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Abstract

Given a set S of n points in the plane, a quadrangulation of S is a planar subdivision whose vertices
are the points of S, whose outer face is the convex hull of S, and every face of the subdivision (except
possibly the outer face) is a quadrilateral. We show that S admits a quadrangulation if and only if S
does not have an odd number of extreme points. If S admits a quadrangulation, we present an algorithm

that computes a quadrangulation of S in O(n logn) time even in the presence of collinear points. If S
does not admit a quadrangulation, then our algorithm can quadrangulate S with the addition of one
extra point, which is optimal. We also provide an 
(n logn) time lower bound for the problem. Finally,
our results imply that a k-angulation of a set of points can be achieved with the addition of at most
k � 3 extra points within the same time bound.

1 Introduction

Given a set of points in the plane, the problem of determining whether the set admits a certain combinatorial

structure has received considerable attention. Of particular importance is the study of triangulations of

point sets due to its many applications in graphics, medical imaging, Geographic Information Systems

(GIS), �nite element methods, statistics, scattered data interpolation, and pattern recognition to name a

few ([1], [3], [24], [31], [35], [37], [38], [40]). However, in the study of �nite element methods and scattered

data interpolation, it has recently been shown that quadrangulations may be more desirable objects than

triangulations. A quadrangulation of a set of points S is a planar subdivision whose vertices are the points

of S, whose outer face is the convex hull of S, and every face of the subdivision (except possibly the outer

face) is a quadrilateral.

A fundamental component of �nite element methods is the automatic and semi-automatic generation

of meshes for �nite element analysis (see Ho-Le [15] for a survey of the area). The problem of converting a

triangular mesh to a mesh consisting of quadrilaterals (quadrangular mesh) has been studied by Heighway

[13] and Johnston et al. [16]. Johnston et al. integrate several heuristics into a system that automatically

converts a triangular mesh into a quadrangular mesh which runs in O(n2) time and adds up to O(n) extra

points to complete the quadrangulation where n is the size of the input. Such extra points are often referred

to as Steiner points. deBerg [9] has devised a very simple algorithm that converts a triangular mesh to

a quadrangular mesh with the addition of O(n) Steiner points (refer to Figure 1). Each triangle of the

triangulation is decomposed into three quadrangles (quadrilaterals) using the following approach: place a

Steiner point at the midpoint of each edge of the triangulation as well as in the center of each triangle

of the triangulation. Then complete the quadrangulation by connecting the Steiner point in the center of

each triangle to the three Steiner points on its edges.
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Figure 1: Example of deBerg's construction

The classical problem in scattered bivariate data interpolation can be stated as follows. Given a set

V = (v1; v2; : : : ; vn) of n points in the plane along with an elevation zi, i = 1; 2; : : : ; n associated with

each point vi, determine a function f such that f(vi) = zi, for all i. There is a large body of literature

on this subject describing a variety of methods that yield functions with di�erent properties. Most of

these methods start with a triangulation of V which is subsequently re�ned in some way [37]. Since a

triangulation of a point set always exists there is no problem starting in this way. Recently Lai [19]

and Lai & Schumaker [20] showed that there are certain de�nite advantages that can be obtained by

starting not with a triangulation but with a quadrangulation. They also give algorithms for computing

such interpolation functions starting from quadrangulations. However, as they point out [20], a set of

points does not always admit a quadrangulation. Nevertheless, they mention that it is always possible to

start with a triangulation, and by adding a few extra points to V , they can delete certain edges from the

triangulation to obtain a quadrangulation.

The above two applications provide new motivation for the study of quadrangulations of point sets

from the computational geometry point of view. We remark that quadrangulations of polygons have been

investigated in the computational geometry literature for some time in the context of guarding or illumina-

tion problems. One of the earliest results on quadrangulations concerns orthogonal polygons, i.e., polygons

whose sides are parallel to two orthogonal axes. The motivation here was not the quadrangulation itself

but its exploitation as a tool for locating n=4 guards (lights) to cover (illuminate) the interior of the poly-

gon. Sack and Toussaint [29] showed that a star-shaped orthogonal polygon of n vertices can always be

decomposed into convex quadrangles in O(n) time. Kahn, Klawe and Kleitman [17] proved this result for

arbitrary simple orthogonal polygons. However, their existential proof did not lead to an algorithm for

quadrangulating the polygon. Later, both Sack and Toussaint [30] and Lubiw [22] independently obtained

constructive proofs of the Kahn, Klawe and Kleitman [17] result that led to an O(n logn) time algorithm.

