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Abstract

In this paper we show that the re
ectance function of a rotating object illuminated under

a collinear light source (where the light source lies on or near the optical axis) can be

estimated from the image sequence of the object and applied to surface recovery. We �rst

calculate the 3D locations of some singular points from the image sequence, and extract

the brightness values of these singular points during the object rotation to estimate the

surface re
ectance function. Then we use the estimated re
ectance function for surface

recovery from the images of the rotating object. Two subprocedures are used in surface

recovery. The �rst subprocedure computes the depth around a point of known depth and

surface orientation by using �rst-order Taylor series approximation. The other computes

the surface orientation of a surface point from its image brightness values in the two

di�erent images by applying the estimated re
ectance function. Starting from surface

points of known depth values and surface orientations and iteratively applying the two

subprocedures, the surface depth and orientation are recovered simultaneously over the

whole object surface. The experimental results on real image sequences of both matte and

specular surfaces show that the technique is feasible and robust.

Key words: Physics based vision, Re
ectance, Shape recovery, Multiview integration.

1



1 Introduction

An important task in computer vision is to recover surface shape from one or more 2D

images. Based on physical properties of the re
ectance of a surface, shading in images

can be used for surface recovery. A lot of work, for example, shape from shading [2, 7],

photometric stereo [14, 15, 16], and photometric sampling [4], has been done along this

line. In order to use shading information, the re
ectance function of the surface under

recovery must be known. In most cases, the re
ectance function is assumed to be a certain

type [10, 4]. The most commonly used assumption is Lambertian re
ectance [12, 7] because

of its simplicity. In photometric stereo [15, 16], the re
ectance function is computed from

a calibration object of known shape whose surface is made of the same material as the

surface of the object under recovery.

However, for most real objects, the surface re
ectance is not Lambertian. The Lam-

bertian assumption is only valid in some limited cases and limited lighting and viewing

conditions [13, 11, 5]. The empirical photometric stereo requires that the calibration object

and the object under recovery have the same re
ectance function and be illuminated and

viewed under the same conditions. The calibration procedure must be accurate otherwise

it will introduce errors in surface recovery. The calibration process may become di�cult

or impossible when we do not have a calibration object of the same re
ectance function as

the object being imaged.

We attempt to compute the surface re
ectance directly from image sequence of a ro-

tating object and then use the surface re
ectance function to recover the orientation and

the scaled surface depth. The rotating object is on a turntable whose rotation angle can

be controlled or detected. The images are taken by a �xed camera as the object rotates

around a vertical axis. A collinear light source, which points in the same direction as

the camera viewing direction, and lies on or very near the optical axis, gives a uniform

radiance over the object. Under the illumination of a collinear light source, all the compo-

nents of re
ectance at a surface point, such as the specular component, di�use component

and other components [11] are functions of the incident angle i, which is de�ned as the

angle between the illuminant direction and the surface normal at a surface point. Thus,

2



in this case, the total image brightness of a point on a uniform surface is a function of the

incident angle i. This fact makes it easy to estimate the re
ectance function and apply the

re
ectance function for surface recovery. The estimate of the re
ectance function is based

on a set of singular points. A singular surface point, of which the normal is opposite to

the viewing direction, is also a singular point of brightness value in an image because the

incident angle at a singular point is zero. Under the assumed orthographical projection,

the x, y coordinates of a singular point can be directly found from an image by searching

for a point of local maximumbrightness. The z coordinate of a singular point can be found

on the contours of the object image taken after the object has rotated by 90 degrees. Once

we known the 3D location of a singular point, we can track and record the 3D location,

the incident angle and its brightness value over the image sequence taken during the 90

degree rotation. From the incident angles and the corresponding image brightness values

recorded, we build the re
ectance function of the surface. For most surfaces the re
ectance

function under a collinear light source is strictly monotonic so we can compute its inverse.

Using the inverse function, from the brightness of an image point we estimate the incident

angle i for the corresponding 3D point. As the surface normal has only two degrees of

freedom, two images of a 3D point will be su�cient to determine the surface normal with

a two-way ambiguity if the object rotation angles are known when the two images are

taken. The ambiguity can be removed by using continuity constraint and some 3D points

of known positions on the surface during the recovery process.

