
DECISION GRAPHS: 
Algorithms and Applications to Influence Diagram Evaluation and High-Level Path 

Planning Under Uncertainty 

by 
Runping Qi 

Technical Report 94-27 
October 1994 

Department of Computer Science 
University of British Columbia 

Vancouver, B.C. 
Canada, V6T 1Z4 

email: qi@c~.ubc.ca 

@1994 Runping Qi 



DECISION GRAPHS: 
Algorithms and Applications to Influence Diagram Evaluation and High-Level Path 

Planning Under Uncertainty 

By 

Runping Qi 

B.Sc. Inner Mongolia University, China, 1982 
M.Sc. Changsha Institute of Technology, China, 1986 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

. m 

THE FACULTY OF GRADUATE STUDIES 
(DEPARTMENT OF COMPUTER SCIENCE) 

THE UNIVERSITY OF BRITISH COLUMBIA 

April 1994 

@Runping Qi, 1994 



Abstract 

Decision making under uncertainty has been an active research topic in decision 
theory, operations research and Artificial Intelligence. The main objective of this 
thesis is to develop a uniform approach to the computational issues of decision making 
under uncertainty. Towards this objective, decision graphs have been proposed as an 
intermediate representation for decision making problems, and a number of search 
algorithms have been developed for evaluating decision graphs. These algorithms are 
readily applicable to decision problems given in the form of decision trees and in the 
form of finite stage Markov decision processes. 

In order to apply these algorithms to decision problems given in the form of influ­
ence diagrams, a stochastic dynamic programming formulation of influence diagram 
evaluation has been developed and a method to systematically transform a decision 
making problem from an influence diagram representation to a decision graph rep­
resentation is presented. Through this transformation, a decision making problem 
represented as an influence diagram can be solved by applying the decision graph 
search algorithms. One of the advantages of our method for influence diagram eval­
uation is its ability to exploit asymmetry in decision problems, which can result in 
exponential savings in computation. 

Some problems that can be viewed as decision problems under uncertainty, but 
are given neither in the form of Markov decision processes, nor in the form of influence 
diagrams, can also be t ransformed into decision graphs though this transformation is 
likely to be problem- specific. One problem of this kind , namely high level navigation 
in uncertain environments, has been studied in detail . As a result of this case study 
a decision theoretic formulation and a class of off-line path planning algorithms for 
the problem have been developed. 

Since the problem of navigation in uncertain environments is of importance in 
its own right, an on-line path planning algorithm with polynomial time complexity 
for the problem has also been developed. Initial experiments show that the on-line 
algorithm can result in satisfactory navigation quality. 





Contents 

Abstract 

List of Figures 

List of Tables 

Acknowledgement 

1 Introduction 
1.1 General Background and Thesis Objective 
1.2 Our Methodology . . . . . . . . . 
1.3 Thesis Overview ......... . 
1.4 Summary of Thesis Contributions 
1.5 Thesis Organization . . . . . . . . 

V 

vu 

.. 
vu 

1 
1 
2 
3 
8 
9 

I ALGORITHMS FOR DECISION GRAPH SEARCH 11 

2 Decision Graphs and Finite-Stage Markov Decision Processes 12 
2.1 Decision Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.2 Finite-Stage Markov Decision Processes . . . . . . . . . . . . . . 16 
2.3 Representing Finite-Stage Markov Decision Processes by Decision Graphs 18 

3 Decision Graph Search 
3.1 Depth-First Heuristic-Search Algorithms . 

3.1.1 Algorithm DFS ........ . 
3.1.2 The effect of heuristic functions . . 
3.1.3 Tree ordering ......... . . . 
3.1.4 Using inadmissible heuristic functions . 
3.1.5 An anytime version of DFS ..... . 
3.1.6 Exploiting shared structures in decision graphs . 

20 
21 
21 
28 
28 
30 
32 
33 



3.2 Applying AO* to Decision Graph Search . 
3.3 Iterative Deepening Search ........ . 

3.3.1 Depth-bounded iterative deepening 
3.3.2 Cost-bounded iterative deepening . 
3.3.3 Generic iterative deepening 
3.3.4 Co-routines 

3.4 Summary . .... 
3.5 Proofs of Theorems 

II INFLUENCE DIAGRAM EVALUATION 

38 
46 
47 
47 
49 
49 
50 
52 

64 

4 Decision Analysis and Influence Diagrams 65 
4.1 Bayesian Decision Analysis . 65 
4.2 Decision Trees . . . . . . . . . . . . . 67 
4.3 Influence Diagrams . . . . . . . . . . 72 
4.4 Disadvantages of Influence Diagrams 77 
4.5 Previous Attempts to Overcome the Disadvantages 79 
4.6 Our Solution . . . . . . . . . . . . . . . . . . . . . 81 

5 Formal Definition of Influence Diagrams 83 
5.1 Influence Diagrams . . . . . . 83 
5.2 Our Extension . . . . . . . . . . . . . . . 84 
5.3 Influence Diagram Evaluation . . . . . . 85 
5.4 No-Forgetting and Stepwise Decomposable Influence Diagrams . 86 

6 Review of Algorithms for Influence Diagram Evaluation 90 
6.1 Howard and Matheson's Two-Phase Method . . . . . 90 
6.2 Methods for Evaluating Influence Diagrams Directly . 96 

6.2.1 Shachter's algorithm . . . . . . . . . . . . . . 96 
6.2.2 Other developments . . . . . . . . . . . . . . . 98 
6.2.3 Some common weaknesses of the previous algorithms 100 

7 A Search-Oriented Algorithm 102 
7 .1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 
7 .2 Influence Diagram Evaluation via Stochastic Dynamic Programming . 106 
7.3 Representing the Computational Structure by Decision Graphs . 115 
7.4 Computing the Optimal Solution Graph . 120 

7.4.1 Avoiding unnecessary computation . . . . . . . . . . 121 
7.4.2 Using heuristic algorithms . . . . . . . . . . . . . . . 124 
7.4.3 A comparison with Howard and Matheson's method . 124 

11 



7.5 How Much Can Be Saved? . . . . . . . . . . . . . . . 125 
7.5.1 An analysis of a class of problems . . . . . . . 125 
7.5.2 A case analysis of the used car buyer problem 131 

8 Handling Influence Diagrams with Multiple Value Nodes 134 
8.1 Separable Value Functions . . . . . . . . . . . . . . . . . . . 135 
8.2 Decision graphs for influence diagrams with multiple value nodes. 136 
8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 

III NAVIGATION IN UNCERTAIN GRAPHS 144 

9 U-graph based navigation 146 
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 146 

9.1.1 High-level navigation for autonomous agents . 146 
9.1.2 Packet routing in computer networks . . . . 150 

9.2 U-graphs . . . . . . . . . . . . . . . . . . . . . . . 153 
9.3 Representing Uncertain Environments in U-graphs 159 
9.4 U-graph Based Navigation . . . . . . . . . . . . . . 163 

9.4.1 Distance-graph based navigation vs. U-graph based navigation 164 
9.4.2 The optimality issue . . . . . . . . . . 165 
9.4.3 The possibility of information purchase 166 

9.5 Related Work . . . . . . . . . . . . . . 169 
9.5.1 Related work in path planning . . . . . 169 
9.5.2 Canadian Traveler Problems . . . . . . 170 
9.5.3 Related work in AI and decision theory . 173 

10 A Formalization of U-Graph Based Navigation 174 
10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . 176 
10.2 Modeling Information Purchase . . . . . . . . . . 184 
10.3 The Expected Costs of U-graph Based Navigation Plans 185 
10.4 Other Variations . . . . . . . . . . . . . . . . . . 187 

10.4.1 Minimizing the competitive ratio . . . . . 187 
10.4.2 Minimizing the expected competitive ratio 188 
10.4.3 Minimizing the worst case cost 189 
10.4.4 Reaching one of the goal vertices 189 
10.4.5 Reaching multiple goal vertices . 189 

lll 



11 Computational Issues of U-graph Based Navigation 
11.1 Planning Paradigms ..... . 
11.2 Computing Complete Plans .. 

11.2.1 Some experimental data 
11.3 On-Line Planning ....... . 

11.3.1 The optimality characterization of on-line planners 
11.3.2 A graph transformation based algorithm 
11.3.3 Experimental results ... .... . . ....... . 

12 Conclusions 
12.1 Contribution Summary . 
12.2 Future Research . 

Bibliography 

A Functions for U-graph Generation 

lV 

191 
191 
193 
193 
201 
202 
202 
206 

210 
211 
212 

214 

223 



List of Figures 

2.1 A simple decision graph 15 

3.1 The pseudo code of DFS 25 
3.2 An illustration of the search algorithm 27 
3.3 An illustration of the effect of tree ordering . 29 
3 .4 The pseudo code of A-D FS 34 
3.5 A Prolog version of A-DFS 35 
3.6 The pseudo code of DFS' . . 37 
3. 7 An example for which AO* may not terminate . 45 

4.1 A decision tree for the used car buyer problem . 68 
4.2 A complete decision tree for the used car buyer problem 71 
4.3 An influence diagram for the used car buyer problem . . 73 
4.4 An influence diagram for a variation of the used car buyer problem 77 

6.1 An illustration of the arc reversal operation: reversing arc a ~ b . . 92 
6.2 An influence diagram for the oil wildcatter's problem . . . . . . . . 93 
6.3 A decision tree network derived from the influence diagram for the oil 

wildcatter's problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
6.4 A compact representation of the decision tree derived for the oil wild-

catter problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 
6.5 A partial decision tree after the expansion of the first two layers . . . 95 
6.6 A partial decision tree after the expansion of the first three layers . . 95 
6. 7 An illustration of random node removal: xis removed by expectation 98 
6.8 An illustration of decision node removal: dis removed by maximization 98 

7.1 Two sectors of the influence diagram for the oil wildcatter problem. 104 
7.2 A complete decision graph for the oil wildcatter problem 119 
7.3 A simplified decision graph . . . . . . . . . . . . . . . . . . 123 
7.4 The optimal solution graph for the oil wildcatter problem . 123 
7.5 An influence diagram for a generalized buying problem 129 
7.6 An illustration of the asymmetry of a decision variable . . 130 

V 



7.7 A decision graph (tree) generated for the used car buyer problem . . 133 

8.1 A new representation of the oil wildcatter problem by an influence 
diagram with multiple value nodes . . . . . . . . . . . . . . 136 

8.2 A decision graph for the influence diagram shown in Fig. 8.1 139 
8.3 A variation of the oil wildcatter problem . . . . . . . . . . . 140 
8.4 A decision graph for the influence diagram in Fig. 8.3 . . . . 141 
8.5 A decision graph, with zero probability arcs removed, for the influence 

diagram in Fig. 8.3 . . . . . . . . . . . . . . . . . . . . . . . . 142 

9.1 The block diagram of a typical autonomous navigation system 148 
9.2 An example U-graph . . . . . . . . . . . . . . . . 156 
9.3 Modeling an uncertain environment by a U-graph 160 
9.4 A segment of road that may have traffic jams 160 
9.5 A simple map of the LCI lab area . . . . . . 162 
9.6 A U-graph representing the LCI lab area . . . 162 
9.7 A map of an environment with choke regions . 163 
9.8 A simple path planning case with uncertainty 167 

10.1 A simple U-graph . . . . . . . . . . . . . . . . 183 
10.2 The representing graph of a navigation task 183 
10.3 The representing graph of a navigation task with the information pur-

chase option . . . . . . . . . . . . . . . . 185 
10.4 Two solution graphs of a navigation task . . . . . . . . 186 

11.1 A U-graph in Class 1 - a representation of city roads 195 
11.2 A U-graph in Class 2 - an abstraction of a parallel highway system 196 

Vl 



List of Tables 

4.1 The prior probability distribution of the car's condition P{CC} . . . . 74 
4.2 The probability distribution of the first test result P{R1 jT1 , CC} . . . 75 
4.3 The probability distribution of the second test result P{R2 jT1 ,R1 , T2, CC} 75 

7.1 The function of the value node ........ . 
7.2 The conditional probability distribution of R . 
7.3 The conditional probability distribution of CD 
7.4 The prior probability distribution of O ... 
7 .5 The conditional probability distribution of S . 

9.1 The weight distribution P .......... . 
9.2 The weight distribution P' after observing s1 = 10 

11.1 The average speedup ratios of Algorithm DFS .. 
11.2 The average cost ratios of Algorithm DFS .... 
11.3 The average cost ratios of the on-line algorithms . 

Vll 

117 
117 
117 
118 
118 

156 
157 

200 
200 
209 



Acknowledgement 

I thank Dr. David Poole, my thesis supervisor, for his generous friendship, con­
tinuous support and valuable advice in the past six years. 

I thank Dr. Jim Little, Dr. Alan Mackworth, Dr. Maurice Queyranne and Dr. 
Jack Snoeyink for serving on my supervisory committee. Their constructive com­
ments and valuable suggestions contribute a great deal to the quality of my thesis. 

I thank Dr. Lianwen Zhang for his friendship and fruitful academic collaboration. 

I thank Dr. Walfgang Bibel for his encouragement and help I received during my 
early days at UBC. 

I thank Andrew Csinger for his careful reading of this thesis. 

I thank my friends and colleagues in the Computer Science Department who made 
my stay at UBC more productive and pleasant. 

I gratefully acknowledge the financial assistance I received from UBC and NSERC. 

I thank my beloved wife, Ying Zhang, for her constant support and love through 
all these years. I cannot imagine what a poor shape I would be in without her. 

I dedicate this thesis to my parents. 

Vlll 



Chapter 1 

Introduction 

I.I General Background and Thesis Objective 

Decision making under uncertainty is one of the primary topics of Bayesian decision 

theory [25, 83, 102]. In this theory, expected utility is used as a normalized unit to 

measure the degree of desirability of various possible outcom~s that can result from 

taking action in some situation. The prescriptive promise of this theory is that the 

rational action that should be taken in a situation is the one that maximizes expected 

utility. Bayesian decision analysis is a methodology for applying decision theory to 

practical decision problems [79]. 

Decision making under uncertainty is an active research topic in AI, decision the­

ory and operations research. Many problems, such as diagnostic reasoning [72, 73], 

planning under uncertainty [29, 31, 39, 104], and path planning in uncertain envi­

ronments [15, 59, 60, 77] can be abstracted as decision making under uncertainty. 

See [19] for a good introduction to this subject. Problems of decision making under 

uncertainty can be presented in various forms, such as decision trees [79], finite-stage 

Markov decision processes [20, 33], or influence diagrams [35]. Although much re­

search has been carried out to address the computational issues of decision problems 

1 



CHAPTER 1. INTRODUCTION 2 

in particular forms, most of the algorithms are applicable only to that form and do 

not lend themselves to decision problems in other forms. For example, much work has 

been done in the operations research community (see [74) for a comprehensive survey) 

on the computation of Markov decision processes, but the algorithms developed for 

Markov decision processes are not applicable to influence diagram evaluation. Simi­

larly, the evaluation of influence diagrams has been an active research topic in the AI 

community, but the algorithms developed for influence diagram evaluation, with a few 

exceptions [101, 106), cannot directly be used for solving Markov decision processes. 

The major objective of this thesis is to study the computational issues of decision 

making problems in a uniform way and to develop algorithms that are general enough 

to apply to decision problems in various forms. 

1.2 Our Methodology 

To achieve our objective, we propose a simple, abstract intermediate representation 

for decision making problems, and develop algorithms based on this representation. 

To make use of these algorithms for solving decision making problems in a particular 

form, we map the problems into the proposed representation. 

The representation we propose in this thesis is decision graphs. A decision graph 

is an AND/OR graph with an evaluation function. When a decision graph is used to 

represent a decision problem, the solution graphs of the decision graph are interpreted 

as the policies of the decision problem, while the evaluation function of the decision 

graph acts as a quality measurement function for the policies. The policies of a 

decision problem can be measured either in terms of costs or in terms of rewards. 

Accordingly, the evaluation function of a decision graph can be defined either in the 

form of minimization-expectation or in the form of maximization-expectation. 



CHAPTER 1. INTRODUCTION 3 

If the evaluation function is defined in the form of minimization-expectation, a 

solution graph is optimal if it minimizes the evaluation function. Similarly, if the 

evaluation function is defined in the form of maximization-expectation, a solution 

graph is optimal if it maximizes the evaluation function. Given a decision problem 

represented by a decision graph, we need to compute an optimal solution graph of 

the decision graph, which corresponds to an optimal policy of the decision problem. 

1.3 Thesis Overview 

In this thesis, we present a number of search algorithms for computing optimal so­

lution graphs of decision graphs. These algorithms include a depth-first heuristic­

search algorithm, a best-first heuristic-search algorithm, an anytime algorithm and 

two iterative-deepening depth-first heuristic-search algorithms. Similar to Ballard's 

*-minimax search procedures [3], the depth-first heuristic-search algorithm is devel­

oped from the alpha-beta algorithm for minimax game tree search [38]. While Ballard 

emphasizes the generalization of the alpha-beta algorithm to handle chance nodes 

in minimax trees, in our development we elaborate the pruning techniques so that 

domain-dependent information can effectively be used to improve search efficiency. 

Furthermore, we derive an anytime algorithm by integrating the anytime concept [8] 

into the depth-first heuristic-search algorithm. The best-first heuristic-search algo­

rithm is obtained by modifying the AO* algorithm [50, 62, 68] for AND/OR graphs 

with additive costs. The iterative-deepening algorithms result from combining the 

iterative-deepening techniques [40] with the depth-first search techniques. 

Developing algorithms for decision graph search is just the first step towards our 

objectives. To fully achieve our objectives, we need to show that decision problems 

given in other forms can be transformed into a decision graph representation. We 



CHAPTER l . INTRODUCTION 4 

first note that this mapping is trivial for those problems in the form of decision trees, 

because decision graphs are a generalization of decision trees, allowing for structure 

sharing. We show that it is also quite straightforward to map a finite-stage Markov 

decision process into a decision graph representation. 