Lubiw [22] also showed under a fairly general computational model that 
(n logn) time is a lower bound

on the complexity of this problem. Some work has also been done on computing minimum ink quadran-

gulations of simple orthogonal polygons. In this setting one is interested in the convex quadrangulation

whose total length (sum of diagonal lengths) is a minimum. Independently, Keil & Sack [18] and Lubiw [22]

showed this could be done in O(n4) time and O(n2) space. A very special case of convex quadrangulations,



of great interest in VLSI, is that of decomposing an orthogonal polygon into rectangles. For example,

Lipski et al. [21] and Ohtsuki [23] give polynomial time algorithms for partitioning orthogonal polygonal

regions into the minimum number of rectangles.

Whereas an orthogonal polygon always admits a convex quadrangulation, an arbitrary simple polygon

does not necessarily admit a quadrangulation, even if convexity of the resulting quadrangles is not a

requirement. In fact, Lubiw [22] has shown that the problem of deciding whether a polygon with holes

admits a quadrangulation is NP-complete. On the other hand, if we are allowed to add new points that

act as vertices (usually called Steiner points) then, depending on how many such points we are allowed

to add, we may always obtain convex quadrangulations. However, it is not di�cult to construct polygons

that require 
(n) Steiner points in order to complete a quadrangulation. Inspired by deBerg's method,

Everett et al. [10] have shown that a simple polygon can always be quadrangulated into 5(n� 2)=3 strictly

convex quadrangles and that n � 2 quadrangles are sometimes necessary. For polygons with holes, they

showed that a polygon on n vertices with h holes can always be decomposed into 8(n+ 2h� 2)=3 strictly

convex quadrangles.

Some work has also been done on computing minimum ink quadrangulations of simple polygons. Conn

& O'Rourke [8] showed this could be done in O(n3 log n) time and O(n3) space. To close this section

we mention a special case of convex quadrangulations of polygons that has also been studied before and

this concerns the problem of decomposing a polygon into trapezoids. In fact, many polygon triangulation

algorithms start out by �rst obtaining a trapezoidization of the polygon and subsequently converting this

trapezoidization into a triangulation [12]. Here the trapezoidization is merely a step towards another goal.

Furthermore, we should point out that in the work on trapezoids, triangles are allowed and considered as

degenerate trapezoids. On the other hand, trapezoidizations are used in the manufacturing industry as

the main goal in electron beam lithography systems [33] where subsequent processing time is proportional

to the number of trapezoids in the decomposition. Asano, Asano and Imai [2] have shown that a partition

of a polygonal region into the minimum number of trapezoids can be obtained in O(n2) time.

In this paper we characterize those sets of points that admit a quadrangulation. We show that S

admits a quadrangulation if and only if S does not have an odd number of extreme points. If S admits

a quadrangulation, we present an algorithm that computes a quadrangulation of S in O(n logn) time,

even in the presence of collinear points. If S does not admit a quadrangulation, then our algorithm can

quadrangulate S with the addition of one extra point, which is optimal. Our algorithm is conceptually

simple, but to achieve the O(n logn) time complexity, we need to use some complicated data structures.

However, from the conceptual description of the algorithm, a very simple O(n2) time algorithm is implied

which may be more desirable from a practical point of view. We also provide an 
(n logn) time lower

bound for the problem. Finally, our results imply that a set of points S admits a k-angulation for any k

with the addition of at most k�3 Steiner points. A k-angulation of a set of points S is a planar subdivision

whose vertices are the points of S, whose outer face is the convex hull of S, and every face of the subdivision

(except possibly the outer face) is a simple polygon with k vertices.

2 Preliminaries

Let us �rst introduce some terminology. Most of the geometric and graph theoretic terminology used is

standard and for details, we refer the reader to O'Rourke [25], Bondy and Murty [5], and Preparata and

Shamos [27]. We begin by reviewing some of the main geometric and graph theoretic terminology used in

this paper.

