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Abstract

Iterative alignment is one method for feature-based matching of an image and a model for the

purpose of object recognition. The method alternately hypothesizes feature pairings and estimates

a viewpoint transformation from those pairings; at each stage a refined transformation estimate is

used to suggest additional pairings.

This paper extends iterative alignment in the domain of 2D similarity transformations so that it

represents the uncertainty in the position of each model and image feature, and that of the

transformation estimate. A model describes probabilistically the significance, position, and

intrinsic attributes of each feature, plus topological relations among features. A measure of the

match between a model and an image integrates all four of these, and leads to an efficient matching

procedure called probabilistic alignment. That procedure supports both recognition and a learning

procedure for acquiring models from training images.

By explicitly representing uncertainty, one model can satisfactorily describe appearance over a

wider range of viewing conditions. Thus, when models represent 2D characteristic views of a 3D

object, fewer models are needed. Experiments demonstrating the effectiveness of this approach

are reported.
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1 Introduction

Object recognition is made difficult by the way an object’s appearance varies under different

viewing conditions. Changes in viewpoint, changes in lighting, and flexing of the object can all

cause changes in the detectability and relative positions of the object’s distinguishing features. To

successfully recognize the object on the basis of a stored model, that model and the process used to

compare it with an image must together account for the allowable range of variation in the object’s

appearance.

A common approach is to model a 2D or 3D object by a series of characteristic views, each

representative of the object’s appearance under some small range of viewing conditions.

Collectively, these characteristic views cover the full range of expected appearances of the object.

Systems that take this approach generally assume that all features visible in a characteristic view

have the same likelihood of being detected and the same range of variation in position.

Clearly, though, some features are more likely to be detected, can be more accurately localized, or

move less with changes in viewpoint than other features. Perhaps it is because these differences

are difficult to quantify that researchers have often disregarded them, assuming the same

uncertainty statistics for all features. A system that can learn its models directly from training

images, however, may have a simple and direct way of quantifying the uncertainty of each feature:

the system can measure it during training. By observing how features differ among training

images the system can estimate the detectability and positional uncertainty of each feature

included in the models it acquires.

There are several ways that information about feature uncertainty, if known, ought to guide the

matching process that underlies recognition. Features of the object that are most likely to be

detected when the object is present, and least likely to be detected when it is absent, should be

given priority during matching. Features that can be localized well should contribute most to an

estimate of the object’s position in an image. And features whose positions vary most should be

sought over the largest neighborhoods of the image.

Our hypothesis is that feature uncertainty information can be obtained reliably from training

images, and that the information can be used effectively in the manner just outlined to improve

recognition performance. In this paper we describe an approach for representing, learning, and

using feature uncertainty information, and experiments involving a system constructed to test that
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approach. The approach models 3D objects using characteristic views, each describing numerous

features of various types. These characteristic view models include information about feature

uncertainty learned entirely from training images.

Our method of matching a model and an image is similar to the iterative alignment method of

object recognition [1, 9, 10]: we hypothesize some initial pairings between model features and

image features, use those pairings to estimate viewpoint, use the viewpoint estimate to evaluate

and choose additional pairings, and so on until as many features as possible have been matched.

But along with the viewpoint estimate we also maintain an estimate of viewpoint uncertainty that

is derived from the uncertainties of the paired model and image features. Both the viewpoint

estimate and its uncertainty are used to evaluate potential feature pairings so that model features

with more certain positions are paired sooner. This use of uncertainty information produces a

better ordering of feature pairings, resulting in a faster search with less backtracking. The method

is called probabalistic alignment to emphasize its use of probability theory.

2 Related Research

Among methods for recognizing 3D objects by matching discrete features with models of 2D

characteristic views, there are generally three classes. Alignment methods, as described in the

introduction, use feature pairings to estimate a transformation, and then use that transformation

estimate to suggest further pairings. Ayache and Faugeras [1] showed that, when the

transformation is a 2D similarity transformation represented in a certain way, it can be estimated

by a recursive, linear least-squares estimator like the Kalman filter. This is particularly efficient

because a transformation can be estimated directly, without search, and because the estimate can

be updated with each new pairing at little cost. For these efficiency reasons we have adopted a

similar formulation.