For decision problems given in the form of influence diagrams, we develop a method 

that transforms such a problem into a decision graph representation. By combining 

this transformation method with the decision graph search algorithms, we obtain a 

new method for influence, diagram evaluation. Our method is similar to Howard and 

Matheson's method [35] in the sense that both methods transform an influence dia­

gram into a decision tree (a decision graph in our case) for evaluation. However, our 

method is more efficient, partly because the decision graph obtained by our method 

is likely much smaller in size than the decision tree obtained by Howard and Mathe­

son's for the same influence diagram. In comparison with other algorithms reported 

in the literature [11, 85, 88, 91, 106, 108, 109] for influence diagram evaluation, our 

method has three unique merits. First, it exploits asymmetry of decision problems. 

This is significant because ( a) most practical decision problems are asymmetric [70] 

and (b) as it will be shown in Section 7.5, exploiting asymmetry can lead to expo­

nential savings in computation. Second, by using heuristic search techniques, our 

method provides an explicit mechanism for making use of heuristic information that 

may be available in a domain-specific form. Finally, by using decision graphs as an 

intermediate representation, the value of perfect information [53] can be computed 

more efficiently [110]. In addition, our method, like other recent algorithms [88, 108], 

also provides a clean interface between influence diagram evaluation and Bayesian 

net evaluation [69], thus various well-established algorithms (e.g., [47]) for Bayesian 

net evaluation can be used in influence diagram evaluation. 



CHAPTER 1. INTROD UCTION 5 

Some other problems that can be viewed as decision problems with uncertainty but 

are given neither in the form of Markov decision processes nor in the form of influence 

diagrams can also be transformed into decision graphs, though this transformation 

is likely to be problem-specific. We have studied one problem of this kind in detail 

for two reasons. First, we want to illustrate how to transform a decision making 

problem of this kind into a decision graph representation to make use of the algorithms 

developed for decision graph search. Second and more importantly, the problem is of 

importance in its own right and deserves a thorough study. 

The problem we have studied is high-level navigation in uncertain environments, 

where an autonomous agent is asked to reach a particular place in an uncertain envi­

ronment, and needs to determine a plan for achieving the task. This is a challenging 

problem in the AI and robotic communities. 

The problem of high-level navigation in uncertain environments is an important 

issue in the study of autonomous agents. In the navigation system of an autonomous 

agent, a central part is the path planning component, responsible for generating a 

description of a route that can guide the agent to a desired destination. However, 

due to the complexity and the uncertain nature of the environment , it is unreason­

able to expect the path planning component to have a priori knowledge of every 

relevant detail necessary to generate an executable plan for a given navigation task. 

Consequently, the path planning component has to appeal to perception components 

for obtaining information dynamically, and must be able to dynamically elaborate 

plans based on the information from the perception components. In order to manage 

the complexity of the path planning task, various kinds of hierarchical structure are 

commonly employed in most navigation systems [2, 13, 55, 58, 89]. In these systems, 

a distinction is made between a high-level (global) path planner and a low-level 



CHAPTER 1. INTRODUCTION 6 

(local) path planner. In the literature, the problem of_low-level path planning has 

been intensively studied. However, considerably less attention has been paid to the 

problem of high-level path planning. In most navigation systems (e.g., [2, 89]) for 

autonomous agents, the problem of high-level path planning is usually modeled as a 

variation of computing the shortest distance path from a distance graph that serves 

as a representation of the global map. However, a major drawback of this treatment 

is that uncertainty is not considered in high-level path planning. 

In this thesis, we address the problem of high-level path planning and navigation 

in uncertain environments. We propose U-graphs, a natural generalization of distance 

graphs, as a framework for representing the necessary information about uncertain 

environments for high-level navigation. In a U-graph, the weight of an edge can 

be either a constant or a random variable. An edge with a random variable as 

its weight is called an uncertain edge. The distribution of the random variable of 

an uncertain edge is called the weight distribution of the uncertain edge. Like an 

ordinary edge, an uncertain edge represents a connection between two places denoted 

by the two incident vertices. The weight distripution of the uncertain edge captures 

the uncertainty on the traversability of the corresponding connection. The weight 

distributions of uncertain edges can be dependent or mutually independent. 

We use the term U-graph based navigation to refer to the process of an agent 

navigating in an uncertain environment represented by a U-graph. More specifically, 

an agent is given a U-graph and is asked to reach a goal vertex from a start vertex 

in the U-graph. We assume information on the actual weight of an uncertain edge 

can be determined when one of the incident vertices of the edge is first visited, or 

can be "purchased" at some price. Once revealed, the weight of an uncertain edge is 

assumed to remain the same. 



CHAPTER 1. INTRODUCTION 7 

We give a decision theoretic formalization of the problem of U-graph based navi­

gation. Within this formalization, a U-graph based navigation task is represented as 

a decision graph. A solution graph of the decision graph for a problem corresponds 

to a complete navigation plan, covering all of the contingencies possibly encountered 

during the course of navigation. Thus the path planning task of computing a complete 

plan that satisfies some optimality criterion is reduced to the problem of searching 

an optimal solution graph from a decision graph. Because the path planning task 

is finished once a complete plan is computed, we refer to this paradigm as off-line 

navigation. 

Since the problem is of importance in its own right, we also study another navi­

gation paradigm, called on-line navigation. In the on-line paradigm, a path planner 

does not compute a complete plan for a given navigation task. Instead, it acts as 

a consultant telling the' agent what to do in any situation. The planner and the 

executive act as co-routines. The advantage of the on-line paradigm is that we can 

develop polynomial time planning algorithms. We have developed an on-line planning 

algorithm for U-graph based navigation. Although the algorithm cannot guarantee 

optimal navigation 1 , our experimental data show that it results in satisfactory navi­

gation quality. 

Polychronopoulos [71] has recently studied a similar problem, called Stochastic 

Shortest Distance Problem with Recourse (SSDPR), which is essentially the same as 

the U-graph based navigation problem. He has given a dynamic programming algo­

rithm for the problem. Although a more thorough comparison between his algorithm 

and ours is yet to be carried out, we believe that our algorithm is more practical than 

his for the following two reasons. First, for a given navigation task, we exclude those 

1Since the problem of optimal navigation is #P-hard [71], no polynomial time algorithm can 
guarantee optimal navigation, unless P is equal to #P. 



CHAPTER 1. INTRODUCTION 8 

"obviously non-optimal parts" ( e.g., loops) from the decision graph representation 

at the stage of problem formulation, resulting in a smaller search space. Second, in 

computing an optimal plan, our algorithm uses heuristic search techniques and do­

main dependent information to increase the computation efficiency. Roughly, Poly­

chronopoulos' algorithm amounts to evaluating the decision graphs in a brute-force 

way. Polychronopoulos also provides a simple on-line algorithm. We have simulated 

his on-line algorithm and ours against a few hundred randomly generated U-graphs. 

The results show that the navigation quality of both on-line algorithms are good and 

ours is closer to optimal than his. 

1.4 Summary of Thesis Contributions 

The contributions of this thesis are summarized as follows. 

• A number of algorithms for decision graph search. 

• A new method for influence diagram evaluation. 

• A decision theoretic formalization of the problem of U-graph based navigation, 

and a general approach to the computation of optimal plans for U-graph based 

navigation problems. 

• A polynomial-time heuristic on-line algorithm for U-graph based navigation. 

In a broader context, our work can be considered as a contribution to the cross­

fertilization between decision theory and AI techniques. On the one hand, we develop 

a number of heuristic search algorithms for the problem of decision making under 

uncertainty. These algorithms can be viewed as an application of AI techniques to 

decision analysis. On the other hand, we develop a decision theoretic formalization for 



CHAPTER l . INTRODUCTION 9 

a (path) planning problem. This can be viewed as an application of decision theory 

to planning. In the literature, much work has been reported on the applications of 

decision theory to AI problems. A common characteristic of these applications is that 

a given problem is viewed as a decision making problem and one is interested in a 

"good" or optimal solution, instead of an arbitrary solution, to the problem. These 

applications include general planning [9, 16, 29, 32, 46], diagnostic reasoning [72, 

73, 98, 99], reactive systems [24, 28] and domain specific problem solving such as the 

monkey and bananas problem [23], the blocks world [39], and navigation problems (15, 

59, 60]. Our work on U-graph based navigation belongs to the last group, applying 

decision theory to the domain of autonomous navigation. 

1.5 Thesis Organization 

The rest of this thesis consists of three parts and is organized as follows. Chapters 2 

and 3 constitute the first part. In Chapter 2, the concept of decision graphs is 

introduced and the correspondence between decision graphs and finite-stage Markov 

decision processes is discussed. In Chapter 3, algorithms for decision graph search 

are developed. 

Chapters 4 through 8 form the second part. In Chapter 4, we review some ba­

sic concepts about decision analysis, informally introduce influence diagrams, discuss 

the advantages and disadvantages of influence diagrams and outline our approach to 

handling the disadvantages. In Chapter 5, we formally introduce influence diagrams 

and give a formal definition of the problem of influence diagram evaluation. In Chap­

ter 6, we review some current algorithms for influence diagram evaluation and point 

out their shortcomings. In Chapter 7, we present our method for influence diagram 

evaluation. We also show that, by exploiting asymmetry, the method leads to expo-



CHAPTER 1. INTRODUCTION 10 

nential savings in computation for typical decision problems represented by influence 

diagrams. In Chapter 8, we generalize the method to deal with influence diagrams 

with multiple value nodes. 

Chapters 9 through 11 constitute the third part of the thesis, dealing with various 

issues of high-level navigation in uncertain environments. In Chapter 9, we first 

present our motivation for our study on high-level navigation and then propose U­

graphs as a framework for representing uncertain environments. Next, we define 

the problem of U-graph based navigation. Finally, we review some related work 

in the area of navigation under uncertainty. In Chapter 10, we develop a decision 

theoretic formalization that transforms a U-graph based navigation problem into a 

decision graph. In Chapter 11, we discuss two navigation paradigms. We show that 

the algorithms developed in Chapter 3 for decision graph search can be used for · 

off-line navigation, and present an algorithm for on-line navigation. We give some 

experimental data on the performance of the algorithms. Conclusions are given in 

Chapter 12. 



Part I 

ALGORITHMS FOR DECISION 
GRAPH SEARCH 

11 



Chapter 2 

Decision Graphs and Finite-Stage 
Markov Decision Processes 

In this chapter, we introduce the basics of decision graphs and finite-stage Markov 

decision processes, and show that a finite-stage Markov decision process can be nat­

urally represented as a decision graph. 

2.1 Decision Graphs 

From the structural point of view, a decision graph is an acyclic AND/OR graph 

[68] with an evaluation function. More precisely, a decision graph is a directed acyclic 

graph whose nodes are classified into two types: choice nodes and chance nodes, which 

are analogous respectively to the OR nodes and the AND nodes in an AND /OR graph. 

Each decision graph has exactly one root. For simplicity of exposition, we assume 

that all children of a node in a decision graph are of the same type, and chance nodes 

and choice nodes are interleaved in a decision graph. A cost or a reward is associated 

with each arc emanating from a choice node. A probability is associated with each 

arc emanating from a chance node, and the probabilities of all the arcs from a chance 

node sum to unity. Leaf nodes are terminals, each with a cost or a reward. 

12 



CHAPTER 2. DECISION GRAPHS AND MARKOV DECISION PROCESSES 13 

Decision graphs are a generalization of decision trees [79, 78], allowing for structure 

sharing. A solution graph SG, with respect to a node n , of a decision graph DG is 

a graph with the following characteristics: 

l. n is in SG; 

2. if a non-terminal chance node of DG is in SG, then all of its children are in 

SG; 

3. if a non-terminal choice node of DG is in SG, then exactly one of its children 

is in SG. 

A solution graph with respect to the root of a decision graph is simply referred to as 

a solution graph of the decision graph. 

A decision graph can be interpreted as a representation of a process of sequential 

decision making. Nodes in a decision graph represent situations. The root node 

represents the initial situation. A choice node represents a situation where an agent 

can select an action. The arcs emanating from a choice node can be viewed as 

the actions that the agent can take in the situation. A chance node represents an 

uncertain situation, resulting from taking an action in the situation represented by a 

choice node. The children of a chance node represent the situations that are possibly 

reached from the uncertain situation represented by the chance node. The probability 

that a particular situation will be reached is given by the number associated with the 

arc to the child representing the situation. 

The value of a given decision graph can be defined either in terms of costs or 

in terms of rewards. If the value is defined in terms of costs, the decision objective 

is assumed to be minimizing the expected cost. If the value is defined in terms of 

rewards, the decision objective is assumed to be maximizing the expected reward. In 



CHAPTER 2. DECISION GRAPHS AND MARKOV DECISION PROCESSES 14 

the rest of this chapter and in the next chapter, we define value of decision graphs in 

terms of costs. However, due to the duality of costs and rewards, all the techniques and 

algorithms that we develop can be adjusted in a straightforward way to be applicable 

to decision graphs with reward-oriented values. 

Let n' be one of the children of node n . We use c( n, n') to denote the cost of the 

arc from n to n', if n is a choice node; we use p( n, n') to denote the probability 

of the arc from n to n', if n is a chance node. We use v( n) to denote the value 

associated with a terminal node n. 

Let DG be a decision graph. A min-exp evaluation (in contrast to the minimax 

evaluation of a minimax tree [102]) of DG is a real-valued function u defined as 

follows: 

1. If n is a terminal: u(DG, n) = v(n). 

2. If n is a chance node with k children n 1 , ••• , nk m DG: 

u(DG, n) = I::f=1 p(n, ni) * u(DG, ni). 

3. If n is a choice node with k children n1 , ••• , nk in DG : 

The concepts of solution graphs and min-exp evaluation are the natural extension of 

those defined for decision trees in [78]. The value given by u(DG, n) is called the 

min-exp value of the node n. It can be interpreted as the minimal expected cost that 

an agent is going to pay if it starts a sequential decision process from the situation 

represented by node n. Note that the above definition is applicable to a solution 

graph as well since a solution graph is a special decision graph. 



CHAPTER 2. DECISION GRAPHS AND MARKOV DECISION PROCESSES 15 

For a decision graph DG with evaluation function u, a solution graph SG of DG 

is optimal with respect to the evaluation function if u(SG, n) = u(DG, n) for every 

node n in SG. A general computational problem related to decision graphs is, for a 

given decision graph and an evaluation function defined on it, to compute an optimal 

solution graph (with respect to the evaluation function) of the given decision graph. 

In the next chapter we will present several algorithms for this problem. 

Fig. 2.1 shows a simple decision graph. In the figure, boxes, circles, and dotted­

line circles denote the choice nodes, chance nodes, and terminals respectively. 

n8 

0.5 . 0.5 . 

::~·16:1 (n~7' ::n18) :: nl9. :: n2Q ::02(: ::~2i ::_n2~ (~24: (~25 (~2~ ::021: .. . .. .. . __ , . __ .. .. .... . __ .. .. .. .. ·-- · .. ·-- · ~.. ... .. .. __ .. . ... .. :: n2S:: :: n29.: :: n3Q: :: n~ 1: ..... ·-·' ... __ . .. __ . 

Figure 2.1: A simple decision graph 

Lemma 2.1 For a decision graph DG with a mm-exp evaluation function u, we 

can define another min-exp evaluation function u' that is isomorphic to u in the 

following sense: 1) an optimal solution graph of the decision graph with respect to 

one evaluation function is also optimal with respect to the other, and 2) there exists 

a constant Co such that u'(DG, n) =Co+ u(DG, n) for every node n in the decision 

graph. 



CHAPTER 2. DECISION GRAPHS AND MARKOV DECISION PROCESSES 16 

Proof The evaluation function u' can be defined as follows: 

1. If n is a terminal: u'(DG, n) = v(n) +Co. 

2. If n is a chance node with k children n1 , ... , nk m DG: 

u'(DG, n) = Ef=1 p(n, ni) * u'(DG, ni) 

3. If n is a choice node with k children n1 , ... , nk in DG: 

u'(DG,n) = minf=i{c(n,ni) + u'(DG,ni)}. 

The fact that the two evaluation functions are isomorphic can be proved by a simple 

induction on the structure of the decision graph. □ 

Due to this lemma, we can assume that the evaluation functions of decision graphs 

are all non-negative without loss of generality. 

2.2 Finite-Stage Markov Decision Processes 

Informally, a Markov decision process is an alternating sequence of states of, and 

actions on, an evolution system (20]. At each point in time, the state of the system 

can be observed, and an action can be taken based on the observed state. A finite­

stage Markov decision process is a Markov decision process that must reach some 

target state within a finite number of steps. A policy is a prescription for taking 

action at each point in time. 

Formally, a finite-stage Markov decision process is a tuple (S,JC,w,v,q), with 

S = {Stlt = 0, ... , T} and JC= {Ksls ES}, where St denotes the space of the states 

observable at stage t ' and s = ur=O is the total space of states, Si n Sj = </> if 

i =/- j ; Ks denotes the set of actions that may be taken in state s ; w and v are two 

cost functions and q is a transition function. So contains only one state s0 , called 



CHAPTER 2. DECISION GRAPHS AND MARKOV DECISION PROCESSES 17 

the initial state, and the states in ST are called the target states. In this thesis, we 

consider only Markov decision processes with finite state sets and finite action sets. 

If the system is in state s E St for some t, 0 ~ t ~ T , we say the system 

is at stage t . The laws of motion of the system are characterized by a transition 

function q. Whenever the system is in state s E St and action a E Ks is taken, the 

probability of the system being in state s' at the next stage is given by q( s, s', a). It is 

assumed that Es'ESt+i q(s,s',a) = 1 for any s E St and a E Ks, and q(s,s',a) = 0 

if either a is not in Ks or s' is not in St+l . A cost structure is defined on the 

decision process by the function w . Whenever the system is in state s and action 

a is taken, a cost w(s, a) is incurred. Whenever the system enters a target state 

s E ST , the system stops with cost v( s) . 

A deterministic policy for a Markov decision process can be regarded as a function 

mapping from states to actions. We define the expected cost function X of a finite­

stage Markov decision process with respect to a policy R as follows. 

