It takes a postponed

object, P, from the postponed list and rewrites an obligation, O, as P)O. Consider

state s:

s = 8(((Hyp(v)^ Post(v))) Obl(v)) ^ ((Hyp(v)) Post(v))))

where Obl(v) = (o1(v) ^ o2(v) ^ � � � oi(v) � � � ^ on(v)), and

Post(v) = (p1(v) ^ p2(v) ^ � � � ^ pj(v) ^ � � � ^ pm(v)).

Applying this rule produces the state:

s
0 = 8(((Hyp(v)^ Post(v))) Obl

0(v)) ^ ((Hyp(v)) Post(v))))

where Obl
0(v) = o1(v) ^ � � � ^ oi�1(v) ^ (pj(v)) oi(v)) ^ oi+1(v) ^ � � � ^ on(v).

s and s
0 are equivalent by simple boolean manipulation.

Rule #3 moves a postponed object from the postponed list back onto the obligation

list. Consider a state s:

s = 8v:(((Hyp(v)^ Post(v))) Obj(v)) ^ (Hyp(v)) Post(v)))

where Obl(v) = (o1(v) ^ o2(v) � � � ^ on(v)), and

Post(v) = (p1(v) ^ p2(v) ^ � � � ^ pj(v) ^ � � � ^ pm(v)).

Applying this rule produces the state:

s
0 = 8v:(((Hyp(v)^ Post

0(v))) Obl
0(v)) ^ (Hyp(v)) Post

0(v)))

where Obl
0(v) = pj(v) ^ o1(v) ^ o2(v) ^ � � � ^ on(v), and

Post
0(v) = p1(v) ^ p2(v) ^ � � � pj�1(v) ^ pj+1 ^ pm(v).

Chapter 2. Proof Checker Speci�cation 23

This is the inverse of rule#1.

It is essential that the context of an obligation does not change after being moved

back and forth from the postponed list and the obligation list. The simple checker

maintains a constant hypothesis list and does not introduce the concept of scoping (i.e.

all expressions are in the same scope); thus, the proof checker can postpone and retrieve

obligations without changing the meaning of these obligations.

2.2.8 Equality Rule

The EQ rule allows two expressions to be used interchangeably in any expression, given

that they represent the same value. This rule allows the user to interchange a's and b's in

expressions like (a � b)) f(a; b). The replacement obligation is identical to the original

obligation except that some a's are replaced by b's and vice versa. The replacement and

the original obligation are equivalent by substitution.

Applying the EQ rule to state s, where

s = 8v:((Hyp(v)^ Post(v))) Obl(v))

where Obl(v) = o1(v) ^ � � � ^ oi(v) ^ � � � ^ on

yields state s0, where

s
0 = 8v:((Hyp(v)^ Post(v))) Obl

0(v))

where Obl0(v) = o1(v) ^ � � � ^ o

0

i
(v) ^ � � � ^ on

s
0 is equivalent to s by the claim that oi(v) and o

0

i
(v) are logically equivalent.

2.2.9 If Rule

The IF rule is a replacement rule. It rewrites expressions of the form (if True then a

else b) to a, and expressions of the form (if False then a else b) to b. It simpli�es

Chapter 2. Proof Checker Speci�cation 24

boolean expressions once the conditions of the (if : : : then : : : else : : :) constructs are

evaluated to be a boolean constant (True or False). This rule applies simple replacement

to logically equivalent obligations, therefore can be justi�ed by the reasoning given in

the previous section for the EQ rule.

Note that expressions of the form (if P then x else x) can be rewritten into x.

The IF rule does not directly support simpli�cation of this form. However, obligations

of this form can be simpli�ed by �rst performing case analysis using the PC rule to

rewrite the expression into two clauses: (P � True)) (if P then x else x) and (P

� False)) (if P then x else x). Then, the EQ rule can be used to simplify the

two clauses into (if True then x else x) and (if False then x else x) respectively.

These two clauses can then be rewritten into x by the IF rule. Finally, the two identical

obligations can be combined into one using the PC rule.

2.2.10 Discrete Rule

The Discrete rule is based on the discreteness of integers. It discharges obligations of

the form (x > y) � (x � (y + 1)) or (x < y) � (x � (y � 1)) given that both x and y

are integers. The justi�cation of this rule is the same as the other discharge rules as was

presented in section 2.2.1.

2.3 Conclusion

The chapter has presented the ten proof rules which form the core of the proof checker.

As shown in chapter 5, this small set of proof rules is su�cient to verify signi�cant

real-time systems.

Chapter 3

Implementation of the Proof Checker

The previous chapter gave a speci�cation for a proof checker. This chapter presents the

functions and procedures that implement this speci�cation and is structured to closely

parallel the speci�cation. Sections 3.1 and 3.2 in this chapter correspond to Sections 2.1.1

and 2.1.2 in the previous chapter; they describe the structures of the proof checker and

proofs constructed by this checker. The proof checker is implemented in FL, the func-

tional interface language of the Voss [25] hardware veri�cation system. FL provides an

e�cient implementation of Ordered Binary Decision Diagrams [5] which makes boolean

manipulation simple. To support reasoning about systems of linear relations, the au-

thor added an implementation of the simplex method for linear programming to FL.

Section 3.3 gives a detailed explanation of the implementation of the simplex method,

and how it is incorporated into Voss. Section 3.4 presents the implementation of the ten

proof rules in the same order as that of the speci�cations in Section 2.1.2 of the previous

chapter.

3.1 Abstract Data Type for Proof State

Proof states are encapsulated in an abstract data type, state. States are quadruples

built with the constructor STE (See Section 3.2). The constructor STE is only de�ned

within state, this ensures that states are only constructed by the proof rules presented in

this chapter. The four �elds in a state are: the obligation list (type boolean list), the

postponed list (type postpone list), the hypothesis list (type boolean list), and the

25

Chapter 3. Implementation of the Proof Checker 26

claim (type boolean). Type postponed is de�ned as the constructor, post, followed by

the boolean expression to postpone, and an identi�er to reference to it (i.e. post boolean

string). The type boolean is distinct from the built-in FL-type bool. Constructors are

included for creating variables and arrays, for the standard boolean operations (And, Or,

Not, etc.) and for comparisons of integers and reals. The structure of the type boolean

is described in detail in Appendix A.

Proof states cannot be constructed or modi�ed outside the abstract data type; how-

ever, there are four functions to read the �elds of the data type:

� (getclaim state) returns the claim of the proof from the given proof state.

� (gethypothesislst state) returns the list of hypotheses from the given proof state.

� (getpostponelst state) returns the list of postponed objects from the given proof

state.

� (getobligationlst state) returns the list of obligations from the given proof state.

3.2 The Proof Rules and some Implementation Techniques

Every proof rule provided by the proof checker takes a list of old obligations and a list of

new obligations together with some auxiliary information for the particular rule. Then it

either makes the appropriate replacement or fails with an error message if the proposed

replacement is not valid. In most cases, the old obligation list is a singleton. As described

in the previous chapter, discharge rules have empty new obligation lists. In the case of

a discharge rule, a singleton list is replaced by an empty list. Replacement rules, on the

other hand, have one or more elements in the new obligation list. In this case, one or

more old obligations are replaced by the new obligations.

Chapter 3. Implementation of the Proof Checker 27

Elements of the hypothesis and obligation lists are accessed by indexing. Given the

index (an integer) of the element in the list, the desired element is retrieved. All rules,

except PC rule, take a singleton old obligation list. The function apply is used in

the implementation of all these rules. (apply f n lst) looks up the nth element in the

obligation list, lst, applies the function f to this obligation to verify if the suggested

resulting list proposed by the user is a valid replacement, then replaces the nth obligation

by this list. With this structure, there is one core function per proof rule and this function

is called by apply to validate the replacement.

Several features of FL are used extensively in the checker. FL is a functional language;

accordingly, many auxiliary functions are recursive. Pattern matching is often used to

enumerate cases according to the type constructors. The next three sections describe

some of the functions implemented using these techniques, what it means for a rule to

fail and explain how a concrete type is de�ned on top of the core FL types.

3.2.1 De�ning the Concrete Types

Concrete types are types de�ned on top of the three FL types (int, string, and bool).

These types are de�ned by a set of constructors, which can be constants or functions.

For example, an integer is declared as

lettype integer = const int;

I string;

i array string integer;

++ integer integer;

-- integer integer;

** integer integer;

i if boolean integer integer;

const, I, i array, ++, ��, ��, and i if are constructors of the type integer. These

constructors take arguments of various types to produce objects of type integer. In

the proof checker, integers are represented symbolically, and these constructors build the

Chapter 3. Implementation of the Proof Checker 28

data structures that represent expressions. Other functions in the proof checker are used

to perform operations on these expressions. See Figure A.12 for descriptions of other

concrete types.

3.2.2 Pattern Matching

As concrete types are made up of various constructors followed by some de�ned types,

pattern matching is frequently used when writing expressions. As an example, consider

the function eval which converts an expression of type boolean into an FL bool. An

FL bool is represented by a BDD; this representation supports e�cient manipulation of

boolean expressions, for example, to implement the PC rule. The following shows a few

lines from this function:

letrec eval T rue = T =n
eval False = F =n
eval (bool s) = (variable s) =n
eval (Not b) = (NOT (eval b)) =n
eval (And b1 b2) = ((eval b1) AND (eval b2)) =n
eval (b array s n) = (eval (bool (prBool (b array s n)))) =n
eval (0> r1 r2) = (eval (bool (prBool (r1 0

> r2)))) =n
eval (forall n b) = (eval (bool (prBool (forall n b)))) =n

:::

The function traverses an expression tree, converts variables, inequalities, and universally

quanti�ed expressed into BDD nodes, and creates a BDD corresponding to the expression.

In this example, pattern matching is also used to de�ne a recursive function; terminal

and non terminal calls are distinguished by the type constructor associated with the

argument.

Many other functions in the checker are implemented with the same technique. For

example, the functions replaceBool, replaceInt, and replaceReal replace all occur-

rences of a boolean, integer, or real valued subexpression respectively by another expres-

sion of the same type. Implementations of these functions traverse an expression tree by

Chapter 3. Implementation of the Proof Checker 29

pattern matching, compare each leaf with the subexpression to be replaced, and apply

the replacement to the matching subexpressions.

3.2.3 Failures

A proof rule fails when it cannot perform the requested discharge or replacement. Instead

of returning the result, the core function for the proof rule generates an FL failure,

(error msg), where msg is the error message for the failure. An FL failure can be

trapped by the function catch: (e1 catch e2) evaluates to e1 unless e1 causes a failure,

in which case the expression is evaluated to e2. For example, the expression

let s = (apply rule state) /n

s' = (apply rule state') in

(apply rule s) catch (apply rule s')

evaluates to s if apply rule successfully performed the request with the input state, and

evaluates to s' if it failed.

3.3 Linear Programming

Simplex is used in the proof checker as a decision procedure for linear programs, i.e.

systems of linear relations. This implementation uses simplex to determine the feasibility

of a given set of relations rather than generating an optimal solution to some cost function.

If a problem is infeasible, this procedure simply returns \infeasible", whereas, if the

problem is feasible, a feasible solution can be exhibited as a counter example to the

LP rule.

Chapter 3. Implementation of the Proof Checker 30

A. 2x - y = 4

B. 2x + y = 10

C. x + y = 9

y

x

Figure 3.2: A system of linear relations.

3.3.1 Simplex Method

The simplex method, described by Papadimitriou and Steiglitz [23], was implemented to

determine the feasibility of a given linear program. The simplex method takes a tableau

in standard form and returns an example feasible solution for each feasible set and simply

returns "infeasible" for infeasible sets. As an example, consider the following set of linear

equations (See �gure 3.2):

A: 2x � y � 4

B: 2x + y � 10

C: x+ y < 9

Standard Form

A system of the following form

min c
0
x

Ax = b

x � 0

Chapter 3. Implementation of the Proof Checker 31

is said to be in standard form. Programs with arbitrary inequalities (<, �, 6=, =, �, >)

can be transformed into standard form. First, consider the general case with � and �

relations and unconstrained variables.

A � relation can be rewritten into standard form by introducing a surplus variable.

For example,
nX

j=1

aijxj � bi

can be rewritten as
nX

j=1

aijxj � si = bi

si � 0

where si is called a surplus variable.

A � relation can be rewritten into standard form in a similar way by introducing a

slack variable. For example,
nX

j=1

aijxj � bi

can be rewritten as
nX

j=1

aijxj + si = bi

si � 0

where si is called a slack variable.

An unconstrained variable xj can be split into x+
j
and x

�

j
where xj = x

+

j
� x

�

j
. Rep-

resenting xj in terms of x+
j
and x

�

j
replaces one unconstrained variable by two constraint

variables.

unconstrained(xj)) xj = x
+

j
� x

�

j

x
+

j
� 0

x
�

j
� 0

Chapter 3. Implementation of the Proof Checker 32

After translating a tableau from a general form into standard form as above, the

simplex method can solve the system with �, �, and =.

For example, the system

A: 2x � y � 4

B: 2x + y � 10

C: x+ y � 9

(x � 0)

can be transform into a standard tableau by introducing two split variables, y+ and y� to

replace the unconstrained y, two slack variables, and one surplus variable. The resulting

tableau has nine constraints and six variables.

2x �y+ +y� +s3 = 4

2x +y+ �y� �s2 = 10

x +y+ �y� +s1 = 9

x � 0

y
+ � 0

y
� � 0

s1 � 0

s2 � 0

s3 � 0

Arti�cial Variables and Basic Feasible Solutions

Consider a linear program with n variables and m constraints. Typically, n > m, and if

the linear program is feasible, the feasible region is an n dimensional convex polytope. It

can be shown that at each vertex of the polytope, at least n�m variables have value zero.

In the simplex algorithm, vertices are identi�ed by the choice of the other m variables.

The values of these variables can be determined by solving the system of linear equations.

This is called a basic feasible solution (or a BFS). If more than n�m variables are zero at

some vertex, that vertex is said to be degenerate, and it has more than one representation

in the simplex algorithm.

Chapter 3. Implementation of the Proof Checker 33

For an optimization problem, a linear cost function assigns a cost to each point in

the feasible region. It is straightforward to show that the minimum cost is achieved at

some vertex of the polytope. The simplex method starts from one vertex of the polytope

and moves from one vertex to another until it �nds an optimal solution. These moves

are called pivots. To start the pivoting process, a BFS must be identi�ed.

To �nd an initial BFS, arti�cial variables are introduced. One new variable is intro-

duced for each equality of the original standard form problem. Each of the equalities can

be satis�ed by setting the corresponding arti�cial variable to the appropriate value and

setting all of the original variables to zero. This constructs a BFS for the linear program

with arti�cial variables. Using the sum of the arti�cial variables as a cost function, the

simplex algorithm searches for a vertex where all of the arti�cial variables are zero. If

such a vertex is found, it corresponds to a solution to the original program. If no such

vertex exists, the original problem is infeasible.

In the implementation used in the proof checker, the steepest descent policy is used

to select the pivot. The pivot column is selected by

j = minfj : cj < 0g

where cj corresponds to the marginal cost of bringing variable j into the tableau. The

pivot column is selected by

B(i) = minfB(i) : xij > 0 and
xi0

xij

�
xk0

xkj

for every k with xkj > 0g

Pivoting corresponds to moving along an edge of the polytope. The end of the edge is

identi�ed by one of the constraints (on variables being � 0) becoming tight. Moving

from vertex v to vertex u, a variable that was in the basis at v is zero at u. This variable

is identi�ed by the choice of i.

In the case of degeneracy, the cost, z, may not decrease, even though a column j with

(cj � zj) < 0 is selected. Furthermore, it is possible for the algorithm to return to a

Chapter 3. Implementation of the Proof Checker 34

previous BFS and loop inde�nitely. To avoid cycling, the Bland's anticycling algorithm

is used after every zero-improvement pivot. The column to enter the basis is selected by

j = minfj : cj � zj < 0g

and the row by the same formula as that of the steepest descent algorithm,

B(i) = minfB(i) : xij > 0 and
xi0

xij

�
xk0

xkj

for every k with xkj > 0g

Since the number of vertices is �nite, and the cost is monotonically decreasing without

cycling, this algorithm will terminate.