Let E2 denote the Euclidean space of dimension two. A domain D in E2 is convex if, for any two points

q1 and q2 in D, the segment [q1q2] is entirely contained in D. The Convex Hull of a set of points S in E2

is the boundary of the minimum area convex domain in E2 containing S. A set of points S is said to be

in general position provided that no three points in S are collinear.



A graph G = (V (G); E(G)) consists of a �nite nonempty set V (G) of vertices, and a set E(G) of

unordered pairs of vertices known as edges. A planar graph is a graph G that can be embedded in the

plane such that a vertex of G is represented by a point in the plane, an edge of G is represented by a simple

curve between the two vertices, and no two edges of G intersect except at vertices. It is well-know that any

planar graph admits a planar embedding where all edges are mapped to straight line segments (Fary [11],

Stein [32], Wagner [36]), such an embedding is referred to as a planar subdivision or planar map. A planar

subdivision consists of internal faces and a single external face. An internal face of a planar subdivision is

a bounded region of the embedding and the external face is the single unbounded region.

3 Existence of Quadrangulation

In this section, we characterize the sets of points that admit a quadrangulation. The characterization is

surprisingly simple. We �rst describe a necessary condition for a point set to admit a quadrangulation.

Lemma 3.1 If a set of points S admits a quadrangulation then S has an even number of points on its

convex hull.

Proof: We use a counting argument to prove the lemma. Let Q(S) represent a quadrangulation of S.

Let E(S) be the number of edges, V (S) the number of vertices and F (S) the number of faces of Q(S).

Let CH represent the number of vertices on the outer face of Q(S). Let FI(S) represent the number

of internal faces of Q(S). Since every internal face is a quadrilateral, we have that 4FI(S) + CH = 2E(S)

(see [5] for a detailed proof of this fact). Therefore, CH = 2(E(S)� 2FI(S)). Since 2(E(S)� 2FI(S))

is an even number, CH must be even for the relation to hold. Therefore, we conclude that if S admits a

quadrangulation then the convex hull of S must contain an even number of extreme points.

We now show that the above necessary condition is also su�cient. In order to simplify the discussion,

we will �rst prove su�ciency under the condition that no three points are collinear in the point set S. We

remove this condition in the following section.

Lemma 3.2 If S has an even number of points on its convex hull then S admits a quadrangulation.

Proof: We proceed by induction on the number of points inside the convex hull of S, CH (S).

Basis: Let S be a set of points with an even number of points on CH (S) and no points inside CH (S).

Let 1; 2; : : : ; n represent the n points as they occur in counter-clockwise order on the convex hull of S. We

construct a quadrangulation of S in the following manner (see Figure 2).

Join i to i+ 1 for all i = 1; 2 : : : ; n. Join n to 1. So far we have constructed a convex polygon. Finally,

join 1 to j for all j satisfying the following: j = 1; : : : ; n � 2, j 6= 2 and j = 0 mod 2. The result is a

quadrangulation of S.

Inductive Hypothesis: A set of points S with an even number of points on CH (S) and k points inside

CH (S) where k � 0 and k � m for a �xed constant m admits a quadrangulation.

Inductive Step: Let S be a set of points with an even number of points on CH (S) and m+1 points inside

CH (S). We now must show that S admits a quadrangulation.

Since m + 1 � 1, S must have at least one point inside CH (S). Let q be such a point. Let S0 be the

set of points S with q removed. By construction, CH (S) is the same as CH (S0), which means that S0 has

an even number of vertices on the convex hull and at most m points inside its convex hull. Therefore, by

the inductive hypothesis, S0 admits a quadrangulation, denoted by Q(S0). If we re-insert q, then q must

be contained in some quadrilateral of Q(S0), say D. The point q cannot lie on an edge of Q(S0) since we

assumed that no three points in S are collinear. Let D = a; b; c; d be the four vertices of the quadrilateral

containing q. See Figure 3 for the following two cases. If D is convex, then we can adjust Q(S0) to be a

quadrangulation of S by adding the edge [qa] and [qc]. If D is not convex, without loss of generality, let
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Figure 2: Quadrangulation of a point set with no points in the interior of the convex hull.

us assume that c is a reex vertex. Again, we can adjust Q(S0) to be a quadrangulation of S by adding

the edge [qa] and [qc].

a

b

c

d

a

b

c

d

q
q

Figure 3: Re-adjustment of Q(S0) to achieve Q(S).