X(R ) - { v(s) 
'

8 
- w(s,R(s))+Es'ESt+iq(s,s',R(s))*X(R,s') 

ifs E ST 
otherwise. 

The value of X(R, s) is called the expected cost of the Markov decision process with 

respect to policy R in state s, and the value of X(R, s0 ) called the expected cost 

of the Markov decision process with respect to policy R. A policy R* is optimal if 

X(R*,s0 ) ~ X(R,s0 ) for any policy R. 

The finite-stage Markov decision processes that we just introduced are a special 

kind of general Markov decision processes [20] and are equivalent to the finite-horizon 

Markov decision processes in [7 4]. 

The following lemma expresses the dual results of Theorem 4.2 in [74]. 



CHAPTER 2. DECISION GRAPHS AND MARKOV DECISION PROCESSES 18 

Lemma 2.2 For each s EST, 

X(R*,s) = v(s); 

for each state s E St, 0 ~ t < T, 

X(R*,s)=minaeK.{w(s,a)+ L q(s,s',a)*X(R*,s')} 
s1 ESt+1 

and 

R*(s)=arg minaeK.{w(s,a)+ L q(s,s',a)*X(R*,s')} 
sESt+t 

where the operation arg min selects and returns an element minimizing the formula 

to follow. 

These equations are referred to as Bellman equations in the literature [5]. 

2.3 Representing Finite-Stage Markov Decision 
Processes by Decision Graphs 

Kumar and Kanal have observed a general correspondence between sequential de­

cision processes and AND/OR graphs [44]. In this section, we show how a finite­

stage Markov decision process can be represented as a decision graph. Let M = 
(S, JC, w, v, q) be a Markov decision process and DG = (V, A1 U A2 ) be a directed 

graph defined as: 

and 

A2 = { (vsa, s')ls E St, s' E St+I for some t with O ~ t ~ T - 1, and a E Ks} 



CHAPTER 2. DECISION GRAPHS AND MARI<OV DECISION PROCESSES 19 

In such a graph, a node s E S is a choice node, representing an observable state in 

which an action can be selected and taken; a node Vsa is a chance node, representing 

a temporary state resulting from taking action a in state s . The next observable 

state after the temporary state is determined by a probability distribution q( s, s', a). 

We can attach cost w(s,a) on the arc (s,vsa) and probability q(s,s',a) on the arc 

(vsa, s'). In such a graph, node s0 is the root and the nodes s E ST are terminals. 

It can be verified that DG is acyclic and is indeed a decision graph. 

Let u be an evaluation function of the decision graph defined as: 

• u(DG, s) = v(s) ifs EST. 

• u(DG, Vsa) = Es'ESe+i p( Vsa, s') * u(DG, s') for each s E St and each a E Ks, 

where p(vsa,s') is the probability q(s,s',a) on the arc (vsa,s'). 

• u(DG,s) = minaeK.{c(s,Vsa)+u(DG,vsa)} for each s ES-ST, where c(s,Vsa) 

is the cost w( s, a) on the arc (s, Vsa) . 

Lemma 2.3 For every state s ES, 

X(R*,s) = u(DG,s). 

Proof. Note that, from the construction of DG, we have: c(s, Vsa) = w(s, a) and 

p(vsa, s') = q(s, s', a). From the definition of u, we have: 

ifs EST 
otherwise. 

By Lemma 2.2, we have X(R*,s) = u(DG,s) for every states ES. □ 



Chapter 3 

Decision Graph Search 

In this chapter, we consider the problem of decision graph search. The problem is 

defined as follows. For a given decision graph DG and an evaluation function, find 

an optimal solution graph SG (with respect to the evaluation function). 

From the definition of the evaluation function of decision graphs, two algorithms 

are readily available. The first one is the folding-back-and-averaging-out method 

that is commonly used in decision analysis for evaluating decision trees [79]. Another 

one is a recursive search algorithm. The disadvantage of these algorithms is that they 

need to "visit" all of the nodes in a decision graph in order to compute an optimal 

solution. 

In this chapter, we present several algorithms for decision graph search. These 

algorithms need not visit every node of a decision graph in general, and in certain 

favorable situations, need only to visit the nodes in an optimal solution graph of the 

decision graph. These algorithms can be roughly classified into three categories. The 

first category includes a depth-first heuristic-search algorithm and its anytime ver­

sion. The depth-first heuristic-search algorithm uses a branch-and-bound pruning 

mechanism similar to the alpha-beta technique for minimax tree search [38]. The 

second category includes a best-first heuristic-search algorithm, derived from AO* 

20 



CHAPTER 3. DECISION GRAPH SEARCH 21 

[50, 62, 68]. This algorithm can also be regarded as a specialization of the gen­

eral branch-and-bound algorithms described in [44, 45]. The third category includes 

iterative-deepening depth-first heuristic-search algorithms. 

3.1 Depth-First Heuristic-Search Algorithms 

In this section we discuss a depth-first heuristic-search algorithm and its variations. 

Like Ballard's *-minimax algorithm [3], our algorithm is derived from the alpha-beta 

method [38). The difference is that our algorithm makes effective use of domain­

dependent knowledge to increase search efficiency. 

This algorithm was originally developed for searching decision trees with min­

exp evaluation functions [78). Since any decision graph can be viewed as a compact 

representation of a decision tree, these algorithms are applicable to decision graph 

search as well. In the rest of this section, we first present this decision tree search 

algorithm and its anytime version, and then discuss how to tailor the algorithms to 

exploit shared structures in decision graphs. 

3.1.1 Algorithm DFS 

In this section, we present a depth-first heuristic-search algorithm DFS (Depth First 

Search) for decision graph search. The algorithm uses an alpha-beta-like pruning 

mechanism. 

In order to develop the pruning mechanism, we contrast a decision tree and a 

minimax tree. A choice node in a decision tree can be regarded as a min node 

since we want to minimize the min-exp value of it. Consequently, a chance node is 

analogous to a max node. However, a decision tree is different from a minimax tree 

in two major aspects. First, there is no cost or other information associated with 



CHAPTER 3. DECISION GRAPH SEARCH 22 

the arcs of a minimax tree, but in a decision tree the information of this kind plays 

an important role in computing both the min-exp values of nodes and an optimal 

solution tree of the decision tree. Second and more importantly, the way to compute 

the minimax values in a minimax tree is different from the way to compute the min­

exp values in a decision tree. These two differences make the original alpha-beta 

pruning rules not directly applicable to a decision tree. 

Nevertheless, we still can design a similar pruning mechanism for decision trees if 

some admissible heuristic functions are available. A heuristic function for a decision 

tree is a function that estimates the min-exp values of the nodes of the decision tree. 

A heuristic function h for decision tree DG is admissible if, for every node n in DG, 

h( n) ~ u( DG, n). For the sake of brevity, we use h*( n) to denote u( DG, n) , the 

min-exp value of the node n in the decision graph DG, when no ambiguity arises. 

DFS works as follows. For each node n to be searched next with a given upper 

bound b, DFS tries to find out whether h"'( n) is less than b. DFS returns the value 

of h * ( n) if h * ( n) is less than b , otherwise returns a value no less than b . V sing the 

terminology in [38), we call the upper bound the ",8-value" of node n. 

Let h be an admissible heuristic function for DG, and b be the ,8-value of node 

n. We have the following three cases. 

(l) b ~ h(n). In this case, due to the admissibility of h, we have b ~ h*(n). 

Thus DFS need not search node n ( and the subtree rooted at n ). 

(2) b > h(n) and n is a choice node with children n1 , .. ,,nk. In this case DFS 

searches the subtrees rooted at n1 , ... , nk. Let 

To= b and Ti= min{Ti-1, c(n, ni) + h*(ni)} for i = 1, ... , k. 

Here, c(n, ni) is the cost of the arc from n to ni and Ti-l stands for the lowest 



CHAPTER 3. DECISION GRAPH SEARCH 23 

cost obtained when the subtrees rooted at n1 , ••• , ni-l have been searched1 and the 

subtree rooted at ni is to be searched next. We call ri-l an intermediate back-value 

of node n. When searching node ni, DFS tries to find out whether h*(ni) is less 

than ri-I -c( n, ni) . Thus, DFS recursively applies to node ni with ri-l - c(n, ni) as 

the ,8-value. After all of the subtrees under node n have been searched, DFS returns 

rk which is equal to h*(n) if h*(n) < b, and is otherwise equal to b. 

(3) b > h(n) and n is a chance node. In this case, a series of approximations of 

h*( n) can be obtained as the children of n are searched. Let 

i k 

partiali = L h*(nj) * p(n, nj) + L h(ni) * p(n, ni) 
j=l j=i+l 

where p(n, ni) is the probability of the arc from n to ni, for i = 1, ... , k. partiali 

can be considered as the approximation of h*(n) when the subtrees rooted at nodes 

n1 , ... , ni have been searched. From the definition of partiali, we have: 

k 

partial0 = L h(ni) * p(n, ni), 
j=l 

partiali = partiali-1 + p(n,ni) * (h*(ni) - h(ni)) 

and 
k 

partialk = 2:h*(ni) *P(n,ni) = h*(n). 
j=l 

Since h is admissible, partiali-I :::; partiali for any i, 1 :::; i :::; k. Thus, if for some 

z, 1:::; i:::; k, partiali ~ b, then, h*(n) ~ b. In this situation, DFS will stop 

searching the rest of the children of node n. When searching node ni, DFS tries to 

find out whether 

1Note that the min-exp values h"'(n;) probably need not be computed for all n;. 



CHAPTER 3. DECISION GRAPH SEARCH 24 

Thus, DFS recursively applies to node ni with (b- partiali-i)/p(n, ni) + h(ni) as the 

,8-value. If the subtree rooted at nk is eventually searched and partialk < b, DFS 

returns partialk as the value of h*(n). 

The pseudo code of DFS is shown in Fig. 3.1. In this algorithm, MAXNUM is a 

large positive number, representing oo; cost (n, i) and prob (n, i) correspond to 

c(n, ni) and p(n, ni) respectively. Function h corresponds to an admissible heuristic 

function, and order-d and order-n correspond to two tree ordering functions that 

order the children of choice nodes and those of chance nodes respectively. These three 

functions are the abstraction of the domain-dependent knowledge that DFS uses. 

DFS consists of two mutually recursive functions: dnode(n, b) and nnode(n, 

b), for choice node search and chance node search respectively. In the algorithm, 

parameter b is the ,8-value for node n; variable nb is the ,8-value for the child to be 

searched next. In dnode, variable result denotes the intermediate back-up values 

of node n ( corresponding to ri). As the children of node n are being searched, 

variable result is updated, and the /3-value ( nb) for the child to be searched next is 

computed. If the /3-value for a child is no more than the value given by the heuristic 

function, the child need not be searched. In nnode, variable partial represents the 

series of approximations of the min-exp value of node. As the children of node n 

are being searched, variable partial is updated and the /3-value (nb) for the child to 

be searched next is computed. It is important to note here that partial will never 

decrease as more children of a chance node are searched, due to the admissibility of 

the heuristic function. Therefore, as soon as partial catches up with b, it is surely 

known that the min-exp value of the chance node is equal to or greater than the 

,8-value. Thus no more children need to be searched. 

The description of DFS given in Fig. 3.1 does not construct the optimal solution 



CHAPTER 3. DECISION GRAPH SEARCH 

dnode(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; 
else return v(n); 

if h(n) >= b then return MAXNUM; 
result= b; 
k =#of children of node n; 
let n1, n2, ... , nk = order-d(n); 
for (i = 1 to k) do 

nb = result - cost(n, i); 
if nb > h(ni) then 

result= min {result; cost(n, i) + nnode(ni,nb)}; 
if result>= b then return MAXNUM; 

else return result; 

nnode(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; 
else return v(n); 

if h(n) >= b then return MAXNUM; 

k =#of children of node n; 
let n1, n2, ... , nj = order-n(n); 
partial= h(n1)* prob(n, 1) + ... + h(nk) * prob(n, k); 
i = O; 
while (partial< b) and (i < k) do 

i = i + 1; 
nb = (b - partial)/prob(n, i) + h(ni); 
partial=partial+prob(n, i)*(dnode(ni, nb)-h(ni)); 

if partial>= b then return MAXNUM; 
else return partial; 

Figure 3.1: The pseudo code of DFS 

25 



CHAPTER 3. DECISION GRAPH SEARCH 26 

tree. The algorithm can be easily modified to do so. Thus, for a decision tree DC 

and a node n, DFS can be used either to compute h*(n) or to compute an optimal 

subtree rooted at n in DC. Since DFS is a depth-first search algorithm, the size of 

the space that it needs is linear in the depth of the tree if the solution tree need not 

be constructed explicitly, and is otherwise linear in the size of the largest solution 

tree that the algorithm ever constructs in the search course. 

As an illustration of this algorithm, let us consider an example. For convenience, 

we assume that, for a given decision tree, the algorithm orders the tree first ( using 

its tree ordering functions) and then searches the ordered tree in the left-to-right 

order2 (in contrast to integrating searching and tree ordering together). A decision 

tree, after being ordered by the tree ordering functions used by DFS, is shown in Fig. 

3.2 where we assume that all the terminals have value 10 and all the branches of any 

chance node have the same probability (0.5). The optimal solution is indicated by 

the arrows. Its cost is 35.5. Suppose that DFS uses a heuristic function ho that 

returns zerb for every node in the tree. Clearly, this heuristic function is admissible. 

The search algorithm starts from the root with oo as the ,8-value. After node n8 

is searched, the intermediate result for node n4 is 28. Thus when node n9 is being 

explored, its ,B-value is 3. After node n18 is explored, the approximation of the 

min-exp value of node n9 is 5 which exceeds its ,8-value, thus node n19 is pruned3
• 

Another cutoff happens right after node n10 is explored. The intermediate back-up 

value of node n5 is 25. The ,B-value for node n11 is negative, therefore, node n11 , 

together with all the nodes below it, is pruned. The last pruned node for this problem 

is node n27 • Therefore, five nodes in total are pruned. 

2This convention is used throughout this section. 
3Pruning a node means that the node need not be visited at all. In the current case, even if node 

n19 is not a terminal, but is an interior node, it will still be pruned. 



CHAPTER 3. DECISION GRAPH SEARCH 

18 

t \ 
:: ~2S:: :: ~2~: :: ~30,: (n~ i: 

.. --.. .. ... .. .. . --. .. ... .. 

Figure 3.2: An illustration of the search algorithm 

Let dt be a function defined as: 

dt(n b) = { nnode(n, b) 
' dnode( n, b) 

if n is a chance node, 
otherwise. 

The following theorem establishes the correctness of DFS. 

Theorem 3.1 If the heuristic function used by DFS is admissible, then: 

_ { h*(n) 
dt( n, b) - MAXNUM 

if h*(n) < b, 
otherwise 

for any node n in the decision tree and a number b. 

An inductive proof of this theorem is given in Section 3.5. 

27 

Corollary 3.2 If the heuristic function used by DFS is admissible, then dt(n, b') ::S: 

dt(n, b) for any node n in a decision tree and any two numbers b' ~ b. Furthermore, 

if dt(n, b) < b, then dt(n, b) = dt(n, b'). 

Corollary 3.3 If the heuristic function used by DFS is admissible, then h*( n) 

dt( n, oo) for any node n in the decision tr~e. 



CHAPTER 3. DECISION GRA PH SEARCH 28 

3.1.2 The effect of heuristic functions 

Let h1 and h2 be two heuristic functions, h1 is more informed than h2 for a 

decision tree if h1 ( n) ~ h2 ( n) for every node n in the decision tree. Suppose that 

both heuristic functions h1 and h2 are admissible, it is clear that the performance 

of DFS with h1 will be no worse than that of DFS with h2 for the same decision 

tree if h1 is more informed than h2 • 

As an illustration on the effect of the heuristic function, let us assume that for 

the decision tree shown in Fig. 3.2, we now have a more informed heuristic function 

h~ defined as follows: h~(ni) = 16 for i = 2, ... , 7 and h~(ni) = 7 for i = 8, ... , 31. 

When applying DFS with h~ to the decision tree, nine nodes (nodes in the subtree 

rooted at nodes n9 , n11 and n13 ) will be pruned. 

3.1.3 Tree ordering 

Note that the correctness of DFS is independent of the tree ordering functions. How­

ever, like minimax tree search, the order in which the children of nodes in a decision 

tree are searched may have a great effect on the execution time of the algorithm. 

Generally speaking, we want to search first the branch of a choice node that results in 

the final (minimal) min-exp value of the choice node in the h<;>pe that as many other 

branches as possible can be pruned; and we want to search first the child of a chance 

node that contributes most to the min-exp value of the chance node in the hope that 

the partial accumulation can reach the ,B-value of the node as early as possible. 

As an illustration on the effect of tree ordering, let us consider the decision tree 

shown in Fig. 3.3. This is the same decision tree as the one in Fig. 3.2 except that 

the orderings of the children of some nodes are different. It can be verified that when 

DFS with heuristic function h0 is applied to this tree, nine nodes (nodes n 27 , n 29 , 



CHAPTER 3. DECISION GRAPH SEARCH 29 

n19 , and the nodes in the subtrees rooted at nodes n10 and nu ) will be pruned, but 

when DFS with heuristic function h0 is applied to the decision tree shown in 3.2, only 

five nodes are pruned. Similarly, when DFS with h~ is applied to this tree, twenty 

one nodes (nodes in the subtrees rooted at nodes n13 , n14 , and n2) will be pruned, 

but when DFS with heuristic function h~ is applied to the decision tree shown in 3.2, 

only nine nodes are pruned. 

:: n2(J ::~21:: .. . - . .. -.... 

Figure 3.3: An illustration of the effect of tree ordering 

Note that a heuristic function normally contains more information than a tree 

ordering function. In particular, we can define tree ordering functions from a heuristic 

function. For example, given a heuristic function h , we can define order d in such a 

way that if ni and ni are two children of a choice node n and 

then ni should be searched before ni. With this definition, child ni of a choice node 



CHAPTER 3. DECISION GRAPH SEARCH 30 

n will be pruned if there exists a child ni of n, i < j , such that: 

Let e = h(ni) + c(n, ni) - (h(ni) + c(n, ni)). The above inequality is equivalent to: 

The left hand side in the above inequality is the difference between the min-exp value 

of node ni and its lower bound given by function h, and the right hand side is the 

difference which determines the search order between ni and ni. The more informed 

the heuristic function is, the smaller h*(ni) - h(ni), thus the better the chance for 

node ni being pruned. 