To get depth and surface orientation (i.e., the surface normal at a point), we use two

images. One image is the image taken before the rotation of the object. The other image

is taken after the object has rotated by a certain angle. The depth and surface orientation

are computed at every point in the �rst image. Two subprocedures are used to compute

the depth and surface orientation. The �rst subprocedure computes the depth values

of the neighbor points of an image point of known depth and surface orientation. For

an image point of known depth and surface orientation, the depth values in the small

neighborhood of this point are estimated by �rst-order Taylor series approximation. The

second subprocedure computes the surface orientation for an image point using the depth

value at this image point. From the depth value of an image point in the �rst image, its
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brightness value in the other image is found. By using the re
ectance function, the two

brightness values, and the rotation angle when the second image is taken , the surface

orientation for the image point is determined. As depth and surface orientation at a

singular point are known, we apply the �rst subprocedure to a singular point to compute

the depth values for its neighbors. After the depth values of the neighbor points have been

obtained, we apply the second subprocedure to the neighbor points to compute surface

normals for these points. Applying the �rst subprocedure to the neighbor points, we

expand depth over a larger area, and applying the second subprocedure again, we compute

surface normals for the expanded area. In this way, taking singular points as starting points

and iteratively applying the two subprocedures, we spread the computation over the entire

image. The computation for depth basically is an integration process so it is robust against

image noise. The computation for surface orientation can be done by look-up table just as

in photometric stereo [15, 16].

Section 2 introduces the assumptions and the experimental setting for our work. Section

3 presents a method for building the re
ectance function from an image sequence of a

rotating object under a collinear light source. Section 4 describes the process for recovering

surface shape and orientation by using the re
ectance function obtained. Section 5 shows

some experimental results on real image sequences. The �nal section discusses experimental

results and future work.

2 Assumptions and Experimental Conditions

The imaging geometry is shown in Fig. 1. The object is on a turntable whose rotation

angle can be controlled or detected. The Y axis coincides with the rotation axis of the

turntable. The light source and the camera are �xed and point in the same direction. The

camera viewing direction and the light illuminant direction are aligned with the Z axis.

The light source is a distant light source with uniform radiance over time and illuminated

area. Since the camera is far away from the object, orthographical projection is used. Thus

a surface point (x; y; z) is projected on an image point (x; y). To obtain the projection of

the rotation axis in the images, a vertical black line on a board is aligned with the rotation
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Figure 1: Experimental setup

axis and then identi�ed from the image of the board. Images are taken when the object

rotates around the Y axis in the direction from the X axis to the Z axis.

The surface of the object is assumed to be piecewise continuous and di�erentiable.

The surface orientation is de�ned as (p; q; 1) with p = @z(x; y)=@x and q = @z(x; y)=@y.

When the object rotates, the coordinates and the orientation of the surface points on the

object change. Let (x; y; z) be a 3D surface point on the object and (p; q; 1) be the surface

orientation of this point, After an � degree rotation, the 3D location (x�; y�; z�) of this

point is (x�; y�; z�) = (x cos� � z sin�; y; x sin� + z cos�) and the surface orientation

(p�; q�; 1) of this point is determined by

p� =
p cos �+ sin�

cos� � p sin�
; (1)

q� =
q

cos� � p sin�
: (2)

In surface recovery, the depth value z� and surface orientation are recovered at every point

in an image. In our experiment, the depth and the surface orientation in the �rst image,

which is taken before the object rotation, are recovered.

We also assume the re
ectance of the object surface is uniform. In the general case,

the image brightness of a 3D point under a distant light source is determined by the

re
ectance function R(i; e; g) [14]. As shown in Fig. 2, the incident angle i is the angle
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Figure 2: The image brightness is a function of the angles i, e and g

between the incident ray and the surface normal, the emergent angle e is the angle between

the emergent ray and the surface normal, and the phase angle g is the angle between the

incident and emergent rays. Under a collinear light source, as shown in Fig. 3, the phase

angle g becomes zero and the incident angle i becomes the same as the emergent angle

e. In this case, all the components of the re
ectance such as the specular component,

di�use component and other components de�ned in Tagare's paper [11] are functions of

the incident angle i only. Thus for the surface point (x; y; z), its image brightness value

can be written as

E(x; y) = R(i(x; y)) (3)

where i(x; y) is the incident angle at point (x; y; z).

