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Abstract

Two of the fundamental questions that arise in the manufacturing industry concerning every type

of manufacturing process are:

1. Given an object, can it be built using a particular process?

2. Given that an object can be built using a particular process, what is the best way to construct

the object?

The latter question gives rise to many di�erent problems depending on how best is quali�ed. We

address these problems for two complimentary categories of manufacturing processes: rapid pro-

totyping systems and casting processes. The method we use to address these problems is to �rst

de�ne a geometric model of the process in question and then answer the questions on that model.

In the category of rapid prototyping systems, we concentrate on stereolithography, which is

emerging as one of the most popular rapid prototyping systems. We model stereolithography

geometrically and then study the class of objects that admit a construction in this model. For the

objects that admit a construction, we �nd the orientations that allow a construction of the object.

In the category of casting processes, we concentrate on gravity casting and injection molding.

We �rst model the process and its components geometrically. We then characterize and recognize

the objects that can be formed using a re-usable two-part cast. Given that a cast of an object can

be formed, we determine a suitable location for the pin gate, the point from which liquid is poured

or injected into a mold. Finally, we compute an orientation of a mold that ensures a complete �ll

and minimizes the number of venting holes for molds used in gravity casting processes.
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R�esum�e

Deux questions fondamentales dans l'industrie manufacturi�ere concernant tous les proc�ed�es de

fabrication sont:

1. Y a-t-il un proc�ed�e de fabrication sp�eci�que pour un objet donn�e ?

2. Etant donn�e qu'un objet peut être construit par un proc�ed�e sp�eci�que, quelle est la meilleure

m�ethode de fabrication pour cet objet?

Plusieurs probl�emes d�ecoulant de cette derni�ere question peuvent être �enonc�es selon la fa�con dont

meilleure est d�e�nie. Ces probl�emes sont consid�er�es pour deux cat�egories compl�ementaires des

proc�ed�es manufacturiers: les syst�emes de conception de prototypes et les proc�ed�es de moulage.

La m�ethode employ�ee pour r�esoudre ces probl�emes consiste a d�e�nir un mod�ele g�eom�etrique du

proc�ed�e en question et �a r�epondre aux questions li�ees au mod�ele.

Dans la cat�egorie des syst�emes de conception de prototypes, nous nous concentrons sur la

st�er�eolithographie, une m�ethode de fabrication qui gagne de plus en plus de popularit�e. On

mod�ele la st�er�eolithographie d'une mani�ere g�eom�etrique pour ensuite �etudier la classe d'objets

pour lesquelles une construction selon ce mod�ele est possible. Pour de tels objets, on cherche les

orientations permettant une telle construction.

Dans la cat�egorie des proc�ed�es de moulage, nous nous concentrons sur les m�ethodes par gravit�e

et par injection. D'abord, nous modelons le proc�ed�e et ses composantes g�eom�etriquement. Par la

suite, les objets, qui peuvent être form�es par des moules ayant deux parties et �etant r�eutilisables,

sont reconnus grâce �a leurs caract�eristiques. Un point d'injection satisfaisant par lequel le liquide

peut être introduit ou inject�e est ensuite d�etermin�e pour ces moules. Finalement, pour les moules

utilis�es dans un proc�ed�e par gravit�e, l'orientation du moule est d�etermin�ee de sorte que le moule

soit enti�erement rempli avec un nombre minimal de poches d'air.
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Chapter 1

Introduction

In the manufacturing industry, there are many di�erent types of production methods such as injec-

tion molding, gravity casting, NC machining, laser sculpting, automated welding and 3-D printing

(stereolithography), available to construct an object. However, every manufacturing process im-

poses certain restrictions on the types of objects that can be constructed as well as the way a

given object may be built. For example, a sphere cannot be built in one setup using 3-axis NC

machining, but can be easily built using injection molding or gravity casting. Also, the best way

of constructing a cube using stereolithography is to place it on one of its faces. This leads to two

fundamental questions concerning every type of manufacturing process:

1. Given an object, can it be constructed using a particular process?

2. Given that an object can be built using a particular process, what is the best way to construct

the object?

The latter question gives rise to many di�erent problems depending on how best is quali�ed. The

geometry of the object, coupled with the restrictions imposed by the particular manufacturing

process under consideration, play a vital role in determining the answer to these questions.

The importance of these questions is quite evident. For example, when designing an object

to be built by a certain type of manufacturing process, currently an engineer must always keep

in mind the process used to construct the object. This limits the creativity of the engineer since

the question of design feasibility must be kept in mind while creating the object. In fact, the

engineer is never really quite sure whether the object can be built since no formal method exists to

determine the feasibility of an object for most manufacturing processes. To resolve this problem, a

practical algorithm is needed to determine, given an arbitrary object, whether or not it can be built

using any of the known manufacturing processes. The bene�ts of such a system would be two-fold.

Firstly, an engineer would have an algorithm to verify whether an object can be created using a

particular manufacturing process (i.e. a type of automatic design veri�cation). Secondly, a list of

the possible manufacturing processes that can build a particular object would allow an engineer to

design something and then determine which manufacturing process would be most cost e�cient.

In fact, two of the primary ways of reducing costs in manufacturing engineering, according to [83],

are to

1. Determine whether the product as designed and developed is producible.

2. Determine the manufacturing process allowing production within product speci�cations at

the lowest cost.

1



CHAPTER 1. INTRODUCTION 2

In this thesis, we address these fundamental issues for several manufacturing processes. In

order to better understand the power as well as the limitations of each manufacturing process

under consideration, we �rst develop a mathematical model of the process, and then analyze the

class of objects that can be constructed under the given model. Having established that an object

can be constructed, we then see what is the best way to construct the object in this model.

This approach for understanding a particular manufacturing process is not novel. Many dif-

ferent mathematical models of di�erent manufacturing processes have already been studied [44].

Traditionally, models attempt to reect the physics behind a production method. As a result, the

models are fairly complicated involving di�erential equations, uid dynamics, thermodynamics and

so forth. In fact, many of these models form the backbone of simulation programs that simulate

a particular process. Although these models may accurately reect the particular process being

modelled, they are quite complex and di�cult to analyze. The novelty in our approach comes from

the way we model a process. Our approach is to extract the geometric essence of the manufacturing

processes we consider and answer questions from a purely geometric perspective. These results do

not eradicate the need for simulations, however, our solutions are conceptually and computationally

simple and provide a �rst approximation that may greatly reduce the time needed to �nd better

solutions through simulation. In fact, our solutions to the problems in Chapters 3, 4, 5, and 7

provide an alternative to the trial and error approach currently used [2, 71]. The more vital the

role that the geometry of the problem plays, the better our solutions are.

We present relatively simple discrete geometric models of the processes under investigation.

The objects we study are polygons and polyhedra. These objects can be handled by almost all

CAD/CAM systems [1, 8, 9]. Of the diverse manufacturing processes, only NC machining has been

studied extensively from this perspective [42]. We investigate problems concerning manufacturing

processes that fall into two di�erent but related categories.

The �rst category of manufacturing processes comprises rapid prototyping systems (see [6] for

details). As suggested by the name of this category, all manufacturing processes used to build

prototypes fall into this category. These systems are used in the design phase. While designing an

object, these systems can be used to produce three dimensional prototypes of a given object which

provide much more information to the designer, as well as to the eventual producer of the object,

than do two dimensional drawings of the object. Rapid prototyping systems have been gaining

more importance in recent years since this technology is becoming a�ordable and saving companies

such as GM, FORD and IBM millions of dollars. Currently, rapid prototyping is an $8 billion per

year business and demand is growing at 80 to 90 per cent a year [36]. Stereolithography is emerging

as the dominant process in this category. According to Marshall Burns (physicist, consultant and

author of `Automated Fabrication: Improving Productivity in Manufacturing', published by PTR

Prentice-Hall Inc.), stereolithography is going to start a revolution in the manufacturing industry

and in 20 to 25 years will be as common as computer printers. In Chapter 6, we study, from a

geometric perspective, the powers as well as the limitations of stereolithography by characterizing

the objects that can be constructed by stereolithography.

Once the design of an object has been completed, the next step is production. The second

category of manufacturing processes we study entails casting processes, which has always been one

of the most popular methods used to mass produce objects [71, 31, 47, 81, 32]. Basically, a casting

process is a manufacturing process that uses a mold or cast to produce an object. A mold or cast,

as de�ned in [17], refers to the whole assembly of parts that make up a cavity into which liquid is

poured to give the shape of the desired component when the liquid hardens. The importance of

this category is evident since many of the objects we see everyday such as cups, forks, door knobs,

and most plastic objects are built using casting processes. The processes that we study from this
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category fall into two main groups: injection molding and gravity casting. Each of the two methods

produces an object by �lling a mold or cast of the given object with a liquid, and removing the

object once the liquid has hardened (see Figure 1.1). The di�erence between the two methods is

that liquid is injected using pressure into the mold in injection molding processes whereas liquid is

poured into the mold and gravity is the sole force acting on the liquid in gravity casting processes

[32].

liquid poured here

Cast of objectObject

Figure 1.1: An object and its cast.

In Chapter 7, we study the problem of determining given an object, modelled by a simple

polyhedron, whether or not a two-part cast of the object can be made. Currently, the two-part

cast is the most popular type of cast used in manufacturing. Casts consisting of more than two

parts are di�cult to produce and are not as e�cient to use as the two-part casts.

If a cast of a prototype object can be made, a cast designer is then faced with the problem of

determining a suitable location for the pin gate. The pin gate is the point on the mold from which

the liquid is poured or injected into the cavity. The location of the pin gate plays an important role

in determining whether or not an object built by one of the two manufacturing processes will have

many surface defects. Many factors play a role in determining a suitable location for the pin gate.

In Chapter 3, we analyze the di�erent geometric factors involved in the location of a suitable pin

gate and present algorithms for determining pin gate locations satisfying certain geometric criteria.

Once a cast of an object has been built, �nding a favorable orientation of the mold that min-

imizes surface defects and allows the most complete �ll also becomes a challenge. We model the

geometric aspects of the �lling of a mold for gravity casting and determine an orientation that min-

imizes the number of venting holes and allows the most complete �ll. Chapters 4 and 5 concentrate

on this problem for molds modelled as simple polygons and simple polyhedra, respectively.

The chapters in this thesis are not ordered in the sequence presented here, but they are ordered

such that geometric tools and techniques developed in one chapter can be used in a later one.



Chapter 2

Notation and Preliminaries

In this chapter, we review some of the notation and terminology of this thesis. Notation and

terminology speci�c to a particular chapter will be introduced in that chapter. For more detailed

de�nitions, the reader can refer to O'Rourke [64], or Preparata and Shamos [69].

The model of computation assumed throughout the thesis is the real RAM. In the real RAM

model, each storage location is capable of holding a single real number, and the following operations

are primitive and available at unit cost (or unit time):

1. Arithmetic operations.

2. Comparisons between two reals.

3. Indirect addressing of memory.

4. Square roots.

A simple polygon P is a simply connected subset of the plane whose boundary is a closed chain

of line segments. A polygon P is denoted by a set of vertices v1; v2; : : : ; vn�1; vn such that each pair

of consecutive vertices is joined by an edge, including the pair fvn; v1g. Unless stated otherwise,

the vertices are assumed to be in clockwise order, so that the interior of the polygon lies to the

right as the boundary of the polygon is traversed.

The open interior of the polygon P is denoted by int(P ), the boundary by @P , and the open

exterior by ext(P ). The boundary is considered part of the polygon; that is, P = int(P ) [ @P .
Given a line segment e, the line containing e is denoted by L(e). A convex edge of a simple

polygon refers to an edge e where both endpoints of e are convex vertices. Similarly, a reex edge

of a simple polygon refers to an edge e where both endpoints of e are reex vertices.

Given two points a and b in the plane, [ab] and (ab) denote respectively the closed and open line

segments between the two points. A chord of a polygon is a line segment between two points on

the polygon boundary such that the open line segment is contained in the interior of the polygon.

A chord divides a polygon into two subpolygons.

We de�ne a simple polyhedron P as in O'Rourke [64]. The boundary of P is a �nite collection

of planar, bounded convex polygonal faces such that

1. The faces are disjoint or intersect properly. (A pair of faces intersect properly if either they

have a single vertex in common or have two vertices, and the edge joining them, in common.)

2. The link of every vertex is a simple polygonal chain. (Triangulate the faces that have vertex

v on their boundary. The link of v is the collection of edges opposite v in all the triangles

incident to v.)

4
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3. The one-skeleton is connected. (The one-skeleton is the graph of edges and vertices of the

polyhedron.)

The boundary is closed and is denoted as @P . The boundary encloses a bounded region of space,

denoted as int(P ). The polyhedron consists of the boundary and its interior, (i.e. P = int(P )[@P ).
The (unbounded) exterior of P is denoted as ext(P ). As this thesis only deals with simple polyhedra,

we will refer to them as polyhedra in the remainder of the thesis. The vertices and the edges of the

faces are the vertices and the edges of the polyhedron. The open interior of the faces are called the

facets of the polyhedron. Therefore, for a facet f , the closure of the facet is the face and denoted

cl(f).

For two polyhedra P and Q whose interiors lie on di�erent sides of a plane h, and which are both

bounded by the same facet f that lies inside h, we de�ne the union of P and Q as the polyhedron

with all vertices of P and Q, with all facets of P and Q except f , and with all edges of P and Q

except the ones contained in h that bound two parallel facets.

The intersection of a polyhedron with an arbitrary plane results in a collection (possibly empty)

of simple polygons (or line segments or points) lying on the plane. A polygon in this collection will

be referred to as a sectional polygon. Notice that a sectional polygon divides the polyhedron into

two simple polyhedra. Thus in this sense a sectional polygon is the three dimensional equivalent

to a chord in a polygon.

By a direction we mean an equivalence class of oriented parallel lines. A given direction � will

be speci�ed by a point on a unit circle in the following way. Let C be a unit circle with center o.

Let x be a point on the boundary of the circle such that ray(ox) is parallel to and with the same

orientation as �. Then direction � is represented by the point x. (Refer to Figure 2.1). A point

that is diametrically opposite to x on the unit circle represents the inverse or opposite direction to

� and is denoted by opp(�). A right (left) normal to a given direction � is an equivalence class N

of oriented parallel lines with the property that every member of N is orthogonal to � and oriented

to the right (left) of �. The right normal of � will be denoted by N+(�) and the left normal will

be denoted by N�(�).

Directions on the
unit circle

cNH  (x )

NH(x )x

+N  (x )
−

N  (x )

x

−
N  (x ) +N  (x )

opp(x )
opp(x )

Figure 2.1: Illustrating the representation of directions.

An equivalence class of parallel lines H will be speci�ed by a pair of points p1 and p2 that

are diametrically opposite on the unit circle, such that the line determined by the two points is

parallel to a line in H . A normal to a line in H is an equivalence class N of parallel lines with the

property that every member of N is orthogonal to H . Given an oriented direction �, we de�ne
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the normal to �, denoted by N(�), as the equivalence class of parallel lines that are orthogonal to

�. Notice that the two points representing the normal divide the boundary of the unit circle into

two semi-circles. We refer to the open semi-circle containing the point representing the direction �

as the open normal semi-circle or the open normal half-plane of � and denote it as NH (�). The

closed semi-circle is denoted by NH [�]. The open semi-circle not containing the point representing

the direction of � will be denoted by NH c(�). Similarly, the closed semi-circle not containing the

point is NH c[�].

Given two points a and b on the unit circle, let arc[a; b] and arc(a; b) denote respectively the

closed and open arcs of the unit circle from a to b in the clockwise direction.

Similarly, we represent the set of all directions in 3-space by the points on the surface of a unit

sphere (see Figure 2.2 for de�nitions to follow). Let S be the unit sphere centered at the origin o.

Any point p on S represents the direction �!op. A point that is diametrically opposite to p on the

unit sphere represents the inverse or opposite direction to direction p and is denoted by opp(p).

Notice that all the points s on the boundary of S with the property that �!os � �!op = 0 (� represents
the inner product) form a great circle. We denote this great circle by N(p) since all these points

are directions that are orthogonal to p. The great circle N(p) divides the sphere into two half-

spheres. The open half-sphere containing p will be denoted as NH (p) and the closed half-sphere by

NH [p]. The open and closed half-spheres not containing p will be denoted by NH c(p) and NH c[p],

respectively. When considering the angle between two vectors, we always mean the smaller angle

unless stated otherwise.

p

opp(p)

N(p)

NH(p)

NH  (p)
c

Figure 2.2: The sphere of directions.

For a non-vertical plane h, we denote by h+ and h� the open half-spaces above and below h,

and by cl(h+) and cl(h�) the closed half-spaces above and below h . If h is vertical but does not

contain a line parallel to the y-axis, then h+ and h� denote the open half-spaces bounded by h

that contain the points (0;1; 0) and (0;�1; 0), respectively. If h is vertical and contains a line

parallel to the y-axis then h+ and h� denote the open half-spaces bounded by h that contain the

points (1; 0; 0) and (�1; 0; 0), respectively.



Chapter 3

Pin Gate Location

3.1 Introduction

In this chapter, we consider the problem of determining a suitable location for the pin gate. The

pin gate is the point on the mold from which the liquid is poured or injected into the cavity. The

location of the pin gate plays an important role in determining whether or not an object built

by one of the two manufacturing processes will have surface defects. Many factors play a role in

determining a suitable location for the pin gate when considered from the point of view of uid

dynamics and physics of the whole molding process. To date, trial and error, guided by engineering

experience, has been the main method in determining a suitable location for the pin gate [47], [71],

[86]. However, through this experience, a few of the key characteristics of an ideal location for a

pin gate have been uncovered.

If the distance from the gate to the extremities of the mold cavity is too great, the metal

freezes prematurely, and misruns result. [47]

This quote points out one of the key problems faced by cast designers. In order to avoid this

problem, designers must place the pin gate at a location where the distance from it to the extremities

of the mold cavity is not too great. Another key characteristic of casts that leads to surface defects

is the presence of many \sharp corners or overhanging or protruding sections..." [2]. These \sharp

corners" disrupt the ow of molten liquid leading to surface defects. Therefore, the pin gate must

be placed in a location such that the ow of molten liquid from the gate does not encounter too

many sharp corners or make too many turns. For an overview of the many other factors causing

defects in molds and casts, the reader is referred to [47], [2].

These observations allow one to deduce the following properties for a good location for a pin

gate:

Property 1: The maximum distance from the pin gate to any point in the object should be

small.

Property 2: The maximum number of turns the liquid takes on its path from the pin gate to

any point in the object should be small.

When viewed from a purely geometric perspective, these problems can indeed be solved op-

timally. The geometric solutions provide an initial approximation that can aid in the search for

a suitable location. In this chapter, we solve the pin gate location problem for molds modelled

as simple polygons which �nd applications in polymer molds. In practice, many 3-dimensional

7
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objects are almost at so that in e�ect they can be considered as 2-dimensional. Therefore the

2-dimensional theory is more important than may appear at �rst glance, and sheds some light on

the 3-dimensional problem.

The two properties that a pin gate should satisfy have several geometric interpretations. Prop-

erty 1 can be interpreted as the point inside the simple polygon whose maximum distance to any

point in the object is minimized. If distance is measured in the Euclidean metric, this point is

referred to as the constrained Euclidean center. Sometimes a pin gate is constrained to lie on the

boundary of the mold. In such a case, Property 1 can be interpreted as the point on the boundary

of the simple polygon whose maximum distance to any point in the polygon is minimized with re-

spect to all points on the boundary. This point is referred to as the boundary-constrained Euclidean

center. On the other hand, distance can be measured by the geodesic metric, i.e., the minimum dis-

tance the liquid must travel inside the mold to reach a destination. In this case, Property 1 places

the pin gate at the geodesic center, which by de�nition is constrained to lie inside the polygon, and

the boundary-constrained geodesic center, respectively.

Property 2 can be interpreted as the link metric. The link metric measures the number of turns

in a path between two points. For example, if two points can be joined by a line segment, then

they are at link distance 1. The points inside a simple polygon, whose link distance to any other

point in the polygon is minimized, are referred to as the link center. If the pin gate is constrained

to the boundary, then it is referred to as the boundary-constrained link center.

3.2 Constrained Euclidean Center

In this section, we show how to �nd the point inside a simple polygon P as well as the point on @P

whose maximum Euclidean distance to every point of P is minimized. These points are known as

the Euclidean center constrained to lie in the polygon, and the Euclidean center constrained to lie

on the boundary of the polygon, respectively.

We �rst review the problem of �nding the Euclidean center. Given a set S of n points in the

plane, the Euclidean center is the center of the smallest circle enclosing the points of S. This

problem has a rich history. We summarize as in [69]. The search for an e�cient algorithm seems

to have begun in 1860 by Sylvester [82]. Later, Rademacher and Toeplitz [72] noted that the

smallest enclosing circle is unique and is either the circumcircle of three points of the set or de�ned

by a diametrical pair. This immediately gives an O(n4) algorithm. Elizinga and Hearn [33, 34]

improved this to O(n2). Much work was done from an Operations Research perspective by viewing

the problem as a minimax facility location problem, where the Euclidean center is the point whose

greatest distance to any point of the set is minimized [41, 84, 48]. An O(n logn) time solution to

this problem was proposed by Shamos and Hoey [77], but Bhattacharya and Toussaint [10] pointed

out some errors in [77] and subsequently proposed an alternate O(n logn) time solution. Preparata

[66] and Melville [60] also proposed an alternate O(n logn) time solution. However, no 
(n logn)

time lower bound for the problem was known. A search for a resolution to this problem ensued,

culminating in the discovery of an elegant �(n) time solution to the problem by Megiddo [57].

The Euclidean center of the vertices of a simple polygon may be a good candidate for the

location of the pin gate, but the center might lie outside the polygon (see Figure 3.1). Therefore,

the location of the center must be constrained to lie inside the polygon or on its boundary since

otherwise it cannot serve as a pin gate. Therefore, given an object modelled as a simple n vertex

polygon, we wish to �nd the point lying inside the polygon whose maximum Euclidean distance to

any point is minimized with respect to all points in the polygon. Since the furthest neighbor of a

point must be a vertex, we can restrict our attention to �nding the point lying inside the polygon
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Euclidean Center

Figure 3.1: Euclidean center outside polygon.

whose maximum Euclidean distance to any vertex is minimized with respect to all points in the

polygon. We also want the point on the boundary whose maximum Euclidean distance to any

vertex is minimized with respect to all points on the boundary. Although the Euclidean center is

unique, the Euclidean center constrained to lie inside the polygon as well as the Euclidean center

constrained to lie on the boundary of the polygon need not be unique, as depicted in Figure 3.2.

3.2.1 Center Constrained to a Polygonal Region

We solve a slightly more general problem than the one mentioned in the introduction. Suppose

we are given a set S = fs1; s2; : : : ; skg of k points (in general position) in the plane E2, and an n

vertex simple polygon P . We wish to �nd the point c in P whose maximum distance to any point

in S is minimized. If c is not constrained to lie in P , then it is the Euclidean center of S. However,

we refer to c as the Euclidean center of S constrained to P and denote it by ECP (S).

Our algorithms make use of the furthest point Voronoi diagram of the set S, denoted as

FPVD(S). Given a point x 2 E2, we let �(x) denote the furthest neighbors of x in S, that is

the set of points in S such that d(x; �(x)) = maxy2S d(x; y) where d is the Euclidean distance

function. The FPVD(S) partitions the plane into unbounded convex cells, V (si), such that for any

point p 2 V (si), si 2 �(p). This structure can be computed in O(n logn) time [69]. A list of the

many geometric properties of the furthest point Voronoi diagram can be found in [62, 69, 10].

We �rst review some properties of the Euclidean center which will help us in �nding its con-

strained counter-part.

Lemma 3.2.1 [69, 10] The Euclidean center of S lies on the midpoint of the diameter of the set

S, DIAM (S), provided that the circle with DIAM (S) as diameter contains the set S.

Lemma 3.2.2 [69, 10] If the Euclidean center does not lie on the midpoint of DIAM (S), then it

lies on the vertex of the FPVD(S) that yields the smallest spanning circle.
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a b

c

V(b) V(a)

V(c)

Euclidean Center

Euclidean center constrained to boundary

Figure 3.2: Constrained Euclidean center may not be unique.

These two lemmas characterize the location of the Euclidean center. When considering the

constrained version of the problem, notice that if the Euclidean center happens to lie inside the

constraining polygon, then it is also the constrained Euclidean center. However, di�culties arise

when the Euclidean center does not lie inside the polygon. These di�culties are resolved in the

following lemmas.

Lemma 3.2.3 The Euclidean center of S constrained to lie in P is the midpoint of DIAM (S)

provided that the diametral circle contains the set S, and the midpoint is contained in P .

Proof: Follows from Lemma 3.2.1.

Before tackling the problem of determining the location of ECP (S) when it is not on the

midpoint of DIAM (S), we �rst establish a lemma that will prove useful. Let a; b be two points in

S such that both a and b are on the convex hull of S, [ab] is not the diameter of S, and V (a) and

V (b), the two cells of FPVD(S) representing a and b, respectively, are adjacent and separated by

an edge e. Let x be a point on the interior of e, and let � > 0 be any small constant.

Lemma 3.2.4 There exists a point y 2 e with d(x; y) < � such that d(y; a)< d(x; a) and d(y; b) <

d(x; b).

Proof: See Figure 3.3. The edge e must lie on the bisector of line segment [ab], since the points

on e are equidistant from both a and b. The points a; b; x must form a triangle because otherwise

[ab] would be the diameter. Since x is contained in int(e), let y be a point on e in 4(abx) such
that d(x; y) < �. The lemma follows.
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b a

x

y

Bisector of  [ab]

Figure 3.3: Illustration for proof of Lemma 3.2.4.

Lemma 3.2.5 If kSk > 1 then a point b of S cannot lie in V (b).

Proof: Let x 2 S be a point distinct from b. Note that d(b; b) = 0, however, d(b; x) > 0 which

contradicts the fact that b 2 V (b).

We now complete the characterization of ECP (S).

Lemma 3.2.6 If the Euclidean center of S constrained to lie in P is not the midpoint of DIAM (S),

then it lies on one of the following points that yields the smallest spanning circle:

1. a vertex of the FPVD(S) contained in P ,

2. a proper intersection point of the FPVD(S) and the boundary P ,

3. a vertex of the polygon P ,

4. a point x on an edge e of P with the property that 8y 2 e, if �(y) = �(x) then d(y; �(x)) �
d(x; �(x)).

Proof: If ECP (S) does not lie on any of the points mentioned in the statement of the lemma,

then it must lie in one of the regions described in the following four cases. We show that each of

these cases leads to a contradiction. For simplicity of exposition, let c = ECP (S).

Case 1: c is a point in the interior of a cell of the FPVD(S), and in int(P ). Let V (b) be the

cell containing c. By the Jordon Curve Theorem [64], line segment [bc] must intersect @P or

V (b) since b 62 V (b) by Lemma 3.2.5. Let x be the intersection point closest to c. The point

x must be in V (b). Therefore the circle centered at x with radius d(x; b) encloses the set S.

However, d(x; b) < d(c; b) by construction. Hence, we have a contradiction.

Case 2: c is a point in the interior of a cell of the FPVD(S), and in the interior of an edge e of

P but does not satisfy the property that 8y 2 e, if �(y) = �(c) then d(y; �(c)) � d(c; �(c)).

Since the latter property is not satis�ed, a point x 2 e such that �(x) = �(c) and d(x; �(c))<

d(c; �(c)) must exist. However, the very existence of x contradicts that c is the constrained

Euclidean center since the circle centered at x with radius d(x; �(c)) encloses S.

Case 3: c is a point in the interior of an edge e of the FPVD(S), and in int(P ). Let V (a) and

V (b) be the two cells separated by the edge e. Since c is not on the diameter of the set S, by

Lemma 3.2.4 we know that there exists a point x in e and in int(P ) such that d(x; a) < d(c; a)

and d(x; b)< d(c; b). This contradicts that c is the constrained Euclidean center.
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Case 4: c is a point in the interior of an edge ev of the FPVD(S), and in the interior of an edge

ep of P such that ev and ep intersect but not properly. Same argument as Case 3.

Lemma 3.2.3 and Lemma 3.2.6 characterize the location of ECP (S). We outline the following

algorithm to compute this point.

Algorithm 1: Euclidean Center of P constrained to lie in S

Input: A set of points S = fs1; s2; : : : ; sng and a simple polygon P = fp1; p2; : : : ; png.
Output: ECP (S)

1. Compute the FPVD(S).

2. Compute DIAM (S).

3. Compute the circle C having DIAM (S) as diameter.

4. Preprocess P in O(n logn) time for point inclusion testing in O(logn) time using the algorithms

of Kirkpatrick [45] or Sarnak and Tarjan [75].