Alignment methods may consider feature position uncertainty in estimating the transformation so

that the estimate is influenced most by the more precisely localized features. Moreover,

uncertainty in feature positions and misalignment of matched features yields uncertainty in the

transformation estimate; that uncertainty, in turn, can influence the selection of features for pairing

so that more certain pairings are favored. Ayache and Faugeras used simple heuristics to estimate

model feature uncertainty and to choose model features for pairing. In contrast, because our

system acquires models from training images it is able to directly measure the positional variance

of each model feature, maintain a meaningful estimate of transformation uncertainty, and
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incorporate that estimate in decisions about feature pairings.

Another class of recognition methods are those that search the space of possible pairings without

invoking a transformation estimate. Essentially, these methods achieve a match by identifying a

subisomorphism between two graphs—one representing the model and the other representing the

image—in which nodes and arcs denote features and their relations. Attributes associated with

nodes and arcs record geometric measurements, such as the position of one feature with respect to

another, and geometric uncertainty is represented by uncertainty in those attributes. (Interpretation

tree methods [8] are equivalent in that they search a space of pairings while observing constraints

among small groups of features.)

In the PREMIO system by Camps, Shapiro and Haralick [6], a 2D characteristic view is modeled by

a graph with nodes denoting line segments and arcs denoting junctions and groups of junctions.

By defining a cost function for graph matches and an associated admissable heuristic, they are able

to match model and image graphs using heuristic rather than exhaustive search. The model

includes Gaussian distributions characterizing how many nodes and relations are expected to

match, and how much attributes are expected to differ from their norms. All features of one view,

however, share common distributions.

Burns and Riseman [5] describe a contrasting approach where a graph, called a view description

network, models a hierachy of components from low-level, generic primitives, through high-level,

object-specific arrangements, to entire views of an object. Matching proceeds in stages from low

level to high. Again, attributes are characterized by distributions to accommodate varation in

appearance.

Our previous work [11] used a graph-matching method resembling both PREMIO and view

description networks. Like PREMIO, we used a cost function and heuristic search to match graphs.

Like Burns and Riseman, our graphs represented a range of features, from simple to complex, and

each relation was characterized by a distribution to accommodate variation in appearance. The

present work retains these aspects of our earlier work.

Graph and alignment methods each emphasize different types of constraints in the matching

process. Graph matching respects the topological and geometrical relations among small groups of

features, ensuring, for example, that model line segments sharing a common junction are paired

with image line segments sharing a similar junction. Alignment, on the other hand, seeks to ensure

that feature pairings are all consistent with respect to some single viewpoint hypothesis. The
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present work combines these two approaches so that both topological and viewpoint constraints

direct the search. It will be shown that this has advantages over using only one type of constraint

or the other.

A third class of methods are those that search transformation space. These include the generalized

Hough transform and geometric hashing, which both involve the accumulation of votes in an array

of bins that tesselates a transformation space or parameter space. Early methods let the tesselation

granularity determine the permissible mismatch between model and image features, giving no

control over the uncertainty of individual features. Such control may come from using weighted

votes (e.g., Rigoutsos and Hummel [14], although they assume the same uncertainty for all

features) or indexing functions learned from examples [2].

Breuel [4] and Cass [7] have reported methods that avoid tesselation and instead subdivide

transformation space recursively to localize arbitrary regions of it. Their algorithms achieve

excellent performance by applying constraints that, in transformation space, are of a particularly

simple form. That form is ensured by using a bounded-error model of uncertainty whereby a

model feature may match an image feature anywhere within some � distance of the model feature’s

projected position in the image. However, in a system that learns models from positive training

examples only, there is no principled way to determine an appropriate error bound for a model

feature (just as there is no way to determine an upper bound for human ages by studying a

subpopulation). Moreover, for some image features there is empirical evidence that errors in

localizing the features are better modeled by Gaussian distributions than by bounded ones [15].

The method described in this paper uses multivariate Gaussian distributions to represent the

expected positions of model features.

3 Method

The graph representations used for images and models, and the algebraic representation used for

viewpoint transformations, are described first in sections 3.1 and 3.2. A match, consisting of a set

of feature pairings and an estimate of the viewpoint transformation, is evaluated by a match quality

measure, which is then described (section 3.3). Matching seeks to maximize this measure. One

component of it is an estimate of the probability that two features match, given their respective

position distributions and an estimate of the viewpoint transformation; this component is described

in section 3.4 while other components have been described in previous work [11]. Section 3.5

describes how a viewpoint transformation is estimated from a set of feature pairings, and section
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3.6 ties these pieces together in describing the procedure for finding a match. That matching

procedure is used both for recognition, and as part of a procedure described in section 3.7 for

learning models from training images.