There are three possible cases after this cost function is minimized:

� case 1:

the cost, z, is zero, and all arti�cial variables, xa
i
, are driven out of the basis

) a BFS to the original problem is found.

� case 2:

at optimality the cost, z > 0

) the original problem is infeasible.

� case 3:

z is reduced to zero, but some arti�cial variables remain in the basis at zero level.

In Case 3, one additional pivot is required for each arti�cial variable remaining in

the basis to produce a basis consisting only of variables from the original problem. After

driving out all zero-level arti�cial variables, there is a basic feasible solution for the

original problem. This solution will be referred to as BFS B hereafter. The only way this

can fail is that a row is zero in all the columns corresponding to non-arti�cial variables.

This means the original problem is not of full rank (i.e. the row is implied by other rows

in the system). In this case, this row can be removed from the system.

Chapter 3. Implementation of the Proof Checker 35

3.3.2 Strict Inequalities (> and <)

The simplex method, described in Section 3.3.1, solves linear programs with relations

�, �, and =. Although strict and non-strict inequalities are indistinguishable in typical

numerical programming, considering the application of this implementation, theorems

may be stated with tight bounds, in which case the di�erence is signi�cant. In the

proof checker, simplex is implemented using exact rational arithmetic which allows strict

inequalities to be distinguished. Given inequalities with > or < relations, the program

must be converted to standard form before applying the simplex algorithm.

To handle > and <, we introduce a variable � and write

X
ai > b

as

P
ai � � = b

� > 0

and X
ai < b

as

P
ai + � = b

� > 0:

The simplex algorithm is used to �nd a feasible point that minimizes ��. If � > 0 at

this point, then the original program with a strict inequality was feasible; otherwise, the

original program was infeasible.

If there is more than one strict inequality, the same � is introduced to all inequalities

to transform these inequalities to equalities. Then an attempt is made to minimize ��

and conclude feasibility as soon as � becomes greater than zero. The feasible solution

resulting from this stage is referred to as B' in later references.

Chapter 3. Implementation of the Proof Checker 36

A geometric interpretation of � is the distance moving towards the interior of the

polytope from the boundary. If there is a feasible solution with � > 0, that means there

is a point satisfying all constraints but the point does not lie on the >- or <-constraints.

Consider the linear system

A: 2x � y � 4

B: 2x + y � 10

C: x+ y < 9

(x � 0)

With the introduction of slack and surplus variables together with �, the resulting system

is:

2x �y+ +y� +s3 = 4

2x +y+ �y� �s2 = 10

x +y+ �y� +s1 +� = 9

x � 0

y
+ � 0

y
� � 0

s1 � 0

s2 � 0

s3 � 0

� � 0

3.3.3 Not-equal-to Relations (6=)

Let P be the feasible polytope for the program when not-equals-to relations are ignored.

A not-equals-to relation excludes points that lie on the hyperplane de�ned by the cor-

responding equals-to relation. If this hyperplane does not intersect P , then all points

in P satisfy the not-equals-to relation. If this hyperplane contains P , then the original

program is infeasible. Finally, if the hyperplane intersects P but does not contain P ,

then the intersection of the hyperplane with P is of dimension one less than the dimen-

sion of P . In this case, almost all points in P satisfy the not-equals-to relation, and any

remaining not-equals-to relations can be considered independently (because the number

of not-equals-to relations is �nite and therefore countable).

Chapter 3. Implementation of the Proof Checker 37

In the proof checker, the feasible polytope is never explicitly constructed. Instead, a

BFS is found for the program when not-equals-to relations are ignored. Let B be such a

BFS. Now, the not-equals-to relations can be considered one at a time. If B satis�es the

relation, then the infeasible hyperplane of the relation does not contain B and therefore

it does not contain all of P . On the other hand, if B is in the infeasible hyperplane, then

the implementation pivots to �nd a BFS that is above or below this hyperplane. If no

such BFS is found, then the original program is infeasible. If a suitable BFS is found for

every not-equals-to relation, then the original program is feasible.

By examining one not-equals-to relation at a time, an exponential problem is avoided.

An exponential number of linear programming problems would be generated, if both the

below and above cases for each not-equals-to relation is considered at the same time.

The implementation described above solves at most one linear programming problem per

not-equal-to relation.

3.3.4 Special Cases

There are a few special cases which are not resolved by the methods described above.

� All zeros row:

{ If a linear program has a constraint of the form 0 6= 0x, 0 > 0x, or 0 < 0x,

then the program is infeasible.

{ A constraint of the form 0 � 0x, 0 = 0x, or 0 � 0x is trivially satis�ed

everywhere and can be deleted from the linear program.

� A linear program with only not-equals-to relations is feasible as long as none of

these are of the form 0 6= 0x.

Figure 3.3 shows the pseudocode for the implementation of linear programming.

Chapter 3. Implementation of the Proof Checker 38

standardize tableau (check for special cases)

rewrite > and < constraints, introduce �

move 6= constraints to the unresolved list

introduce arti�cial basis xa
i

call simplex with cost z =
P
x
a

i
(BFS: B)

(without pivoting on � column)

if zopt > 0 then return infeasible

if an arti�cial variable is in the basis and cannot be driven out

then omit corresponding row

for each element on the unresolved list f
if B satis�es this constraint

then remove the constraint from the unresolved list

update � column for > and < constraints

g call simplex with cost �� (BFS: B')
if cannot �nd feasible solution B' then return infeasible

for each unresolved element on the unresolved listf
/* pivot to �nd point satisfying the relation */

add element to system as <

if feasible then continue

add element to system as >

if feasible then continue

return infeasible

g
return BFS.

Figure 3.3: Pseudocode for Linear Programming.

Chapter 3. Implementation of the Proof Checker 39

3.4 Implementation of Proof Rules

This section describes the implementation of the ten proof rules in a similar format as in

Section 2.1.2 from the previous chapter. This section emphasizes implementation issues.

For detailed usage of the proof rules, refer to the User Manual in Appendix A.4.

Each rule is summarized by a table. The �eld Syntax describes how to apply a rule

to a proof state. It lists the arguments in the order in which the function is called. Type

indicates whether the rule removes an obligation from the obligation list (discharge rule)

or replaces the obligation with an expression that implies the old obligation (replacement

rule). The Expected Structure is the general form of the obligation to be discharged or

replaced. The Arguments section provides an explanation for each argument required

by the function. The Functionality section describes the typical use of the function.

While reading this section, note the distinction between the conceptual proof rules,

which are referred to as x rule, and the implementation of these theories which are

denoted by the names of the core functions which implement them (usually of the form

apply x).

Chapter 3. Implementation of the Proof Checker 40

Syntax: (apply lp n state)

Type: discharge

Expected Structure: (a1 And a2 And � � �And an And (Not c)) Equal False

Arguments: n is the index of the target obligation.

state is the source state.

Functionality: decision procedure for systems of linear inequalities.

Table 3.1: Linear Programming Rule

3.4.1 Linear Programming Rule

The function apply lp is built on top of the FL function, LP, whose implementation was

described in the previous section. LP takes as its argument a string representing a linear

program as a tableau and returns an FL bool, T to indicate a feasible solution and F for

an infeasible solution. Such tableau should be of the following form:

f m;n;

r1 b1; x11; x12; � � � ; x1m;
r2 b2; x21; x22; � � � ; x2m;
...

rn bn; xn1; xn2; � � � ; xnm;
g

where m is the number of variables; n is the number of (in)equalities; ri is the relation

of the ith inequalities; bi is the constant value on the ith row; and xij is the coe�cient of

the jth variable in the ith row.

The function prnTableau takes a clause of the form

((a1 And a2 And � � �And an And (Not c)) Equal False)

and transforms its negation to a string representing the corresponding tableau. This

tableau has linear inequalities a1, a2, : : : , an and :c (i.e. c with relation inverted). The

Chapter 3. Implementation of the Proof Checker 41

Syntax: (apply PredicateCalc index list predicate list state)

Type: replacement/discharge

Expected Structure: none

Arguments: index list is the list of indices to the old obligation list.

predicate list is the list of replacements.

state is the source state.

Functionality: decision procedure for boolean manipulations.

Table 3.2: Predicate Calculus Rule

output from prnTableau is the input to LP. If LP returns F, indicating infeasibility of

the system, the obligation is a tautology, and apply lp discharges it. If LP returns T,

indicating feasibility of the system, the rule fails.

3.4.2 Predicate Calculus Rule

The PC rule is the only rule whose old obligation list varies in size. It takes an old

obligation list of arbitrary size and replaces it with a new obligation list of arbitrary size.

The new obligation list can be empty in which case PC rule acts as a discharge rule.

FL represents boolean expressions (of type bool) using ordered binary decision di-

agrams (OBDDs) [5] and this allows symbolic manipulation of expressions. The func-

tion apply PredicateCalc uses this feature to do tautology checking. As shown in

section 3.2.2, the function eval uses pattern matching to translate expressions of type

boolean into FL bools. It treats inequalities and forall expressions as single BDD

nodes. After the list of old obligations and the list of new obligations are each rewritten

as conjunctions of boolean values, the function eval is used to determine whether the

new list implies the old list. If this holds, then the old list is removed from the obliga-

tion list and the new list is inserted in place of the old obligation with the lowest index.

Chapter 3. Implementation of the Proof Checker 42

Syntax: (apply skolem n skolemized expr subexpr i skolem const state)

Type: replacement

Expected Structure: any boolean expression with a universally quanti�ed

subexpression.

Arguments: n is the index of the target obligation.

skolemized expr is the desired replacement.

subexpr is the universally quanti�ed subexpression to be

skolemized.

i is the quanti�er to be replaced with a skolem constant.

skolem const is the proposed skolem constant.

state is the source state.

Functionality: skolemize universally quanti�ed expressions.

Table 3.3: Skolemization Rule

Otherwise, the rule fails with an error message.

3.4.3 Skolemization Rule

The Skolem rule retrieves the indexed obligation from the obligation list and skolemizes

the speci�ed subexpression of the obligation with the proposed skolem constant. The

subexpression can be the entire obligation if the obligation is universally quanti�ed.

The function apply skolem examines the old obligation and the hypotheses in the

hypothesis list to check if the proposed skolem constant is a free variable in any of

these expressions. If the skolem constant already exists as a free variable, the rule fails.

Otherwise, it is a valid skolem constant, and the function replaceInt is used to replace

all occurrences of the identi�er in the given subexpression by this constant. After the

subexpression is skolemized, it is substituted into the old obligation in place of the old

subexpression, and the rule checks if it matches the desired replacement given by the

Chapter 3. Implementation of the Proof Checker 43

Syntax: (instantiate n k state)

Type: discharge

Expected Structure: (8i:P (i))) P
0(j)

Arguments: n is the index of the target obligation.

k is the value with which the quanti�er is to be instantiated.

state is the source state.

Functionality: instantiate universally quanti�ed expressions.

Table 3.4: Instantiation Rule

user. If the subexpression to be skolemized occurs more than once in the obligation, the

implementation tries each instance individually to determine if the replacement produces

the proposed result. If no replacement matches the result, the rule fails. Skolemization

can only be applied to one universally quanti�ed expression at each application, because a

unique skolem constant is needed for each skolemization. If two identical subexpressions

in the same obligation are to be skolemized, the rule must be applied twice.

3.4.4 Instantiation Rule

The Instantiate rule is a discharge rule. It retrieves the indexed obligation from the

obligation list and pattern matches its structure. The obligation is expected to be of the

following structure:

(8i:P (i))) P
0(j);

where j is the instance.

If it does not match the required form, the rule fails with an error message indicating

the expected structure of the obligation.

Once the structure is matched, the function instantiate uses replaceInt to replace

Chapter 3. Implementation of the Proof Checker 44

Syntax: (induct n k base state)

Type: replacement

Expected Structure: 8i:P (i)

Arguments: n is the index of the target obligation.

k is the proposed quanti�er for the resulting universally

quanti�ed expression.

base is the proposed base case.

state is the source state.

Functionality: provide reasonings with mathematical induction.

Table 3.5: Induction Rule

all occurrences of i, the identi�er, by j, the instance, in P (i). If this result is identical to

P
0(j), then P 0(j) is a proper instantiation of 8i:P (i) and the obligation can be discharged

as a tautology. Otherwise, the rule fails.

3.4.5 Induction Rule

The Induction rule retrieves the indexed obligation from the obligation list and replaces

it with three new obligations.

As described in Section 2.2.5, this rule writes an obligation of the form 8i:P (i) into

P (base),

8k:(k > base) AND (8i 2 fbase; k � 1g:P (i))) P (k), and

8k:(k < base) AND (8i 2 fk + 1; baseg:P (i))) P (k).

For the base case, the function replaceInt is used to replace the identi�er by the

base case, base. For the induction steps, the implementation ensures that the identi�er k

is not a free variable within the predicate, P . Then it uses replaceInt on the predicate

and constructs the forms for the two induction steps.

Chapter 3. Implementation of the Proof Checker 45

Syntax: (by hypothesis n i state)

Type: replacement

Expected Structure: none

Arguments: n is the index of the target obligation.

i is the index of the hypothesis on the hypothesis list.

state is the source state.

Functionality: retrieve information from hypotheses of the proof.

Table 3.6: De�nition Rule

3.4.6 De�nition Rule

The implementation of Definition rule retrieves the indexed obligation, o, from the

obligation list, retrieves the indexed hypothesis, h, from the hypothesis list, and replaces

the old obligation by h ==> o.

3.4.7 Postponement Rules

There are three rules in this set: postpone, by postponement, and retrieve.

The arguments of postpone are the index of the obligation to be postponed and

a name with which to tag it. Postpone traverses the postponed list scanning for the

name. If the name does not exist in the list, the obligation is simply removed from the

obligation list and added to the beginning of the postponed list. Otherwise, the rule

checks to see if this obligation is logically related to the postponed object with the same

name. The object from the postponed list and the obligation are translated into their

BDD representations with the function, eval. If the obligation implies the object, the

obligation is removed from the obligation list and replaces the postponed object in the

postponed list. If the implication is true in the other direction, the obligation is removed

from the obligation list and the postponed list remains the same. When neither relation

Chapter 3. Implementation of the Proof Checker 46

Syntax: (postpone n name state)

Type: discharge

Expected Structure: none

Arguments: n is the index of the target obligation.

name is the name with which to tag the postponed object.

state is the source state.

Functionality: postpone veri�cation of an obligation.

Syntax: (by postponement n name state)

Type: replacement

Expected Structure: none

Arguments: n is the index of the target obligation.

name is the name of the postponed object to be retrieved.

state is the source state.

Functionality: retrieve information from postponed list.

Syntax: (retrieve name state)

Type: replacement

Expected Structure: none

Arguments: name is the name of the target postponed object.

state is the source state.

Functionality: move a postponed object back to the list of proof obligation to be

veri�ed.

Table 3.7: Postponement Rules

Chapter 3. Implementation of the Proof Checker 47

Syntax: (apply equality n result state)

Type: replacement

Expected Structure: (x1 � x2)) P ,

where x1 and x2 are of the same type, boolean, integer, or real.

Arguments: n is the index of the target obligation.

result is the desired replacement.

state is the source state.

Functionality: rewrite an obligation given equality of two variables.

Table 3.8: Equality Rule

holds, the rule fails.

By postponement is similar to the Definition rule. It retrieves the indexed obli-

gation, o, from the obligation list, retrieves the postponed object, p, with the matching

name from the postponed list, and replaces the old obligation by p ==> o. It matches

the name by traversing the postponed list as is done in postpone.

Unlike the other replacement rules, retrieve adds an obligation to the obligation

list. The rule looks up the named postponed object by traversing the postponed list,

removes it from the postponed list, and inserts it at the beginning of the obligation list.

3.4.8 Equality Rule

The EQ rule retrieves the indexed obligation of the form (x1 � x2) ==> P . It re-

places all occurrence of x1 by x2 in P using functions replaceInt, replaceReal, and

replaceBool. The same replacement is done with the proposed new obligation. If the

results from the two replacements match structurally, then the rule replaces the old

obligation with the new obligation. If the two results do not match, the rule fails.