5. If the midpoint of C is contained in P and all the points of S are contained in C then exit

with the midpoint of DIAM (S).

6. Compute the set of vertices of FPVD(S) contained in P . Let Vc represent this set.

7. Compute the set of intersections Ic = fi1; i2; : : : ; ikg of P with FPVD(S).

8. Partition each edge ei of P such that for every pair of points x; y 2 ei, we have that �(x) = �(y).

Denote the jth partition of ei by eij .

9. For each eij , compute the point on eij closest to �(eij). If this point is not an endpoint of eij ,

place it in the set Ec.

10. Let Pc represent the vertices of P . For each point c in Vc, Ic, Pc, Ec, compute the smallest

spanning circle with center c. Let SP represent this set.

11. Select all the smallest circles in SP , and output their centers and the radius.

Notice that we assumed that the number of vertices of P equals the number of points in S.

Clearly, this need not be the case, however, this assumption simpli�es the complexity of notation.

It is straightforward to repeat the complexity analysis when P and S have di�erent cardinalities.

Theorem 3.2.1 Given a set of points S = fs1; s2; : : : ; sng and a simple polygon P = fp1; p2; : : : ; png,
we can compute the Euclidean center of S constrained to lie in P in time O(n logn+ k) where n is

the size of the input and k is the number of intersections between the edges of the FPVD(S) and

P .

Proof: The correctness of the algorithm follows from Lemmas 3.2.3 and 3.2.6.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can be computed in

O(n logn) time using the algorithm of Shamos [69]. Step 2 can be computed in O(n logn) time by

�rst computing the convex hull of S and then �nding the diameter of the convex hull. Preprocessing

for point inclusion can be done in O(n logn) using the algorithm of Kirkpatrick [45] or Sarnak and

Tarjan [75]. Step 5 can be achieved in O(n logn) time by using the point inclusion test. Step 6 can

be done in O(n logn) time using the point inclusion test. Step 7 can be computed in O(n logn+k)
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time where k is the number of intersections between P and FPVD(S) using the algorithm of Chan

[18]. If we color the segments in FPVD(S) blue and the edges of P red, then the algorithm of

[18] reports the intersections along each edge of P in sorted order. Once these intersection points

have been computed, Step 8 and 9 can be achieved in O(n+ k) time. Step 10 can be computed in

O(n+ k) time since it takes constant time to compute the circle and there are O(n+ k) points in

the set SP . Finally, Step 11 can be computed in O(n+ k). Therefore, the total complexity of the

algorithm is O(n logn+ k) time.

For simple polygons, k can be O(n2), however, for convex polygons, we notice the following:

a line segment can intersect a convex polygon only twice. Therefore, since FPVD(S) consists of

O(n) line segments, there can only be O(n) intersections between FPVD(S) and an n vertex convex

polygon. Therefore, we have:

Corollary 3.2.1 Given a set of points S = fs1; s2; : : : ; sng and a convex polygon P = fp1; p2; : : : ; png,
we can compute the Euclidean center of S constrained to lie in P in time O(n logn) where n is the

size of the input.

3.2.2 Center Constrained to a Polygonal Chain

With a slight modi�cation, Algorithm 1 can compute the Euclidean center constrained to lie on

the boundary of the polygon, denoted as EC @P (S). These modi�cations are outlined below.

Lemma 3.2.7 The Euclidean center of S constrained to lie on the boundary of P is the midpoint of

DIAM (S) provided that the diametral circle contains the set S, and the midpoint is on the boundary

of P .

Proof: Follows from Lemma 3.2.1.

Lemma 3.2.8 If the Euclidean center of S constrained to lie on the boundary of P is not the

midpoint of DIAM (S), then it lies on one of the following points that yields the smallest spanning

circle:

1. a vertex of the FPVD(S) on the boundary of P ,

2. an intersection point of the FPVD(S) and the boundary P ,

3. a vertex of the polygon P ,

4. a point x on an edge e of P with the property that 8y 2 e, if �(y) = �(x) then d(y; �(x)) �
d(x; �(x)).

Proof: If EC @P (S) does not lie on any of the points mentioned in the statement of the lemma,

then it must lie in one of the regions described in the following four cases. We show that each of

these cases leads to a contradiction. For simplicity of exposition, let c = EC @P (S).

Case 1: c is a point in the interior of a cell of the FPVD(S), and in int(P ). This cannot happen

since c must be on the boundary of P .

Case 2: c is a point in the interior of a cell of the FPVD(S), and in the interior of an edge e of

P but does not satisfy the property that 8y 2 e, if �(y) = �(c) then d(y; �(c)) � d(c; �(c)).

Since the latter property is not satis�ed, a point x 2 e such that �(x) = �(c) and d(x; �(c))<

d(c; �(c)) must exist. However, the very existence of x contradicts that c is the constrained

Euclidean center since the circle centered at x with radius d(x; �(c)) encloses S.
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Case 3: c is a point in the interior of an edge of the FPVD(S), and in int(P ). Again, c cannot

lie in int(P ) since it is constrained to the boundary.

Case 4: c is a point in the interior of an edge ev of the FPVD(S), and in the interior of an edge

ep of P such that ev and ep intersect but not properly. Let V (a) and V (b) be the two cells

separated by the edge ev . Since c is not on the diameter of the set S, by Lemma 3.2.4 we know

that there exists a point x in ev and in ep such that d(x; a) < d(c; a) and d(x; b) < d(c; b).

This contradicts that c is the constrained Euclidean center.

Lemma 3.2.7 and Lemma 3.2.8 characterize the location of EC@P (S). The modi�cations to Algo-

rithm 1 for computing these points are straightforward. Therefore, we conclude with the following.

Theorem 3.2.2 Given a set of points S = fs1; s2; : : : ; sng and a simple polygon P = fp1; p2; : : : ; png,
we can compute the Euclidean center of S constrained to lie on the boundary of P in time O(n logn+

k) where n is the size of the input and k is the number of intersections between the edges of the

FPVD(S) and P .

Corollary 3.2.2 Given a set of points S = fs1; s2; : : : ; sng and a convex polygon P = fp1; p2; : : : ; png,
we can compute the Euclidean center of S constrained to lie on the boundary P in time O(n logn)

where n is the size of the input.

3.3 Constrained Geodesic Center

Both versions of the constrained Euclidean center serve as good �rst approximations for the loca-

tions of the pin gate. However, in some cases the constrained Euclidean center may not be a point

satisfying Property 1, as intended (see Figure 3.4). In fact, it may be quite bad in the sense that the

liquid may have to travel quite far despite the fact that the pin gate is located at the constrained

or boundary-constrained Euclidean center. The reason is that the Euclidean distance of the pin

gate to all the points may not be a good measure of the actual distance the liquid must travel

inside the polygon. For example, in Figure 3.4, the Euclidean center, constrained Euclidean center

and boundary-constrained Euclidean center all lie on the same vertex indicated on the polygon.

However, the distance that the liquid must travel inside the polygon from that point to vertex v

is quite large compared to vertex c. Although for convex or \near" convex objects, the Euclidean

metric may be good, it seems that the geodesic metric may serve as a better approximation since

liquid is travelling inside the polygon.

In the geodesic metric, the distance between two points inside a simple polygon is de�ned as

the length of the shortest path connecting the two points inside the polygon. The geodesic center

of a simple polygon is the point whose maximum geodesic distance to any other point in the

polygon is minimized. Therefore, by de�nition, the geodesic center of a simple polygon lies inside

the polygon. Although the geodesic center and boundary-constrained geodesic center may serve as

better approximations for the location of a pin gate, computing both centers is more di�cult than

their Euclidean counter-parts as we shall see.

3.3.1 Geometric Properties

The problem of computing the geodesic center of a simple n vertex polygon P , denoted GC (P ),

was �rst tackled by Asano and Toussaint [7]. They gave an O(n3 log logn) time algorithm for
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Constrained
Euclidean Center

v

c

Figure 3.4: Constrained Euclidean center may not be a good approximation for the best pin gate

location.

computing the center. In [7], it is shown that the geodesic center is unique and located on a vertex

of the geodesic furthest point Voronoi diagram of P , denoted GFPVD(P ). The GFPVD(P ), like its

Euclidean counter-part, divides the polygon P into cells V (vi), such that the locus of points in V (vi)

is further from vi than any other vertex of P (with distance measured with the geodesic metric).

Later, Pollack, Rote and Sharir [65] reduced the complexity of computing the geodesic center to

O(n logn) time. They used a di�erent approach and achieved their time bound by a modi�cation

of Meggido's technique. Recently, Aronov et al.[3] presented an O(n logn) time algorithm for

computing the GFPVD(P ), thus providing an alternate O(n logn) time solution for computing

the center. Therefore, to compute the geodesic center of a simple polygon, any one of the above

algorithms may be used, however, all of these algorithms are complicated and involved.

The problem of computing the boundary-constrained geodesic center of a simple polygon P ,

denoted as GC (@P ), has not previously been addressed. We concentrate on solving this problem.

Like its Euclidean counter-part, the geodesic center constrained to the boundary is not necessarily

unique, and not necessarily an intersection point of GFPVD(P ) and P . Figure 3.2 shows an

example of this. If an algorithm for computing the geodesic center already exists, the following

heuristic may serve as a good approximation of the boundary-constrained geodesic center.

Heuristic 3.3.1 A heuristic for computing the boundary-constrained geodesic center is to compute

the point on the boundary closest to the geodesic center.

In some cases, this heuristic actually gives the boundary-constrained geodesic center, as seen in

Figure 3.2. In the next section, we present an O(n logn) time algorithm to compute the boundary-

constrained geodesic center exactly. The main idea behind the algorithm is the following. We

divide the polygon boundary into polygonal chains such that the geodesic furthest neighbor of any

point on a given chain is the same. Then, we compute for each chain, the point, which we call the

candidate for that chain, whose distance to the furthest neighbor is the smallest compared to any
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other point on the chain. We select the smallest candidates as the geodesic center constrained to

the boundary. We modify an algorithm of Suri [79], similar to [3], to compute this.

Given two points a; b in a polygon P , there is a unique geodesic path connecting a; b in P .

We denote this path by �(a; b) and its length by dG(a; b). Since geodesic distance is a metric, the

triangle inequality holds. Therefore, we have that dG(x; y) � dG(x; z) + dG(z; y) for every three

points x; y; z in P . The geodesic furthest neighbors of a point x in P , denoted by �(x), are the set

of points y in P such that dG(x; y) = max8 z2P fdG(x; z)g. Asano and Toussaint [7] showed that

the geodesic furthest neighbor of a point is always a convex vertex of the polygon. The geodesic

diameter of a polygon P , denoted as GDIAM (P ), is determined by the pair of points in P whose

geodesic distance is maximum over all pairs of points in P . If two shortest paths do not share a

point, we say they are disjoint; otherwise, we say that the paths intersect.

An important property of geodesics, at the heart of the algorithm, is the Crossing Property

described in the following lemma.

Lemma 3.3.1 (Crossing Property) [79] Let p1; p2; p3; p4 be four points in this order on the

boundary of P . Suppose that p3 2 �(p2) and p4 2 �(p1). Then we also have p3 2 �(p1) and

p4 2 �(p2).
To compute the boundary-constrained geodesic center, we �rst compute a constrained geodesic

decomposition of the boundary of polygon P , which is a decomposition of the boundary of P

into polygonal chains (c1; c2; : : : ; ct) such that
S
t

i=1 ci = P and for every x; y 2 ci, �(x) = �(y).

We denote this decomposition as @-CGD(P ). Given this decomposition, the constrained geodesic

center can be easily identi�ed, as shall be shown in the next section. The crossing property is the

key behind the algorithm. It suggests a divide-and-conquer approach to solving the problem of

computing the constrained geodesic decomposition of @P . We �rst consider a restricted version

of the decomposition problem, and then we show how to use its solution to compute the whole

decomposition.

3.3.2 Restricted Geodesic Decomposition

The restricted version of the decomposition problem is described as follows. Let U = (ua; : : : ; ub) be

the counterclockwise chain from point ua to point ub on the boundary of P . Let V = (vc; : : : ; vd)

be the clockwise chain from vc to vd on the boundary of P , such that both chains are disjoint

except possibly at the endpoints. The set of points which are the furthest neighbors of x restricted

to V is denoted by �V (x). We want to decompose U into polygonal chains (c1
0; c2

0; : : : ; cs
0) such

that
S
s

i=1 ci
0 = U and for every x; y 2 ci

0, �V (x) = �V (y). We refer to this decomposition as the

restricted decomposition of U with respect to V , denoted by RGDV (U).

Let ua; ub; vd; vc be four points on @P appearing in that order in a counterclockwise traversal

of @P . P [ua; ub; vc; vd] denotes the region of P obtained by joining the counterclockwise chain of

@P from ua to ub and the clockwise chain of @P from vc to vd with �(ua; vc) and �(ub; vd) (see

Figure 3.5). We say that a polygonal region R � P is geodesically convex if for every pair of points

x; y 2 R, we have that �(x; y) 2 R.
Lemma 3.3.2 [79] P [ua; ub; vc; vd] is geodesically convex.

Lemma 3.3.2 implies that the restricted geodesic decomposition of U with respect to chain

V can be done entirely within P [ua; ub; vc; vd]. Below, we outline the algorithm to compute this

decomposition.

Algorithm 2: RGD(P [ua; ub; vc; vd])
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Figure 3.5: P [ua; ub; vc; vd] is shaded.

1. If P [ua; ub; vc; vd] is degenerate then

Find a vm 2 [vc; : : : ; vd] such that dG(ua; vm) = maxfdG(ua; vj)jc � j � dg;
Find the point umin 2 [ua; : : : ; ub] such that dG(umin; vm)

= minfdG(ui; vm)ja � i � bg.
Output umin, vm, [ua; : : : ; ub], dG(umin; vm).

2. Else if (b� a) � 2 and ua; ub are vertices then

Determine �(ua) and �(ub).

If �(ua) = �(ub) then

let vm = �(ua).

Find point umin on [ua; ub] such that dG(umin; vm)

= minfdG(p; vm)jp 2 [ua; ub]g.
Output umin, vm, [ua; ub]; dG(umin; vm).

Else

Compute partition points x1; x2; : : : ; xs on edge [uaub].

Sort these partition points including the endpoints.

Let [u1; u2; : : : ; us+2] be the points ordered on edge [ua; ub].
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let k = d(s+ 2)=2e.
Find a vm 2 [vc; : : : ; vd] such that dG(uk; vm)

= maxfdG(uk; vj)jc � j � dg
Construct and triangulate P [ua; uk; vm; vd] and P [uk; ub; vc; m];

Call RGD(P [ua; uk; vm; vd]) and RGD(P [uk; ub; vc; vm]).

3. Else if (b� a) � 2 and ua; ub are not both vertices then

Determine �(ua) and �(ub).

If �(ua) = �(ub) then

let vm = �(ua).

Find point umin on [ua; ub] such that dG(umin; vm)

= minfdG(p; vm)jp 2 [ua; ub]g.
Output umin, vm, [ua; ub]; dG(umin; vm).

Else

solve directly by computing upper envelopes.

4. Else

let k = d(a+ b)=2e
Find a vm 2 [vc; : : : ; vd] such that dG(uk; vm) = maxfdG(uk; vj)jc � j � dg
Construct and triangulate P [ua; uk; vm; vd] and P [uk; ub; vc; vm];

Call RGD(P [ua; uk; vm; vd]) and RGD(P [uk ; ub; vc; vm]).

Not only does algorithm RGD compute the restricted geodesic decomposition of U into polyg-

onal chains (c1
0; c2

0; : : : ; cs
0) such that

S
s

i=1 ci
0 = U and for every x; y 2 ci

0, �V (x) = �V (y), but

for each chain ci
0 it computes the point on the chain whose distance to its furthest neighbor is

minimum. We prove the correctness of the algorithm and at the same time, elaborate on some of

the steps such as how to compute the partition in Step 2.

We say that P [ua; ub; vc; vd] is degenerate if �(ua; vc) and �(ub; vd) are not disjoint. Given a

degenerate instance of P [ua; ub; vc; vd] computing the decomposition of U with respect to V is

straightforward. Let x be a point on �(ua; vc) \ �(ub; vd). Every shortest path between a point y

in U and a point z in V must contain x. Therefore, the point vf of V furthest from x is also the

point furthest from all points in U . The point vf can be computed by traversing the shortest path

tree of x. Since this tree can be computed in linear time [40], we conclude with the following.

Lemma 3.3.3 If P [ua; ub; vc; vd] is degenerate and vf is the furthest point from x 2 �(ua; vc) \
�(ub; vd), then the point vf on V is �V (z) for all z 2 U . The point vf can be computed in time

proportional to the size of P [ua; ub; vc; vd].

Given an instance of P [ua; ub; vc; vd], if (ua; : : : ; ub) is a polygonal chain, then by the crossing

property, we can divide the chain in half and recurse. However, if ua and ub are the endpoints of

an edge, it is not clear how to proceed. In such a situation, we resolve the problem by partitioning

the edge into subedges. We require the following property on each subedge si of [ua; ub]. For every

pair of points x; y on si, we want the shortest path from x to every vertex vj on (vc; : : : ; vd) to be

identical to the shortest path from y to vj except for the �rst link. We refer to this property as the

path-invariant property of a subedge.

To see how to compute a partition of the edge respecting the path-invariant property, let us

look at Figure 3.6. In Figure 3.6(a), notice that once the shortest paths from vi to u1, and vi to
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u8 are computed, the path-invariant partition of the edge falls out by extending the edges in both

paths to [u1; u8]. In this partition of the edge, every point on a subedge (ui; ui+1) has the same

shortest path to vi except for the �rst link. To extend this partition to two vertices, see Figure

3.6(b). In Figure 3.6(b), the partition with respect to vi and vi+1 di�ers by only one point located

between u2 and u3. Again, each subedge has the property that for every point on the subedge,

the shortest paths to both vi and vi+1 are the same except for the �rst link. By continuing in this

manner, the edge can be partitioned with respect to the chain (vc; : : : ; vd).

(a)

viu1u8

(b)

2 3 4 5 6 2 3 4 5 6
u u u u u u7 u8u1

vi

u u u u u u7 u8u1

vi+1

u1u8 vi+1vi
Partition of edge (         ) with respect to     . Partition of edge (         ) with respect to      and          . 

Figure 3.6: Partitioning an edge.

Let m be the size of P [ua; ub; vc; vd]. Since P [ua; ub; vc; vd] is triangulated, the shortest path

tree of ua and ub can be obtained in O(m) time using the algorithm of [40]. Once the shortest path

trees have been computed, all the partition points on the edge can also be obtained in O(m) time,

by traversing the two trees. Finally, O(m logm) time is used to sort the partition points. Hence,

we conclude with the following.

Lemma 3.3.4 Given an instance of P [ua; ub; vc; vd] of size m, where [ua; ub] is an edge, we can

partition in O(m logm) time the edge [ua; ub] into subedges such that each subedge respects the

path-invariant property with respect to the chain (vc; : : : ; vd).

The reason we partition the edge into subedges, when faced with an instance of P [ua; ub; vc; vd]

where [ua; ub] is an edge, is quite simple. First, it allows us to continue the divide-and-conquer

algorithm. Second, the base problem that we are faced with at the end of the recursion can be solved

directly because of the path-invariant property. As the algorithm computes the decomposition of

the U chain, eventually in Step 3, we are faced with an instance P [ua; ub; vc; vd] where ua; ub are the

endpoints of a subedge respecting the path-invariant property, and (vc; : : : ; vd) is a polygonal chain.

Because of the path-invariant property, we know that the distance from a vertex vi 2 (vc; : : : ; vd) to

a point x on [ua; ub] has the form k1+
p
k2 + z2 where k1 is a constant whose value is the geodesic

distance from vi to the last vertex, say vl, before x on �(vi; x), and
p
k2 + z2 is the distance from



CHAPTER 3. PIN GATE LOCATION 20

vl to x with k as the orthogonal distance between the line L containing [ua; ub] and vl, and z

represents the distance between x and the point on L that is the orthogonal projection of vl onto

L. Consider the example in Figure 3.7. The constant k1 accounts for the distance from vi to vi+2.

By the path-invariant property, this value is the same for all points on the subedge. The distance

from vi+2 to x is accounted for by
p
k2 + z2.

u u u u u u2 3 4 5 6 7 u8

v

u1

i

x

vi+2

z

k

Figure 3.7: Distance function from subedge to vertex.

Let dvi(x) denote the distance function from vi 2 (vc; : : : ; vd) to a point x in [ua; ub]. These

functions are simple and can be used to solve directly the decomposition of [ua; ub] into subedges

such that for each point in the subedge, the furthest neighbor is the same vertex of (vc; : : : ; vd). This

can be achieved by computing the upper envelope of the functions dvi(x) for all vi 2 (vc; : : : ; vd).

The following lemma gives the key to solving this in time that is linear in the size of the problem

instance.

Lemma 3.3.5 Let p1; p2; p3; p4 be four points in this order on the boundary of P . If dG(p1; p4) >

dG(p1; p3) then dG(p2; p4) > dG(p2; p3).

Proof: Suppose dG(p1; p4) > dG(p1; p3) and dG(p2; p3) � dG(p2; p4). We see that dG(p1; p4) +

dG(p2; p3) > dG(p1; p3)+dG(p2; p4). By the relative positions of the points, �(p1; p3) must intersect

�(p2; p4). Let x be a point on this intersection.

By the triangle inequality, dG(p1; p4) � dG(p1; x) + dG(x; p4), and dG(p2; p3) � dG(p2; x) +

dG(x; p3). But since x 2 �(p1; p3) \ �(p2; p4), we contradict our assumption, proving the lemma.

The above lemma implies that we can compute the upper envelope in linear time simply by

inserting the functions in the order (vc; : : : ; vd) or the reverse order. Both arguments are symmetric.

Let us look at an example to see why this is so. Suppose we are inserting the functions in the order

dvd(x); dvd�1(x); : : : ; dvc(x). Consider the example in Figure 3.8 where the �rst three functions have
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been inserted. The upper envelope consists of dvd(x) between ua and u1, dvd�1(x) between u1 and

u2, and dvd�2(x) between u2 and ub. The next function to be added is dvd�3(x). If dvd�3(x) is below

dvd�2(x) between u2 and ub then it cannot lie on the upper envelope because if it did, we would

have a situation contradicting Lemma 3.3.5. If dvd�3(x) intersects dvd�2(x) between u2 and ub then

we update the upper envelope by adding the intersection point, but we no longer need to compare

dvd�3(x) with any other function on the upper envelope by Lemma 3.3.5. Finally, if dvd�3(x) is

above dvd�2(x) between u2 and ub then remove the intersection point u2, remove dvd�2(x) from

the upper envelope, and repeat the test on the next piece of the upper envelope, namely dvd�1(x).

Therefore, when we add the functions in the order dvd(x); dvd�1(x); : : : ; dvc(x), the amount of time

spent adding a function can be determined in constant time plus the time proportional to the

number of functions and intersection points deleted which is linear time overall. We conclude with

the following lemma.

ua ubu1 u2

d   (x)vd

vd−1
d      (x)

vd−2
d      (x)

Figure 3.8: Computing upper envelopes.

Lemma 3.3.6 Given an instance of P [ua; ub; vc; vd] where [ua; ub] is a segment with the path-

invariant property, [ua; ub] can be decomposed, in time proportional to the size of P [ua; ub; vc; vd],

into subedges such that for each point in the subedge, the furthest neighbor is the same vertex of

(vc; : : : ; vd).

The algorithm to compute RGDV (U) stems from the crossing property described in Lemma

3.3.1. We show that this property holds at all levels of recursion. The algorithm is initiated with

a call to RGD(P [ua; ub; vc; vd]). At each invocation, the algorithm either makes two recursive calls

with smaller problem instances or solves the problem directly. The calling relation forms a binary

tree, which we refer to as the recursion tree. A node of this tree having two children is an instance

of RGD where two recursive calls were made. A leaf of the recursion tree is an instance of the
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problem that is solved directly. The root of the tree represents the initial call. The depth of a node

in the tree represents its level of recursion.

Lemma 3.3.7 Let U = (ua; : : : ; ub) and V = (vc; : : : ; vd). Given an initial call of RGD(P [ua; ub; vc; vd]),

every recursive call RGD(P [uq; ur; vs; vt]) has the property that for all x 2 (uq; : : : ; ur), we have

that �V (x) 2 (vs; : : : ; vt).

Proof: We proceed by induction. The initial call has the property that for every x 2 U , �V (x)
is in V . Let us assume, by induction, that all subproblems at depth k in the recursion tree have

the desired property. We show that all problems at depth k + 1 have the desired property given

that the property holds at depth k.

There are only two places in the algorithm where a recursive call takes place. Let us �rst look

at the call in Step 4. The same argument holds for the other call in Step 2. Let P [uq; ur; vs; vt] be

an instance of a problem at depth k. By induction, we know that for all x 2 (uq; : : : ; ur), we have

that �V (x) 2 (vs; : : : ; vt). In Step 4, P [uq; ur; vs; vt] is split into two instances, P [uq; uk; vm; vp]

and P [uk ; ur; vs; vm]. By the crossing property, we know that for all x 2 (uq; : : : ; uk), we have

�V (x) 2 (vm; : : : ; vp) and for all x 2 (uk ; : : : ; ur), �V (x) 2 (vs; : : : ; vm). Thus, the lemma follows

by induction.

We are now in a position to prove the correctness of algorithm RGD .

Theorem 3.3.1 Algorithm RGD correctly computes the restricted geodesic decomposition of chain

U with respect to V .

Proof: By Lemma 3.3.7, if the root of the recursion tree is an instance of RGD(P [ua; ub; vc; vd])

with the property that for all x 2 (ua; : : : ; ub), we have that �V (x) 2 (vc; : : : ; vd), then all recursive

calls, i.e. all other nodes of the tree, have this property. Therefore, the correctness of the restricted

geodesic decomposition of U with respect to V rests on the correctness of the leaves of the recursion

tree, that is, the instances of RGD that solve the problem directly.

If the leaf instance is degenerate, then the problem is solved directly in Step 1. The correctness

of this step is proved in Lemma 3.3.3. If the problem is solved directly in Step 2 (in the �rst if

statement), then the correctness is veri�ed by the crossing property. Similarly, if the problem is

solved directly in the �rst part of Step 3, the correctness is guaranteed by the crossing property.

Finally, if the problem is solved directly by computing upper envelopes in Step 3, then it is correct

by Lemma 3.3.6. Since, we have shown that all instances where the problem is solved directly are

correct, the theorem follows.

We now turn our attention to the complexity analysis of algorithm RGD . We show that the

algorithm runs in O(n logn) time and uses O(n) space. To do this, we �rst show that there are

O(logn) levels of recursion. Then we show that an instance of RGD(P [ua; ub; vc; vd]) (excluding

recursive calls and sorting of partition points) runs in time proportional to the size of P [ua; ub; vc; vd].

Finally, we show that the total size of all polygons at a particular level of recursion is O(n). The

main ideas in the complexity analysis to follow stem from the analysis given in Suri[79].

Lemma 3.3.8 Algorithm RGD(P [ua; ub; vc; vd]) runs in time proportional to the size of P [ua; ub; vc; vd],

excluding recursive calls and sorting partition points.

Proof: Let m be the size of P [ua; ub; vc; vd]. Step 1 runs in time O(m), by Lemma 3.3.3. A

furthest neighbor of a point in P [ua; ub; vc; vd] can be found in O(m) time using the algorithm of [40].

Therefore, the �rst part of Step 2 runs in O(m) time. Because of the structure of P [ua; ub; vc; vd],
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constructing and triangulating the two subpolygons in the second part of Step 2 (in the Else

statement) and in Step 4 can be done in O(m) by a simple algorithm in [79] or a more complex

algorithm of Chazelle [19]. Since we are excluding the sorting of partition points, Step 2 and Step

4 can be done in O(m). Finally, Step 3 can be achieved in O(m) time as proved in Lemma 3.3.6.

The lemma follows.

We �rst show that the number of distinct edges among all the polygons constructed by algorithm

RGD is O(n), where n is the size of the polygon in the initial invocation. Recall that P [ua; ub; vc; vd]

denotes the region of P obtained by joining the counterclockwise chain of @P from ua to ub and

the clockwise chain of @P from vc to vd with �(ua; vc) and �(ub; vd) (see Figure 3.5). We refer to

�(ua; vc) and �(ub; vd) as connecting paths. There are three types of edges in P [ua; ub; vc; vd]. An

edge that belongs to @P is a primary edge, an edge that is a subedge of an edge belonging to @P is

a partition edge, and an edge that belongs to a connecting path is a connecting edge. The number

of distinct primary edges is O(n) since all primary edges are contained in the initial polygon. We

now show that there are O(n) distinct partition edges and connecting edges.