We conclude with the following theorem:

Theorem 3.1 A set of points S admits a quadrangulation if and only if the convex hull of S has an even

number of points.

4 Algorithms

The existence proof in the previous section (Lemma 3.2) immediately implies the following Sequential

Insertion (SI) Algorithm. Compute the convex hull of S in O(n logn) time with any of several algorithms

available (see [25]). If the number of convex hull vertices is even, partition the convex hull into quadrilaterals

in O(n) time by joining one vertex to every other vertex of the polygon in a clockwise fashion as shown



in Figure 2. Subsequently, the remaining points are inserted one at a time. The insertion stage of the

algorithm is the crucial part of the entire procedure. The obvious method of inserting the points results

in an O(n2) time algorithm.

However, a variety of algorithms are available in the literature for point insertion [4]. The main di�culty

in obtaining e�cient implementations of the SI algorithm is determined by the fact that the data structure

that supports fast point location must be dynamic so that subsequent point locations after an insertion

remain e�cient. If we maintain the quadrangulation as a triangulation we can exploit the additional

structure over arbitrary planar subdivisions. Furthermore in our context we do not need fully dynamic

algorithms since we are not interested in deletions. If we demand O(n) storage space then the best relevant

algorithms available, from the worst-case complexity point of view, are the algorithms of Preparata &

Tamassia [28] and Cheng & Janardan [7]. The former algorithm has both a point location query time

and an insertion (update) time of O(log2 n). The latter algorithm is slightly better because it has a point

location query time of O(log2 n) but only an O(logn) insertion time. However, in our context every point

location query is followed by an insertion and hence the worst-case complexities of both algorithms are the

same. Therefore the Sequential Insertion (SI) Algorithm for quadrangulating S runs in worst-case time

O(n log2 n) and uses O(n) storage space when implemented in this manner. This approach yields a rather

complicated algorithm which also has O(n log2 n) expected time complexity. However, by embedding the

quadrangulation in a triangulation (as above) but using a very simple randomized triangulation algorithm

[1], we can obtain a very simple quadrangulation algorithm with O(n2) worst-case and O(n logn) expected

time complexities.

Another implementation of the SI Algorithm is to use a sweep-line approach (see [25] or [27] for examples

of sweep-line algorithms). Once the convex hull has been partitioned into quadrilaterals (say Q1; : : : ; Qj),

determine into which quadrilaterals Qi, the remaining points fall. A simple sweep-line can be used to

quadrangulate the set of points lying inside each Qi, i = 1; : : : ; j in O(ni log ni) time where ni is the

number of points inside Qi. Therefore the total complexity of the SI algorithm implemented in this way is

O(n logn).

Theorem 4.1 Let S be a set of n points in general position in the plane. If n is even, then S can be

quadrangulated in O(n logn) time, using the SI algorithm.

From a theoretical computational complexity point of view, the SI algorithm is optimal. However it

has its drawbacks. For one thing, the SI algorithm with random insertion of the points, fails if the points

are not in general position, although Joe Mitchell has shown that inserting the points using a sweep-line

approach, allows a non-trivial modi�cation of the algorithm that can handle collinearities and still run in

O(n logn) time. The main drawback, however, of the sequential insertion algorithm, as Figure 4 illustrates,

is that it yields quadrangulations that are not desirable in practice since they tend to yield long non-convex

quadrangles when fat convex quadrangles are preferred. Therefore we omit the implementation details of

the SI algorithm and instead describe another algorithm below which has much greater promise of yielding

nice quadrangulations in practice and can handle collinearities with little e�ort.

Let P = (p1; p2; :::; pn) denote a simple polygonal chain spanning the set S of n planar points given. A

triangulation of P , denoted by T (P ), is a triangulation of S, T (S), such that it contains all the edges of P

as a subset of the edges of T (S). The edges in T (P ), other than the edges of P , are called the diagonals of

T (P ). The dual graph of T (P ) is a graph G(V;E) whose vertex set V corresponds to the set of triangles

in T (P ) and two vertices are connected with an edge if, and only if, their corresponding triangles share a

diagonal. A triangulation of P is called serpentine if its dual graph is a chain.