The re
ectance function has maximum brightness value when i = 0 and minimum

brightness value when i = �=2. We assume the function is strictly monotonic. This

assumption is true for most surfaces. The most important aspect of the re
ectance function

R(i) is that it is a function of one variable. This makes the relation between brightness

value and surface orientation very simple. The simplicity of the re
ectance function makes

it much easier to estimate the re
ectance function and recover the shape of the object.
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Figure 3: Under collinear light, the image brightness only depends on angle i

3 Estimating the Re
ectance Function

The estimate of the re
ectance function is based on singular points of surface orientation

(0, 0, 1). These singular points also have singular brightness values in an image because

the incident angles of these surface points is zero. Let point (xs; ys; zs) be one of these

points. The values of xs and ys can be directly found from the image by searching for a

point of local maximum brightness. To determine zs, we look at the image taken after

the object has rotated by 90 degrees. After the rotation, the incident angle of the original

singular point is 90 degrees, and the 3D location of this point is (�zs; ys; xs). The fact

that the incident angle of a surface point is 90 degrees tells us that the image of this

point is on the contour of the object image. Finding this image point is not di�cult since

its y coordinate is already known and the tangent line of this point along the contour is

parallel to the Y axis. Considering generic surfaces, we assume there are some singular

points whose images are available in the �rst image and will not be occluded during 90

degree rotation. Given the 3D locations of these singular points in the �rst image, we

can track and record the 3D locations, the incident angles, and corresponding brightness

values of these points over the image sequence. For the singular point (xs; ys; zs), after

the object has rotated by an angle �i � 90�, the 3D location of this point (xi; yi; zi) =
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(a) (b) (c) (d)

Figure 4: Tracking the singular points over image sequence

(xs cos �i�zs sin �i; ys; xs sin �i+zs cos �i). The image brightness E(xi; yi) of this point can

be directly obtained from image point (xi; yi) in the image which is taken after a �i degree

rotation of the object. It is easy to show that the incident angle for point (xi; yi; zi) is �i.

From the brightness E(xi; yi) and the corresponding incident angle �i, we can build the

re
ectance function for the surface. The dark line in Fig. 5 shows the re
ectance function

E = R(i) obtained from an image sequence of a rotating vase. Each image is taken after the

object has rotated by another 5 degrees and nineteen images are taken during a 90 degree

rotation. The images in Fig. 4 are four images of the rotating vase. The images (a), (b),

(c) and (d) are the images taken after rotation by 0, 30, 60, and 90 degrees, respectively.

The white line in the middle of each image is the virtual image of the rotation axis of the

object. The centers of the small square boxes in each image denote the points tracked over

the image sequence. The 3D positions of the three singular points are obtained from the

�rst image and the last image in the sequence. So the image brightness values are sampled

from the three points after each successive 5 degree rotation. The average of the brightness

values of the three points is used to build the re
ectance function. The estimated function
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Figure 5: The re
ectance function obtained from the image sequence of the rotating vase

are shown in Fig. 5. Only the three singular points on the body of the vase are tracked

and used to estimate the re
ectance function. The singular points on the handle are not

used for the estimation because the interre
ection make the brightness values of these

points much bigger than these points on the body part. Looking at the image after the 90

degree rotation, we can see that the images of the singular points on the body lie on the

occluding contour against the background and their brightness values are the same as the

background brightness value but the images of the singular points on the handle lie on the

occluding contour against the body of the vase and their brightness value are much higher

than the background brightness value. Thus using the singular points on the handle to

estimate the re
ectance function will introduce errors. However, the 3D locations of these

singular points can be easily found and can be used in the surface recovery.

The function we actually used for surface recovery is the inverse function i = R�1(E).

Since the re
ectance function obtained is strictly monotonic, its inverse exists. The inverse

function is linearly interpolated for every integer brightness value ranging from 0 to 255.

