
1

Real Time Threads Interface1

David Finkelstein, Norman C. Hutchinson, Dwight J. Makaroff,
Roland Mechler and Gerald W. Neufeld

Department of Computer Science
University of British Columbia

Vancouver, B.C., V6T 1Z4
Canada

Abstract

The Real Time Threads package (abbreviated RT Threads) provides a user-level, preemptive
kernel running inside a single address space (e.g., within a UNIX process). RT Threads
implements thread management, synchronization, and communication functions, including
communication between RT Threads environments (i.e., with different address spaces,
possibly on different machines and different architectures). Threads are scheduled using a real-
time, multi-priority, preemptive scheduling algorithm. Each thread is scheduled on the basis
of its modifiable scheduling attributes: starting time, priority and deadline. No thread is
scheduled before its starting time. Schedulable threads (i.e., threads whose starting time has
passed) are scheduled on a highest priority first basis. Schedulable threads of equal priority use
an earliest deadline first (EDF) scheduling policy. An RT Threads environment is cooperative
in the sense that memory is shared among all threads, and each thread runs to completion
unless preempted on the basis of priorities and deadlines. Alternate scheduling policies, such
as time slicing, can be implemented at the application level using the scheduling mechanisms
provided by RT Threads. This report describes the interface to the RT Threads package.

1. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada
and the Canadian Institute for Telecommunications Research.

2

Table Of Contents

1 Introduction 3

2 Thread Management 3

2.1 Thread Scheduling Mechanism . 3

2.2 Thread Creation . 5

2.3 Destruction of Threads . 6

2.4 Rescheduling Threads. 7

2.5 Thread Identification . 7

2.6 Exiting an RT Threads Environment . 7

3 Thread Synchronization 8

3.1 Semaphores . 8

4 Communication 9

4.1 Intra-Address Space Communication . 9

4.2 Inter Address-Space Communication . 10

4.3 Name Service Functionality . 11

5 Memory Allocation 12

6 Thread-Specific Data 12

7 External I/O 12

8 External Libraries 14

9 Example 14

Appendix A Portability 17

Appendix B Networking and RT Threads 18

Appendix C Utilities Library 18

Appendix D Obtaining RT Threads 22

Acknowledgements 22

References 22

3

1 Introduction

The Real Time Threads package (abbreviated RT Threads) provides a user-level, preemptive
kernel running inside a UNIX process. All threads in a particular RT Threads environment share
the same address space and thereby memory is shared among all threads. RT Threads implements
thread management, synchronization, and communication functions, including communication
between RT Threads environments (i.e., with different address spaces, possibly on different
machines and different architectures). Each RT Threads environment is designed to be
independent, except for the facility of message passing.

Threads in RT Threads are scheduled using a real-time, multi-priority, preemptive scheduling
algorithm. A thread will not execute if there are any ready threads of higher priority. Within the
same priority level, processes are scheduled according to their starting times and deadlines.
Threads are not required to have deadlines. Threads with equal priority and equal deadlines are
scheduled on a FCFS basis and run to completion unless they are blocked. Threads of equal priority
but with differing deadlines are scheduled on an earliest deadline first (EDF) basis. Preemption is
performed, but only threads of higher priority, or equal priority and earlier deadline, may preempt
the currently running thread. For more details on the real-time scheduling algorithms used, see [2].
An individual thread may have data uniquely associated with it for purposes unique to that
incarnation of the particular thread.

An underlying philosophy of the RT Threads environment is that of a cooperative environment. No
thread should interfere with system resources that have been allocated to other threads, and the
system has no exception handling for errors caused by improper resource usage by individual
threads.

RT Threads routines which block the execution of individual threads will not block the execution
of other schedulable threads. However, non RT Threads system calls and external library routines
may block the entire RT Threads environment. Thus any such calls should be made only with
extreme caution, and wherever possible equivalent RT Threads routines should be used.

2 Thread Management

An RT Threads application begins execution at the first statement of the routine mainp()1. Mainp()
is passed the environment arguments argc and argv[]. Mainp() is not a thread and therefore most
kernel calls which would be appropriate when called by threads as defined in this interface are not
available from mainp(). The normal function of the mainp() routine is to create the first few user-
defined threads of the environment.

2.1 Thread Scheduling Mechanism

Threads must be scheduled according to these real-time considerations: starting time, deadline and
priority.

1. mainp() in RT Threads is analogous to main() for regular C applications.

