
Bu�er Sharing Schemes for

Continuous-Media Systems�

Dwight J. Makaro� and Raymond T. Ng

Department of Computer Science

University of British Columbia

Vancouver, B.C., V6T 1Z4

Canada

Abstract

Bu�er management in continuous-media systems is a frequently studied topic. One

of the most interesting recent proposals is the idea of bu�er sharing for concurrent

streams. As analyzed in [8], by taking advantage of the temporal behaviour of concur-

rent streams, bu�er sharing can lead to a 50% savings in total bu�er space. In this

paper, we study how to actually implement bu�er sharing. To this end, we develop the

CES Bu�er Sharing scheme that is very e�cient to implement, and that permits savings

asymptotically very close to the ideal savings predicted by the analysis in [8]. We show

that the CES scheme can operate e�ectively under varying degrees of disk utilizations,

and during transition periods when the number of concurrent streams changes. We

also demonstrate how the scheme can be further improved, particularly for situations

when the number of concurrent streams is small. In ongoing work, we will integrate

the proposed scheme into a distributed continuous-media �le system which is under

development at the University of British Columbia.

1 Introduction

The advances in networking and storage technologies in the past decade have made multime-

dia computing possible. Providing e�ective multimedia support in information systems has

naturally become a topic of great interest and practical value. For a multimedia informa-

tion system to work well, however, it must deal with two major properties of or challenges

presented by multimedia data. First, audio and video data are delay-sensitive. As record-

ing and playback of video and audio data are continuous operations, once an information

system starts displaying audio or video data, it must guarantee that enough resources are

�Research partially sponsored by NSERC Grants OGP0138055 and STR0134419, IRIS-2 Grants HMI-5

and IC-5, and CITR Grant on \Distributed Continuous-Media File Systems."

1

allocated so that the continuity and real time requirements are not violated. Second, (even

compressed) audio and video data consume large amounts of system resources { primarily

storage space and bandwidth.

Many excellent studies regarding the storage and retrieval of audio and video data have

been conducted, such as those reported in [1, 2, 3, 4, 8, 9, 10, 12, 13, 15]. In particular, [1,

3, 4, 9, 13, 15] have studied, among other issues, the bu�er space requirements for multiple

multimedia streams. Most of these analyses are based on the bu�er space needed by each

stream individually. In other words, if S1; : : : ; Sn are the n streams running simultaneously

in the system, the total amount of bu�er space needed is
nX

i=1

Bi, where Bi is the bu�er space

required by Stream Si. Recent work [8, 13] has shown that by taking advantage of the

temporal behaviour of the concurrent streams, bu�ers can be shared among these streams

(cf. more details given in Section 2). The analysis and simulation in [8] indicate that bu�er

sharing can reduce the total bu�er requirements to as little as 1=2 �
nX

i=1

Bi, achieving a

50% savings. Thus, sharing provides more e�cient use of bu�ers and often improves the

response times to queries, namely by increasing the number of concurrent streams that can

be supported by a �xed amount of bu�er space.

Given the bene�ts of bu�er sharing, in this paper we study how to implement this idea

(as [8] and [13] only give analyses and simulation results). A crucial issue which has not been

examined elsewhere is bu�er addressing. That is to say, after knowing how much bu�er space

to allocate to a collection of concurrent streams, how can the system decide exactly which

bu�ers (i.e., blocks of memory) to use to contain the data read for each stream? Similarly,

how can the playback process of each stream know where to �nd its data? As will be

demonstrated in Section 3.1, the answers to these questions are complicated by the temporal

aspects of the concurrent streams in that the bu�er locations for each stream change over

time.

To some extent, the problem of bu�er addressing we are trying to solve here is similar to

the problem of allocating blocks of memory to processes in a multi-programming operating

system environment. However, a key di�erence between the two problems is a di�erence in

time granularity. In operating system memory allocation, most changes in (virtual) memory

allocation are made in the time granularity of process lifetimes, which are typically in seconds

or minutes. In contrast, the time granularity for changes in bu�er locations is on the order

of milliseconds, assuming a display rate of 30 frames per second. Thus, we are looking for

bu�er addressing schemes that are with as little overhead as possible. To this end, the

contributions of this paper are as follows.

� We will report the development of the CES Bu�er Sharing Scheme that is very e�cient

to implement (i.e., constant-time computation). The scheme permits savings in bu�er

space asymptotically very close to the \ideal" savings predicted by the analysis given

in [8].

2

� We will show how this scheme can be further improved, particularly for situations when

the total number of concurrent streams is small, say less than 10.

� We will also demonstrate how the scheme operates under varying degrees of disk uti-

lizations.

� As noted in [8, 9], when the number of concurrent streams changes (normally due to

a completion/termination of a stream, or the admission of a new stream), the system

enters into a transition period. We will show how to make the CES Bu�er Sharing

Scheme work during such periods of transition.

The organization of the paper is as follows. Section 2 presents several preliminary con-

cepts and formulas, and gives an analysis on the bene�t of bu�er sharing. Section 3 intro-

duces the CES Bu�er Sharing Scheme and analyzes its behaviour with full disk utilization.

Section 4 shows how the CES scheme can be further optimized by a more careful reuse of

bu�ers. Section 5 analyzes the behaviour of the CES scheme when the disk utilization is

less than full. Finally, Section 6 shows how to make the CES scheme work during periods of

transitions.

2 Background: An Analysis of Bu�er Sharing

2.1 Periodic Retrieval of Multiple Streams with No Bu�er Shar-

ing

Following the framework established in [4], we associate with each stream Si a consumption

rate pi, which is the rate the data obtained from disks are consumed. For an uncom-

pressed stream, its consumption rate is the same as its playback rate. To support n streams,

S1; : : : ; Sn, it is necessary that the data transfer rate R from disk is greater than the total

consumption rate
nX

i=1

pi of all the streams, so that the continuity requirements of all the

streams will not be violated. More speci�cally, the disk 1 multiplexes itself by reading data

for each stream in a periodic or cyclic fashion. Within a period, the disk spends ti time units

to read for Si. Thus, if si;j denotes the seek/switching time from Streams Si to Sj, we have:

t1 + : : :+ tn + s1;2 + : : :+ sn;1 � T (1)

where T denotes the total length of the period. To simplify notations, let s = s1;2+ : : :+sn;1.

Then the disk utilization for the concurrent streams is given by:

� =
t1 + : : :+ tn + s

T
(2)

1For ease of presentation here, we only consider the situation when there is only one disk. As far as bu�er

sharing is concerned, extending from one disk to multiple disks is straightforward.

3

Intuitively, it measures the degree to which the disk has been dedicated to the concurrent

streams. The disk utilization is 1 when the disk is fully dedicated. The disk utilization is less

than 1 when there is some time within each cycle that the disk is not serving the concurrent

streams. We refer to this as the idle time within a cycle. Any value can be selected as the

length of the reading period, keeping in mind that bu�er utilization is directly proportional

to that time value. If a stream needs 1.5 Mbps (as in MPEG-1 video), then 5 streams can

be serviced in a period of length 10 seconds, if 15 Mbits are read for each stream. The total

amount to be read is 75 Mbits or approximately 9 MBytes of bu�er space would be required,

assuming all of the data needs bu�er space at some point.