We can also define orderp(n) in such a way that if ni and ni are two children 

of a chance node n and 

then ni should be chosen before ni. With this ordering, children ni+l, ... , nk of a 

chance node n will all be pruned if 

j k 

L h*(n1) * p(n, n1) + L h(nk) * p(n, nk) ~ b. 
l=l l=j+I 

In Chapter 11, when we consider U-graph based navigation problems [77], we will en­

counter some heuristic functions for a realistic problem. Moreover, we define ordering 

functions in terms of heuristic functions in the same way as we did above. 

3.1.4 Using inadmissible heuristic functions 

The previous section required that the heuristic function h be admissible. For the A* 

algorithm, Harris [30] has argued that the condition of admissibility is too restrictive. 



CHAPTER 3. DECISION GRAPH SEARCH 31 

His arguments are applicable to decision tree search as well. Although it may be 

impractical to find a good heuristic function that never violates the admissibility 

condition, it is often easier to find a function that estimates the min-exp values well, 

but occasionally overestimates them. Like the case for A* [68], we have the following 

two theorems for DFS that establish the linear relationship between the maximal error 

of an inadmissible heuristic function and the maximal error of the min-exp value of 

the resulting solution. 

Theorem 3.4 Suppose DFS uses heuristic function h. If there exists a number 8 2::: 0 

such that h satisfies h(n) :::; h*(n) + 8 for every node n in a decision tree, then for 

every node n in the decision tree 

h*(n)+82:::b if dt(n,b)2:::b 

and 

h*(n) + 8 2::: dt(n, b) if dt(n, b) < b. 

Theorem 3.5 Suppose DFS uses heuristic function h. If the costs of all the arcs in 

a decision tree are non-negative and h*(n) 2::: 0 for each node n in the decision tree1 

and there exists a number 8 2::: 0 such that h satisfies: 

0:::; h(n) ~ (1 + 8) * h*(n) for every node n in the decision tree, 

then for every node n in the decision tree and any non-negative number b 1 

h*(n) * (1 + 8) 2::: b if dt(n,b) 2::: b 

and 

h*(n) * (1 + 8) 2::: dt(n, b) if dt(n, b) < b. 



CHAPTER 3. DECISION GRAPH SEARCH 32 

The proofs of these theorems are given in Section 3.5. 

3.1.5 An anytime version of DFS 

The time complexity of searching for an optimal solution tree, or a suboptimal solution 

tree with a bounded quality, of a decision tree is exponential in the depth of the tree. 

Thus for a practical problem, it may take a long time to compute such a solution 

tree. Note that DFS will not return anything before completing the computation of 

an optimal (suboptimal) solution. However, in some situations, it would be useful 

if an algorithm could return some (possibly non-optimal) solutions in the course 

of computing an optimal solution. It would be even better if the quality of those 

intermediate solutions improves monotonically with the computational time spent by 

the algorithm. Since an algorithm with this property can give an answer at any time 

after computing the initial solution, it is called an anytime algorithm [8]. 

We can think of an anytime algorithm as a program which generates a stream of 

solutions, ordered according their expected costs. For decision tree search, we can 

easily obtain a naive anytime algorithm from a brute-force procedure and a filter. For 

a given decision tree, the brute-force procedure systematically enumerates all of the 

possible solutions of the decision tree, and passes the solution stream to the filter. The 

filter maintains the minimal cost of the solutions arrived so far and discards solutions 

with cost no smaller than the minimal cost. Unfortunately, the performance of this 

algorithm can be bad. 

We have developed an algorithm A-DFS (an anytime version of DFS) that incor­

porates the pruning mechanism we discussed in Section 3.1.1 and at the same time 

behaves like an anytime algorithm. A-DFS differs from DFS in the following two 

aspects: 



CHAPTER 3. DECISION GRAPH SEARCH 33 

• When searching a choice node, DFS will exhaust all of the children of the choice 

node and choose the best one. But A-DFS returns the first child that results 

in an admissible solution. Furthermore, A-DFS also sets a backtrack point so 

that it can continue exploring the remaining children later on. 

• In the course of searching a chance node, if DFS finds that partial ~ b, it 

reports a cutoff. But in a similar situation, A-DFS requests a backtrack. 

Fig. 3.4 shows the pseudo code of A-DFS. In the figure, we have a new procedure 

a-search as the interface of the algorithm. The statement backtracking means to 

continue from the latest backtrack point. If there is no backtrack point, then just 

return MAXNUM. A Prolog version of this algorithm is given in Fig. 3.5. 

3.1.6 Exploiting shared structures in decision graphs 

A decision graph can be considered as a compact representation of a decision tree in 

which some subtrees are identical. Conversely, a decision graph can be "expanded" 

into a decision tree by duplicating those shared nodes in the decision graph. 

The algorithms that we presented so far are based on decision trees. These algo­

rithms are also applicable to decision graphs in the sense that they are applicable to 

the "expanded versions" ( the corresponding decision trees) of the decision graphs. An 

advantage of this treatment is that the algorithms have moderate space requirements4
• 

A disadvantage of the treatment is its inability to exploit shared structure of decision 

graphs. In other words, the algorithms may search a subgraph rooted at a shared 

node more than once. In order to overcome this disadvantage, we use a "cache tech­

nique." When the expected cost of a shared node is obtained, the node along with the 

4For DFS, the space requirement is linear in the depth of the decision trees if it is not required 
to construct an optimal solution graph, and is otherwise linear in the size of solution graphs; the 
space requirement of the anytime algorithm is linear in the size of solution graphs. 



CHAPTER 3. DECISION GRAPH SEARCH 

a_search (n. b) 
if n is a choice node then result= a_dnode(n. b) 

else result a_nnode1(n. b); 
report(result); backtracking; 

a_dnode(n. b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if h(n) >= b then return MAXNUM; 
result= b; 
k =#of children of n; 
let n1. n2, ...• nk = order_d(n); 
for (i = 1 to k) do 

nb = result - cost(n, i); 
if nb > h(ni) then 

result1 = cost(n, i) + a_nnode(ni,nb); 
if result1 < result then 

result= result1; 
set a backtrack point; return result; 

return MAXNUM; 

a_nnode(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if h(n) >= b then return MAXNUM; 

k =#of children of N; 
let n1, n2, ... , nk = order_p(n); 
partial= h(n1)* prob(n, 1) + ... + h(nk) * prob(n, k); 
i = O; 
while (partial< b) and (i < k) do 

i = i + 1; nb = (b - partial)/prob(n, i) + h(ni); 
partial=partial+prob(n, i)*(a_dnode(ni, nb)-h(ni)); 

if partial>= b then backtracking else return partial; 

Figure 3.4: The pseudo code of A-DFS 

34 



CHAPTER 3. DECISION GRAPH SEARCH 

% search node N for a solution tree R with cost C such that C < B 

:-dynamic stop/i. 

search(N, B, term(V, N), V) :- terminal(N), v(N, V), V < B. 
search(N, B, choice(C, N, R), C) :- h(N, HV), HV < B, 

choice(N), children(N, L), searchchoice(L, B, R, C). 
search(N, B, chance(C, N, R), C) :- h(N, HV), HV < B, chance(N), 

children(N, L), initial(L, CO), 
searchchance(L, B, R, C, CO). 

%search children list of a choice node 

35 

%When find a solution, we can return the solution and update the bound. 

searchchoice([(LC, N)IL], B, R, C) :- NB is B - LC, 
search(N, NB, Ri, Ci), assert(stop(L)), C2 is LC+ Ci, 
searchchoice_with_s([(LC, N)IL], R1, R, C2, C). 

searchchoice([_IL], B, R, C):- \+ stop(L), searchchoice(L, B, R, C). 

searchchoice_with_s([(LC, N)I_], R, (LC, R), C, C). 
searchchoice_with_s([_IL], _, R, Ci, C):- searchchoice(L, Ci, R, C). 

¾search children list of a chance node 

searchchance([J, B, [], CO, CO) :- CO< B. 
searchchance([(P, N)IL], B, [(P, Ri)IR2], C, CO) :- CO< B, h(N, HV), 

NB is (B CO)/P + HV, search(N, NB, R1, C1), 
C2 is CO+ P*(Ci - HV), searchchance(L, B, R2, C, C2). 

% An auxiliary function 

initial([], 0). 
initial([(P, N)IL], C) ·- h(N, HV), initial(L, C1), C 1s C1 + P* HV. 

Figure 3.5: A Prolog version of A-DFS 



CHAPTER 3. DECISION GRAPH SEARCH 36 

cost is stored in a cache for later use. When a node is to be searched, the algorithms 

first check whether the the node has been cached, and will search the node only if 

the node is not in the cache. 

In a similar vein, we can also make use of an "adaptive" heuristic function. That 

is, whenever a cutoff occurs at a node n , we obtain a new lower bound on the expected 

cost of the node. If the new bound is greater than h( n) , we obtain a new heuristic 

function h' that agrees with h at all nodes except that h' ( n) equals the new lower 

bound. Obviously, h' is more informed than h. This could be viewed as an example 

of "learning from failure." 

By incorporating this caching technique into DFS, we obtain DFS' as shown in Fig. 

3.6. When the expected cost of a node is obtained, DFS' needs to determine whether 

the expected cost should be cached or not; when a cutoff occurs at a node, DFS' 

needs to determine whether the heuristic function should be updated accordingly. If 

the "caching policy" allows no node ever to be cached, the algorithm degenerates 

to DFS. On the other hand, if the "caching policy" allows the expected costs of all 

nodes to be cached, the algorithm exploits the shared structure of decision graphs to 

the maximum degree. However, this may lead to an exponential space requirement, 

defeating an advantage of DFS. Clearly, there is a tradeoff between time and space 

in DFS'. It is a "meta-decision" problem to decide which nodes should be cached. 

Generally speaking, we would like to cache those nodes that are likely to be searched 

again and that would take much time to search. The searching time of a node can 

be obtained when it is searched for the first time. The probability that a node will 

be searched again may be estimated based on domain dependent knowledge. Russell 

and Wefald's meta-reasoning mechanism [82, 81] can play a role in deciding which 

nodes' expected costs should be cached. 



CHAPTER 3. DECISION GRAPH SEARCH 

dnode' (n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if n is cached then 

let result be the cached value; 
if result>= b then return MAXNUM else return result; 

if h(n) >= b then return MAXNUM; 
result= b; 
k =#of children of n; 
let n1, n2, ... , nk = order-d(n); 
for (i = 1 to k) do 

nb = result - cost(n, i); 
if nb > h(ni) then 

result= min {result; cost(n, i) + nnode'(ni,nb)}; 
if result>= b then 

{if function h should be updated at n then update it; 
return MAXNUM;} 

else {if n should be cached then cache n; return result;} 

nnode' (n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if n is cached then 

let result be the cached value; 
if result>= b then return MAXNUM else return result; 

if h(n) >= b then return MAXNUM; 

k =#of children of N; 
let n1, n2, ... , nk = order-n(n); 
partial= h(n1)* prob(n, 1) + ... + h(nk) * prob(n, k); 
i = O; 
while (partial< b) and (i < k) do 

i = i + 1; 
nb = (b - partial)/prob(n, i) + h(ni); 
partial=partial+prob(n, i)*(dnode'(ni, nb)-h(ni)); 

if partial>= b then 
{if function h should be updated at n then update it; 
return MAXNUM;} 

else {if n should be cached then cache n; return partial;} 

Figure 3.6: The pseudo code of DFS' 

37 



CHAPTER 3. DECISION GRAPH SEARCH 38 

A similar version can be obtained for A-DFS in the same way. 

3.2 Applying AO* to Decision Graph Search 

The AO* algorithm was first developed in [52] for searching AND /OR graphs with 

additive costs [52] . The name AO* was coined in [62]. As shown in [45], AO* is 

applicable to AND/OR graphs with monotone evaluation Junctions [45]. We say 

a function g(x1 , ... ,xk,L) is monotone if g(y1 , ... ,yk,L) :S: g(x1 , ••• ,xk,L) provided 

Yi :S: Xi for i = 1, ... , k. An evaluation function u is monotone if there is a monotone 

function g such that u(n) = g( u(n1), ... , u(nk), L) for each non-terminal node n, where 

L represents the local information (in terms of arc costs or arc probabilities for the 

case of decision graphs) associated with the arcs incident from n. From the definition 

of the min-exp evaluation function, we can see that the min-exp evaluation function 

is monotone. Thus AO* is applicable to decision graph search problems as well. In 

this section, we illustrate how to tailor AO* so that it can apply to decision graph 

search, and present some results on the resulting algorithm. 

We assume that the decision graph to be searched is given in the implicit form. 

We use h again to denote a heuristic function. The algorithm works on an explicit 

graph G which initially consists of the root node only and is gradually expanded. 

During the entire process, G is always a subgraph of the original graph. 

A node in G is called a tip node if it has no children. A solution graph of the 

explicit graph is called a potential solution graph (psg). A psg is a solution graph of 

the given graph if all the tip nodes in the psg are terminals. 

With the help of the heuristic function h , we define a min-exp function f on the 

explicit graph. Let n be any node in G, f(n) is defined as follows. 

• f(n) = v(n) if n is a terminal. 

I. 



CHAPTER 3. DECISION GRAPH SEARCH 39 

• f ( n) _:,_ h( n) if n is a non-terminal tip node. 

• f(n) = minf=1 {c(n,ni) + f(ni)} if n is a choice node with children n1, ... ,nk. 

• J(n) = I:7=1 p(n, ni) * f(ni) if n is a chance node with children n1, ... , nk. 

Due to the admissibility of h, the following result is obvious. 

Lemma 3.6 For any node n in G, f(n) ~ h*(n). 

At any moment, the explicit graph can have a number of potential solution graphs. 

We use opsg to denote an optimal potential solution graph - a potential solution 

with the lowest cost. 

AO* can be intuitively understood as an iteration of two major operations. The 

first one is the node expansion that finds a non-terminal tip node in the identified 

optimal potential solution graph and generates the children of the node. The cost 

of each child is given by the heuristic function, if it is generated for the first time. 

The second operation is the cost updating operation that, starting from the newly 

expanded node, updates the costs of the ancestors of the newly expanded node, ac­

cording to the cost function. In the course of the cost updating, a new optimal 

potential solution graph is identified. The termination condition for this process is 

that the optimal potential solution graph has no non-terminal tip node. The basic 

structure of the algorithm is as follows: 



CHAPTER 3. DECISION GRAPH SEARCH 40 

1. Initially, both G and opsg consist of only the root node. 

2. If all of the tip nodes of opsg are terminals, stop and output opsg as the 

solution graph. 

3. Select a non-terminal tip node of opsg , generate the children of the node and 

add them to G (if some children are already in G, just share them). 

4. Set opsg to be an optimal potential solution graph in G. 

5. Go to step 2. 

The above algorithm can be further refined by using the marking technique of 

[52]. The following version of AO* is adapted from [10], where h denotes a heuristic 

function for the given decision graph satisfying h( n) = v( n) for all terminals in the 

decision graph. In the algorithm, the marked psg rooted at the root of the decision 

graph is the same as the opsg in the above algorithm. 

Algorithm AO* 

1. Initially the explicit graph G and the potential solution graph psg consist 

solely of the root node s . Set 

J(s) 4--- h(s). 

If s is a terminal node, then mark s SOLVED. 

2. Repeat the following steps until s is marked SOLVED. Then; exit with }(s) 

as the solution cost. 



CHAPTER 3. DECISION GRAPH SEARCH 41 

2.1 Choose a tip node n of the marked psg that is not marked SOLVED. For 

each child ni of n not already present in the explicit graph G, set 

Mark SOLVED those children of n that are terminals. 

2.2 Create a set Z of nodes containing only node n . 

2.3 Repeat the following steps until Z is empty. 

2.3.1 Remove from Z a node m that has no descendent in Z. 

2.3.2 (i) If m is a choice node with children m1 , ... , mk, then set 

Mark that arc ( m, mi0 ) for which the above minimum occurs. [Resolve 

ties arbitrarily, but in favour of a SOLVED node.] Mark m SOLVED 

if and only if mio is marked SOLVED. 

(ii) If m is a chance node with children m1 , ... , mk, then set 

](m) ~ L p(m, mi)* }(mi)-
19::;k 

Mark all arcs ( m, mi). Mark m SOLVED if and only if every mi 1s 

marked SOLVED. 

2.3.3 If }(m) changes value at step 2.3.2 or if m is marked SOLVED, then 

add to Z all of the immediate predecessors of m . 



CHAPTER 3. DECISION GRAPH SEARCH 42 

The only difference between the above algorithm and the AO* algorithm given in 

(10] for AND/OR graphs with additive costs lies in the way of updating function j 

at step 2.3.2 (ii). 

Lemma 3. 7 At any stage during the search process, if a node n is marked SOLVED, 

a solution graph with cost J ( n) can be obtained by tracing down the marked arcs 

from n. 

Proof. By a trivial induction on the stage of the algorithm. 

Lemma 3.8 If there exists some c 2:: 0 such that h(n) $ h*(n) + E for every tip 

node n in the explicit graph G ! then at any stage during the search process! we have 

](n)::;; h*(n) + E for all nodes in G. 

Proof. Similar to the proof of Lemma 1 in (52]. We prove the lemma by induction 

on the stage of the algorithm. The lemma is trivially true initially. Suppose that it 

is true at a certain stage and let us prove it is true at the next stage, after execution 

of the body of the outer loop (i.e., steps 2.1 - 2.3). 

Since during the execution of the loop body, the J values of only those nodes 

that are ancestors of node n may be changed, let us consider the subgraph, G', of 

G obtained up to this stage, which consists of all the ancestors of node n . Since G' 

is acyclic, an index can be attached to each node of G', starting with n° = n, in 

such a way that all paths from node ni to node n° contain only ni with j < i. 