4

The structures used are as follows:

typedef struct {
long seconds;
long microseconds;

} RttTimeValue;

The RttTimeValue structure represents real time values. When a time structure is to be used, the
system call RttGetTimeOfDay (described later in this section) can be used to provide a base time
value for scheduling purposes. Arithmetic operations can be performed to derive the correct values
to place in an RttTimeValue data structure. The exact resolution of these time values is system-
dependent. Not all systems may be able to provide microsecond resolution. When scheduling
threads, any time value will be rounded up to the next highest clock interrupt time (10 ms is a
typical value for UNIX syatems). Threads may thus be made ready up to that amount of time later
than requested.

typedef struct {
RttTimeValue startingtime;
u_int priority;
RttTimeValue deadline;

} RttSchAttr;

An RttSchAttr structure provides all information necessary for the thread scheduling algorithm.

• Starting time is the first attribute considered in the scheduling discipline. If

starting time is in the future, the thread is not ready and will not be scheduled;

otherwise the thread is ready and can be scheduled, depending on the attributes

and status of other threads in the system. When time advances so that the

starting time is in the past, the thread is awakened.

• Priority is the next attribute considered in the scheduling algorithm and can

take on any integer value from 0 to 30 (inclusive), where 0 is the highest

priority and 30 is the lowest. It is highly recommended that threads use only

priorities in the range 10 to 30 inclusive so as not to interfere with higher

priority threads used by the underlying system (i.e., threads used to implement

cross address-space communication).

• The deadline is the target finishing time for the task. If the task has not

completed by the deadline, it continues to run. This implements soft real-time

semantics. This value is used to determine the ordering of tasks within a

priority level.

5

If a thread is to start immediately, the starting time should be set to zero (or any time in the past).
The following constants provide simple defaults for scheduling attributes that also allow non real-
time and suspended tasks to be scheduled.

TimeValue RTTNODEADLINE;
TimeValue RTTINFINITE;
TimeValue RTTZEROTIME;

Specifying RTTNODEADLINE for the deadline results in a thread being scheduled after all threads
of equal priority which have a deadline. RTTINFINITE is provided as a convenience for
specifying a starting time far enough in the future that the thread will not be scheduled to run.
RTTZEROTIME is a convenience for making a thread ready immediately.

For applications that do not require a fine granularity of priority, the following priority constants
are available:

RTTHIGH = 10, RTTNORM = 20, RTTLOW = 30

The following call allows a thread to find a base time to use for further computations of time
values:

(1) int RttGetTimeOfDay(RttTimeValue *time) Get the current time in seconds

and microseconds.

2.2 Thread Creation

Threads are created using the following call:

(1) int RttCreate(RttThreadId *thread, void (*addr) (), int stksize, char *name,

void *arg, RttSchAttr schedAttr, int level)

On success, RttCreate() returns (by reference) the thread identifier (hereafter called an
RttThreadId) of the newly created ready thread. This thread can begin execution when the
conditions of its scheduling attributes permit. RttCreate() returns RTTOK on success and
RTTFAILED on failure.

• The first parameter, thread, is a pointer to an RttThreadId, and is used to return

the newly created thread’s identifier by reference.

• The second parameter, addr, is a pointer to the routine which acts as the entry

point for the created thread.

6

• The stksize parameter is the size, in bytes, of the new thread's stack. The stack

requirements vary according to the number and size of local variables and

parameters, as well as the depth of subroutine calls.

• The fourth parameter, name, points to a text string which acts as a user

supplied thread identifier. This string must be null terminated (maximum

length 32 bytes including the null-terminator). Any number of threads may be

identified by the same name. Memory containing the name may be released by

the caller on return from RttCreate(). Name is to be used strictly for debugging

purposes.

• The fifth parameter, arg, is an argument (parameter) for the created thread.

This argument is passed transparently to the thread and may be of any (4 byte

or smaller) type, although it should be cast to a void * on call. The entry routine

for the new thread receives this argument as a parameter, or may instead not

declare any parameters if no creation-time arguments are required.

• The sixth argument, schedAttr, indicates the scheduling attributes of the

created thread. The possible thread priorities are as described earlier. If the

starting time indicated is in the future, the thread will not be made ready until

that time.

• The final argument indicates whether the created thread is a system (RTTSYS)

or an application (RTTUSR) thread. The only difference between the two is

that the RT Threads process (i.e., threads environment) will exit when there are

no more RTTUSR level threads. Therefore, perpetual server threads should be

created with level RTTSYS (unless they service requests from other RT

Threads environments, in which case they will likely want to use RTTUSR).