In order for each stream to satisfy its continuity requirements, it is necessary to read

su�cient data of Si in time ti so as to cover the (continuous) consumption of Si for time T ,

that is,

ti �R � T � pi (3)

In order to reduce the number of bu�ers used for each stream, however, we have:

ti �R = T � pi (4)

From Equation (4), it is easy to see that ti

tj
= pi

pj
. In other words, to minimize bu�er

consumption, the reading time for each stream should be proportional to its consumption

rate. Let P denote the total consumption rate, i.e., P = p1 + : : :+ pn. Then by combining

Equations (2) and (4), ti can be determined by:

ti = (T � � � s) �
pi

P
(5)

By combining Equation (3) with the above equation, we can establish a lower bound on T :

T �
s �R

R � � � P
(6)

Since the data transfer rate R is greater than the consumption rate pi of each individual

stream, bu�ers are needed for each stream. In particular, the maximum number of bu�ers

is needed right after Si has just �nished reading. Thus, the number of bu�ers required by

Si is: Bi = ti �R� ti � pi. By substituting Equation (5) into the above, we get:

Bi = pi � (R � pi) �
T � � � s

P
(7)

Thus, the total bu�er requirements for the n streams is:

B =
nX

i=1

Bi =
T � � � s

P
�

nX
i=1

pi � (R � pi) (8)

4

S S S321

buffers
3b

3b/2

b

T/3

one cycle T

time

Figure 1: Bu�er Sharing for 3 Streams with Identical Consumption Rates

If Bmax is the maximum number of bu�ers available in the system, it is necessary that

B � Bmax. By substituting Equation (8) into B � Bmax, we get an upper bound of the

cycle length T :

T �
Bmax � P

� �
P

n

i=1 pi � (R� pi)
+

s

�
(9)

This equation can be combined with Equation (6) to decide whether it is possible to accept

a new stream Sn+1. In particular, the admission controller computes the two equations by

including the characteristics of Sn+1 (i.e., sum to n + 1). If the range de�ned by the two

equations is empty (i.e., the right-hand-side of Equation (6) is strictly greater than that of

Equation (9)), admitting Sn+1 is not feasible. Otherwise, Sn+1 can be admitted, and any

value within the range can be picked as the value of T .

The analysis above assumes that apart from the seek required for switching from Si�1

to Si, no extra seek is needed throughout time ti when Si is being read. This can be

achieved by using the technique of storing data in clusters as proposed in [3], or by storing

data contiguously (e.g. such as in a spiral optical disk). [8] discusses how to handle other

situations of data placement.

2.2 The Bene�t of Bu�er Sharing

Many studies, such as [1, 3, 4, 9, 13, 15], have analyzed, among other issues, the bu�er space

requirements for multiple concurrent multimedia streams. However, nearly all the analyses

are based on the bu�er space needed by each stream individually. In other words, the total

bu�er space needed by the n streams is
nX

i=1

Bi. Figure 1 shows clearly, however, that Si

does not need all Bi bu�ers at all times. In fact, Si's bu�er requirement can be less than

Bi, for example when Stream Si+1 requires its maximum number of bu�ers. This fact is

independently observed in [13]. Thus, a simple way to minimize total bu�er consumption

and thus to maximize bu�er utilization is to allow the n streams to share bu�ers.

Figure 1 shows a simple situation when there are 3 streams S1; S2; S3 in the cycle, each

of which has the same consumption rate, but their data consumption cycles are o�set in

5

time with respect to each other, as in [13]. Thus, by Equation (5), each stream has an equal

amount of reading time, i.e., same ti. Since the cycle length T is normally much larger

than the total switching time s, Figure 1 shows the simpli�ed situation when ti = T=3. Let

us consider the total bu�er requirement at time 4T=3, at which point S1 has just �nished

reading and requires b bu�ers, the maximum number of bu�ers that it ever needs. S2, which

is about to start reading, has run out of data. Thus, the bu�er requirement of S2 is 0. As

for S3, there were b bu�ers at time T , but at time 5T=3, all the data in those bu�ers will be

consumed. Thus, at the current time 4T=3, S3 needs b=2 bu�ers. Hence, the total number

of bu�ers required by all 3 streams is b + 0 + b=2 = 3b=2. Note that if all the streams

have identical consumption rates, their total bu�er requirement does not change with time.

Thus, 3b=2 bu�ers are all the 3 streams need. However, without bu�er sharing, 3b bu�ers

are required. Thus, bu�er sharing gives a 50% reduction in total bu�er consumption.

An analysis of bu�er sharing for the general case when there are n streams with hetero-

geneous consumption rates p1; : : : ; pn involves �nding the time point within a period when

the total bu�er requirement reaches the maximum. This is necessary because this maximum

is no longer constant when p1; : : : ; pn are not all the same. See [8] for more details. But

here we will only consider the case when there are n streams with identical consumption

rates. Since the consumption rates are the same, then by Equation (7), the individual bu�er

requirement Bi is the same, which we de�ne to be b. This is equal to pT (
n� 1

n
) when the

disk is fully utilized and servicing n streams. The amount that must be displayed is pT

and pT=n is what has been displayed while reading. Similarly, the reading time ti for each

stream is the same, say equal to t0. Now let us consider the time when Sn has just �nished

reading. The following table shows the bu�er requirement of each stream at that point.

Streams S1 S2 S3 : : : Sn

Bu�ers needed 0 1
n�1

b 2
n�1

b : : : n�1
n�1

b

First, Sn has just �nished reading, thus requiring all b bu�ers. S1 is about to start reading.

Thus, it has 0 bu�ers of data at this point. S2, at an earlier point in time, had b bu�ers of

data which are supposed to cover the consumption of S2 for a period of (n� 1) � t0. At the

point when Sn has just �nished reading, (n � 2) � t0 has elapsed from the time S2 started

consuming its data, or alternatively, S2 will run out of data t0 seconds later. Thus, the

current level of bu�ered data for S2 is
t0

(n � 1) � t0
b =

1

n� 1
b. Similarly, it is not di�cult

to see that the current level of bu�ered data for S3 is
2

n� 1
b. Hence, the total number of

bu�ers needed is:

Bshar =
nX

i=1

i� 1

n� 1
b =

n

2
b (10)

In this case, without bu�er sharing, the total number of bu�ers required is B = nb. Thus,

bu�er sharing reduces total bu�er consumption by 50%.

6

Example 1 Consider a homogeneous set of streams whose consumption rate is 240KB per

second. (This is based on 24 frames per second where each frame is JPEG compressed to

10KB [11].) Given a disk whose maximum reading rate is 1000KB per second, 4 streams can

be supported simultaneously, provided that there are enough bu�ers. If the length of the

period for the 4 streams is 2.5 seconds, the bu�er requirement for each stream is b = 456KB.

Thus, without bu�er sharing, about 2MB of bu�er space is needed. But with bu�er sharing,

only 1MB is needed. Alternatively, if the system only has 1MB of bu�er space, the number

of streams that can be supported simultaneously without bu�er sharing is only 2. With

bu�er sharing, the system can double the throughput and support all 4 streams. 2

The above analysis assumes that the disk utilization � is equal to 1. To take variations of

disk utilization into account, we generalize the above table that shows the bu�er requirement

of each stream at the point after Sn has �nished reading to become:

Streams S1 S2 S3 : : : Sn

Bu�ers needed cb (c+ �

n��
)b (c+ 2�

n��
)b : : : (c+

(n�1)�

n��
)b

where c = 1��
1��=n

. For more information regarding these calculations, see [14]. A simple

summation yields:

Bshar =
2n � n� � �

2(n� �)
� nb (11)

Thus, in general, the percentage savings in bu�ers is given by:

%savings = 100 � (1�
2n � n� � �

2(n� �)
) = 100 �

(n � 1)�

2(n � �)
(12)

The above quantity is the largest when the disk utilization � = 1, in which case the percentage

savings is 50%.

All the analyses presented so far are based on a �xed reading order of streams within

a cycle. The bene�t of allowing the reading order to change from one period to another is

explored in [2, 3]. The gain is a reduction in total seek time, whereas the price to pay may

be a doubling of bu�er requirements. In ongoing work, we are studying whether we can get

the best of both worlds by integrating bu�er sharing with variable reading orders.

3 CES: A Bu�er Addressing Scheme Based on Slots

Since bu�er sharing can lead to considerable savings, the aim of this paper is to devise

e�ective schemes to implement the idea. The main issue involved is bu�er addressing. In

other words, after deciding how much bu�er space is needed by the concurrent streams, the

system must decide where to put the data of each stream at what time. In this section, we

will �rst present a naive implementation scheme which requires very costly bookkeeping. We

will then present a bu�er addressing scheme based on the notion of slots. We will show that

the addressing scheme is easy to implement/maintain, and that the scheme permits savings

in bu�er space asymptotically very close to the \ideal" savings predicted by Equation (12).