Now, we prove by induction on the index i that the inequality still holds for each 

node in G' after its J value is updated. 

First, we prove that this is true for n°. Let n1 , ... , nk be the children of n. For 

any child, nz, l $ l ::;; k, if it has been generated before, we have ](n1) ::;; h*(n1) + E 



CHAPTER 3. DECISION GRAPH SEARCH 43 

by the outer induction assumption, and if nz is generated for the first time, we also 

have f(n1) = h(n1) ~ h*(nz) + E by the hypothesis on the heuristic function h. 

If n is a choice node, we have: 

}(n) = min1{f(n1) + c(n, nz)} 

~ min1{h*(n1) + E + c(n, nz)} 

= t+ h*(n) 

Similarly, if n is a chance node, we have: 

](n) = °L,1{](ni) * p(n, n1)} 

~ °L,1{(h*(n1) + t) * p(n, nz)} 

=t+h*(n) 

Now, let us assume that the lemma is true for all nodes ni with j < i, then the 

inequality can be proved true for node ni by repeating the above argument. Thus, we 

have proved that the lemma is true after the execution of the loop body. Therefore, 

the lemma holds by induction. □ 

Note that Lemma 1 in [52] is actually a special case of Lemma 3.8 above with 

E = 0. The above lemma will not be true for AND/OR graphs with additive costs, 

because if E > 0, the error may be accumulated in the search process for additive 

cost AND/OR graphs. 

Theorem 3.9 The algorithm with heuristic function h satisfying h(n) ~ h*(n) + E 

for every node n that is ever in the explicit graph G , where E ?: 0 , will return a 

solution graph with cost less than or equal to h*(s) + E, if the algorithm terminates. 

Proof. Follows from Lemma 3. 7 and Lemma 3.8 immediately. D 



CHAPTER 3. DECISION GRAPH SEARCH 44 

Corollary 3.10 The algorithm with an admissible heuristic function will return an 

optimal solution, if it terminates. 

Lemma 3.11 If h*(n) 2:'.: 0 and there exists some e., e. 2:'.: 0, 0 5 h(n) 5 h*(n)(l+e.), 

for every node n in the explicit graph G, and the arc costs in the given graph are 

non-negative, then at any stage during the search process, we have ](n):::; h*(n)(l+e.) 

for every node n in G . 

Proof .. Similar to that for Lemma 3.8. 

Theorem 3.12 If the arc costs in the given graph are non-negative, then the algo­

rithm with heuristic function h satisfying O 5 h(n) 5 h*(n)(l + e.) for every node 

that is ever in the explicit graph, where e. 2:'.: 0 , will return a solution graph with cost 

less than or equal to h*( s )(1 + e.), if the algorithm terminates. 

Proof. Follows from Lemma 3.7 and Lemma 3.11 immediately. D 

As the reader may have already noticed, Theorems 3.9 and 3.12 above do not assure 

that the algorithm always stops even if a finite solution graph exists for a given 

(infinite) decision graph. Thus they are weaker than Theorem 1 in [52]. However, 

for finite acyclic decision graphs, the algorithm is guaranteed to terminate. This 

weakness seems to be inevitable in general, and indeed is also shared by the depth 

first heuristic algorithms that we presented in the previous section, since there does 

exist some case where a finite optimal solution graph does exist but the algorithm 

will not terminate. This can be illustrated by the following example. Consider the 

decision tree in Fig. 3.7. Node A in the decision tree is the root of the graph. E~ch 

choice node has two children, and the child on the right side is a terminal with zero 

cost. The cost of the arc to the left child is 1 and the cost of the arc to the right 



CHAPTER 3. DECISION GRAPH SEARCH 45 

child is 2. The left child is a chance node. Each chance node has two children, each 
I 

with 0.5 probability. The subtree below each child of a chance node is isomorphic to 

the entire decision tree. Thus the decision tree is infinite. It is easy to prove that 

the min-exp value of this decision tree is 2 and an optimal solution tree consists of 

only two nodes: the root and its right child. However, if AO* adopts a depth-first 

left-to-right strategy in selecting the next tip for expansion, the algorithm will not 

terminate, since the J values of the marked potential solution trees will always be 

less than 2. 

2 

Figure 3.7: An example for which AO* may not terminate 

Note that the possibility of non-termination of the algorithm stems from the 

arbitrariness in the selection of a tip node to be expanded next. In the case of 

searching into AND /OR graphs with additive costs, no matter which tip node is 

selected, the expansion of the tip node will increase by a certain amount the costs 

of the solution graphs consisting of that node, and the increasing amount can be 



CHAPTER 3. DECISION GRAPH SEAR.CH 46 

bounded from below. However, in the case of searching into decision graphs, the 

increasing amount contributed by a tip node expansion can be arbitrarily small. 

In order to guarantee the termination of the algorithm when a finite optimal 

solution graph exists, we need another heuristic function for tip node selection. Here, 

we propose two heuristics for tip node selection out of termination consideration. 

Heuristics 1: using the breadth first strategy in tip node selection. That is, if 

t1 , ... , tk are the tip nodes of the marked potential solution graph, the tip node with 

the smallest depth should be selected for expansion. 

Heuristic 2: using a best first strategy in tip node selection. Suppose t1 , ... , tk are 

the tip nodes of the marked potential solution graph. The tip node with the largest 

P(ti) value should be expanded, where P(ti) is the product of the probabilities along 

the path from the root to tip node ti. 

3.3 Iterative Deepening Search 

The two kinds of algorithms that we discussed so far for decision graph search are 

complementary. A major disadvantage of AO* is that it requires exponentially large 

space. The advantage of AO* is that it will not stick too long to a solution graph 

which is apparently "bad." On the other hand, in comparison with AO*, the major 

advantage of the depth first search algorithms is their moderate requirement on space. 

However, the price for this is that they may search down to a deep layer in a solution 

graph that is not optimal. Thus it would be nice if we could design algorithms that 

combine the advantages of AO* and the advantage of the depth search algorithms 

together. For OR-graph search, the iterative deepening search technique [40] was 

proposed for such a combination, and was proved asymptotically optimal along the 

following three dimensions: time complexity, space complexity and the quality of 



CHAPTER 3. DECISION GRAPH SEARCH 47 

the solution. In this section, we propose two iterative-deepening heuristic-search 

strategies for decision graph search. 

3.3.1 Depth-bounded iterative deepening 

The first iterative-deepening search strategy is a depth-bounded iterative-deepening 

strategy. The strategy repeatedly applies DFS to a decision graph, with increasing 

depth-bounds. Whenever a non,-terminal node n on the depth boundary is visited, 

h( n) is used as its min-exp value. After each iteration, a potential solution graph with 

the minimum cost is identified. This process terminates when the optimal potential 

solution graph identified this way is actually a solution graph ( all tip nodes in the 

potential solution graph are terminals). 

Unlike iterative-deepening A* [40], our algorithm uses search depth as the cut­

ting off criterion. In this regard, our iterative-deepening strategy is similar to the 

iterative-deepening depth-first search algorithm (DFID) reported in [40]. However, 

unlike DFID, the depth-first search in each iteration in our algorithm is a kind of 

heuristic search. In fact, our algorithm is very much like the iterative-deepening game 

tree searching algorithms [93, 105). 

The following result is obvious. 

Theorem 3.13 The depth-bounded iterative deepening algorithm returns an optimal 

solution graph if the heuristic function it uses is admissible and if it terminates. 

3.3.2 Cost-bounded iterative deepening 

The second iterative deepening search strategy is a cost-bounded iterative deepening 

strategy, very much like iterative deepening A* (IDA*) [40]. The idea is that succes­

sive iterations correspond not to increasing depth of search, but rather to increasing 



CHAPTER 3. DECISION GRAPH SEARCH 48 

;,-values for the search. The strategy maintains two values: the upper bound bu and 

the lower bound b1 on the decision graph and works as follows: Initially, the lower 

bound b1 is set to the value given by the heuristic function, while the upper bound is 

set to the min-exp value of a solution graph that can be obtained by identifying an 

arbitrary solution graph. At each iteration, a new ;,-value bis set to b1*a+bu*(I-a) 

for some a E (0, 1) and a depth first search (using DFS) with b as the ;,-value is 

performed. If a solution with cost less than b is returned, then the solution is an 

optimal solution, thus the algorithm stops. Otherwise, the lower bound b1 can be set 

to b. This process continues until either an optimal solution is found or the lower 

bound and the upper bound become close enough. 

Theorem 3.14 The cost-bounded iterative deepening search algorithm returns an op­

timal solution graph if the heuristic function it uses is admissible and if it terminates. 

An advantage of this algorithm over DFS is that it is less sensitive to the node 

ordering in a graph. This can be best illustrated by an example. Suppose the root 

of the decision tree is a choice node with two children n1 and n2 • Suppose further 

that the subtree below n1 is very large and so is its min-exp value, but the subtree 

below n2 is very small and so is its min-exp value. Clearly, node n1 cannot be 

in a~ optimal solution tree. However, if DFS happens to search the subtree below 

node n1 first, then it will not come to node n 2 until an optimal solution tree for the 

subtree below node n1 is found. This may take a lot of time. On the other hand, the 

cost-bounded iterative deepening algorithm will not stick to the subtree below node 

n1 for too long (because the ;,-value can be very small). 

The cost-bounded iterative deepening algorithm discussed above is analogous to 

the binary iterative deepening A* [67] in the sense that both the upper bound and 



CHAPTER 3. DECISION GRAPH SEARCH 49 

the lower bound of the problem are maintained. 

3.3.3 Generic iterative deepening 

So far, we have discussed two particular iterative deepening techniques. As suggested 

in [18], an iterative deepening search procedure in general can be divided into two 

components: one for deciding which portion of the given graph should be searched 

next, and the other for computing an optimal solution graph in the identified sub­

graph. The procedure is a simple loop alternatively calling these two components. In 

the previous two iterative deepening procedures, these two components are integrated. 

In general, it is not a trivial issue to decide which portion of the given graph should 

be searched. For a more detailed discussion, the reader is referred to [17]. 

3.3.4 Co-routines 

It is interesting to note that the cost-bounded iterative deepening algorithm and the 

anytime algorithm A-DFS can work as co-routines in the following way. For a given 

problem, A-DFS gradually approaches the optimal value of the decision graph from 

above, and thus can be used to update the upper bound bu of the cost-bounded 

iterative deepening algorithm. The co-routines stop when either algorithm reports 

finding an optimal solution, or when the lower bound and the upper bound become 

close enough. In this way, we obtain an anytime algorithm that also uses cost­

bounded iterative deepening strategy. 

Theorem 3.15 The co-routines return an optimal solution graph if the heuristic 

function they use is admissible and if they terminate. 

Finally, we conclude this section with a result on the termination of the algorithms 

discussed so far. 



CHAPTER 3. DECISION GRAPH SEARCH 50 

Theorem 3.16 All of the algorithms presented in this chapter terminate for finite 

acyclic decision graphs. 

Proof. A finite acyclic decision graph can be expanded into a decision tree of finite 

size. 

The termination property of DFS and AO* can be proved by an induction on the 

number of nodes visited by the algorithms. 

The termination property of the anytime algorithm A-DFS follows that of DFS 

and the fact that a decision tree of finite size can have only finite number of solution 

trees (graphs). 

The depth-bounded iterative-deepening algorithm terminates because of two facts: 

(a) the number of iterations is bounded from above by the depth of the graph, and 

(b) each iteration just involves a call to DFS, which terminates. 

The termination property of the cost-bounded iterative-deepening algorithm can 

be proved by establishing an upper bound on the number of iterations. 

The co-routines terminate because of the termination property of A-DFS and 

that of the cost-bounded iterative-deepeding algorithm. □ 

3.4 Summary 

In this chapter, we present three classes of algorithms for decision graph search. 

DFS and and its anytime version A-DFS belong to the first class. They are depth­

first search algorithms, derived from the well-known alpha-beta search algorithm 

[38] for minimax tree search. These algorithms use domain dependent knowledge 

for increasing search efficiency. The algorithm AO* belongs to the second class, 

derived directly from the AO* algorithm [68, 62] for searching AND/OR graphs with 



CHAPTER 3. DECISION GRAPH SEARCH 51 

additive costs. The iterative-deepening algorithms belong to the third class. These 

algorithms are derived by integrating the iterative-deepening search techniques [40] 

into the depth-first search algorithm. 

Now, a natural question is still to be answered. That is, under what circum­

stances are these algorithms more appropriate than the folding-back-and-averaging­

out method [79] for decision graph search? Our answer to the question is that it 

depends on the degree of node sharing in the graphs. At one extreme where there 

is a substantial sharing in the graph such that the number of nodes in the graph 

is polynomial in the depth of the graph, then the folding-back-and-averaging-out 

method is more appropriate, since it exhibits polynomial (in the depth of the graph) 

complexity while the complexity of our search-oriented algorithms is still exponential. 

At the other extreme where there is no sharing at all in a decision graph, the graph 

is essentially a tree, and our algorithms, especially those in the first and the third 

classes, are more appropriate. 



CHAPTER 3. DECISION GRAPH SEARCH 52 

3.5 Proofs of Theorems 

Theorem 3.1 If the heuristic function used by DFS is admissible, then 

dt(n b) = { h*(n) if h*(n! < b, 
' MAXINT otherwise. 

for any node n in the decision tree and a number b. 

To prove this theorem, we make two observations. First, we observe that function 

h* is equivalent to dt0 defined as follows: 

Case 1 n is a terminal: 

dto(n) = h*(n) = v(n). 

Case 2 n is a chance node: 

dto(n) = to1-

where toi, 0 ~ i ~ l, is recursively defined as follows: 

too= I:}=1 h(nj) * Pii 
toi = toi-1 +Pi* (dto(ni) - h(nj)). 

If h is admissible, then toi ~ toi+l for i = 0, ... , l - I. 

Case 3 n is a choice node: 

dto(n) = to, 

where toi, 0 ~ i ~ l, is recursively defined as follows: 

too= oo; 
toi = min{ toi-1, Ci+ dto(ni)}. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 



CHAPTER 3. DECISION GRAPH SEARCH 53 

In the above definition, Ci denotes the cost of the edge from a choice node to its 

i-th child, and Pi denotes the probability associated with the i-th child of a chance 

node. They correspond to cost(n, i) and prob(n, i) respectively in algorithm 

DFS. This convention will be used in the rest of this section. 

Second, we observe that, according to the structure of algorithm DFS, the defini­

tion of dt can be further refined as follows: 

Case 1 n is a terminal; 

Case 2 n is a chance node: 

_ { v(n) 
dt(n,b) - MAXINT 

if v(n) < b, 
otherwise. 

dt( b) _ { t if t < b, 
n, - MAXINT otherwise. 

where t = tz and ti, 0 S i S l is recursively defined as follows : 

to= I:~=l h(nj) * Pji 
bi= (b- (ti-1 - h(ni) * Pi))/Pii 

t · _ { ti-1 
i - ti-1 +Pi* (dt(ni, bi) - h(ni)) 

if ti-1 2::: b, 
otherwise. 

Case 3 n is a choice node: 

dt( n, b) = { ~AX INT 
if t < b, 
otherwise. 

where t = t1 and ti, 0 S i S l is recursively defined as follows: 

if ti-1 - Ci s h(ni), 
otherwise 

Thus, to prove the theorem, it suffices to prove 

_ { dto(n) 
dt(n, b) - MAXINT 

if dt0 (n) < b, 
otherwise. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 



CHAPTER 3. DECISION GRAPH SEARCH 54 

for every node n in the decision tree. 

Based on the definition of dt0 and the characterization of dt given above, relation 

(3.11) can be proved by induction on the structure of the decision graph. First, we 

need two intermediate results. 

Lemma 3.17 Let n be a choice node with children n1 , ... , nz . Let toi and ti be 

defined by equations (3.5) and (3.12) respectively. Suppose that for any number b', 

dt( . b') = { dto(ni) 
ni, MAXINT 

for 1 S i S l. Then, for any i, 1 S i S l 

( A) ti < b iff toi < b; 

if dto(ni ) < b', 
otherwise. 

(B) if toi < b , then toi = ti , otherwise. ti = b . 

Proof We prove this lemma by induct'ion on i. Our observation here is that, under 

the given assumptions, equation (3.10) is equivalent to the following simpler one: 

to= b; 
ti = min{ ti-1, Ci + dt( ni, ti-1 - Ci)} 

Basis: i = 1. ti= min{b, c1 + dt(n 1 , b- c1 )} and t 01 = c1 + dt0 (n1). 

If 

then, 

By the given assumptions, we have: 

Therefore 

(3.12) 



CHAPTER 3. DECISION GRAPH SEARCH 

If 

to1 = c1 + dto(n1) < b 

then, 

By the given assumptions, we have: 

dto(n1) = dt(n1, b - c1); 

c1 + dt(n1, b - c1) = c1 + dto(n1) < b. 

Therefore, t1 = c1 + dt0(n 1 ) = to1. The induction base holds. 

Induction: Suppose the lemma is true for i = k . For i = k + 1 , we have: 

tk+1 = min{tk, Ck+1 + dt(nk+i, b- ck+i)}; 

tok+1 = min{tok,Ck+1 + dto(nk+1)}. 

Now, we have two cases: 

55 

(A) tok+i 2:: b. In this case, we have tok 2:: b and Ck+t + dt0 (nk+1) 2:: b. Thus we 

can obtain tk = b by the induction assumption. Furthermore, since 

then, by the given assumptions, we have: 

Therefore, tk+l = b. 

(B) tok+i < b, In this case, we need to consider three sub cases: 

(a) tok 2:: b. In this subcase, we have: 

ck+1 + dto(nk+1) = tok < b; 



CHAPTER 3. DECISION GRAPH SEARCH 

dto( nk+1) < b - Ck+1; 

tok+i = Ck+1 + dto(nk+i)-

56 

By the induction assumption, we have: tk = b. By the given assumptions, we obtain: 

Thus, 

tk+l = Ck+1 + dt(nk+i, b- Ck+1) = dto(nk+1) + Ck+i· 

Therefore, t k+l = tok+i . 