2.3 Destruction of Threads

Threads terminate in one of three ways. The first possibility is for the thread to call the RttExit()
routine which causes the thread to leave the system at that point. The second possibility is for the
thread to ‘‘fall off the end of’’ (i.e. return from) the entry subroutine, which is equivalent to calling
RttExit() as the last statement of the subroutine. The final possibility is for a thread to be killed by
some other thread through a call to RttKill(). RttExit() requires no parameters and returns no result.
RttKill() requires the RttThreadId as the argument and returns RTTOK on success or the value
RTTNOSUCHTHREAD if the thread to be killed cannot be found. The headers are as follows:

7

(1) int RttKill (RttThreadId thread)

(2) void RttExit()

2.4 Rescheduling Threads

The scheduling attributes can be obtained and modified using the following system calls:
RttGetThreadSchedAttr() and RttSetThreadSchedAttr(). A thread may access its own scheduling
attributes or those of another thread using these calls.

Changing a thread’s attributes using RttSetSchedAttr() can have an immediate effect on scheduling.
For example, a thread can be put to sleep by setting its starting time to some time in the future. The
other attributes which can be changed are priority and deadline.

(1) int RttSetThreadSchedAttr(RttThreadId thread, SchAttr schedAttr) Change

the scheduling attributes of a thread. If there should be a thread context

switch resulting from this change, the switch is done immediately.

(2) int RttGetThreadSchedAttr(RttThreadId thread, SchAttr *schedAttr) Obtain

the current values of the thread's scheduling attributes.

RttSetThreadSchedAttr() sets all of a thread’s attributes. If only some of the attributes are to be
changed, a prior call to RttGetThreadSchedAttr() is advisable to determine the current values of
those attributes which are not to be changed.

2.5 Thread Identification

RT Threads provides two routines to identify threads. These are RttMyThreadId() and
RttThreadExists(). RttMyThreadId() requires no parameters and returns the RttThreadId of the
calling thread. RttThreadExists() takes an RttThreadId as its only argument and returns 1 if a thread
with the given identifier exists, and 0 otherwise.

(1) RttThreadId RttMyThreadId()

(2) int RttThreadExists(RttThreadId thread)

2.6 Exiting an RT Threads Environment

When all user level threads (those with level RTTUSR) are done, an RT Threads environment will
exit (i.e., the corresponding process will exit). The application can register routines which are to
be called just prior to exiting. Registered exit routines are called in the order in which they were
registered.

8

(1) int RttRegisterExitRoutine(void (*routine)()) registers routine (which takes

no parameters) to be called when RT Threads exits.

An application may also exit using exit(), but the exit routines will not be called.

3 Thread Synchronization

3.1 Semaphores

Counting semaphores are provided as the primary means of thread synchronization. Two attributes
are specified by the user when allocating a new semaphore, value and mode. Value indicates the
number of times RttP() (see below) can be called before a calling thread will block, assuming no
RttV() calls are made. Mode indicates the desired semantics for the order in which semaphore
blocked threads are made ready. RTTFCFS specifies first come first served semantics, in which
threads are made ready in the order in which they were blocked, regardless of priority.
RTTPRIORITY specifies highest priority first semantics, in which threads of higher priority will
be made ready before threads of lower priority, with threads of equal priority being made ready in
earliest deadline first order. Threads of equal priority and equal deadline are made ready in first
come first served order in RTTPRIORITY mode.

Since memory is shared within an RT Threads environment, semaphores can easily be shared
among threads within a single environment. In keeping with the cooperative nature of an RT
Threads environment, it is left up to the user to ensure semaphores are no longer in use when a
semaphore is freed. To help detect such a situation, an attempt to free a semaphore on which other
threads are blocked will result in failure. In the event that a thread is killed while blocked on a
semaphore, the state of the semaphore is automatically modified (its value is incremented).

RT Threads provides five semaphore operations RttAllocSem(), RttFreeSem(), RttP(), RttV() and
RttSemValue(). Semaphore variables are of type RttSem.

The headers for these routines are as follows:

(1) int RttAllocSem(RttSem *sem, int value, int mode) allocates a new

semaphore. Sem is a pointer to type RttSem and returns the new semaphore

by reference. Value is the numeric value to which the new semaphore is to be

initialized. Mode allows one of two possible choices of semantics to be

specified:

RTTFCFS - first come first served semantics for unblocking threads

RTTPRIORITY - highest priority first semantics for unblocking threads

(2) int RttFreeSem(RttSem sem) returns a previously allocated semaphore to the

9

system. Its single argument sem is the identifier of the semaphore to be freed.

RttFreeSem will return RTTFAILED if any threads are blocked on the

semaphore.