3.1 Image and model representations

An image input to the system, whether for training or for recognition, is represented by an image

graph. Nodes of this graph denote features detected in the image while arcs denote abstraction and

composition relations among features. A feature may, for example, be a segment of intensity edge,

a particular arrangement of such segments, the response of a corner detector, or a region of uniform

color. A typical image will be described by numerous features of various types, scales, and

degrees of abstraction, some found by low-level detectors and others found by grouping processes.

Formally, an image graph G is denoted by a tuple hF;Ri, where F is a set of tokens denoting

image features and R is a relation over elements of F . An image feature token fk 2 F is a tuple

htk;ak;bk;Cki where tk is the feature’s type, ak is a vector of attributes describing the feature, bk

is its measured position, and Ck describes the uncertainty in that position. Attributes are numeric

measurements of the feature’s intrinsic properties, such as its curvature if it is a circular arc or its

interior angle if it is a junction. Feature position and its uncertainty are described below. Finally, a

relation in R is a tuple hk; l1; : : : ; lmi, indicating that image feature k was found by grouping or

abstracting image features l1 through lm.

A model describes a characteristic view of an object. Like an image, it is represented by a graph

with nodes denoting features and arcs denoting abstraction and composition relations among them.

However, a model graph also includes information to support estimates of the probability that a

model feature will be observed, and the probability that it will have particular attributes when

observed. This information is accumulated from the training images used to generate the model.

Formally, a model graph Ḡ is denoted by a tuple hF̄ ; R̄; m̄i, where F̄ is a set of tokens denoting

model features, R̄ is a relation over elements of F̄ , and m̄ is the number of training images used to

produce Ḡ. A model feature token f̄j 2 F̄ is a tuple ht̄j ; m̄j; Āj ; B̄ji, where t̄j is the feature’s

type, m̄j is the number of training images in which the feature was observed, and Āj and B̄j are

the sequences of attribute vectors and positions drawn from those training images. Finally, a

relation in R̄ is a tuple hj; l1; : : : ; lmi, indicating that model feature j is a grouping or abstraction

of model features l1 through lm.
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3.2 Coordinate systems

A feature’s position is specified by a location, orientation, and scale expressed in terms of a 2D,

Cartesian coordinate system. Image features are located in an image coordinate system identified

with pixel rows and columns. Model features are located in a model coordinate system that is

arbitrarily fixed and used for all features within a model graph.

Two different schemes are used to describe a feature’s position in its respective coordinate system:

xy�s The feature’s location is specified by x and y, its orientation by �, and its scale

by s.

xyuv The feature’s location is specified by x and y, and its orientation and scale are

represented by the orientation and length of the 2D vector [u v].

The xy�s scheme is the more convenient for measuring feature position while the xyuv scheme,

as we shall see, is convenient for estimating viewpoint from feature pairings. The two schemes are

related by � = tan
�1(v=u) and s = (u2 + v

2)
1
2 . Where it is not otherwise clear, we will indicate a

scheme with the superscripts xy�a and xyuv .

Viewpoint is represented by a viewpoint transformation, which is a 2D similarity transformation

bringing paired image and model features into close correspondence. The xyuv scheme allows

such a transformation to be expressed as a linear operation with the advantage that it can then be

estimated from a set of feature pairings by solving a system of linear equations.1

We take the viewpoint transformation, T , to be from image to model coordinates, using it to

transform the position of an image feature before comparing it with that of a model feature. A

transformation consisting of a rotation by �t, a scaling by st, and a translation by [xt yt] (in that

order), can be expressed in two ways as a linear operation. We use both. In one case, the position

being transformed is represented by a matrix, Ak:

b
0

k =

2
6664
x
0

k

y
0

k

u
0

k

v
0

k

3
7775 =

2
6664

1 0 xk �yk
0 1 yk xk

0 0 uk �vk
0 0 vk uk

3
7775
2
6664
xt

yt

ut

vt

3
7775 = Akbt: (1)

1Ayache and Faugeras [1], among others, have also used this formulation to render the transformation as a linear
operation.
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In the other case, the position being transformed is represented by a vector, bk:

b
0

k =

2
6664
x
0

k

y
0

k

u
0

k

v
0

k

3
7775 =

2
6664
ut �vt 0 0
vt ut 0 0
0 0 ut �vt
0 0 vt ut

3
7775
2
6664
xk

yk

uk

vk

3
7775+

2
6664
xt

yt

0
0

3
7775 = Atbk + xt: (2)

The result of applying T to the position bk is denoted T (bk).