The vase is made of clay and the surface of the vase is considered a matte surface. The
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dotted line in Fig. 5 shows the re
ectance function of an ideal Lambertian surface with the

same maximum brightness value as that of the estimated function. Although the surface

of the vase is considered a matte surface its surface re
ection is not exactly Lambertian.

4 Surface Recovery

After the re
ectance function has been obtained, surface recovery can be done by using

any two images in the image sequence of the rotating object. In this paper, the �rst image

and the image taken after the object is rotated by a certain angle are used. The depth and

surface orientation are computed at every point in the �rst image. Surface recovery uses

two subprocedures to compute the depth and surface orientation. The �rst subprocedure

does local expansion of depth using surface orientation by �rst-order Taylor series approx-

imation. For an image point (x; y), if the depth z and the surface orientation (p; q; 1) are

known, the depth z0 of an image point (x+ �x; y + �x) in the small neighborhood of the

image point (x; y) is calculated by z0 = z + �z = z + p�x+ q�y: The second subprocedure

determines surface orientation (up to a two-way ambiguity) from image brightness values

in two images. The following calculation shows how we derive orientation from image

brightness.

Let image0 be the image taken before the rotation and image1 be the image taken

after � degree rotation of the object. Let (x0; y0) and (x1; y1) be the projections of a 3D

surface point in image0 and image1 respectively and their brightness values are E(x0; y0)

and E(x1; y1). Using the inverse re
ectance function i = R�1(E), we obtain the incident

angle i0 and i1 from E(x0; y0) and E(x1; y1). Let the surface orientation of the 3D point

be (p0; q0; 1) when image0 is taken and the surface orientation of the same 3D point be

(p1; q1; 1) when image1 is taken. From the de�nition of incident angle and the transforma-

tion between the object coordinates, we have

cos i0 =
1q

p20 + q20 + 1
; (4)
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cos i1 =
1q

p21 + q21 + 1
; (5)

p1 =
p0 cos� + sin�

cos� � p0 sin�
; (6)

and

q1 =
q0

cos� � p0 sin�
: (7)

Substituting p1 and q1 in Equation 5, we get

cos i1 =
1q

1 + (p0 cos�+sin�

cos��p0 sin�
)2 + ( q0

cos��p0 sin�
)2
; (8)

The equation can be simpli�ed to

cos i1 = cos i0(cos�� p0 sin�): (9)

Solving Equation 9 for p0 and from Equation 4, we get

p0 =
1

tan�
�

cos i1

cos i0 sin�
; (10)

q0 = �

s
1

cos i20
� p20 � 1: (11)

The geometric explanation for the solution of p0 and q0 is shown in Fig. 6. Here we

assume image0 and image1 are taken from two di�erent viewing directions with the object

�xed. We denote the viewing direction for image0 as vector v0 and the viewing direction

for image1 as vector v1. All the surface normals with incident angle i0 to the viewing

direction vector v0 form a cone. All the surface normals with incident angle i1 to the

viewing direction v1 form another cone. The intersection of the two cones is two vectors.

The two vectors are symmetric about the XZ plane. Only one of the two vectors overlaps

with the surface normal. So there is a two-way ambiguity in the solution for surface

orientation which is caused by the two solutions for q0 in Equation 11.

The surface recovery procedure starts at the image points whose depth and surface

orientations are known. These starting points could be the singular points we used to

compute the re
ectance function. For each starting point of known depth, we use the

�rst subprocedure to compute the depth for the neighbors of the starting point. For each
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Figure 6: The solution for surface orientation

neighbor point, using the depth value computed by the �rst subprocedure, we compute the

location of its correspondence and the brightness value of its correspondence in the other

image. Then we use the second subprocedure with the two brightness values found to

compute surface orientation for every neighbor point. Using the �rst subprocedure on the

neighbor points, we expand the depth over a larger area. Using the second subprocedure

on the larger area, we compute surface orientation for the large area. By iterating the �rst

and the second subprocedures, we spread the computation over the whole image to obtain

the depth and surface orientation at the same time. The number of local operations in

this process is linear in the number of pixels in the image.

When we compute a new depth value z0 in the y direction, we have z0 = z+ q�y. Thus

the ambiguity in depth occurs as there are two solutions of q obtained from Equation 11.