7

3.1 Observations from a Naive Implementation

The following example demonstrates that with the minimum amount of bu�er space (via

bu�er sharing), it is not possible to allocate contiguous blocks of memory space to the

streams.

Example 2 Suppose we have 4 streams: A, B, C and D, each having the same consumption

rate p. Consider the case when the disk utilization is 1. Then if the period is of length T ,

each stream will read for time
T

4
within each period. Thus, it is easy to see that the bu�er

space needed for each stream is given by b = p(T �
T

4
) = pT

(4� 1)

4
=

3

4
pT . Thus, by

Equation (10), the total amount of space needed is 2b = 6p
T

4
. For ease of illustration, let us

divide this amount of memory space into 6 equal portions, each of size p
T

4
. Hereafter, we

call these portions \slots." The following shows how these 6 slots will be used over time.

� At time t = 0, no portions are in use. Immediately after this moment, the disk starts

to read for Stream A, and begins to use the space in Slots 1, 2, 3 and 4.

� At time t =
T

4
, Stream A occupies b bu�ers. In fact, more than b bu�ers worth of

data of A has been read, because while reading takes place, some of the bu�ers being

�lled have already been consumed (i.e., Slot 1). Slot 1 is empty because the amount

of data displayed during the reading period for A (
T

4
) is exactly equal to the size of

slot 1. Thus, the bu�er space can be diagrammed as follows:

1 2 3 4 5 6

free A A A free free

Immediately after the moment t = T=4, the disk starts to read for Stream B, and

begins by using Slot 5.

� At time t = 2T=4, Stream A has just �nished consuming its data in Slot 2. Meanwhile,

Stream B now requires b bu�ers (i.e., 3 slots). Thus, the bu�er space looks like:

1 2 3 4 5 6

B B A A free B

� At time t = 2T=4+T=16, Stream C has just �nished �lling its �rst (of 4) slots, namely

Slot 5. At this moment, the bu�er space looks like:

1 2 3 4 5 6

B B A* A C* B*

8

The asterisks under Slots 3, 5 and 6 indicate that only parts (in fact, one quarter) of

these slots are empty. Then the question is where to put C's data to be read next.

The unfortunate answer is that C's data will have to be interleaved within the space

in Slots 3, 5 and 6.

� At time t = 3T=4, Stream C has �nished reading, and the bu�er space diagram be-

comes:

1 2 3 4 5 6

B B C+ A C+ C+

The + signs under Slots 3, 5 and 6 denote that the data in these slots are interleaved

and not in contiguous order.

� After time t = 3T=4, reading for Stream D begins. Unfortunately, the fragmentation of

D becomes even worse than that of C above. The fragmentation escalates even further

when the next cycle begins. Eventually, data of all streams are totally interleaved.

2

The above example illustrates that with the minimum amount of bu�er space (as predicted

by Equation (10)), interleaving of data streams in bu�ers occurs rampantly. In fact, such

interleaving is unavoidable. This is because at the steady state when the bu�ers are all

full, having the minimum amount of bu�er space implies that every bu�er released after

consumption by every stream must be �lled immediately by the stream that is reading data

at that time. More importantly, those locations will not always be contiguous. Even if a

special attempt has been made to make sure that those locations are contiguous in one cycle,

the previous example shows that the locations will no longer be contiguous in the next cycle.

In sum, a key observation is that with the minimum amount of bu�er space, interleaving is

unavoidable.

The next question to ask then is how to record the interleaving, so that the system knows

where to �nd the ith piece of a data stream in the bu�ers. One straightforward way is by

using a linked list or some indexing structure, one for each stream. When a data block is

read from disk, the contents would be copied to the bu�er and the start address copied to

the indexing structure. Similarly, when a data block is consumed, the indexing structure

would be accessed to �nd the start address, and then the data would be transferred to the

display hardware. However, the disadvantages of this naive approach are:

� As illustrated by the above example, the degree that the data of a stream is interleaved

or fragmented is very high. This implies that there would be many, many small con-

tiguous pieces whose start addresses need to be recorded. Thus, the amount of storage

space required by the indexing structure may not be small. Moreover, the indexing

structure may use up memory space which would otherwise be available as bu�er space

for streams.

9

� Each read operation from and write operation to bu�ers require accessing or updating

the indexing structure. As a data stream is highly fragmented, the frequency of accesses

to the indexing structure would be very high. This would undoubtedly lead to a major

performance loss.

So far, we have observed that with the minimum amount of bu�er space, a high degree

of interleaving is unavoidable. And we have just seen that dealing with such a high degree of

interleaving is very costly. Furthermore, if we re
ect on the situation without bu�er sharing,

this would correspond to the other extreme with a maximum amount of bu�er space but a

zero degree of interleaving (as each stream has its own bu�er space). Thus, the amount of

bu�er space and the degree of interleaving are two opposing factors. The goal then is to �nd

a suitable point in between the two extremes described above.

3.2 Bu�er Allocation by Slots

Let us take a closer look at the situation described in Example 2. Rampant interleaving

begins immediately after time 2T=4 + T=16, which is the time when every bu�er released

(e.g., in Slots 3, 5 and 6) must be reused immediately to contain data of the reading stream

(e.g., Stream C). Thus, to avoid rampant interleaving, our approach is to design a scheme

that satis�es the following condition.

The reading stream must read its data to slots that are completely empty when

the stream starts its reading period.

Hereafter, we will refer to the above condition as Condition CES (\completely empty slots").

Obviously, for any scheme to obey the given condition, it must have enough bu�er space at

the beginning of each reading period to contain all the data of the reading stream to be read

in that period. Then it is not di�cult to see that the total bu�er space needed is more than

the \ideal" amount given by Equation (10). In the remainder of this section, we present

a scheme called the CES Bu�er Sharing Scheme that permits bu�er savings asymptotically

very close to the ideal, and that satis�es the above condition.

We begin the description of the CES scheme by re-visiting the concept of slots which we

have used rather informally in Example 2. Recall that there is some amount of data of the

reading stream that will be consumed before the reading stream �nishes its reading in the

cycle. For example, if we have 4 concurrent streams, each cycle is broken up into 4 reading

periods, one for each stream. Thus, the amount of data that are consumed in one reading

period is p �
T

4
, where p is the consumption rate of the streams, and T is the cycle length.

This assumes that the disk utilization is 1 and that the total switching time among streams

is small compared with the reading times. Section 5 will consider the situation when the

disk utilization is less than 1. In general, for n concurrent streams, an amount of
pT

n
of each

stream is consumed in every reading period. Thus, we can divide the data to be consumed

10

Reading Periods

Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1

1 A2 C2 B2 A2 C2 B2 A2 C2

2 B2 A2 C2 B2 A2 C2 B2

3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3

4 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3

5 C3 C3 C3 C3 C3 C3 C3 C3 C3

Table 1: Slot Allocations for 3 Streams Under the CES Scheme

for a given stream in a cycle into portions of size
pT

n
. That is to say, the �rst portion of a

stream is consumed during the reading period of that stream, while the second and further

portions are consumed during the reading periods of other concurrent streams. A slot is a

block of bu�er space that can contain exactly one portion. Thus, the slot size is also
pT

n
.

Having introduced portions and slots, we now try to �nd the minimum number of slots

necessary to satisfy Condition CES. On one hand, during each reading period, n completely

empty slots are needed { one for consumption during the reading period, and n � 1 for the

other reading periods. On the other hand, at the end of each reading period, n slots are

released { one for each concurrent stream, including the reading stream. Thus, if n slots

are added to the minimum amount of bu�er space, then the stream currently reading data

can have n completely free slots, thereby satisfying Condition CES; and when the current

reading period ends, the next reading stream will also have n completely free slots, because

n slots have just been released.