Chapter 3. Implementation of the Proof Checker 48

Syntax: (rewrite if n result state)

Type: replacement

Expected Structure: x if True a else b

or x if False a else b,

where x if = b if, i if, or r if.

Arguments: n is the index of the target obligation.

result is the desired replacement.

state is the source state.

Functionality: simplify conditional expressions.

Table 3.9: If Rule

3.4.9 If Rule

The function rewrite if uses pattern matching to simplify (if : : : then : : : else : : :)

constructs once the conditions are evaluated to be True or False. It traverses the ex-

pression tree of the indexed obligation, matches the conditions with True or False and

replaces the obligation with the then or else clauses accordingly. If the proposed re-

placement matches this resulting expression, the replacement is made. Otherwise, the

rule fails.

3.4.10 Discrete Rule

The function apply discrete uses pattern matching to match the obligation with the

expected structures. If the retrieved obligation does not match any of these forms, the

rule fails. Otherwise, the obligation is discharged from the obligation list.

Chapter 3. Implementation of the Proof Checker 49

Syntax: (apply discrete n state)

Type: discharge

Expected Structure: (x > y) Equal (x � (y + 1))

or (x < y) Equal (x � (y � 1)),

where x and y are of type integer.

Arguments: n is the index of the target obligation.

state is the source state.

Functionality: provide discreteness property of integers.

Table 3.10: Discrete Rule

3.5 User Interface

Interface functions can be built on top of the core functions described in the previous

section to ease state manipulations. Because the proof state is protected by an abstract

data type and the implementation of these user interface functions is outside the data

type, the set of user interfaces does not a�ect the soundness of the resulting proof. This

section describes the implementation of some user interface functions. It describes two

types of Case Analysis: one over booleans and the other over integers, explains how

an instance of a hypothesis can be discharged with one proof step, and how to use

abbreviations while printing large expressions. General information for each function is

tabulated in the same format as in the previous section. This set of functions can be

extended by the users to suit the application.

3.5.1 Case Analysis over booleans

Case analysis \over booleans" uses the PC rule to split obligation, o, into

(case Equal True)) o

Chapter 3. Implementation of the Proof Checker 50

Syntax: (CaseAnalysis n case state)

Type: replacement

Expected Structure: none

Arguments: n is the index of the target obligation.

case is the case to apply case analysis on.

state is the source state.

Functionality: boolean case analysis.

Table 3.11: Case Analysis over Booleans

and

(case Equal False)) o:

Unlike the proof rules in the proof checker, users do not provide the form of the new

obligations for this interface function.

3.5.2 Case Analysis over integers

Case Analysis \over integers" uses the PC rule to break an obligation into multiple

obligations with di�erent ranges. The LP rule is used to ensure that the subranges cover

the integers. Like CaseAnalysis over booleans, this interface function does not require

the form of the new obligations from the user.

3.5.3 Discharged by Unchanged

Unchanged handles three most common ways an obligation is discharged given informa-

tion from the hypothesis list.

1. The target hypothesis and indexed obligation are structurally equivalent. The

argument value is not needed for this scenario. In this case, the user provides a

Chapter 3. Implementation of the Proof Checker 51

Syntax: (CaseAnalysis2 n expr lst state)

Type: replacement

Expected Structure: none

Arguments: n is the index of the target obligation.

expr is any integer valued expression to apply case analysis on.

lst is the list of integers (in increasing order) making up the

subranges for the cases.

state is the source state.

Functionality: integer case analysis.

Table 3.12: Case Analysis over Integers

dummy variable as value which will be ignored by the function.

2. The obligation is a strict instantiation of the hypothesis, i.e. it structurally matches

the hypothesis once all occurrences of the hypothesis's quanti�er are replaced by

the proposed instance, expr.

3. The obligation is an instantiation of the hypothesis, but the quanti�er of the hy-

pothesis does not match structurally with the instance, expr.

The �rst case is discharged by simple PC rule, together with the Definition rule

which extracts the indexed hypothesis.

The next case is discharged by calling the Definition rule to extract the related

information, calling the PC rule to rewrite the obligation into the form which can be

handled by the Instantiate rule, then calling the Instantiate rule to verify the

instantiation.

The last case is very similar to the second case, but it can handle cases where the

bounds on the quanti�er are not structurally identical to those of the hypothesis. The

Chapter 3. Implementation of the Proof Checker 52

Syntax: (Unchanged n hyp value state)

Type: discharge

Expected Structure: none

Arguments: n is the index of the target obligation.

hyp is the index of the hypothesis which is used to discharge

obligation n.

value is the proposed value with which to instantiate the

target hypothesis.

state is the source state.

Functionality: discharge instances of hypotheses as obligations.

Table 3.13: Discharged by Unchanged

LP rule is used to validate the obligation's quanti�er.

The interface function determines which case to apply by examining the structure of

the obligation.

3.5.4 Printing a State

The function print State prints all �elds in the given state. It uses functions getclaim,

gethypothesislst, getpostponelst, and getobligationlst to retrieve di�erent �elds

from the proof state. Then it maps the printing functions to each of these lists. This

function is useful in proof construction and debugging.

3.5.5 Print Abbreviation

The print abbreviation functions allow large expressions to be printed in a more com-

pact and comprehensible form. The functions abbrevBool, abbrevInt, and abbrevReal

introduce abbreviation-expression pair and append it to an abbreviation list. The abbre-

viation list is stored as an FL variable by the user. The function print abbrev takes the

Chapter 3. Implementation of the Proof Checker 53

abbreviation list and the state, retrieves �elds from the state and substitutes expressions

with abbreviations, then prints the resulting string.

3.6 Conclusion

This chapter has presented the implementation of the proof checker: the decision proce-

dure for linear programming incorporated into the Voss System and the ten proof rules

on top. The user interface functions are examples of how the system can be extended

to ease proof development. Users can build similar functions according to their needs

without compromising the soundness of the proof checker.

Chapter 4

Veri�cation of Real-time Properties

The proof checker was implemented to verify timing issues of real-time systems. As a ba-

sis for formal veri�cation, real-time systems are modeled in the Synchronized Transitions

language. Real-time properties are stated as safety properties which can be captured by

invariants of the programs. These invariants are manually translated into logic predi-

cates as inputs to the proof checker. This chapter describes this approach to real-time

veri�cation and compares it with other existing approaches. Much of the material in this

chapter is drawn from [15, 16].

Throughout this chapter, a simple, synchronous communication circuit is used as an

example to illustrate how timing properties of circuits can be represented as real-time

properties of programs, and how these real-time properties can be veri�ed. Consider a

transmitter-receiver pair operating at the same frequency as given by a global clock as

shown in Figure 4.4. The transmitter outputs a sequence of values at a �xed period set

by a global clock. Consecutive values are assumed to be distinct (for example, by using a

self-timed encoding [31]); which is modeled by an alternation between the boolean values

true and false. The receiver inputs one value for each period of the global clock. The

transmitter and receiver operate at the same rate, but the relative timing of the two is

not speci�ed. To verify that this interface operates correctly, it must be shown that no

values are dropped or duplicated. This is expressed by the two requirements below:

Requirement 1: When the transmitter is enabled to output a value, the receiver must

have already acquired the current value.

54

Chapter 4. Veri�cation of Real-time Properties 55

Transmitter Receiver

Global Frequency Reference

Figure 4.4: A synchronous communication circuit.

Requirement 2: When the receiver is enabled to input a value, the transmitter must

have already sent a new value.

These requirements are real-time properties of the synchronous communication circuit.

To verify that an implementation of the circuit satis�es these requirements, the circuit

can be modeled as a concurrent program, and the requirements can be formalized as

safety properties of the program.

This chapter shows how the essence of this protocol is captured in Synchronized

Transitions and how the proof checker is used to show that no value is dropped or

duplicated during the process.

4.1 Synchronized Transitions: a hardware description language

Synchronized Transitions (ST) is a hardware description language in which digital cir-

cuits are modeled as concurrent programs. Programs written in ST describe both the

computation and the structure of digital circuits. It can be used to specify designs from

very high level of abstraction down to gate level descriptions. ST is based on a few, simple

concepts of concurrent programming such as guarded multiassignments called transitions

and asynchronous composition of these transitions. For the purpose of the proof checker,

only a subset of the language is used and described in this section. See [21, 28] for a

more detailed description of ST.

Chapter 4. Veri�cation of Real-time Properties 56

ST programs are composed of transitions, guarded multi-assignments that can be

composed asynchronously. Syntactically, transitions are written in the form:

<< precondition ! action >>

The precondition is a boolean valued expression and the action is a multiassignment. To

avoid conicting assignments, the variables appearing on the left side of the multiassign-

ment must be distinct. For example,

<< a = b ! x, y := x+1, a >>

is a transition that when enabled can increment x and set y to the value of a. It is

enabled whenever a = b holds. Two or more transitions may be combined with the

asynchronous operator, k. Such transitions are performed atomically (i.e. one at a time)

and independently. There is no global thread of control { the order in which transitions

are executed is independent of where they appear in the program. As an example, the

following program sorts a, b, and c into descending order.

<< a < b ! a, b := b, a >>

k << b < c ! b, c := c, b >>

Each of the two transitions can be executed independently whenever its precondition

holds and the transition is enabled.

4.2 Safety Properties and Invariants

An ST program denotes a state transition relation that is the basis for verifying properties

of programs. Given a program, P , VP denotes the state variables of P , and TP denotes

the transitions of P . A state of P is an assignment of values to the elements of VP . Let

SP denote the set of all such assignments. Thus, a state variable is a function from SP

to values of the underlying type of the variable. If x is a state variable and s is a state,

Chapter 4. Veri�cation of Real-time Properties 57

let x(s) (also written as x:s) denote the value of x in state s. If E is an expression of

state variables, then E(s) (or E:s) has the obvious meaning.

A transition is composed of a precondition and a multiassignment. Let t = <<g!l :=

r>> be a transition. The precondition, g is a function from states (i.e. SP) to booleans:

g(s) is true if and only if t is enabled in state s. The multiassignment, l := r is a function

from SP to SP . Let m denote this function. s2 = m(s1) if and only if state s2 is obtained

by performing the multiassignment l := r in state s1. Let RP � SP �SP denote the state

transition relation of P . Given two states, s1 and s2, a program can make a transition

from s1 to s2 if and only if there is a transition that is enabled in state s1 such that

performing that transition leads to state s2. More formally,

(s1; s2) 2 RP � 9<<g!m>> 2 TP :g(s1) ^ (s2 = m(s1))

A system satis�es a safety property Q, if Q holds in the initial state, and in all states

reachable from the initial state. A state, s is reachable from s0 if and only if there exists

a sequence of transitions which leads to state s when started at state s0. A standard

approach to verifying such a safety property is to �nd an invariant, I, such that Q0) I

and I) Q, where Q0 is the initial state predicate (a condition which holds in the initial

state). A predicate I is an invariant of the program P (written as inv(I; P)), if I holding

in one state guarantees that I will hold in all successive states. Two properties are used

in proving a predicate to be an invariant:

Property 1 Let (T1; V) and (T2; V) be programs where T1 and T2 are sets of transitions

and V is a set of variables. A predicate I is an invariant of (T1kT2; V) if and only if I

is an invariant of both (T1; V) and (T2; V).

Given a program P and a predicate I on states of P , property 1 shows that each

transition of P can be considered separately in showing that I is an invariant of P . The

next property shows how to establish that I is an invariant of a single transition.

Chapter 4. Veri�cation of Real-time Properties 58

Property 2 Let P = (<<C ! l := r>>; V). Let I be a predicate. I is an invariant of

P if and only if:

8s1; s2 2 Sp: I(s1) ^ C(s1) ^ (l(s2) = r(s1)) ^ (8v 2 V � L : v(s2) = v(s1))

) I(s2)

where L is the set of variables appearing in l.

Given these two properties, to determine whether the predicate I is an invariant of

the program P = (t1kt2k : : :ktn; V), where ti = <<Ci ! li := ri>>, veri�cation of the

following clause is required:

8s1; s2 2 SP (

(I(s1) ^ C1(s1) ^ (l1(s2) = r1(s1)) ^ (8v 2 V � L1 : v(s2) = v(s1)))) I(s2)V
(I(s1) ^ C2(s1) ^ (l2(s2) = r2(s1)) ^ (8v 2 V � L2 : v(s2) = v(s1)))) I(s2)V
� � �V
(I(s1) ^ Cn(s1) ^ (ln(s2) = rn(s1)) ^ (8v 2 V � Ln : v(s2) = v(s1)))) I(s2)

)

To simplify the expression, state s2 is written as M(s1), where M , the multiassignment

(l := r), is a function over states of P. The conditions (l(s2) = r(s1)) and (8v 2 V � L :

v(s2) = v(s1)) are dropped, since it is implied by the de�nition of M . The simpli�ed

condition

8s1; s2 2 SP (

(I(s1) ^ C1(s1))) I(M1(s1))V
(I(s1) ^ C2(s1))) I(M2(s1))V
� � �V
(I(s1) ^ Cn(s1))) I(Mn(s1))

)

is the input to the proof checker for verifying inv(I; P). As the input to the proof

checker, I(Mi(s1)) is expanded into I(s1) with all occurrences of li replaced by ri, where

Mi = (li := ri).

Chapter 4. Veri�cation of Real-time Properties 59

When the focus is on proving that a transition preserves an invariant, we sometimes

use the notion of a pre state (the state before a transition occurs) and a post state (the

state after a transition has occurred). We write x:pre, equivalent to x(pre), to denote

the value of x before an execution of a transition and x:post, equivalent to x(post), to

denote the value of x after the transition is executed.

4.3 Expressing Real-time Properties

Returning to the synchronous circuit example, the physical circuit can be described by

two simple ST transitions.

<< T:v := NOT T:v >>

k << R:v := T:v >>

T:v represents the logical value of the signal output by the transmitter, and R:v represents

the logical value of the signal input by the receiver. There is no precondition for either

transition; the multiassignments can be performed at any time.

The �rst transition models the transmitter. It states that the value output by the

transmitter alternates between empty and non-empty values (T:v := NOT T:v). The

second transition, which models the receiver, is similar to the transmitter transition. The

transition models the receiver retrieving the signal from the transmitter (R:v := T:v).

In the interleaved model of concurrency provided by ST, the physical structure of

the synchronous circuit can be expressed in a clean and simple manner. However, this

simple untimed program does not satisfy the two requirements stated above. In this

model, statements in a program are executed atomically, but the order of execution is

unspeci�ed. Consider the case where the �rst transition is executed twice consecutively.

This scenario, corresponding to the case where two signals are output by the transmitter

without the �rst being retrieved by the receiver, violates requirement 1 stated in the

introduction of this chapter. Conversely, the case where the second transition is executed

Chapter 4. Veri�cation of Real-time Properties 60

twice consecutively violates requirement 2. Timing properties of the system must be

captured in the model in order to verify that the system satis�es the stated requirements.

To reason about timing properties, additional constraints must be included in the

model of the system. Using the notation and properties of Synchronized Transition

programs, these constraints can be expressed by adding auxiliary variables to the program

These variables are called auxiliary variables, because they are introduced for timing

veri�cation and do not correspond to signals of the physical circuit. A real valued variable,

� is introduced to represent the current time, and other variables are introduced for time

related bookkeeping. In general, there are two kinds of timing properties:

Timing lower bounds: a transition is not performed until after a speci�ed time.

Timing upper bounds: a transition is guaranteed to be performed by a speci�ed time.

Timing lower bounds can be expressed by strengthening the transition's preconditions.

In particular, systems of inequalities describing timing relationships can be introduced

as preconditions to transitions. Likewise, the invariant to be proven includes systems of

linear inequalities in addition to boolean relationships. This motivates adding a decision

procedure for systems of linear inequalities to the proof checker. Given this decision

procedure, the proof checker can be used to reason about timing issues in real-time

systems.

In the synchronous circuit program, auxiliary variables are introduced for time related

bookkeeping and preconditions are added to the two transitions.