3.3 Match quality measure

Recognition requires finding a consistent set of pairings between some model features and some

image features, plus a viewpoint transformation that brings the paired features into close

correspondence. Together, the pairings and transformation are called a match. The match should

be a “good” one that jointly maximizes both the number of features paired and the quality or

closeness of those pairings. Described here is a match quality measure that makes this notion

precise and leads to a procedure for finding near-optimal matches.

The match quality measure extends that reported in [11] to include an evaluation of how well the

viewpoint transformation brings features into correspondence.2 A set of pairings is represented by

the tuple E = he1; e2; : : :i, where ej = k if model feature j matches image feature k, and ej =? if

it matches nothing. The hypothesis that the object is present in the image is denoted by H . Match

quality is associated with the probability that this hypothesis is correct given a set of pairings and a

viewpoint transformation. Bayes theorem allows us to write this probability as:

P(H j E; T ) =
P(E j T;H) P(T j H)

P(E ^ T )
P(H): (3)

There is no practical way to represent the high-dimensional, joint probability functions

P(E j T; H) and P (E ^ T ) in their full generality so we approximate them by adopting

simplifying assumptions about feature independence. The joint probabilities are decomposed into

products of low-dimensional, marginal probability functions, one per feature:

P(H j E; T ) �
Y
j

P(ej j T;H)

P(ej)
P(T j H)

P(T )
P(H): (4)

We assume that all viewpoint transformations are equally likely a priori, and thus P(T ) is a

constant. P(H) is the prior probability that the modeled object is present in the image; it can be

2There are also minor differences in notation.
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estimated from the proportion of training images that matched the model and were used to create

it. P(T j H) can be taken as identical to P(T ), or it can be estimated from past training images by

keeping some record of the transformations found upon matching the model to those images.

In what follows, the random outcome ẽj = k denotes the event that model feature j matches image

feature k; ẽj =?, the event that it matches nothing; ãj = a, the event that it matches a feature

whose attributes are a; and b̃j = b, the event that it matches a feature whose position, in model

coordinates, is b.

There are two cases to consider in estimating the conditional probability, P(ej j T;H), for a model

feature j.

1. When j is unmatched, this probability is estimated by considering how often j failed to

match an image feature during training. We use a Bayesian estimator, a uniform prior, and

the m̄ and m̄j statistics defined in section 3.1:

P(ẽj =?j T;H) = 1� P(ẽj 6=?j T;H) � 1�
m̄j + 1
m̄+ 2

(5)

2. When j is matched to image feature k, this probability is estimated by considering how

often j matched an image feature during training, and how the attributes and position of k

compare with those of previously matching features:

P(ẽj = k j T;H) � P(ẽj 6=?j T;H) P(ãj = ak j ẽj 6=?;H)

P(b̃j = T (bk) j ẽj 6=?; T;H): (6)

The P(ẽj 6=?) term is estimated as shown in equation 5. The P(ãj = ak) term is estimated using

the series of attribute vectors Aj recorded with model feature j, and a non-parametric density

estimator described in [11]. Estimation of the P(b̃j = T (bk)) term (the probability that model

feature j will match an image feature at position bk with viewpoint transformation T ) is described

below, in section 3.4.3

Estimates of the prior probabilities are based, in part, on measurements from a large, random

collection of images typical of those in which the object will be sought. From this milieu

collection we obtain prior probabilities of encountering various types of features with various

3For simplicity, our notation ignores the difference between probability masses and probability densities. P(ẽj) is a
mass because ẽj assumes discrete values, whereas P(ãj) and P(b̃j) are densities because ãj and b̃j are continuous. But
since equation 4 divides each conditional probability mass by a prior probability mass, and each conditional probability
density by a prior probability density, we can safely omit the distinction between masses and densities in this context.
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values of attribute vectors. The prior probability of a feature occuring at any particular position is

estimated by assuming that features are uniformly distributed throughout a bounded region of the

model coordinate system.

The match quality measure is equated not with P(H j E; T ) itself, but with its logarithm so that

exponentials (as in the Gaussian of equation 11, below) are eliminated and multiplications are

replaced by additions. With constants also eliminated, the match quality measure becomes:

g(E; T ) = log P(H) +
X
j

�
log P(ej j T;H)� log P(ej)

�
: (7)

3.4 Estimating feature match probability

The probability that a model feature is matched by an image feature depends, in part, on the

positions of the two features and on the viewpoint transformation that brings them into alignment.