(b) tok < b and tok::; Ck+l + dto(nk+1). In this subcase, we have: 

tok = tk (by the induction assumption). 

Thus, 

tk::; Ck+1 + dto(nk+i)::; Ck+1 + dto(nk+l, b - Ck+i)-

Therefore, tk+l = tk = tok+1. 

( c) tok < b and tok > Ck+l + dto( nk+l) In this sub case, we have: 

tok = tk (by the induction assumption); 

tok+i = Ck+i + dto(nk+i) 

dto( nk+1) < tok - ck+l = tk - ck+l. 

Thus, by the given assumptions, we have: 



CHAPTER 3. DECISION GRAPH SEARCH 57 

Thus, 

Therefore, tk+1 = dt(nk+i, b - Ck+1) + Ck+1 = tok+1. 

In summary, the claim holds for i = k + I . Consequently, the lemma holds by 

induction. D 

Lemma 3. 18 Let n be a chance node with children n 1 , ••• , nz . Let toi and ti be 

defined by equations (3.3) and (3.8) respectively. Suppose that for any number b' 1 

d ( b') { dto(ni) 
t ni' = MAXI NT 

for 1 $ i $ l. Then, for any i, I $ i $ l 

( A) ti < b i.ff toi < b; 

(B) if toi < b, then toi = ti . 

if dto(ni) < b', 
otherwise. 

Proof: By induction on i, similar to that for Lemma 3.18 . D 

Proof of Theorem 3.1. We prove relation (3.11) by induction on nodes in the 

decision tree. 

1. n is a terminal. Then v(n) = h*(n) = dt0(n). Thus, relation (3.11) holds 

trivially. 

2. n is a choice node. Suppose relation (3.11) holds for all the children of n. We 

need to consider two cases. 

(A). dt0 (n) 2'.'. b. We have the following derivation: 



CHAPTER 3. DECISION GRAPH SEARCH 58 

(by equation (3.4)) 

t = te 2: b (by Lemma 3.17) 

dt(n, b) = MAXINT (by equation (3.9)). 

(B). dt0(n) ~ b. We have the following derivation: 

dt0( n) = toe < b (by equations ( 3.4)) 

t1 = t0e 2: b (by Lemma 3.17) 

dt(n, b) = t = to1 = dto(n) (by equation 3.9). 

In summary, relation (3.11) holds for n. 

3. n is a chance node. Suppose relation (3.11) holds for all the children of n. 

Similarly, it can be proved that the relation holds for n as well by using Lemma 

3.18. 

In summary, the theorem holds in general. D 

Theorem 3.4 Suppose DFS uses heuristic function h . If there exists a number 

8 2: 0 such that h satisfies: 

h(n) ~ h*(n) + 8 for every node n in a decision tree 

then 

h*(n) +82: b if dt(n,b) 2: b; 

and 

h * ( n) + 8 2: dt ( n, b) if dt ( n, b) < b 



CHAPTER 3. DECISION GRAPH SEARCH 59 

for every node n in the decision tree. 

Theorem 3.5 Suppose DFS uses heuristic function h . If the arc costs in a deci­

sion tree are all non-negative, h*( n) 2:'.: 0 for every node n in the decision tree, and 

there exists a number c5 ~ 0 such that h satisfies: 

h(n) ::::; (1 + c5) * h*(n),for every node n in the decision tree, 

then for every node n in the decision tree and any number b 2:'.: 0 , 

h*(n) * (1 + c5) 2:'.: b if dt(n, b) 2:'.: b; 

and 

h*(n) * (1 + c5) 2:'.: dt(n, b) if dt(n, b) < b. 

Since h* is equivalent to dt0 , all the occurrences of h*(n) in the above theorems 

can be replaced with dt0 (n). Therefore, for Theorem 3.4, it suffices to prove that for 

every node n in the decision tree 

dt0 (n) + c5 2:'.: b if dt(n, b) 2:'.: b; 

and 

dt0(n) + c5 2:'.: dt(n, b) if dt(n, b) < b 

For Theorem 3.5, it suffices to prove that for every node n in the decision tree 

dt0(n) * (1 +c5) 2:'.: b if dt(n,b) 2:'.: b; 

and 

dt0(n) * (1 + c5) 2:'.: dt(n, b) if dt(n, b) < b 



CHA PTE 3. DEGISI N GR APH SEARCH 60 

The proofs of Theorems 3.4 and 3.5 are very similar. Here we just present the proof 

of Theorem 3.5. 

Proof of Theorem 3.5 

Case 1 n is a terminal. Since dt0 (n) = h*(n) 2 0, thus, (1 + 6) * dt0 (n) 2 dt0 (n). 

If dt(n,b) 2 b, then v(n) = h*(n) 2 b, therefore, dto(n) * (1 + 8) 2 b. 

If dt(n,b) < b, then dt(n,b)v(n) = h*(n) = dt0 (n), thus dt0 (n) * (1 +8) 2 

dt(n, b). 

Therefore, the theorem holds for node n . 

Case 2 n is a chance node. 

Suppose the theorem holds for all the children of node n . We need to consider 

the following two cases: 

(A). dt(n,b) < b. According to equation (3.7), we have dt(n,b) = t = t1 < b. 

Thus, ti < b for i = 1, ... , l. Consequently, by equation (3.8), we have: 

dt(ni, bi) < bi. By the induction assumption, we have: 

for i = 1, ... , l. According to equations (3.3) and (3.2), we obtain: 

I 

dto(n) = ioz = LPi * dto(ni) 
i::::::l 

According to equation (3.8), we obtain: 

I l 

tz = LPi * dt(ni, bi) :=::; LPi * dt(ni) * (1 + 8) = toz * (1 + 8) 
i::::::l i::::::1 

Thus, dt(n, b) :=::; dt0 (n) * (1 + 8) . 



CHAPTER 3. DECISION GRAPH SEARCH 61 

(B). dt(n,b) 2: b. According to equations (3.7) and (3.8), we know that t = 
t 1 2: b. This implies that either t0 2: b or there exists k, 1 :5 k $ l such 

that tk-I < b and tk 2: b. In the former case, we have: 

l l 

dto(n) * (1 + 8) = LPi * dto(ni) * (1 + 8) 2: LPi * h(ni) = to 
i=:l i=l 

Thus, dt0(n) * (l + 8) 2: b. 

In the latter case, we can obtain: 

where bk = (b - (tk-i - h(nk) * Pk))/Pk. Consequently, by the induction 

assumption, we have: 

and 

Therefore: 

According to equation (3.8), we have: 

k-1 l 

tk-1 = L dt(ni, bi)* Pi+ L h(ni) * Pi 
i=l i=k 

Thus, 

k-1 I 

L dt(ni, bi)* Pi+ Pk* (l + 8) * dto(nk) + L h(ni) * Pi 2: b 
i=l i=k+l 



CHAPTER 8. DECISION GRAPH SEARCH 62 

k I 

L(l + 8)dto(ni) *Pi+ L (1 + 8)dto(ni) * Pi 2:: b 
i=l i=k+l 

Therefore, 
l 

(1 + 8) * dto(n) = L(l + 8)dto(ni) * Pi ~ b 
i=l 

Case 3 n is a choice node. 

Suppose the theorem holds for all the children of node n . The theorem holds 

too for node n if we can prove 

(3.13) 

for i = 0, ... , l, where toi and ti are defined by equations (3.5) and (3.12) 

respectively. This inequality can be proved by induction on i . 

Basis:: i = 0 , trivial. 

Induction:. Suppose the inequality is true for i = k. Consider the case when 

i=k+l. 

(A). tok 5 Ck+i + dt0(nk+i). In this case, we have tok = tok+i. Since tk+l 5 tk, 

by the inner induction assumption, we conclude tk+l 5 (1 + 8) * tok+i. 

(B). tok > Ck+1 + dt0 (nk+1). In this case, we have: ck+l + dto(nk+i) = tok+1. 

If tk - ck+l 5 h( nk+l) , then, 

Since ck+i 2:: 0 and 8 ~ 0, we have tk+1 5 (1 + 8) * tok+i. 

If tk - Ck+i > h( nk+1) , then, 



CHAPTER 3. DECISION GRAPH SEARCH 63 

When tk - Ck+i :=:; dt( nk+1, tk - ck+i) , by the outer induction assumption, 

we have: 

(1 + 8) * dt0(nk+i) ~ tk - Ck+1 

tk+I = tk $ (1 + 8) * dto(nk+1) + ck+I 

Since ck+1 ~ 0 and 8 ~ 0, we have tk+i $ (1 + 8) * tok+1. 

When tk - Ck+I > dt(nk+1, tk - ck+I), by the outer induction assumption, 

we have: 

(1 + 8) * dt0(nk+1) ~ dt(nk+I, tk - Ck+1) 

tk+1 = Ck+1 + dt(nk+I, tk - Ck+1) $ ck+1 + (1 + 8) * dto(nk+1) 

Since ck+I ~ 0 a~d 8 ~ 0, we have tk+i ~ (1 + 8) * tok+1. 

By induction, inequality 3.13 holds for all i = 0, ... , l. 

In summary, the theorem holds for any node n . □ 



Part II 

INFLUENCE DIAGRAM 
EVALUATION 

64 



·,I 

Chapter 4 

Decision Analysis and Influence 
Diagrams 

In this chapter, we review some basic concepts about decision analysis and informally 

introduce influence diagrams - a framework for decision analysis. We motivate 

our work by discussing the advantages and disadvantages of this framework. In 

the chapters to follow, we present an extension to influence diagrams and develop 

a method for influence diagram evaluation. Our method, which aims to overcome the 

disadvantages, employs decision graphs as an intermediate representation and uses 

the decision graph search algorithms developed in Chapter 3 to compute optimal 

solutions to decision problems. 

4.1 Bayesian Decision Analysis 

We all make decisions every day. A decision problem often involves many variables, 

each having a number of possible outcomes. Some variables can be controlled in the 

sense that we can select one of its possible outcomes as its value. They are called 

decision variables. Other variables are beyond our control. They are called uncertain 

variables. Among uncertain variables, some are observable whereas others are not. 

65 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAlvfS 66 

Variables are inter-related in one way or another. The problem is to choose appropri­

ate values for decision variables so as to best meet our objective. A prescription on 

how to choose values for decision variables is called a decision policy or policy. If the 

non-observable uncertain variables in a decision problem are relevant to our objective, 

the decision problem is called a problem of decision making under uncertainty. 

As an example, consider a simplified version of the used car buyer problem [34). In 

this example, Joe has to decide whether to buy a used car. Two variables are involved 

in this decision problem: an uncertain variable representing the car's condition that 

can be either "peach" or "lemon," and a decision variable representing Joe's purchase 

decision. According to the current market, a peach is worth $1060 and a lemon is 

worth $900. The price of the car is $1000. The difficulty of Joe's decision stems from 

the uncertainty of the car's condition. 

Bayesian decision theory [25) is concerned with those decision problems in which 

uncertain variables are random variables. A fundamental result of Bayesian decision 

theory is that any decision preference of a rational decision maker can be captured by 

a utility function such that his/her decision objective can be achieved by maximizing 

the expected utility. A policy maximizing the utility function is called an optimal 

policy. 

In the used car buyer problem, if the uncertainty of the car's condition can be 

characterized by a probability distribution, then Bayesian decision theory is applica­

ble. Suppose that the car is a peach with probability 0.8 and a lemon with probability 

0.2. Suppose further that Joe's objective is to maximize the expected profit (in dol­

lars). Then the policy maximizing the expected profit is to buy the car. This policy 

will bring Joe a profit of $60 with probability 0.8 and a loss of $100 with probability 

0.2. Thus, the expected profit is $28. 

r· 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 67 

Bayesian decision analysis ( or decision analysis for short) [79, 96] is a discipline 

about the application of Bayesian decision theory to decision problems. There are 

two fundamental issues: how to model a decision problem, and how to compute an 

optimal policy. 

4.2 Decision Trees 

Decision trees were used as a simple tool both for problem modeling and optimal 

policy computation in the early days of decision analysis [79). A decision tree can 

represent the order in which decisions are made and the information available to the 

decision agent when he/she makes a decision. It explicitly depicts all scenarios of the 

problem and specifies the "utility" the agent can get in each scenario. 

In the literature of decision analysis, little attention has been paid to the compu­

tation of optimal policies of decision trees. It is commonly assumed that the so-called 

"average-out-and-fold-back" method [79, 96) is used for the computation. 

From the computational point of view, a decision tree is just a decision graph 

without node sharing. Thus, the algorithms presented in Chapter 3 can be used for 

computing an optimal policy for decision trees. 

In this section, we illustrate by an example some basic concepts about, and the 

advantages and the disadvantages of, decision trees. 

A decision tree for the used car buyer problem is shown in Fig. 4.1. In this tree, the 

choice node corresponds to the purchase decisions and the chance nodes correspond 

to the car's condition. The choice node is followed by chance nodes, indicating that 

the car's condition is not known to Joe when he makes the purchase decision. Each 

path from the root to a leaf node represents a possible scenario. For example, the 

path on the top of the decision tree in Fig 4.1 corresponds to the decision scenario in 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 68 

which Joe decides to buy the car and the car turns out to be a peach. The probability 

for this scenario is 0.8 (the product of probabilities on the arcs along the path). The 

value for this scenario is 60. 

Figure 4.1: A decision tree for the used car buyer problem 

In general, a decision problem may involve many decision and random variables. 

For such a problem, the order of nodes in the decision tree is important; it must be 

consistent with the decision making order and the constraints of information avail­

ability. More explicitly, a choice node N comes before another choice node N' if and 

only if the decision corresponding to N will be made before the decision correspond­

ing to N'; a chance node N comes before a choice node N' if and only if the value 

of the random variable corresponding to the chance node N is known to the decision 

maker when the decision corresponding to the choice node N' is to be made. 

In order to illustrate the above point, let us continue the used car buyer problem 

(34). Suppose Joe knows that, of the ten major subsystems in the car, a peach has a 

defect in only one subsystem whereas a lemon has a defect in six subsystems ( that is 

why Joe likes a peach and does not like a lemon). Joe also knows that a car without 

defect is worth $1100 in market. Finally, Joe knows that it will cost him $40 to 

repair one defect and $200 to repair six defects. Observing Joe's concern about the 

possibility that the car may be a lemon, the dealer offers an "anti-lemon guarantee" 



CHAPTER 4. DECISION ANALYSIS AND INFLUENGE DIAGRAMS 69 

option. For an additional $60, the anti-lemon guarantee will cover the full repair cost 

if the car is a lemon, and cover half of the repair cost otherwise. At the same time, 

a mechanic suggests that some mechanical examination may help Joe have a better 

idea of the car's condition. In particular, the mechanic offers three alternatives: test 

the steering subsystem alone at a cost of $9; test the fuel and electrical subsystems at 

a total cost of $13; a two-test sequence in which the transmission subsystem will be 

tested first at a cost of $10 and, after knowing the test result, Joe can decide whether 

to test the differential subsystem at an additional cost of $4. All tests are guaranteed 

to detect a defect if one exists in the subsystem(s) being tested (in other words, the 

tests provide perfect information about the subsystems being tested. 

In this modified example, Joe has to make three decisions: two decisions about 

whether to perform mechanical tests and one decision about whether to buy the car. 

There are two new random variables: one for the result of the first test and the other 

for the result of the second test. The decision making order is: the first test, the 

second test and then the purchase decision. Furthermore, when deciding whether to 

do the second test, Joe remembers his choice for the first test and knows the test 

results; when deciding whether to buy the car, Joe remembers his choices for both 

tests and knows the results for the tests. A complete decision tree for this problem 

is shown in Fig. 4.2. 

In the figure, the choice node labeled T 1 corresponds to the first test decision. It 

has four possible outcomes: nt for no test, st for testing the steering subsystem alone, 

f&;e for testing the fuel and electrical subsystems, and tr for testing the transmission 

subsystem first. The chance nodes labeled R1 correspond to the random variable 

of the first test result, which has three possible outcomes: zero for no defect being 

detected, one for one defect being detected and two for two defects being detected. 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 70 

The choice nodes labeled T2 correspond to the second test decision, which needs to 

be made only when the choice for the first test decision is tr. It has two possible 

outcomes: nt for no test, and diff for testing the differential subsystem. The chance 

nodes labeled R2 correspond to the random variable of the second test result, which 

has two possible outcomes: zero for no defect being detected and one for one defect 

being detected. The choice nodes labeled B correspond to the purchase decision, 

which has three possible outcomes: b for buying the car without the anti-lemon 

guarantee, g for buying the car with the anti-lemon guarantee and b for not buying 

the car. 

Though conceptually simple, decision trees have a number of drawbacks. 

First, the dependence/independence relationships among the variables in a deci­

sion problem cannot be represented in a decision tree. For example, in the used car 

buyer problem, the profit is conditionally independent of the test results, given the 

test decisions, the purchase decision and the car condition. However, this conditional 

independence cannot be represented in the decision tree. 

Second, a decision tree specifies a particular order for the assessment of the prob­

ability distributions of the random variables in the decision problem. This order is 

in most cases not a natural assessment order. For example, in the used car buyer 

problem, we need the probabilities of the first test results given the first test decision, 

and the conditional probabilities of the car condition given the test decisions and 

the test results. These probabilities are harder to assess than the prior distribution 

of the car condition, the conditional distributions of the test results conditioned on 

the test decisions and the car condition. In the process of constructing the complete 

decision tree for the used car buyer problem, we have to compute these conditional 

distributions using Bayes Theorem. 