Table 1 illustrates the situation when there are 3 concurrent streams. The columns of

the table give the reading periods. For example, the �rst reading period is a period when

Stream A is reading. Since there are 3 streams, 3 periods correspond to one cycle. Each

row of the table speci�es the portions that occupy the corresponding slot at the end of the

reading periods. For instance, at the end of the �rst reading period, the second and third

portions of A (i.e., A2 and A3) are in Slots 1 and 3 respectively. Notice that Slot 0 is actually

empty at the end of each reading period, but the portion is included in Table 1 to indicate

the stream that has just stopped reading in that period.

Let us consider the 7th reading period in greater details, which is the steady-state version

of the �rst reading period. Here Stream A has just �nished reading, and Slots 1, 3 and 5 are

occupied. For the next reading period, we need 3 slots to contain the data of Stream B. And

there are exactly 3 empty slots available: Slot 0, 2 and 4. Thus, Condition CES is satis�ed.

At the end of the 8th reading period, the second and third portions of B are in Slots 2 and

4 respectively. Meantime, the portions A2 and C3 have just been consumed. Thus, the

11

empty slots are 1, 5 and 0, just enough for the next reading period. Here a key observation

is that the 7th reading period is identical to the 13th period. The major implication is that

by controlling the degree of interleaving, we can now know precisely where to get a certain

portion of a stream at any point in time. In other words, no costly bookkeeping is necessary.

Table 2 in Section 3.4 later shows the slot allocations for 4 streams, and a table of this

kind can be produced for any given n. In Section 3.4, we will explain in greater details

the meaning of the speci�c cyclic patterns, and will present a formula computing the slot

address of a portion. This is one of the two major questions remain to be answered. The

other remaining question is how much space this scheme requires, which we will answer

immediately below.

3.3 Space Requirement

As shown above, the proposed scheme satis�es Condition CES, and successfully prevents

rampant interleaving from occurring. However, as argued in Section 3.1, we must pay a

price in doing so, namely by using more space than the \ideal" case. To analyze how much

more space we need, we make two observations from our previous description. First, at the

end of each reading period, the total space of the occupied slots is equal to the minimum

amount of bu�er space needed. For example, for 3 streams, by Equation (10), the minimum

amount of space needed is 3b=2, where b = 2p � T=3, where p is the consumption rate and

T is the cycle length. This amount is equal to the space of 3 slots, each of size p � T=3. As

shown in Table 1, the number of occupied slots at the end of each reading period is always

3.

The second observation from the previous description is that the proposed scheme needs

exactly n empty slots to work, which is the minimum number of slots required by Condition

CES. Thus, the space requirement of the proposed scheme is the minimum bu�er space ob-

tained from Equation (10) plus n extra slots. Expressed in terms of b, the space requirement

is given by:

n

2
b+ n �

p � T

n
=

n

2
b+

n

n� 1
b =

n+ 1

n� 1
�
n

2
b (13)

as pT = (
n

n� 1
)b from Section 2. Recall from Equation (10) that ideal bu�er sharing requires

nb

2
bu�er space. Thus, the proposed scheme is only a factor

n+ 1

n� 1
o�. And the larger the

value of n, the closer is the space requirement of the proposed scheme to the ideal minimum.

Figure 2 shows the bene�ts of bu�er sharing given by the proposed scheme. The x-axis

is the number of concurrent streams, and the y-axis is the percentage of the amount of

bu�er space without bu�er sharing (i.e., nb). The curve with asterisks corresponds to the

proposed scheme based on Equation (13), and the 50% horizontal line corresponds to the

ideal minimum based on Equation (10). The two curves become closer to each other as the

12

0 5 10 15 20 25 30
40

50

60

70

80

90

100

Number of Streams (* - CES Buffer Sharing Scheme) (o - Minimum)

P
er

ce
nt

ag
e

of
 N

on
-S

ha
re

d

Figure 2: Percentage Savings in Bu�er Space by the CES Scheme

number of streams grow. In other words, as n grows, the percentage savings in bu�er space

created by the proposed scheme is almost 50%, which corresponds to an enormous amount

of bu�er space in absolute terms.

3.4 Slot Addressing

In the rest of this section, we address the issue of how to compute the location of a portion

of a stream at any given time. To do so, we must understand more about the patterns

exhibited by the kind of slot allocation described in tables like Table 1. To better illustrate

the patterns, we use Table 2 which describes the slot allocations for 4 streams. Note that

the rows of the table are divided into 4 groups (marked by horizontal lines) based on the

portions of the streams. More speci�cally, only the �rst portions of the streams (e.g., A1,

B1) appear in the �rst group (i.e., Slot 0), and similarly only the second portions of the

streams (e.g., A2, B2) appear in the second group (i.e., Slots 1 and 2). Observe that for a

given stream, its lower-numbered portions occupy bu�er space for a smaller amount of time

than its higher-numbered portions. More speci�cally, its ith portion stays in the bu�ers

one more reading period than its (i-1)st portion. Thus, slots containing higher-numbered

portions have a smaller chance to be reused, and thus we need more slots for higher-numbered

portions than for smaller-numbered ones. In the extreme case, the �rst portion of a stream

is consumed at the end of the its reading period. Thus, we need only one slot for all the �rst

portions: A1, B1, etc.

As for the second portions of the streams, observe that at the end of each reading period,

13

Reading Periods

Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 A1 B1 C1 D1 A1 B1 C1 D1 A1 B1 C1 D1 A1 B1 C1 D1

1 A2 C2 A2 C2 A2 C2 A2 C2

2 B2 D2 B2 D2 B2 D2 B2 D2

3 A3 A3 D3 D3 C3 C3 B3 B3 A3 A3 D3

4 B3 B3 A3 A3 D3 D3 C3 C3 B3 B3

5 C3 C3 B3 B3 A3 A3 D3 D3 C3 C3

6 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4

7 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4

8 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4

9 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4

Table 2: Slot Allocations for 4 Streams Under the CES Scheme

there can only be one second portion remaining in the bu�ers { namely the second portion

of the stream that has just �nished reading (e.g., A2 at the end of the �fth reading period).

Recall that to satisfy Condition CES, one more empty slot is needed to contain the second

portion of the next reading stream (e.g., StreamB). This explains why all the second portions

require only two slots (e.g., Slots 1 and 2). It also explains the cyclic pattern exhibited by

all the second portions of the streams.

The situation for the third portions is very similar to that for the second portions. The key

di�erence is that the third portions stay one reading period longer than their corresponding

second portions. Consequently, in the steady state, there are always two third portions

contained in the bu�ers (e.g., A3 and D3 at the end of the �fth reading period). Thus, 3

slots are needed to handle all the third portions. The portions use the three slots in an

obvious, cyclic fashion.

In general, for n concurrent streams, k slots are needed for the kth portion. A special case

occurs for the last portion (i.e., k = n). Since n slots are allocated for the n last portions,

each of those portions has its own slot. For instance, as shown in Table 2, A4, B4, C4 and

D4 have exclusive uses of Slots 6, 7, 8 and 9 respectively. Incidentally, it is obvious from

the above analysis that the total number of slots needed for n streams is given by
nX

k=1

k.

Thus, the total space needed is given by
n(n+ 1)

2
�
p � T

n
, where

p � T

n
is the slot size. This

amount, without surprise, is exactly the same as the �gure computed by Equation (13).