Lemma 3.3.9 Let B be a simple polygon. Let a; c be two arbitrary but �xed points on the boundary

of B and let b; d be two other points on the boundary of B such that a; b; c; d appear in this order in

a counterclockwise traversal of the boundary of B. Then, all edges of �(b; d), except perhaps three,

belong to E(a)[E(c), where E(�) denotes the set of edges in the shortest path tree of B from the

point �.

Proof: The proof is identical to the proof of Lemma 4 in Suri [79], except there are three edges

rather than one that do not belong to E(a)[E(c) since we consider points on the boundary of the

polygon whereas Suri was dealing with vertices of the polygon.

Lemma 3.3.10 The total number of partition points added is O(n) where n is the size of the initial

instance of RGD(P [ua; ub; vc; vd]).

Proof: Let P [ua; ub; vc; vd] represent the initial n vertex polygon. We have U = (ua; : : : ; ub) and

V = (vc; : : : ; vd). Let nu represent the number of vertices in the U chain and nv the number in

the V chain. We refer to an instance of RGD(P [uq; ur; vs; vt]) where [uq; ur] is an edge of P and

(vs; : : : ; vt) is a polygonal chain belonging to @P as a partition instance.

Notice that a vertex in the V chain can appear in only two partition instances, since each time

during the execution of RGD that the V chain is divided, only the dividing vertex appears in

common in the two ensuing subinstances. Therefore, we can conclude that at most 2nu vertices

from the V chain are considered among all partition instances.

Partition points are created by extending the edges in the shortest path between a vertex vi
in the V chain and a vertex uj in the U chain. So the number of partition points introduced is

bounded by the number of distinct edges of all the shortest paths considered to create the partition

points. By Lemma 3.3.9, all but three edges of �(vi; uj) appear in E(ua) [ E(ub). The size of

E(ua)[E(ub) is O(n). Since at most 2nu vertices of the V chain are considered, there are at most

3 �2nu 2 O(n) edges not accounted for by E(ua)[E(ub). Therefore, a total of O(n) partition points

are introduced.

Since a total of O(n) partition points are added given that the size of the initial instance of

RGD(P [ua; ub; vc; vd]) is n, we conclude that the total time spent sorting all partition points is

O(n logn). Therefore we have the following.
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Lemma 3.3.11 Given an initial instance of RGD(P [ua; ub; vc; vd]) of size n, the total time spent

sorting partition points is O(n logn).

Lemma 3.3.12 There are O(logn) levels of recursion where n is the size of the initial instance of

RGD(P [ua; ub; vc; vd]).

Proof: Let � = (i1; i2; : : : ; im) represent the the longest root to leaf path in the recursion tree.

Each ik of the path � represents the problem instance occurring at recursion level k along the path.

On any root to leaf path, there can be only one partition instance. Let us suppose that � has a

partition instance and let ip represent it. The argument is similar if � does not have a partition

instance.

From i1 to ip, at each step, the U chain is divided in half as seen in Step 4 of algorithm RGD .

Therefore, there are O(logn) instances from i1 to the partition instance. At the partition instance

ip, by Lemma 3.3.10, at most O(n) points are introduced. Again, from ip to im, at each step the

partitioned edge is divided in half as seen in Step 2. So, the length of the path from ip to im is also

O(logn). Therefore, � has length O(logn). Since the longest root to leaf path in the recursion tree

has length O(logn), there are O(logn) levels of recursion.

Lemma 3.3.13 There are O(n) distinct edges among all polygons constructed by RGD(P [ua; ub; vc; vd]).

Proof: By Lemma 3.3.12, the height of the recursion tree is O(logn) where n is the size of

P [ua; ub; vc; vd]. Since the recursion tree is a binary tree, there are O(n) nodes in the tree. This

means that at most O(n) polygons are constructed in total. Since each polygon has two connecting

paths, at most O(n) connecting paths are constructed in total.

Now, a connecting path joins a point ui on the U chain to a point vj on the V chain. By Lemma

3.3.9, all but three edges of �(ui; vj) appear in E(ua) [ E(ub). The size of E(ua) [E(ub) is O(n).
Since at most O(n) connecting paths are constructed, there are at most O(n) edges not accounted

for by E(ua)[E(ub). This adds up to a total of O(n) distinct connecting edges. By Lemma 3.3.10,

there are only O(n) distinct partition edges. By de�nition, there are only O(n) distinct primary

edges. The lemma follows.

All that remains to be shown is that the summed complexity of all the polygons constructed

in one particular level of recursion is O(n). To do this, we show that a distinct edge can belong

to only a constant number of polygons in a particular level of recursion. By the construction of

polygons in Step 2 and Step 4, we see that partition edges and primary edges cannot occur in two

polygons at the same level of recursion. This follows from the way the U chain and V chain are

divided. We now show that a connecting edge can only occur in a constant number of polygons on

the same level of recursion.

In order to show this, we must consider the connecting edges as directed. All connecting paths

are directed from the U chain to the V chain. Therefore, the edges of the connecting paths are

arcs that are directed from one chain to the other. Consider the two paths in Figure 3.9. Both are

connecting paths from the U chain to the V chain, and both have the edge e in common. However,

e is directed one way in one of the paths and the opposite way in the other. This distinction is

important in the analysis to follow.

Lemma 3.3.14 [79] Let a1; a2; a3; b1; b2; b3 be six points in this order in a counterclockwise traversal

of P . Suppose that the directed shortest paths �(a1; b1) and �(a3; b3) have a directed edge e in

common. Then, the same directed edge e also is included in the shortest path �(a2; b2).
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Figure 3.9: Directed edges must be considered.

We only need to consider non-degenerate polygons at the same level of recursion. Given a

degenerate polygon at recursion level i, algorithm RGD solves the problem directly at this stage.

Therefore, since the degenerate polygon is derived from a non-degenerate polygon at level i � 1,

the complexity of the degenerate polygon can be accounted for by the non-degenerate `parent'.

Lemma 3.3.15 Let P [ua1 ; ub1 ; vc1 ; vd1 ]; P [ua2; ub2; vc2 ; vd2 ], and P [ua3 ; ub3; vc3 ; vd3 ] be three non-

degenerate polygons that occur at the same level of recursion, such that a1 � b1 � a2 � b2 � a3 � b3,

and c3 � d3 � c2 � d2 � c1 � d1. Then, the directed connecting paths of P [ua1 ; ub1 ; vc1; vd1 ] and

P [ua3 ; ub3 ; vc3 ; vd3 ] are edge-disjoint.

Proof: See Figure 3.10. The proof of this lemma is similar to the proof of Lemma 7 in [79].

Suppose that the two directed connecting paths �(x1; y1) and �(x3; y3) share an edge e, where

x1 2 fua1 ; ub1g and x3 2 fua3; ub3g. Then by Lemma 3.3.14, �(ua2; vc2) and �(ub2 ; vd2) must also

share edge e, contradicting the fact P [ua2 ; ub2 ; vc2 ; vd2 ] is not degenerate.

Theorem 3.3.2 Algorithm RGD computes the restricted geodesic decomposition of chain U with

respect to V using O(n logn) time and O(n) space given an input of size n.

Proof: The correctness of the algorithm is shown in Theorem 3.3.1. Let P [ua; ub; vc; vd] be the

input polygon of size n to algorithm RGD . By Lemma 3.3.8, we know that excluding recursive

calls and sorting partition points, algorithm RGD(P [uq; ur; vs; vt]) runs in time proportional to the

size of P [uq; ur; vs; vt].

The size of all the polygons constructed at the same level of recursion is O(n) by Lemma 3.3.13

and Lemma 3.3.15. There are O(logn) levels of recursion. Hence, the total time spent, excluding

sorting partition points, is O(n logn) By Lemma 3.3.11, the time to sort all partitions points is

O(n logn). The theorem follows.
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Figure 3.10: Illustration for Lemma 3.3.15

In the next section, we show how to use the restricted geodesic decomposition to solve our initial

problem of computing the geodesic decomposition of the boundary.

3.3.3 Geodesic Center Constrained to the Boundary

To compute the geodesic decomposition of the boundary of a simple polygon, we apply the algorithm

for restricted decomposition three times. The following lemma of Suri[79] provides the key.

For the following lemma, we assume that (u1; u2; : : : ; un) is the counterclockwise sequence of

vertices of polygon P . We let (ua; : : : ; ub) denote the counterclockwise chain of @P from ua to

ub. Let ui be an arbitrary vertex of P . Let uj 2 �(ui) be a geodesic furthest neighbor of ui, and

uk 2 �(uj) be a geodesic furthest neighbor of uj . It is possible that ui = uk. Let us assume, without

loss of generality, that ui; uj; uk is the order of these vertices in a counterclockwise traversal of P

starting at vertex ui, then we have the following lemma.

Lemma 3.3.16 [79] Let ui be an arbitrary vertex of P . Let uj 2 �(ui) and let uk 2 �(uj), such

that ui, uj , and uk are in this order in a counterclockwise traversal of P .

1. for any vertex ul 2 (ui; : : : ; uj), there exists another vertex um 2 (uj ; : : : ; ui) satisfying um 2
�(ul),

2. for any vertex ul 2 (uj ; : : : ; uk), there exists another vertex um 2 (uk; : : : ; ui; : : : ; uj) satisfying

um 2 �(ul),
3. for any vertex ul 2 (uk; : : : ; ui), there exists another vertex um 2 (ui; : : : ; uj; : : : ; uk) satisfying

um 2 �(ul),

From the above lemma, we can conclude that to compute the geodesic decomposition of P , we

simply solve the following three instances of the restricted geodesic decomposition of P .

Instance 1 The U chain is (ui; : : : ; uj) and the V chain is (uj ; : : : ; uk; : : : ; ui).

Instance 2 The U chain is (uj ; : : : ; uk) and the V chain is (uk; : : : ; ui; : : : ; uj).
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Instance 3 The U chain is (uk; : : : ; ui) and the V chain is (ui; : : : ; uj ; : : : ; uk).

Therefore, we have the following theorem.

Theorem 3.3.3 The geodesic decomposition of a simple polygon can be computed in O(n logn)

time and O(n) space given an input of size n.

Once the geodesic decomposition of a polygon P has been computed, the boundary-constrained

geodesic center can be computed as follows. Let (c1; c2; : : : ; ct) represent the polygonal chains in the

geodesic decomposition of the boundary of P where
S
t

i=1 ci = P and for every x; y 2 ci, �(x) = �(y).

For each ci, compute the point x 2 ci, with the property that the geodesic distance from x to �(x)

is smallest compared to all other points in ci. In other words, dG(x; �(x)) = min8y2cifdG(y; �(y)g.
The point x is referred to as the candidate for the chain ci. In fact, algorithm RGD already

computes the candidates for each chain as seen in steps 1, 2 and 3 of the algorithm. We conclude

with the following theorem.

Theorem 3.3.4 The boundary-constrained geodesic center of polygon P is the candidate x�, such

that dG(x
�; �(x�)) = min

8 candidates yfdG(y; �(y)g.
Proof: Suppose that x� is not the boundary-constrained geodesic center of polygon P . Let z be

the boundary-constrained geodesic center of polygon P . Now, z is on some chain ci of the geodesic

decomposition of P . Since it is the boundary-constrained geodesic center of polygon P , it must

be the candidate for chain ci. The geodesic distance from x� to �(x�) is less than or equal to

the geodesic distance from z to �(z) by de�nition. If dG(x
�; �(x�)) < dG(z; �(z)), then z cannot

be the boundary-constrained geodesic center. If dG(x
�; �(x�)) = dG(z; �(z)), then x� is also a

boundary-constrained geodesic center. Both are contradictions, thereby proving the theorem.

3.3.4 Geodesic Center Constrained to a Polygonal Region

In this section, we address the problem of computing the geodesic center of a simple polygon P

constrained to lie inside a simple polygon Q, where Q is contained in P . We denote this center as

GCQ(P ). If Q equals P then we simply have the geodesic center of the polygon P . We can further

restrict the geodesic center to lie on the boundary of polygon Q, denoted GC @Q(P ). In this case,

if Q equals P , then we have the geodesic center constrained to the boundary of P . The reason

we di�erentiated the problem of computing the geodesic center constrained to the boundary from

this problem is that we use the geodesic furthest point Voronoi diagram to solve this problem, but

to solve the former problem, we were able to avoid computing the geodesic furthest point Voronoi

diagram by modifying Suri's algorithm [79]. The arguments we use to solve this problem are similar

to the arguments used to solve the Euclidean center constrained to a polygon region.

Since in this and the following subsection we make extensive use of the GFPVD(P ), let us

review a few of its properties. In order to use the algorithm of [3], we assume that no vertex is

geodesically equidistant from two other vertices. This can always be guaranteed by applying a slight

perturbation to the vertices if the condition is violated. Like its Euclidean counter-part,GFPVD(P )

partitions P into cells, V (pi), such that for every point p 2 V (pi), the point pi is a furthest geodesic
neighbor of p. A vertex of the GFPVD(P ) is a point that is geodesically equidistant to three

vertices furthest from it. An edge between two Voronoi vertices is either a straight edge or a

hyperbolic arc. Finally, the boundary of a Voronoi cell consists of a concatenation of straight edges

and hyperbolic arcs. For more geometric properties of geodesic furthest point Voronoi diagrams,

the reader is referred to [3, 4].
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Lemma 3.3.17 [4, 65] The geodesic center of a simple polygon P lies on the midpoint of the

geodesic diameter of P (GDIAM (P )) or on a vertex of the GFPVD(P ).

When the geodesic center of the polygon P lies on the midpoint of the geodesic diameter, it has

a special property. Let bis(a; b) represent the geodesic bisector of a and b inside P , i.e. for every

point x on bis(a; b), dG(x; a) = dG(x; b). Let a; b be two points of polygon P , then we have the

following.

Lemma 3.3.18 If the midpoint m of �(a; b) lies on the interior of the edge separating cells V (a)

and V (b) of GFPVD(P ), then m is the geodesic center P and �(a; b) is the geodesic diameter of

P .

Proof: We proceed by contradiction. Suppose m is not the geodesic center, and let c be the

geodesic center. The bisector bis(a; b) partitions polygon P into two parts. Let Pa represent the

part where 8x 2 Pa; dG(x; a) < dG(x; b) and Pb be the part where 8x 2 Pb; dG(x; b) < dG(x; a). If

c is on bis(a; b), then dG(c; a) > dG(m; a) since m is on �(a; b) and geodesics are unique. If c 2 Pa
then dG(c; b)> dG(m; b) since �(c; b) must intersect bis(a; b) at some point x by the Jordan Curve

Theorem and dG(x; b) � dG(m; b). Similarly, if c 2 Pb then dG(c; a) > dG(m; a). Therefore, by

contradiction, m must be the geodesic center. Since m is the geodesic center, it follows that �(a; b)

is a geodesic diameter.

Before continuing, we need a few de�nitions. Let a, b, c be three points in a simple polygon P .

The geodesic angle 6 abc is the smaller of the two angles between the �rst link on the geodesic path

from b to a and the �rst link on the path from b to c. Now, consider the paths �(a; b); �(b; c); and

�(a; c). There exist points a0; b0; and c0 such that the paths �(a; b) and �(a; c) intersect in the path

�(a; a0), the paths �(b; c) and �(b; a) intersect in the path �(b; b0), and the paths �(c; a) and �(c; b)

intersect in the path �(c; c0). The three paths �(a0; b0), �(b0; c0), and �(c0; a0) form what is known

as a geodesic triangle, denoted 4a0b0c0 (see Figure 3.11). The vertices a0; b0; c0, are the only convex

vertices of the geodesic triangle and are referred to as the peaks of the triangle. Pollack et al.[65]

proved the following property concerning geodesic triangles.

Lemma 3.3.19 [65] If the geodesic angle 6 ba0c at a0 is greater than or equal to �=2, then dG(b; c) >

dG(a
0; b); dG(a

0; c)

Lemma 3.3.20 The geodesic center of P constrained to lie in Q is the midpoint m of GDIAM (P )

provided that m is the geodesic center of P and lies in Q.

Proof: Follows from Lemma 3.3.17.

To address the problem of determining the location of GCQ(P ) when it does not satisfy the

conditions of the above lemma, we establish the following lemmas. Let a; b be two vertices of P such

that they each have a corresponding cell V (a) and V (b), respectively, which are adjacent separated

by an edge e in GFPVD(P ). Also, �(a; b) is not the geodesic diameter of P . Let x be a point on

the interior of e, and let � > 0 be any small constant.

Lemma 3.3.21 There exists a point y 2 e with dG(x; y) < � such that dG(y; a) < dG(x; a) and

dG(y; b) < dG(x; b).

Proof: The edge e must lie on bis(a; b), since the points on e are equidistant from both a

and b. The point x must be a peak of the geodesic triangle formed by the paths �(x; a); �(x; b),
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Figure 3.11: A Geodesic Triangle.

and �(a; b) since otherwise x would be on the path �(a; b) which would imply that �(a; b) was a

geodesic diameter by Lemma 3.3.18. Also, a portion of e must be contained in the geodesic triangle,

since x is on the interior of e. Let y be a point on e in the geodesic triangle. Since the geodesic

angle 6 ayb must be no greater than �, by Lemma 3.3.19 we conclude that dG(y; a) < dG(x; a) and

dG(y; b) < dG(x; b). The lemma follows.

Lemma 3.3.22 A point b of P cannot lie in V (b).

Proof: Let x 2 P be a point distinct from b. If b 2 V (b) then dG(b; b) = 0. However, dG(b; x)> 0

which contradicts the fact that b 2 V (b).

We now complete the characterization of GCQ(P ).

Lemma 3.3.23 If the geodesic center of P constrained to lie in Q is not the midpoint of GDIAM (P ),

then it lies on one of the following points:

1. a vertex of the GFPVD(P ) contained in Q,

2. a proper intersection point of the GFPVD(P ) and the boundary of Q,

3. a vertex of the polygon Q,
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4. a point x on an edge e of Q with the property that 8y 2 e, if �(y) = �(x) then dG(y; �(x)) �
dG(x; �(x)).

Proof: If GCQ(P ) does not lie on any of the points mentioned in the statement of the lemma,

then it must lie in one of the regions described in the following four cases. We show that each of

these cases leads to a contradiction. For simplicity of exposition, let c = GCQ(P ).

Case 1: c is a point in the interior of a cell of the GFPVD(P ), and in int(Q). Let V (b) be the

cell containing c. By the Jordon Curve Theorem [64], �(bc) must intersect @P or V (b) since

b 62 V (b) by Lemma 3.3.22. Let x be the intersection point closest to c. The point x must be

in V (b). Therefore b is a furthest neighbor of both x and c. However, dG(x; b) < dG(c; b) by

construction. Hence, we have a contradiction.

Case 2: c is a point in the interior of a cell of the GFPVD(P ), and in the interior of an edge

e of Q but does not satisfy the property that 8y 2 e, if �(y) = �(c) then dG(y; �(c)) �
dG(c; �(c)). Since the latter property is not satis�ed, a point x 2 e such that �(x) = �(c) and

dG(x; �(c)) < dG(c; �(c)) must exist. However, the very existence of x contradicts that c is

the geodesic center of P constrained to lie in Q.

Case 3: c is a point in the interior of an edge e of the GFPVD(P ), and in int(Q). Let V (a) and

V (b) be the two cells separated by the edge e. Since c is not the midpoint of the geodesic

diameter of P , by Lemma 3.3.21 we know that there exists a point x in e and in int(P ) such

that dG(x; a) < dG(c; a) and dG(x; b)< dG(c; b). This contradicts that c is GCQ(P ).

Case 4: c is a point in the interior of an edge ev of the FPVD(S), and in the interior of an edge

ep of P such that ev and ep intersect but not properly. Same argument as Case 3.

We outline the algorithm to compute GCQ(P ).

Algorithm 3: Geodesic Center of P constrained to lie in Q

Input: A simple polygon P = fp1; p2; : : : ; png, and a simple polygon Q = fq1; q2; : : : ; qng with

Q � P .

Output: GCQ(P )

1. Compute the GFPVD(P ) using the algorithm of Aronov et al.[3].

2. Compute GC (P ) using the algorithm of Pollack et al.[65].

3. Preprocess Q in O(n logn) time for point inclusion testing in O(logn) time using the algo-

rithms of Kirkpatrick [45] or Sarnak and Tarjan [75].

4. If GC (P ) is contained in Q then exit with GC (P ) as GCQ(P ).

5. Preprocess P for shortest path queries using the algorithm of Guibas and Hershberger [39].

6. Compute the set of vertices of GFPVD(P ) contained in Q. Let Vc represent this set.

7. Compute the set of intersections Ic = fi1; i2; : : : ; ikg of Q with GFPVD(P ) using the algorithm

of Chan[18].

8. Partition each edge ei ofQ such that for every pair of points x; y 2 ei, we have that �(x) = �(y).

Denote the jth partition of ei by eij .
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9. For each eij , compute the point on eij closest to �(eij). If this point is not an endpoint of eij ,

place it in the set Ec.

10. Let Pc represent the vertices of Q.

11. Let CAN = Vc [ Ic [ Pc [ Ec.

12. Find the set of points G = fx 2 CAN j dG(x; �(x)) = miny2CAN dG(y; �(y))g
13. Output the set G.

Notice that we assumed that the number of vertices of Q equals the number of vertices of P .

Clearly, this need not be the case, however, this assumption simplifys the complexity of notation. It

is quite straightforward to repeat the complexity analysis when P and Q have di�erent cardinalities.

Theorem 3.3.5 Given a polygon P = fp1; p2; : : : ; png and a polygon Q = fq1; q2; : : : ; qng contained
in P , we can compute the geodesic center of P constrained to lie in Q in time O(n(n + k)) where

n is the size of the input and k is the number of intersections between the edges of the GFPVD(P )

and Q.

Proof: The correctness of the algorithm follows from Lemmas 3.3.20 and 3.3.23.

Let us analyze the complexity of the algorithm. Step 1 of the algorithm can be computed in

O(n logn) time using the algorithm of Aronov et al.[3]. Step 2 can be computed in O(n logn)

time using the algorithm of Pollack et al.[65]. Preprocessing for point inclusion can be done in

O(n logn) using the algorithm of Kirkpatrick [45] or Sarnak and Tarjan [75]. Step 5 can be achieved

in O(n logn) time by using the algorithm of Guibas and Hershberger[39]. By preprocessing the

polygon for shortest path queries, in O(logn) time the geodesic distance between two points can be

recovered and in O(logn +m) time the geodesic path between two points can be recovered where

m is the length of the path. Step 6 can be done in O(n logn) time using the point inclusion test.

Computing the intersections between GFPVD(P ), which consists of straight edges and hyperbolic

arcs, and Q, which consists only of straight edges, can be computed in O(n logn+ k) time where k

is the number of intersections between Q and GFPVD(P ) using the algorithm of Chan [18]. Once

the intersection points have been computed, Step 8 can be achieved in O(k log n) time. In Step 9,

to compute the point on eij closest to �(eij), we �rst compute the geodesic path from the endpoints

of eij to �(eij) in O(logn +m) time where m is the length of the two paths using [39]. Once the

two paths have been computed, �nding the point geodesically closest to �(eij) can be done O(m)

time in the manner described in Subsection 3.3.2. Note that O(m) 2 O(n). Step 9 is executed

O(maxfk; ng) times, thus the complexity is O(n(n+ k)). Step 12 can be computed in O(k) time.

Therefore, the total complexity of the algorithm is O(n(n+ k)) time.

3.3.5 Geodesic Center Constrained to a Polygonal Chain

With a slight modi�cation, Algorithm 3 can compute the geodesic center of P constrained to lie

on the boundary Q, GC @Q(P ). These modi�cations are outlined below.

Lemma 3.3.24 The geodesic center of P constrained to lie on the boundary of Q is the midpoint

m of GDIAM (S) provided that m is the geodesic center of P and lies on the boundary of Q.

Proof: Follows from Lemma 3.3.17.
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Lemma 3.3.25 If the geodesic center of P constrained to lie on the boundary of Q is not the

midpoint of GDIAM (P ), then it lies on one of the following points:

1. a vertex of the GFPVD(P ) on the boundary of Q,

2. a proper intersection point of the GFPVD(P ) and the boundary of Q,

3. a vertex of the polygon Q,

4. a point x on an edge e of Q with the property that 8y 2 e, if �(y) = �(x) then dG(y; �(x)) �
dG(x; �(x)).

Proof: Similar case analysis as the proof of Lemma 3.3.23.

Lemma 3.3.24 and Lemma 3.3.25 completely characterize the location of GC@Q(P ). The modi�ca-

tions to Algorithm 3 for computing these points are straightforward. Therefore, we conclude with

the following.

Theorem 3.3.6 Given a polygon P = fp1; p2; : : : ; png and a polygon Q = fq1; q2; : : : ; qng contained
in P , we can compute the geodesic center of P constrained to lie on the boundary of Q in time

O(n(n+ k)) where n is the size of the input and k is the number of intersections between the edges

of the GFPVD(P ) and Q.

3.4 Constrained Link Center

In this section, we consider the second property attributed to a good pin gate location. Recall that

the second property states that the maximum number of turns that the liquid takes on its path

from the pin gate to any point in the object should be small. The link metric provides a geometric

interpretation of this property. The link metric measures the number of turns or bends in a path

between two points. We need a few de�nitions about link paths before continuing.

The link distance between two points x and y inside a polygon P , denoted dL(x; y), is the

minimum number of edges in any polygonal path connecting x and y without intersecting the

boundary of P . A path �L(x; y) between x and y is a minimum link path provided that the number

of edges in �L(x; y) is equal to dL(x; y). The k-neighborhood or k-disk about a point x 2 P is de�ned

as Nk(x) = fy 2 P j dL(x; y) � kg, and the covering radius c(x) of x is the smallest k such that

P � Nk(x). The link radius is de�ned by rL(P ) = minx2P c(x) and the link center of P is de�ned

by LC (P ) = fx 2 P j c(x) = rL(P )g. In essence, the link center is the set of points in P whose

maximum link distance to any point in P is minimized, precisely the set of potential pin gates

satisfying the second property of a suitable pin gate.

We review the problem of computing the link center of a simple n vertex polygon P . The

problem of computing the link center was �rst addressed by Lenhart et al.[51] who provided a

simple O(n2) time algorithm to compute LC (P ). Note that the link center of P is not necessarily a

point as is the case with the geodesic center of P , but the link center may in fact be a geodesically

convex region contained in P . Later Djidjev et al.[25] reduced the time complexity of computing

LC (P ) to O(n logn). Therefore, to compute the link center of a simple polygon, either of these

two algorithms may be used.

The problem of computing the link center constrained to the boundary of a polygon P , denoted

as LC (@P ), has not been addressed. In this section, we provide a simple algorithm to compute

the set LC �(@P ) which is a subset of LC(@P ). In some cases LC �(@P ) is in fact be equivalent to

LC (@P ).
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3.4.1 Link Center Constrained to the Boundary

In this section, we provide a simple algorithm for computing LC �(@P ), which is a subset of LC (@P ).

The following very simple observations form the basis of the algorithm.

Observation 3.4.1 If LC(P ) \ @P is non-empty, then LC (@P ) = LC (P ) \ @P .
Observation 3.4.2 If a point z 62 LC(P ) is visible from a point x 2 LC(P ), then c(z) is one

greater than c(x).

Two points x; y in polygon P are said to be visible provided that the line segment [x; y] is in P .

Given a set of pointsX in polygon P , the strong visibility set ofX in P is fz 2 P j 8 x 2 X; [xz] 2 Pg
and the weak visibility set of X in P is fz 2 P j 9 x 2 X; [xz] 2 Pg. If X happens to be a simple

polygon inside P , Ghosh [38] has shown that the weak visibility set of X in P is also a simple

polygon, referred to as the weak visibility polygon of P from X and denoted by WVP(X;P ). We

now outline the algorithm.

Algorithm 4: Compute LC�(@P )

1. Compute LC (P ).

2. Let LC 1 = LC (P ) \ @P . If LC1 is non-empty, exit with LC 1.

3. Compute the weak visibility polygon of P from LC (P ).

4. Let LC 2 = WVP(LC(P ); P ) \ @P . Exit with LC 2.

If LC 1 is non-empty, then LC (@P ) is equal to LC 1. If on the other hand, LC 1 is empty, then

the set LC 2 must be a subset of LC (@P ) since the link center of the polygon is contained strictly

in the interior of P and the covering radius of every point in LC2 is one greater than the covering

radius of a point in the link center. The complexity of the algorithm is dominated by Step 1 which

can be computed in O(n logn) time using the algorithm of [25]. A simple modi�cation to the

algorithm in [25] is needed to compute the intersection of LC (P ) with the boundary of P in the

same time complexity. Step 3 can be performed in O(n) time using the algorithm of [38]. The parts

of WVP(LC (P ); P ) that are part of the boundary of P can be identi�ed during the computation

of the weak visibility polygon. Therefore, we conclude with the following theorem.

