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Abstract

There is a need to develop shaders that not only

\look good", but are more physically plausible. From

physical and geometric considerations, we review the

derivation of a shading equation expressing re
ected

radiance in terms of incident radiance and the bidirec-

tional re
ectance distribution function (BRDF). We

then examine the connection between this equation

and conventional shaders used in computer graphics.

Imposing the additional physical constraints of en-

ergy conservation and Helmholtz reciprocity allows

us to create variations of the conventional shaders

that are more physically plausible.

1 Introduction

Shading computation is an essential part of any ren-

dering algorithm. Getting an exact physical model of

the interaction of light with a surface is, for most sur-

faces occurring in the real world, a very di�cult prob-

lem. Consequently, much e�ort has been expended on

�nding approximations that are both good-looking

and quickly computed. An extensive summary of

these shaders is in [hall89].

Looking good and being quickly computable are suf-

�cient criteria for most raytracing renderers. If one

of these shaders is used in a radiosity computation,

however, it is necessary to additionally ensure that,

since radiosity is based on principles of energy con-

servation (see [kaji86], for example), the shader itself

conserves energy.

Another recent technique described in [ward92] con-

structs shading functions to �t actual bidirectional

re
ectance distribution function (hereafter, BRDF).

Such �ts are likely to be more successful if the shad-

ing functions themselves are, like the data they �t,

consistent with physics.

So a need has arisen for shaders that are not only

good-looking and easy to compute, but are also

\physically plausible". 1

In this paper, we'll review the development of the

physical shading equation. Then, we'll look at the

correspondence between that equation and tradi-

tional shaders. Finally, we'll look at ways to mod-

ify traditional shaders to make them more physically

plausible.

2 Physically-Based Shading

In this section, we'll review the formulation of

the fundamental equation describing physically-based

shading, presented below as (3). Our presentation

follows that given in [cook82] with appropriate syn-

tactic substitutions to bring it in line with [ans86]2.

1We use the term plausible here in contrast to that of feasi-
ble in [neum89]. A \feasible" shader is one that we can imag-
ine constructing physically. This is not always possible. The
weaker de�nitionof a \plausible" shader is one whose existence
does not violate physics.

2We use the nomenclature de�ned in [ans86] throughout,
except that we will omit the use of the term \spectral" and
the corresponding \�" subscripts, as all of our considerations

will be monochromatic.
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symbol de�nition

� angle between N and H

b� scaling constants for various shaders

� specular \half-angle"

dA element of surface area

d!i sin �id�id�i
d!r sin �rd�rd�r
D� facet slope distribution functions

E irradiance

F Fresnel factor

fr bidirectional re
ectance distribution

function (BRDF)

F
�

s specular shading functions

�i incident azimuthal angle

�r re
ected azimuthal angle

�L angle between incident and

viewing directions

G geometrical attenuation factor

H bisector of source

and viewing directions

ka ambient re
ectance coe�cient

kd di�use re
ectance coe�cient

ks specular re
ectance coe�cient

k
�

� directional-hemispherical re
ectances

k� fraction of total energy

re
ected specularly

La ambient radiance

Ld directional source radiance

Li incident radiance

Lr re
ected radiance

M exitance


N the hemisphere surrounding N

m RMS slope of the surface

N the surface normal

n
�

s specular exponents

Rl re
ected incident direction

S incident direction

�i incident polar angle

�r re
ected polar angle

V direction of viewer

Table 1: Table of Commonly-Used Symbols

Figure 1 shows the (usual) geometry of an in�nitesi-

mal element of opaque, nonemissive surface area dA

being illuminated by an incident radiance Li coming

from an in�nitesimal solid angle d!i surrounding di-

rection S. (All vectors presented here are are of unit

magnitude.) N is the surface normal at dA. An ob-

server (or measuring device) is located in directionV.
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Figure 1: Shading geometry

We assume all re
ected radiation passes unobstructed

into 
N, the hemisphere surrounding N. (What fol-

lows could be extended to account for transmission by

taking 
N to be the entire sphere centered on dA.)