This position- and transformation-dependent portion of the feature match probability is

represented by the P(b̃j = T (bk) j ẽj 6=?; T;H) term in equation 6. To estimate that probability,

we transform the image feature’s position into model coordinates according to the viewpoint

transformation and compare it with the model position (see figure 1). Both positions as well as the

viewpoint transformation are characterized by Gaussian probability density functions (pdfs) so

that the comparison takes into account their respective uncertainties.

Image feature k’s position is conveniently characterized by a Gaussian pdf in xy�s image

coordinates, with mean bxy�sk and covariance matrix Cxu�s
k . The mean is the feature’s position as

measured in the image. Because our system’s feature detectors and grouping processes do not

supply uncertainty estimates, we define the covariance matrix using system parameters �l, ��, and

�s, which are our estimates of the standard deviations in measurements of location, orientation,

and scale. Moreover, since the orientation of a large feature can usually be measured more

accurately than that of a small feature, the feature’s scale is considered when estimating its

orientation uncertainty. The covariance matrix we use is

C
xy�s
k =

2
6664
�

2
l 0 0 0

0 �
2
l 0 0

0 0 (��
sk
)2 0

0 0 0 �
2
s

3
7775

Before transforming a feature’s position from image coordinates to model coordinates the position

is expressed in xyuv image coordinates so that equation 1 or 2 can be used to apply the
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viewpoint 
transformation

Image Coordinates

image feature
position pdf

Model Coordinates

model feature
position pdf

image feature
position pdf

ut

vt

Transformation Space

Figure 1: An image feature’s position is transformed from image coordinates (left) to model
coordinates (right) according to an estimate of the viewpoint transformation (center), while a model
feature’s position is estimated in model coordinates (right). Uncertainty in the positions and the
transformation are all characterized by Gaussian distributions. Overlap of the two distributions in
model coordinates corresponds to the probability that the two features match given the viewpoint
transformation and their respective positions.

transformation. A pdf that is Gaussian in xy�s coordinates is not necessarily Gaussian in xyuv

coordinates. Nevertheless a good approximating Gaussian can be obtained in xyuv coordinates if,

as in this case, the � and s covariances are not large. The approximation places the xyuv mean at

the same position as the xy�s mean, and aligns the Gaussian envelope radially, away from the

[u v] origin (see figure 2). Its mean and covariance matrix are

b
xyuv
k = [xk yk sk cos �k sk sin �k] and

C
xyuv
k = R

2
6664
�

2
l 0 0 0

0 �
2
l 0 0

0 0 �
2
s 0

0 0 0 �
2
�

3
7775RT

;

where R =

2
6664

1 0 0 0
0 1 0 0
0 0 cos �k � sin �k
0 0 sin �k cos �k

3
7775 :

The viewpoint transformation is characterized by a Gaussian pdf over [xt yt ut vt] vectors. The



Figure 2: The Gaussian distribution of an image feature’s position in xy�s coordinates (left) is
approximated by a Gaussian distribution in xyuv coordinates (right), with the parameters of the
approximating distribution determined as shown.

mean and covariance of this pdf, t and Ct, are obtained from the estimator described below, in

section 3.5.

We now use the viewpoint transformation to transform the image feature’s position from xy�s to

xyuv model coordinates. If we disregard the uncertainty in the transformation estimate, we will

obtain a Gaussian pdf in model coordinates with mean Akt and covariance AtCkA
T
t . On the

other hand, if we disregard the uncertainty in the image feature position, we will obtain a Gaussian

pdf in model coordinates with mean Akt and covarianceAkCtA
T
k . But when both the image

feature’s position and the transformation are characterized by Gaussian pdfs, the pdf in model

coordinates cannot be characterized as Gaussian. At best we can approximate it with a Gaussian

pdf, and this we do using the mean and covariance given by

bkt = Akt and (8)

Ckt � AtCkA
T
t +AkCtA

T
k : (9)

The position of the model feature, j, is also characterized by a Gaussian pdf in xyuv model

coordinates. Its mean bj and covarianceCj are simply estimated from the series of position

vectors, B̄j , that the model records for that feature.4

We can now estimate the probability that j matches k according to their position pdfs and the

4Two practical considerations enter into the estimation of Cj . First, when B̄j contains too few samples for a reliable
estimate of Cj , the estimate that B̄j yields is blended with another determined by system parameters. Second, minimum
variances are imposed on Cj to overcome situations where B̄j has zero variance in some dimension.
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transformation pdf. This is done by integrating, over all positions r, the probability that both the

image feature is at r and the model feature matches something at r:

P(b̃j = T (bk) j ẽj 6=?; T;H) �

Z
r

P(r̃j = r) P(r̃kt = r) dr; (10)

Here r ranges over xyuv model coordinates while ~rj and ~rkt are random variables drawn from the

Gaussian distributions N(bj ;Cj) and N(bkt;Ckt). That the integral is a Gaussian in bj � bkt can

be seen from the fact that it is essentially a convolution of two Gaussians. Indeed, it is equivalent to

P(b̃j = T (bk) j ẽj 6=?; T;H) � G(bj � bkt;Cj +Ckt) (11)

where G(x;C) is a Gaussian with zero mean and covarianceC. Equations 8, 9, and 11 give us our

desired estimate.

3.5 Estimating viewpoint transformation

From a series of feature pairings we wish to estimate a viewpoint transformation that will

maximize our match quality measure. Fortunately, the transformation is applied as a linear

operation (equation 1) and the match quality measure effectively sums the squares of the distances

between paired model and image features (equations 7 and 11). Consequently, this is a linear

least-squares estimation problem for which good algorithms exist.

The estimation problem is formulated as follows. Each pairing hj; ki of model and image features

is related by the transformation t and a residual error ẽ:

Ak t = bj + ẽ: (12)

Here Ak is the matrix representation of image feature k’s mean position, t is the transformation

estimate represented by the vector [xt yt ut vt], and bj is the vector representation of model feature

j’s mean position. The residual ẽ is assumed to have a Gaussian distribution whose covariance,

Cj , can be estimated from the series of position vectors, B̄j , recorded by the model. Through a

process known as “whitening”, we can rewrite this relation so that the residual has unit variance.

Here Uj denotes the upper triangular square root of Cj (i.e., Cj = UjU
T
j ):

U
�1
j Ak t = U

�1
j bj + ẽ

0

; where ẽ0 � N(0; I):
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A series of feature pairings gives us a series of such relations. From those, a linear least-squares

estimator determines both the transformation t that minimizes the sum of the residual errors, and

its covarianceCt.

During a match search based on iterative alignment, feature pairings are adopted sequentially. We

need to refine the transformation estimate with each new pairing or group of pairings adopted so

that an improved estimate can then be used to identify additional pairings. Thus a recursive

estimator is used.

The square root information filter (SRIF) is a recursive estimator that is particularly well suited for

this problem. Compared to the Kalman filter it is numerically more stable, it is faster for batched

measurements, and it has the nice property of computing the total residual error as a side effect [3].

As its name implies, the SRIF works by updating the square root of the information matrix, which

is the inverse of the estimate’s covariance matrix. The initial square root, R1, and state vector, z1,

are obtained from the first pairing hj; ki of model and image features:

R1 = U
�1
j Ak and z1 = U

�1
j bj:

Then, with each subsequent pairing hj; ki, the estimate is updated by triangularizing a matrix

composed of the previous estimate and data from the new pairing:

"
Ri�1 zi�1

U
�1
j Ak U

�1
j bj

#
4

!

"
Ri zi

0 ei

#
:

When estimates of the viewpoint transformation and its covariance are needed, they can be

obtained by

ti = R
�1
i zi and Cti = R

�1
i R

�T
i :

This requires only back substitution since Ri is triangular. The SRIF also makes the total residual

error available as eieT
i , which conveniently corresponds to the log P(b̃j = T (bk) j ẽj 6=?; T;H)

component of our match quality measure. Thus, following each update of the transformation

estimate, the match quality measure for the new transformation can be computed easily, without

the need to re-evaluate equation 11 with the new transformation and all previous feature pairings.
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3.6 Matching procedure

In matching model and image graphs for the purpose of recognition, we seek a match hE; T i that

maximizes the match quality measure (equation 7). Although it does not appear possible to find

the optimal match through anything less than exhaustive search, in practice near-optimal matches

can be found quickly by iterative alignment. Here we describe how iterative alignment is

performed in our case.

Alignment starts from hypothesized feature pairings that each provide an initial estimate of the

viewpoint transformation. To choose these hypotheses, all possible pairings of higher-level

features are ranked according to the contribution each would make to the match quality measure.

The rank of the pairing hj; ki is given by:

gj(k) = max
T

log P(ẽj = k j T;H)� log P(ẽi = k): (13)

This ranking favors pairings where the model feature has a high likelihood of matching, the two

features have similar attribute values, and the resulting transformation estimate’s variance is small.