(3) int RttP(RttSem sem) implements the conventional semaphore wait

primitive.

(4) int RttV(RttSem sem) implements the conventional semaphore signal

primitive.

(5) int RttSemValue(RttSem sem, int *value) returns the current semaphore value

via reference parameter value.

RttFreeSem(), RttP(), RttV() and RttSemValue() each take the parameter sem to identify the
semaphore. Each routine returns RTTOK on success and RTTFAILED if sem does not identify an
active semaphore.

The package also includes the routine RttNewSem(RttSem *sem, int value) for backward
compatibility. Its use is equivalent to calling RttAllocSem() with mode RTTFCFS.

4 Communication

An inter-thread communication facility is provided allowing message passing between threads
both within an RT Threads environment, and between threads in different environments. A single
interface for both types of communication is made possible because RttThreadIds are universally
unique.

4.1 Intra-Address Space Communication

RT Threads provides blocking send/receive/reply style inter-thread communication primitives. A
sending thread is blocked until the message has been received and a reply has been made. A
receiving thread is blocked until some other thread sends it a message. RttReply() is a non-blocking
operation. There is also a non-blocking routine RttMsgWaits() that allows a thread to test whether
it has a message waiting for it to receive. The subroutine headers and error codes are as follows:

Possible error codes:

RTTNOSUCHTHREAD - no such destination thread

RTTNOTBLOCKED - specified thread is not blocked awaiting a reply

(1) int RttSend(RttThreadId to, void *sData, u_int slen, void *rData, u_int *rlen)

has five parameters. The first one, to is the thread identifier of the intended

recipient. The remainder are pairs of address and length values, the first pair

10

for the message to be sent and the second pair for the message to be received

when RttSend() returns. RttSend() returns a status value, which is RTTOK,

RTTFAILED, or RTTNOSUCHTHREAD. Important note: rlen is an input/

output parameter whose dereferenced value must be set upon procedure call

to the maximum expected length for the reply message. This length in bytes

must also be allocated for rData prior to the call.

(2) int RttReceive(RttThreadId *from, void *data, u_int *len) requires three

parameters. The argument from is a reference parameter which returns the

RttThreadId of the sending thread. The argument data is a pointer to a buffer

into which the message should be received. The memory for this buffer must

be allocated by the application. The argument len is an input/output

parameter whose dereferenced value must be set upon procedure call to the

maximum expected length for the received message. Upon return, len will be

set to the actual length of the received message. If the input value of len is

less than the length of the received message, the message will be truncated.

(3) int RttReply(RttThreadId sndr, void *data, u_int len) requires three

parameters. The argument sndr is the thread identifier of the reply destination

(i.e. the original sender). The remaining parameters are data, which is a

pointer to the reply message, and len, which is the length of the reply

message. RttReply() returns RTTOK or RTTFAILED, or RTTNOTBLOCKED

(when the destination thread was not blocked on a send).

(4) int RttMsgWaits() requires no parameters and returns 1 if there are messages

waiting to be received by the calling thread, or 0 if no such messages

currently exist.

The interface routines described in this section may also be used across address spaces after
appropriate initializations are made to make thread identifiers visible outside an address space.
These mechanisms are described in the following section.

4.2 Inter Address-Space Communication

The routines described in this section can be used to allow communicating threads to be in different
address spaces (including on different machines). Thread identifiers can be passed across address
spaces as return values of procedure calls or in messages sent by the applications. Alternatively, a
name service can be established to register and lookup the RttThreadIds for remote threads.

Whenever a threads environment wishes to establish a port for communication in any manner with
other address spaces, the call RttNetInit() is essential. It can only occur in mainp() and must come

11

before any calls to RttCreate()

(1) int RttNetInit(unsigned int ipAddr, unsigned int portNo)

RttNetInit() uses parameters ipAddr and portNo to set the IP address and port number to be used
by the threads environment for communication with other threads environments (address spaces).
A 32-bit unsigned integer representation is used for the IP address. If 0 is specified for ipAddr, RT
Threads will map the IP address to be used (if the machine has more than one IP address, the chosen
IP address may differ from the desired one). The chosen port number must be unique among
threads environments on a given machine. If a value of 0 is specified for portNo, the system will
choose a port number. The values of the chosen IP address and port number can be accessed using
the routines RttMyIP() and RttMyPort(), whose headers are as follows

(1) int RttMyIP(unsigned int *ipAddr)

(2) int RttMyPort(unsigned int *portNo)

4.3 Name Service Functionality

Cross-address space communication requires a means to determine the RttThreadIds of threads in
other RT Threads environments. This is typically done using a name service. RT Threads provides
the facilities for implementing such a name service, by allowing the user to create a name server
thread using the RttCreateNS() call. There must be only one name server thread per RT Threads
environment. The RttThreadId for the name server thread can be determined from any other RT
Threads environment using the RttGetNS() call, which requires only that the IP address and port
number of the target environment be known. The headers for these routines are shown below:

(1) int RttCreateNS(RttThreadId *thread, void (*addr) (), int stksize, char

*name, void *arg, RttSchAttr schedAttr, int level) takes the same parameters

as RttCreate() and creates a name server thread.