We use N as the z-axis of a polar coordinate system

so that we can specify S by the usual incident polar

and azimuthal angles �i and �i and V by the usual

re
ected polar and azimuthal angles �r and �r
3.

To consider a shader from the standpoint of energy

balance, we start from the equation of energy balance

given in [sieg81]:

dE = Li (N � S) d!i (1)

where dE is the change in irradiance as a result of

the illumination of the patch from d!i. Using the

de�nition of fr, the BRDF, this change in irradiance

gives rise to a change dLr in Lr, the resulting radiance

of the patch:

dLr = fr(S;V) dE (2)

In general, fr is a function of the incident direction

3For the time being, we'll assume �i and �r are measured
from some locally-de�ned frame of reference.
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Figure 2: Shader test con�guration

(�i; �i) and the re
ected direction (�r ; �r)
4. For the

sake of brevity, we'll write it as fr(S;V).

As we have assumed an opaque, nonemissive sur-

face, the only contributions to Lr can come from 
N.

Therefore, we can integrate d!i over 
N to get

Lr =

Z

N

fr(S
0

;V)Li (N � S0) d!0i (3)

Throughout this paper, we'll add a 0 to bound vari-

ables of integration.

3 Some Typical Shaders

In this section, we'll review several shaders in use

in computer graphics. Time does not permit us to

consider some of the more elaborate ones (such as

[he91]), but as these are not yet in wide use, perhaps

the reader will forgive the oversight.

3.1 Phong Shaders

Phong shaders are generally of the form (see, for ex-

ample, [fole90], equation [16.15]):

Lr = ka La + [kd (N � S) + ksFs(S;V)]Ld (4)

4fr may also vary over the surface, but that variation is

usually treated as part of texturing rather than shading, so
we'll ignore it here. As mentioned above, we're also ignoring
its possible dependence on wavelength.

where ka is the \ambient" re
ection coe�cient, La is

an ambient radiance uniformly distributed over 
N
5,

kd is the di�use re
ection coe�cient, ks is the spec-

ular re
ection coe�cient, and Ld is the (incident) ir-

radiance from a directional light source.

There are two popular choices for Fs. The original

one given in [phon75] corresponds to

F
P
s (S;V) =

�
(Rl �V)n

P
s if (Rl �V) > 0

0 otherwise
(5)

where Rl = 2N(N � S) � S is the \re
ected" light

source direction and nPs is the Phong specular re
ec-

tion exponent.

The other popular choice for Fs comes from [blin77]:

F
B
s (S;V) = (N �H)n

B
s (6)

where H = (S + V)= jS+Vj is the unit vector

halfway between S and V and n
B
s is the Blinn spec-

ular re
ection exponent.

Let's see how these shaders correspond to (3).

Let the patch be illuminated by the combination of a

directional source of radiance Ld in direction S (i.e.,

�
0

i = �i, �
0

i = �i) on 
N and a radiance La constant

over 
N. We can model the resulting incident radi-

ance as

Li = La + Ld �(cos �
0

i � cos �i) �(�
0

i � �i)

If we plug this into (3), we get

Lr = La

Z

N

fr(S
0

;V) (N �S0) d!0i (7)

+ Ld fr(S;V) (N � S)

Our goal is to make (4) and (7) equivalent for all

possible La and Ld. This means that the specular

terms of both equations must be equal, so

fr(S;V) = kd + ks
Fs(S;V)

(N � S)
(8)

This will allow us to convert a Phong shader into its

corresponding BRDF.

5For the sake of simplicity, we've assumed that dA has an
unobstructed view of 
N.

3



10 o20 o30 o40 o50β

φk 45 45 135 135 45

o

135s 135 4545o o o o o ooooo 135o90 o90 o90 o90 o90L

1.00

0.75

0.25

0.50

0.00

Figure 3: Sphere shaded with a Phong shader, using Blinn's FB
s , for an assortment of incident angles with

respect to the viewer (�L), specular coe�cients (ks), and specular distribution half-angles (�).