We are now in a position to develop a formula to compute the slot address that contains

a certain portion of a stream at any given point in time. In particular, the formula is of the

form f(stream, portion, cycle number) = slot address/number. As an example, Table 3 gives

the slot numbers that should be computed by the formula for 4 streams. The columns of

14

4 Streams Portions

Cycle No. A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

1 1 2 1 2 3 4 5 3 6 7 8 9

2 1 2 1 2 4 5 3 4 6 7 8 9

3 1 2 1 2 5 3 4 5 6 7 8 9

4 1 2 1 2 3 4 5 3 6 7 8 9

Table 3: Slot Addresses for 4 Streams Under the CES Scheme

the table correspond to the di�erent portions of the 4 streams. Since the �rst portions of all

streams are consumed within the same reading period they are read, they do not require any

slot and are not included in the table. The rows of the table correspond to the cycles. Since

each cycle consists of 4 reading periods (i.e., given 4 streams), the �rst cycle corresponds to

the �rst 4 reading periods in Table 2, the second cycle the next 4 reading periods, and so on.

Notice from Table 2 that A2 occupies only Slot 1 regardless of which cycle, this corresponds

to the column of 1's for A2 in Table 3. Similarly, a previous discussion has explained the

columns of 6's, 7's, 8's and 9's in Table 3 for A4, B4, C4 and D4 respectively.

A slightly more interesting situation occurs for the third portions of the streams. Look

at Table 2 again. For A3, it occupies Slot 3 in the �rst cycle, Slot 4 in the second, and Slot

5 in the third. These correspond to the values given in Table 3 under the column for A3.

While the situations for B3 and C3 are very similar, the situation for D3 is slightly more

complicated. Observe from Table 2 that D3 stays in bu�ers across cycle boundaries (e.g., the

4th and 5th reading periods). Thus, strictly speaking, D3 has two di�erent slot addresses

in the second cycle: Slot 3 at the end of the 5th period, and Slot 4 at the end of the 8th

period. However, to simplify the computation (i.e., to make slot address computation truly

functional), we adopt the convention that a cycle number is only valid after the given stream

has started its reading period in that cycle. For instance, as far as Stream D is concerned,

the second cycle only begins at the 8th reading period. In other words, the slot address at

the end of the 5th period corresponds to the �rst cycle. Thus, the column for D3 in Table 3

gives the (unique) value of 3 for the �rst cycle and 4 for the second cycle.

In the following, we give the procedure/formula that can be used to compute slot ad-

dresses. We assume that the concurrent streams are numbered 1, : : : ; n, and we use i to

denote a certain stream. We use the symbol K to denote the portion of a stream. Thus, the

portion at time t of a stream is given by

K =

&
t mod T

(T
n
)

'
(14)

where T is the length of the cycle. We use CN to denote the cycle number which is given

15

by

CN = 1 + (t div T) (15)

Procedure ComputeSlotAddr

Input K;CN; i, and n.

1. If K = 1, output 0 and halt.

2. If K = 2:

(a) If n is even, output the value of (i+ 1) mod 2 + 1, and halt.

(b) Otherwise, output the value of (i+ CN) mod 2 + 1, and halt.

3. If K = n, output the value of
n(n� 1)

2
+ ((i� 1) mod n) and halt.

4. Otherwise (i.e., 2 < K < n), output the value of
K(K � 1)

2
+ [(n�K)(CN � 1) + i�

1] mod K. 2

Example 3 Suppose we have 4 concurrent streams (i.e., n = 4). Suppose we want to �nd

the slot address of the third portion of Stream D in the second cycle. From Table 3, Slot 4

should be the answer. Now for Procedure ComputeSlotAddr, the values of K;CN and i are

3, 2 and 4 respectively. In Step (4), the expression enumerated is
3(3 � 2)

2
+ [(4 � 3)(2 �

1) + 4 � 1] mod 3, which is equal to 4. Similarly, if we are interested in the fourth portion

of D, the answer computed is 9, the same as the value given in Table 3. 2

Recall that all �rst portions of the streams are contained in Slot 0. Step (1) of Procedure

ComputeSlotAddr gives exactly this value. As for the second portions, if there are an

even number of concurrent streams (e.g., see Table 2), then all odd-numbered streams (e.g.,

Stream A) use Slot 1, and all even-numbered streams (e.g., Stream B) use Slot 2. If there

are an odd number of streams, then the second portion of every stream uses Slot 1 and 2,

depending on the cycle number. This explains Step (2) of Procedure ComputeSlotAddr. As

for the last portions of the streams, recall that each stream has its own slot. This gives rise

to the expression ((i � 1) mod n) in Step (3). The expression
n(n� 1)

2
corresponds to the

total number of slots required to hold all but the last portions of all the streams (i.e.,
n�1X
j=1

j).

To understand the computation carried out in Step (4) for 2 < K < n, it is important

to note that during each successive cycle, the Kth portion of a given stream must be placed

in the next available slot within the group of slots allocated for all the Kth portions. From

one cycle to the next, there are (n �K) slots used up by the streams that did not �t into

16

the �rst allocation of those slots. Thus, in the the next cycle, stream i must be o�set by an

additional (n �K) slots. If this causes a wrap-around, the calculation must be performed

modulo K, to cycle back to the original beginning of that group of slots. As an example,

consider n = 4 and K = 3. As shown in Table 3, each successive cycle moves the portion

forward by 4 - 3 = 1 slot. The wrap-around is handled by the modulo 3 operation that puts

each partition into the correct slot.

Note that the output obtained from Procedure ComputeSlotAddr only gives the slot

number. But once the slot number is obtained, the exact address of a certain sub-portion

of a stream can be easily computed. Also note that some of the expressions computed in

Procedure ComputeSlotAddr may look a bit messy. But in fact, they can enumerated in

constant time.

To summarize, in this section, we have �rst argued that using the minimum amount of

bu�er space in bu�er sharing would introduce rampant interleaving which is too costly to

keep track of. In response, we have proposed the CES Bu�er Sharing scheme that is based

on portions and slots. The scheme, in satisfying Condition CES, only allows interleaving to

the level of slots. A key bene�t then is that to locate any part of a stream at any given

point in time, slot addresses can be computed in constant time, and no costly bookkeeping

is required. Furthermore, we have shown that while the scheme needs extra bu�er space, it

gives bu�er savings asymptotically equal to the ideal case described in Equations (10) and

(12).

4 Further Improvement: a Hybrid Scheme

The curves in Figure 2 show that when the number of concurrent streams is small, the CES

Bu�er Sharing scheme does not give too much savings in bu�er space. In fact, when there

are only 3 streams, there is no savings at all (cf: 6 slots needed in Table 1). And for 4

streams, the savings is less than 20%, far from the 50% predicted by Equation (12). In this

section, we show how this situation can be ameliorated by a more careful reuse of bu�ers.

4.1 The NCES Bu�er Sharing Scheme

Let us consider the special case when there are only two streams. We can implement the

following scheme that requires the minimum amount of bu�ers. The key is to interleave the

reading locations and choose not to bu�er the data which are both read and consumed in

the same reading period. More speci�cally, Stream A can �ll b bu�ers by reading its data in

2 parts { with every other read going directly to the process that consumes the data (e.g.,

display hardware), and the remaining reads being stored in the bu�ers. Data in the stored

bu�ers are displayed after Stream A has �nished its reading period. Now when Stream B

reads data, it follows the same strategy, consuming one bu�er and storing one bu�er in the

same slot as is freed by Stream A during that time. Note that for this scheme to work,

the coordination between reading and consuming must be very precise, and no mismatches

17

Reading Periods

Slot 1 2 3 4 5 6 7 8 9 10 11 12

1 A2 C2 B2 A2 C2 B2

2 B2 A2 C2 B2 A2 C2

3 A3 A3 C3 C3 B3 B3 A3 A3 C3 C3 B3 B3

4 B3 B3 A3 A3 C3 C3 B3 B3 A3 A3 C3

Table 4: Slot Allocations for 3 Streams Under the NCES Scheme

in timing can be tolerated. Also note that this scheme does not satisfy Condition CES in

that not every slot used by the reading streams is completely empty at the beginning of the

reading period. Hereafter, we refer to this scheme as the NCES Bu�er Sharing scheme.