There is no ambiguity when we expand the computation in the x direction as the solution

for p is unique. The ambiguity in the depth caused by the ambiguity in q can be removed

by the continuity constraint and some points of known depth values. We �rst select a

non-horizontal curve of known depth values at some points in the �rst image. We compute

the depth and surface orientation by iterating the �rst and the second subprocedures, and

remove the depth ambiguity on the curve. Then we take points on the curve as starting

points and compute depth in the x direction. We divide the curve into several paths with
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each path starting and ending at the points of known depth values. We assume that any

value of q along a path is not zero. Two depth values are computed at each point and two

sets of depth values will be found on a path. It is clear that only one of the two sets is the

correct set and at the end of a path, only the depth value from the correct set matches

with the known depth. By this fact and the continuity constraint, the correct depth values

along a path can be determined. The computed depth values will not exactly match with

the known depth value at the end point of a path, because of image noise and some other

errors, but they are close enough so that the ambiguity can be removed.

Since the locations and the depth values of singular points can be easily found from

images, we usually select a curve which passes through several singular points for removing

the ambiguity. In our experiment we select a curve p = 0 because the depth values on this

curve correspond to an occluding boundary in the image taken after the object is rotated

by 90 degrees. This boundary gives us the true depth values on the curve so that we can

check the accuracy of the computed depth values. Fig. 7(a) and (b) are two images of a

vase used for surface recovery. The image in (a) is taken before rotation, and the image in

(b) is taken after a 10 degree rotation. The white curve on the body part of the vase in (a)

is the curve of p = 0. The curve should be smooth and continuous but it is not because

of image noise, non-uniform albedo and other facts. The straight line in the middle of

Fig. 7(c)-(f) denotes the line of depth=0. The horizontal distance from a point to the

line is the depth value. The center of the small boxes in the diagrams represents the true

depth value used for removing ambiguity. These true depth values are obtained from the

occluding boundary of the image taken after the object has rotated by 90 degrees. The

two sets of depth values computed for the curve are shown in (c). The correct set of depth

values, after removal of the ambiguity, is shown in (d). Since the depth computed at the

end point of a path will not be exactly the same as the known depth at that end point,

the depth computed on a curve which consists of several paths will not be continuous (see

Fig. 7(d)). The discontinuity on the depth in (d) is mainly caused by non-uniform albedo

on the object surface. The discontinuity occurs at a point which is the starting point for

a path and ending point for another path or the ending points for two paths.

A distance-weighted averaging method is used to make the depth value continuous
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Figure 7: Computing depth on a curve and removing the ambiguity in the depth
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on the curve. The idea is to make the depth value at the two ends of a path equal to

the known depth values. For a path which connects two points (x0; y0) and (xk; yk) with

y0 6= yk, the computation of depth and orientation along the path can start from either of

the two points. Thus two sets of depth values along a path can be obtained (see Fig. 7(e)).

Let Zi, (i = (0; k)) be a set of depth values computed along the path starting from (xi; yi)

and ending at (xk�i; yk�i). Let the known depth value at the point (xi; yi) be zi. Let point

(xj; yj), 0 � j � k, be a point on the path and let zi;j be a depth value in Zi and computed

at point (xj; yj). Since (x0; y0) is the starting point for Z0 and (xk; yk) is the starting point

for Zk, we have z0;0 = z0 and zk;k = zk. In the general case, z0;k 6= zk and zk;0 6= z0. A new

depth value ~zj is calculated at point (xj; yj) by

~zj =
(k � j)z0;j

k
+

jzk;j

k
(12)

It is easy to show that ~z0 = z0;0 = z0 and ~zk = zk;k = zk. After recomputing depth

for some paths which cause discontinuity, we get continuous depth values on the curve.

Furthermore, if the depth along a path before the averaging is smooth, the depth along the

path after the averaging is also smooth. The recomputed depth values are consistent with

the original depth values at several known 3D points, and the resulting depth values are

close to the real depth values. In Fig. 7(f), the true depth and the recomputed continuous

depth are represented in one image. The two sets of depth values are quite close.