For the purposes of comparison of the various models,

let us adopt the (common) test con�guration whose

geometry is shown in Figure 2. A single directional

light source shines at a sphere. Viewed from the cen-

ter of the sphere, the light source is located at angle

�L from the viewing direction.

Figure 3 shows a series of images generated with the

test con�guration with a Phong shader using FB
s . In

this series, ks varies between 0 and 1 and kd is taken

to be 1�ks. The angular distribution of the specular

peak is qualitatively characterized6 by the specular

half-angle �, de�ned by

F
B
s =

1

2
= cosn

B
s �

Hence, for a given �,

6Only in the case of Phong shading with FP
s does � have

a direct and obvious geometrical interpretation, but, as we'll

see (and [blin77] points out), it's qualitatively useful in other
cases.

n
B
s = �

ln 2

ln cos �

The ambient terms of (4) and (7) must also be equal7.

If we equate these and notice that
R

N

(N�S0)d!0i = �,

we get

ka = kd � + ksGs(V) (9)

where we have de�ned

Gs(V) =

Z

N

Fs(S
0

;V)d!0i

So consistency demands that we have only two de-

grees of freedom in selecting ka, kd, and ks. In what

follows, we'll take ka to be dependent upon kd and

ks.

7We can look at this as a consistency constraint: The same
BRDF we use to shade a directional light source must also

shade an ambient light source.
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3.2 Torrance-Sparrow Shaders

The other major class of shaders was �rst proposed in

[torr67] and applied to computer-generated imagery

in [blin77]. We shall, however, follow the develop-

ment given in [cook82].

Torrance-Sparrow shaders can be formulated directly

in terms of their BRDF:

fr(S;V) =
FGD

� (N � S) (N �V)
(10)

where F is the Fresnel coe�cient, G is the geometrical

attenuation factor, and D is the facet slope distribu-

tion function.

The Fresnel coe�cient for unpolarized light and zero

extinction ([cook82] ignores extinction) is

F =
(g � c)2

2(g + c)2

�
1 +

(c (g + c) � 1)2

(c (g � c) + 1)2

�

where c = (V �H), g2 = n
2 + c

2 � 1, and n is the

index of refraction.

The geometrical attenuation factor is

G = min

�
1;
2 (N �H) (N �V)

(V �H)
;
2 (N �H) (N � S)

(V �H)

�

There are several choices for the facet slope distribu-

tion function. [blin77] suggests three of them. The

�rst corresponds to a Phong shader:

D1 = b1 cos
c1 �

where cos� = (N �H). The second is the Gaussian

one originally used in [torr67]:

D2 = b2e
�(c2�)

2

The third is from [trow67]:

D3 = b3

�
c
2
3

cos2 �(c23 � 1) + 1

�2

In all of these, the b's are arbitrary constants anal-

ogous to the k's in Phong shaders. The c's (empir-

ically) determine the width of the spectral lobe. As

[blin77] observes, if we de�ne � to be the value of �

at which a distribution drops to half its peak value,

we have

c1 = �
ln 2

ln cos �

c2 =

p
ln 2

�

c3 =

s
cos2 � � 1

cos2 � �
p
2

[cook82] considers an additional possibility originat-

ing with [beck63], which we'll include here as

D4 =
1

4m2 cos4 �
e
�

�
1�cos

2 �

m2 cos2 �

�

where m is the RMS slope of the surface. Unlike

D1 - D3, there is no arbitrary b constant for this dis-

tribution. The relationship ofm to the corresponding

value of � is

m =
tan�

p
ln 2� 4 ln cos �

3.3 Neumann-Neumann Shaders

In [neum89], Neumann and Neumann discuss \sepa-

rable" shaders (i.e., those whose BRDF is of the form

a(S) r(V) for some functions a and r) and how their

use can speed up radiosity computation in non-di�use

environments. As an example, they describe a \lac-

quer model" of a purely di�use material covered by

a semi-transparent \lacquer" that absorbs but does

not scatter light that passes through it. The resulting

BRDF they derive is

fr(S;V) = c exp

�
�s

�
1

(N � S)
+

1

(N �V)

��

where c and s are constants that characterize the

model. We can make this comparable with (8) and

(10) by de�ning bN as the value of fr at S = V = N.