Theorem 3.4.1 LC �(@P ) can be computed in O(n logn) time.

3.5 Discussion

Of the solutions presented in this chapter, computing the Euclidean center, with or without con-

straints, as well as the link center, with or without constraints, are both conceptually and com-

putationally simpler than computing the geodesic center. However, the Euclidean center may not

always be a good candidate for the location of a pin gate as pointed out in Section 3.3. The

link center considered alone may also not be a suitable candidate since liquid inside a mold does

not necessarily travel along a link path. Combining these two constraints may provide a better

approximation (e.g. computing the Euclidean center constrained to lie in the link center).

The geodesic center, although computationally more expensive, seems to be a better measure

in terms of the distance the liquid travels inside a mold. A combination of the link and geodesic

centers may reap the bene�ts of both properties of an ideal pin gate location being satis�ed. For

example, computing the geodesic center constrained to lie in the link center may provide a better

solution than considering the geodesic center by itself.



Chapter 4

Gravity Casting in Two Dimensions

4.1 Introduction

`Mold orientation during �ll is a cut-and-try process to �nd the most favorable position.' [71]

The above quote points out one of the key problems in gravity casting: �nd a favorable ori-

entation for a mold during �ll that allows the most complete �ll and minimizes the number of

surface defects. This problem is di�cult when the focus is on the uid dynamics and physics of

the whole molding process. However, when viewed from a purely geometric perspective, �nding a

favorable mold orientation no longer need be a cut-and-try process. Our motive in this chapter is to

study gravity casting from a geometric perspective and present algorithms to �nd mold orientations

that allow the most complete �ll for molds modelled as simple polygons. We begin by de�ning a

geometric model of the gravity casting process referred to as the gravity model.

4.1.1 Geometric Model

The point on the polygon boundary from which the liquid is poured into the polygon is called the

pin gate. A venting hole is a point from which only air and not any liquid is allowed to escape. The

pin gate is considered to be a venting hole. We assume that neither the liquid being poured into

the mold, nor the air in the mold are compressible. Finally, we assume that air cannot bubble out

through the liquid.

The sole force acting on the liquid is gravity. When a direction of gravity is not speci�ed, we

assume, for simplicity of exposition, that it acts in the negative y-direction. Thus, if only one

pin gate is used, we assume it to be a point on the boundary with the highest y-coordinate, since

otherwise, the polygon cannot be completely �lled.

When liquid is poured into a polygon, the level of the liquid rises in the direction opposite that

of gravity. We assume that the advancing front of the rising liquid is a line. The lowest horizontal

line such that all the liquid in the polygon is contained below it, is de�ned as the level line.

It is possible for the level line to be higher than the level of the liquid in some section of the

polygonal mold. For example, the situation depicted in Figure 4.2 can occur while the mold is

being �lled with liquid. Thus we de�ne a level chord to be the horizontal chord representing the

level of liquid in the subpolygon lying below the chord. The region inside the polygon and above

the level line contains air. Similarly, the subpolygon containing the level chord, below the level line

inside the polygon, contains air above the level chord.

When the level line contains the pin gate, we say the polygon is maximally �lled. A region

containing air in a maximally �lled polygon is called an air pocket. The highest point (there may

34
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Figure 4.1: Illustration of the gravity model.

be more than one) of an air pocket in a maximally �lled mold is the peak of the air pocket. A

polygon is said to be k-�llable if there exists a �xed orientation of the polygon, a placement of the

pin gate and a placement of k � 1 venting holes such that when liquid is poured into the polygon

through the pin gate, there are no air pockets when the polygon is maximally �lled. A polygon is

said to be k-�llable with re-orientation provided that the polygon can be re-oriented and �lled from

a new pin-gate after partial �lling from an initial orientation and pin gate. We assume that after

the completion of a partial �lling, the liquid that is poured into the polygon hardens. The number

k in this case refers to the number of times that the polygon needs to be re-oriented before it is

completely �lled. Notice that both de�nitions are identical when k = 1. Unless stated otherwise,

we will always refer to k-�llable as �lling from a �xed orientation.

4.2 The Decision Problem

The �rst problem we address is to determine given a simple polygon in a �xed orientation, whether

or not the polygon is 1-�llable in that orientation. We present a linear time algorithm to solve this

problem. Let g be the point on the unit circle representing the direction of gravity. We make the

following key observation (refer to Figure 4.3).

Observation 4.2.1 The peak of an air pocket is a local maximum of polygon P with respect to the

direction of gravity. It is either a convex vertex vi of the polygon P such that ray(vivi�1) 2 NH(g)

and ray(vivi+1) 2 NH(g) or a convex edge ei with endpoints vi and vi+1 such that ray(vivi�1)

2 NH(g) and ray(vi+1vi+2) 2 NH(g). Such a vertex or edge will be referred to as a local maximum

vertex or local maximum edge.

The above observation forms the basis of the following theorem characterizing 1-�llable poly-

gons. Given a point p (or horizontal edge e) in the plane, let h(p) (h(e)) denote the horizontal line

containing p (e).

Theorem 4.2.1 A polygon is 1-�llable if and only if it contains one local maximum vertex or one

local maximum edge with respect to the direction of gravity.
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Figure 4.2: Level line and level chord.
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Figure 4.3: Illustration of local maximum vertex and edge.

Proof:

()) We �rst show that a polygon with more than one local maximum vertex will contain at

least one air pocket when �lled. We proceed by contradiction. Suppose a polygon P containing at

least two local maximum vertices can be maximally �lled with no air pockets. Let c1 and c2 be the

two local maxima, with c1 having the larger y-coordinate.

Since both c1 and c2 are both local maxima, the polygonal chain between c1 and c2 contains a

reex vertex v or reex edge e such that the vertices adjacent to v lie above h(v) or the vertices

adjacent to e lie above h(e). Let us assume it is a vertex v. A similar argument holds for edge e.

Since the polygon can be maximally �lled with no air pockets, at some point in time while

liquid is being poured in the polygon, there will exist a level chord [bc] containing v. Let b; v; c be

the sequence of these three points when viewed in clockwise order starting at b. Since v is a reex

vertex, both [vb] and [cv] are chords. Let P1 be the subpolygon consisting of the clockwise chain

from b to v and the edge [vb] and let P2 be the subpolygon consisting of the clockwise chain from



CHAPTER 4. GRAVITY CASTING IN TWO DIMENSIONS 37

v to c and the edge [vc]. Without loss of generality, let the pin gate be contained in P2. Polygon

P1 must contain some air since [bc] is a level chord.

Now, every path from a point in P1 to the pin gate must intersect [vb]. But this implies that

the air in P1 is trapped since we assumed that air cannot bubble through liquid. Thus, P1 contains

an air pocket, contradicting the fact that P can be �lled with no air pockets. A similar argument

holds for local maximum edges.

(() We now show that a polygon with at least one air pocket when �lled must have more than

one local maximum vertex or edge. Let P be a �lled polygonal mold with an air pocket. Let p

be the peak of the air pocket, and pg be the pin gate. By Observation 4.2.1, either p is a local

maximum vertex or edge. Also, by assumption, pg is the highest point on the polygon with respect

to the direction of gravity. Therefore, it is also a local maximum vertex or contained in a local

maximum edge. Since the pin gate cannot be the peak of an air pocket, the polygon contains at

least two local maxima.

Corollary 4.2.1 A polygon P is 1-�llable if and only if 8p 2 P , the shortest path from p to the

pin gate is monotonic with respect to the direction of gravity.

A chain Cij(P ) is monotonic with respect to direction � if the projections of the vertices

pi; pi+1; : : : ; pj onto a line L(�) are ordered as the vertices in Cij(P ).

A simple linear time algorithm for the decision problem is implied by Theorem 4.2.1. By testing

locally, with respect to the direction of gravity, every convex vertex to determine whether or not

it is a local maximum vertex, and testing every edge to determine whether or not it is a local

maximum edge, we can determine if a polygon is 1-�llable with respect to the direction of gravity.

In fact, the number of local maximum vertices and edges determines the number of venting holes

that need to be placed in order to �ll the polygon in the given orientation.

Lemma 4.2.1 The number of venting holes needed is equal to the number of local maximum vertices

and edges.

Proof: ()) We proceed by induction on the number of local maximum vertices and edges.

Recall that gravity is assumed to point in the negative y direction.

Basis: The number of local maximum vertices or edges, max, is 1. This implies that the

polygon is 1-�llable by Theorem 4.2.1. Thus, one venting hole is necessary.

Inductive Hypothesis: Assume that the number of venting holes needed = the number of local

maximum vertices and edges, when max � k, k � 1.

Inductive Step: Let max = k + 1. Suppose that polygon P has at least two local maximum

vertices. The argument is similar for local maximum edges.

Either the clockwise chain or counter-clockwise chain between the two local maxima contains

a reex vertex v or reex edge e such that the vertices adjacent to v lie above h(v) or the vertices

adjacent to e lie above h(e). Without loss of generality, let us assume that there is a reex vertex

v.

Extend a horizontal ray from v to the right until it intersects the polygon boundary. Let i be

the intersection point. The chord [vi] partitions the polygon into two subpolygons, P1 and P2.

Each has less than k + 1 local maximum vertices or edges by construction. Suppose P1 has w � 1

local maximum vertices, then P2 has k + 1 � w local maximum vertices. Thus by the induction

hypothesis, P1 needs w venting holes and P2 needs k + 1 � w venting holes. This totals to k + 1

venting holes in P , as required.
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(() Suppose one of the local maxima in P did not have a venting hole or pin gate. Let vi
represent that local maximum in P . Let x be the farthest point from vi on [vivi+1] visible from

vi�1. Triangle(vi�1; vi; x) contains neither a venting hole nor a pin gate. Therefore it is an air

pocket.

Theorem 4.2.2 Given a simple polygon in a �xed orientation, in O(n) time one can determine

the minimum k for which the polygon is k-�llable.

Let us turn our attention to polygons with holes. A polygon with holes is de�ned as a polygon

P enclosing several other polygons H1; : : : ; Hk, the holes, such that none of the boundaries of

P;H1; : : : ; Hk intersect and each of the holes is a simply connected region. A polygon with holes

is an object that can be constructed with cores and inserts [47], [28]. In a polygon with holes, the

peak of an air pocket may not involve a vertex or edge of the polygon, but a vertex or edge of a

hole (see Figure 4.4). Therefore, there are two types of peaks of air pockets that may exist in a

polygon with holes. The �rst type was described in Observation 4.2.1. The other type is described

in the following observation.

Gravity

Pin gate

Peak of an air pocket
caused by a hole Peak of an air pocket

caused by a hole

Figure 4.4: 1-�llable polygon that is no longer 1-�llable because of holes.

Observation 4.2.2 A reex vertex v or a reex edge e of a hole Hj in polygon P is a peak of

an air pocket provided that it is a local maximum of bd(Hj) with respect to the direction of gravity

(see Figure 4.4). Such a vertex or edge will be referred to as a reex maximum vertex or reex

maximum edge.

This observation provides a characterization of the peaks of air pockets caused by the presence

of holes in a simple polygon. The characterization is similar to that of the peaks of air pockets in

simple polygons without holes. Therefore, we have the following theorem.
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Theorem 4.2.3 A polygon with holes is 1-�llable if and only if the polygon has only one local

maximum vertex or edge with respect to the direction of gravity and none of the holes have a reex

maximum vertex or reex maximum edge.

Proof: Similar to the proof of Theorem 4.2.1.

Corollary 4.2.2 A polygon P with holes is 1-�llable if and only if 8p 2 P , the shortest path from

p to the pin gate is monotonic with respect to the direction of gravity.

Similar to the case of simple polygons without holes, to determine if a simple polygon with holes

is k-�llable, simply test with respect to the direction of gravity, every convex vertex and convex

edge of the polygon to determine whether or not it is a local maximum and test every reex vertex

and reex edge of the holes to determine whether or not it is a reex maximum. Since testing a

vertex or edge can be done in constant time, we have the following theorem.

Theorem 4.2.4 Given a simple polygon with holes and the direction of gravity, one can determine

the minimum k for which the polygon is k-�llable in O(n) time where n is the number of vertices

of the polygon and the holes.

4.3 Determining all Directions of Fillability

In the previous section, we showed that given a simple polygon without holes and the direction of

gravity, we can determine in linear time the minimum k for which the polygon is k-�llable with

respect to gravity. The extension to polygons with holes was immediate from Observation 4.2.2, so

for simplicity of exposition, we continue the discussion with simple polygons without holes.

Suppose that we are given a polygon and asked whether there exists an orientation of the

polygon such that the polygon is 1-�llable with respect to the direction of gravity. For example,

the polygon in Figure 4.5 is 1-�llable in one orientation but not in another. In this section, we

show that in O(n logn) time the complete range of directions of gravity that allow the 1-�llability

of a polygon can be determined. In fact, in optimal �(n logn) time we can determine all the

orientations of the polygon that allow it to be k-�lled where k is minimum over all orientations.

Gravity

Polygon not 1−fillable with
respect to gravity

Same polygon 1−fillable
with respect to gravity

Figure 4.5: A polygon that is 1-�llable from one orientation but not another.
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Let us examine the set of directions that cause a convex vertex to be a local maximum. Given

a convex vertex vi of polygon P , the set of directions for which vi is a local maximum is de�ned as

follows and will be denoted by M(vi) (refer to Figure 4.6).

M(vi) = f8 directions d k ray(vivi+1) 2 NH(d) and ray(vivi�1) 2 NH(d)g

i−1

)ray(ray( )

)ray(( )NH ray( )( )NH

U

v

iv

i+1v

iv i+1v

iv i+1v

iv vi−1

iv vi−1

Figure 4.6: When a convex vertex is a local maximum.

In the following lemma, we characterize the directions in the set M(vi).

Lemma 4.3.1 M(vi) = NH(ray(vivi�1))\NH(ray(vivi+1))

Proof: Let ri�1 = ray(vivi�1) and ri+1 = ray(vivi+1). For vi to be a local maximum with respect

to a given direction d, both ri�1 and ri+1 must be in NH(d). Every direction � 2 NH(ri�1) \
NH(ri+1) is contained in M(vi) since both ri�1 and ri+1 are contained in NH(�). Therefore let us

consider an arbitrary direction y 2 M(vi) that is not in NH(ri�1) \NH(ri+1). Then, one of ri�1
or ri+1 is not contained in NH(y), contradicting the fact that vi is a local maximum with respect

to y.

A convex edge can be a local maximum edge only when the direction of gravity is orthogonal

to the line containing the edge. Therefore, the proofs of Lemma 4.2.1 and Lemma 4.3.1 suggest the

following algorithm to �nd the minimum number of venting holes needed to �ll a polygon given

that it must be �lled in only one orientation.

Algorithm 5: Find orientation minimizing number of venting holes.

1. Find the direction that minimizes the number of local maximum vertices and edges.

2. Place the pin gate at the global maximum. [This can be done in O(n) time].

3. Place a venting hole at every local maximum that is not a global maximum. [This can be

done in O(n) time by just scanning the boundary of the polygon].
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Let us elaborate on the �rst step. Each convex vertex has an open arc representing the set

of directions that cause that vertex to be a local maximum. If vertex vi is convex, we denote the

arc by arc(ai; bi). Let A be the set of endpoints of all the arcs. Similarly, each convex edge has a

point representing the direction that causes it to be a local maximum. If edge ei is convex, let pi
represent this point. Let E be the set of all of these points. Pick an arbitrary direction d 62 E, and
radially sort A [ E in a clockwise manner with respect to d. Let S = s1; s2 : : : sm represent this

sorted order.

We now perform a rotational sweep to determine the set of directions that minimizes the number

of local maxima. Let c be the number of vertices that are local maxima with respect to d. Consider

the �rst element of the sequence S. If s1 is the end of an arc, then we know that the directions

represented by arc[d; s1) have c local maxima and at direction s1 have c � 1 maxima. If s1 is the

beginning of an arc, then we know that the directions represented by arc[d; s1] have c local maxima

and the directions after s1 have c + 1 local maxima. Finally, if s1 is a point of E, then we know

that the directions represented by arc[d; s1) have c local maxima, and at direction s1 there are c+1

local maxima. By proceeding in this manner, the intervals on the unit circle induced by the set S

are labeled with the number of local maxima present for each interval of directions. By choosing

all the intervals with the smallest number, we have a complete description of all the directions from

which the given polygon can be �lled with a minimum number of venting holes. Some care must be

taken when the endpoints of arcs and points coincide. The details of this technique may be found

in [49]. The time complexity of this step is O(n logn) due to sorting.

The correctness of the algorithm follows from Lemma 4.2.1 and Lemma 4.3.1. The time com-

plexity of the algorithm is dominated by step 1. Therefore, the total time complexity of the

algorithm is O(n logn).

Theorem 4.3.1 The minimum number of venting holes needed to �ll a simple polygon from one

�xed direction can be computed in O(n logn) time.

In [35], it was shown that an 
(n logn) lower bound exists for the problem of determining the

minimum number of venting holes to �ll a simple polygon from one �xed direction by a reduction

from Element Uniqueness.

Notice that the technique used in Algorithm 1 is not restricted to �nding an orientation of a

polygon that minimizes the number of local maxima. A local minimum can only be a convex vertex

or convex edge, and the directions that cause such a vertex or edge are de�ned similarly to the

directions that cause them to be local maxima. Therefore, this technique can be used to maximize

the number of local maxima, minimize the number of local minima, maximize the number of local

minima, minimize the combined number of local minima and maxima and maximize the combined

number of local minima and maxima.

Theorem 4.3.2 Given a simple polygon, in O(n logn) time, we can �nd the set of directions that

minimize or maximize the number of local minima, the number of local maxima or the combined

number of local minima and maxima.

4.4 Fillability of Certain Classes of Polygons

As there is an 
(n logn) lower bound for determining the orientation minimizing the number of

venting holes needed to �ll a simple polygon, we study the relationship between certain known

classes of polygons and �llability. We show that for some restricted classes of polygons, the optimal

orientation for �lling can be determined in linear time.
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4.4.1 Monotone Polygons

Direction of Monotonicity

Figure 4.7: Monotone polygon.

A simple polygon P is a monotone polygon if there exists a line L(�) such that the boundary

of P can be partitioned into two chains Cij(P ) and Cji(P ) that are monotonic with respect to �.

(Refer to Figure 4.7).

Theorem 4.4.1 A monotone polygon is 1-�llable if it is oriented such that gravity is a direction

of monotonicity.

Proof: Let P be a monotone polygon oriented such that g represents a direction of monotonicity

and the direction of gravity. Without loss of generality, let this direction be the negative y direction.

If P is not 1-�llable, then by Theorem 4.2.1, it must contain at least two local maxima with

respect to the direction of gravity. Between these two local maxima, there exists a reex vertex v

or reex edge e such that the vertices adjacent to v lie above h(v) or the vertices adjacent to e lie

above h(e). The existence of such a vertex or edge violates monotonicity. Therefore, a monotone

polygon is 1-�llable.

Since monotone polygons can be recognized in linear time [70] and the direction of monotonicity

delivered as a witness, Theorem 4.4.1 provides a linear time algorithm for determining the optimal

orientation of simple polygons if they are monotone.

4.4.2 Weakly-Edge Visible Polygons and Star-Shaped Polygons

Two points inside a polygon are said to be visible if the line segment between them does not intersect

the exterior of the polygon. A point p is weakly visible from an edge e if there is a point x on e

such that p is visible from x.

A polygon P is edge visible if there is an edge in the polygon from which all the points in the

polygon are weakly visible. A polygon P is open-edge visible if there is an edge e in P such that

all points p are visible from some point x on e other than the endpoints of the edge.

Let P be an open-edge visible polygon. Without loss of generality, let (v1v2) be the open edge

from which the polygon is weakly visible. Let the polygon be oriented such that gravity g� is the

clockwise normal to ray(v1v2). (Refer to Figure 4.8).
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Gravity

Open−edge visible polygons are 1−fillable

1 2v v

Figure 4.8: Open-edge visible polygon.

Theorem 4.4.2 An open-edge visible polygon P with gravity g� is 1-�llable.

Proof: For ease of exposition, let us assume that gravity is in the negative y-direction. Without

loss of generality, let v1 be the pin gate. Let p be an arbitrary point in P . Since P is open-edge

visible, there must be a point z on (v1v2) that sees point p, i.e. [pz] 2 P .
Let � be the shortest path from p to v1 in polygon P . Since [v1p] is monotone with respect

to gravity, and � is a convex chain from p to v1 contained in the triangle(z; p; v1), � is monotone

with respect to gravity. Therefore, the lemma follows from Corollary 4.2.1.

Since open-edge visible polygons can be recognized in linear time [7], [74] and the required edge

delivered as a witness, Theorem 4.4.2 provides a linear time algorithm for determining the optimal

orientation of simple polygons if they are edge-visible.

Corollary 4.4.1 Any polygon that is weakly visible from a chord is 2-�llable with re-orientation.

Star−shaped polygon with x in kernel

x

Figure 4.9: Star-shaped polygon.
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A star-shaped polygon is a polygon that contains at least one point x from which all points of

the polygon are visible. The set of points from which all points are visible is known as the kernel of

the star-shaped polygon. The kernel of a star-shaped polygon can be computed in O(n) time using

the algorithm of Lee and Preparata [50] or a point in the kernel of a star-shaped polygon can be

computed in O(n) time using Megiddo's linear programming technique [57]. This implies that in

O(n) time, a chord can be found from which the star-shaped polygon is weakly visible. However,

a star-shaped polygon may not necessarily be 1-�llable. The star-shaped polygon in Figure 4.9 is

not 1-�llable since there are always two local maxima with respect to every direction. Therefore,

we have the following.

Theorem 4.4.3 A star-shaped polygon is not necessarily 1-�llable but is always 2-�llable with re-

orientation in O(n) time.

4.4.3 Clam-Shell Polygons

A polygon is clam-shell if it can be partitioned into two chains Cij(P ) and Cji(P ) such that each

chain can be removed from the mold by a single translation (not necessarily in a common direction).

In Figure 4.10, we have a polygon that is not clam-shell. Clam-shell polygons were studied in [73]

where the following result was proved. (Refer to Figure 4.11).

Figure 4.10: Simple polygon that is not clam-shell.

Theorem 4.4.4 [73] A polygon is clam-shell if and only if the boundary can be decomposed into

two chains, each monotonic to an arbitrary direction. Clam-shells can be recognized in linear time.

Thus we see that this class is a generalization of monotonic polygons. Before showing that all

clam-shell polygons are 1-�llable, we establish some key properties of clam-shell polygons. Let

Cij(P ) be monotonic with respect to some direction �. The monotonicity of Cij(P ) implies that

the polygon P has only one local maximum on the chain Cij(P ) for all directions in arc[�; opp(�)].

Therefore, we have the following theorem.

Theorem 4.4.5 A clam-shell polygon is 1-�llable.

Proof: Given a clam-shell polygon P , let Cij(P ) be monotone with respect to direction �1 and

Cji(P ) be monotone with respect to direction �2. The intersection arc[�1; opp(�1)]\arc[�2; opp(�2)]

must be non-empty since both arcs are closed semi-circles.
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Figure 4.11: Clam-shell polygon.

Since clam-shell polygons can be recognized in linear time [73] and the required partition of the

boundary delivered as a witness, Theorem 4.4.5 provides a linear time algorithm for determining

the optimal orientation of simple polygons if they are clam-shell.

4.4.4 L-Convex Polygons

A polygon P is L-convex if 8x; y 2P; 9z 2 P such that [xz] 2 P and [yz] 2 P . (Refer to Figure

4.12). From the de�nition of L-convexity, we see that a star-shaped polygon is L-convex since all

points are seen by a kernel point.

Figure 4.12: L-convex polygon.

Lemma 4.4.1 [43] If P is an L-convex polygon, it has the property that for every point x 2 P ,

there exists a chord of the polygon containing x from which P is weakly visible.
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The lemma proved in [43] is more general and applies to L-convex sets. From Corollary 4.4.1

together with the example of the star-shaped polygon that is not 1-�llable (Figure 4.9), we have

the following.

Theorem 4.4.6 An L-convex polygon is not necessarily 1-�llable but always 2-�llable with re-

orientation.

Lemma 4.4.1 only proves the existence of the chord, but does not o�er a method of computing such

a chord given an L-convex polygon. We now present an O(n logn) time algorithm to �nd such a

chord. We �rst prove a few key lemmas.

Let x be a point inside polygon P . The visibility polygon from x, denoted by V P (x; P ), is the set

of points in P visible from x. It is formally de�ned as V P (x; P ) = fz j z 2 P and [xz] \ P = [xz]g
Let vi be an arbitrary vertex of an L-convex polygon P . By Lemma 4.4.1, there must be a chord

containing vi from which P is weakly visible. Let us denote this chord by C(vi). Thus, C(vi) must

be contained in V P (vi; P ). We will now show the relationship between a diagonal in V P (vi; P )

and C(vi). Let b be a vertex of V P (vi; P ). The chord [vib] is a chord in P and divides the polygon

into two subpolygons, P1 and P2. If both P1 and P2 are weakly visible from [vib], then we have

found C(vi). Otherwise, we will show that either P1 or P2 has to be weakly visible from [vib].

Lemma 4.4.2 Either P1 or P2 or both are weakly visible from [vib].

Proof: If both are weakly visible from [vib] then the lemma holds. Suppose that one of P1 or

P2 is not weakly visible from [vib].

Case 1: C(vi) 2 P2. By Jordan's Curve Theorem, every line segment with one endpoint

in P1 and one endpoint in P2 must intersect [vib]. P1 is weakly visible from C(vi). This means

8x 2 P1; 9y 2 C(vi) such that [xy] 2 P . But then [xy] must intersect [vib]. Thus, P1 is weakly

visible from [vib].

Case 2: C(vi) 2 P1. Symmetric to case 1.

Notice that if P1 is not weakly visible from [vib] then C(vi) is contained in P1 and vice versa.

Thus, C(vi) is either a diagonal of the polygon P or contained between two consecutive diagonals.

The question now becomes, how do we compute C(vi) if it is contained between two consecutive

diagonals?

Consider the following situation. Let r and l be two consecutive vertices in V P (vi; P ) such that

P1 is weakly visible from [vil] but not [vir] and P2 is weakly visible from [vir] but not [vil].

Let a1; a2; : : : ; am be the vertices in P1 that are not weakly visible from [vir]. They must be

visible from [lr] since C(vi) is contained in the triangle(vi; l; r). Similarly, let b1; b2; : : : ; bt be the

vertices of P2 that are not weakly visible from [vil]. They must also be visible from [lr]. Let a0
i
be

the point on [lr] farthest away from l, from which ai is visible. Let a = min1�i�m j[la0i]j . Similarly,

let b0
i
be the point on [lr] farthest away from r, from which bi is visible. Let b = min1�i�t j[lb0i]j .

Let S = a \ b.

Lemma 4.4.3 S is not empty.

Proof: Suppose S was empty. We know that C(vi) 2 triangle(l; r; vi). Now, if C(vi) \ [lr] 62 b,

then there would be some bi that was not weakly visible from C(vi) which is a contradiction.

Similarly, if C(vi) \ [lr] 62 a, then there would be some ai that was not weakly visible from C(vi)

which is a contradiction.
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Lemma 4.4.4 For every s 2 S, the polygon P is weakly visible from [vis].

Proof: If a point p 2 P is weakly visible from both [vil] and [vir] then it must also be weakly

visible from [vis] since any line segment that intersects both [vil] and [vir] also intersects [vis].

If p is not weakly visible from [vir] then let p0 be the farthest point from l from which p is

weakly visible. a must be contained in [lp0]. Thus, p must be weakly visible from [vis]. A similar

argument shows that if p is not weakly visible from [vil], it is still weakly visible from [vis].

Lemma 4.4.2 and Lemma 4.4.4 suggest the following algorithm.

Algorithm 6: Compute weakly visible segment

1. Choose a vertex v1 2 P .
2. Compute V P (v1; P ) in O(n) time using the algorithm of Avis and Elgindy [30]. [Let fv1; : : : ; vkg

denote the vertices of V P (v; P )]

3. Triangulate V P (v; P ) by inserting all diagonals di = [v1vi], 2 � i � k.

4. Let l = 2, r = k.

5. Let s = br=2c
6. Let P1 be the polygon with vertices fv1; vl; vl+1; : : : ; vsg
7. Let P2 be the polygon with vertices fv1; vs; vs+1; : : : ; vrg
8. If both P1 and P2 are weakly visible from ds, exit with ds. [Use the algorithm of Avis and

Toussaint [7] to verify weak visibility from ds in O(n) time].