5 Experimental Results

In our experiment, we use a calibrated image facility (CIF) [16] built in our lab to control

the rotation of the object and the imaging condition. Although the camera we used is a

24-bit RGB camera, we only use one of the three B&W images. We use a DC powered

beamed light source and mount it on the top of the camera. The light source and the

camera point in the same direction to the object on a turntable. We considered putting

a half-silvered mirror in front of the camera to make the viewing direction and illuminant

direction precisely collinear, but it turned out to be unnecessary because we did not observe

the e�ects caused by the small angle between the viewing direction and the illuminant
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direction. In practice, the radiance of the light source is not constant over illuminated

area. We use a uniform white board to calibrate the non-uniform illumination. Since

the distance from the camera to the object is far bigger than the size of the object, the

camera is set to telephoto mode and orthographical projection is assumed for a reasonable

approximation. The actions of rotating an object and taking images are well synchronized

by a computer. Nineteen images of a vase are taken with each successive image taken after

a successive 5 degree rotation. The total rotation for the image sequence is 90 degrees.

The images are smoothed with a Gaussian �lter of � = 1 to �lter image noise and

quantization e�ect. Four images from the image sequence of the vase are shown in Fig. 4.

Images (a), (b), (c) and (d) are, respectively, the images taken after 0, 30, 60 and 90

degrees rotation of the vase. The estimated re
ectance function of the vase is shown in

Fig. 5 as dark line. We track the three singular points over the image sequence to estimate

the re
ectance function. The brightness value for the re
ectance function is the average

of the brightness values of the three points. The singular points in the last image can also

be used for better estimation. For the time being, we only use singular points in the �rst

image.

In surface recovery, the �rst image (Fig. 7(a)) and the image taken after a 10 degree

rotation (Fig. 7(b)) are used. We �rst compute depth and surface orientation along a

curve of p = 0 (see Fig. 7(a)). The curve passes through the three singular points which

are used to estimate the re
ectance function. The depth ambiguity on the curve caused

by the ambiguity in q is removed by the method described in the previous section. The

continuous depth values are obtained by the distance-weighted averaging. In Fig. 7(f), it

is overlapped with the true depth value on the curve. Starting from points on the curve,

we expand the computation on the depth and surface orientation in the x direction by

z0 = z + p�x until we reach the background. This process may not reach some areas, such

as handle part, in the image. Then we expand the computation in the y direction to reach

the unrecovered areas. Fig. 5 is the partially constructed surface of the vase. For each

unrecovered area, we repeat the process of computing depth along the curve of p = 0,

removing the depth ambiguity on the curve, then expanding the depth values in the x

direction, until the depth values on the entire image are recovered.
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Figure 8: The surface height of the partially recovered vase
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Figure 9: The surface height of the recovered vase
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(a) (b)

(c) (d)

Figure 10: Tracking the singular points over the image sequence of a cup
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Figure 11: The re
ectance function obtained from the image sequence of a rotating cup

During surface recovery, depth and orientation are computed at every pixel on the �rst

image. The brightness values on the second image are interpolated between pixels as the

projection of a 3D point on the second image may be located between pixels. The surface

plot of the �nal recovered depth of the vase is shown in Fig. 9. Surface plots are displayed

with Matlab by using the depth values calculated on the �rst image. We did not do any

smoothing or regularization on the depth and surface orientation data.

We also experimented with a porcelain cup. Nineteen images are taken during 90 degree

rotation. The rotation angle between successive images is 5 degrees. The re
ectance of

the cup presents a strong specular re
ection. There is a peak brightness value at singular

points on the surface of the cup. Fig. 10 contains four images of the cup. Image (a) to (d)

are the images of the cup taken after the 0, 30, 60, 90 degrees rotation. Three singular

points are tracked to get surface re
ectance function. In Fig. 11, the dark line denotes

the re
ectance function of the cup, and the dotted line is the Lambertain re
ection with

the same maximum brightness value as that of the estimated re
ectance function. The

di�erence between the two re
ectance functions is obvious. Two images (see Fig. 12(a) and
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Figure 12: Images used for surface recovery and curves of p = 0

0

100

200

300

400

0

100

200

300

400

0

50

100

Figure 13: The height plot of the partially recovered cup
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Figure 14: The height plot of the recovered cup

(b)) are used for surface recovery. The second image is the image taken after the object

has made a 10 degree rotation. We start the computation on the white curve on the body

of the cup. The depth ambiguity on the curve is removed by the continuity constraint and

the known depth values at the singular points. The depth on the curve is made continuous

by distance-weighted averaging. A partial surface (see Fig. 13) is constructed along the

x direction from the curve of p = 0. The surface of the handle of the cup is constructed

in the same way as we did for the body of the cup. The white curve on the handle in

Fig. 12(a) is a curve of p = 0. The �nal recovered surface is shown in Fig. 14.