The equation then becomes:

fr(S;V) = bN exp

�
�s

�
1

(N � S)
+

1

(N �V)
� 2

��

As we did before, we can relate s to a more geo-

metrically meaningful quantity � that qualitatively
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Figure 4: Sphere shaded with Neumann-Neumann and Minnaert shaders for an assortment of incident angles

with respect to the viewer (�L) and specular distribution half-angles (�).

measures the width of the spectral peak. Keep the

illumination normal (S = N) and increase the angle

between V and N until fr drops to half of its max-

imum (i.e. V = N) value. We de�ne the resulting

angle to be �. We can relate s to �:

s = �
ln 2

1 + cos �

Figure 4 shows what Neumann-Neumann shaders

(and the subsequently-discussed Minnaert shaders)

look like when applied to a sphere. Incident light for

each shader is scaled to produce a peak unsaturated

radiance at normal incidence (�L = 0) and then held

constant as �L and � are varied.

Note that as �L increases, the image radiance de-

creases, unlike Phong shaders. Also notice that the

limb of the sphere ((N �V) = 0) is always dark.

Neumann-Neumann shaders exhibit undesirable be-

havior when being applied to a specular surface. Al-

though, as Figure 4 shows, they produce an accept-

able specular peak, for a given incident angle the re-

sulting radiance always peaks in the normal direction.

Especially for a highly specular surface, we should

expect the radiance to peak somewhat closer to the

re
ected direction.

3.4 Minnaert Shaders

In [minn41], Minnaert describes a shader derived

from observations of the Moon. His original model

is

Lr = bM(N � S)k(N �V)k�1Li

For some constants bM and k. This corresponds to

the BRDF

fr(S;V) = bM ((N � S) (N �V))k�1

We can relate k to an angle � de�ned as in the pre-

vious section:

k = 1�
ln 2

ln cos �

Figure 4 contrasts Minnaert shaders with Neumann-

Neumann shaders. It is di�cult to tell them apart.

Their numerical values in these images di�er by no

more than 2%. (As a computational aside, since Min-

naert shaders are also separable, this suggests that a

Minnaert shader should be able to take the place of a

Neumann-Neumann shader with fewer arithmetic op-

erations in most cases, especially if k is an integer.)

Minnaert shaders exhibit the same undesirable be-

havior as Neumann-Neumann shaders applied to a

specular surface: the resulting radiance peaks in the

normal direction.

4 Energy Conservation

The �rst physical constraint we'll examine with re-

spect to shaders is that of energy conservation. Phys-

ically plausible shaders must obey energy conserva-

tion. In a steady-state situation, energy conservation

6
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Figure 5: Specular integrals Hs(S) for Phong's F
P
s (left) and Blinn's FB

s (right)

is synonymous with power conservation. The total

amount of power re
ected, i.e., M dA, where M is

the exitance, must be less than or equal to the to-

tal power incident E dA, where E is the irradiance.

Hence,

M � E (11)

From [sieg81], we have an equation similar to (1) de-

scribing the change in exitance dM due to a re
ected

radiance Lr radiated into an in�nitesimal solid angle

d!r around a direction V:

dM = (N �V)Lr d!r

We substitute (3) into this and integrate over 
N to

get

M =

Z

N

Z

N

fr(S
0

;V
0)Li (N � S0) (N �V0) d!0i d!