<< � � T:� + � ! T:v; T:� := NOT T:v; � >>

k << � � R:� + � ! R:v;R:� := T:v; � >>

The variables � , T:� and R:� are introduced to the program. The real valued variable, � ,

is introduced to represent the current time, while T:� and R:� are introduced to denote

the time at which the transmitter outputs a signal and the time at which the receiver

Chapter 4. Veri�cation of Real-time Properties 61

inputs a signal respectively. The precondition of the �rst transition � � T:�+� enforces a

delay of at least � time units between the output of successive values by the transmitter.

Likewise, the precondition of the second transition � � R:� + � enforces a delay of at

least � time units between the retrieval of successive values by the receiver.

Timing upper bounds can be expressed as safety properties of the program's environ-

ment. Assertions are added to the program to state that the current time cannot exceed

a certain value until after some enabled transition is performed. These assertions are

written as a protocol describing the environment [29]. In addition to deriving separate

lemmas for each transition of the program, a separate lemma shows that this protocol

maintains the invariant.

The protocol for the synchronous circuit environment can be described by four clauses:

� P1

4

= �:post � T :� + �

is the timing upper bound for the transmitter. It ensures that signals are generated

at most � time units apart.

� P2

4

= �:post � R:� + �

is the timing upper bound for the receiver.

� P3

4

= unchanged(T) ^ unchanged(R)

is the abbreviation for (T:post = T:pre) ^ (R:post = R:pre) which means that if

the environment takes an action, T:� , R:� , T:v, and R:v remain unchanged.

� P4

4

= �:post � �:pre

states the current time after an action by the environment, �:post must be greater

than or equal to the time before the action, �:pre. In other words, time increases

monotonically.

Chapter 4. Veri�cation of Real-time Properties 62

The two requirements stated in the introduction can be formalized as safety property

of the program.

Q

4

= (� � T:� + �)) (R:v = T:v)

^ (� � R:� + �)) (R:v 6= T:v)

The �rst clause of the safety property states that the transmitter can not output a new

value until the receiver has picked up the old one. This clause is equivalent to requirement

1. The second clause states that when the receiver picks up a value, it is a new one. This

clause corresponds to requirement 2.

Given the ST program and the protocol, the following invariant is constructed for the

synchronous circuit.

I

4

= � � T:� + �

^ � � R:� + �

^ (T:� � �)

^ (R:� � �)

^ (R:� > T:�)) (R:v = T:v)

^ (R:� < T:�)) (R:v 6= T:v)

^ (R:� 6= T:�) ^ (jR:� � T:� j < �)

The �rst two clauses are P1 and P2 from the protocol as described above. (T:� � �) ^

(R:� � �) states that the circuit must appear to be causal as indicated by the auxiliary

variables, (R:� > T:�)) (R:v = T:v) ensures that the transmitter does not output a new

value until the receiver has obtained the old one. Similarly, (R:� < T:�)) (R:v 6= T:v)

states that when the receiver picks up a value, it is a new value. These two clauses

imply the safety property that no value is duplicated during the process. The last clause

states that the transmitter and receiver events must occur at di�erent times. In hardware

terminology, coincident transmitter and receiver events would constitute a timing hazard,

and in practice some minimum separation must be guaranteed. These issues are explored

further in the next chapter.

An initial state, Q0, can be selected to be

Chapter 4. Veri�cation of Real-time Properties 63

R:� = �

^ T:� = � � �=2

^ R:v = T:v

Given such Q0, it is easy to see that (Q0) I) ^ (I) Q) holds.

4.4 Summary

To summarize the approach described above, a real-time system is modeled as a concur-

rent program in ST and its environment is described using a protocol. Then, invariants

are formulated for the system and translated into proof goals for the checker. Through

human interaction to the proof checker using the inference rules, the proof goal is sim-

pli�ed to a conjunction of tautologies.

The approach of capturing real-time properties by introducing auxiliary variables is

employed in [1], and the approach of describing the environment of the program using

protocols is described in [29].

Chapter 5

Verifying STARI

STARI (Self-Timed At Receiver's Input) is a signaling technique that combines syn-

chronous and asynchronous design methods to achieve a higher bandwidth communica-

tion than either alone. STARI uses a synchronous transmitter, a synchronous receiver,

and a self-timed FIFO. This chapter demonstrates an application of the proof checker by

applying it to verify the timing properties of STARI. Section 5.1 provides an overview

of the STARI interface and addresses some of the timing criteria for the system. Sec-

tion 5.2 models the system as an ST program and formulates an invariant for the program

which implies the safety properties of the system. Section 5.3 summarizes results from the

proof. Experience from using the proof checker is discussed in section 5.4, and section 5.5

evaluates the e�ectiveness of the proof checker on the STARI proof.

5.1 STARI Interfaces

The implementation of the synchronous transmitter-receiver pair described in Chapter 4

is only a model to demonstrate an approach to verifying safety properties in real-time

systems; it can fail if the value output by the transmitter changes at almost the same time

as the value is input by the receiver. This is because with real hardware, operations take

some amount of time and are not instantaneous as would be suggested by the atomic

semantics of Synchronized Transitions. In a traditional synchronous system, a global

clock is used to ensure that the changing and sampling of data are separated in time.

This separation must be larger than the uncertainty in the timing of the clock signal. This

64

Chapter 5. Verifying STARI 65

circuitry

sync.

localcompletion

encoding

local

sync.

circuitry

FIFO

self-timed

ReceiverTransmitter

Global Clock

arbitrary delay arbitrary delay

arbitrary delay

Figure 5.5: STARI communication

uncertainty is called skew. Skew often limits the performance of synchronous systems.

To show that an interface operates correctly, it must be shown that new data arrives

at the synchronous section of the receiver at a time that is well de�ned relative to the

receiver's clock.

STARI is motivated by the observation that it is a relatively simple matter to dis-

tribute a frequency reference signal throughout a large system. On the other hand, it is

di�cult to control the exact phase of high frequency signals. As mentioned above, this

skew limits the performance of purely synchronous systems. Self-timed designs avoid

clock skew by using handshake protocols. If no assumptions are made about the delays

of components and wires, then each transmitted bit must be acknowledged before the

next one is sent. In self-timed circuits, these handshakes determine the rate of data

transmission, and the round-trip delay incurred on each transmission-acknowledge cy-

cle can limit performance. In a STARI interface, a global clock determines the rate of

data transmission and the receiver's self-timed FIFO can compensate for skews exceeding

several clock periods. In this way, STARI overcomes both the clock-skew limitations of

purely synchronous designs and the round-trip delays of purely self-timed interfaces.

Figure 5.5 shows a STARI interface. The key component is a self-timed FIFO that

receives data from a synchronous transmitter and delivers data to a synchronous receiver.

Chapter 5. Verifying STARI 66

During each cycle (period of the global frequency reference), the transmitter sends one

datum that is inserted into the FIFO upon arrival. Successive values are distinguished

by using a self-timed data encoding [31]. Likewise, the receiver removes one item from

the FIFO each cycle. Once properly initialized, the FIFO never overows or underows.

For correct operation, the FIFO must complete each insert and remove operation

within one cycle. When this requirement is met, the FIFO appears as a synchronous

component to both the transmitter and the receiver. Furthermore, both the transmitter

and the receiver appear to the FIFO as well-behaved self-timed systems. The transmitter

produces a new data value each clock cycle, just as if the FIFO were another compo-

nent synchronous to its own clock. As will be shown, the FIFO performs each insert

operation within one cycle, which means the FIFO acknowledges the previous data value

before the next value arrives. Thus, the synchronous transmitter satis�es the self-timed

signaling conventions of the self-timed FIFO. Likewise, a prompt response of the FIFO

to acknowledgements from the receiver guarantees that the receiver does not issue an

acknowledgement until the corresponding data value is present. Therefore, the interface

between the FIFO and the receiver is correctly timed.

5.1.1 Self-timed FIFOs for STARI

To verify STARI, a particular FIFO implementation must be chosen. Consider an im-

plementation that uses a ripple FIFO where successive data values in the FIFO are

distinguished according to some self-timed encoding. For veri�cation purposes, the anal-

ysis of the interface does not depend on the speci�c data encoding. The transmitter

output can be modeled as alternating between two values: \full" (represented by true),

and \empty" (represented by false).

A self-timed FIFO can be implemented using a linear array of stages with outputs

y(1) : : : y(n) which operate according to the following rule: stage j may copy its input,

Chapter 5. Verifying STARI 67

a b c

F F F
F T
T F
T T T

unchanged
unchanged

Operation of a
Muller C-element

1 2 j-1 j j+1 n
stage stage stage stage stage stage

data_in

ack_out

data_out

ack_in

y(1) y(2) y(j-2) y(j-1) y(j) y(j+1) y(n-1)y(0) y(n)

FIFO

y(n+1)

C-element

a

b
c

y(j-1)
y(j)

y(j+1)

Stage j

x(j)

<< y(j-1) = x(j) ! y(j).v := y(j-1).v >>

k << x(j) := : y(j+1) >>

ST code for stage j (without auxiliary variables for timing).

Figure 5.6: A self-timed FIFO

Chapter 5. Verifying STARI 68

y(j-1), to its output, y(j), when its successor stage has acquired its current value (i.e.

y(j) = y(j+1)). Thus, when a stage and its successor are both empty, the stage can

acquire a full value from its predecessor. Conversely, when a stage and its predecessor

are both full, the stage can acquire an empty value from its predecessor. This protocol

has a simple implementation consisting of a Muller C-element and an inverter as shown

in Figure 5.6.

This design is delay insensitive [30] and will function correctly regardless of the delays

in the C-elements, inverters, and wires as long as the transmitter and the receiver observe

the self-timed protocol. In a self-timed design, these conditions for the transmitter and

receiver are enforced by handshakes using the data and acknowledge signals. In a STARI

interface, the time between when a stage is enabled to perform an action and when that

action is taken must be bounded. For the schedules described below, the transmitter and

receiver can be guaranteed to operate according to the self-timed protocol when each per-

forms one operation during each cycle of the global clock. Because the transmitter does

not require acknowledgements from the FIFO to send successive values, the performance

of STARI is not limited by round-trip delays.

5.1.2 A schedule for STARI

To verify STARI, it is necessary to show that after each data value arrives from the

transmitter, an ack out event is generated by the FIFO before the next value from the

transmitter arrives. Similarly, after each ack in event from the receiver, the FIFO is

required to output a new data value before the next ack in event occurs. To perform a

new operation, each FIFO stage must wait for data from its predecessor (or the transmit-

ter) and an acknowledgement from its successor (or the receiver). These dependencies

are transitive; therefore, the timing of each stage depends on the times of the opera-

tions of all stages and the transmitter and receiver. Accordingly, a global schedule for

Chapter 5. Verifying STARI 69

FIFO operations is required to establish the correct operation of STARI. The schedules

presented in this section are from [15]. These schedules are presented in an informal,

intuitive fashion. In section 5.2, the version with bounded delays is formalized using the

ST notation, and the veri�cation of this version using the proof checker is described in

sections 5.3 and 5.4.

The schedule of STARI depends on the model of the timing for the operation of

the transmitter, receiver, and FIFO. The model used here assumes that the clock skew

between the transmitter and receiver has some arbitrary, constant value. On the other

hand, stage delays are only bounded from above. The actual delay of a stage can be

anywhere from zero to this bound, and the stage can exhibit di�erent delays for di�erent

operations. This model uses the quantities de�ned below:

n: The number of stages in the FIFO. Assume n > 0.

�: The stage delay. The delay from when a stage has received both a new data value

at its input and an acknowledgement for its current output until the stage outputs

the new value is at most �. In this model, � is an upper bound, and the actual

delay may di�er for di�erent stages or for successive operations of the same stage.

�: The period of the global clock. New data values arrive at data in separated by

exactly � time units, and successive acknowledgements arrive at ack in separated

by exactly � time units.

�: The time from a transmitter event until the corresponding receiver event. In a

correctly operating interface, the transmitter will output a value on data in at some

time, �t, and the receiver will assert an ack in for this value at some later time �r.

In this case, � = �r� �t. Since successive transmitter events and successive receiver

events occur with the same period, � is a constant. For (n+1)� < � < (n+1)(���)

Chapter 5. Verifying STARI 70

it will be shown that the STARI interface operates correctly, in which case � can

be understood as the FIFO latency.

To motivate the schedule for FIFO operations, a simplistic scenario with �xed delays

is considered �rst. With completely deterministic timing, the analysis for this case is

straightforward, and many of the ideas from this simpli�ed version can be applied directly

to the bounded delay model and appear in the proof. In the �xed delay case, each

stage performs an operation once every � time units, and the details of the schedule

are determined by the relative phases of these operations. A convenient way to describe

these relative phases is to derive the delays between when a stage receives a new value

at its data input and when it propagates this value to its output.

The delay for stage j is written as �(j). The sum of these delays is the latency of

the FIFO:
n+1X
j=1

�(j) = � (5:1)

Note that �(n+ 1) corresponds to the delay from when a value is output by the FIFO

until the subsequent acknowledgement is output by the receiver.

In steady state operation, the stages of the FIFO can be partitioned according to

the order in which their data and acknowledge inputs arrive. The stages closest to the

transmitter receive new data values after they have received an acknowledgement for the

previous value from their successors. When a data value arrives at the input of such a

stage, it is copied to the output � time units later. For the stages closest to the receiver,

data values arrive before acknowledgments. If a stage and its predecessor both wait for

acknowledgements, then � � � time unit elapses between the arrival and departure of a

data value at the stage (see [16]). The remaining stage waits for acknowledgement but

its predecessor waits for data. The time for this stage to forward a data value is bounded

by the times for the other two cases.

Chapter 5. Verifying STARI 71

Figure 5.7: Stage-to-stage transfer times

Let stage k be the �rst stage that waits for acknowledgements. To satisfy equation 5.1

and the relationships � < �(j) � � � �, a simple pigeon-hole argument yields:

�(j) =

8>>>>><
>>>>>:

� , if j < k

� , if j = k

� � � , if k < j

9>>>>>=
>>>>>;

(5:2)

where

k = n+ 1�

$
�� (n+ 1)�

� � 2�

%

� = � + (k� 1) � (� � 2�)� n(� � �)

(5:3)

To ensure that k is between 1 and n, it is required that

0 < � , FIFO stages are causal

2� < � , minimum \clock" period

(n+ 1)� < � < (n+ 1)(� � �) , bounds on skew

Figure 5.7 shows �(j) for a typical STARI interface with �xed delays.

Now consider a FIFO with bounded delays. The delay between when a stage receives

a new data value and when it outputs the value may be lower than in the �xed delay case.

As the total latency of the FIFO remains �xed, there must also be stages which have

delays greater than those in the �xed delay case. This happens when a stage receives

Chapter 5. Verifying STARI 72

a new data value earlier than it would have in the �xed delay version and must wait

longer for an acknowledgement. It can be shown that in the bounded delay model no

stage performs an operation later than the corresponding action is performed in the �xed

delay version. This observation leads to the schedule for the bounded delay model.

The schedule for STARI with bounded delays is a schedule for the total delay from

the time that a data token arrives at the input of the FIFO until it is output by stage j

as given by 	(j) de�ned below:

	(j) =
iX

j=1

�(i) (5:4)

Because 	 is derived from �, this schedule identi�es a \waiting for data" region (j <

k with k de�ned by equation 5.3) and a \waiting for acknowledgement" region (j �

k). In operation, a stage in the \waiting for data" region may end up waiting for an

acknowledgement because of a data value arriving early; however, it will not wait longer

than the time allowed by the \waiting for data" schedule above. Likewise, a stage in the

\waiting for acknowledge" region may wait for a data token, but not so long as to violate

the schedule.

5.2 An ST Program for STARI

To verify the timing properties of STARI, the interface is modeled as an ST program. In

this program, � represents the current time and y(0) through y(n+1) represent signal

values. For 1 � i � n, y(i) is the output of the ith FIFO stage. The output of the

transmitter is the signal y(0), and y(n+1) is the \acknowledge" signal from the receiver.