CI-IAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 71 

peach 0.8 b 
peach o.9 , 

60 
,) 60 

_, 
b •) -100 

.. ) -100 
nt 

lemono.1 
nt lemon 0.2 -b 

-b 
•• ) 0 

.. ) 0 

8 peach 0.9 
peach 0.8 o--e,)20 

o--e,)20 ,) 40 

lemon o.2') 
40 lemon 0.1 

peach o.96 
peach o.9 , 

60 b .... ~ 60 ., 
•) -100 

• ) -100 
lemon o.04 

lemono.1 -b 

... 10 
... 1 O 

peach 0.96 
peach 0.9 o--e,)20 

o--e,)20 
,) 40 

.. , 40 lemon o.o,. 
lemono,1 

peach o.6 .. peach 0.4 
.:; 60 b ,, 60 

• ) -100 •) -100 
lemon 0.6 lemon o.4 

-b 
... 1 0 .... 1 O 

peach 0.4 8 peach o.s 
o--e,)20 o,:__c)20 

.. , 40 
lemon •0.4•) 40 

lemono.6 
peach 0 peach 0.4 ... ) 60 

b .) 60 
, ) -100 

lemon 1 • ) -100 

nt lemon 0.6 
... "i 0 .. ) 0 

peach o 
o--C')20 

8 peach 0.4 
o--e,)20 

.. , 40 
lemon 1 lemon 0.6 • > 40 

peach 0.8 , 
_, 60 

peach 0.6 , 
.. ) -100 b .. , 60 

lemon 0.4 
.. • ) -100 

• , 0 lemon 0.4 

peach o.e .. 
o,:__c)20 

_ , 0 

peach o.6 

lemon 0,4' > 40 o--e-)20 

peach 6.96 
.) 40 

.. ) 60 
lemon 0.4 

.. , -100 
lemono.04 

peach 0 
• ) 60 

... "i 0 
_, -100 

lemon 1 
peach 0.96 .,J 0 

o--C')20 
8 peach o 

., 40 o--e,)20 lemon o.04 
,) 40 

lemon 1 

R1 
T2 

Figure 4.2: A complete decision tree for the used car buyer problem 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 72 

Third, the size of a decision tree for a decision problem is in general exponential in 

the number of variables in the decision problem. This makes decision trees appropriate 

only for decision problems with a small number of variables. 

Finally, a decision tree is not easily adaptable to changes in a decision problem. If 

a slight change is made in a problem, one may have to draw a new decision tree. This 

point can be illustrated by an example. Suppose that in the used car problem, Joe 

has $1060 disposable money and somebody offers Joe a lottery at cost of $50. The 

lottery may return $120 or nothing, with equal probability. Joe has to decide whether 

to buy the lottery before making any decisions about the used car. The decision tree 

for this variation will be very different from the one shown in Fig. 4.2. 

4.3 Influence Diagrams 

Influence diagrams were first proposed as an alternative representation framework for 

decision analysis [35, 56]. 

Within the framework of influence diagrams, a decision problem can be specified 

at three levels: the level of relation, the level of function and the level of number [35]. 

At the level of relation, a decision problem is depicted by a directed acyclic graph 

with three types of nodes: random nodes, decision nodes and value nodes. Each 

random node represents a random variable whose value is dictated by some probability 

distribution. Each decision node represents a decision variable whose value is to be 

chosen by the decision maker. A value node represents a component of the utility 

function. In this thesis, we use the terms decision (random) variables and decision 

(random) nodes interchangeably. At the level of function, all the possible outcomes 

of the random variables and all the possible alternatives of the decision variables are 

identified. The set of all possible outcomes of a random variable is called the frame of 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 73 

the random variable. The set of all possible alternatives of a decision variable is called 

the frame of the decision variable. At the level of number, ( conditional) distributions 

are assigned to the random variables. 

In an influence diagram, an arc from a variable x to a decision variable d indicates 

that the value of the variable x is known to the decision maker at the time when the 

decision d is to be made. The Cartesian product of the frames of a decision variable's 

parents is the set of information states for the decision variable. An information state 

denotes the information available to the decision maker when the decision is to be 

made. An arc from a node x to a random node ( or a value node) y indicates that 

the random variable (resp. the value function) y is probabilistically dependent on 

the variable x . 

For example, at the level of relation, the used car buyer problem can be represented 

by the diagram as shown in Fig. 4.3. By convention, boxes denote decision variables, 

circles denote random variables and the diamond denotes a value function ( the utility 

function to be maximized). 

Figure 4.3: An influence diagram for the used car buyer problem 

The diagram can be read as follows. There are three decision variables ( T 1 , T 2 

and B), three random variables ( R1 , R2 and CC) and one value function (profit) in 

the decision problem. The first test decision T1 is to be made first. The first test result 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 74 

Table 4.1: The prior probability distribution of the car's condition P{cc} 

cc prob 
peach 0.8 
lemon 0.2 

R1 depends on this decision and the car's condition CC. This dependence is indicated 

by the two arcs to node R1 . The decision maker remembers his choice for the first 

test decision and knows the test result when he makes the second test decision T2. 

This is indicated by the two arcs to node T2• The second test result R2 depends on 

the first test, the result of the first test, the second test and the car condition. When 

making the purchase decision, the decision maker remembers his choices for the first 

two decisions and knows the test results. The value function depends on the three 

decisions and the car condition. 

To complete the influence diagram representation, we need to specify the frames of 

the variables and the (conditional) probability distributions for the random variables. 

The frame for the random variable CC contains two elements: peach and lemon. 

This variable has no parent in the graph. Its prior probability distribution is given 

in Table 4.1. 

The frame for the decision variable T1 contains four elements: nt, st, f&e and 

tr, representing respectively the alternatives of performing no test, testing the steer­

ing subsystem alone, testing the fuel and electrical subsystems, and testing the trans­

mission subsystem first with an option of testing the differential subsystem next. 

The frame for the random variable R1 contains four elements: nr, zero, one and 

two representing respectively the four possible outcomes of the first test: no result, 

no defect, one defect and two defects. The probability distribution of the variables, 

conditioned on T1 and CC, is given in Table 4.2. 



CHAPTER 4. DECISION A NALY SIS AND INFLVENCE DIAGRAMS 75 

Table 4.2: The probability distribution of the first test result P{R1 IT1, CC} 

T1 cc R1 prob 
nt - nr 1.0 
nt - others 0 
st - nr 0 
st - two 0 
st peach zero 0 .9 
st peach one 0.1 
st lemon zero 0.4 
st lemon one 0.6 
fl:e - nr 0 
fl:e peach zero 0.8 
fl:e peach one 0.2 
fl:e peach two 0 
fl:e lemon zero 0.13 
fl:e lemon one 0.53 
fl:e lemon two 0.33 

Table 4.3: The probability distribution of the second test result P{R2 IT1 , R1 , T2 , CC} 

T1 R1 T2 cc R2 prob 
nt - - - nr 1.0 
nt - - - others 0 
st - - - nr 1.0 
st - - - others 0 
fl:e - - - nr 1.0 
fl:en - - - others 0 
tr nr - - nr 1.0 
tr nr - - others 0 
tr two - - nr 1.0 
tr two - - others 0 
tr - nt - nr 1.0 
tr - nt - others 0 
tr zero diff peach zero 0.89 
tr zero diff peach one 0.11 
tr zero diff lemon zero 0 .67 
tr zero diff lemon one 0.33 
tr one diff peach zero 1.0 
tr one diff peach one 0 
tr one diff lemon zero 0.44 
tr one diff lemon one 0.56 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 76 

The frame for the decision variable T2 contains two elements: nt and diff, de­

noting the two options of performing no test and testing the differential subsystem. 

The frame for the random variable R2 contains three elements: nr, zero and one, 

representing respectively the three possible outcomes of the second test: no result, 

no defect and one defect. The probability distribution of the variable, conditioned on 

T1 , R1 , T2 and CC, is given in Table 4.3. 

The frame for the decision node B contains three elements: b, b and g, denoting 

respectively the alternatives of not buying, buying without the anti-lemon guarantee, 

and buying with the anti-lemon guarantee. 

From the above example, we observe that the influence diagram representation 

has a number of advantages in comparison with decision trees: it is expressive enough 

to explicitly describe the dependence/independence relationships among the variables 

involved in the decision problem; it allows a more natural assessment order on the 

probabilities of the random variables and it is compact. In addition, influence di­

agrams are easy to adapt to changes in problems. To illustrate this point, let us 

consider again the variation of the used car problem given at the end of the previous 

section. In that variation, Joe has to decide whether to buy a lottery before con­

sidering the decisions about the used car. That variation can be represented by an 

influence diagram as shown in Fig. 4.4, in which node B' represents the decision of 

lottery purchase, node L represents the lottery and node Ro represents the actual re­

turn Joe gets from the lottery. This influence diagram is derived from the one shown 

in Fig. 4.3 by the addition of three new nodes and ten arcs. 

A decision Junction for a decision variable is a mapping from the set of the in­

formation states of the decision variable to the decision variable's frame, prescribing 

a choice for the decision for each information state. A decision policy ( or a policy 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 77 

Figure 4.4: An influence diagram for a variation of the used car buyer problem 

for short) for an influence diagram is a collection of decision functions, one for each 

decision variable. Each policy determines an expected value of the influence diagram. 

A policy is optimal if it maximizes the expected value of the influence diagram. We 

will give a formal definition of these concepts in the next chapter. 

Influence diagrams were first proposed as a "front-end" for the automation of 

decision making process [56, 35]. The actual analysis of a decision problem was carried 

out in two phases. An influence diagram was first transformed into a decision tree 

and then the decision tree was evaluated. The idea of evaluating influence diagrams 

directly was proposed in [64]. The first complete algorithm for influence diagram 

evaluation was developed by Shachter [85]. We will give a review on related research 

efforts in Chapter 6. 

4.4 Disadvantages of Influence Diagrams 

While influence diagrams have many advantages as a representation framework for 

decision problems, they have a serious drawback in handling asymmetric decision 

problems [12, 26, 70, 85, 95]. Decision problems are usually asymmetric in the sense 

that the set of possible outcomes of a random variable may vary depending on different 

conditioning states, and the set of legitimate alternatives of a decision variable may 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 78 

vary depending on different information states. For example, in the used car buyer 

problem, if the choice for the first test is nt ( no test), the first test result ·can only be 

nr. On the other hand, if the choice for the first test is st or tr, the test result can 

be one of the two possible outcomes: zero and one, and if the choice for the first test 

is f&e, the test result can be one of the three possible outcomes: zero, one and two. 

Furthermore, the alternative of testing the differential subsystem for the second test 

decision is possible only if the choice for the first test is tr ( testing the transmission 

subsystem). 

To represent an asymmetric decision problem as an influence diagram, the problem 

must be "symmetrized" by using common frames and assuming degenerate probability 

distributions [95]. In the used car buyer problem, the frame of the variable T1 is a 

common set of outcomes for all the three cases. The impossible combinations of the 

test choices and the test results are characterized by assigning them zero probability 

in Table 4.2. The frame of the second test is also a common set of all alternatives 

in various states, while the fact that the second test option is not available in some 

states is characterized by assigning unit probability to outcome nr of the variable R2 

conditioned on these states. 

This symmetrization results in two problems. First, the number of information 

states of decision variables is increased. Among the information states of a decision 

variable, many are "impossible" (having zero probability). For example, the infor­

mation state corresponding to T1=st,R1=nr for the second test decision variable T2 

is an impossible state. The optimal choices for these impossible states need not be 

computed at all. However, they are computed by conventional influence diagram 

evaluation algorithms [95]. Second, for each information state of a decision variable, 

because the legitimate alternatives may constitute only a subset of the frame of the 
, 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 79 

decision variable, an optimal choice is chosen from only a subset of the frame, ins.tead 

of the entire frame. However, conventional influence diagram algorithms have to con­

sider each alternative in order to compute an optimal choice for a decision in any of 

its information states. 

From the above analysis, we observe that conventional influence diagram evalua­

tion algorithms involve unnecessary computation. We show in Section 7.5 that, for a 

typical decision problem, the amount of unnecessary computation can be exponential 

in the number of decision variables. 

4.5 Previous Attempts to Overcome the Disad­
vantages 

Several researchers have recently proposed alternative representations that attempt 

to combine the strengths of influence diagrams and decision trees. Fung and Shachter 

[26] propose a representation, called contingent influence diagrams, for explicitly ex­

pressing the asymmetric aspects of decision problems. In that representation, each 

variable is associated with a set of contingencies, and associated with one relation for 

each contingency. These relations collectively specify the conditional distribution of 

the variable. 

Covaliu and Oliver [12] propose a different representation for representing deci­

sion problems. This representation uses a decision diagram and a formulation table 

to specify a decision problem. A decision diagram is a directed acyclic graph whose 

directed paths identify all possible sequences of decisions and events in a decision 

problem. In a sense, a decision diagram is a degenerate decision tree in which paths 

having a common sequence of events are collapsed into one path [12]. Numerical data 

are stored in the formulation table. Covaliu and Oliver [12] also give a backward al-



CHAPTER 4. DECISION A NA LYSIS AND INFLUENCE DIAGRAMS 80 

gorithm to compute optimal policies from decision diagrams by using the formulation 

table. 

Shenoy [92] proposes a "factorization" approach for representing degenerate prob­

ability distributions. In that approach, a degenerate probability distribution over a 

set of variables is decomposed into several factors over subsets of the variables such 

that the their "product" is equivalent to the original distribution. 

Smith et al. [95) observe that the computation of various probabilities involved in 

influence diagram evaluation can be sped up if the degenerate probability distribu­

tions in influence diagrams are used properly. Their philosophy is analogous to the 

one behind various algorithms for sparse matrix computation. In their proposal, a 

conventional influence diagram is used to represent a decision problem at the level of 

relation. In addition, they propose to use a decision tree-like representation to de­

scribe the conditional probability distributions associated with the random variables 

in the influence diagram. The decision tree-like representation is effective for econom­

ically representing degenerate conditional probability distributions. They propose a 

modified version of Shachter's algorithm [85) for influence diagram evaluation, and 

show how the decision tree-like representation can be used to increase the efficiency 

of arc reversal, a fundamental operation used in Shachter's algorithm. However, their 

algorithm cannot avoid computing optimal choices for decision variables with respect 

to impossible information states, because it, like other influence diagram evaluation 

methods, also takes a reduction approach. We will come back to this point in Section 

6.2.3. 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 81 

4.6 Our Solution 

In this thesis, we develop an approach for overcoming the aforementioned disadvan­

tages of influence diagrams. Our approach consists of two independent components: a 

simple extension to influence diagrams and a top down method for influence diagram 

evaluation. 

Our extension allows the explicit expression of the fact that some decision variables 

have different frames in different information states. We achieve this by introducing 

a framing function for each decision variable. The framing function characterizes the 

available alternatives for the decision variable in different information states. With 

the help of framing functions, our solution algorithm can effectively ignore the un­

available alternatives when computing an optimal choice for a decision variable in 

any information state. Our extension is inspired by the concepts of indicator val­

uations and effective frames proposed by Shenoy [92]. Note that our extension is 

orthogonal to Smith's. In our influence diagram representation, we can also use their 

decision-tree like representation to describe conditional distributions of random vari­

ables. Furthermore, we can also use their method to exploit asymmetry in computing 

conditional probabilities. 

A novel aspect of our method is that it avoids computing optimal choices for 

decision variables in any impossible states. This method works for influence diagrams 

with or without our extension. 

Our method, similar to Howard and Matheson's [35], evaluates an influence dia­

gram in two conceptual steps: it first generates a decision graph from the influence 

diagram and then evaluates an optimal policy from the decision graph. In such a 

decision graph, a choice node corresponds to an information state of some decision 



CHAPTER 4. DECISION ANALYSIS AND INFLUENCE DIAGRAMS 82 

variable. The decision graph is generated in such a way that an optimal solution 

graph of the decision graph corresponds to an optimal policy of the influence dia­

gram. Thus, the problem of computing an optimal policy is reduced to the problem 

of searching for an optimal solution graph of a decision graph, which can be accom­

plished by the algorithms presented in Chapter 3. Our method successfully avoids 

· unnecessary computation by pruning those choice nodes in the decision graph that 

correspond to impossible states, and by ignoring those children of choice nodes that 

correspond to unavailable alternatives for the decision variables. 

By using heuristic search techniques, our method provides an explicit mechanism 

for making use of heuristic information that may be available in a domain-specific 

form. The combined use of heuristic search techniques and domain-specific heuris­

tics may result in even more computational savings. Furthermore, since our method 

provides a clean interface between influence diagram evaluation and Bayesian net 

evaluation, various well-established algorithms for Bayesian net evaluation can be 

used in influence diagram evaluation. Finally, by using decision graphs as an inter­

mediate representation, the value of perfect information (53) can be computed more 

efficiently [110). 

Note that our method is more efficient than Howard and Matheson.'s, partly be­

cause our method generates a much smaller decision graph for the same influence 

diagram. 



Chapter 5 

Formal Definition of Influence 
Diagrams 

In this chapter, we give a formal definition of influence diagrams and present our 

extension. The definition is borrowed from [109]. 

5.1 Influence Diagrams 

An influence diagram I is a quadruple I= (X,A, P,U) where 

• (X, A) is a directed acyclic graph with X partitioned into random node set C, 

decision node set D and value node set U, such that the nodes in U have no 

children. 

Each decision node or random node has a set, called the frame, associated with 

it. The frame of a node consists of all the possible outcomes of the ( decision 

or random) variable denoted by the node. For any node x E X , we use 1r( x) 

to denote the parent set of node x in the graph. For any x E C U D , we use 

nx to denote the frame of node x . For any subset J ~ C U D , we use nJ to 

denote the Cartesian product IlxeJ nx. 

83 



CHAPTER 5. FORMAL DEFINITION of INFLUENCE DIAGRkM-8 84 

• P is a set of probability distributions P{ cl?!"( c)} for all c E C. For each o E f2c 

and s E f21r(c) , the distribution specifies the conditional probability of event 

c = o, given that 11"( c) = s. Throughout this thesis, we use J = e to denote 

the set of assignments that assign an element of e to the corresponding variable 

in J for any variable set J and any element e E f2J. 

• U is a set {gv : f21r(v) --+ 'Riv E U} of value functions for the value nodes, where 

'R is the set of the reals. 

For a decision node di, a mapping Oi : n'll"d- --+ nd, is called a decision function for 
I 

di. The set of all the decision functions for di, denoted by b.i, is called the decision 

function space for di, Let D = { d1 , ... , dn} be the set of decision nodes in influence 

diagram I. The Cartesian product b. = I1f =1 b.i is called the policy space of I. 