Moreover, because the component of P(ẽj = k j T;H) that depends on T is a Gaussian, its

maximum over T can be computed readily. A search is begun from each of the several

highest-ranked pairings.

From an initial pairing, the search proceeds by identifying additional consistent pairings, adopting

the best of them, and using those to update the transformation estimate. Again, possible pairings

are ranked according to the contribution each will make to the match quality measure:

gj(k;E; T ) =

(
log P(ẽj = k j T;H)� log P(ẽi = k) if hj; ki is consistent with E

0 otherwise

This ranking favors the same criteria as the ranking of initial pairings (equation 13), while further

requiring that pairings be consistent with those already adopted and favoring pairings whose

feature positions correspond closely according to the transformation estimate. Possible pairings

are placed on a priority queue so that, once all pairings have been evaluated, the queue contains a

few dozen of the best. Then, if any queued pairings can be considered ambiguous because they

conflict with other queued pairings, those ambiguous pairings are downrated so that they will be

postponed in favor of less ambiguous ones. Finally, the highest-ranked pairings are adopted and

used to update the transformation estimate.



Modeling Positional Uncertainty in Object Recognition 15

Backtracking is performed when ambiguity forces a choice among conflicting pairings, and a

search branch is terminated when no additional pairings can be identified to improve the match

quality measure. From several starting hypotheses and the various search branches that result from

backtracking we obtain a number of consistent matches. As matches are found, only the best

match is retained, and its match quality measure provides a threshold for pruning subsequent

search branches.

3.7 Model learning procedure

Since the model learning procedure has been described elsewhere [11] we will only summarize it

here. An initial model graph is formed from the first training image’s graph. The model graph is

then matched with each subsequent training image’s graph and revised after each match according

to the match result. A model feature j that matches an image feature k receives an additional

attribute vector ak and position bk for its series Āj and B̄j . Some unmatched image features are

used to extend the model graph while model features that remain largely unmatched are eventually

pruned. After several training images have been processed in this way the model graph nears an

equilibrium, containing the most consistent features with representative populations of sample

attribute vectors and positions for each.

4 Experimental results

The method has been implemented using facilities of the Vista computer vision environment [13].

The system recognizes 3D objects in 2D intensity images, employing a repertoire of features

chosen for describing the appearance of manufactured objects. Straight and circular segments of

intensity edges are the lowest-level features. These are augmented by features representing

various perceptually-significant groupings, including junctions, pairs and triples of junctions, pairs

of parallel segments, chains of such pairs, and convex regions. Features that are rotationally

symmetric, such as straight lines, are simply represented by multiple tokens, one per orientation.

Presented here are two examples that illustrate some aspects of the method. Figure 3 shows a

model of a characteristic view of a stool learned from nine training images acquired over a

20-degree range of viewpoint. Figure 4 shows that model being used to recognize the stool in a

test image. As evident from the model depiction and from figure 5, features of the model differ

widely in positional uncertainty. Some differences are due to shifts in the relative positions of
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(a) (b)

0 40 0 40

(c) (d)

Figure 3: Nine training images spanning 20 degrees of viewing angle, from (a) to (b), yield a single
characteristic view model. Among model features, those denoting straight and circular segments of
intensity edge are shown in (c); those denoting pairs of parallel segments are shown in (d). Ellipses
depict two standard deviations of feature location uncertainty.
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(a)

0 40

(b)

Figure 4: A cluttered test image (a) in which the partially-occluded stool is recognized (b). This
match begins with a pairing of junctions, shown in bold, that is rated highly by equation 13 primarily
due to the image feature’s intrinsic attributes. Matching proceeds with a pairing of parallel arcs,
also shown in bold, that is favored in part due to its model feature’s low positional uncertainty
(apparent in figure 3(d)). Model features representing segments of intensity edge are shown as light
lines projected into the image according to the final estimate of the viewpoint transformation.
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Figure 5: Features of the stool model vary widely in positional uncertainty, as shown by this
histogram of feature location uncertainty. Here, location uncertainty is measured as the area of a
one-standard-deviation ellipse about the model feature’s expected location.

features with changing viewpoint: the seat and post remain fixed, for example, while the legs shift

in various directions. Others are due to inherent differences in the accuracy of localizing various

types of features: for example, a right-angle junction might be better localized than an oblique or

acute one. Differences would be even greater for a flexible object.