The NCES scheme can be extended to situations with larger number of concurrent

streams. Tables 4 show the slot allocations for 3 streams. As compared with Table 1,

Slot 0 and 5 are eliminated. Slot 0 is not needed because data are sent directly to the

process that consumes the data. While Tables 1 and 4 do not di�er in the �rst two reading

periods (modulo Slot 0), the di�erences between the two tables start to show in the third

reading period. In the situation described in Table 1, the scheme obeys Condition CES, and

thus C3 is read into Slot 5 which is completely empty at the beginning of the third period.

In the situation described here, Portion C1 is sent directly to the consuming process, and

C2 �lls up Slot 1. By the time Slot 1 is �lled, a considerable part of A3 has already been

consumed (i.e., 2/3 to be exact). In other words, Slot 3 is almost empty. Thus, C3 is read

into Slot 3. Even though the rate at which C3 is read into Slot 3 is three times as fast as the

rate A3 relinquishes bu�ers in Slot 3, it is not di�cult to see that the data of C3 will never

catch up with the data of A3 in Slot 3. In fact, right after the last frame of A3 has been

consumed, the space just freed is immediately �lled with the last frame of C3. Similarly, in

the next reading period (i.e., the 4th period), A2 �lls up Slot 2, and A3 occupies Slot 4 just

as B3 frees up space in that slot. Again, contrast this with the situation shown in Table 1.

For the NCES scheme in general, it is easy to see that we can set up the kind of slot

addresses tables like Table 3, and modify Procedure ComputeSlotAddr slightly to compute

the slot addresses of the portions of the n streams. The only change needed is the case for

the nth portions of the streams. This is because there are now only (n�1) slots to be shared

among all the nth portions of the streams. We omit the details here.

4.2 A Hybrid Scheme

From the above analysis, it is quite obvious that the NCES scheme requires 2 fewer slots

than the CES scheme proposed in the previous section. As shown in Section 3.3, the CES

scheme needs n more slots than the minimum amount of bu�er space. Thus, the NCES

scheme requires (n � 2) extra slots when compared with the minimum amount. Slot 0 is

18

0 5 10 15 20 25 30
40

50

60

70

80

90

100

Number of Streams * - CES Buffer Sharing, o - NCES Buffer Sharing, x - Minimum

P
er

ce
nt

ag
e

of
 N

on
-S

ha
re

d

Figure 3: Percentage Savings in Bu�er Space by the CES and NCES Schemes

not needed because data is displayed directly to the output device, while one slot in the last

group is not needed, cince the �nal slot read into was not empty at the beginning of the

cycle. Total bu�er requirements become:

n

2
b+ (n� 2) �

p � T

n
=

n

2
b+

n� 2

n� 1
b = (

n� 2

n� 1
+
n

2
) b (16)

The curve with circles in Figure 3 shows the bene�ts of bu�er sharing by the NCES

scheme. When n is very small, the NCES scheme gives a better percentage savings in bu�er

space than the CES scheme. But when n increases, the di�erence between the two schemes

becomes negligible.

Compared with the CES scheme, the NCES scheme has some shortcomings. First, as

discussed above, the NCES scheme requires very precise coordination between data reading

and consumption. It cannot handle any variation in e�ective disk access rate. In contrast,

by using slightly more bu�er space, the CES scheme is more resistant to unexpected changes

in the hardware conditions. Moreover, recall that the NCES scheme requires reading data

in two parts. This necessarily complicates the processing that is needed. Therefore, in light

of these complications caused by the NCES scheme, we believe that it is not worthwhile to

adopt the NCES scheme for all values of n. Instead, we propose to use the NCES scheme

only when the number of concurrent streams is small, say n less than 10, but to use the CES

scheme for larger values of n.

19

5 Variations of Disk Utilization

All the analyses and discussions presented in the last two sections assume that the disk

utilization � is equal to 1. That is, all disk activities are dedicated to the concurrent streams,

and there is no idle period within a cycle. However, there are situations in which it would be

necessary to operate a disk at a utilization level strictly below 1. In those situations, there

would be an idle period within each cycle. As shown in [8], the idle period may enable the

prefetching of data for streams that are in the waiting queue, and make it easier to increase

the number of concurrent streams. In this section, we will examine how the presence of idle

periods a�ect the ways that we can implement bu�er sharing.

5.1 The E�ect of Idle Periods

There are at least two di�erent models of idle periods, depending on how the idle time is

distributed within a cycle. Consider for example that there are 3 concurrent streams involved

in a cycle. Suppose that the cycle length is 3 seconds, 0.3 seconds of which the disk is idle.

One way to operate in this situation is to make the disk read for 0.9 seconds for the �rst

stream, pause for 0.1 second, read for 0.9 seconds for the second stream, and so on. Another

way is to make the disk read 0.9 seconds for each stream without pause, and leave all 0.3

seconds of idle time at the end of each cycle. We argue that the latter model is generally more

useful than the former because by combining all small idle periods (e.g., 0.1 seconds each)

into one large period (e.g., 0.3 seconds), operations such as prefetching can be supported

more easily [8]. Thus, in this section, we will base our analysis on the latter model.

A natural question to ask at this point is what di�erences an idle period at the end

of a cycle would make. A key di�erence is that when � = 1, the �rst stream starts to

read (indicating the beginning of the next cycle) immediately after the last stream has just

�nished reading. However, with the presence of the idle period at the end of a cycle, the

�rst stream must wait a bit longer before it can read again. In fact, this comment applies to

all streams in that during the idle period, all streams are being consumed, while no stream

is reading. The implication is that more bu�er space must be allocated to each stream so

that it can survive a longer gap between its successive reading periods.

5.2 Non-uniform Portion Sizes

Another complication caused by � < 1 is that the portion or slot size may need to be

changed. Recall that when � = 1, a stream reads for
T

n
seconds, where T is the length of

the cycle and n is the number of concurrent streams. If � < 1, and T is still the cycle length,

then to account for the idle period, the reading period of each stream must be less than
T

n
.

Therefore, if portions are still chosen to be
T

n
seconds worth of data, as discussed in earlier

sections, Slot 0 will not be empty after Stream A (i.e., the �rst stream) has just �nished

20

reading. This will complicate the consumption of Portion A2 because now part of A2 is

contained in Slot 0. This motivates the need to change the portion size to an appropriate

level. Since there are n reading periods within a total time of �T , the portions must be

changed to the size of �
T

n
seconds worth of data, or p��

T

n
bytes, where p is the consumption

rate of the streams.

The above portion size would work for all n reading periods. In particular, if the same

number of slots are used as for the case when � = 1, and all slots are of the size p��
T

n
, enough

data would be stored to last until the last stream has just �nished reading. But there would

not be any bu�er space for the data to be consumed during the idle time. This motivates

the need to have non-uniform portion sizes. More speci�cally, the portions consumed at the

end of a cycle must be enlarged. Consider for example the situation for 4 streams. As shown

in Table 2, the portions that are consumed between the beginning of the last reading period

and the beginning of the next cycle are A4, B3, C2 and D1. Each of these portions must

be enlarged by an amount of (1� �)T seconds worth of data. Since these enlarged portions

share slots with other \normal-sized" portions (e.g., D1 shares Slot 0 with A1, B1 and C1), it

would not be economical to simply increase the sizes of the slots that contain these portions.

The best way is to make all slots the same size as the normal-sized portions (i.e., p �
T�

n
bytes), but have n extra slots of size p � (1� �)T to contain the extra data corresponding to

the n enlarged portions. Thus, the total space required is given by:

n(n + 1)�

2
�

b

n � 1
+ n � p � T � (1� �) (17)

The �rst factor corresponds to the normal-sized portions, and the second factor corresponds

to the n enlarged portions. By substituting pT = (
n

n� 1
)b (see Section 2.2), the second

factor can be rewritten in terms of b as (
n

n� 1
) b�n� (1� �). Figure 4 plots the bu�er space

requirements given by the above formula as percentages of nb (i.e., the total amount of bu�er

space needed without bu�er sharing) when � = 0:9. The curve with circles represents the

minimum predicted by Equation(12) for the same disk utilization level. Similarly, Figure 5

shows the comparison when � = 0:75. In both cases, the proposed adjustment to the

CES Bu�er Sharing scheme gives savings in bu�er space asymptotically close to the ideal

minimum.