9. If r � l = 1 go to step 12. [two consecutive diagonals at this point].

10. If P1 is not visible from ds, then r = s, go to step 5.

11. If P1 is not visible from ds, then l = s, go to step 5.

12. Compute a \ b in O(n) time using the algorithm of Avis and Toussaint [7]. Pick any point s

in a \ b and exit with [v1s].

The correctness of the algorithm follows from the discussion. Each step takes at most O(n)

time and we loop through steps 5 to 11 at most O(logn) times. Thus the total time complexity of

the algorithm is O(n logn).

4.4.5 Weakly-Externally Visible Polygons

We have seen that the class of clam-shell polygons are 1-�llable and the class of star-shaped polygons

are 2-�llable. We have also seen that the class of L-convex polygons, which contains the class of

star-shaped polygons is also 2-�llable. A natural question is whether the class of weakly-externally

visible polygons is 2-�llable, since the class of weakly-externally visible polygons contains the class

of L-convex polygons (this is shown in [43]) and the class of clam-shell polygons. A polygon is

weakly-externally visible if for every point x on its boundary there is an in�nite ray emanating

from that point in some direction that intersects the boundary only at x. In fact, the class of

weakly-externally visible polygons is in some sense the largest class of interest since it is the largest

class of polygons that allows the pin gate to be placed anywhere on its boundary, if we require

the pin gate to be reachable by a line probe from in�nity. Consider the weakly-externally visible

polygon in Figure 4.13. No matter what direction we pour it from, at most only 1=4 of the arms will

be completely �lled. But, 3=4 of the arms cannot be �lled from a second pin gate and orientation.

Therefore, we have the following theorem.
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forearm

elbow

upper
arm

(vertex)

arm

Figure 4.13: Weakly-externally visible polygon.

Theorem 4.4.7 A weakly-externally visible polygon is not necessarily 2-�llable with re-orientation.

We summarize the relation between �llability and some known classes of polygons by the chart in

Figure 4.14.
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2-Fillable

1-Fillable

Clam Shell

Open-Edge Visible Monotone

L-Convex

Star-Shaped

Weakly Externally Visible

Figure 4.14: Summary of relation between �llability and classes of polygons.



Chapter 5

Gravity Casting in Three Dimensions

5.1 Introduction

In this chapter, we generalize the tools and techniques of the previous chapter to handle molds

modeled as simple polyhedra (see Figure 5.1). The conceptual approach is identical to the two

dimensional case, however, the technical details involved in the three dimensional case are more

complex, as expected.

Figure 5.1: Gravity casting of a star-shaped object using one �lling hole and two additional venting

holes.

We show that given a mold, represented by a simple polyhedron with n vertices in a �xed

orientation, we can determine in O(n) time whether or not the mold can be �lled without forming

air pockets. Thus, the time complexity of the decision problem is the same whether we have

polygonal molds or polyhedral molds. On the other hand, the time complexity of �nding all

orientations that allow a k-�lling for minimum k for polygonal molds was shown to be O(n logn) in

the previous chapter, but in this chapter, we are only able to achieve O(n2) for polyhedral molds.

However, we are able to justify this increase in time complexity by providing a pseudo-lower bound

50
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for this problem. We reduce the problem À+B=C ?' to the three dimensional mold �lling problem.

The problem À+B =C ?' is de�ned as follows: Given three sets A, B, and C of n real numbers

each, decide if there exists a 2 A, b 2 B and c 2 C such that a+ b = c. The best known algorithm

for solving this problem uses O(n2) time. Gajentaan and Overmars [37] have shown there exist

many problems in geometry that also reduce to À+B =C ?', such as: `Given a set of n points in

the plane, are there three collinear points?' and `Given a set of n rectangles in the plane, do they

cover a given rectangle RECT completely?'. Since the best known algorithms take O(n2) time to

solve any one of these problems, a problem which can be reduced to one of these is referred to as

an n2-di�cult problem. Since the mold �lling problem is n2-di�cult, improving on the quadratic

bound seems di�cult.

The interesting question that arises is whether one can improve the O(n2) time bound for some

restricted classes of polyhedra. We relate �llability to certain known classes of polyhedra, namely,

star-shaped, monotone, and facet-visible polyhedra. In the case of star-shaped polyhedra, this

reduces the time bound for �nding an optimal orientation to O(n) time as opposed to O(n2) time.

5.2 Preliminaries

In this chapter, it will be convenient to have the set of all directions in space be represented by two

planes. Although this is not standard, it will help simplify the exposition. Let the plane z = �1,
denoted by DP (�), represent all directions with a negative z-component, and the plane z = 1,

denoted by DP (+), represent all directions with a positive z-component. We do not consider the

horizontal directions. This assumption simpli�es our discussion but is not an inherent limitation

of our methods. A point q in DP (�) or DP (+) represents the direction ~oq, where o represents the

origin of E3. Given a direction d, represented by ~oq, we de�ne opp(d) to be the opposite direction.

Thus, opp(d) is pointing in the direction of the vector ~qo.

A polygonal chain C = p0; p1; : : : ; pn is monotonic with respect to direction � if the projections

of the vertices p0; p1; : : : ; pn onto a line in direction � are ordered as the vertices in C.

5.2.1 Geometric Model of Gravity Casting

We now generalize the gravity model. A mold is modeled by a simple polyhedron. The point on the

boundary of a mold through which the liquid is poured into the polyhedron is called the pin gate.

We assume that the pin gate is the only point from which air is allowed to escape unless stated

otherwise. A venting hole is a point from which only air and no liquid is allowed to escape. We

assume that neither the liquid being poured into the mold, nor the air in the mold are compressible.

Finally, we assume that air cannot bubble out through the liquid.

The sole force acting on the liquid is gravity. When a direction of gravity is not speci�ed, we

assume, for simplicity of exposition, that gravity points in the negative z-direction. Thus, if only

one pin gate is used, we assume it to be a point on the boundary with the highest z-coordinate,

since otherwise, the polyhedron cannot be completely �lled.

When liquid is poured into a polyhedron, the level of the liquid rises in the direction opposite

that of gravity. We assume that the advancing front of the rising liquid is a plane. The lowest

horizontal plane such that all the liquid in the polyhedron is contained below it, is de�ned as the

level plane.

When the level plane contains the pin gate, we say the polyhedron is maximally �lled. A region

containing air in a maximally �lled polyhedron is called an air pocket. A polyhedron is said to be

1-�llable if there exists a pin gate and direction of gravity such that when the liquid is poured into
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the polyhedron through the pin gate, there are no air pockets when the polyhedron is maximally

�lled. We call the highest point (there may be more than one) of an air pocket in a maximally

�lled mold, the peak of the air pocket. This leads to the following observation.

Observation 5.2.1 A polyhedron P in 3-space is said to be 1-�llable in direction �z provided that

for every point inside P there is a +z-monotone path from it to the z-maximum of P . Thus, if a

polyhedron is 1-�llable there exists an orientation of P in which it is 1-�llable.

We extend the notion of �llability in the following two ways. A polyhedron is said to be k-�llable

if there exists a �xed orientation of the polyhedron, a placement of the pin gate and a placement of

k�1 venting holes such that when liquid is poured into the polyhedron through the pin gate, there

are no air pockets when the polyhedron is maximally �lled. A polyhedron is said to be k-�llable

with re-orientation provided that the polyhedron can be re-oriented and �lled from a new pin-gate

after partial �lling from an initial orientation and pin gate. We assume that after the completion of

a partial �lling, the liquid that is poured into the polyhedron hardens. The number k in this case

refers to the number of times that the polyhedron needs to be re-oriented before it is completely

�lled. Notice that both de�nitions are identical when k = 1. Unless stated otherwise, we will

always refer to k-�llable as �lling from a �xed orientation.

5.3 The Decision Problem

In this section we present an O(n) time algorithm to decide whether a polyhedron P is 1-�llable

given a �xed orientation of the polyhedron.

Let P be a simple polyhedron of which all facets are triangulated, and let v be an arbitrary

vertex of P . We de�ne Pv to be the union of the facets incident to v. Let f1; : : : ; fm be the sequence

of facets of Pv such that fi and fi+1 are incident to an edge denoted ei, and fm and f1 are incident

to an edge em. Let Sv be a sphere centered at v, such that Sv only intersects the m edges incident

to v, and no other facets, edges or vertices of P .

De�nition 5.3.1 A vertex v is a convex vertex of P provided that there exists a plane hv, with

v 2 hv, such that Sv \ hv does not intersect the interior of P .

Let h�
v
and h+

v
denote the closed half-spaces below and above the plane hv , containing the

vertex v. Let h�v be the closed half-space bounded by the plane hv with normal d, containing the

vertex v and where � 2 f�;+g is the opposite of the sign of the z-component in d. Recall that we

assume, for simplicity, that d is not a horizontal direction.

De�nition 5.3.2 A vertex v is a local maximum of P in direction d provided that Pv lies in the

closed half-space h�v.

We now prove the theorem used to establish the linear time decision algorithm.

Theorem 5.3.1 A polyhedron P is 1-�llable if and only if the orientation of P has precisely one

local maximum in direction +z.

Proof: We assume that gravity is in the �z direction. Suppose that P is 1-�llable, and suppose

that P has more than one local z-maximum. Let q be a local z-maximum of P which is not the

global z-maximum M of P . Let � be any path from q to M . Since q is a local z-maximum, � has

negative value in its z-component when it leaves q, contradicting Observation 5.2.1
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On the other hand, suppose that P has only one local z- maximum M , which must also be

the global z-maximum of P . Let p be any point inside P , and let f be the facet of P hit by a

ray emanating from p vertically upward. Let q be the vertex incident to this facet with maximum

z-coordinate. Clearly, there is a +z-monotone path from p to q consisting of two segments. If

q = M we are done, otherwise q is not a local z-maximum, and it must be incident to an edge with

endpoints q and q0 such that q0 has greater z-coordinate. We repeat the argument with q0 for q

until the path reaches M .

From this theorem, we see that given a polyhedron P and a direction of gravity g, to test 1-

�llability of P with respect to g, we need only determine the number of local maxima with respect

to gravity. We can determine if a vertex is a local maximum in time linear in the degree of the vertex

[57]. This immediately gives us a linear time algorithm to determine whether or not a polyhedron

is 1-�llable from a �xed orientation.

Theorem 5.3.2 Given a polyhedron P , we can determine in O(n) time whether or not the poly-

hedron is 1-�llable with respect to gravity.

5.4 Determining all Directions of Fillability

In this section we will give an O(n2) time algorithm to �nd the orientation of a given polyhedron P

that minimizes the number of venting holes needed in order to ensure a complete �ll from a �xed

orientation. This orientation is equivalent to the orientation that minimizes the number of local

maxima. The algorithm has two stages. In the �rst stage, the �llability problem is transformed to

a planar problem for a set of convex (possibly unbounded) polygons that cover the plane. In the

second stage, the following problem is solved: Given a set of n convex polygons in the plane, �nd

the point that is covered by a minimum number of them.

5.4.1 Transforming Fillability to Covering

Let P be a bounded polyhedron with n vertices, and assume that P is given by its incidence graph

(see e.g. [28]). First, we triangulate every facet of P (see e.g. [19, 69]). We choose an initial

orientation of P such that no edge of P is vertical. Let v be any vertex of P . We extract the

description of Pv from the description of P in time proportional to its size. Let f1; : : : ; fm be the

sequence of disjoint facets incident to v, such that fi and fi+1 are incident to an edge ei of Pv (and

fm and f1 are incident to an edge em). Let w1; : : : ; wm be the sequence of endpoints corresponding

to e1; : : : ; em, see Figure 5.2.

Suppose that v is a convex vertex. We de�ne the cone Cv of v to be the unbounded polyhedron

consisting of v as its only vertex, m half-lines E1; : : : ; Em starting at v, which contain the edges

e1; : : : ; em, respectively, and m unbounded facets bounded by Ei and Ei+1 (1 � i � m� 1), or Em

and E1. Since Cv need not be a convex polyhedron, but its only vertex is convex, we say that Cv

is a semi-convex cone. Let CCv be the convex hull of Cv, which is a convex cone. The half-lines

that are the edges of CC v are a subset of the edges of Cv; we denote them by Ei1
; : : : ; Eij

, where

1 � i1 < � � � < ij � m. Finally, we de�ne the normal cone NCv of the convex cone CC v as follows.

Let hi1 ; : : : ; hij be the set of planes that pass through v and are perpendicular to Ei1
; : : : ; Eij

. Let

Hi1
; : : : ; Hij

be the closed half-spaces bounded by hi1 ; : : : ; hij such that they contain Ei1
; : : : ; Eij

,

respectively. Then NC v is the convex region that is bounded by Hi1
\� � �\Hij

. Notice that if CC v

is a sharp cone then NC v is a blunt cone, and vice versa.
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Figure 5.2: Left: Pv . Middle: the convex hull CC v of Cv. Right: the convex cone CCv and the

normal cone NC v.

Each convex vertex of the polyhedron P de�nes a convex region in DP (�) or DP (+) or both,

which corresponds to the directions with respect to which it is a local maximum. Hence, P gives

rise to O(n) convex regions in these planes. It follows that a direction for which P has the smallest

number of local maxima corresponds to some point in the plane that is covered by the smallest

number of convex regions. The following lemma relates the normal convex cones to the direction

planes, DP (�) and DP (+).

Lemma 5.4.1 For every convex vertex v of a polyhedron P such that v coincides with the origin

o and direction d = ~oq where q is a point on one of the direction planes, it holds that v is a local

maximum in (non-horizontal) direction �d if and only if q 2 NC v \ DP(�) or q 2 NC v \ DP(+).

Proof: Let ` be the half-line rooted at o with direction d. By construction, the following

equivalence holds for any convex vertex v located at o and � 2 f�;+g: There exists a plane h

through v with normal d such that CC v � h� if and only if ` � interior(NC v) [ NC v. Since the

direction d is represented by the point q = ` \ DP (�), the lemma follows immediately.

Therefore we �rst determine if v is a convex vertex. This is the case if and only if v is an

extremal point in the set fv; w1; : : : ; wmg. This is equivalent to the problem of determining if v can

be separated from fw1; : : : ; wmg by a plane, which in turn is equivalent to linear programming [27].

Therefore we can determine if v is convex by linear programming in linear time (see e.g. [28, 57, 80]).

If v is not a convex vertex, then v is not a local maximum for any direction, and we stop considering

v. Otherwise, let hv be a plane that contains v and has w1; : : : ; wm to one side of it. Such a plane is

returned by the linear programming test. Let h0v be a plane parallel to h
0

v which intersects all edges

e1; : : : ; em. The intersection of h0
v
with Pv is a simple polygon �Pv with m vertices (corresponding to

e1; : : : ; em) and m edges (corresponding to f1; : : : ; fm). We compute the convex hull of �Pv in linear

time [56], [59]. Let us denote the convex hull by CH ( �Pv). Let �ei1 ; : : : ; �eij be the sequence of vertices

of CH ( �Pv), where 1 � i1 < � � � < ij � m. These vertices correspond to the edges ei1 ; : : : ; eij of Pv.

We have in fact computed the edges adjacent to v on the convex hull of Pv . This information gives

us the description of the convex cone CC v of v in linear time. Furthermore, the normal cone NC v

can also be computed in additional linear time.

Translate NC v such that v coincides with the origin o. Let Q
(�)
v be the convex polygon NC v \

DP (�) and let Q
(+)
v be NC v \DP (+). Either Q

(�)
v is a bounded convex polygon and Q

(+)
v is empty,
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or vice versa, or both Q
(�)
v and Q

(+)
v are unbounded convex polygons. The convex polygons have

the following meaning: v is a local maximum in a non-horizontal direction �d if and only if the

half-line starting at the origin o in direction d intersects the interior of one of the polygons Q
(�)
v

or Q
(+)
v . We compute the convex polygons Q(�) and Q(+) for all vertices of P , giving sets Q(�)

and Q(+) of at most n convex polygons in the planes DP (�) and DP (+), respectively. The total

complexity of the polygons in Q(�) and Q(+) is O(n). The question: `Is P 1-�llable?' or `Is there an

orientation of P such that it has only 1 maximum?' translates to the question: `Is there a point in

DP (�) or DP (+) that is covered by only one convex polygon?' Similarly, the question of k-�llability

translates to deciding whether there exists a point that is covered by only k convex polygons. We

therefore have established the following result:

Lemma 5.4.2 In O(n) time, the problem of k-�llability can be transformed to the problem of

�nding a point in the plane covered by only k convex polygons.

5.4.2 Solving the Covering Problem

The next step in the algorithm involves solving the following problem: `Given a set Q of n convex,

but not necessarily bounded, polygons in the plane, with total complexity O(n), �nd a point that

is covered by the minimum number of polygons of Q.' Our algorithm constructs the subdivision

induced by Q, and associates to each cell the number of polygons that contain it.

The subdivision induced by Q without the numbering can be constructed deterministically in

O(n logn+A) time by the algorithm of Chazelle and Edelsbrunner[20], where A is the total number

of intersection points of all polygons in Q. Alternatively, a simpler randomized algorithm performs

the task with the same time bound, see Clarkson[21] or Mulmuley[61]. The size of A can be O(n2).

Therefore, we obtain a planar subdivision S with O(n2) vertices, edges and cells. Consider the

graph G which has a node for every cell of S, and an edge between two nodes if the corresponding

cells are incident to the same edge of S. The graph G has O(n2) nodes and edges. Start at any

node a1, and compute in O(n) time how many polygons of Q cover it. Store this number with a1.

Start from a1 with a depth �rst search. Every edge (ai; aj) of G we traverse corresponds to going

inside or outside a polygon of Q, in which case we take the number of ai, add or subtract one from

it, and assign this number to aj . Thus the whole process of assigning values to cells of S requires

only O(n2) time. The cell with the minimum number assigned to it is covered by the minimum

number of polygons.

Returning to the k-�llability problem, the above algorithm �nds the direction d such that the

polyhedron has the minimum number of local maxima, if we apply it to both the set Q(�) of convex

polygons in the plane DP (�) and Q(+) in the plane DP (+). We summarize the algorithm below.

Algorithm 7: Find all orientations such that P is �llable with minimum number of venting

holes.

1. Select all convex vertices of polyhedron P .

2. Compute the convex cone of each convex vertex.

3. Compute the normal cone of each convex cone. Call this set NC .

4. Intersect each normal cone in NC with DP (+) and DP (�). Call this set of (possibly unbounded)

convex polygons R.

5. Compute the arrangement Q(+) induced by R on DP (+) and Q(�) induced by R on DP (�).
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6. Find all regions on Q(+) and Q(�) covered by the least number of convex polygons of the set

R. These regions represent the orientations minimizing the number of venting holes need to

�ll P .

We conclude with the following theorem.

Theorem 5.4.1 Given a simple bounded polyhedron P in 3-space, one can �nd in O(n2) time an

orientation for P such that P is �llable with the minimum number of venting holes.

5.5 A Reduction from Covering to 1-Fillability

In this section, we present an O(n logn) time reduction from the rectangle covering problem to the

problem of 1-�llability of polyhedra. Since a reduction from the À+B=C ?'problem to rectangle

covering is given in [37], it follows that 1-�llability is at least at hard as À+B=C ?'.

Theorem 5.5.1 The rectangle covering problem can be reduced to the 1-�llability problem in O(n logn)

time.

Proof: Let I be an instance of the rectangle covering problem, i.e., given a set R of n rectangles

in the plane, and also a rectangle RECT , decide if the union of the rectangles in R cover RECT .

We now describe the construction of a polyhedron P such that it is 1-�llable if and only if the

rectangle RECT is not covered by R.

si

hi

i
q

o

ri

RECT

iQ

o

Figure 5.3: Left: an instance of the rectangle covering problem. Middle: a rectangle ri and its

convex cone CC(ri). Right: the normal convex cone NC (ri) and the spike si.

We associate the plane in which R and RECT lie with the plane z = �1, such that the center of

RECT is the point (0; 0;�1). For every ri 2 R, we associate the convex cone CC(ri) to be the cone

with apex the origin o of 3-space, and whose intersection with the plane z = �1 is the rectangle

ri. Then we normalize CC (ri) to obtain a convex cone NC (ri), and we intersect NC (ri) with the

plane z = �1 to obtain a possibly unbounded convex polygon Qi. For each Qi, we choose a point

qi in its interior such that all of the qi are distinct. (The convex hull of the qi should contain the

point (0; 0;�1); if not, we add suitably chosen dummy rectangles to R outside of RECT to enforce

this.) Let hi be the plane through o with normal ~oqi. Translate hi in direction ~oqi by an amount

such that the interior of hi \NC (ri) has positive area, but is contained in a disk with diameter 1.

De�ne the spike si to be the polyhedron h+
i
\NC (ri). Translate hi and the spike si simultaneously

back in direction ~qio, such that hi passes through o again.

Let  be the minimum distance between any two of the distinct points qi. Let � be the maximum

distance of any qi to the origin o. Let S be a sphere centered at o with radius at least 2�= + 1.
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Translate every pair hi and si in direction ~qio such that hi is tangent to S (S � h�
i
). By the choice

of the radius of S and the area of hi \ NC (ri) (the `base' of the spike), no two spikes si and sj
intersect. Compute the convex polytope P = (z � �1)\ T1�i�n h�

i
. By construction (the addition

of dummy rectangles), P is a bounded convex polyhedron. To P , we add each spike si on the facet

of P that lies in hi. To �nish the construction, we add one more gadget to the facet contained in

the plane z = �1. This is the new spike sRECT for RECT , which is translated in the �z-direction
over a distance so that its topmost point penetrates the lower facet of P .

Figure 5.4: An example of the polyhedron constructed for theorem 5.5.1.

Without all the spikes, P is a convex polyhedron, and thus has exactly one maximum for every

direction. The spike sRECT gives additional local maxima for every direction corresponding to a

point in z = �1 outside of RECT . The other spikes give a local maximum for every direction that

corresponds to a point inside the corresponding rectangles of R. Hence, P is 1-�llable if and only

if RECT is not covered by the union of the rectangles in R. The construction can be performed in

O(n logn) time using the half-space intersection algorithm of Preparata and Muller [68].

5.6 Fillability of Certain Classes of Polyhedra

In this section, we investigate the relationship between the notion of �llability and certain known

classes of restricted polyhedra. These results are relevant to the manufacturing industry because

in practice many objects are not modeled by polyhedra of arbitrary shape complexity.

5.6.1 Monotone Polyhedra

A polygon P is monotonic in direction l if for every line L orthogonal to l that intersects P , the

intersection L\P is a line segment (or point). We generalize this notion to 3-dimensions to obtain

a large family of monotone polyhedra. We de�ne the class as follows.

De�nition 5.6.1 A polyhedron P is weakly monotonic in direction l if there exists a direction l

such that the intersection, of each plane orthogonal to l that intersects P , is a simple polygon (or

a line segment or point). The direction l is referred to as the direction of monotonicity.

Note that there exist many di�erent classes of simple polygons [63], [69], [85]. By substituting

one of these classes for the word simple in the above de�nition, we obtain a score of families of
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weakly monotonic polyhedra. Thus we say that if all the intersections are convex polygons, we have

a weakly monotonic polyhedron in the convex sense. If the intersections are monotone polygons,

then we have a weakly monotonic polyhedron in the monotone sense, and so on. Refer to Figure

5.5. Weakly monotone polyhedra have been previously investigated in the context of movable

separability of polyhedra [85].

l

Figure 5.5: Weakly Monotonic Polyhedron

Theorem 5.6.1 A weakly monotonic polyhedron P is 1-�llable if it is oriented such that gravity

points in the direction of monotonicity.

Proof: For ease of exposition, let us assume that gravity, g, is in the negative z-direction. If

we show that P has only one local maximum in the positive z-direction then by theorem 5.3.1

we establish the theorem. Suppose that P had more than one local maximum. Let m be a local

maximum that is not the global z-maximum. Let Pm be the union of the facets incident to m, and

let hm be the plane containing m with normal g.

Let h�
m
be the lower closed half-space bounded by the plane hm with normal g, containing the

vertex m. By de�nition 5.3.2, we have that Pm 2 h�m. Since there is a point with a greater z value

than m, the intersection of hm with P is not a simple polygon, a contradiction.

5.6.2 Facet-Visible Polyhedra and Star-Shaped Polyhedra

Two points inside a polyhedron are said to be visible if the line segment between them does not

intersect the exterior of the polyhedron. A point p is weakly visible from a facet f if there is a point

x on f such that p is visible from x.

A polyhedron P is facet-visible if there is a facet of the polyhedron from which all the points in

the polyhedron are weakly visible. Let P be a facet-visible polyhedron. Without loss of generality,

let f1 be the facet from which the polyhedron is weakly visible. Let d� denote the direction of the

interior normal to the facet.
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Theorem 5.6.2 A facet-visible polyhedron P is 1-�llable if it is oriented such that d� points in the

direction of gravity.

Proof: For ease of exposition, let us assume that gravity is in the negative z-direction.

Let p1, an arbitrary point of the facet, be the pin gate. Let a be an arbitrary point in P . Since

P is facet-visible, there must be a point b on f1 that sees point a, i.e. [ab] 2 P .
Let � be the path = (a; b; p1) in P . Since � is monotone with respect to d�, the theorem follows.

Corollary 5.6.1 Every polyhedron that is weakly visible from a sectional polygon is 2-�llable with

re-orientation.

Figure 5.6: A star-shaped polyhedron that is not 1-�llable

A star-shaped polyhedron is a polyhedron that contains at least one point x from which all points

of the polyhedron are visible (see Figures 5.1 and 5.6 for a star-shaped polyhedron). The set of

points from which all points are visible is known as the kernel of the star-shaped polyhedron. A

point in the kernel of a star-shaped polyhedron can be computed in O(n) time using Megiddo's

linear programming technique [57]. This implies that in O(n) time, a sectional polygon can be found

from which the star-shaped polyhedron is weakly visible. However, a star-shaped polyhedron may

not necessarily be 1-�llable (see Figure 5.6). In fact, if a star-shaped polyhedron is �lled from one

�xed orientation, it may need 
(n) venting holes.

Theorem 5.6.3 A star-shaped polyhedron is not necessarily 1-�llable but can always be 2-�lled

with re-orientation in O(n) time.

5.6.3 Other Restricted Polyhedra

In this subsection, we simply point out that improvements on the O(n2) time algorithm have been

found for polyhedra satisfying certain regularity conditions. These are local conditions imposed on

each convex vertex to ensure that the resulting convex polygons that are obtained for the covering

problem are fat (see [54, 46], that is, the ratio of the diameter of the polygon to its width is bounded

by a constant. The only reason algorithm 7 used O(n2) time due to the fact that the arrangement

of convex polygons can have O(n2) complexity. However, an arrangement of fat convex polygons

does not have O(n2) complexity. Therein lies the improvement. A detailed treatment of this topic

can be found in [14].



Chapter 6

Stereolithography

6.1 Introduction

In this chapter, we consider the problem of deciding whether or not a design is feasible for a

CAD/CAM system developed and patented by 3D Systems of Sylmar, CA that employs a process

called stereolithography (See Figure 6.1). Stereolithography is emerging as the dominant process

used for rapid prototyping. The components of the stereolithography manufacturing process consist

of a vat of liquid photocurable plastic, a computer controlled table T on a stand S that can be

moved up and down in the vat and a laser L above the vat that can shine on the surface of the liquid

plastic and can move in a horizontal plane. The system works as follows. At the �rst step the table

is just below the surface of the plastic and the laser is controlled to move about so that the light

shines on the surface of the plastic and draws the bottom-most cross-section of the object A being

built. When the laser light contacts the plastic, the plastic solidi�es and so the �rst cross-section

of the object is formed and rests on the table. At the next step the table is lowered a small amount

to allow liquid to cover the hardened layer and the laser then draws the next cross-section of the

object. The light from the laser penetrates the liquid just deep enough so that this cross-section

is welded to the lower cross-section produced at the previous step. This process is repeated until

the entire object is formed. The direction given by a normal to the table pointing from the laser is

called the direction of formation for the object.

There are some objects that can be formed only if the direction of formation is chosen correctly.

For example, in Figure 6.2, the object (a) can not be formed in the position shown. Consider what

occurs when the cross-section is reached where the surface S lies. The surface S is not supported

below and so as it is formed it sinks to the level of the table. However, if the object is formed in

the opposite direction as in Figure 6.2 (b) then stereolithography will succeed. Naturally, there are

some objects that can not be formed using stereolithography regardless of the direction of formation

chosen.

In order to better understand this manufacturing process, we de�ne a mathematical model of

stereolithography (referred to as vertical stereolithography). Under this model, we assume that each

layer can be welded on to the previous such that no part of the top layer hangs over the previous.