0

r

(12)

We can also integrate (1) to get

E =

Z

N

Li (N � S0) d!0i (13)

So, if we make the trivial assumption that E > 0, we

divide both sides of (11) by E to getR

N

R

N

fr(S
0
;V

0)Li (N � S0) (N �V0) d!0i d!
0

rR

N

Li (N � S0) d!0i
� 1

(14)

Energy conservation does not depend upon the par-

ticular Li distribution. Given any Li, (14) must hold,

so, as we did with the Phong shaders, let's try a �-

function for Li of the form

Li = Ld �(cos �
0

i � cos �i) �(�
0

i � �i)

to represent a directional source of radiance Ld in a

direction S. According to [ans86], M=E in this case

becomes the \directional-hemispherical re
ectance",

which we'll refer to as k�
8. Integrating the �-functions

and cancelling out common factors, we get

k� =

Z

N

fr(S;V
0) (N �V0) d!0r � 1 (15)

4.1 Making Phong Shaders Conserve

Energy

Let's apply these results to a Phong shader to see

what constraint(s) energy conservation leads to. Not-

ing that Z

N

(N �V0)
 d!0r =
2�


 + 1
(16)

(12) becomes

M = Ld [kd � (N � S) + ksHs(S)] (17)

8In [neum89], this is referred to as \albedo", but that usage
is imprecise as the de�nition of that term does not require a
unidirectional source. In addition, \albedo" is not de�ned in
[ans86].
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Figure 6: Sphere shaded with an energy-conserving Phong shader, using Blinn's FB
s , for an assortment of

incident angles with respect to the viewer (�L), specular fractions (k�), and specular distribution half-angles
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where we have de�ned

Hs(S) =

Z

N

Fs(S;V
0) (N �V0)d!0r

Figure 5 shows Hs evaluated numerically using both

(5) and (6) for a variety of specular exponents. Note

that Hs is a function of the incident direction and

specular exponent only and that it can be thought of

as an integral operator acting on a given Fs.

As we might expect, (13) becomes

E = Ld (N � S) (18)

so that

k� = kd � + ks
Hs(S)

(N � S)
(19)

To guarantee energy conservation regardless of illu-

mination geometry, it is necessary to guarantee that

k� � 1 for all incident directions. But there's a prob-

lem here. Given the Fs's in (5) and (6) and regardless

of S, it is always the case that Fs � 0 and, further-

more, there is always some nonvanishing region of 
N

over which Fs > 0. That means that Hs is always

> 0, as Figure 5 illustrates. So that if ks > 0, it is al-

ways possible to choose �i close enough to 90
o that k�

will be greater than one. We therefore conclude that

the specular terms of Phong shaders do not conserve

energy at su�ciently large incident angles.

After [neum89], let's consider a di�erent formulation

of a shader. Start from (4), but suppose that, instead

of being constant, we allowed ks to vary with S in

such a way that energy conservation was maintained.

(As (19) shows, we're not getting any trouble from

the di�use term, so we'll leave it alone.)

Let k� be the fraction of exitance that is re
ected

specularly:

k� �

R

N

dMspec

M
=

�
1 +

kd � (N � S)
ksHs(S)

�
�1

(20)

We can solve (19) and (20) for kd and ks:

kd = �
�1

k� (1� k�) (21)
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ks =
k� k� (N � S)

Hs(S)

so we can rewrite the BRDF for the new shader as

fr(S;V) = k�

�
1� k�

�
+
k� Fs(S;V)

Hs(S)

�
(22)

We can also construct the analogue of (4) to express

this result in terms of radiance:

Lr = k�La + k� (N � S)
�
1� k�

�
+
k� Fs(S;V)

Hs(S)

�
Ld

where

k� = k�

�
1 + k�

�Z

N

(N � S0)
Fs(S

0
;V)

Hs(S0)
d!

0

i � 1

��

corresponds to (9).

Figure 6 shows what such a shader looks like when ap-

plied to a sphere with a single directional light source

and no ambient radiance. For this �gure, we've used

Blinn's FB
s . We've also taken k� = 1, since any other

value would just be a uniform reduction by a constant

factor in image radiance. Notice that, unlike Fig-

ures 3 and 4, the highly specular parts of the printed

images are necessarily saturated in order to show the

di�use parts.

4.2 Do Torrance-Sparrow Shaders

Conserve Energy?

Figure 7 shows some numerical integrations of (15),

contrasting Phong shaders with Torrance-Sparrow

shaders. All Torrance-Sparrow shaders were com-

puted with a Fresnel factor F = 1 (i. e. a large

index of refraction) to show the worst case.