(2) int RttGetNS(unsigned int ipAddr, int portNo, RttThreadId *nServThreadId)

returns, by reference, the ThreadId of the name server for an RT Threads

environment specified by IP address ipAddr and port number portNo.

An RT Threads environment which wishes to make the RttThreadIds of any of its threads known
to other environments will typically implement a name server thread which maintains a name-to-
thread mapping and services requests using cross-address space communication, returning
RttThreadIds in the reply. The following example shows a possible algorithm for the name server
thread:

nameserver()

12

repeat
receive message
case message type of

register: add a thread/name pair to the name server table
deregister: remove a thread/name pair from the name server table
lookup: given a thread name, reply with the corresponding RttThreadId

end case
end repeat

The routine

(1) bool_t xdr_RttThreadId(XDR *xdrs, RttThreadId *objp)

is provided so that RttThreadIds being sent in a message between address spaces can be encoded
and decoded using XDR external data representation.

5 Memory Allocation

Memory can be allocated for the address space and returned to the system by the following calls:

(1) void *RttMalloc(int size) allocates and returns a pointer to at least size bytes

of memory.

(2) void *RttCalloc(int numElems, int elemSize) allocates space for and returns a

pointer to an array of numElem elements of size elemSize, initializing the

space to zeros.

(3) void *RttRealloc(void *ptr, int size) changes the size of the memory block

pointed to by ptr, returning a pointer to the (possibly moved) block. The

contents will be unchanged up to the lesser of the new and old sizes.

(4) void RttFree(void *mem) frees memory allocated with any of the above

routines.

If a thread which has allocated memory using one of these routines exits or is killed before that
memory is freed, the memory will not be freed until another thread does so.

6 Thread-Specific Data

Interface routines are provided that allow a specific piece of data to be associated with a given
thread. The parameter data may be a pointer to the memory block used for such an association.

(1) int RttSetData(RttThreadId thread, unsigned long data)

(2) int RttGetData(RttThreadId thread, unsigned long *data)

13

Both of these routines return RTTOK on success, and RTTNOSUCHTHREAD if the specified thread
does not exist.

7 External I/O

RT Threads also includes interface routines for many of the UNIX I/O calls. Calls which are
blocking will only block the thread making the call and not the entire UNIX process. The parameter
lists are identical and the semantics are the same as the corresponding UNIX calls. See the UNIX
man pages for details of a particular call. Table 1 shows the RT Threads calls which map directly
to UNIX calls.

Some other routines are provided which do not map directly to UNIX calls, but are provided for
convenience. They are described as follows:

Table 1: Interface to UNIX I/O System Calls

RTT Routine UNIX Call

RttOpen open

RttPipe pipe

RttSocket socket

RttClose close

RttBind bind

RttListen listen

RttAccept accept

RttConnect connect

RttRead read

RttWrite write

RttRecvfrom recvfrom

RttSendto sendto

RttRecvmsg recvmsg

RttSendMsg sendmsg

RttGetsockopt getsockopt

RttSetsockopt setsockopt

RttGetsockname getsockname

14

(1) RttNonBlkRead(int fd, char *buf, int numbytes) reads as much data as is

available, up to numbytes bytes, without blocking.

(2) RttNonBlkWrite(int fd, char *buf, int numbytes) writes as much data as can be

written, up to numbytes bytes, without blocking.

(3) RttReadN(int fd, char *buf, int numbytes) blocks until numbytes bytes have

been read.

(4) RttWriteN(int fd, char *buf, int numbytes) blocks until numbytes bytes have

been written.

(5) RttSeekNRead(int fd, char *buf, int numbytes, int seekpos, int seekmode)

seeks to seekpos and reads numbytes bytes. Seekmode is the same as the

UNIX lseek() parameter whence, which takes a value of SEEK_SET,

SEEK_CURR or SEEK_END (see the UNIX man pages for lseek()).

(6) RttSeekNWrite(int fd, char *buf, int numbytes, int seekpos, int seekmode)

seeks to seekpos and writes numbytes bytes. Seekmode is as described above

for RttSeekNRead().