We analyze the class of objects that can be constructed under the assumptions of the model. Given

an object (modelled as a polygon or a polyhedron), we decide if a direction of formation exists

that will result in the successful construction of the object. Such a direction will be called a valid

direction of formation. We provide an O(n) time algorithm for �nding a valid direction of formation

where n is the number of vertices of the object. Furthermore, if the object is feasible, we report

a description of all the orientations in which the object can be made. We then de�ne a more

60
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Laser

A

S

T

Surface of liquid plastic

L

Figure 6.1: Stereolithograpy system.

(a) (b)

Level of liquid S

Figure 6.2: Infeasible and feasible directions of formation.
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exible model that more accurately reects the actual capabilities of stereolithography (referred

to as variable-angle stereolithography). In this model, we assume that as each layer is welded on

to the previous, the top layer may hang over the previous by a certain �xed amount. Again we

study the class of feasible objects for this model. We give an O(n) time algorithm for polygons and

O(n logn) as well as O(n) time algorithms for polyhedra.

6.2 Vertical Stereolithography

We �rst de�ne the geometric model of stereolithography referred to as vertical stereolithography.

A polygonal object is assumed to rest on the x-axis and a polyhedral object is assumed to lie

on the plane de�ned by y = 0. For a given object A and direction of formation d, let Ad denote

the object oriented and positioned according to d. For y0 � 0, let Ad(y0) be the intersection of Ad

with the line y = y0 for polygonal objects and the plane y = y0 for polyhedral objects. We refer

to Ad(0) as the base of the object (with respect to d). A point p of the object with y-coordinate

y0 is said to be supported (with respect to a particular direction of formation) if all the points

with x (and z) coordinates the same as p and positive y coordinate less than y0 are in the object.

The cross-sections of the object are assumed to be in�nitesimally thin and so direction d is a valid

direction of formation for an object if the resulting orientation of the object is such that all points

in the object are supported. An object is referred to as feasible provided it has at least one valid

direction of formation.

6.2.1 Polygonal Objects

In this subsection we consider the two-dimensional problem where the object A we wish to form

under the vertical stereolithography model is a simple polygon. Let v0; v1; : : : ; vn�1 be the clockwise

ordering of the vertices around A such that each pair of consecutive vertices vi; vi+i is joined by an

edge ei (all indices are taken modulo n). For 1 � i � n, let �i be the angle formed by ei�1 and ei
in the interior of A. If edge ei is such that �i+1 and �i are both less than or equal to �=2 then ei
is called an acute edge. If ei is an acute edge and at least one of �i+1 or �i is strictly less than �=2

then ei is said to be a strictly acute edge. Let ni denote the direction normal to edge ei pointing

out of the polygon. Let N be the set of all outer normals.

We �rst observe a simple geometric fact that will be useful in establishing many of the lemmas

and theorems to follow. Let ei be an edge of polygon A. Let p be a point on the open edge ei. Let

r be a ray emanating from point p in direction d.

Observation 6.2.1 There exists a point q 2 r distinct from p such that (pq) is contained in ext(A)

if and only if d � ni is positive (i.e. the angle between d and ni is strictly less than �=2).

We begin by showing that the base of a feasible object must be an edge.

Lemma 6.2.1 If d is a valid direction of formation for polygon A, then Ad(0) is some edge of A.

Proof: If Ad(0) is not an edge, then it must be a vertex, say vi. Since both vi�1 and vi+1 are

above the line y = 0, at least one of the two cannot be supported by Observation 6.2.1.
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The above lemma restricts our search for a valid direction of formation to the outer normals of

the edges of a polygon, namely the set N . Therefore, edge ei of polygon A is said to be a valid

base if ni is a valid direction of formation. A point p in Ani
is said to be vertically visible from ei

if the vertical line segment from p to ei is contained in Ani
. Thus, we observe the following

Observation 6.2.2 A polygon Ani
is feasible with valid base ei if and only if all points in Ani

are

vertically visible from ei.

Although Observation 6.2.2 provides some insight into the structure of a feasible polygon, the

following characterization of feasible polygons is useful from a computational perspective.

Lemma 6.2.2 An edge ei of Ani
is a valid base if and only if ni � nj � 0 (8 1 � j � n; j 6= i).

Proof:

()) Suppose ei is a valid base but there exists an edge ej such that ni � nj > 0. Consider a

point p on the open edge ej . Let q be the orthogonal projection of p onto the line L(ei). The open

line segment (pq) must be contained in Ani
. However, this is impossible by Observation 6.2.1.

(() Suppose that ni � nj � 0 (8 1 � j � n; j 6= i), but ei is not a valid base. Then there must

exist some point p in Ani
that is not vertically visible from ei by Observation 6.2.2. Let q be the

orthogonal projection of p onto L(ei). Line segment [pq] must intersect bd(Ani
) above L(ei) since p

is not vertically visible from ei. Let x be the intersection point of [pq] and bd(Ani
) closest to p. Let

us assume for the moment that x is on the open edge ek. Line segment [px] must be in Ani
since

p is in Ani
and x is the �rst intersection with the boundary. Let y be the intersection of [xq] with

bd(Ani
) closest to x or q if no such intersection exists. Line segment (xy) is contained in ext(Ani

).

But this implies that nk �ni > 0 by Observation 6.2.1 which is a contradiction. A similar argument

holds had x been a vertex.

With this in mind, we uncover a key characteristic of valid bases, that leads to a linear time

algorithm.

Lemma 6.2.3 If ei is a valid base then ei is acute.

Proof: Suppose ei is a valid base that is not acute. Then either ni�1 � ni > 0 or ni+1 � ni > 0 or

both. By Lemma 6.2.2 this contradicts the fact that ei is valid.

Given this characteristic, we completely characterize the convex objects that are feasible. The

following lemma shows that for a convex object A there is a simple linear time test to �nd a valid

base for A or report that none exists.

Lemma 6.2.4 Given a convex polygon A, the edge ei is a valid base if and only if ei is acute.

Proof:

()) If ei is a valid base, then by Lemma 6.2.3 it must be acute.

(() Since ei is acute, extending ei�1 and ei+1 causes them to meet at a point directly above

some point of ei, thus forming a triangle with ei that is vertically visible from ei. By convexity,

A must lie in this triangle and so for any point p in A there is a point q on ei vertically below p.

Therefore, by Observation 6.2.2, ei is a valid base.
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Figure 6.3: A non-convex object with an acute edge that is not a valid base.

The characterization of convex objects in Lemma 6.2.4 implies that a simple examination of

the angles between the edges of a convex object is su�cient to �nd a valid base if one exists or

report that the object is not feasible. For a non-convex object, such local tests on the angles are

insu�cient to determine the feasibility of an object, since such an object may have an acute edge

that is not a valid base. For example, in Figure 6.3, edge ei is an acute edge but not a valid

base of the polygon since vertex vi�2 is not supported. However, the following lemma shows the

relationship between the feasibility of a simple polygon and its convex hull.

Lemma 6.2.5 If simple polygon Ani
is feasible with base ei then the convex hull of Ani

is also

feasible with base ei.

Proof: Follows from Observation 6.2.2, Lemma 6.2.3 and Lemma 6.2.4.

Since the convex hull of a simple polygon can be computed in linear time ([56], [59]) and a

convex polygon can only have at most 4 acute edges, we see that feasibility of a simple polygon can

be computed in linear time. The convex hull of a simple polyhedron, however, cannot be computed

in linear time, but can be computed in O(n logn) time (see [69]). Therefore, although this approach

provides an optimal solution to the problem in two dimensions, a solution in three dimensions will

require an additional logn factor. To this end, we explore the following alternate solution that can

be generalized to the three-dimensional version of the problem.

Let us �rst examine the restrictions that the existence of a strictly acute edge puts on the

feasibility of a non-convex polygon.

Lemma 6.2.6 If a simple polygon A is feasible and edge ei of A is strictly acute then the set of

all valid bases of A is a non-empty subset of fei, ei�1; ei+1g.
Proof: (Refer to Figure 6.3). Suppose that none of ei, ei�1 and ei+1 are valid. Since ei is strictly

acute, without loss of generality, assume that �i < �=2. Since A is feasible, let ej be a valid base of

A. Notice that nj cannot be contained inNH(ni) since otherwise nj �ni > 0. Similarly, nj cannot be

in arc[N+(ni); opp(ni)) because otherwise nj �ni+1 > 0. Also, nj cannot be in arc[opp(ni); N
�(ni)]

since otherwise nj �ni�1 > 0. But NH(ni)[ arc[N+(ni); opp(ni))[ arc[opp(ni); N�(ni)] represents

all directions. Therefore, nj cannot exist.

Lemma 6.2.3 guarantees that an acute edge ei exists if A is feasible and Lemma 6.2.6 says that

if a strictly acute edge ei exists then it is su�cient to test ei, ei�1 and ei+1 for a valid base. We

now consider what happens when ei is an acute edge with both �i+1 and �i equal to �=2. If Ani

contains a unique edge ej such that nj is opp(ni) then we label the edge etop(i).
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Lemma 6.2.7 If A is feasible and ei is an acute edge such that �i+1 = �i = �=2 then the set of all

valid bases of A is a non-empty subset of fei, ei�1, ei+1; etop(i) (if it exists) g.
Proof: Similar to the proof of Lemma 6.2.6.

With Lemma 6.2.7 we have characterized all polygons that are feasible. We summarize with

the following theorem.

Theorem 6.2.1 Given that A contains an acute edge ei, the set of all valid bases of A is a non-

empty subset of fei, ei�1, ei+1; etop(i) (if it exists and �i+1 = �i = �=2) g if and only if polygon A

is feasible.

Proof: Follows from Lemma 6.2.3, Lemma 6.2.6, and Lemma 6.2.7.

Determining whether or not a polygon has an acute edge can be achieved in O(n) time, where

n is the number of vertices of the polygon. Thus, in O(n) time, the number of possible valid bases

can be reduced to 3 or 4 by Theorem 6.2.1. Moreover, by Lemma 6.2.2 we can test in O(n) time

whether any of these candidate edges is valid simply by testing its outward normal with the outward

normals of all the other edges. Therefore, we can test a polygon A for feasibility and �nd all valid

bases in O(n) time.

Theorem 6.2.2 In O(n) time the feasibility of a polygonal object with n vertices can be determined

and all valid bases identi�ed when the object is feasible.

6.2.2 Polyhedral Objects

In this subsection we consider the three-dimensional case where the object is a simple polyhedron.

We want to �nd a facet of polyhedron A that is a valid base or determine that A is not feasible.

The following notation will be used in this subsection. Let A be a polyhedron with n vertices.

Given a facet f of a polyhedron, we denote the plane containing f by P (f). For facet f of A, let

f(1); f(2); : : : ; f(kf) be the facets of A that share at least one edge with f . Let �i(f) be the angle

interior to A between the plane P (f) and the plane P (f(i)) about the line of intersection of P (f)

and P (f(i)). If �i(f) � �=2 for all i, 1 � i � kf , then f is called an acute facet. If f is acute and

for some i, �i(f) < �=2, then f is said to be a strictly acute facet. Let n(f) denote the direction

normal to facet f pointing out of the polyhedron. Let N be the set of all outer normals. We

show several properties analogous to those in the previous subsection that will give rise to a linear

time feasibility testing algorithm. We �rst observe a simple geometric fact. Let f be a facet of

polyhedron A. Let p be a point on the facet f . Let r be a ray emanating from point p in direction

d.

Observation 6.2.3 There exists a point q 2 r distinct from p such that (pq) is contained in ext(A)

if and only if d � n(f) is positive (i.e. the angle between d and n(f) is strictly less than �=2).

We begin by showing that the base of a feasible object must be a facet.

Lemma 6.2.8 If d is a valid direction of formation for polyhedron A, then Ad(0) is some facet of

A.

Proof: If Ad(0) is not a facet, then it must either be an edge or a vertex. If it is an edge e, then

let fi and fj be the two facets adjacent to e. Since both facets lie above a plane containing e, either

n(fi) � d or n(fj) � d is positive. Without loss of generality, assume it to be n(fi). By Observation
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6.2.3 there is a point on the facet fi that is not supported. A similar argument holds if Ad(0) is a

vertex.

The above lemma restricts our search for a valid direction of formation to the outer normals

of the facets of a polyhedron, namely the set N . Therefore, facet f of polyhedron A is said to be

a valid base provided that n(f) is a valid direction of formation. A point p in An(f) is said to be

vertically visible from f if the vertical line segment from p to f is contained in An(f). Thus, we

observe the following.

Observation 6.2.4 A polyhedron An(f) is feasible with valid base f if and only if all points in

An(f) are vertically visible from f .

As in the two dimensional case, the following characterization of feasible polyhedra will prove to

be more useful from a computational perspective.

Lemma 6.2.9 A facet fi of An(fi) is a valid base if and only if n(fi) � n(fj) � 0 (for all facets fj
of An(fi), where fj 6= fi).

Proof:

()) Suppose fi is a valid base but there exists a facet fj such that n(fi) � n(fj) > 0. Consider

a point p on the facet fj . Let q be the orthogonal projection of p onto the plane P (fi). The line

segment [pq] must be contained in An(fi). However, this is impossible by Observation 6.2.3.

(() Suppose that n(fi) � n(fj) � 0 for all facets fj of An(fi) distinct from fi, but fi is not a

valid base. Then there must exist some point p in An(fi) that is not vertically visible from fi by

Observation 6.2.4. Let q be the orthogonal projection of p onto P (fi). Line segment [pq] must

intersect bd(An(fi)) above P (fi) since p is not vertically visible from fi. Let x be the intersection

point of [pq] and bd(An(fi)) closest to p. Let us assume for the moment that x is on the facet fj .

Line segment [px] must be in An(fi) since p is in An(fi) and x is the �rst intersection with the

boundary. Let y be the intersection of [xq] with bd(An(fi)) closest to x or q if no such intersection

exists. Line segment (xy) is contained in ext(An(fi)). But this implies that n(fj) � n(fi) > 0 by

Observation 6.2.3 which is a contradiction. A similar argument holds for the case where x is a

vertex or on an edge.

Lemma 6.2.10 If facet f is a valid base for polyhedron A then f is acute.

Proof: Suppose that f is a valid base for A but f is not acute. Then there must be some

f(i) such that �i(f) > �=2. However, this implies that n(f) � n(f(i)) > 0. By Lemma 6.2.9, this

contradicts the fact that f is valid.

In the special case of convex polyhedra, we see that a simple local test on each facet su�ces to

determine if a facet is a valid base.

Lemma 6.2.11 Let A be a convex polyhedron. Face f is a valid base if and only if f is acute.

Proof: Similar to proof of Lemma 6.2.4.
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Figure 6.4: Illustrating �p(q)

It is no longer clear whether the feasibility of a convex polyhedron can be determined in O(n)

time since a facet f of a polyhedron may have O(n) adjacent facets. However, the total complexity

of all adjacencies is linear by Euler's formula (see [11]). Therefore, testing all facets for validity

by the local test implied in Lemma 6.2.11 can be done in O(n) time. We now turn our attention

to polyhedral objects that are not necessarily convex. The following lemma shows the relationship

between the feasibility of a simple polyhedron and its convex hull.

Lemma 6.2.12 If simple polyhedron An(f) is feasible with base f then the convex hull of An(f) is

also feasible with base f .

Proof: Follows from Observation 6.2.4, Lemma 6.2.10, and Lemma 6.2.11.

Lemma 6.2.12 implies the following simple approach to determine if a given polyhedron A is

feasible. Compute the convex hull of A in O(n logn) time. A convex polyhedron can have at most

6 acute facets. Each acute facet of the convex hull is a candidate base. Testing a facet can be done

in linear time by Lemma 6.2.9. Therefore, determining feasibility of a simple polyhedron can be

achieved in O(n logn) time. The complexity is dominated by the computation of the convex hull.

To circumvent the computation of the convex hull, we explore the following approach which will

lead to an optimal algorithm.

We �rst examine the restrictions placed on the feasibility of a polyhedron in the presence of a

strictly acute facet. Before doing so, we de�ne the following geometric term (see Figure 6.4). Let p

be a point on the sphere of directions S. Let q be any point on S distinct from p and opp(p). We

de�ne �p(q) to be the point on N(p) closest to q (i.e. the intersection point closest to q of N(p)

with the great circle through p and q).

We show that if the polyhedral object A has a strictly acute facet f , then f or one of its adjacent

facets must be a valid base if the object is feasible.

Lemma 6.2.13 If polyhedron A is feasible and f is a strictly acute facet then the set of all valid

bases of A is a non-empty subset of ff; f(1); : : : ; f(kf)g.
Proof: Suppose that none of f , f(1); : : : and f(kf ) are valid. Since f is strictly acute, without

loss of generality, assume that �i(f) < �=2. Since A is feasible, let fj be a valid base of A. We

see that n(fj) 6= opp(n(f)) since n(f(i)) � opp(n(f)) > 0. This implies that �n(f)(n(fj)) is properly

de�ned. Now, we know that n(fj) cannot be in NH(n(f)) for this would violate the validity of

facet fj by Lemma 6.2.9. Therefore, n(fj) must be in NHc[n(f)].
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We notice that �n(f)(n(f(i)) is simply the outward normal of the edge of facet f (which is a

polygon) corresponding to the intersection of f(i) and f . It follows that every open half-circle

� N(n(f)) contains at least one point of �n(f)(f(1)); �n(f)(f(2)); : : : ; or �n(f)(f(kf)) since facet

f is a simple polygon. Therefore, given a point x 6= opp(n(f)) in NHc[n(f)], there exists a facet

f(i) adjacent to f such that �n(f)(x) � �n(f)(n(fi)) > 0. Observe, however, that if two directions

a; b 2 NHc[n(f)] both distinct from opp(n(f)) are such that �n(f)(a) � �n(f)(b) > 0, then a � b > 0.

But this implies that n(fj) cannot exist.

If f is not strictly acute, we de�ne ftop analogously to etop(i) in the previous subsection. We

have the following lemma.

Lemma 6.2.14 If polyhedron A is feasible and f is an acute, but not strictly acute, facet then the

set of all valid bases of A is a non-empty subset of ff; f(1); : : : ; f(kf); ftop (if it exists) g.
Proof: Similar to the argument given in the proof of Lemma 6.2.13.

These results were su�cient in the two-dimensional case to reduce the number of candidate

bases to at most 4. Unfortunately, in the 3-dimensional case, an acute facet f may have O(n)

adjacent facets. However, we are able to link the feasibility of a facet in a polyhedron to the

feasibility of an edge in a polygon. Thus, we establish the following theorem.

Theorem 6.2.3 Given that A has an acute facet f , polyhedron A is feasible if and only if the set

of all valid bases of A is a non-empty subset of ff , ftop (if it exists) and at most 4 facets adjacent

to fg. Moreover, the edges corresponding to the intersection of f with the at most 4 facets adjacent

to f are valid edges for polygon f .

Proof:

()) If the set of valid bases of A is a non-empty subset of: f , ftop (if it exists) and at most 4

facets adjacent to f , then by de�nition, A is feasible.

(() If A is feasible, we must show that the following facets of A are the only valid bases: f ,

ftop (if it exists) and at most 4 facets adjacent to f . Lemma 6.2.14 reduces our task to showing

that at most 4 facets adjacent to f can be bases. Suppose 5 facets adjacent to f were valid bases.

Let us denote them by f(i1); f(i2); : : : ; f(i5). Notice that n(f(i1)), n(f(i2)), n(f(i3)), n(f(i4)),

and n(f(i5)) are all contained in NHc[n(f)] since f is acute. Also, since they are all valid bases,

n(f(ij)) � n(fk) � 0 for all 1 � j � 5 and for all facets fk 6= f(ij) of A by Lemma 6.2.9.

Let f(1); f(2); : : : ; f(kf) be the facets adjacent to facet f . Since f is acute n(f(1)); : : : ; n(f(kf))

are all contained in NHc[n(f)]. Observe that �n(f)(n(f(k)) is properly de�ned for all 1 � k � kf .

Since each of f(i1); f(i2); : : : ; f(i5) is a valid base, we have that �n(f)(n(f(ij))) � �n(f)(n(f(k)) � 0

for all 1 � j � 5 and all facets f(k) adjacent to f distinct from f(ij). We notice that �n(f)(n(f(k))

is simply the outward normal of the edge of facet f (which is a polygon) corresponding to the

intersection of f(k) and f . But this would mean that polygon f has 5 valid edges by Lemma 6.2.2,

contradicting Theorem 6.2.1.

Therefore, the number of possible valid bases in a feasible polyhedron A is at most 6. We

summarize below the linear time algorithm to determine the feasibility of a simple polyhedron.

The algorithm takes a simple polyhedron A as input.

Algorithm 8: Determine the feasibility of a simple polyhedron.

1. Determine if A has an acute facet. If A does not have an acute facet, exit (A is not feasible).
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2. Let f be the acute facet of A. Scan all other facets of A to determine if ftop exists.

3. Compute all possible valid edges of polygon f using the algorithm described in Section 6.2.1.

There are at most 4 edges. Let F 0 represent the facets of A adjacent to these edges excluding

facet f .

4. Let B be ff; ftop (if it exists) g [ F 0. The set B represents the candidate bases of A. There

are at most 6 facets in B by Theorem 6.2.3.

5. Test each facet fi 2 B to see if it is valid in the following way:

Check that the angle between normal n(fi) and all other normals is no less than �=2. This

can be done in linear time.

6. Output the valid bases.

The correctness of the algorithm follows from Theorem 6.2.3. As for the time complexity, we

see that step 1 can be done in O(n) time by Euler's formula (see [11]). Step 3 takes linear time by

the algorithm given in Section 6.2.1. Furthermore, by Lemma 6.2.9 testing each candidate facet

can be done in O(n) time simply by testing its outward normal with the outward normals of all

the other facets. Since there are only a maximum of 6 candidate facets, we conclude that testing

a polyhedron A for feasibility and �nding all valid bases can be achieved in O(n) time.

Theorem 6.2.4 In O(n) time the feasibility of a polyhedral object with n vertices can be determined

and all valid bases identi�ed when the object is feasible.

6.2.3 Relation to NC machining

A 3-axis NC machine consists of a worktable, a spindle or milling cutter, and the motors and controls

for positioning the cutter and/or the worktable along the three translational axes corresponding

to the three axes of a Cartesian coordinate system (see Held [42] for a discussion on the di�erent

types of NC machines). A cutter can be viewed as a thin cylinder or rod rotating around its axis of

symmetry. Without loss of generality, assume this axis of symmetry of the cutter is parallel to the

z-axis, and that the object contacts the worktable on a face. Then, any polyhedron P constructed

by a 3-axis NC machine has the following property: for every point p on the surface of P (except

for the base), there exists a ray emanating from p parallel to the z-axis that does not intersect any

other point on P . This follows from the fact that the cutter must reach the point and its movement

is restricted to translations along the three coordinate axes. Therefore, we have the following.

Theorem 6.2.5 A polyhedral object formed by 3-axis NC machining can be recognized in linear

time and can also be constructed by vertical stereolithography.

6.3 Variable-Angle Stereolithography

In practice, as the laser welds one cross-section on to the other, if the top layer is \close enough"

to the previous layer, it can be welded on. That is, the upper layer may hang over the previous by

a certain amount and still get welded on. To model this mathematically, we de�ne the following

model referred to as variable-angle stereolithography.

Intuitively, variable-angle stereolithography di�ers from vertical stereolithography in the fol-

lowing way. As each layer is glued on by the laser, the topmost layer can hang over the previous

layer by the freedom allotted by some constant angle !. More formally, we say that a point p with

y-coordinate y0 is !-supported with respect to the direction of formation if there exists a point q
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Figure 6.5: A vertex that is a valid base.

with positive y coordinate less than y0 such that the line segment [pq] is contained in the object and

the smaller angle between the direction of formation and the vector �!pq is less than or equal to !.

Clearly, ! must be less than �=2. Notice that variable-angle stereolithography is a generalization

of vertical stereolithography. The two are equivalent when ! is zero. An object can be built with

respect to the parameter ! if there exists an orientation of the object such that all points above the

base are !-supported. An object that can be built with respect to the parameter ! will be called

!-feasible.

6.3.1 Polygonal Objects

The parameter ! enlarges the class of objects that can be formed. In fact, with ! > 0, the base

of an object no longer need be a edge of the polygon. For example, the polygon in Figure 6.5 is

feasible (as long as both 6 a and 6 b are both less than or equal to !) with a vertex as base. For

polygonal objects, we will assume that the base of an object is always an edge, since building an

object on a vertex is unstable.

We say that a point p in Ani
is !-visible from ei if p is above L(ei) and there exists a polygonal

path � from p to ei such that � 2 Ani
and every vertex in � (except for the vertex on ei) is

!-supported by an adjacent vertex. Thus, we observe the following.

Observation 6.3.1 A polygon Ani
is !-feasible with valid base ei if and only if all points in Ani

are !-visible from ei.

A polygonal chain is said to be monotonic with respect to direction � if the intersection of every

line parallel to N(�) with the chain is either empty or a point. We observe the following property

that is crucial to the development of a linear algorithm.

Observation 6.3.2 If a point p is !-visible from ei, then there exists a path � from p to ei that

is monotone with respect to direction ni.

We present an alternate characterization of !-feasibility that will be useful from a computational

perspective.
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Theorem 6.3.1 A polygon Ani
is !-feasible with valid base ei if and only if the angle between ni

and all other normals is no less than �=2� ! and the set of all local minima with respect to ni is

ei.

Proof:

(() Given that all nj distinct from ni are such that the smaller angle between 6 ninj � �=2�!,
and all local minima are contained in ei, we will show that Ani

is !-feasible with base ei. We do

this by showing that every point in Ani
is !-supported by the following construction.

Let p 2 Ani
. Assume that p 62 ei.

1. If p is contained in int(Ani
), then let q be the intersection point below p and closest to p of

a vertical line through p and bd(Ani
).

2. If p is contained in the interior of an edge e, then let q be the vertex adjacent to e with lower

y-coordinate. Such a vertex must exist since p is not a local minimum.

3. If p is a vertex v, then let q be the vertex adjacent to v with lower y-coordinate. Such a

vertex must exist since p is not a local minimum.

By construction, the smaller angle between �!pq and ni is no more than !. Therefore, p is !-

supported. If q 2 ei, then we are done. If q 62 ei, we must show that q is !-supported. This can

be done by repeating steps 1, 2, 3 with q. The construction must end with a point on ei since ei
contains all local minima with respect to ni and with every iteration, the y-coordinate of the newly

constructed point is decreased.

()) Given that Ani
is !-feasible with valid base ei, we will show that the smaller angle between

ni and all other outer normals is greater than or equal to �=2 � ! and that the set of all local

minima with respect to ni is ei.

Suppose there exists an outer normal nj such that 6 ninj < �=2� !. Let p be a point in the

interior of ej . Since ei is an !-feasible base, there must exist a point q such that p is !-supported

by q. However such a q does not exist because of nj .

Similarly, suppose there exists a local minimum point p that is not contained in ei. Again, the

point p is not !-supported.

Theorem 6.3.2 For �xed !, a polygon has a constant number of candidate edges that can be valid

bases. These candidate edges can be obtained in O(n) time.

Proof: Let k = d2�=(�=2 � !)e. Cover the circle of directions with k closed arcs, denoted

by a1; a2; : : :ak, having the following property. The angle spanned by each of the arcs is exactly

(�=2� !).

For edge ei, suppose that ni is contained in the open arc aj . If edge ei is a valid base, then by

Theorem 6.3.1 there are no other outer normals in the open arc aj . If ni had been on the end of

the closed arc aj , then there can be at most one other normal on the other end of closed arc aj .

Therefore, each closed arc can contain the outer normal of at most 2 valid bases. Since there are k

arcs, there can be at most 2k valid bases. But k is a constant when ! is �xed; therefore, there are

only a constant number of valid bases.

The algorithm for obtaining the valid bases follows from the discussion above.
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We now have all the tools needed to determine the !-feasibility of a simple polygon in linear

time. A brief outline of the algorithm follows. The algorithm takes as input a simple polygon A

and parameter !.

Algorithm 9: Determine the !-feasibility of a simple polygon.

1. Let B represent the set of candidate bases of A. There are only a constant number of edges in

B and they can be computed in linear time using the technique described in Theorem 6.3.2.

2. Test each edge ei 2 B to see if it is valid in the following way.

� Check that the angle between normal ni and all other normals is no less than �=2 � !.

This can be done in linear time.

� Verify that the set of all local minima with respect to ni is ei. This can be done in

linear time using the algorithm described in Chapter 4 which determine given a polygon,

a speci�ed edge, and a direction, whether the edge is the set of all local minima with

respect to the given direction.

3. Output the valid bases

Testing an edge to see if it is valid takes linear time. However, since the number of edges tested

is constant, step 2 is completed in linear time. The complexity of the algorithm is linear in the size

of the input since the time to complete each step is at most linear. The correctness of the algorithm

follows from Theorems 6.3.1 and 6.3.2.