Our approach will be to show that a set of points S always admits a simple spanning polygonal chain

(whose vertex set is precisely the set of points in S) that in turn always admits a serpentine triangulation.

In such a triangulation the diagonals (and hence triangles) are ordered in accordance to the ordering of

the vertices of the dual chain. By removing every other diagonal starting at one end of the chain, we will



Figure 4: A set of points S and the quadrangulation obtained with the Sequential Insertion Algorithm

obtain the desired quadrangulation except perhaps a single triangle at the end. In such an eventuality we

add one Steiner point outside the convex hull of S to convert the �nal triangle to a quadrangle. We then

show that the Steiner point is necessary if, and only if, the number of points h on the convex hull of S

is odd. We will �rst discuss this approach when the given points are in general position and then we will

show the minor modi�cations that can be made in order to handle point sets with collinearities.

We should point out that in a di�erent context concerned with fast rendering in computer graphics,

Arkin et al. [1] proposed anO(n logn) time algorithm for obtaining a serpentine triangulation (Hamiltonian

in their terminology) of a set of points. However, their algorithm is based on sequentially inserting triangles

in a triangulation of the points and hence, like our SI algorithm, its application to our problem leads to

very poor quadrangles similar to those in Figure 4. The serpentine triangulation algorithm that we propose

yields very nice and usually convex quadrilaterals.

A simple spanning polygonal chain most convenient for our purpose is the convex spiral of S. We

de�ne the convex spiral of S constructively as follows. Let px�min denote the point of S with the minimum

x-coordinate. If more than one point satis�es this property select the point which also has minimum

y-coordinate. Construct an in�nite directed half-ray anchored at px�min and pointing in the +y direction.

Mark the point px�min. This marked point is the �rst vertex of the spiral chain. Now rotate the half-ray

in a clockwise direction until it coincides with an unmarked point of S. This point is marked, it becomes

the second vertex of the spiral chain and the ray is translated in the direction it is pointing so that it is

anchored at the newly marked vertex just found. Continue this process until no unmarked points remain

in S. We will refer to this procedure as the Spiraling Procedure. For the set of points in Figure 4 the

resulting convex spiral is illustrated in Figure 5. This structure has appeared in the literature before and is

closely related to the onion peeling of a set or the convex layers [6], [35], [39]. In fact one can compute the

spiral and the convex layers, one from the other, in O(n) time [27]. This structure has also been used for

example in statistics to de�ne a generalization of the concept of the median to two-dimensional data. In

this application the median is de�ned as the last vertex of the spiral chain. We now show that the convex

spiral of a set S admits a serpentine triangulation. Refer to Figure 6.



Figure 5: A set of points S and the convex spiral of S.

Lemma 4.1 Let S be a set of n points in the plane. The convex spiral of S admits a serpentine triangu-

lation.

Proof: If all the points of S lie on their convex hull then the required triangulation can be obtained

trivially by connecting any vertex of the convex hull to all the others. Therefore we assume there are points

of S in the interior of the convex hull. To simplify the proof we divide the spiral region to be triangulated

into two regions: an outer (spiral) region and an inner (star-shaped) region. We then show that each region

admits a serpentine triangulation in such a way that these can be concatenated into one �nal serpentine

triangulation.

Without loss of generality, assume that the points in S are re-labelled so that they are ordered in

accordance with the convex spiral, i.e., p1 = px�min, p2 is the next vertex of the spiral and so on until the

last vertex of the spiral is labelled pn. Since S has h vertices on the convex hull there exists one edge of the

convex hull, namely [p1; ph], which is a diagonal in every triangulation of the convex spiral P . The union

of this edge [p1; ph] with P partitions its complement, i.e., that part of the plane (E2) excluding P and

[p1; ph], into two connected regions, one unbounded (exterior to the convex hull) and one bounded (the

spiral region). Now extend the edge [pn�1; pn] of P in the direction of pn and let X be the �rst intersection

point of this extension with P . At this point X , construct a line locally tangent to P . Now rotate this line

in a counter-clockwise direction until it meets the �rst vertex of P , say Y , such that the line is parallel

to the edge [pn�1; pn]. Finally, insert the diagonal [pn; Y ]. This diagonal partitions the spiral polygonal

region into two regions: the outer spiral polygonal region Po = [p1; p2; : : : ; Y; pn; pn�1; : : : ; ph] and the inner

polygonal region Pi = [pn; pn�1; :::; Y ]. By this construction, Pi is star-shaped from pn. Therefore we can

obtain a serpentine triangulation of Pi by simply inserting diagonals between pn and all vertices of Pi other

than pn�1 and Y .