8 External Libraries

Some external library routines (e.g., X Windows Xlib routines) may not be threads safe. In order
to use any routines which may not be threads safe, it is advisable to place the call in a critical
section which cannot be interrupted by RT Threads scheduling or I/O. The following routines
should be used to bracket any such call so it will not be interrupted:

(1) void RttBeginCritical()

(2) void RttEndCritical()

9 Example

The following example creates two threads which compete to enter a critical section protected with
a semaphore. A few points are in order.

First, the header file ‘‘rtthreads.h'' contains the function prototypes, type definitions, etc. necessary
to use the RT Threads routines.This file must be included. Then the following library must be
linked in to every application that uses RT Threads: libRtt.a.

Second, UNIX normally buffers I/O statements such as ‘‘printf'' until an end-of-line character is

15

output. In order to see each printf statement as it is executed, we turn off I/O buffering with the
‘‘setbuf(stdout, 0)'' call. Note: ideally, the application should implement its own version of “printf”
using the I/O routines described in section 7, although experience has shown that the standard C
library printf can usually be used without ill effect. However, standard library input routines such
as “scanf” will block all threads.

Comments at the beginning of the example program show the recommend command sequence for
compiling RT Threads programs.

/* app.c
 * to compile:
 * gcc -g -I($headerfiledir) -c app.c -o app.o
 * gcc -g app.o ($libdir)/libRtt.a ($libs) -o app
 * Solaris additionally requires -lsocket and -lnsl libraries.
*/
#include <stdio.h>
#include "rtthreads.h" /* templates for the functions in RT Threads */

RttThreadId threada, threadb;

RTTTHREAD a(void *arg)
{

RttSem sem;

sem = *(RttSem *)arg;
for(;;)
{

printf("1: Wait\n");
RttP(sem);
RttGetThreadSchedAttr(RttMyThreadId(),&myattr);
RttGetTimeOfDay(&now);
myattr.startingtime.seconds = now.seconds + 0;
myattr.startingtime.microseconds = now.microseconds + 3000;
RttSetThreadSchedAttr(RttMyThreadId(),myattr);
printf("1: Crit\n");
RttV(sem);
printf("1: Signal\n");

}
}

RTTTHREAD b(void *arg)
{

RttSem sem;

sem = *(RttSem *)arg;

for(;;)
{

printf("2: Wait\n");
RttP(sem);
RttGetThreadSchedAttr(RttMyThreadId(),&myattr);
RttGetTimeOfDay(&now);
myattr.startingtime.seconds = now.seconds + 0;
myattr.startingtime.microseconds = now.microseconds + 3000;
RttSetThreadSchedAttr(RttMyThreadId(),myattr);
printf("2: Crit\n");
RttV(sem);
printf("2: Signal\n");

}
}

16

mainp()
{

RttSem *sem;
RttSchAttr sattrs;

sem = (RttSem *)RttMalloc(sizeof(RttSem);
setbuf(stdout,0);/*don't buffer stdout;show printf()'s immediately */
RttAllocSem(sem, 1, RTTFCFS);
sattrs.startingtime = RTTZEROTIME;
sattrs.priority = RTTNORM;
sattrs.deadline = RTTNODEADLINE;
threada = RttCreate(a, 16000, "a", (void *)sem, sattrs, RTTUSR);
threadb = RttCreate(b, 16000,"b", (void *)sem, sattrs, RTTUSR);
printf("threads created\n");

}

-------------------------- Sample Output: -----------------------------
threads created
1: Wait
1: Crit
1: Signal
2: Wait
2: Crit
2: Signal
2: Wait
1: Wait
1: Crit
1: Signal
1: Wait
1: Crit

17

Appendix A Portability

A.1 Architectures Supported

RT Threads can currently be compiled and executed on the architectures shown in Table 2.

Most of our experience has been with running RT Threads on AIX and SunOS 3.2.5. The package
has not been thoroughly tested on the other systems listed.

An RT Threads interface to the AIX 4.1.1 threads library (libpthreads.a) has also been
implemented, and will be available in the near future. The AIX threads library uses the standard
POSIX threads interface, thus applications using RT Threads will be portable to any system which
provides POSIX threads.

Longer term plans include support for HP-UX, OS/2 and Windows NT, as well as possible ports
to the Intel 486 and Pentium bare architectures.

A.2 Portability Issues

The operating systems listed in Table 2 are all versions of UNIX. Ports to other versions of UNIX
should be straightforward, but must take into account variations in system calls between different
versions of UNIX. In particular, the use of fcntl() and especially ioctl() tends not to be portable.