The slot address of a portion can be computed in exactly the same way as shown in Sec-

tion 3.4 with one modi�cation. In calculating the value of K, the stream portion parameter,

special attention must be made to �nd out if K corresponds to an enlarged portion. If this

is the case, the slot that contains the extra amount of p � (1 � �)T must also be accessed,

together with the slot whose address is returned by Procedure ComputeSlotAddr. We omit

the details here. Furthermore, it is not di�cult to see that the current arrangement can be

slightly enhanced, particularly when n is small, by the same approach described in Section 4.

Again we omit the details here.

21

0 5 10 15 20 25 30
50

60

70

80

90

100

110

Number of Streams (* - CES Buffer Sharing Scheme, o - Minimum)

P
er

ce
nt

 o
f N

on
-S

ha
re

d

Figure 4: Percentage Savings in Bu�er Space by the CES Scheme: 90% Utilization

0 5 10 15 20 25 30
60

70

80

90

100

110

120

Number of Streams (* - CES Buffer Sharing Scheme, o - Minimum)

P
er

ce
nt

ag
e

of
 N

on
-S

ha
re

d

Figure 5: Percentage Savings in Bu�er Space by the CES Scheme: 75% Utilization

22

In sum, in this section, we have studied how the presence of an idle period within a

cycle, that is when � < 1, can a�ect the ways bu�er sharing can be implemented. We have

shown that by using slots of di�erent sizes, the CES scheme introduced in Sections 3 can

now handle situations when � < 1. Again the adjusted scheme permits savings in bu�er

space very close to the minimum.

6 The CES Scheme During Transition Periods

6.1 Transition Periods

Whenever the number of concurrent streams changes (typically due to a completion or ter-

mination of a stream, or the admission of a new stream), the system enters into a transition

period. More speci�cally, let S1; : : : ; Sn be the concurrent streams, and their cycle be de-

noted by Cn. Now suppose that a new stream Sn+1 has been admitted, and that the new

cycle will be Cn+1. The transition period is the period in between the old cycle Cn and the

new cycle Cn+1. The transition period may manifest itself in at least two ways.

� The cycles Cn and Cn+1 may have di�erent lengths. If Tn and Tn+1 are the lengths

of Cn and Cn+1 respectively, then Tn+1 is greater than Tn. In this case, the transition

period involves extending the cycle length from Tn to Tn+1. As noted in [8, 9], a natural

way is to increase the cycle length in small increments, until the cycle length reaches

Tn+1. This process may take seconds to complete. In general, the time taken depends

mainly on the exact values of Tn and Tn+1 and the disk utilization �.

� The cycles Cn and Cn+1 may also be di�erent in their bu�er allocations and addressing.

For example, if the number of concurrent streams increases from 3 to 4, then with the

CES scheme, a transition needs to take place from the slot allocations described in

Table 1 to the allocations shown in Table 2. As will be argued later in Section 6.2, this

transition can be very complicated. Actually, this transition would be much simpler

if we assume that the system always has enough space to accommodate two di�erent

sets of slots simultaneously. For example, if the 10 slots for 4 streams can be created

in a bu�er region di�erent from the region that contains the 6 slots for 3 streams, the

transition could be instantaneous. However, this assumption is obviously too strong.

In the rest of this section, we consider the situation when this assumption may not be

satis�ed, and slot changes must be done in place.

Before we begin to analyze how the CES scheme can be adjusted to deal with transition

periods, we point out that as noted earlier, a transition period may be caused by a decrease

in the number of concurrent streams. Since typically making a transition from Cn+1 to Cn

is easier to deal with than the reverse transition, our analysis below focuses exclusively on

the case when the number of concurrent streams increases.

23

6.2 Complications Caused by Changing Cycle Length

As observed above, a transition from the cycle Cn to Cn+1 may require a longer cycle length

(i.e., Tn+1 > Tn). Thus, each stream must read more data in its reading period to guarantee

continuous consumption during a longer cycle. From the point of view of bu�er allocation

by slots, there are two possible approaches to achieve this.

The �rst approach is to change the slot sizes. However, this entails changing the slot

boundaries based on the current cycle length. Furthermore, recall from the above discussion

that in most cases extending from Tn to Tn+1 must be done in small increments. This implies

that if changing slot size is our approach, a series of changes to the slot boundaries would

be required. However, it is easy to see that changing slot boundaries can easily corrupt the

portions that are contained in the original slots. And a series of slot boundary changes would

be extremely messy and complicated to maintain, and would likely require a larger amount

of bu�er space.

The aforementioned complications caused by changing slots sizes motivate the second

approach. While keeping the slot sizes the same as before, the second approach to allow

streams to read more data is to increase the number of slots allocated to the streams. By

keeping the slot sizes unchanged, this approach avoids the tough problem of changing slot

boundaries encountered by the �rst approach. However, it has its own problems to deal with.

The major one is that as the cycle length increases, the size of a portion needs to be changed,

so much so that the portion size is no longer identical to the slot size. Thus, a portion may

be contained in more than one slot, and a slot may contain more than one portion (unless a

larger amount of bu�er space can be tolerated). In either case, slot allocation and addressing

become complicated, and the CES scheme no longer works.

6.3 Constant Cycle Length

The above analysis suggests that a change in cycle length would seriously complicate bu�er

allocation and addressing during a transition period. The obvious alternative is then to keep

the cycle length constant. In this way, there is no need to change slot boundaries, portion

and slot sizes when the transition from Cn to Cn+1 is made. The crucial question, however,

is whether it is always possible to keep the cycle length unchanged when the number of

concurrent streams changes.

To answer this question, we recall from Section 2 that for a given collection of concurrent

streams, S1; : : : ; Sn, the cycle length T is bounded below by Equation (6) and above by

Equation (9). If the range [
s �R

R � � � P
;

Bmax � P

� �
P

n

i=1 Pi � (R� Pi)
+

s

�
] de�ned by the two

equations is empty, then it is not possible to support the collection of streams without

violating the continuity requirements. Otherwise, any value within the range can be picked

as the value of the cycle length.

Let us take a closer look at the above range, and denote the range for n streams by �n.

Naturally, when n increases to (n+1), the range becomes narrower. (Eventually n reaches the

24

value when �n becomes empty.) However, it is important to observe that when all the streams

have an identical consumption rate, which is the case considered in this paper, the upper

bound of �n does not change. In particular, the expression
Bmax � P

� �
P

n

i=1 pi � (R� pi)
+
s

�
is equal

to
Bmax � n � pi

� � pi �
P

n

i=1 (R� pi)
+
s

�
, because P can be replaced by n�pi. As

nX
i=1

(R�pi) = n�(R�pi),

the latter expression can be simpli�ed to become
Bmax

� � (R � pi)
+
s

�
, which is independent of

n. This implies that the only reason why �n+1 is narrower than �n is that the lower bound
s �R

R � � � P
grows as n increases. 2 We can therefore conclude that �n+1 � �n.

From the point of view of dealing with the transition periods, the relationship �n+1 � �n

is very desirable. This is because for all the di�erent numbers of concurrent streams that

can be supported by the system, we can pick a cycle length T that need not be changed as

n changes. In particular, for any given system, we can �nd the maximum number nmax of

streams that can be supported. nmax is equal to nempty � 1, where nempty is the least integer

that would cause the lower bound
s �R

R � � � P
to be strictly greater than the upper bound

Bmax

� � (R � Pi)
+

s

�
. Then we can �nd the range �nmax , and pick any value within the range

to be the value of T . And we can be assured that T is contained in the range �n for all

1 � n � nmax.