Theorem 6.3.3 The feasibility of a simple polygon in variable-angle stereolithography can be de-

termined in O(n) time.

Remark: The technique used to determine the feasibility of a simple polygon with ! = 0 provides

an alternate linear time method to compute the feasibility in vertical stereolithography.

6.3.2 Polyhedral Objects

Similar to the two-dimensional case, with ! > 0, the base of an object no longer need be a facet

of the polyhedron (see Figure 6.5). However, we will assume that the base of an object is always a

facet of the polyhedron, since building an object on a vertex or an edge is unstable.

We say that a point p in An(f) is !-visible from a facet f if p is above the plane P (f) and there

exists a polygonal path � from p to f such that � 2 An(f) and the smaller angle between every

pair of edges in � is no more than !. Thus, we observe the following.

Observation 6.3.3 A polyhedron An(f) is !-feasible with valid base f if and only if all points in

An(f) are !-visible from f .

We observe another property that is crucial to the development of a linear algorithm.

Observation 6.3.4 If a point p is !-visible from f , then the path � from p to f is monotone with

respect to direction n(f).

Theorem 6.3.4 A polyhedron An(f) is !-feasible with valid base f if and only if the angle between

n(f) and all other normals is no less than �=2� ! and the set of all local minima with respect to

n(f) consists of facet f .
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Proof:

(() Given that all outer normals n(fj) distinct from n(f) are such that the smaller angle

between 6 n(fj)n(f) � �=2� !, and all local minima are contained in f , we will show that An(f) is

!-feasible with base f . We do this by exhibiting a construction such that every point in An(f) is

!-supported by the following construction.

Let p 2 An(f). Assume that p 62 f .
1. If p is contained in int(An(f)), then let q be the intersection point below p and closest to p of

a vertical line through p and bd(An(f)).

2. If p is contained in the interior of a facet fj , then let q be a point on fj with lowest y-

coordinate.

3. If p is contained in the interior of an edge e, then let q be a point with lowest y-coordinate in

one of the two facets adjacent to e.

4. If p is a vertex v, then let q be a point with lowest y-coordinate in one of the facets adjacent

to v.

In all cases, q will have a lower y-coordinate than p since p is not a local minimum. By

construction, the smaller angle between �!pq and n(f) is no more than !. Therefore, p is !-supported.

If q 2 f , then we are done. If q 62 f , we must show that q is !-supported. This can be done by

repeating steps 1, 2, 3, 4 with q. The construction must end with a point on f since f contains

all local minima with respect to n(f) and with every iteration, the y-coordinate of the newly

constructed point is decreased.

()) Given that An(f) is !-feasible with valid base f , we will show that the smaller angle between

n(f) and all other outer normals is greater than or equal to �=2� ! and that the set of all local

minima with respect to n(f) is ei.

Suppose there exists an outer normal n(fj) such that 6 n(fj)n(f) < �=2�!. Let p be a point in
the interior of fj . Since f is an !-feasible base, there must exist a point q such that p is !-supported

by q. However such a q does not exist because of n(fj).

Similarly, suppose there exists a local minimum point p that is not contained in f . Again, the

point p is not !-supported.

Theorem 6.3.5 For �xed !, a polyhedron has a constant number of candidate facets that can be

valid bases. These facets can be obtained in O(n) time.

Proof: Let us consider the spherical coordinates (�; �) of the sphere of directions S centered

at the origin where the angle � is in the set [0; 2�) and the angle � is in the interval [��=2; �=2].
We �rst divide the sphere of directions into k = d�=(�=4� !=2)e slices with parallel circles in the

following way. Slice s1 contains all points where � 2 [�=2; �=2� (�=4� !=2)]. Slice s2 contains

all points where � 2 [�=2 � (�=4� !=2); �=2� 2(�=4� !=2)]. Slice si contains all points where

� 2 [�=2� (i� 1)(�=4� !=2); �=2� i(�=4� !=2)]. See Figure 6.7.

Each slice si is further subdivided into m = d2�=(�=4�!=2)e pieces in the following way. Piece

si1 contains all points where � 2 [0; �=4�!=2] and � 2 [�=2�(i�1)(�=4�!=2); �=2�i(�=4�!=2)].
Piece si2 contains all points where � 2 [�=4 � !=2; 2(�=4� !=2)] and � 2 [�=2 � (i � 1)(�=4 �
!=2); �=2� i(�=4�!=2)]. Piece sij contains all points where � 2 [(j�1)(�=4�!=2); j(�=4�!=2)]
and � 2 [�=2� (i� 1)(�=4� !=2); �=2� i(�=4� !=2)].
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Figure 6.7: Slices and pieces of the sphere of directions.
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By construction, any pair of points in a piece sij , represents a pair of directions d1 and d2 such

that the smaller angle between d1 and d2 is strictly less than �=2�!. Therefore, the outer normals

of two feasible bases cannot lie in the same piece.

There are km pieces. Notice that km no more than �2=(�=2�!)2. Since ! is �xed, km 2 O(1).
Each piece can contain at most 1 feasible base. Therefore, there are O(1) feasible bases.

We now have all the tools needed to determine the feasibility of a simple polyhedron in linear

time. A brief outline of the algorithm follows. The algorithm takes as input a simple polyhedron

A and parameter !.

Algorithm 10: Determine the !-feasibility of a simple polyhedron.

1. Let B represent the set of candidate bases of A. There are only a constant number of facets

in B and they can be computed in linear time using the technique described in the proof of

Theorem 6.3.5.

2. Test each facet fi 2 B to see if it is valid in the following way.

� Check that the angle between normal n(fi) and all other normals is no less than �=2�!.
This can be done in linear time.

� Verify that the set of all local minima with respect to n(fi) is fi. This can be done in linear

time using the algorithm described in chapter 5 which determines given a polyhedron, a

facet and a direction, whether the facet is the set of all local minima with respect to the

given direction.

3. Output the valid bases

Testing a facet to see if it is valid takes linear time. However, since the number of facets tested

is constant, step 2 is completed in linear time. The complexity of the algorithm is linear in the size

of the input since the time to complete each step is at most linear. The correctness of the algorithm

follows from Theorem 6.3.4, 6.3.5.

Theorem 6.3.6 The feasibility of a simple polyhedron in variable-angle stereolithography can be

determined in O(n) time.

Remark: The technique used to determine the feasibility of a simple polyhedron with ! = 0

provides an alternate linear time method to compute the feasibility in standard stereolithography.

The initial assumption that the base of an object is always a facet of the given polyhedron may

be slightly weakened at the cost of a logn factor. One might argue that although the construction

of an object from a vertex or edge may be unstable, it is reasonable to assume that the object is

placed on a facet of the convex hull of the object. After the construction of the convex hull of the

object, we see that determining its feasibility under this weaker assumption can be done in linear

time from the discussion above. Therefore, we have the following.

Theorem 6.3.7 Given a simple polyhedron A, if the base of A can be a facet of its convex hull,

then feasibility in variable-angle stereolithography can be determined in O(n logn) time.



Chapter 7

Determining if an Object is Castable

7.1 Introduction

In this chapter, we study the problem of determining whether a re-usable cast of an object can be

constructed. We say that a cast is re-usable provided that the cast can be removed from the object

without breaking the object or the cast parts. Thus, such a cast can be used more than once in

the construction of an object using a casting process. The requirement to remove the cast parts

without breaking them, so that they may be re-used, imposes certain restrictions on the shape of

the objects that can be constructed. These are the restrictions we investigate in this chapter.

We concentrate on determining if a re-usable two-part cast of an object can be made. Two-

part casts are the most popular types of casts used today due to their simplicity and e�ciency.

To construct a two-part cast, a prototype of the object is �rst obtained (see Figure 7.1). The

prototype is then divided into two parts along a plane. The facet of each prototype part adjacent

to the cutting plane is referred to as the base. The �rst cast part is made by placing the base of the

�rst prototype part on a at surface, and then adding sand around it. The part is then rotated such

that the base is facing up, and the other prototype part is placed such that the bases coincide. The

second cast part is built by adding sand around this prototype part while maintaining a channel

into the cavity. Once the sand hardens, the cast of the prototype object is complete and the

prototype parts can be removed. To build a metal rendition of the prototype object with this cast,

liquid metal is poured into the opening until it �lls the cavity. After the metal solidi�es, the cast

parts are removed from the object. The key to constructing a cast with this process is the ability

to remove the prototype object without breaking the cast. This property is not restricted to casts

built for manufacturing methods related to sand casting but also applies to other metal casting

methods [31, 87], as well as injection molding and blow molding methods for plastics [71, 88]. The

ability to remove the prototype object from the cast without breaking the cast allows one to re-use

the same cast when mass-producing a particular object. Thus for several di�erent manufacturing

methods involving casting, the geometry of the object determines its feasibility of construction.

An object is castable if it can be manufactured by casting. In other words, a cast of the object

can be constructed such that each cast part can be removed from the object without breaking

the object or any of the cast parts. Geometric and algorithmic issues of the castability of planar

objects have been studied by Rappaport and Rosenbloom [73]. In this chapter, we address casting

of objects modelled by polyhedra. In geometric terms, castability can be de�ned as follows

De�nition 7.1.1 A simple polyhedron P is castable if there exists a plane h such that h+ \ @P
is a weak terrain in some orientation, and h� \ @P is a weak terrain in some orientation. The

76
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liquid metaladd sand
add sand

sand cast of lower half

sand cast of upper half

remove prototype halves
from the cast parts

forming the
metal object

Figure 7.1: Construction of an object by sand casting, using two halves of the object as prototypes.

plane h is called the casting plane. (A weak terrain may contain edges and facets parallel to the

orientation in which it is a terrain.)

To manufacture a castable object (modelled as a polyhedron P ), �rst determine a casting plane

h. The plane h divides P into two cast parts. Make each cast part from the prototype halves

h+ \ @P and h� \ @P . Since P is castable, the prototype halves can be removed from the cast

parts, and later the manufactured object can be removed from the cast parts. We consider three

versions of the castability problem. They di�er in the way the cast parts may be removed from the

polyhedron P . Figure 7.2 shows the three versions for planar polygons.

Figure 7.2: Three versions of the castability problem.

1. The two cast parts must be removed from P by one translation each, in opposite directions,

and normal to the casting plane (orthogonal cast removal).

2. The two cast parts must be removed from P by one translation each, and in opposite directions

(opposite cast removal).

3. The two cast parts must be removed from P by one translation each, in arbitrary directions

(arbitrary cast removal).
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Any convex polygon (in the plane) is castable in any of the three versions. In three dimensions,

the equivalent property does not hold for convex polyhedra; in fact, some convex polyhedra are

not castable in any of the three versions. In manufacturing, developing machines that perform

orthogonal and opposite cast removal is much simpler than machines that perform arbitrary cast

removal. In fact, opposite cast removal seems to be the most popular technique used [24, 71].

Furthermore, if orthogonal or opposite cast removal is possible, it can be determined more e�ciently.

7.2 Preliminaries

A polyhedral surface S is called a weak terrain with respect to a direction ~d if any line with orien-

tation ~d intersects S in a point or a line segment. A polyhedron P is called a weak terrain with

respect to a facet Q and a direction ~d if @P � Q is a weak terrain with respect to ~d. In the rest of

this paper we use terrain to mean weak terrain

For an arbitrary plane h, we use h+0 and h�0 to denote h+ and h� translated so that the bounding

plane intersects the origin. Given direction ~d and facet f , we say that f is compatible with ~d if the

inner product between ~d and the outward normal of facet f is non-negative (i.e. ~d makes an angle

of at most �=2 radians with the outward normal of f). We say that f is incompatible with ~d if it

is not compatible.

Observation 7.2.1 Let P be a polyhedron and let h be a plane that intersects P . The surface

@P\cl(h+) is a terrain for direction ~d if and only if every facet of P that intersects h+ is compatible

with ~d.

Therefore, castability with respect to a plane h is only determined by the facets of P that intersect

h+ and the ones that intersect h�. If h is a casting plane for P , then h can be perturbed if this does

not involve new facets intersecting h. In case of orthogonal cast removal, the only perturbation

allowed is translation.

Observation 7.2.2 For castability with orthogonal cast removal, we may assume that the casting

plane contains at least one vertex of P . For opposite and arbitrary cast removal, we may assume

that the casting plane contains at least three vertices of P .

7.2.1 The sphere of directions

Recall that we represent the space of all directions in 3-space by the points on the surface of a

sphere. Let north and south denote the points on S that represent the ~z and �~z directions. Let E
denote the equator (the set of points p 2 S, such that �!op � ~z = 0).

Let P be a convex polyhedron, let h be a casting plane and let ~d1 and ~d2 be the two cast removal

directions, represented by points d1 and d2 on the sphere of directions. We re-orient P and h such

that north is normal to h, thus d1 and d2 cannot both lie in the upper hemisphere or the lower

hemisphere. Without loss of generality, let d1 2 NH [north] and d2 2 NH [south ].

Observation 7.2.3 If a facet f of P intersects h+, and f has its outward normal represented by

a point q on S, then q 2 NH [d1]. Similarly, if f intersects h�, then q 2 NH [d2]. Therefore, if f

intersects the casting plane h, then q 2 NH [d1] \NH [d2] (recall that f is open).

De�ne C(d1) and C(d2) to be the great circles that bound NH (d1) and NH (d2). If ~d1 and ~d2
are opposite, then C(d1) = C(d2), otherwise, C(d1) \ C(d2) consists of a pair of antipodal points

on S di�erent from north , and south .
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Figure 7.3: The sphere of directions. The shaded hemispheres are NH (d1) and NH (d2), and the

darker shaded region is their intersection.

For any point p 2 S � fnorth ; southg, de�ne �(p) to be the nearest point on the equator (i.e.,

the intersection point of the equator E with the great circle through north and p nearest to p). By

de�nition, we have
�!op � ���!o�(p) � 0 : (7:1)

Furthermore, p and �(p) lie to the same side of any great circle through north and south .

Assume that ~d1 and ~d2 are non-opposite in the following (see Figure 7.3). De�ne C12 to be the

great circle containing north, south and the points of C(d1) \ C(d2). Note that NH [d1] \ NH [d2]

does not intersect one of the (open) hemispheres de�ned by C12. Let H12 be this open hemisphere.

By the above observation, any facet that has its outward normal in H12 cannot be intersected by

the casting plane. We use this fact in the following lemma.

Lemma 7.2.1 If a simple polyhedron P is castable in non-opposite directions with casting plane h,

then h contains an edge of P .

Proof: Let Q = P \ h. If Q consists of more than one connected component, or if Q has holes,

then h cannot be a casting plane for P . Therefore, Q is a simple polygon. Let e1; : : : ; em be the

clockwise sequence of edges bounding Q and let q1; : : : ; qm be the points on h \ S that represent

the outward normals of e1; : : : ; em. Since h is chosen to be horizontal, q1; : : : ; qm 2 E . Every open

half-circle in E contains at least one point of q1; : : : ; qm, because Q is a simple polygon.

Given that P is castable with respect to non-opposite directions ~d1 and ~d2, assume that every

ei is the intersection of a facet fi of P with the casting plane (i.e. no edge of Q is an edge of

P ). Let C12 and H12 be as de�ned above, and let ej be an edge of Q such that qj 2 E \H12 (see

Figure 7.3). Let pj be the point on S that represents the outward normal of fj . Then qj = �(pj),

and by (7.1), we know pj lies in H12. However, H12 does not contain any point in NH [d1]\NH [d2],

so by Observation 7.2.3 the facet fj cannot intersect the casting plane, which is a contradiction.

Thus h contains an edge of P .

Lemma 7.2.2 If a simple polyhedron P is castable with casting plane h and in non-opposite direc-

tions, then h contains an edge of the convex hull of P .
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Proof: Let P be castable with respect to non-opposite directions ~d1 and ~d2. If the cast of

P \cl(h+) can be removed in a direction ~d1, then the convex hull of P \cl(h+) can also be removed

in the direction ~d1. The same statement holds for direction ~d2 and the cast of P \ cl(h�).
Let Q = P \ h. The convex hull of Q is the closure of a facet bounding both CH (P \ h+) and

CH (P \ h�) (note that the convex hull is de�ned as a closed set). As in the proof of the previous

lemma, there exists an edge ej of the convex hull of Q where the outward normal of the edge on

plane h lies in H12. We need to prove that ej is also an edge of CH (P ). Let f1 be the facet of

CH (P \ h+) incident to ej and not in h. De�ne f2 analogously for CH (P \ h�). Let qj , p1 and

p2 be the points on h \ S and S that represent the outward normals of ej , f1 and f2, respectively.

Since f1 and f2 are incident to ej , we have �(p1) = �(p2) = qj , so p1, p2 and qj lie on a half-circle

between north and south and in H12. Since p1 2 NH (d1) and p2 2 NH (d2) are both contained in

H12, the half-circle through north , south , p1 and p2 must contain a point r that is not in NH [d1]

nor in NH [d2]. The plane h
0 with normal �!or and containing ej has CH (P \ h+) completely to the

one side, with the exception of cl(ej). Similarly, CH (P \ h�) lies completely to the one side of h0

with the exception of cl(ej). Since these convex hulls lie to the same side, it follows that P lies

completely to the one side of h0 with the exception of the endpoints of ej , and possibly ej itself (if

ej is an edge of P ). Therefore, ej is an edge of CH (P ).

Notice that the above two lemmas imply that if a polyhedron is castable, but not with opposite

cast removal, then the casting plane contains both an edge of P and an edge of the convex hull of

P (this might be the same edge). This will aid considerably to determine castability with arbitrary

cast removal.

7.2.2 Relation to linear programming

Let P be a polyhedron and let h be a plane. The plane h partitions the set V of vertices of P into

three subsets Vh, V
+
h

and V �

h
of vertices in, above and below h, respectively. Similarly, h partitions

the set E of edges of P in four subsets Eh, E
�

h
, E+

h
and E�

h
of edges contained in h, intersecting

h, above h and below h, respectively. The set F of facets is partitioned in the same way. For any

facet f 2 F , denote by 	(f) the closed half-space bounded by a plane supporting f , and such that

for any point in f , 	(f) does not intersect the interior of P in an �-neighborhood of the point.

Denote by 	0(f) the same half-space, but translated such that the bounding plane contains the

origin. We de�ne

�+(h) � cl(h+0 ) \

8><
>:

\

f2F
+

h
[F

�

h

	0(f)

9>=
>; and ��(h) � cl(h�0 )\

8><
>:

\

f2F
�

h
[F

�

h

	0(f)

9>=
>; :

The intersection of a set of half-spaces is called non-trivial if it contains more than a single point.

Denote by re(b) the reection of an object b through the origin (i.e. every point in b is negated).

We make the following observations.

Observation 7.2.4 The plane h is a casting plane for polyhedron P for arbitrary cast removal if

and only if �+(h) and ��(h) are both non-trivial.

Observation 7.2.5 The plane h is a casting plane for polyhedron P for opposite cast removal if

and only if �+(h)\ re(��(h)) is non-trivial.
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Observation 7.2.6 Let h be a plane and let ` be a line perpendicular to h and through the origin.

The plane h is a casting plane for polyhedron P for orthogonal cast removal if and only if `\�+(h)\
re(��(h)) is non-trivial.

With the above observations, we can test e�ciently whether a given plane h is a casting plane

for P . Since the casting problem for a plane h and a polyhedron P can be transformed in linear

time to a linear programming problem in 3 dimensions, the test requires only linear time [57].

Lemma 7.2.3 Given a polyhedron P and a plane h, one can test in linear time whether h is a

casting plane for P in any of the three versions for removing the cast.

Similarly, given a polyhedron and two cast removal directions (but not a casting plane), one

can test using linear programming whether the polyhedron is castable with respect to those cast

removal directions.

Lemma 7.2.4 Given a polyhedron P and two cast removal directions, one can test in linear time

whether there exists a casting plane h that allows removing the cast parts in the given directions.

Proof: Let the two cast removal directions be ~d1 for @P \ h+ and ~d2 for @P \ h�. For every

facet f of P , one can determine whether f should lie above the casting plane h (is compatible only

with ~d1), below h (is compatible only with ~d2), may intersect h (is compatible with both ~d1 and ~d2)

or is incompatible with the cast removal directions. If there is a facet of P that is incompatible,

then there does not exist any casting plane for directions ~d1 and ~d2.

The classi�cation of the facets as \above", \below", and \intersect" imposes a classi�ca-

tion of the edges. Any edge is classi�ed either as \above/above" (a/a), \above/below" (a/b),

\above/intersect" (a/i), \below/below" (b/b), \below/intersect" (b/i) or \intersect/intersect" (i/i),

corresponding to the classi�cation of the two facets incident to that edge.

Similarly, the classi�cation of an edge determines where both endpoints of the edge must lie.

For example, if an edge is classi�ed as (a/a) then both endpoints must lie in h+[h. We summarize

the implications that the classi�cation of the edges has on their endpoints in the table below.

edge class. endpoints

(a/a) h+ [ h
(a/i) h+ [ h
(b/b) h� [ h
(b/i) h� [ h
(a/b) h

(i/i) anywhere

The classi�cation of the endpoints of edges, in turn, determines where the vertices of P must

lie. Since every vertex is adjacent to at least 3 edges, no vertex can be adjacent to only (i/i) edges.

Hence, one can decide for every vertex whether it must be contained in h, lie in h+ [ h, or lie in

h� [ h. We dualize the vertices to planes, consider the half-spaces to the appropriate side of these

planes, based on the classi�cation, and obtain a linear programming problem to decide whether a

plane h exists that has the appropriate location with respect to the vertices of P .
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7.2.3 Antipodality properties

For opposite cast removal, we prove that if a casting plane intersects a facet, then it intersects the

boundary of that facet in antipodal pairs (note that this also holds for orthogonal cast removal).

This is an important property that is used to bound the number of distinct casting planes.

NW NE
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S \ hf
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�u

�v

L

�pf
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C�
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Au
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�u

S

C(pf )
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Figure 7.4: Illustrating the proof of Lemma 7.2.5.

Lemma 7.2.5 If the casting plane h intersects a facet f of a convex polyhedron P , and also two

vertices u and v in the closure of f , then for opposite cast removal, vertices u and v must be

antipodal in cl(f).

Proof: Let u; v be two vertices in cl(f)\ h, and assume that they are not antipodal. Let hf be

the plane that contains f . Since u and v are not antipodal, there are two edges eu and ev in cl(f)

incident to u and v, respectively, which lie on the same side of h and diverge in the plane hf (when

directed away from h). Suppose without loss of generality that eu; ev 2 h+. Let fu; fv be the facets
incident to eu; ev and di�erent from f .

We again represent the space of all possible directions in 3-space as a sphere of directions with

the casting plane as horizontal and north 2 h+. Let pf be the point in the (closed) northern

hemisphere representing the outward normal of facet f . The inward normal of f corresponds to a

point �pf antipodal to pf (see Figure 7.4). Since fu and fv are each incident to an edge of cl(f),

we know that the points representing their facet normals must be on open semi-circles Au and Av

between pf and �pf . Let �u (respectively �v) be the intersection of Au (respectively Av) with

C(pf). Let ~d be the casting direction for P \ h+. By Observation 7.2.3, we know that ~d must

correspond to a point pd on C(pf) \ h+.
Consider the great circle C(pf) = S \ hf as a unit circle of directions. Call the semicircle of

C(pf) intersecting h
+ the northern semicircle of C(pf). De�ne the southern, eastern, and western
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semicircles analogously. Since f is a convex polygon, we know that one of �u and �v must be in the

eastern semicircle and one must be in the western semicircle. Without loss of generality, assume

that �u is in the western semicircle. Since eu and ev diverge in hf , �u and �v must be strictly

south of some non-vertical line L through the origin. This, along with the fact that �u and �v
are split between the eastern and western semicircles, implies that at least one of �u and �v is in

the southern semicircle. Without loss of generality, suppose it is �u. Since ~d is by assumption

compatible with fu, pd must be in the northwest quadrant. Similarly, �v must be in the northeast

quadrant. Since �u and �v are strictly south of L, and in opposite quadrants, pd is incompatible

with one of �u and �v. Without loss of generality suppose pd is incompatible with �v. Recall that

NH (pd) denotes the hemisphere of directions compatible with d. Since a point on Av (namely �v)

is outside NH (pd), and Av is an arc with its endpoints on C(pd), all of Av must be outside NH (pd).

This implies that fv is incompatible with ~d, a contradiction.

Corollary 7.2.1 Let h be a casting plane for a polyhedron P which intersects a facet f properly,

and assume opposite cast removal. If h intersects a vertex v and properly intersects an edge e in

the closure of f , then v is antipodal to both endpoints of e. If h properly intersects two edges in the

closure of f , then they are parallel.

7.2.4 Convexity properties

In this subsection we derive some additional geometric properties of convex polyhedra that form

the basis of faster algorithms. We also establish an important property that relates the castability

of a simple polyhedron to that of its convex hull.

If P is a convex polyhedron, then the linear programming problems de�ned by P and a candidate

casting plane h need not consider all facets of F , but only those intersecting h and those adjacent

to h. We make this more precise. For the subset Eh of the edges of P contained in h, let F+(Eh)

denote the subset of F+ of facets that contain at least one edge of Eh in their closure. De�ne

F�(Eh) analogously. Furthermore, we de�ne

�+(h) � cl(h+0 ) \

8><
>:

\

f2F
�

h
[F+(Eh)

	0(f)

9>=
>; and ��(h) � cl(h�0 )\

8><
>:

\

f2F
�

h
[F�(Eh)

	0(f)

9>=
>; :

Lemma 7.2.6 If P is convex, �+(h) = �+(h) and ��(h) = ��(h).

Proof: We only prove that �+(h) = �+(h); the other proof is similar. Furthermore, that

�+(h) � �+(h) is trivial, so we prove �+(h) � �+(h).

If �+(h) only contains the origin then so does �+(h). Otherwise, let r be a half-line originating

at the origin and inside �+(h). If r 62 �+(h), then there is a facet f 2 F+
h
n F+(Eh) for which

r 62 	0(f). Let 	(f) denote the (closed) half-space supporting f distinct from 	(f). Since P is

convex,

f � cl(h+) \

8><
>:

\

f2F
�

h
[F+(Eh)

	(f)

9>=
>;
:

Since r 2 �+(h), it follows that the projection of any point in f parallel to r onto h will lie in

h \ P . But since r 62 	0(f), the line segment connecting a point in f with this projection will be

(partially) outside P , namely, in the neighborhood of f . This contradicts the convexity of P .
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With Lemma 7.2.6, we conclude the following:

Lemma 7.2.7 The plane h is a casting plane for a convex polyhedron P for opposite cast removal

if and only if �+(h) \ re(��(h)) is non-trivial.

Lemma 7.2.8 Let h be a plane and let ` be a line perpendicular to h through the origin. The

plane h is a casting plane for a convex polyhedron P for orthogonal cast removal if and only if

` \ �+(h) \ re(��(h)) is non-trivial.

The following theorem forms the crucial link between simple polyhedra and convex polyhedra

in terms of castability.

Theorem 7.2.1 If a simple polyhedron P is castable, then the convex hull of P is also castable

using the same casting plane and cast removal directions.

To prove the theorem, we �rst establish a few important lemmas.

Lemma 7.2.9 A convex polyhedron P is a terrain with respect to a facet Q and a direction ~d if

and only if the vertices of P project into cl(Q) when projected in direction �~d onto the supporting

plane of Q.

Proof:

()) If P is a terrain with respect to a direction ~d and a facet Q, then every point of P projects

into cl(Q) in direction �~d.
(() Suppose every vertex of P projects into cl(Q) in direction �~d. Since P is convex, the line

segment from every vertex v to Q in direction �~d must be inside P . It follows that a ray with

direction ~d from every vertex is outside P . By Observation 7.2.1, P is a terrain with respect to ~d

and Q.

Lemma 7.2.10 If a polyhedron P is a terrain with respect to a direction ~d and facet Q then CH (P )

is a terrain with respect to ~d and CH (Q).

Proof: Every vertex of P is on one side of the plane induced by Q; it follows that the convex

hull of Q must be a facet of CH (P ). Since every vertex of CH (P ) is a vertex of P , every vertex

of CH (P ) must project into CH (Q) in direction ~d. By Lemma 7.2.9, P is a terrain with respect ~d

and CH (Q).

Lemma 7.2.11 Let h be plane, let C1 and C2 be convex polygons in h such that C1 � C2, and let

S be a set of points entirely contained in one of the half-spaces bounded by h. If CH (C1 [ S) is a
terrain with respect to a direction ~d and facet C1, then CH (C2 [ S) is a terrain with respect to ~d

and C2.