It remains to triangulate the spiral polygonal region Po. This can be accomplished with a variant of the

rotating calipers [34]. The region Po can be viewed locally as a convex polygonal annulus with outer chain

Co = [p1; p2; : : : ; Y ] and inner convex chain Ci = [ph; ph+1; :::; Y; :::; pn�1; pn]. We place one supporting line

of the rotating calipers tangent to Co and the other parallel to it and tangent to Ci. Note that a portion of
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Figure 6: Illustrating the partition of the region inside the convex hull of S into the outer spiral region and

the inner star-shaped region.

P may be common to both Co and Ci when P has high enough winding number (as is the case in Figure

5). If we make two copies of this common portion we can view Co and Ci as separate polygonal chains. To

initialize the calipers we locate the �rst through p1 and the second through ph. At the start of the rotation

both lines are set collinear with [p1; ph]. Next, we rotate the calipers in a clockwise direction until one of

the lines meets a new vertex. This vertex will be either p2 or ph+1 - depending on which has the smaller

angle. This identi�es a new co-podal pair of vertices between the chains Co and Ci and this pair in turn

determines the new diagonal to be inserted between them in the triangulation. This process is continued

until the inner caliper line contains [pn�1; pn]. Since at each step one vertex on one chain is advanced, the

insertion of the new diagonal creates one triangle in the triangulation. Since by this construction diagonals

can never be inserted between two vertices of the same chain, we obtain a serpentine triangulation of the

region Po. Since the �nal triangle of the triangulation of Po is adjacent to (shares a diagonal with) the �rst

triangle of the triangulation of Pi, it follows that their concatenation is also serpentine.

By Lemma 4.1 the Spiraling Rotating Caliper (SRC) Algorithm produces a serpentine triangulation.

Therefore the diagonals and triangles of T (P ) are ordered according to the order of the vertices comprising

the dual chain of T (P ). Let D = (d1; d2; : : : ; dm) denote the diagonals in this order, where d1 = [p1; ph].

If m is even, then if we delete from the triangulation every other diagonal d2; d4; : : : and so on, we obtain

a quadrangulation. If m is odd we may delete every other diagonal starting from the last diagonal dm.

This will quadrangulate P except for the presence of triangle �(p1; ph+1; ph) or �(p1; p2; ph). Finally, by



inserting one Steiner point just outside the convex hull of S near the edge [p1; ph] we may convert this

triangle to a quadrangle.

Consider now the complexity of the SRC algorithm. The �rst step of the algorithm is to compute the

convex spiral of the given set of points. If the spiraling procedure, as described in the paragraph above the

statement of Lemma 4.1, is used, then O(n2) time is needed for this step. However, we may compute the

convex layers of S in O(n logn) time using the algorithm of Chazelle [6] or the algorithm of Hershberger and

Suri [14]. This is the most di�cult step in the algorithm, as both these algorithms are fairly involved. From

an implementation point of view, it might be preferable to use the simpler algorithm. From the convex

layers, we can compute a convex spiral P of S in O(n) time with the procedure of Preparata and Shamos

[27]. The spiraling rotating caliper algorithm for obtaining a serpentine triangulation of P described in

the proof of Lemma 4.1 runs in O(n) time since no backtracking is involved. Finally, triangulating the

star-shaped interior, deleting the unwanted diagonals and inserting the Steiner point all require no more

than O(n) time. Therefore the entire algorithm runs in O(n logn) time. We conclude with the following

theorem.

Theorem 4.2 Let S be a set of n points in general position in the plane. Then S may be quadrangulated

with at most one Steiner point in O(n logn) time.

We have shown above that the Spiraling Rotating Caliper (SRC) Algorithm computes a quadrangulation

for any set of n points and that this can be done with at most one Steiner point. The above theorem implies

the following corollary:

Corollary 4.1 A k-angulation of a set of points can be achieved with the addition of at most k � 3 extra

points.