Three attributes are associated with each signal:

y(i).v The value of the logical datum output by FIFO stage i, true (full) or false

(empty).

Chapter 5. Verifying STARI 73

y(i).� The time at which y(i).v was assigned its current value.

y(i).� The time at which the value currently held by y(i).v was output by the trans-

mitter.

Given this framework, the descriptions of the transmitter and receiver are straight-

forward. The transmitter changes the value of y(0).v once every � time units. The

transition

<< � � y(0).� + � ! y(0).v, y(0).�, y(0).� := NOT y(0).v, �, � >>

states that changes of the transmitter's output, y(0), occur at least � time units apart.

Likewise, the protocol,

�:post � y(0).� + �

ensures that changes of y(0) are at most � time units apart. Thus y(0) changes once

every � time units as required. The description of the receiver is equivalent (see Fig-

ure 5.8).

To describe the FIFO, note that stage j can change its output when stage j-1 has

provided a new input value and stage j+1 has acknowledged the current output. Thus,

the transition for stage j of the FIFO is

<< (y(j-1).v 6= y(j).v) AND (y(j).v = y(j+1).v)

!y(j).v, y(j).�, y(j).� := y(j-1).v, �, y(j-1).�

>>

The entire FIFO is described by the asynchronous composition

n

k
j=1

<< (y(j-1).v 6= y(j)) AND (y(j).v = y(j+1).v)

!y(j).v, y(j).�, y(j).� := y(j-1).v, �, y(j-1).�

>>

No timing constraints are included in the guard because the FIFO stages only have an

upper bound on their delays. A stage is allowed to perform its operation immediately

after receiving new data and acknowledge inputs.

Chapter 5. Verifying STARI 74

The following protocol asserts that the transition for FIFO stages can be enabled for

at most � time units before being executed:

8j 2 f1 : : : ng :

((y(j-1).v 6= y(j).v) ^ (y(j).v= y(j+1).v))

) (�:post < max(y(j-1).�; y(j+1):�) + �)

The complete program for STARI is given in �gure 5.8.

5.2.1 The invariant

To verify STARI, it is necessary to show that the self-timed protocol of the FIFO is

satis�ed by the real-time behavior of the transmitter, FIFO, and receiver. The �rst

criterion is that each value output by the transmitter is inserted into the FIFO before

the transmitter outputs another value. Formally, let

R1

4

= (� � y(0).� + �)) (y(0).v = y(1).v)

R1 is a safety property of the program. The second criterion is that the corresponding

condition for the receiver,

R2

4

= (� � y(n+1).� + �)) (y(n).v 6= y(n+1).v)

R2 is also a safety property.

To verify properties R1 and R2, an invariant of the program is established, I such that

I) (R1 ^R2). The key clause of this invariant is a schedule for the internal operations

of the FIFO. In particular, the invariant includes the conjunct

8i 2 f1 : : : ng : y(i).� < y(i).� +	(i)

Intuitively, 	(i) is the maximum time allowed for a value to propagate from the trans-

mitter to the output of stage i. The key property of the schedule 	 that will be used in

Chapter 5. Verifying STARI 75

Constraints on program parameters:

0 < n , there is a FIFO

0 < � , FIFO stages are causal

2� < � , minimum \clock" period

(n+ 1)� < � < (n+ 1)(� � �) , bounds on skew

Transitions for the transmitter, FIFO, and receiver:

<< � � y(0).� + �

! y(0).v, y(0).�, y(0).� := NOT y(0).v, �, �

>>

k
n

k
j=1

<< (y(j-1).v 6= y(j).v)
V

(y(j).v = y(j+1).v)

! y(j).v, y(j).�, y(j).� := y(j-1).v, �, y(j-1).�

>>

k << � � y(n+1).� + �

! y(n+1).v, y(n+1).�, y(n+1).� := NOT y(n+1).v, �, y(n).�

>>

Protocol for the environment (i.e. assumptions about time):

unchanged(y)

�:post � �:pre

�:post � y(0).� + �

8i 2 f1 : : : ng :
(y(i-1).v 6= y(i).v)

V
(y(i).v = y(i+1).v)

) �:post < max(y(i� 1):�; y(i+ 1):�) + �

�:post � y(n+1).� + �

Figure 5.8: A Synchronized Transitions program for STARI

Chapter 5. Verifying STARI 76

k = n+ 1 �

$
� � (n+ 1)�

� � 2�

%

�(i) =

8><
>:

� , if i < k

� + (k� 1) � (� � 2�)� n(� � �) , if i = k

� � � , if i > k

	(i) =
Pi

j=1�(j)

Isched = 8i 2 f1 : : : ng : y(i).� < y(i).�+	(i)

Icausal = 8i 2 f0 : : : n+ 1g : y(i).� � �

I� = (y(0).� = y(0).�) ^ (y(n+1).� = y(n+1).�+	(n+ 1))

It = � � y(0).� + �

If = 8i 2 f1 : : : ng :
(y(i-1).v 6= y(i).v) ^ (y(i).v= y(i+1).v)

) (� < max(y(i-1):�; y(i+1).�) + �)

Ir = � � y(n+1).� + �

Iinsert = 8i 2 f0 : : : ng :
(y(i).v= y(i+1).v)) (y(i).� = y(i+1).�)

^ (y(i).v 6= y(i+1).v)) (y(i).� = y(i+1).�+ �)

I = Isched ^ I� ^ Icausal ^ It ^ If ^ Ir ^ Iinsert

Figure 5.9: The invariant for STARI

the remainder of this chapter is

8i 2 f1 : : : n+ 1g : � � 	(i)�	(i� 1) � � � �:

Note that 	(i)�	(i� 1) is denoted �(i)

The complete invariant is shown in �gure 5.9. Each of the clauses has a simple,

intuitive interpretation. As is often the case with invariant based veri�cation, several

\bookkeeping" clauses are needed to describe the set of states that the system can reach.

As described in the previous paragraph, the clause Isched gives a schedule for the internal

Chapter 5. Verifying STARI 77

operations of the FIFO. The clause Icausal states that the FIFO is causal as described

by the auxiliary variables: no signal may have an assignment time that is in the future.

The clause I� asserts that the schedule is tight at the transmitter and receiver, which

implies that the FIFO latency is �, matching �'s intuitive interpretation. The clauses It,

If , and Ir state that the transmitter, FIFO, and receiver respectively have completed all

operations that should have happened in the past. The clause Iinsert can be understood

by assuming that no data values are dropped by the FIFO, in which case this clause

implies that the values of the :� variables are the times at which these values were output

by the transmitter.

The clause Iinsert is implied by the other clauses of the invariant and can be proven

by induction over the stages of the FIFO. This approach was taken in the manual proof

in [16]. However, when veri�ed by the proof checker, many implicit induction arguments

were discovered in the hand-written proof, most of them simple lemmas about unchanged

variables. By adding the clause Iinsert to the invariant, the arguments by induction over

the structure of the FIFO become induction arguments over the sequences of states that

the system can traverse. The proof was more easily veri�ed by the latter approach.

5.3 The STARI Proof

With the described technique, STARI was modeled as a concurrent program, safety

properties of the system were identi�ed, and a predicate, I, which implies these safety

properties was proven to be the invariant of the program. To stimulate an appreciation

of the process, this section discusses one segment of the proof in detail, highlights some

techniques used in constructing the proof, and presents some of the aws uncovered in

the manual proof.

Chapter 5. Verifying STARI 78

5.3.1 A snapshot from the proof

As mentioned in chapter 2, a proof can be viewed as a tree with the claim as the root,

proof-rules labeling the edges, and simple tautologies at the leaves. The STARI proof is

mapped into such structure. The root is the claim that I is an invariant of the program

shown in �gure 5.8. It can be written as

(I(s1) ^ Ct(s1))) I(Mt(s1))

V
(I(s1) ^ Cf (s1))) I(Mf(s1))

V
(I(s1) ^ Cr(s1))) I(Mr(s1))

V
(I(s1) ^ Cp(s1))) I(Mp(s1))

The PC rule splits the claim into four separate clauses. Viewed as a tree, there is the

claim at the root with four edges, labeled PC rule, splitting it into its four children:

(I(s1) ^ Ct(s1))) I(Mt(s1));

(I(s1) ^ Cf(s1))) I(Mf(s1));

(I(s1) ^ Cr(s1))) I(Mr(s1));

and (I(s1) ^ Cp(s1))) I(Mp(s1)):

Chapter 5. Verifying STARI 79

...

c1(λ)

I

c1 c2 c3 c4

c1(causal)c1(sched) c1(insert)c1(r)c1(f)
c1(t)

Figure 5.10: A branch from the STARI proof tree.

Since the invariant is a conjunction of several clauses, each of the above obligations can

be further broken down into

(I(s1) ^ Ci(s1))) Isched(Mi(s1));

(I(s1) ^ Ci(s1))) Icausal(Mi(s1));

(I(s1) ^ Ci(s1))) I�(Mi(s1));

(I(s1) ^ Ci(s1))) It(Mi(s1));

(I(s1) ^ Ci(s1))) If(Mi(s1));

(I(s1) ^ Ci(s1))) Ir(Mi(s1));

and (I(s1) ^ Ci(s1))) Iinsert(Mi(s1)):

where i 2 t; f; r; p:

See �gure 5.10.

This section examines the branch of the proof which veri�es that the transitions for

the FIFO maintain Isched, (I(s1) ^ Cf(s1))) Isched(Mf (s1)), the clause of the invariant

that asserts the real-time schedule for STARI. This example is chosen as it emphasizes

the real-time aspects of the veri�cation.

Recall that a proof state consists of the claim, the hypothesis list, the obligation list,

Chapter 5. Verifying STARI 80

and the postponed list. (See section 2.1.1). For simplicity, only the obligations and the

hypotheses are shown in this presentation. Starting with the obligation given above,

Isched(Mf (s1)) is skolemized with the skolem constant sk i so we can apply case analysis

on the term. Using PC rule to apply case analysis on (sk i=j), we split our obligation

into 2 terms.

obligations :

(sk i = j)) (

(if(sk i = j) then � else y(sk i):�)

< (if(sk i = j) then y(sk i� 1):� else y(sk i):�) + 	(sk i));

(sk i 6= j)) (

(if(sk i = j) then � else y(sk i):�)

< (if(sk i = j) then y(sk i� 1):� else y(sk i):�) + 	(sk i))

hypotheses :

[Cf; I; constraint]

The second obligation follows directly from the fact that no variables appearing in

the obligation were modi�ed by the transition. In the checker, this takes six steps: two

steps (using EQ rule and IF rule) replace each if expression with the corresponding

else clause; two steps (using Definition rule and Instantiate rule) instantiate the

corresponding clause of the invariant on the hypothesis list with j; and the remaining

two steps (using PC rule) perform rewrites to put the obligations into forms suitable for

the other rules. Having discharged the simpler of the two obligations, the state of the

Chapter 5. Verifying STARI 81

proof becomes

obligations :

(sk i = j)) (

(if(sk i = j) then � else y(sk i):�)

< (if(sk i = j) then y(sk i� 1):� else y(sk i):�) + 	(sk i))

hypotheses :

[Cf; I; constraint]

Using EQ rule and IF rule, the obligation is rewritten to � < y(j�1):�+	(j). To obtain

an upper bound for � , the clause If of the invariant is used. Since the precondition Cf

holds, instantiating If with i = j yields � < max(y(j � 1):�; y(j + 1):�) + �. This leads

to the essence of the real-time veri�cation of STARI. The current time is bounded from

above according to the greater of y(j � 1):� and y(j + 1):� , that is according to whether

the data or acknowledge input of stage j arrived last. In either case, the schedule, holding

for stages j � 1 and j + 1 before performing the transition for stage j, is used to show

that it holds for stage j after the transition is performed.

Case analysis is performed according to which of y(j � 1):� and y(j +1):� is greater.

The case for y(j � 1):� > y(j + 1):� is presented here; the other case is similar. For the

case with y(j � 1):� > y(j + 1):� , rewriting the max function yields the proof obligation

� < y(j � 1):� + �) � < y(j � 1):� +	(j) (o1)

Using linear programming, it can be shown that:

� < y(j � 1):� + � (L0)

y(j � 1):� � y(j � 1):�+	(j � 1) (L1)

	(j) = 	(j � 1) + �(j) (L2)

�(j) � � (L3)

� < y(j � 1):�+	(j) (L4)

Chapter 5. Verifying STARI 82

In the checker, PC rule is used to replace proof obligation o1 with L1, L2, L3, and

L1 ^ L2 ^ L3) L4. (Note that L0 is the antecedent of o1 and L4 is the consequent.)

This implication is discharged immediately by LP rule, demonstrating the utility of a

decision procedure for linear programming when reasoning about real-time systems. Of

the remaining obligations, the �rst two can be discharged by instantiating the appro-

priate hypotheses. The fourth obligation, however, reveals a limitation of this checker.

Instantiating the de�nition of � it is straightforward to verify that �(j) � � for the cases

j < k and j > k. On the other hand, the case j = k produces the obligation

� � � + (k � 1) � (� � 2�)� n(� � �)

To verify this obligation, it is necessary to instantiate the de�nition of k, and then

reason about the inequalities involving non-linear operations such as oor. Instead, the

Postponement rules are used to transfer this obligation to the suppose list. At the end

of the proof, there are two such obligations on the suppose list, the one just described

and the closely related one:

� + (k � 1) � (� � 2�)� n(� � �) < � � �

Both can be veri�ed in a few minutes using pencil, paper, and a little bit of high-school

algebra.

5.3.2 Some Proof Techniques

The LP rule and the PC rule are the core of the proof checker. The LP rule is intended

to reason about linear inequalities within the proof, and the PC rule is intended to

support boolean manipulation. While developing the STARI proof script, it was observed

that in addition to the originally intended functions, these two proof rules are used

extensively to restructure expressions to the forms required by other proof rules. Fixed

Chapter 5. Verifying STARI 83

sequences of proof rules are applied to achieve certain subgoals. By examining the proof

scripts, common patterns were recognized and interface functions were built to capture

these proof sequences. The following paragraphs present some proof techniques involved

in developing the STARI proof script, and discuss the interface functions implemented

to support such techniques.

One frequently used proof technique is case analysis: to divide an obligation into

di�erent cases and reason about each case with an appropriate method. See sections 3.5.1

and 3.5.2 for a description of the interface functions CaseAnalysis1 and CaseAnalysis2.

Because many of the proof rules are implemented using structural matching of expres-

sions; proof states can include cumbersome obligations that require simpli�cation. For

example, the Instantiate rule traverses an expression tree and blindly replaces every

occurrence of the quanti�er by the speci�ed instant without recognizing what the expres-

sion truly represents. The expression 8i:f(i+1) instantiated by j�1 yields f(j�1+1),

and the LP rule is required to verify (j � 1 + 1) = j before the replacement can be

applied. In such cases, the PC rule is used to formulate the simpli�ed expression, the

LP rule to verify such replacement, and the EQ rule to write the expression into the

simpler form. This process could be extremely tedious when large expressions are in-

volved. Such tedious steps can be avoided by adding an arithmetic decision procedure

to the proof checker. This approach is discussed in section 6.1.

An invariant proof veri�es that a predicate continues to hold after a state change in

which value to some v 2 V is modi�ed by a transition (given that V is the set of variables

in the ST program). Such a predicate is often a conjunction of clauses, and the predicate

is proven to be an invariant by analyzing each clause and the e�ect of each transition on

these clauses. Frequently no variable in a clause is changed after a particular transition is

performed, and this case is readily discharged by the PC rule. Many times, the obligation

which needs to be proven is a simple instantiation of a clause from the hypotheses. The

Chapter 5. Verifying STARI 84

interface function Unchanged discharges such obligations (see section 3.5).

5.3.3 Flaws from Manual Proof

Having attempted to verify a hand-written proof, various technical aws were uncovered.

Most of the errors uncovered were typographical mistakes and inadequate justi�cations

for proof steps, and most of these aws were found in the process of translating the

manual proof steps into inputs to the proof checker. All of these errors were in the proof,

not in the theorem statement. A more serious error was revealed when attempting to

verify

� � �+ (k � 1) � (� � 2�)� n(� � �) < � � �

In the original formulation of the claim, there was an \o�-by-one" error in the de�nition

of k. Although this was not detected by the proof checker, the checker brought it to

our attention by reducing the correctness of the claim to the correctness of this simple

formula, upon the examination of which the error was discovered.