One way to produce an energy-conserving Torrance-

Sparrow shader suggests itself: simply choose any

value of bj such that

bj <
1h

k
Tj
�

bj

i
max

where

�
kTj�
bj

�
max

is the maximum value as shown in

Figure 7. (The Beckmann distribution is not a prob-

lem as long as its integral is always less than unity,

and it has no b-coe�cient to adjust anyway.)

Nevertheless, doing this would probably be a mistake.

To see why, look at the plot for kT1� =b1, the Torrance-

Sparrow shader with the Phong microfacet distribu-

tion. Notice that it does not diverge as �i ! 90o,

even though kP� =ks, the corresponding Phong shader

with a Phong specular term, does diverge. The same

is true for kT2� =b2 compared to kB� =ks.

Why should this be? The answer lies in the geo-

metrical attenuation factor G. As �i ! 90o, G is

guaranteed to be less than or equal to unity and, if

(V �H) > 0 (i.e., V and S are not antiparallel), it

will vanish in the limit.

But what does this really mean? If we go back to

the derivation of the geometrical attenuation factor

in [torr67], we see that G is designed to compensate

for the blocking of light that falls on a facet and the

masking of light that the facet re
ects. The blocking

and masking agents are themselves other facets.

This leads to a critical question for Torrance-Sparrow

shaders and energy conservation: What happens to

the light that gets blocked or masked? The shader

does not treat secondary re
ection. Instead, it acts as

though the blocked or masked light were completely

absorbed by the surface. This is unlikely.

For this reason, while it may be reasonable to con-

sider the use of Torrance-Sparrow shaders as ad hoc
basis functions to �t empirical data, as was done in

[ward92], we should do so realizing that it's not really

\fair" to use Torrance-Sparrow shaders in an energy-

conserving context. Basis functions that properly ac-

count for blocked and masked light are needed, but

we will not attempt to derive them here.

4.3 Making Neumann-Neumann and

Minnaert Shaders Conserve En-

ergy

Figure 8 shows some numerical integrations of (15)

for Neumann-Neumann and Minnaert shaders. Con-

trast these with those of Figure 7.

Like the Torrance-Sparrow shaders, k� is bounded in

both cases, so we can put a limit on bN or bM to

assure energy conservation.

In the case of a Minnaert shader, we can go a bit fur-

ther and note that k� can be determined analytically

9
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Figure 7: Directional-hemispherical re
ectance for a Phong shader (kP� ), a Blinn shader (kB� ), and Torrance-

Sparrow shaders with Phong (kT1� ), original Torrance-Sparrow (kT2� ), Trowbridge (kT3� ), and Beckmann

(kT4� ), microfacet distributions
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Figure 8: Directional-hemispherical re
ectance for a Neumann-Neumann shader (kN� ) and a Minnaert shader

(kM� ),

(using (16), as was done in [wood85]). The resulting

BRDF can be formulated directly in terms of k�:

fr(S;V) = k�
(k + 1)

2�
((N � S) (N �V))k�1

where, as always, any value of k� between 0 and 1

will guarantee energy conservation.

5 Making Shaders Reciprocal

The second physical constraint we'll examine with

respect to shaders is that of Helmholtz reciprocity. A

physically plausible shader ought to obey Helmholtz

reciprocity (see [sieg81]). In terms of the BRDF, this

means that

fr(S;V) = fr(V;S) (23)

for all V and S in 
N.

5.1 Are Phong Shaders Reciprocal?

Using the BRDF of a Phong shader given in (5), and

expressing Fs in the functional form Fs(S;V), we see

that such a shader will be reciprocal if

Fs(S;V)

(N �V)
=

Fs(V;S)

(N � S)

Substitution of both F
P
s from (5) and F

B
s from (6)

reveals that neither of these shaders is reciprocal9.

Is our energy-conserving modi�ed Phong shader re-

ciprocal? Applying (23) to (22), we are asking if

Fs(S;V)

Hs(S)
=

Fs(V;S)

Hs(V)

Again, the answer is no for both Fs's.