Now we show that the Steiner point is necessary only if the number of convex hull vertices h is odd and

when h is even the SRC-Algorithm always yields a quadrangulation without the need for Steiner points.

Theorem 4.3 Let S be a set of n points in general position in the plane. Then S may be quadrangulated

with at most one Steiner point if the number of vertices on the convex hull of S is odd.

Proof: Let h denote the number of points on the convex hull of S and let k denote the number of points

in the interior of the convex hull. Therefore n = h+ k. From Euler's theorem it follows that the number

of edges in any triangulation T (S) equals 2h + 3k � 3. Now, any spanning simple polygonal chain on n

vertices contains n� 1 edges. Since the outer shell of the convex spiral contains h� 1 edges and the inner

spiral contains k edges, it follows that the entire convex spiral contains h + k � 1 edges. Therefore the

number of diagonals in T (S) equals (2h+3k� 3)� (h+ k� 1) = h+2k� 2. Since 2 is even, 2k is even for

any value of k, it follows that the expression is even if and only if h is even. Since the diagonals are ordered

it follows that by removing every other diagonal the SRC-Algorithm yields a quadrangulation without a

Steiner point if, and only if, h is even. Furthermore, one Steiner point is needed if, and only if, h is odd.

Figure 7 illustrates the convex spiral and resulting quadrangulation obtained with the SRC-Algorithm.

Note that the quadrangulation is much nicer than the quadrangulation (shown in Figure 4) obtained with

the sequential insertion method. In fact for this example not only are the quadrangles obtained with the

SRC-Algorithm fat but they are all convex.

4.1 Handling Collinear Points

Only a few minor modi�cations need to be made to the SRC-Algorithm in order to handle sets of points

that have collinearities. We assume that the convex hull of the points is not a line segment.



Figure 7: Illustrating the serpentine triangulation and the resulting quadrangulation of the set of points

in Figures 4 and 5.

The �rst issue to address is to triangulate in a serpentine fashion a set of points where all points lie on

the convex hull. Instead of connecting one vertex to all other vertices as is currently done in the algorithm,

the following alternate algorithm may be used. Let px�min be the vertex with smallest x-coordinate. If

more than one such vertex exists, then px�min has the smallest y-coordinate of all these vertices. Order

the vertices on the convex hull from px�min. Let p1 = px�min, p2 the next vertex on the convex hull and

so on until pn. By construction p1; p2; pn must form a triangle. If no other vertices are collinear with line

segment [p1; p2] or line segment [p1; pn], the triangulation can be achieved by connecting p1 to all other

vertices. If there are some vertices collinear with [p1; p2] and [p1; pn], let pj be the farthest vertex from p1 on

the line containing line segment [p1; p2]. Note that by construction pn is the vertex on the line containing

line segment [p1; pn] closest to p1. To triangulate the set, join pn to p2; : : : ; pj�1 and join pj�1 to all other

vertices pn�1; : : : ; pj.

The next issue is computing the spiral. Collinearities are handled with the spiraling procedure as long

as the order of the collinear points is maintained on the polygonal chain. This can be accomplished in

the simple O(n2) algorithm by sorting the sets of collinear points as they are found. Also, both Chazelle's

algorithm [6] and Hershberger and Suri's algorithm [14] handle collinear points with minor modi�cations.

Another issue to address is how to compute a serpentine triangulation of the inner star-shaped region

if there are some points on the line segment [pn; pn�1] (Refer to Figure 6). If this situation occurs, then

simply �nd the point on line segment [pn�1; pn�2] closest to pn�1, call this point pj . Join pj to all points

on line segment [pn; pn�1] and join pn to the remaining points in the inner star-shaped region.

Finally, if collinear points are present it may happen that during the rotation of the calipers, both

lines may arrive at groups of points simultaneously. In this case, they may be triangulated by zig-zagging

between the groups in the order in which they are encountered. We conclude with the following:

Theorem 4.4 A set of points S may be quadrangulated with at most one Steiner point in O(n logn) time

with the SRC-Algorithm even in the presence of collinear points.



5 Lower Bound

In this section, we provide a lower bound for the problem of quadrangulating a set of points. Paul and

Simon [26] have shown that on a unit cost RAM with indirect addressing, branching based on comparisons,

and the arithmetic operations +,-,*, the problem of sorting requires 
(n logn) time. We show that the

problem of sortingN integers is linear-time transformable to the problem of quadrangulating a set of points

in the above model of computation. Therefore, quadrangulating a set of points requires 
(n logn).