5.4 Observations and Experiences

From verifying STARI a few observations are noted in relation of the proof checker and

the proof itself. Two of the major issues are: the similarity in the overall structure of the

veri�ed proof and the manual proof, and how the chosen language, FL, helps the proof

development process.

5.4.1 Veri�ed Proof versus Manual Proof

The overall structure of the STARI proof veri�ed by the proof checker is the same as that

of the manual proof. Both version verify the invariant by considering pairs of states, s

and s
0 where s0 is produced by performing some transition from state s. The invariant

Chapter 5. Verifying STARI 85

is assumed to hold in state s, and the proofs show that it continues to hold in state s0.

In both proofs, the invariant consists of four clauses: three corresponding to the three

transitions representing the transmitter, receiver and FIFO; and one clause corresponding

to the protocol of the ST program. The central argument of each proof shows that the

FIFO maintains the schedule, and both proofs do this by considering whether the data

or the acknowledgement arrives last at each C-element. Because the invariant holds in

state s, the schedule holds for this last arriving input. The proofs then show that the

invariant holds in state s0.

The major di�erence between the manual proof and the veri�ed proof is the change

in representation of the insert time. As mentioned earlier, the manual proof involves

implicit inductions which correspond to many proof steps in their counterparts within

the veri�ed proof. In the veri�ed proof, these induction arguments were eliminated by

adding the clause Iinsert to the invariant. Although this clause is redundant (it is implied

by the other clauses), the overall proof is simpli�ed by its inclusion.

The number of steps required for the same argument di�ers in the manual proof and

the veri�ed proof. The veri�ed version often involves more steps because of the rigorous

nature of a veri�ed proof. However, this is not necessarily the case where reasoning

about linear inequalities and boolean manipulation is involved. The two built-in decision

procedures for systems of linear inequalities and boolean manipulation discharge such

proof obligations in a single step, whereas the manual proof requires multiple steps to

simplify the expressions to a manageable size before they can be discharged.

5.4.2 FL as a meta-language

FL was the natural choice for the meta-language of the proof checker, because it provides

built-in support for BDDs and supports abstract data types. It is easy to de�ne a next-

state function in a functional language. Using FL as the meta-language, it is very natural

Chapter 5. Verifying STARI 86

to pass a proof state to a function, have the inference rule create a new state with respect

to the context of the proof rule and the input state, then return this new state. The

language also allows a proof to be viewed as a program, a more structured entity which

helps organize the proof. Related sections of a proof script can be combined to become

a function. Branches from a proof tree which employ the same proof technique, can be

written as a function with input variables to adapt to slight variations in similar cases.

When similar proof sequences are required, the function is simply called with appropriate

values.

Using a functional language to implement the proof checker also has disadvantages.

It is harder to build and modify complex data structures, and hence long lists have to

be traversed linearly during a lookup for an item. This is a performance problem which

can be solved by more sophisticated programming.

5.5 Evaluating the Proof and the Proof Checker

The motivation for this research is that hand written proofs often contain implicit as-

sumptions and unstated arguments, both of which can lead to errors and unsoundness.

Theorem provers can be used to verify such proofs, however, existing theorem provers

are often extremely tedious and/or require mathematically sophisticated users. Theorem

provers which reduce all claims to a small set of fundamental axioms are often tedious [7].

Those that use sophisticated tactics that may allow for shorter proofs can be ba�ing to

a naive user [10, 22, 26, 27, 3, 4].

The hypothesis of this research is that correctness proofs for real-time systems can

be machine checked using a small set of decision procedures, and these procedures can

be used at a level of detail comparable to typical hand proofs. A simple proof checker

was implemented speci�cally for the veri�cation of real-time systems. A real-time system

Chapter 5. Verifying STARI 87

(STARI) was veri�ed with the small set of inference rules. The structure of the veri�ed

proof is at a level of detail comparable to typical hand proofs.

From this exercise, the STARI proof was made more sound. As described in sec-

tion 5.3, an o�-by-one error in the statement, and various technical aws were uncovered

in the process as mentioned in section 5.3.

Chapter 6

Conclusion

This thesis has presented a technique for verifying timing properties for real-time sys-

tems. The system is modeled as an ST program; real-time requirements are formulated

as safety properties; and a simple proof checker with a small set of inference rules is

used to verify manually generated proofs of these properties. This chapter compares the

results from this thesis with its initial conjectures, presents some of the unanticipated

�ndings of this investigation, and highlights a few of the most signi�cant �ndings.

6.1 The Simple Approach to Proof Checking

A simple proof checker was implemented. With its ten inference rules and small type

system, the checker is powerful enough to verify real-time properties of concurrent designs

such as STARI.

The initial design of the proof checker had nine proof rules: the rules currently existing

in the checker except the Induction rule. While translating the hand-written STARI

proof to input to the proof checker, many implicit induction steps were discovered. It

appeared that these could be eliminated by modifying the invariant. However, two induc-

tion arguments remained for proving two critical lemmas. Therefore, the Induction rule

was implemented and incorporated into the system. No further extension to the proof

checker was needed to verify the STARI proof. The author believes that many proofs of

real-time properties are based on similar arguments using predicate calculus, systems of

linear inequalities, and simple quanti�cations over the integers.

88

Chapter 6. Conclusion 89

Identity properties : (a+ 0 = a) ^ (a � 1 = a)

Cancellation law : (a � c = b � c) ^ (c 6= 0)

) a = b:

Figure 6.11: Identity Properties and Cancellation Law of reals

Unlike typical theorem provers, the type system in this checker is small. It includes

boolean, integer, and real types as well as arrays of these three types. This type

system is su�cient for the STARI proof, since the model for STARI does not require

sophisticated data structures. In the manual proof of STARI, the FIFO is represented as

an array of records: the output of a C-element is represented by fy(i):� , y(i):v, y(i):�g.

In the proof checker, this is translated into three arrays. To verify systems with more

elaborate types, the set of data types provided by the checker may be insu�cient and

require extension.

As mentioned in previous chapters, the LP rule was used extensively for algebraic

manipulation while verifying the STARI proof. Multiple proof steps are required to ar-

range an obligation into a structure that can be discharged by the LP rule and to rewrite

other obligations with the appropriate substitutions. (See section 5.3.2). This approach

can become extremely tedious as the expressions grow. One possible enhancement to the

proof checker is to implement a decision procedure for polynomial arithmetic. Such a

decision procedure, given an expression, would simplify the expression and rewrite it into

a canonical form of sums of products. The design of this decision procedure needs to be

carefully considered to avoid introducing `surprises'. (See section 2.1.2). Inference rules

which capture the identity properties and the cancellation law of reals could also prove

useful to the checker. Figure 6.11 states these two properties of reals.

Chapter 6. Conclusion 90

6.2 Proofs as Programs

Using the proof checker, it was observed that a proof can be viewed as a program. For

many years, people have written long programs where syntactic and type correctness is

veri�ed by a compiler. This allows programmers to concentrate on the algorithms and not

tedious typing and syntactic issues. In the case of proofs, the proof checker allows users

to concentrate on developing the proofs with the checker agging unsound arguments.

This approach allows users to focus on the high level structure of the proofs.

Commonly used proof sequences can often be encapsulated in a function which is

called with di�erent arguments to provide similar arguments within a proof. This ap-

proach is similar to implementing interface functions to the checker except that it is

intended to be more problem speci�c. It avoids repetition, reduces the amount of code

involved, and increases the readability of the proof script.

Many existing theorem provers maintain libraries of veri�ed lemmas which can be

reused in di�erent proofs. HOL [7] is an example of such a theorem prover. A large

amount of extra work is often required to identify a suitable set of hypotheses when

creating such a lemma, and when the lemma is applied, more work may be required

to show that these hypotheses are satis�ed. As an alternative to instantiating lemmas,

the proof checker presented here allows an interface function to be executed every time

a similar argument is needed. If the function provides a correct proof, the obligation

is discharged. Although there is some lemma corresponding to the class of predicates

discharged by the function, the statement of this lemma is implicit, sparing the user the

tedium of deriving and justifying a formal statement of the lemma. Re-executing the

interface function increases the execution time for a proof; however, the built-in decision

procedures make the checker fast enough that this trade-o� is justi�able.

Using a traditional theorem prover, a small change at one step can cause a large

Chapter 6. Conclusion 91

change in the expressions produced by proof tactics or rewriting heuristics leading to a

failure in another part of the proof. In other words, a small change can lead to divergence

from the original proof. In our proof checker, the user provides the rewritten forms for

obligations at each step, and this tends to prevent such divergence. Often, functions

are written to compute these rewritten forms. Like a well-structured program, a well-

structured proof has well de�ned interfaces between the di�erent functions and modules,

and these interfaces make proofs robust to incremental changes.

The observation that proofs can be viewed as programs suggests that a proof de-

bugger could be implemented along the lines of a traditional program debugger: single

stepping through functions, printing variables, and tracing back after a step is executed.

Because the proof checker is implemented on top of a purely functional language, back-

ward execution should also be possible. Tracing proof steps when a rule fails accounts for

a large fraction of the time required to develop a proof. A debugger for the proof checker

which allows users to single step an interface function and displays subexpressions within

a proof state could bene�t proof development.

6.3 The Postponement Rules

The Postponement rules were introduced to the proof checker before the checker was

fully developed. Proof obligations which could not be discharged by the incomplete proof

checker were moved to the postponed list and retrieved back onto the obligation list after

the appropriate rules were implemented. While experimenting with these three rules, it

was discovered that they can be used to provide a lemma mechanism to the checker, to

construct proofs with more structured layout, and to allow users to refer to obligations

by name instead of by their index.

As mentioned in the previous section, a lemma can be speci�ed as a function and the

Chapter 6. Conclusion 92

function can be executed whenever the lemma is needed. Alternatively, the corresponding

obligation can be moved to the postponed list the �rst time the lemma is needed. This

lemma can be applied from this list for each subsequent use. After the last use, the

postponed lemma can be moved back to the obligation list to be discharged with one

sequence of proof steps.

These rules also allow the user to postpone tedious steps in the proof, sketch out the

structure of proof, then retrieve and verify one piece of proof at a time. As a result the

proof becomes more structured and readable. Each postponed object in the list is tagged

with a name. By postponing all obligations and retrieving only the obligation currently

being worked on, users can work with names instead of indices.

6.4 Variable skew version of STARI proof

The STARI proof described in chapter 5 veri�es a model of STARI which assumes

that the clock skew between the transmitter and receiver has some arbitrary, constant

value. A more ambitious proof verifying the variable skew model of STARI is under

development. Functions are implemented to substitute similar proof sequences, and the

Postponement rules are used extensively in the proof.

6.5 Summary

A simple proof checker was implemented on top of the functional language FL. With

a small set of inference rules and a simple type system, it is powerful enough to verify

real-time properties of a communication protocol, STARI. An \o�-by-one" error was

discovered in the hand-written proof. The design decision that requires the user to provide

replacements for obligations and the Postponement rules distinguish this checker from

traditional theorem provers. They allow users to view proofs generated from the checker

Chapter 6. Conclusion 93

as programs. By providing decision procedures for predicate calculus and systems of

linear inequalities, the checker allows the veri�ed proof to closely follow the structure of

a manual proof. The simplicity of the checker maintains the overall structure of a manual

proof in its certi�ed version.

Bibliography

[1] Mart��n Abadi and Leslie Lamport. Composing Speci�cations. In J.W. de Bakker

et al., editors, Proceedings of the REX Workshop, \Stepwise Re�nement of Dis-

tributed Systems". Springer-Verlag, 1989. LNCS 430.

[2] Flemming Andersen, Kim Dam Petersen, and Jimmi S. Pettersson. Program Ver-

i�cation using HOL-UNITY (Progress Report). In HUG '93: HOL User's Group

Workshop, pages 1{17, UBC, Vancouver, 1993.

[3] Robert S. Boyer and J. Strother Moore. Integrating Decision Procedures into Heuris-

tic Theorem Provers: A Case Study of Linear Arithmetic. Technical Report ICSCA-

CMP-44, Institute for Computing Science and Computer Applications, University

of Texas, January 1985.

[4] R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic Press,

Boston, 1988.

[5] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision

Diagrams. ACM Computing Surveys, 24(3):293{318, September 1992.

[6] R.M. Burstall. Research in Interactive Theorem Proving at Edinburgh University.

LFCS-Department of Computer Science, University of Edinburgh, October 1986.

[7] Cardell-Oliver, Herbert, and Joyce. UBC HOL Course, June 1990. Lecture Notes

from UBC HOL Course, 4-8 June 1990.

[8] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-

Wesley, 1988.

[9] Colin Clark. Elementary Mathematical Analysis. Wadsworth Publishers, California,

1982.

[10] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem proving for

hardware veri�cation. In Ramayya Kumar and Thomas Kropf, editors, Preliminary

Proceedings of the Second Conference on Theorem Provers in Circuit Design, pages

287{305, Bad Herrenalb (Blackforest), Germany, September 1994. Forschungszen-

trum Informatik an der Universit�at Karlsruhe, FZI Publication 4/94.

94

Bibliography 95

[11] David L. Dill. Timing Assumptions and Veri�cation of Finite-State Concurrent

Systems. In Proceedings of the International Workshop on Veri�cation of Finite

State Systems (LNCS), Berlin, 1989. Springer-Verlag.

[12] Karen A. Frenkel. An interview with Robin Milner. Communications of the ACM,

36(1):90{95, January 1993.

[13] S.J. Garland and J.V. Guttag. An Overview of LP: the Larch Prover. In Proceedings

of the Third International Conference on Rewriting Techniques and Applications.

Springer-Verlag, 1989.

[14] David M. Goldschlag. Mechanically Verifying Safety and Liveness Properties of

Delay Insensitive Circuits. Formal Methods in System Design, 5:207{225, 1994.

[15] Mark R. Greenstreet. Using Synchronized Transitions for Simulation and Timing

Veri�cation. In J�rgen Staunstrup and Robin Sharp, editors, 1992 Workshop on

Designing Correct Circuits, pages 215{236, Lyngby, Denmark, January 1992. Else-

vier. An earlier version published as Matsushita Information Technology Laboratory

technical report MITL-TR-01-91.

[16] Mark R. Greenstreet. STARI: A Technique for High-Bandwidth Communication.

PhD thesis, Department of Computer Science, Princeton University, 1993.

[17] A.G. Hamilton. Logic for Mathematicians. Cambridge University Press, Cambrige,

1988.

[18] John Harrison. A HOL Decision Procedure for Elementary Real Algebra. In HUG

'93: HOL User's Group Workshop, pages 428{440, UBC, Vancouver, 1993.

[19] Henrik Hulgaard, Steven M. Burns, et al. Practical applications of an e�cient time

separation of events algorithm. In ICCAD93, pages 146{151, November 1993.

[20] Henrik Hulgaard, Steven M. Burns, et al. An algorithm for exact bounds on the time

separation of events in concurrent systems. Technical Report 94-02-02, Department

of Computer Science, University of Washington, Seattle, 1994.

[21] J�rgen Staunstrup and Mark R. Greenstreet. Formal Methods for VLSI Design,

chapter 2. Elsevier Science Publishers B.V. (North-Holland), 1990.

[22] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal

Veri�cation for Fault-Tolerant Architectures: Prolegomena to the Design of PVS.

IEEE Transactions on Software Engineering, 21(2), February 1995.

[23] Christos H. Papdimitriou and Kenneth Steiglitz. Combinatorial Optimization - Al-

gorithms and Complexity. Prentice Hall, Englewood Cli�s, New Jersey., 1982.

Bibliography 96

[24] Kenneth H. Rosen. Elementary Number Theory, page 21. Addison Wesley, 1988.