Other operating systems may provide a service interface which differs from that provided by
UNIX. Ports to other operating systems will thus require the substitution of other approriate
system calls. The RT Threads system clock and external I/O routines are currently implemented
using UNIX signals. Substituting the interrupt handling facilities of other operating systems may
require considerable changes in the implementation of these features.

The context switching routines of RT Threads require some architecture specific assembly code.
For ports to architectures other than those listed in Table 2, these routines will need to be written
in the appropriate assembly language.

Table 2: Architectures Supported

Architecture Operating Systems

IBM RS/6000 AIX 3.2.5 and AIX 4.1.1

Sun Microsystems SPARC SunOS 4.x.x and SunOS 5.2.x (Solaris)

Intel 386 Linux

18

Appendix B Networking and RT Threads

The underlying network facilities used by RT Threads for cross address space communication are
implemented using the Xpress Tranport Protocol (XTP Revision 4.0). The implementation of
XTP used is a multithreaded user level protocol which is portable to a variety of network
technologies such as Ethernet and ATM. IP is currently used for addressing. XTP also supports
other addressing formats, although minor changes to the RT Threads and XTP implementations
may be required to offer such support.

The cross address space send/receive/reply facilities of RTT Threads use reliable XTP data
streams to implement a transaction-style service. Message lengths are limited only by end system
memory resources.

RT Threads applications have direct access to all the facilities provided by the XTP Application
Programming Interface as part of the package. A variety of network data transport services are
available from XTP including both reliable and unreliable data streams and datagrams. Additional
features include optional and orthogonal use of error control, flow control and rate control.

The use of the XTP interface routines is enabled by a call to RttNetInit() in mainp() of the
application, as described in section 4.2 of this report. For details on using XTP, see the technical
report, “XTP Application Programming Interface” [1].

Appendix C Utilities Library

This appendix describes routines which are not part of the RT Threads kernel, but provide useful
functions and are included in a utilities library (libRttUtils.a).

C.1 Common Scheduling Routines

The scheduling routines described here are provided as a convenience for performing commonly
used scheduling tasks, i.e., sleeping threads and suspending/resuming threads. Each of the sleep
routines are provided in two forms, one which allows the running thread to put itself to sleep, and
one which allows the running thread to put another thread to sleep. In the latter case, if the specified
thread was already sleeping, its wake up time will be modified to reflect the new call. The sleep
routines are as follows:

(1) int RttSleep(unsigned int seconds) puts the calling thread to sleep for the

specified number of seconds.

(2) int RttUSleep(unsigned int microseconds) puts the calling thread to sleep for

the specified number of microseconds.

(3) int RttSleepFor(RttTimeValue sleepTime) puts the calling thread to sleep for

19

the duration specified by an RttTimeValue.

(4) int RttSleepThread(RttThreadId sleeper, int seconds) puts the specified thread

to sleep for the specified number of seconds.

(5) int RttUSleepThread(RttThreadId sleeper, int microseconds) puts the

specified thread to sleep for the specified number of microseconds.

(6) int RttSleepThreadFor(RttThreadId sleeper, RttTimeValue sleepTime) puts the

specified thread to sleep for he duration specified by an RttTimeValue.

Threads can be suspended and resumed using the following routines:

(7) int RttSuspend(void) suspends the calling thread.

(8) int RttResume(RttThreadId thread) resumes the specified thread.

Note: Sleeping threads can be awoken using RttResume() or RttSetThreadSchedAttr(), and
suspended threads can be resumed using any of the applicable sleep routines or
RttSetThreadSchedAttr(). This is because the routines are merely convenient wrappers around
RttSetThreadSchedAttr().

C.2 Mutex Routines.

The mutex routines provide a convenient way to protect critical sections of code from shared
access among threads. Please note that these mutexes do not prevent context switches from
occurring within a critical section.

The following header file must be included: RttMutex.h.

The calls are as follows:

(1) int RttNewMutex(u_long *mutexvar). This call returns an integer for the

critical section.

(2) int RttReapMutex(u_long mutexvar). This call frees resources for a mutex.

(3) int RttMutexLock(u_long mutexvar) This call ensures exclusive access.

(4) int RttMutexUnlock(u_long mutexvar) This call releases the exclusive access

claim.

All of the routines return RTTOK on success and RTTFAILED on failure.

20

C.3 Queuing Routines.

The utilities library provides the queueing functions RttNewQueue, RttReapQueue, RttDequeue,
and RttEnqueue. Multiple threads can enqueue and dequeue items using the same queue.