5.2 Are Torrance-Sparrow Shaders

Reciprocal?

By inspection, it's easy to see that the Torrance-

Sparrow shaders are all reciprocal. This should come

as no surprise, as the assumption of reciprocity was

part of their derivation in [torr67]. Unfortunately, the

arguments made above about their energy conserva-

tion still limits their plausibility.

9Even though FB
s (S;V) = FB

s (V;S).
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5.3 Are Separable Shaders Recipro-

cal?

It's also easy to see by inspection that both

Neumann-Neumann and Minnaert shaders are recip-

rocal. Again, this is because reciprocity was part of

their derivation.

As with Torrance-Sparrow shaders, separable shaders

could be used as ad hoc basis functions. Care needs

to be taken, though, to retain reciprocity. Given

two separable BRDF's fr1(S;V) = a1(S)r1(V) and

fr2(S;V) = a2(S)r2(V), a simple linear combination

of the form fr(S;V) = c1fr1(S;V) + c2fr2(S;V) for

some constants c1 and c2 is not, in general, reciprocal.

One way to guarantee reciprocity is to linearly com-

bine the separable parts rather than their product:

fr(S;V) = (c1aa1(S)+c2aa2(S))(c1rr1(V)+c2rr2(V))

The trouble with this is that no matter how many

terms we add, the resulting BRDF will always have

the property of having the re
ected radiance peak in

the normal direction. If the data we attempt to �t

does not have this property, we should not expect a

good �t.

6 An Energy-Conserving, Re-

ciprocal Shader

Objections can be raised to all of the shaders we're

presented so far, either on the grounds of implausi-

bility (Phong) or of behavior that, while plausible,

is unlikely to �t a real BRDF (Torrance-Sparrow,

Neumann-Neumann, Minnaert).

Consider instead a Phong shader formulated like (8),

but using Blinn's FB
s and omitting the (N �S) in the

denominator of the specular term:

fr(S;V) = kd + ksF
B
s (S;V) (24)

Obviously, since FB
s is reciprocal, this BRDF is re-

ciprocal.

Figure 9 shows the resulting k�. It is bounded, so

we can always conserve energy by limiting ks and
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Figure 9: Directional-hemispherical re
ectance for a

reciprocal Phong shader, using Blinn's FB
s (kH� )

kd. (Unfortunately, we can't formulate the shader in

terms of k� and k� as we did above, since doing this

makes the shader non-reciprocal.)

Figure 10 shows some images produced with a recip-

rocal Phong shader. As in Figure 3, ks varies between

0 and 1 and kd is taken to be 1� ks.

While resembling Figure 3, the images for large �L

are dimmer, as we might expect from the absence of

the (N�S) in the specular denominator. Nevertheless,

they are not as diminished as those of the separable

shaders in Figure 4 (which doesn't even bother show-

ing �L > 60o).

7 Summary

We have examined a number of shaders commonly

used in graphics, looking at their plausibility in terms

of energy conservation and reciprocity. Our results

are summarized in Table 2.

As originally de�ned, Phong shaders fail on both

counts. It is possible to modify a Phong shader to

conserve energy and even, as shown in (22), have an

energy-based parameterization, but this rules out sat-

isfying reciprocity.

Torrance-Sparrow shaders are reciprocal and appear

to conserve energy, but their underlying derivation

fails to account for blocked and masked energy. They
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Figure 10: Sphere shaded with a reciprocal Phong shader for an assortment of incident angles with respect

to the viewer (�L), specular coe�cients (ks), and specular distribution half-angles (�).

may still be useful, however, as ad hoc basis functions.

Neumann-Neumann and Minnaert shaders are sim-

ilar. Both are plausible: they conserve energy and

are reciprocal. Minnaert shaders have been used suc-

cessfully to �t radiometric data. While it would be

worth trying one of them as a basis, we expect that

they will prove less useful with highly specular sur-

faces because both shaders peak undesirably in the

normal direction.

A di�erenly-modi�ed Phong shader given in (24) is

reciprocal and can be constrained to conserve energy.