Theorem 5.1 The problem of sorting n positive integers is O(n) time transformable to the problem of

quadrangulating a set of points on a unit cost RAM with indirect addressing, branching based on compar-

isons, and the arithmetic operations +,-,*. Therefore, quadrangulating a set of points requires 
(n logn)

time in this model of computation.

Proof: Let S be a set of n positive integers , x1; : : : ; xn. Assume without loss of generality that n is

even. For each point xi, we construct a corresponding point (xi; x
2
i
). Let P denote this set of points. Now,

since every point of P is on the convex hull of P and n is even, we know that the set of points P can be

quadrangulated. Let Q(P ) represent the quadrangulation of P . In O(n) time, we can �nd the two points in

P with smallest x coordinate, say a and b respectively. Given that a and b have been found, we can recover

the convex hull of P with a simple traversal of Q(P ) similar to the Jarvis March. Note that the convex

hull of P is contained in Q(P ) by de�nition. By construction, we know that the edge [ab] is an edge of the

convex hull of P . We know that there must be another convex hull edge sharing an endpoint with b. Draw

a directed line L from a to b. Notice that the next edge on the convex hull has the property of making the

smallest counterclockwise angle with respect to the line L. This implies that it is only necessary to verify

all points adjacent to b and selecting the point that makes the smallest angle with L since Q(P ) contains

the convex hull of P . By continuing in this way, we can recover the convex hull of P . Since at each step

we only verify the vertices adjacent to a vertex in Q(P ), the complete traversal takes O(n) time, since a

quadrangulation only has O(n) edges. For a more detailed treatment of the algorithm used to recover the

convex hull, the reader is referred to O'Rourke [25].

Notice that the convex hull of P consists of a list of points sorted by abscissa. Therefore, the sorted

order of S can be recovered in O(n) time from the convex hull of P .

6 Conclusions

In this paper we have characterized those sets of points that admit a quadrangulation. We showed that S

admits a quadrangulation if and only if S does not have an odd number of extreme points. If S admits

a quadrangulation, we presented an algorithm that computes a quadrangulation of S in O(n logn) time,

even in the presence of collinear points. If S does not admit a quadrangulation, then our algorithm

quadrangulated S with the addition of one extra point. We also provided an 
(n logn) time lower bound

for the problem. Finally, our results imply that a k-angulation of a set of points can be achieved with the

addition of at most k � 3 extra points.

As a side bene�t of our quadrangulation algorithm, we have obtained an optimal algorithm for com-

puting serpentine (Hamiltonian) triangulations of point sets that yield very nice triangles. Arkin et al. [1]

have shown that such triangulations have applications in fast rendering algorithms in computer graphics.

Our algorithm yields much nicer triangulations than the algorithm of Arkin et al.

It is easy to see that a set of points does not always yield a quadrangulation where every quadrangle

is convex. In Figure 8, the point x cannot be added to a quadrangulation of the given points without

adding a non-convex quadrilateral. This observation leads to the following interesting questions. Can one

decide if a set of points admits a quadrangulation where every quadrangle is convex? Can one compute the



x

Figure 8: An example of a point set that does not admit a convex quadrangulation.

quadrangulation of a set of points that has the maximum number of convex quadrilaterals? As Lubiw [22]

has shown that the decision problem is NP-complete for simple polygons with holes, it seems reasonable

to believe that the same might hold for point sets.

There is an intriguing open question concerning the SI (Sequential Insertion) algorithm for quadran-

gulating point sets when collinearities are allowed. Joe Mitchell has shown that the SI algorithm can be

modi�ed so that it works in spite of collinearities, provided that we insert the points in some translation

order, say, sorted by x-coordinate. Does an optimal algorithm exist for points inserted in arbitrary order?

Finally, we have seen that paper-and-pencil examples suggest that the rotating-caliper algorithm gives

signi�cantly nicer quadrangulations than the SI algorithm. It would be interesting to compare these two

algorithms both quantitatively and experimentally to determine the extent of the improvement a�orded

by the rotating-caliper algorithm for di�erent measures of the quality of a quadrangulation.
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