[25] Carl-Johan H. Seger. Voss | A Formal Hardware Veri�cation System User's

Guide. Technical Report 93-45, Department of Computer Science, Univer-

sity of British Columbia, November 1993. Available by anonymous ftp as

ftp://ftp.cs.ubc.ca/pub/local/techreports/1993/TR-93-45.ps.gz.

[26] J.U. Skakkeb�k and N. Shankar. A Duration Calculus Proof Checker: Using PVS

as a Semantic Framework. Technical Report SRI-CSL-93-10, Computer Science

Laboratory, SRI International, Menlo Park, CA 94025, USA, December 1993.

[27] J.U. Skakkeb�k and N. Shankar. Towards a Duration Calculus Proof Assistant in

PVS. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, FTRTFT, volume 863

of LNCS, pages 660{679. S-V, 1994.

[28] J�rgen Staunstrup. A Formal Approach to Hardware Design. Kluwer, 1993.

[29] J�rgen Staunstrup, S. Garland, and J. Guttag. Localized Veri�cation of Circuit

Descriptions. In Proceedings of the Workshop on Automatic Veri�cation Methods

for Finite State Systems, LNCS 407. Springer Verlag, 1989.

[30] Jan T. Udding. Classi�cation and Composition of Delay-Insensitive Circuits. PhD

thesis, Eindhoven University of Technology, 1984.

[31] Tom Verhoe�. Delay-insensitive codes - an overview. Distributed Computing, 3:1{8,

1988.

Appendix A

User Manual

The proof checker mechanically veri�es existing proofs. It enforces the use of sound proof

rules thus increasing the rigor of the proof. The checker is implemented on top of Voss

[25], a hardware veri�cation system developed by Carl Seger of the University of British

Columbia. Voss provides Ordered Binary Decision Diagrams which are used for boolean

manipulation, linear programming which is used as a decision procedure for systems of

linear inequalities, and a functional language, FL, which is used as an interface language

to the proof checker.

This document serves as a user manual for the proof checker. It concentrates on how

to use the proof checker and does not go into details of the theory behind it. Section A.1

gives an overview of the structure of the proof checker. Section A.2 explains how to start

the system. Section A.3 describes the syntax used in the checker. Section A.4 lists all

the proof rules with their functionalities. Section A.5 describes some interface functions

which simplify the generation of proofs and some auxiliary functions which help to form

new proof states. Section A.6 is a simple example of how the proof checker is used to

verify a simple proof by induction.

A.1 Structure of Proof Checker

The proof checker represents a proof as a sequence of proof states. Each proof state

includes the hypotheses and claim of the theorem as well as any pending proof obligations.

Initially, a proof has a single obligation, the claim of the theorem. By applying proof rules,

97

Appendix A. User Manual 98

pending obligations are rewritten into simpler obligations or discharged. A completed

proof has an empty obligation list.

A proof state in the checker is composed of a claim, a hypothesis list, an obligation

list, and a postponed list.

� The claim is the main goal to be proven. This �eld associates the theorem to be

proven with its proof.

� The hypothesis list contains the hypotheses of the proof. These are stated at the

beginning of the proof. No element can be added to or removed from this list once

the proof is stated.

� The obligation list is the list of pending proof obligations to be discharged before

the claim is proven. Initially, this list contains exactly one element: the claim. The

proof is complete when this list becomes empty.

� The postponed list contains all unveri�ed assumptions made along the course of the

proof. Initially, this list is empty. An obligation can be moved to or removed from

this list with the Postpone rules described in Section A.4. Moving a proof obligation

to the postponed list is the only way a proof obligation can be discharged without

actually proving it. The postponed object can be moved back onto the obligation

list to be discharged by a proof rule further on along the proof. When a proof is

completed, all obligations on the postponed list are printed, and it is the user's

responsibility to verify them.

A.2 How to Start/Exit the System

The proof checker is installed under /isd/local/generic/bin/. To invoke the system,

either add this directory under your path, update the path by typing source .cshrc,

Appendix A. User Manual 99

and type checker or simply type /isd/local/generic/bin/checker. This command

executes Voss and loads the FL �les for the proof checker, loads the �le with interface

functions to the proof checker and returns with the FL prompt. To get an earlier version

of the proof checker, type checker [version#].

To load the system without the interface functions, the user will have to execute and

load the core system manually by typing

load /isd/local/generic/lib/checker/state.fl.

The core system only includes the core functions of the checker and does not include

interface functions which ease state manipulation. In most cases, the whole system is

desired.

Although the system is interactive, keeping a proof script is handy since regenerating

a proof state can be time consuming. Once a proof script is generated, it can be loaded

onto the system with the command load "script.fl"; assuming that the proof script

is named script.fl.

To exit the system, simply type quit; after the prompt : as follows:

: quit;

A.3 Syntax Used in the Checker

Before a user can initialize and/or manipulate a proof state, an understanding of the data

structures of di�erent data types de�ned in this proof checker is needed. FL provides

primitive types bool, int, and string. For the purpose of this proof checker, more

complicated types are needed. There are three main types de�ned in the proof checker:

integer, real and boolean. See Figure A.12 for the de�nitions of these types. Note that

the type constructors will be in�x operators in the near future. This section describes

Appendix A. User Manual 100

the structures of these types and gives examples on how to declare variables and de�ne

the problem before starting a proof.

The type int is the FL integer type described in Section 2.2 of [25], and the type

string is the FL string type described in Section 2.8 of [25].

The type boolean has the constants True and False. A boolean variable can be

declared with the constructor bool as follows:

bool "a";

A reference to this variable can be de�ned as follows:

: let x = bool "a";

In this case, x is a reference to the boolean variable bool ``a''. Consider the following

three statements:

: let a = bool "a";

: let b = bool "a";

: let c = bool "c";

The pointers a and b refer to the same variable bool ``a'', and c refers to the variable

bool ``c''. The name of the pointer is not required to be the same as the string assigned

to the boolean variable, although it is usually convenient.

Integer constants are constructed with the constructor const followed by its integer

value. For example, the constant 3 is written as (const 3). An integer variable, x, can

be declared as:

: let x = I "x";

Appendix A. User Manual 101

<boolean> ::= True j
False j
bool <string> j // declare a boolean variable

Not <boolean> j
Equal <boolean> <boolean> j
==> <boolean> <boolean> j // implication

Or <boolean> <boolean> j
And <boolean> <boolean> j
b array <string> <integer> j // declare a boolean array
0
>= <real> <real> j // real comparisons

0
> <real> <real> j

0
<= <real> <real> j

0
< <real> <real> j

0 = <real> <real> j
0
<> <real> <real> j
$>= <integer> <integer> j // integer comparisons

$> <integer> <integer> j
$<= <integer> <integer> j
$< <integer> <integer> j
$= <integer> <integer> j
$<> <integer> <integer> j
forall <integer> <boolean>

<integer> ::= const <int> j // declare an integer constant

I <string> j // declare an integer valued variable

i array <string> <integer> j // declare an integer array

++ <integer> <integer> j // addition

�� <integer> <integer> j // subtraction

** <integer> <integer> j // multiplication

i if <boolean> <integer> <integer>

<real> ::= rconst<int> <int> j // declare a real constant

R <string> j // declare a real valued variable

r array <string> <integer> j // declare a real array

'+ <real> <real> j // addition

'- <real> <real> j // subtraction

'* <integer> <real> j // multiplication

r if <boolean> <real> <real>

Note: All binary operators are in�x operators.

Figure A.12: De�nition of Boolean type, Integer type, and Real type.

Appendix A. User Manual 102

Real is the type for rational numbers. Real constants are declared as (rconst n d)

where n is the integer value for the numerator and d is the integer value for the denomi-

nator. Real variables are declared the same way as integer variables except that they

use the constructor R.

With these constants and variables, more complicated expressions can be constructed

using the operations depicted in �gure A.12

A.4 Proof Rules

Proof rules are the only way to manipulate a proof state. This section describes these

rules. Section A.4.1 describes how to start and end a proof. Section A.4.2 lists the ten

proof rules provided by the proof checker. Each function is explained with three �elds:

syntax, the function name and how it can be called, description, a brief explanation

of the rule, and error message, a list of possible error messages resulting from the

rule and the meaning of each of these messages. Error messages of the form ** <error

message> ** are speci�c to a proof rule and other error messages, without the **, are

generated from general subroutines used in di�erent proof rules.

A.4.1 To Start/End a proof: (Start proof/Done)

To initialize a proof, the Start proof function creates a proof state from the claim we

want to prove and the hypotheses of the proof. This function takes a boolean and a

boolean list and returns a state. For example, if we want to prove (x > y) given that

(x > r) and (r > y), then we would initialize the proof with

: let state = (Start proof(x $> y) [(x $> r), (r $> y)]);

assuming that x, y, and r are of type integer.

Appendix A. User Manual 103

A proof state can be viewed with the function (print State state). This function

takes a proof state and returns a string listing the four �elds in the proof state.

After initializing the proof with Start proof, we manipulate this proof state through

other proof rules until the obligation list becomes empty. When the obligation list be-

comes empty, we can conclude the proof with the function Done. (Done state) takes the

proof state, state, makes sure the obligation list is empty, and prints that the claim has

been proven subject to any assumptions that were added to the postponed list in the

course of the proof. For the above example, we would get the following message when

the proof is done.

: Done state;

"(x $> y)

is proven with the unverified postponed objects:

"

In this case, there is no remaining postponed object in the proof.

1. Start Proof:

syntax:

(Start proofclaim hypothesis lst)

description:

The function Start proofcreates an initial proof state from the claim and the list

of hypotheses.

error message:

This function does not generate any error messages.

2. End Proof:

syntax:

Appendix A. User Manual 104

(Donestate)

description:

The function Done con�rms veri�cation of the proof by checking the obligation list

and the postponed list. It gives warning if debug mode was used in generating the

proof. This mode is explained in Section A.4.3.

error messages:

** done: currently in debug mode **

indicates an attempt to end proof in an invalid mode.

WARNING: Part of this proof was generated in DEBUG mode.

Soundness is not guaranteed.

indicates that the proof may not be sound because part of the proof was generated

in a mode designed for proof debugging.

A.4.2 The Ten Proof Rules

This section describes the proof rules provided by the proof checker. Note that all proof

rules are functions which take an index (or indices for the PC rule) to the old obligation

list together with other auxiliary information and return a state of type state.

1. Linear Programming Rule:

syntax:

(apply lp n state)

description:

The Linear Programming Rule is a discharge rule. It requires that the nth obligation

of the proof state is of the following form:

((Not a) And b And c And ...) Equal False

Appendix A. User Manual 105

where a, b, and c are linear inequalities or negations of linear inequalities.

If the obligation holds as a tautology, the rule simply discharges it as a pending

proof obligation, resulting that the obligation list reduces its size by one. Otherwise,

the rule fails.

error messages:

** LP Rule Failed: obligation not of form b Equal False **

indicates that the structure of the proof obligation is of neither forms mentioned

above.

** LP Rule Failed: system is feasible **

indicates that the obligation cannot be discharged because it is not a tautology.

Element not in the list

indicates that there are less than i hypotheses on the hypothesis list. However,

note any other rule can produce the same error message when the index of the

obligation list is out-of-bounds.

2. Predicate Calculus Rule:

syntax:

(apply PredicateCalc index list predicate list state)

description:

The Predicate Calculus Rule is a replacement rule. It takes as its arguments a

list of indices of the obligation list, index list, a list of boolean expressions,

predicate list, and the proof state, state. If the conjunction of the list of

boolean expression of predicate list implies the list of indexed obligations, then

the indexed obligations are replaced by this list of boolean expressions. Then the

indexed obligations are removed from the obligation list, and predicate list is

Appendix A. User Manual 106

inserted into the obligation list where the �rst indexed obligation was before the

removal of the old list.

error message:

** Predicate Calculus Rule Failed: expressions do not imply

obligations **

indicates that the desired implication does not hold and the replacement cannot be

done.

3. Instantiation Rule:

syntax:

(instantiate n k state)

description:

The Instantiation Rule is a discharge rule. It requires that the nth obligation is of

the form 8P) Q. It discharges the obligation if Q is a proper instantiation of 8P

with the instant k. Otherwise, the rule fails.

error messages:

** Instantiate Rule Failed **

indicates that Q is not a proper instantiation of 8P .

** Instantiate Rule Failed: obligation not in the required form

forall P ==> Q **

indicates that the structure of the proof obligation is not of the form 8P) Q.

4. Skolemization Rule:

syntax:

(apply skolem n skolemized expr subexpr i skolem const state)

Appendix A. User Manual 107

description:

The Skolemization Rule is a replacement rule. It takes as its arguments the index

of the targeted obligation, n, the desired resulting replacement, skolemized expr,

the universally quanti�ed subexpression to be skolemized, subexpr, the quanti�er

to be skolemized over, i, the proposed skolem constant, skolem const, and the

proof state, state. Note that universal quanti�cation, in the checker, is always

over all integers. The rule skolemizes the obligation or a subexpression of the

obligation. Valid choices for the skolem constant are variables that do not appear

free in the targeted obligation or on the hypothesis list. If skolemized expr is a

valid replacement, then the nth obligation is replaced by it. Then skolemized expr

becomes the nth obligation in the new state. Otherwise, the rule fails.

error messages:

** Skolem Rule Failed: skolem constant is a free variable in

hypothesis list **

indicating that the proposed skolem constant already exists as a free variable in

the hypotheses on the hypothesis list.

** Skolem Rule Failed: skolem constant is a free variable in

expression **

indicating that the proposed skolem constant already exists as a free variable in

the targeted obligation.

** Skolem Rule Failed: unable to do replacement **

indicates that the proposed replacement does not match the expected result struc-

turally and that the replacement cannot be done.

Appendix A. User Manual 108

** Skolem Rule Failed: not universal quantified expression **

indicates that subexpr is not a universally quanti�ed expression and cannot be

skolemized.

5. Induction Rule:

syntax:

(induct n k base [b, up, down] state)

description:

The Induction Rule is a replacement rule. It provides a mechanism to reason by

mathematical induction over integers. It replaces the nth obligation, which must

be a universally quanti�ed expression, by three new obligations: one for the base

case, one to induct up, and one to induct down. This rule takes as its arguments

the index of the targeted obligation, n, the quanti�er of the resulting universally

quanti�ed expressions for the induction steps, k, the base case value, base, the

list of expected results (the base case, b, the case inducting up, up, and the case

inducting down, down), and �nally the proof state, state. The rule rewrites the

n
th obligation of the form 8i:P (i) into

(a) P (base)

(b) 8k:((k > base)And(8j 2 fbase; k� 1g:P (j)))! P (k)

(c) 8k:((k < base)And(8j 2 fk + 1; baseg:P (j)))! P (k)

After the replacement, the base case, the argument inducting up, and the argu-

ment inducting down become the nth, the (n + 1)th, and the (n + 2)th obligations

respectively, and the old n
th obligation is removed from the list.

Appendix A. User Manual 109

error messages:

** Induct Rule Failed: proposed index is a free variable in

expression **

indicates that k, the proposed quanti�er for the universally quanti�ed expression

is a free variable in the original obligation and that it is an illegal choice for the

quanti�er.

** Induct Rule Failed: invalid rewrite for base case **

indicates that b is not a valid rewrite for the induction base case.

** Induct Rule Failed: invalid rewrite for case inducting up **

indicates that up is not a valid rewrite for the case inducting up.

** Induct Rule Failed: invalid rewrite for case inducting down **

indicates that down is not a valid rewrite for the case inducting down.

** Induct Rule Failed: not universally quantified expression **

indicates that the n
th obligation is not a universally quanti�ed expression as re-

quired.

6. De�nition Rule:

syntax:

(by hypothesis n i state)

description:

The De�nition Rule is a replacement rule. It allows users to retrieve information

Appendix A. User Manual 110

from the hypothesis list and apply it to a speci�c obligation. It takes as its argu-

ments the index of the targeted obligation, n, the index of the hypothesis to use, i,

and the proof state, state. This rule replaces the nth obligation, obligation(n), by

the new obligation, hypothesis(i) ==> obligation(n), where hypothesis(i)

represents the ith hypothesis. If the ith hypothesis exists, the old obligation is re-

moved from the list and the new obligation becomes the nth obligation in the new

state. Otherwise, the rule fails.

error message:

Element not in the list

indicates that there are less than i hypotheses on the hypothesis list. However,

note any other rule can produce the same error message when the index of the

obligation list is out-of-bounds.