A second example of model learning is shown in figure 6. After eight training images the model

includes a few features whose positions are quite uncertain due to lighting effects; any pairings

involving these features will have little influence on the viewpoint transformation estimate and the

match quality measure.

This example also illustrates how both topological and geometric relations among features

contribute matching constraints. Along the leftmost edge of the object, parallel line segments are

so closely spaced that their position distributions largely overlap; position alone provides little help

in choosing the correct pairings for these features. However, the line segments are also components

of more distinctive features, including junctions and a parallel pair. Pairings for these other

features are less ambiguous. Once those pairings are adopted, they constrain pairings involving

the line segments through topological relations represented as arcs in the model and image graphs.
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(a) (b)

0 40

(c)

0 40

(d)

Figure 6: Eight training images spanning 14 degrees of viewing angle, from (a) to (b), yield a single
characteristic view model. Among model features, those denoting straight segments of intensity
edge are shown in (c); those denoting junctions are shown in (d). Ellipses depict two standard
deviations of feature location uncertainty. Those that are exaggerated correspond to unreliable
features.
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5 Discussion

We have described an object recognition method that uses four characterizations of each model

feature:

� A characterization of the feature’s diagnostic power, representing how likely it is to be

detected and how strongly it indicates the presence of the object.

� A characterization of the intrinsic attributes of matching image features.

� A characterization of the positions of matching image features.

� A set of abstraction and composition relations involving other model features, as represented

by the topology of the model graph.

All four are acquired from training images and used opportunistically to constrain the search for a

match between a model and an image. The search typically begins by matching a feature that is

very specific due to its intrinsic attributes, very likely to be matched in any image of the object,

and otherwise rare; usually this will be a high-level feature representing a grouping of several

simpler ones. Remaining matches are then constrained not only by their intrinsic attributes, but

also by their positions with respect to an estimated viewpoint and by topological relations relative

to the features already matched. In some cases position alone can identify unambiguous matches,

while in other cases topological relations effectively choose among nearby features in an image.

In comparison, alignment methods and methods that search transformation space have generally

used only feature positions, and not information about features’ topological relations. Methods

based on graph matching have generally not used feature positions directly, but considered only

topological relations and the relative positions of small groups of features.

Three of these four characterizations (all but graph topology) are represented probabilistically,

allowing a model to represent not just one canonical appearance of an object but rather an

expected range of appearance variation. This allows a single model to represent the appearance of

a 3D object over a range of similar viewpoints, a flexible object in a variety of similar

configurations, or an entire class of similar but distinctive objects.

This paper has focused on how feature positions, in particular, can be represented probabilistically

and used in matching. When the viewpoint transformation is restricted to a 2D similarity

transformation, xyuv coordinate systems allow that transformation to be represented as a linear
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operation. Moreover, when uncertainties in the transformation and model feature positions are

modeled by Gaussian distributions, an optimal transformation can be estimated from feature

pairings by a linear least-squares estimator.

It should be noted that the least-squares formulation can consider the uncertainty in image feature

positions or model feature positions, but not both. Considering uncertainty in both model and

image feature positions requires a total least-squares formulation, which is not so readily solved.

We have chosen to consider uncertainty in model feature positions, which in terms of equation 12

means that errors in bk and t, but not Ak, are considered in the least-squares solution. Instead one

could choose to consider uncertainty in image feature positions, as Ayache and Faugeras [1] have

done, by reversing the approach and solving for a model-to-image viewpoint transformation.

However, the pdfs of image feature positions carry considerably less information than those of

model features, which become highly individualized during model acquisition. Our choice allows

the viewpoint transformation to be constrained most by model features whose positions vary little,

and less by those whose positions vary greatly.

The explicit representation of uncertainty allows a model to describe appearance more completely

and accurately over a range of viewing conditions. We believe that, as a consequence, fewer 2D

characteristic views will be needed to describe a 3D object for a given level of recognition

performance. In experiments reported here, we have achieved good performance with 2D

characteristic views spanning 14 to 20 degrees of viewpoint azimuth, indicating that fewer than

one hundred views may be needed to model appearance from all viewing directions.

This paper has described a representation for 2D characteristic view models, a method called

probabilistic alignment for matching such models to images, and a procedure for learning the

models from training images. Experiments now in progress will better characterize the

performance of the probabilistic alignment method and the nature of the probability distributions

acquired through learning. In future work we plan to add a conceptual clustering procedure that

subdivides training images among clusters corresponding to distinct characteristic views [12].

Together, these components will form a system capable of automatically learning to recognize a

3D object from any viewpoint.
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