6 Discussion and Future Work

The results obtained show that the technique is feasible and robust for surface recovery.

Since we don't assume the re
ectance function has any particular form, the re
ectance

estimation method described in this paper can be applied to surface of isotropic re
ection.
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By increasing the number of images taken during rotation, the accuracy of the estimated

re
ectance function can be improved. The surface recovery procedure exploits the photo-

metric constraint through the re
ectance function and the binocular stereo constraint by

using two images taken when the object has rotated by di�erent angles. The procedure

to get surface depth integrates surface orientation. From theory this procedure is robust

against image noise. Though we did not do experiments on synthetic images with added

noise, we did perturbations on the depth at the starting point and on the projection of

the rotation axis. The perturbations on the starting point only a�ect the surface points

near the starting point and do not change the surface which is far from the starting point.

Shifting the rotation axis 3 or 4 pixels does not make much di�erence on the �nal results.

We did experiments on real image sequence for two objects. One is a pottery vase. The

other is a porcelain cup. The surface of the pottery vase is a matte surface. The surface of

the vase is not as uniform as we expected. On the surface of the vase, the re
ectance on the

middle body part is stronger than that on the lower body part. The depth discontinuity

on the curve of p = 0 on the body (see Fig. 7(d)) is mainly caused by this non-uniform

re
ection. The depth di�erence at the point of the discontinuity point is large. The surface

re
ectance of the cup is quite uniform so the estimated re
ectance function is accurate for

the whole surface of the cup. The depth values computed on the curve of p = 0 is quite

close to the real depth value. The depth di�erence at the point of discontinuity is small.

For both cup and vase, the joint between the body and the handle has been successfuly

recovered. The joint can not be recovered by just using extremal contours because it can

not be seen as extremal contours in the image sequence.

From analysis on the image sequence and the surface recovered, we know that the errors

on the reconstructed surface mainly come from three sources: the error in estimation of the

re
ectance function, the non-uniform albedo over the object surface and the interre
ection

on the object. To reduce the error in the estimation of the re
ectance function, we can use

more singular points or use other surface points whose surface orientation and 3D location

can be computed by image cues such as contours [17]. To reduce the error caused by

non-uniform albedo, we can extract the re
ectance function for a local area of relatively

constant albedo and use the local re
ectance function for the local surface recovery. This
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idea can be applied to an object whose surface has di�erent colors or di�erent albedos. This

is our current area of research. Reducing the error caused by interre
ection in the general

case is very hard [3]. So far we do not have e�ective methods for removing interre
ection

on surfaces with non-Lambertian re
ectance.

Besides shading, there are other kinds of cues such as contour and stereo available from

an image sequence of a rotating object. These cues can be used in di�erent ways. One way

to use the contour cue is to derive a local re
ectance function from contours. In our work

we use singular points to estimate the re
ectance function and assume these points are

available. It has been shown that contours in an image sequence of a rotating object can

be used to compute the location and orientation of surface points [17]. These computed

surface points can be an alternative when singular points are not available for extracting

re
ectance function. One way to use the stereo information is to get the 3D location of some

surface points and use these points as starting points for our surface recovery procedure.

The stereo information can also be used to remove the ambiguity in the q component of

surface orientation. The integration of all the cues is not an easy task [8, 9, 6, 18, 1].

Extending our work to more complicated surfaces will require integrating other cues.

Another extension of our work is surface recovery by rotating the object more than

90 degrees. In this way, we can get more singular points and obtain a more accurate

estimate of the re
ectance function. We can also construct the whole object by integrating

depth recovered from di�erent views. The intended application of our work is automatic

modeling. Beside modeling the shape of an object, we also want to model the color of an

object.
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