In fact, we can observe that a di�use surface is the

special case nBs = 0 to suggest that it would be useful

to attempt to �t real data with a power series in

(N �H) of the form:

fr(S;V) =

imaxX
i=0

kn(N �H)ni

for some suitable sequence fn0:::nimaxg.

References

[ans86] American National Standards In-

stitute/IlluminatingEngineering Society of

North America. Nomenclature and De�ni-
tions for Illuminating Engineering, ansi/ies
rp-16-1986 edition, June 1986.

[beck63] P. Beckmann and A. Spizzichino. The scat-
tering of electromagnetic waves from rough
surfaces. MacMillan, 1963.

[blin77] James F. Blinn. \Models of Light Re
ec-

tion For Computer Synthesized Pictures".

Computer Graphics (SIGGRAPH '77 Pro-
ceedings), Vol. 11, No. 2, pp. 192{198, July
1977.

[cook82] R.L. Cook and K.E. Torrance. \A Re-


ectance Model for Computer Graphics".

ACM Transactions on Graphics, Vol. 1,

No. 1, pp. 7{24, January 1982.

[fole90] J.D. Foley, A. van Dam, Steven K. Feiner,

and John F. Hughes. Computer Graphics:

13



Shader Plausiblity Other

Class Conserves Energy? Reciprocal? Objections

Phong no no

Energy-Conserving Phong yes no

Torrance-Sparrow yes yes no secondary re
ection

Neumann-Neumann yes yes Lr always peaks at �r = 0

Minnaert yes yes Lr always peaks at �r = 0

Reciprocal Phong-Blinn yes yes

Table 2: Summary of Results

Principles and Practice. Addison-Wesley

Publishing Company, second edition, 1990.

[hall89] R. Hall. Illumination and Color in Com-
puter Generated Imagery. Springer-Verlag,

1989.

[he91] Xiao D. He, Kenneth E. Torrance, Fran-

cois X. Sillion, and Donald P. Green-

berg. \A comprehensive physical model for

light re
ection". Computer Graphics (SIG-
GRAPH '91 Proceedings), Vol. 25, No. 4,
pp. 175{186, July 1991.

[kaji86] J.T. Kajiya. \The Rendering Equation".

Computer Graphics (SIGGRAPH '86 Pro-
ceedings), Vol. 20, No. 4, pp. 143{150, Au-
gust 1986.

[minn41] M. Minnaert. \The Reciprocity Principle

in Lunar Photometry". Astrophysical Jour-
nal, Vol. 93, pp. 403{410, May 1941.

[neum89] Laszlo Neumann and Attila Neumann.

\Photosimulation: interre
ection with ar-

bitrary re
ectance models and illumina-

tion". Computer Graphics Forum, Vol. 8,
No. 1, pp. 21{34, March 1989.

[phon75] Bui-T. Phong. \Illumination for Computer

Generated Pictures". Communications of
the ACM, Vol. 18, No. 6, pp. 311{317, June

1975.

[sieg81] Robert Siegel and John R. Howell. Ther-
mal Radiation Heat Transfer. Hemisphere

Publishing Corporation, 1981.

[torr67] K.E. Torrance and E.M. Sparrow. \Theory

for O�-Specular Re
ection from Rough-

ened Surfaces". Journal of Optical Society
of America, Vol. 57, No. 9, 1967.

[trow67] T.S. Trowbridge and K.P. Reitz. \Average

Irregularity Representation of a Rough-

ened Surfaces for Ray Re
ection". Jour-
nal of Optical Society of America, Vol. 65,
No. 3, 1967.

[ward92] Gregory J. Ward. \Measuring and mod-

eling anisotropic re
ection". Computer
Graphics (SIGGRAPH '92 Proceedings),
Vol. 26, No. 2, pp. 265{272, July 1992.

[wood85] R. J. Woodham and T. K. Lee. \Photo-

metric Method for Radiometric Correction

of Multispectral Scanner Data". Canadian
Journal of Remote Sensing, Vol. 11, No. 2,
pp. 132{161, December 1985.

14