If the number of concurrent streams increases from n to (n + 1), and yet the cycle

length remains unchanged, a natural question to ask is which aspect of the system needs

to be changed to accommodate an extra stream. The answer is the disk utilization �. In

particular, for n streams, let the disk utilization be �n, and the idle time be In. As the number

of streams increases by one, the disk accommodates the extra stream Sn+1 by shortening its

idle time to In+1, and using the amount (In � In+1) of time to read for Sn+1. Thus, the disk

utilization increases from �n to �n+1. It is not di�cult to verify that as long as (n+1) � nmax,

�n+1 is always less than or equal to 1, indicating that the disk is in a feasible state.

We are now in a position to complete our description on how the CES scheme works

during a transition period. When the number of streams increases from n to (n+1), (n+1)

extra slots are allocated. As described in Section 5, n of these (n+1) slots are of the normal

size, and one of these is enlarged with the amount to be consumed in the idle period. The

�rst time when Sn+1 reads from disk, all its portions are stored in these newly allocated

slots. But as other streams begin to read, these slots will be released to contain the right

portions from the other reading streams.

Table 5 gives an example of how the slot allocations change during a transition period

from 3 to 4 streams. The �rst reading period in the table is the 3rd reading period shown

in Table 1. As discussed before, the �rst time Stream D reads data is in the idle period of

2This in turn is caused by the increases in s and P as n grows.

25

Reading Periods

Slot 3 idle 4 5 6 7 8

0 C1 C1 A1 B1 C1 D1 A1

1 C2 C2 B2 D2

2 A2 C2 A2

3 A3 A3 D3 D3

4 B3 B3 B3 B3 A3

5 C3 C3 C3 C3 C3

6 (D1) A4 A4 A4 A4

7 D2 B4 B4 B4

8 D3 D3 C4 C4 C4

9 D4 D4 D4 D4 D4

Table 5: Transition Period: Slot Allocations from 3 to 4 Streams

the original cycle. Thus, to better illustrate the situation during this idle period, we add the

column labelled \idle" in Table 5. The �rst six slots in this column are exactly the same

as those in the previous column. This is to indicate that as far as Streams A, B and C

are concerned, nothing needs to be changed. But the major event taking place during this

idle period is the reading of the portions of D. D1, D2, D3 and D4 are read into the newly

allocated slots: Slot 6 to 9. The entry \(D1)" in this column denotes that D1 was read into

Slot 6 at the beginning of the idle period, but has been consumed by the end of the idle

period.

Next is the reading period for Stream A which reads its portions into Slot 0, 2, 3 and 6,

which are completely empty at the beginning of this reading period. Meantime, the portions

B3, C2 and D2 have been consumed. This gives rise to the next column, labelled \4". The

reading of the portions and the �lling up of the slots continue in exactly the same way as

described in Section 3.2. The end of the second reading period of D, denoted by the column

labelled \7", marks the end of the transition period. Thus, it is no surprise to �nd that the

last column in Table 5, labelled \8", is basically equivalent to the column in Table 2 that

represents the 5th reading period.

Note that during the transition period, special care must be taken to accommodate the

changes in the enlarged portions. More speci�cally, when there are only 3 streams, the

enlarged portions are A3, B2 and C1. But with 4 streams, the enlarged portions become A4,

B3, C2 and D1. Thus, in �lling up the slots, the system must act appropriately for these

new enlarged portions. We omit the details here.

In sum, in this section, we have analyzed how the presence of transition periods can a�ect

the implementation of bu�er sharing. We have argued that if the cycle length is allowed to

change as the number of concurrent streams changes, the CES scheme would break down.

26

Fortunately, we have shown that it is possible to keep the cycle length constant, while

allowing the number of concurrent streams to vary. In this case, the CES scheme works just

�ne.

7 Conclusions

In this paper, we have studied how to implement bu�er sharing in continuous-media systems.

We have proposed the CES Bu�er Sharing Scheme which is based on slots and portions. The

scheme only allows interleaving of streams to the level of slots, and as such, avoids rampant

interleaving which is extremely costly to maintain. In particular, under the CES scheme,

the slot address of any portion of a stream at any given instant can be computed in constant

time, requiring no bookkeeping at all. Furthermore, regardless of the level of disk utilization,

the scheme gives bu�er savings asymptotically very close to the ideal minimum, which may

be as high as 50%. Last but not least, we have also demonstrated that CES can work

e�ectively during transition periods.

We have also proposed and studied the NCES Bu�er Sharing Scheme which tries to

further optimize the CES scheme by a more careful reuse of slots. When n, the number of

concurrent streams, is small, the NCES scheme gives quite signi�cantly higher savings than

the CES scheme. However, we only recommend using the NCES scheme when n is small,

partly because this di�erence in savings gradually becomes negligible as n grows, and partly

because the NCES scheme is harder to implement than CES.

In ongoing work, we will integrate the schemes into a distributed continuous-media �le

system which is under development at the University of British Columbia [6]. We will

also study how to extend the CES and NCES schemes to handle concurrent streams with

di�erent consumption rates: p1; : : : ; pn. One of the key issues is the impact of variations in

consumption rates on slot and portion sizes. While the most general situation may be very

di�cult for CES to deal with, we believe that if for all 1 � i � n, pi has to be a multiple of

some base rate, then it is quite likely that by some form of splitting and merging slots, CES

scheme may work just as well.

References

[1] D. Anderson, Y. Osawa and R. Govindan. (1992) A File System for Continuous Media,

ACM Trans. on Computer Systems, 10, 4.

[2] M. Chen, D. Kandlur and P. Yu. (1993) Optimization of the Grouped Sweeping Schedul-

ing with Heterogeneous Multimedia Streams, Proc. ACM-Multimedia, pp 235{242.

[3] J. Gemmell. (1993) Multimedia Network File Servers: Multi-channel Delay Sensitive

Data Retrieval, Proc. ACM-Multimedia, pp 243{250.

27

[4] J. Gemmell and S. Christodoulakis. (1992) Principles of Delay-Sensitive Multimedia

Data Storage and Retrieval, ACM Trans. on Information Systems, 10, 1, pp 51{90.

[5] G. Miller, G. Baber and M. Gilliland. (1993) News On-Demand for Multimedia Net-

works, Proc. ACM-Multimedia, pp 383{392.

[6] G. Neufeld, N. Hutchinson, R. Ng and M. Ito. (1993) A Distributed Continuous-Media

File System, CITR grant.

[7] R. Ng, C. Faloutsos and T. Sellis. (1991) Flexible Bu�er Allocation Based on Marginal

Gains, Proc. ACM-SIGMOD, pp 387{396.

[8] R. Ng and J. Yang. (1994) Maximizing Bu�er and Disk Utilizations for News On-

Demand, Proc. VLDB 94.

[9] P. Venkat Rangan and H. Vin. (1991) Designing File Systems for Digital Video and

Audio, Proc. ACM Symposium on Operating Systems Principles, pp 69{79.

[10] A. Reddy and J. Wyllie. (1993) Disk Scheduling in a Multimedia I/O System, Proc.

ACM-Multimedia, pp 225{233.

[11] L. Rowe and B. Smith. (1992) A Continuous Media Player, Proc. 3rd Intl. Workshop

on Network and OS Support for Digital Audio and Video.

[12] K. Tindell and A. Burns. (1993) Scheduling Hard Real-Time Multimedia Disk Tra�c,

Technical Report, University of York, England.

[13] F. A. Tobagi, J. Pang, R. Baird, and M. Gang. (1993) Streaming Raid - A Disk Array

Management System for Video Files, Proc. ACM-Multimedia, pp 393{400.

[14] J. Yang. (1994) Maximizing Bu�er and Disk Utilizations for News On-Demand, MSc.

Thesis, UBC.

[15] C. Yu, W. Sun, D. Bitton, Q. Yang and R. Bruno. (1989) E�cient Placement of Audio

Data on Optical Disks for Real-Time Applications, Communications of ACM, 32, 7,

pp 862{871.

28