7. Postpone Rules:

The Postpone Rules manipulate the postponed list. This set of rules allows the

user to move ahead in a proof without actually proving an obligation. Another use

of these rules is to postpone proving an obligation that appears more than once in

the course of the proof. The user then discharges the obligation with one sequence

of proof steps. There are three rules in this set: postpone, by postponement,

and retrieve. There is a name associated with each element in the postponed list,

and these three rules refer to the postponed objects by their names.

� syntax:

(postpone n name state)

description:

The function, postpone, discharges the nth obligation by moving it onto the

postponed list and assigns it the name, name. If the name is already associated

Appendix A. User Manual 111

with a postponed object, then it checks to see if this new postponed object

is logically related to the old one. If the new postponed object implies the

old one, the old object is removed from the postponed list and the new one

is added to the front of the list. If the old postponed object implies the new

one, the postponed list is not changed. If neither case holds, the rule fails.

error message:

** Postponed Rule Failed: name already existed for unrelated

assumption **

indicates that the name is already used for a postponed object which neither

implies the targeted obligation, nor is implied by the targeted obligation.

� syntax:

(by postponement n name state)

description:

The function, by postponement, is similar to theDe�nition Rule. Instead

of retrieving information from the hypothesis list, this rule uses an assertion

whose justi�cation has been postponed. It looks up the postponed object

named name from the postponed list and replaces the n
th obligation, obli-

gation(n), by postpone(name) ==> obligation(n), where postpone(name)

represents the postponed object tagged with the name name.

error message:

** By Postponement Failed: failed to match name **

indicates that the suggested name given is not a name for any postponed

object on the postponed list.

� syntax:

(retrieve name state)

Appendix A. User Manual 112

description:

The function, retrieve, moves the postponed object named name from the

postponed list back to the obligation list to be discharged by other proof rules.

The retrieved postponed object is inserted to the beginning of the obligation

list.

error message:

** Retrieve Failed: failed to match name **

indicates that the suggested name given is not a name for any postponed

object on the postponed list.

8. Equality Rule:

syntax:

(apply equality n result state)

description:

The Equality Rule is a replacement rule. It takes as its arguments the index of the

targeted obligation, n, the expected resulting replacement, result, and the proof

state, state. It rewrites an obligation of one of the following forms:

(b1 Equal b2) ==> f(b1,b2),

(i1 $= i2) ==> f(i1,i2),

or (r1 '= r2) ==> f(r1,r2),

where f represents an arbitrary expression,

into expression with the same structure while using (b1,b2), (i1,i2), and

(r1,r2) as interchangeable pairs. Some of the valid rewrites for obligation

(b1 Equal b2) ==> f(b1,b2) are:

Appendix A. User Manual 113

(b1 Equal b2) ==> f(b1,b2),

(b1 Equal b2) ==> f(b2,b1),

(b1 Equal b2) ==> f(b1,b1),

(b1 Equal b2) ==> f(b2,b2),

...

error messages:

** Equality Rule Failed: invalid rewritten form **

indicates that result does not structurally match any proper replacement resulting

from this rule.

** Equality Rule Failed: obligation not of form i=j ==> f(i,j) **

indicates that the structure of the proof obligation matches none of the forms men-

tioned above.

9. If Rule:

syntax:

(rewrite if n result state)

description:

The If Rule is a replacement rule. It rewrites the nth obligation as follows:

(x if True a else b)
becomes

�! a,

and (x if False a else b)
becomes

�! b,

where x if is any of b if, i if, or r if.

Then the rule checks to see if the expected rewrite, result, is legal.

Appendix A. User Manual 114

error message:

** rewrite if's Failed: invalid rewritten form **

indicates that the proposed replacement, result, is not a legal rewrite.

10. Discrete Rule:

syntax:

(apply discrete n state)

description:

The Discrete Rule is a discharge rule. It is used to exploit the discreteness property

of integers. It discharges the nth obligation if it is of the form

(x $> y) Equal (x $>= (y++one))

or (x $< y) Equal (x $<= (y--one)).

where one is de�ned to be the integer constant 1.

error message:

** apply discrete Failed: obligation not in correct form **

indicates that the obligation cannot be discharged because it is of neither of the

forms mentioned above.

A.4.3 Proof Debugging: debug mode

Running a proof in the proof checker takes time. It would be time consuming if the user

is required to run a proof from the start for every error in the proof script. The debug

mode allows the user to manipulate proof states without veri�cation. After correcting

an error, the user can re-execute previously veri�ed parts of the proof script where proof

steps are not checked. Since the proof rules replace and discharge obligations as requested

without veri�cation, execution in this mode is very fast. Normal execution is resumed

Appendix A. User Manual 115

when the modi�ed portion of the script is reached. Any proof states derived from proof

rules executed in debug mode are marked as untrustworthy. Thus, when the entire proof

is debugged, it must be executed again with every step checked for the theorem to be

certi�ed by the checker.

The functions begin debug and end debug set and reset debug mode. The function

begin debug takes a state and puts it in debug mode. The function end debug takes

a state and puts it in normal (default) mode. It is not required to have matching pairs of

begin debug and end debug in the proof. Using begin debug in debug mode does

not alter the mode. Using end debug in normal mode does not change the mode either.

Attempting to end a proof in the debug mode is an error. The function Done requires a

proof state to be in normal mode.

A.5 User Interface

On top of the core system, there are a few user interface functions and some auxiliary

functions to ease the tedium in generating proof scripts for the proof checker. The

�rst part of this section lists the interface functions, and the second part of the section

describes the auxiliary functions accessible to the users.

A.5.1 Interface Functions

There are three sets of User Interface Functions: Case Analysis, Unchanged, and

Print Abbreviation. There are certain proof techniques that utilize the same or similar

sequence of proof rules, and manipulate proof obligations in similar ways. Each set of

interface functions reduces the number of proof steps by encapsulating a speci�c sequence

of proof rules and manipulations of the proof states in one function call. Since these

functions, like simple proof rules, provide functionality to discharge or simplify proof

Appendix A. User Manual 116

obligations, we describe them in the same way as the ten proof rules in Section A.4.2. For

each set of interface functions, we present its syntax, give a description of its functionality,

and list possible error messages produced by the functions.

1. Case Analysis:

There are two versions of Case Analysis: one over booleans called CaseAnalysis,

and the other over integers called CaseAnalysis2.

� syntax:

(CaseAnalysis n case state)

description:

Case Analysis is like a replacement rule. It takes as its arguments the index

of the targeted obligation, n, the case to apply case analysis on, case, and the

proof state, state. It splits a proof obligation, into two separate obligations:

one with case being True, and the other with case being False. A proof

obligation, P, becomes:

(case Equal True) ==> P

and, (case Equal False) ==> P.

In place of the nth obligation, P, (case Equal True) ==> P becomes the nth

obligation, and (case Equal False) ==> P becomes the (n+1)th obligation

in the new proof state.

error messages:

This function does not generate any error messages.

� syntax:

(CaseAnalysis2 n i lst state)

Appendix A. User Manual 117

description:

CaseAnalysis2 is like a replacement rule. Given a monotonically increasing

list of integers, it enumerates all possible values for a variable and applies

case analysis over that variable. This interface function takes as its arguments

the index of the targeted obligation, n, the variable, i, over which to apply

case analysis, the list specifying the desired integer ranges, lst, and the proof

state, state. Given the integer ranges [x(0), x(1), .., x(m)], the n
th

obligation, obligation(n) is replaced by the following list:

(i < x(0)) ==> obligation(n)

(i < x(1)) And (x(0) <= i) ==> obligation(n)

...

(x(m) <= i) And ... And (x(0) <= i) ==> obligation(n)

In place of the old nth obligation, this list becomes the nth, (n+1)th ... (n+m)th

obligations in the new proof state.

error messages:

This interface function calls apply PredicateCalc and apply lp; therefore,

it can produce the same error messages these rules generate.

2. Unchanged:

syntax:

(Unchanged n hyp value state)

description:

In many cases, an obligation can be discharged by instantiating a hypothesis. This

Appendix A. User Manual 118

function takes the index of the targeted obligation, n, the index to the desired hy-

pothesis, hyp, the value to instantiate the hypothesis by, value, and the proof state,

state. Then it tries to discharge the obligation by instantiating the hypothesis by

the given value.

error messages:

Unchanged calls the Predicate Calculus Rule, the De�nition Rule, the In-

stantiation Rule and the Linear Programming Rule, therefore, all error mes-

sages generated from these proof rules are possible error messages for this interface

function.

** Unchanged Failed: instantiation and obligation match failed **

is an error message generated exclusively by this function. It indicates that the

hypothesis cannot be instantiated to structurally match the obligation.

3. Print Abbreviation:

In many cases, expressions in a proof state can be large and di�cult for the user

to read. Print Abbreviation is a set of functions which allow users to introduce

abbreviations for expressions.

� syntax:

(abbrevBool abbrev expr abbrev lst)

(abbrevInt abbrev expr abbrev lst)

(abbrevReal abbrev expr abbrev lst)

description:

Functions abbrevBool, abbrevInt, and abbrevReal introduce abbrevia-

tions for boolean expressions, integer expressions, and real expressions respec-

tively. They take the proposed abbreviation, abbrev, for an expression, expr,

Appendix A. User Manual 119

and add it to the abbreviation list, abbrev lst.

WARNING: This set of functions does not check if the proposed abbreviation

is already used for another expression. Since this is an interface function,

it does not a�ect the soundness of the proof checker, however, it can create

confusion if one name is used to represent two di�erent expressions.

error messages:

There are no error messages for this set of functions.

� syntax:

(Bexpand b abbrev lst)

(Iexpand b abbrev lst)

(Rexpand b abbrev lst)

description:

Functions Bexpand, Iexpand, and Rexpand print abbreviations for

boolean, integer, and real expressions respectively in their expanded form.

The argument b is the abbreviation for an expression, and abbrev lst is the

abbreviation list where all the abbreviation-expression matches are stored.

error messages:

"no such abbreviation"

indicates that b is not de�ned as an abbreviation for any expression.

� syntax:

(display abbrev abbrev lst)

description:

The function display abbrev shows all abbreviation-expression matches.

This shows all possible abbreviations which can be used in an expression.

Appendix A. User Manual 120

error messages:

This function does not generate any error messages.

� syntax:

(print abbrev abbrev lst state)

description:

The function print abbrev displays a proof state in its abbreviated form.

error messages:

This function does not generate any error messages.

A.5.2 Auxiliary Functions

The proof rules which rewrite proof obligations require proposed replacements from the

user. Generating expressions can be a tedious job. The proof checker provides four

functions to retrieve di�erent elements from a proof state, and functions for minor mod-

i�cations of expressions.

The four functions which retrieve elements from a proof states are:

1. (getobligation n state) which retrieves the n
th obligation from the obligation

list in state.

2. (getpostpone n state) which retrieves the nth postponed from the postponed

list in state.

3. (gethypothesis n state) which retrieves the nth hypothesis from the hypothesis

list in state.

4. (getclaim state) which retrieves the claim from state.

The auxiliary functions replaceInt, replaceReal, and replaceBool are replace-

ment functions. (replaceInt expr i1 i2) replaces all occurrences of the integer valued

Appendix A. User Manual 121

subexpression, i1, by the integer valued subexpression, i2, in the boolean expression,

expr; (replaceReal expr r1 r2) replaces all occurrences of the real valued subexpres-

sion, r1, by the real valued subexpression, r2, in the boolean expression, expr; and

(replaceBool expr b1 b2) replaces all occurrences of the boolean, b1, by the boolean,

b2, in the boolean expression, expr.

The functions lhs and rhs take a boolean expression of the form (a ==> b), and

return the left hand side of the implication, a, and the right hand side of the implication,

b, respectively.

Appendix A. User Manual 122

A.6 Example

This section shows how the proof checker can be applied to an induction proof by proving

the following:
nX

i=1

fi = fn+2 � 1

where fi is the i
th Fibonacci number, and

n � 1.

This example is from [24].

This claim can be proven by mathematical induction. The base case where n = 1

follows since
1X

i=1

fi = 1 and this is the same as f1+2 � 1 = f3 � 1 = 2 � 1 = 1. The

induction hypothesis is
nX

i=1

fi = fn+2 � 1. We show that under this assumption that

n+1X
i=1

fi = fn+3 � 1 as follows:

n+1X
i=1

fi = (
nX

i=1

fi) + fn+1

= (fn+2 � 1) + fn+1

= (fn+1 + fn+2)� 1

= fn+3 � 1:

We have followed this manual proof as a guideline to produce a checked version. The

following is the script for the machine checked version. This �le can be found under

/isd/local/generic/lib/checker/examples

Appendix A. User Manual 123

Appendix A. User Manual 124

Appendix A. User Manual 125

Appendix A. User Manual 126

Appendix B

Proof Script for STARI

B.1 Proof Script for the Transmitter Transition

127

Appendix B. Proof Script for STARI 128

Appendix B. Proof Script for STARI 129

Appendix B. Proof Script for STARI 130

Appendix B. Proof Script for STARI 131

Appendix B. Proof Script for STARI 132

Appendix B. Proof Script for STARI 133

Appendix B. Proof Script for STARI 134

Appendix B. Proof Script for STARI 135

Appendix B. Proof Script for STARI 136

Appendix B. Proof Script for STARI 137

Appendix B. Proof Script for STARI 138

Appendix B. Proof Script for STARI 139

Appendix B. Proof Script for STARI 140

Appendix B. Proof Script for STARI 141

Appendix B. Proof Script for STARI 142

Appendix B. Proof Script for STARI 143

Appendix B. Proof Script for STARI 144

Appendix B. Proof Script for STARI 145

Appendix B. Proof Script for STARI 146

Appendix B. Proof Script for STARI 147

Appendix B. Proof Script for STARI 148

B.2 Proof Script for the FIFO Transition

Appendix B. Proof Script for STARI 149

Appendix B. Proof Script for STARI 150

Appendix B. Proof Script for STARI 151

Appendix B. Proof Script for STARI 152

Appendix B. Proof Script for STARI 153

Appendix B. Proof Script for STARI 154

Appendix B. Proof Script for STARI 155

Appendix B. Proof Script for STARI 156

Appendix B. Proof Script for STARI 157

Appendix B. Proof Script for STARI 158

Appendix B. Proof Script for STARI 159

Appendix B. Proof Script for STARI 160

Appendix B. Proof Script for STARI 161

Appendix B. Proof Script for STARI 162

Appendix B. Proof Script for STARI 163

Appendix B. Proof Script for STARI 164

Appendix B. Proof Script for STARI 165

Appendix B. Proof Script for STARI 166

Appendix B. Proof Script for STARI 167

Appendix B. Proof Script for STARI 168

B.3 Proof Script for the Receiver Transition

Appendix B. Proof Script for STARI 169

Appendix B. Proof Script for STARI 170

Appendix B. Proof Script for STARI 171

Appendix B. Proof Script for STARI 172

Appendix B. Proof Script for STARI 173

Appendix B. Proof Script for STARI 174

Appendix B. Proof Script for STARI 175

Appendix B. Proof Script for STARI 176

Appendix B. Proof Script for STARI 177

Appendix B. Proof Script for STARI 178

Appendix B. Proof Script for STARI 179

Appendix B. Proof Script for STARI 180

Appendix B. Proof Script for STARI 181

Appendix B. Proof Script for STARI 182

Appendix B. Proof Script for STARI 183

Appendix B. Proof Script for STARI 184

Appendix B. Proof Script for STARI 185

Appendix B. Proof Script for STARI 186

Appendix B. Proof Script for STARI 187

Appendix B. Proof Script for STARI 188

Appendix B. Proof Script for STARI 189

Appendix B. Proof Script for STARI 190

B.4 Proof Script for the Protocol

Appendix B. Proof Script for STARI 191

Appendix B. Proof Script for STARI 192

Appendix B. Proof Script for STARI 193