Proof: Suppose that CH (C1 [ S) is a terrain with respect to ~d and C1. By Lemma 7.2.9, S

projects inside C1 in direction �~d. Since C1 � C2, S also projects inside C2 in direction �~d. By

Lemma 7.2.9, CH (C2 [ S) is a terrain with respect to direction ~d and facet C2.
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Proof: (of Theorem 7.2.1)

Let P be a simple polyhedron, and let h be a casting plane for P with casting directions ~d1 for

@P \ cl(h+) and ~d2 for @P \ cl(h�). The polyhedron CH (P \ h+) [ CH (P \ h�) is also castable

for casting plane h and directions ~d1 and ~d2 by Lemma 7.2.10. Denote P+ = CH (P \ h+) and
P� = CH (P \ h�).

We need to show that PH = CH (P ) is castable with casting plane h and casting directions ~d1
and ~d2. Let P

+
H

= CH (PH \ h+) and P�

H
= CH (PH \ h�). Since P+ is contained in P+

H
and P�

is contained in P�

H
, the theorem follows from Lemma 7.2.11.

7.3 The number of distinct casting planes

Given a polyhedron P with vertex set V , two planes h1 and h2 are (combinatorially) distinct if the

partitioning of the facets into F+, F� , F� and F� they de�ne is di�erent. By Observation 7.2.2,

a trivial upper bound on the number of distinct casting planes for a polyhedron with n vertices is

O(n3).

This section gives a linear upper bound on the maximum number of distinct casting planes for

convex polyhedra in case of orthogonal and opposite cast removal as well as a quadratic upper

bound for arbitrary cast removal. The proofs are constructive, i.e., sets of candidate casting planes

of linear or quadratic size are de�ned which contain all distinct casting planes. In the following

sections we will use these sets of candidate casting planes to determine castability e�ciently.

7.3.1 Orthogonal and opposite cast removal

Observe that for orthogonal cast removal, a casting plane h can intersect a polyhedron P as follows

(these properties follow from the previous section):

1. A facet f that intersects h properly is perpendicular to h.

2. An edge that intersects h properly is perpendicular to h (because otherwise one of the incident

facets cannot be perpendicular).

3. Two vertices in the closure of a facet f and in h are antipodal in cl(f). Any vertex and edge

in the closure of f and intersecting h are antipodal in cl(f). (See Lemma 7.2.5).

For opposite cast removal, we have the following properties of intersections of a casting plane

h and a polyhedron P :

1. The facets of F� that intersect h properly have their outward normals such that when trans-

lated to the origin, they span a plane or part of it (since
Tf	0(f) j f 2 F�g must contain a

line through o).

2. All edges that intersect h properly are parallel (otherwise the incident facets span more than

a plane).

3. Any two vertices in the closure of a facet f and in h are antipodal in cl(f). Any vertex and

edge in the closure of f and intersecting h are antipodal in cl(f). (See Lemma 7.2.5.)

Let P be a convex polyhedron with n vertices. Since a linear upper bound on the number of

distinct casting planes in case of opposite cast removal implies the same result for orthogonal cast

removal, we only prove the opposite case.
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Lemma 7.3.1 Given a convex polyhedron P , the number of distinct casting planes that intersect

some edge of P properly is at most linear in the number of vertices of P for opposite cast removal.

Proof: Let E0 be a maximal subset of parallel edges of P , and of which at least one edge is

properly intersected by some casting plane. By convexity of P , such a casting plane must intersect

the closure of all edges of E0, because no such closure of an edge can be strictly above or below the

casting plane. The cast removal directions are parallel to the edges of E0, and by the classi�cation

de�ned in the proof of Lemma 7.2.4, for every vertex v of P it is speci�ed that either v 2 h [ h+
or v 2 h [ h� or v 2 h, for any casting plane h. Let V +, V � and V � be these three subsets of

vertices, respectively. If V � contains three or more vertices, then at most one distinct casting plane

is possible for this direction. Otherwise, we consider the following three cases. Note that since P

is convex, by Lemma 7.2.6 we only need to consider the facets that intersect h and those adjacent

to an edge of P in h.

Case 1: V � is empty. In this case, the facets that intersect h are all the facets adjacent to the

edges of E0. Let G+ be the endpoints of E0 contained in V + and let G� be the endpoints of

E0 contained in V �. For a plane to intersect the closure of all edges of E0, it must separate

G+ from G�. Since we are considering opposite cast removal, a casting plane must contain at

least three vertices. The vertices that the casting plane may contain must come from the set

G = G+ [G�, since V � is empty. Therefore, to bound the number of distinct casting planes

that intersect an edge of E 0 properly, we must count the number of planes that separate G+

from G� and contain at least three vertices from the set G.

To do this, we dualize the set of vertices G+ to a set of planes D+ and the set of vertices

G� to a set of planes D+. Let I be the convex polytope that lies below all planes in D+ and

above all planes in D�. The vertices of I are precisely the duals of the planes. Therefore,

there are O(jEij) distinct planes.
Case 2: V � contains one vertex. Argument similar to case 1. Simply include the vertex in V � in

the sets G+ and G�.

Case 3: V � contains two vertices. Same argument as case 2.

Thus, we see that the number of distinct casting planes that intersect an edge of E0 properly is

bounded by O(jE0j). Since every edge of P contributes to only one subset E0 of parallel edges, the

lemma follows by Euler's formula.

The following lemma is the basis of an inductive argument to prove a linear bound on the

number of distinct casting planes that intersect no edge properly.

Lemma 7.3.2 Given a convex polyhedron P , there exists a vertex v with constant degree such that

v participates in a constant number of antipodal pairs on the incident facets.

Proof: Let ~V ; ~E; ~F be the number of vertices, edges and facets of P . The summed degree of

all vertices D = 2 ~E � 6 ~V � 12. Every vertex has at least degree 3, thus there must be at least
~V =2+ 1 vertices of degree at most 8. The total number of antipodal pairs, summed over all facets,

is at most 3 ~F=2 � 3 ~V � 6, which implies that the total vertex contribution in antipodal pairs, A,

satis�es A � 6 ~V �12 [69]. Observe that every vertex of P participates in at least 3 antipodal pairs;

at least one in each incident facet. If all ~V =2 + 1 vertices of degree at most 8 are in at least 9

antipodal pairs on the incident facets, then A � 9( ~V =2+1)+3( ~V =2�1) = 6~V +6, a contradiction.

Hence, there exists a vertex which is in at most 8 antipodal pairs and with degree at most 8.
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Let h be a candidate casting plane of P , and let Q = h \ P . If Q contains three consecutive

vertices u; v; w that are also vertices of P , then each of u and w is either an endpoint of an edge

incident to v, or a vertex antipodal to v on the closure of a facet f incident to v. We say that the

plane through u; v; w is generated by v. It follows that the set of candidate casting planes generated

by v has size
�
d+a
2

�
, where d is the degree of v and a is the number of vertices antipodal to v in

the closures of the facets incident to v. Every casting plane h that does not intersect any edge

properly contains at least three vertices that are consecutive in h \ P , and therefore, every such

casting plane is generated by some vertex of P .

Theorem 7.3.1 Given a convex polyhedron P with n vertices, the maximum number of distinct

casting planes for P is O(n), assuming opposite removal of the cast parts.

Proof: First, assume that the casting plane h intersects some edge e of P properly. By

Lemma 7.3.1, there are O(n) distinct casting planes of this type.

Next, we show that the number of casting planes that do not intersect any edge properly is

linear. For such a casting plane h, all vertices of the intersection polygon Q = h\P are also vertices

of P .

The proof is by induction. Let v be a vertex of P of degree at most 8 and which participates

in at most 8 antipodal pairs (see Lemma 7.3.2). The number of casting planes containing v which

do not intersect any edges properly is bounded from above by the number of planes generated by

v, and hence, is constant. We remove v from P and continue the count on the convex hull of the

remaining vertices. We have counted all distinct casting planes that contain v. Since any casting

plane of P that does not contain v and does not intersect any edge incident to v properly is also a

casting plane of CH (vertices of P � v), the lemma follows by induction.

There is another interesting combinatorial bound on the complexity of the intersection of all

distinct casting planes with a convex polyhedron. Referring to the proof of Lemma 7.3.1, we notice

that two distinct casting planes h1 and h2 that intersect an edge of E0 properly are similar, because

they de�ne the same cast removal directions, and they intersect the same closure of edges and facets.

In other words, if h1 and h2 each intersect edges properly that are parallel, there cannot be two

vertices u; v strictly to the one side of h1 and strictly to di�erent sides of h2. We use the term weakly

equivalent for two such planes. Two planes are strongly distinct if they are not weakly equivalent.

There are O(n) strongly distinct casting planes for any convex polyhedron P with n vertices. We

analyze the combinatorial complexity of h\P , summed over all strongly distinct casting planes h.

This quantity is well-de�ned for opposite cast removal, since two weakly equivalent casting planes

have an equal-size intersection with P (although they may intersect di�erent facets, edges and

vertices). We prove a bound of O(n logn) on the summed complexity. Note that when the sum is

over all distinct casting planes (not strongly distinct), the summed complexity can be �(n2) if P

has a set of 
(n) parallel edges. The bound makes use of a hierarchical decomposition of P that

closely resembles the hierarchy of Dobkin and Kirkpatrick [26]. It is the basis of the O(n log2 n)

time algorithms for casting of convex polyhedra with opposite cast removal.

Lemma 7.3.3 Given a convex polyhedron P with n vertices, there exists a subset V 0 of the vertices

V of size 
(n), such that each v 2 V 0 has degree at most 8 and is antipodal to at most 12 vertices

in facets incident to v.

Proof: Similar to Lemma 7.3.2, one can prove that there are at least ~V =5 vertices of degree

at most 8 and in at most 12 antipodal pairs. (Otherwise, A � 13(1
2
� 1

5
) ~V + 3(1

2
+ 1

5
) ~V = 6~V , a

contradiction.)
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The following hierarchical decomposition of P generates a set of planes that contains all the

candidate casting planes that do not intersect an edge properly. The correctness follows from the

proof of Theorem 7.3.1.

Algorithm 11: Compute all generated planes

1. Set i = 1.

2. Compute the antipodal pairs of the facets of P .

3. Select a subset Vi of V as in Lemma 7.3.3. For every vertex v 2 Vi, generate all planes through
u; v; w. For every vertex v 2 Vi, the number of generated planes is at most

�12+8
2

�
= 190, thus

O(n) for the whole subset.

4. Recompute the convex hull of the vertices of P minus the vertices of Vi.

5. Repeat at step 2 with i = i+ 1 unless P has no vertices left.

The number of generated planes is linear since each vertex generates a constant number. An-

tipodal pairs computations take O(n) time and convex hull computations take O(n logn) time,

see e.g. [28, 69]. The total time taken by Algorithm 11 is given by the recurrence T (n) �
T ((1 � �)n) + O(n logn) where � � 1=5 is the constant in the 
(n) of Lemma 7.3.3. This re-

currence solves to T (n) = O(n logn).

Theorem 7.3.2 Given a convex polyhedron P with n vertices, the total complexity of h\P , summed

over all strongly distinct casting planes h for P , is O(n logn) for opposite cast removal.

Proof: In the following proof, we make a distinction between planes that are generated, and

other planes that can be casting planes. Planes of the second type intersect some edge properly.

Consider a hierarchical decomposition of the vertices of P into sets V1; : : : ; Vm as described

above. Observe that m 2 O(logn).
Let h be any plane, and let v1; : : : ; vk be the sequence of vertices in h \ P . We �rst show that

every consecutive subsequence vi; : : : ; vi+2m�1 of vertices that also are vertices of P (no proper

intersections of edges of P with h) contains a vertex that generates h. To this end, observe that

vj generates h if and only if vj is in a vertex set Vs with lower or equivalent index as its neighbors,

thus if vj�1 2 Vr and vj+1 2 Vt, then r � s and t � s. Since there are only m vertex sets, any

consecutive sequence of 2m vertices contain at least one that that generates the plane h.

Consider the vertices vi that are proper intersections of h and an edge of P . Any edge e gives

rise to at most one strongly distinct casting plane, and therefore, the total number of these vertices

in h \ P , summed over all strongly distinct casting planes, is linear.

Summarizing, the sequences of h \ P summed over all strongly distinct casting planes contain

O(n) vertices that generate a casting plane, O(n) vertices that are proper intersections of edges

with a casting plane, and at most 2m� 1 vertices in between. It follows that the total complexity

of the intersections is O(nm) = O(n logn).

Corollary 7.3.1 Given a convex polyhedron P with n vertices, the number of planes that intersect

the interior of P but do not intersect any facets of P is O(n), and the number of edges of P

contained in these planes, summed over all planes, is O(n logn).
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7.3.2 Arbitrary cast removal

We have shown that the number of casting planes that also allow opposite cast removal is linear.

For the other casting planes, we know from Lemma 7.2.1 that they contain an edge of P . Since we

may also assume that they contain a third vertex, we immediately conclude:

Theorem 7.3.3 Given a convex polyhedron P with n vertices, the number of distinct casting planes

for P is O(n2), assuming arbitrary removal of the cast parts.

7.4 Algorithms for orthogonal and opposite cast removal

In this section and the next, algorithms are presented for the computation of casting planes, and

hence, determining whether a given polyhedron is castable. This section focuses on orthogonal and

opposite cast removal.

7.4.1 A simple algorithm for simple polyhedra

We compute O(n) candidate casting planes as follows. By Theorem 7.2.1, we need only consider

the casting planes of the convex hull of P . We �rst compute the candidate casting planes that

intersect some edge properly, and then the ones that are generated. We only consider opposite cast

removal; the case of orthogonal cast removal only requires some straightforward changes.

Let E1; : : : ; Ek be a partitioning of E into maximal sets of parallel edges. For each Ei, let

V +
i

denote the upper endpoints of Ei, V
�

i
the lower endpoints of Ei, and V �

i
the set of vertices

that must be contained in the casting plane for the cast removal direction parallel to the edges of

Ei. We compute all planes that contain the vertices of V �

i
, separate V +

i
from V �

i
, and contain at

least three vertices of V �

i
[ V +

i
[ V �

i
by intersecting the corresponding set of half-spaces in dual

space, as in Lemma 7.3.1. Each vertex of the resulting polyhedron in dual space corresponds to a

plane with the desired properties. This gives O(jEij) candidate casting planes. The intersection of

jEij half-spaces in 3-dimensional space can be computed in O(jEij log jEij) time, see e.g. [28, 69].

Summed over all subsets E1; : : : ; Ek, we obtain O(n) candidate casting planes in O(n logn) time.

Second, we compute the other candidate casting planes in O(n logn) time by Algorithm 11. We

conclude:

Lemma 7.4.1 Given a polyhedron P with n vertices, one can compute in O(n logn) time a set �

of O(n) planes such that any casting plane h that contains at least three vertices of P is contained

in �, assuming opposite cast removal.

Theorem 7.4.1 Given a polyhedron P with n vertices, one can decide in O(n2) time and linear

space whether P is castable when the cast parts must be removed in orthogonal or opposite directions.

Proof: If P is a convex polyhedron, the theorem follows immediately from Lemmas 7.2.3, 7.2.4

and 7.4.1. If P is a simple polyhedron, we additionally apply Theorem 7.2.1.
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7.4.2 Walking around convex polyhedra

For convex polyhedra, the above result can be improved as follows. By Lemma 7.2.7 determining

whether a plane h is a casting plane for P can be done by only considering the facets intersected by h

and the facets incident to the edges that are contained in h (this only holds for convex polyhedra).

A linear program on this set of facets tells us whether h is a casting plane. We also know, by

Theorem 7.3.2, that the total number of facets that we check, for all O(n) candidate casting planes,

is only O(n logn). This will lead to an O(n log2 n) time algorithm for a convex polyhedron P with n

vertices. The algorithm is split up in two parts, each of which walks around the polyhedron to �nd

the relevant facets. The �rst algorithm tests each class of weakly equivalent planes that intersect

some edge properly. The second tests all remaining planes that are generated , in the terminology

of Theorem 7.3.2.

Each edge de�nes a class of weakly equivalent casting planes. The traversal of h\P is performed

for a generic (i.e. partially speci�ed) plane h in this class. If any plane in the weak equivalence class

is a valid casting plane, the linear program constructed by the traversal will �nd it. By Corollary

7.2.1 we know that any valid casting plane must intersect a facet in antipodal faces. In the next

algorithm we take advantage of the fact that if we know the casting direction, and one of the faces of

intersection, there is a unique antipodal edge or vertex any valid casting plane with this orientation

must intersect. We preprocess the polyhedron for Algorithm 12 as follows:

1. With Algorithm 11, compute a hierarchical decomposition of P into O(logn) vertex sets

V1; : : : ; Vm, as in Theorem 7.3.2. Store with each vertex v all O(1) planes generated by v.

2. For every facet f , store the outward normals of the facets that are incident to an edge in the

closure of f in a sorted list.

3. For every vertex, store the outward normals of its incident facets in a sorted list (these are

linearly ordered since they are incident to the same vertex).

These steps can be done in O(n logn) time.

Algorithm 12: Test weak equivalence classes of planes that intersect an edge properly.

for every edge e1 2 E
if e1 is untreated then

Trace h \ P for a generic casting plane h that intersects all edges parallel to e1:

Let ~d be a direction parallel to e1, and let f1 be a facet incident to e1.

q1  e1, i 1

repeat

if qi is an edge then

mark qi as treated.

Let fi+1 be the facet adjacent to qi distinct from fi.

else qi is a vertex

If (qi�1; qi; qi+1) is a generated triple, mark it as treated.

Check (in constant time) if qi is coplanar with every other vertex discovered; if

not then fail.
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Find by binary search the facet or edge fi+1 distinct from fi that splits the facets

incident to qi into those compatible with ~d and those incompatible with ~d.

end if

Find by binary search the edge or vertex qi+1 of fi+1 distinct from qi that splits the

edges of cl(fi+1) into those where neighboring facet is compatible with ~d and those

where it is incompatible.

i i+ 1

until qi = e1 or h has failed

if the walk returns to e1 then

Determine by linear programming whether a plane exists that intersects the closure

of the edges discovered on the walk, and also the discovered vertices (dualize the

endpoints of the edges and the vertices as in the proof of Lemma 7.3.1 to obtain the

constraints).

If the LP is feasible, polyhedron P is castable with cast removal directions ~d and �~d,
and the plane corresponding to the feasible solution of the LP.

end if

end if

next Edge

We now need to test those candidate casting planes that intersect no edge properly. The key

observation for the next algorithm is that any casting plane that intersects no edge properly must

be generated. For Algorithm 13, we carry out the additional preprocessing steps:

1. For every vertex v of P , store the edges adjacent to v in clockwise order, so that it is possible

to determine by binary search for any query plane h containing v, the facets or edges incident

to v that h intersects.

2. For every facet f of P , store the vertices in the closure of f in clockwise order, so that it is

possible to determine by binary search for any query plane h which edges or vertices in the

boundary of f intersect h.

Each of these preprocessing steps can be carried out in O(n logn) time, so the total preprocessing

time is O(n logn).

For a given candidate casting plane h, we use vi to denote the i-th vertex of Q = h \ P

discovered, and Fh to to denote the set of facets that intersect h properly or are incident on an

edge of P contained in h. It should be noted that triples marked as treated in Algorithm 12 remain

marked at the beginning of Algorithm 13.

Algorithm 13: Test all candidate planes that do not intersect an edge properly

for every generated triple (u; v1; v2)

if (u; v1; v2) has not been treated then

Let h be the plane through u; v1; v2. Mark (u; v1; v2) as treated. i 2, Fh  ;.
while we have not walked all the way around to v1 or failed.
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Determine by binary search the edge or facet qi+1 that h intersects clockwise from vi.

if qi+1 is an edge e = (vi; v) then

vi+1  v

Add both facets adjacent to e to Fh.

else qi+1 is a facet

Add f = qi+1 to Fh.

Determine by binary search what other vertex or edge q0 in the boundary of f

intersects h.

If q0 is an edge, then next Triple, since h was tested with Algorithm 12.

Otherwise, vi+1  q0

end if

if (vi�1; vi; vi+1) is generated then

If (vi�1; vi; vi+1) has already been treated, h cannot be a casting plane: next

Triple

Otherwise, mark (vi�1; vi; vi+1) as treated.

end if

i i+ 1

next Step

Construct �+(h) and ��(h) from Fh. Test by linear programming if �+(h) \ re(��(h))
is non-trivial. If so, accept h as a casting plane, with the casting directions given by the

solution to the LP.

end if

next Triple

Theorem 7.4.2 Given a convex polyhedron P with n vertices, one can decide in O(n log2 n) time

and linear space whether P is castable when the cast parts must be removed in orthogonal or opposite

directions.

Proof: The above algorithms attain the claimed time bound. This can be seen as follows. The

total preprocessing time is O(n logn). Let us count the total number of steps walking around the

polyhedron in Algorithm 12. Since each edge is intersected properly by at most one walk, we charge

the step that intersects an edge properly to that edge. Consider the steps between two proper edge

intersections. We charge those before the �rst generated triple encountered to the previous edge

properly intersected, and those after the �rst generated triple to the most recently encountered

generated triple. From the proof of Theorem 7.3.2, we know that there are O(n) triples and that

every 2m 2 O(logn) consecutive vertices contain at least one generated triple. It follows that

O(n logn) steps are charged to generated triples and edges. Since each walking step takes O(logn)

time, Algorithm 12 takes O(n log2 n) time to generate linear programs.

For Algorithm 13, the time bound follows in a similar way; each step that discovers a vertex

is charged to the most recently encountered generated triple. Since each edge is also discovered
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by at most one walk in Algorithm 13, we charge that step to the edge. It follows that the second

algorithm also takes O(n logn) steps and O(n log2 n) time to generate linear programs.

By Theorem 7.3.2, the total complexity of all linear programs generated by both algorithms is

O(n logn), hence the total time to test all candidate planes is O(n logn).

7.5 Algorithms for arbitrary cast removal

In this section we study the most general version of the casting problem: determine whether a

simple polyhedron P is castable when the cast parts may be removed in arbitrary directions. Using

Lemmas 7.2.1 and 7.2.2 and one more observation on arbitrary cast removal, we obtain a simple

O(n2 logn) time and linear space algorithm.

Let P be a polyhedron. We �rst test whether P admits opposite cast removal using the simple

O(n2) time algorithm of Theorem 7.4.1. If so, we are done. Otherwise, if P is convex, then, by

Lemma 7.2.1, we only have to consider casting planes that contain some edge of P . If P is non-

convex, then, by Lemma 7.2.2, we only have to consider casting planes that contain an edge of the

convex hull of P .

Observation 7.5.1 Let P be a polyhedron and h be a plane that contains an edge e of the convex

hull of P . Assume without loss of generality that e is horizontal and that a vertical plane exists

which supports e and has P � cl(e) completely to the one side.

� If P \ cl(h+) is a terrain and P \ cl(h�) is not a terrain, then no plane � containing e for

which P \ h� � �� is a casting plane.

� If P \ cl(h+) is not a terrain and P \ cl(h�) is a terrain, then no plane � containing e for

which P \ h+ � �+ is a casting plane.

� If P \ cl(h+) and P \ cl(h�) are both not a terrain, then no plane containing e is a casting

plane.

The above observation sets up a binary search for a casting plane that contains some edge e of

the convex hull of P (see Figure 7.5). First, compute the convex hull of P . For any edge e of the

convex hull, rotate P such that e is as in the observation. Consider the n� 2 vertices that are not

endpoints of e, and sort them by the order in which a vertical plane supporting e encounters them

if the plane starts rotating about e. (The plane h can rotate in two directions about e. It is not

important which direction is chosen, as long as this choice is made consistently.) Assume without

loss of generality that the order is v1; : : : ; vn�2. We test whether the plane h supporting e and also

containing vn=2�1 is a casting plane by determining whether P \ cl(h+) is a terrain and P \ cl(h�)
is a terrain. By the above observation, we can stop considering e if both are not terrains. If both

are terrains, we can also stop and h is a casting plane. Otherwise, if only P \ cl(h+) is a terrain,

we continue the binary search on vn=2; : : : ; vn�2, and if only P \ cl(h�) is a terrain, we continue

the binary search on v1; : : : ; vn=2�2. After at most dlog2(n�2)e steps, we have determined whether

there exists a casting plane that contains e. This leads to:

Theorem 7.5.1 Given a simple polyhedron P with n vertices, one can determine in O(n2 logn)

time and linear space whether a casting plane for P exists, when the cast parts can be removed in

arbitrary directions.
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Proof: To decide whether opposite cast removal is possible we �rst apply Theorem 7.4.1 and

use O(n2) time. The computation of the convex hull of P requires O(n logn) time. There are O(n)

edges about which a plane is rotated. The sorting of the vertices v1; : : : ; vn�2 takes O(n logn) time,

and each step of the binary search takes linear time by Lemma 7.2.3. Hence, the above procedure

takes O(n2 logn) time.

Figure 7.5: Rotating a plane about an edge through P .

7.6 Discussion

In this chapter, we addressed the geometric version of the problem of determining whether a simple

polyhedron can be manufactured using casting, and simple algorithms that use O(n2) or O(n2 logn)

time and linear space based on linear programming. These algorithms can be improved theoretically

using partition trees and their variants[52]. However, we have not presented these improvements

since we are mainly concerned with practical algorithms for casting. A detailed discussion on the

theoretical improvements can be found in [15]. We summarize our results along with the theoretical

improvements in the table below.

orthogonal opposite arbitrary

linear space
convex polyhedra O(n log2 n) O(n log2 n) O(n2 logn)

simple polyhedra O(n2) O(n2) O(n2 logn)

best results convex polyhedra O(n log2 n) O(n log2 n) O(n3=2+�)

(in theory) simple polyhedra O(n3=2+�) O(n3=2+�) O(n3=2+�)

We note that more complicated objects can be made by using cores and inserts [31, 71, 87, 88].

Their use slows down the manufacturing process and makes it more costly, and therefore, should

be avoided. However, some objects cannot be made without the use of cores and inserts. It would
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be interesting to develop algorithms that can determine when objects are castable with the use of

cores and inserts.



Chapter 8

Conclusions

In this thesis, we have explored the geometric aspects of a few fundamental problems stemming

from the manufacturing industry. The problems are taken from two complimentary categories of

manufacturing processes: rapid prototyping systems and casting processes. This investigation only

scratches the surface of the vast number of applications of geometry in manufacturing. There exist

many unanswered questions related to the topics covered in this thesis, and many related areas

remain unexplored. We conclude with a list of open problems suggested by our research.

Questions related to Manufacturing Processes

1. In the variable-angle stereolithography model, we assumed that an object cannot be built on

a vertex or edge since the object would not be stable. However, in practice, objects may be

constructed on a vertex or edge by introducing support stilts as the object is being built in

order to maintain stability. It would be interesting to incorporate this into the variable-angle

model.

2. What is the maximum number of distinct casting planes in case of arbitrary cast removal?

We show an upper bound of O(n2), whereas the only lower bound we have is linear.

3. For a convex polyhedron P , what is the maximum summed complexity of the intersection of

all distinct casting planes with P? We show an upper bound of O(n logn) in case of opposite

cast removal, but the trivial lower bound is linear.

4. Give simple algorithms for casting that improve our simple O(n log2 n), O(n2) and O(n2 logn)

time algorithms.

5. Suppose that the casts may be removed with any motion. Give algorithms to determine

whether a polyhedron is castable in this case.

6. Suppose that we wish to determine castability of an object with non-linear boundaries. Give

(simple) algorithms that solve this problem.

7. Suppose that more cast parts are allowed. Determine for a polyhedron how many cast parts

are necessary.

8. Related to the previous problem, determine how many cores and inserts are needed to man-

ufacture an object by casting or molding.

96
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9. For some casting processes, it is not necessary that the cast parts be separated by a plane.

In these cases, every convex polyhedron is castable. However, no algorithms are known for

cast removal of simple polyhedra.

10. We only presented algorithms for computing suitable locations of pin gates in polygonal molds.

Generalizing this to polyhedral molds would be interesting. It would also be interesting to

�nd approximate solutions for polyhedral molds, as �nding exact solutions seems di�cult.

11. Reduce the time complexity of Algorithm 3, which �nds the geodesic center of P constrained

to lie in Q. The time complexity is O(n(n + k)) but it seems like O(n logn + k) or at least

o(n2 + k) should be possible.

12. The algorithms to compute the optimal orientation of a mold as well as the ones to locate a

suitable pin gate have not been tested experimentally.

13. Generalize the algorithms to compute the optimal orientation of a mold to handle more

complex objects, such as objects with non-linear boundaries, or of higher genus.

14. There are many other manufacturing processes that have not been analyzed from this per-

spective such as processes with centrifugal forces for �lling, or laser sculpting.
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