The following header file must be included: RttQueue.h.

It defines the following status values: RTTQOK, RTTQFAILED, RTTQFULL, RTTQEMPTY.

A queue can be created in one of several modes defined as follows:

RTTQDEFAULT: Default style queue, simple add/remove. Routines return

RTTQUEUEOK.

RTTQREPORT: Returns a status (see above) to RttEnqueue() so the producer can

detect the status of the queue. If you don’t care if your producer is

faster than your consumer (or vice versa) you don’t need

RTTQREPORT.

RTTQNBDEQ: RttDequeue will not block if the queue is empty. Instead, it returns

RTTQEMPTY immediately.

RTTQNBENQ: RttEnqueue will not block if the queue is full. Instead, it returns

RTTQFULL immediately.

RTTQOVERWRITEENQ: With this mode, a call to RttEnqueue() with a full queue will

overwrite the last entry in the queue with the item passed in to

RttEnqueue() and then return RTTQFULL. RTTQNBENQ simply

returns RTTQFULL and does not put the item in the queue.

Mode is set by doing a bitwise-or of the modes desired, as in:
RttNewQueue(&queue, queueSize, RTTQNBDEQ | RTTQNBENQ);

The calls are as follows:

(1) int RttNewQueue(RttQueue *queue, int size, int mode); This creates a new

queue and returns a pointer to that structure by reference.

(2) int RttReapQueue(RttQueue queue, void(*cleaner)()); This destroys the

queue structure. The routine cleaner is a user defined cleanup routine which

takes a void* as a parameter and is called for each remaining item in the

queue.

(3) int RttDequeue(RttQueue queue, void **item); Take an item off of the queue,

21

with appropriate reporting if the mode is RTTQREPORT.

(4) int RttEnqueue(RttQueue queue, void *item, int *underflowcount); Place an

item on the queue. If the queue mode is RTTQREPORT and the return status

is RTTQEMPTY, underflowcount will be set to the number of times the

consumer requested an item from the queue and found it to be empty.

C.4 Barriers.

The utilities library provides an additional synchronization facility with the barrier routines
RttNewBarrier, RttWaitOnBarrier, RttGrowBarrier, RttShrinkBarrier, and RttReapBarrier.

An application using barrier facilities must have the following header file: RttBarrier.h.

The calls are as follows:

(1) int RttNewBarrier(RttBarrier *barrier, int size); This call returns a barrier

identifier by reference parameter barrier. Size indicates the number of

processes participating in the barrier, and must be non-negative.

(2) int RttWaitOnBarrier(RttBarrier barrier, int status); No thread can continue

past this call until all threads participating in the barrier have reached their

barrier point. This call returns when that situation exists. The status

parameter allows each caller to pass in a status of either RTTOK or

RTTFAILED. If all callers specify RTTOK, then RttWaitOnBarrier() will

return RTTOK, otherwise it will return RTTFAILED.

(3) int RttGrowBarrier(RttBarrier barrier); This call increases the size of the

barrier (i.e., the number of threads which participate in the barrier) by one.

(4) int RttShrinkBarrier(RttBarrier barrier); This call shrinks the size of the

barrier (i.e., the number of threads which participate in the barrier) by one. A

barrier can never have a size less than zero.

(5) int RttReapBarrier(RttBarrier barrier); This routine cleans up the data

structures used and the threads associated with the barrier.

All of the routines return RTTOK on success and RTTFAILED on failure, or
RTTNOSUCHTHREAD if the barrier does not exist..

22

Appendix D Obtaining RT Threads

The RT Threads package is available via anonymous ftp to ftp.cs.ubc.ca, where it can be
found in the directory pub/local/dsg/rtt as the file rtt.tar.gz.

This distribution includes support for the architectures listed in Appendix A, Table 2, as well as
the XTP facilities described in Appendix B. Also included in the distribution are README files
with instructions on compilation, as well as the technical report “XTP Application Programming
Interface” [1].

Acknowledgements

We thank Murray W. Goldberg whose Pthreads preemptive threads package formed the basis for
RT Threads, and Ann Lo whose work on real time scheduling was incorporated into the package.

References

[1] Roland Mechler and Gerald W. Neufeld. XTP Application Programming Interface, UBC Technical Report
95-17, May 1995.

[2] Siu Ling Ann Lo, Norman C. Hutchinson, Samuel T. Chanson. Architectural Considerations in the design
of Real-Time Kernels. In IEEE Proceedings of the Real-Time Systems Symposium, pp.138-147, December
1993.