5.2 Our Extension 

We extend the definition of influence diagrams given in the previous section by intro­

ducing framing functions. 

An influence diagram I is a tuple I= (X, A, P,U,F) where X, A, P,U have the 

same meaning as before, and F is a set {h : f21r(d) --+ 211d } of framing Junctions for 

the decision nodes. 

The framing functions express the fact that the legitimate alternative set for a 

decision variable may vary in different information states. More specifically, for a 

decision variable d and an information state s E f21r(d) , the set /d( s) contains the 

legitimate alternatives the decision maker can choose for d in information state s. 

Following Shenoy [92], we call /d ( s) the effective frame of decision variable d m 

information state s . 



CHAPTER 5. FORMAL DEFINITION of INFLUENCE DIAGRAMS 85 

In the used car buyer problem, the frame for the decision variable T 2 has two 

elements: nt and diff , denoting the two alternatives of performing no test and 

testing the differential subsystem. However, the diff alternative is available only in 

the information states where the choice for the first test is transmission. This can be 

captured by a framing function fr
2 

defined as follows: 

f (s) = { {nt, diff} 
T2 {nt} 

if o-r
1 
(s) = tr 

otherwise 

where o-r 
1 

( s) denotes the projection of s on T 1 ( the value of the first test in infor­

mation state s ) . 

Similarly, we define a decision function for a decision node di as a mapping 8i : 

n11"d - -+ nd,. In addition, Oi must satisfy the following constraint: For each s E n11"d- ' 
• • 

Si( s) E h, ( s) . In words, the choice prescribed by a decision function for a decision 

variable d in an information state must be a legitimate alternative. 

5.3 Influence Diagram Evaluation 

Given a policy 8 = ( 81 , 82 , ••• , 8n) , each decision node di can be regarded as a random 

node whose probability distribution is given as follows: 

if 8i(s) = a, 
oth·erwise. 

Policy 8 can be considered as a collection of probability distributions for the decision 

variables. 

Let I= (X, A, P,U,:F) be an influence diagram, and let Y =CUD. Let Ay be 

the set of all the arcs of A that lie completely in Y. Then the triplet (Y, Ay, PUPs) 

is a Bayesian net, referred to as the Bayesian net induced from I by the policy 8, and 



CHAPTER 5. FORMAL DEFINITION of INFLUENCE DIAGRAMS 86 

is written as I 8• The prior joint probability Ps{Y} is given by 

Ps{Y} = II P{xl1r(x)} II Ps{xl7r(x)}. (5.1) 
xEC xED 

Because the value nodes do not have children, for any value node v, 11"( v) contains no 

value nodes. Hence 1r(v)~Y. The expectation Es[v] of the value function 9v under 

Psis given by 

Es[v] = L Ps{7r(v) = o}gv(o). 
oEO,r(v) 

The expected value E0 [I] of I under the policy 8 is defined by 

Es[I] = L E&[v] (5.2) 
vEU 

The optimal expected value E[I] of I is defined by 

E[I] = maxseaEs[I] . (5.3) 

The optimal value of a decision network that does not have any value nodes is zero. 

An optimal policy 8° is one that satisfies 

Eso[I] = E[I]. (5.4) 

In this thesis we will only consider variables with finite frames. Hence there are only 

a finite number of policies. Consequently, there always exists at least one optimal 

policy. To evaluate an influence diagram is to find an optimal policy, and to compute 

the optimal expected value. 

5.4 No-Forgetting and Stepwise Decomposable 
Influence Diagrams 

In this section, we introduce two classes of influence diagrams, which are the focus of 

the literature. 



CHAPTER 5. FORMAL DEFINITION of INFLUENCE DIAGRAMS 87 

An influence diagram is regular [35, 85] if there is a directed path containing 

all of the decision variables. Since the diagram is acyc~ic, such a path defines an 

order for the decision nodes. This is the order in which the decisions are made. An 

influence diagram is "no-forgetting" if each decision node d and its parents are also 

parents of those decision nodes that are descendants of d [35, 85]. Intuitively, the 

"no-forgetting" property means that a decision maker remembers all the information 

that was earlier available to him and remembers all the previous decisions he made. 

The lack of an arc from a node a to a decision node d in a no-forgetting influence 

diagram means that the value of the variable a is not known to the decision maker 

when decision d is to be made. A regular and "no-forgetting" influence diagram 

represents the decision maker's view of the world. 

An influence diagram is called stepwise solvable [108, 109] if its optimal policy 

can be computed by considering one decision node at a time. A necessary and suf­

ficient condition for the stepwise solvability of influence diagrams, called stepwise­

decomposability, is provided in [106, 108, 109]. 

Stepwise-decomposability is defined in terms of graph separation. Informally, an 

influence diagram is stepwise decomposable if the parents of each decision node divide 

the influence diagram into two parts. In order to define the property formally, we 

need some notation and concepts. 

We use nond( x) to denote the set of nodes that are not descendants of x in 

the influence diagram. Thus, nond( d) n D is the set of decision nodes that are not 

descendants of node d. For a node set Z, let 1r(Z) = Uzez1r(z) and 1r*(Z) = 

Z U 1r(Z). 

The moral graph [4 7] of a directed graph G is an undirected graph m( G) with 

the same node set such that there is an edge between node x and node y in m( G) 



CHAPTER 5. FORMAL DEFINITION of INFLUENCE DIAGRAMS 88 

if and only if either there is an arc x ---+ y or y ---+ x in G, or there are two arcs 

x ---+ z and y ---+ z in G and x =j:. y . A node x is m-separated from a node y by a 

node set Z in a directed graph G if every path between x and y in the moral graph 

m( G) contains at least one node in the set Z . Because the "m-separated" relation 

is symmetric, we sometimes simply say that two nodes x and y are m-separated by 

Z if x is m-separated from y by Z. Two sets X and Y are m-separated by set 

Z if x ism-separated from y by set Z for each x EX and each y E Y. 

Let d be a decision node in G , let m( G) be the moral graph of G and let Gd 

be the undirected graph obtained from m( G) by removing all the nodes in 1r( d) . 

The downstream Yd of d is the set of all the nodes that are connected to d in 

Gd, with d excluded. The upstream Xd of d is the set of all the nodes that are 

not connected to d in Gd. The upstream Xd and the downstream ½ of d are 

m-separated by 1r( d) . This property is important for influence diagrams because m­

separation implies conditional independence [108). This property is used in Section 

7.2 when we establish a stochastic dynamic programming formulation for influence 

diagram evaluation. 

An influence diagram is stepwise decomposable if, for each decision node d and for 

any node x E 1r*( nond( d) n D), the following holds: { x} U 1r( x) ~ Xd U 1r( d) . This 

definition implies that for each decision node d and any node x E 1r*(nond(d) n D), 

{x} U 1r(x) Yri are m-separated by 1r(d). 

Note that a no-forgetting influence diagram is stepwise decomposable. In a step­

wise decomposable influence diagram, an arc into a decision node indicates both 

information availability and functional dependence. More precisely, for any decision 

node d and any other node x in a stepwise decomposable influence diagram, the 

presence of an arc x ---+ d implies that the value of variable x is available at the time 



CHAPTER 5. FORMAL DEFINITION of INFLUENCE DIAGRAMS 89 

when decision d is to be made, and it is not known that the information is irrelevant 

to the decision. On the other hand, the absence of an arc x --+ d in a stepwise 

decomposable influence diagram implies that either the value of variable x is not 

available at the time when decision d is to be made, or it is known that the informa­

tion is irrelevant to the decision. Thus, one advantage of stepwise decomposability 

over no-forgetting is that stepwi_se decomposable influence diagrams can represent 

the knowledge that a piece of information ( carried by a no-forgetting informational 

arc to a decision node) is irrelevant to the optimal decision function of the decision. 

Our method is applicable to regular stepwise decomposable influence diagrams 

with multiple value nodes. For simplicity of exposition, however, we will first consider 

regular influence diagrams with exactly one value node. We come to regular influence 

diagrams with multiple value nodes in Chapter 8. 



Chapter 6 

Review of Algorithms for 
Influence Diagram Evaluation 

In this chapter, we review related research efforts on influence diagram evaluation, 

and classify them into two categories. Those in the first category use an intermedi­

ate representation and evaluate an influence diagram in two conceptual steps: first 

transforming the influence diagram into its intermediate representation and then com­

puting an optimal policy from the intermediate representation. Those in the second 

category compute optimal policies directly from influence diagrams. Our method to 

be presented in the next chapter belongs to the first category. 

6.1 Howard and Matheson's Two-Phase Method 

Howard and Matheson's method belongs to the first category. Howard and Mathe­

son [35] discuss a way to transform a regular no-forgetting influence diagram into a 

decision tree. The transformation involves two steps. An influence diagram is first 

transformed into a decision tree network and then a decision tree is constructed from 

the decision tree network. An influence diagram is a decision tree network if it is 

regular and no-forgetting, and if all predecessors of each decision node are direct 

90 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 91 

parents of the decision node [35). The basic operation for transforming a regular, 

no-forgetting influence diagram into a decision network is arc reversal [35, 85). 

The arc reversal operation is illustrated in Fig. 6.1. Suppose a --+ b is an arc in 

an influence diagram such that both a and b are random nodes and there is no other 

directed path from node a to node b . The direction of the arc can be reversed and 

both nodes inherit each other's parents. This operation is an application of Bayes 

Theorem. In Fig. 6.1, we begin with conditional probability distributions P{bJa, ·} 

and P{ aJ·}, and end up with conditional probability distributions P{ aJb, ·} and 

P{bJ·}. Formally, we have: 

P{bJx, y, z} = L P{a, bJx,y, z} = L P{bJa, y, z} * P{aJx, y} 
a a 

P{aJb,x,y , z}= P{a,bJx,y,z} = P{bja, y z } * P{aJx y}_ 
P{bJx,y,z} P{bl x, y,z } 

As an example, consider the influence diagram shown in Fig. 6.2, which represents 

the oil wildcatter problem from [79). In the problem, an oil wildcatter must decide 

whether to drill or not to drill an oil well on a particular site. He is not certain 

whether the site is dry, wet or soaking. Before making this decision, he can order 

a test on the seismic structure. If he does, the test result will be available to him at 

the time when the drill decision is to be made. The profit depends on the cost of the 

test, the amount of oil and the cost of drilling, which can be either low, medium, or 

high. 

In the influence diagram, T and D are decision variables, corresponding to the test 

decision and the drill decision. O, S, R and CD are random variables, representing 

the amount of oil, the seismic structure, the test result , and the cost of drilling, 

respectively. 

The two decision variables have the same frame with two alternatives: yes and no. 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 92 

The frame of random variable O has three values: dry, wet and soaking. The frame 

of random variable S has three values: ns for no-structure, cs for close-structure and 

os for open-structure. The frame of random variable R has four values: ns for no­

structure, cs for close-structure, os for open-structure, and nobs for no observation. 

The frame of random variable CD has three values: 1 for low, m for medium and h for 

high. 

The influence diagram m Fig. 6.2 is regular and no-forgetting, but is not a 

decision tree network, since node S and O are two predecessors of node D but they 

are not parents of D. In order to transform that influence diagram into a decision 

network, we first reverse the arc O -+ S and then reverse the arc S --+ R. The resulting 

decision network is shown in Fig. 6.3. In the course of this transformation, we have 

also to compute the new conditional probability distributions for nodes O and S. 

More specifically, when we reverse the arc O -+ S, we need to compute probability 

distributions P{o Is} and P{s} from probability distributions P{S I □} and P{o}; 

when we reverse the arc S-+ R, we need to compute probability distributions P{RIT} 

and P {SIT, R} from probability distributions P { S} and P {RI T, S}. This operation 

introduces the arc from T to S. 

y G 

Figure 6.1: An illustration of the arc reversal operation: reversing arc a -+ b 

A decision tree is constructed from a decision tree network as follows. First, define 

a total order -< over the set C U D U { v} satisfying the following three conditions: 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 93 

Figure 6.2: An influence diagram for the oil wildcatter's problem 

Figure 6.3: A decision tree network derived from the influence diagram for the oil 
wildcatter's problem 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 94 

(1) a -< b if b is the value node; (2) a -< b if there is a directed path from a to b; 

(3) a -< b if a is a decision node and there is no directed path from b to a. Then, 

construct a decision tree by considering variables one by one in the order. Each layer 

in the decision tree corresponds to a variable. For the decision tree network in Fig. 

6.3, we obtain the following order: 

T -< R -< D -< S -< 0 -< CD -< v 

Using Howard and Matheson's notation [35], the decision tree for the oil wildcatter 

problem is shown in Fig. 6.4. In the figure, the boxes correspond to decision variables, 

circles to random variables, and diamonds to the value node. This is a compact 

representation of a full decision tree. A layer of the decision tree is indicated by the 

corresponding variable and its possible values (alternatives). In the case of a random 

variable, its probability distribution is also included in the layer. The full decision 

tree can be obtained by systematically expanding each layer and adding necessary 

connections in the expanded graph. Fig. 6.5 shows a partial decision tree resulting 

from the expansion of the first two layers, and Fig. 6.6 shows a partial decision tree 

resulting from the expansion of the first three layers of the compact representation. 

(OJB) (CD) 

D O -wet :m. u G) o■ ~-~-E~~ 
R :: 110 

8 

ca ■oa)d:u9 a, h 
0 

Figure 6.4: A compact representation of the decision tree derived for the oil wildcatter 
problem 

Note that the decision tree here is slightly different from the definition of decision 

trees (graphs) in Chapter 2. In this decision tree, chance nodes and choice nodes 



CHAPTER 6. REVIETV OF ALGORITHMS FOR ID EVALUATION 95 

(RjT} 

nobs 

DS ;· 
r--;-iLO L:.J (RjT} 

cs 

nobs 

DS 

OS 

cs 

Figure 6.5: A partial decision tree after the expansion of the first two layers 

yea 

(lll'l') 

11.0~8 

11.S 
11.0 ;· 

GJL (ll I '1') 

11oba 

118 

yes 

110 

Figure 6.6: A partial decision tree after the expansion of the first three layers 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 96 

are not strictly interleaved. Nevertheless, the algorithms discussed in Chapter 3 

can be easily adjusted for such cases. Moreover, since the algorithms can work on 

implicit representations of decision trees, it is not necessary to expand the compact 

representation into a full decision tree. The algorithms can work on the compact 

representation directly. 

The major problem with this approach is that the resultant decision tree tends 

to be large. The depth of the decision tree so obtained from an influence diagram 

is equal to the number of variables in the influence diagram. Thus, the size of the 

decision tree is exponential in the number of variables in the influence diagram. 

6.2 Methods for Evaluating Influence Diagrams 
Directly 

The idea of evaluating influence diagrams directly was proposed in [64]. The first 

complete algorithm for influence diagram evaluation was developed by Shachter [85]. 

6.2.1 Shachter's algorithm 

Shachter's algorithm takes a reduction approach. The algorithm evaluates an influ­

ence diagram by applying a series of value-preserving reductions. A value-preserving 

reduction is an operation that can transform an influence diagram into another one 

with the same optimal expected value. 

Shachter identifies four basic value-preserving reductions, namely, barren node 

removal, random node removal, decision node removal and arc reversal. The arc 

reversal operation has been illustrated in the previous section. The other reductions 

are illustrated as follows. 

Barren node removal. A node in an influence diagram is called a barren node if 

I. 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 97 

it has no child in the diagram. The barren node removal reduction states that any 

barren node that is not a value node can be removed together with its incoming arcs. 

Random node removal. If the value node is the only child of a random node x in 

an influence diagram, then the node x can be removed by conditional expectation. 

As a result of this operation, the random node x is removed and the old value node is 

replaced with a new one that inherits all of the parents of both the old value node and 

the random node. The reduction is illustrated in Fig. 6. 7 where the value function 

g' of the new value node v' in the resultant influence diagram is given by: 

g'(a,b,c) = ~g(x,b,c)*P{xla,b}. 
X 

Decision node removal. A decision node is called a leaf decision node if it has no 

decision node descendant. If a leaf decision node d has the value node v as its only 

child and 1r(v) ~ {d}U1r(d), then the decision node can be removed by maximization. 

The reduction is illustrated in Fig. 6.8 where the value function g' of the new value 

node v' in the resultant influence diagram is given by: 

g'(b) = maxdg(d, b). 

The maximizing operation also results in an optimal decision function 8d for the leaf 

decision node through 

Note that the new value node has the same parent as the old value node. Thus, some 

of the parents of d may become barren nodes as a result of this reduction. In Fig. 

6.8, node a becomes a barren node. The arc from such a node represents information 

available to the decision maker, but the information has no effect on either the optimal 

expected value or the optimal policy of the influence diagram. This kind of arc ( such 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 98 

as a --+ d in Fig. 6.8) is called an irrelevant arc. Irrelevant arcs can be identified and 

removed in a pre-processing step [106, 109, lll]. 

0 Q 

Figure 6.7: An illustration of random node removal: x is removed by expectation 

8 0 
Figure 6.8: An illustration of decision node removal: d is removed by maximization 

6.2.2 Other developments 

After Shachter's algorithm, research on influence diagram evaluation has advanced 

in two directions: making use of Bayesian net evaluation methods, and exploiting 

separability of the value function. In this section, we discuss the first direction. We 

come to the second direction in Chapter 8. 

Influence diagrams are closely related to Bayesian nets [69]. Quite a few algorithms 

have been developed in the literature [36, 47, 69, 87, 107] for computing marginal 

probabilities and posterior probabilities in Bayesian nets. Thus, it is natural to ask 

whether we can make use of these Bayesian net algorithms for influence diagram 

evaluation. This problem is examined in [ll, 61, 86, 88, 90, 91, 108, 109), and the 

answer is affirmative. 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 99 

Recall that a decision function for decision node d in an influence diagram is a 

mapping from n1r(d) to nd. It is observed in [11, 86, 88, 108] that given a regular, 

no-forgetting influence diagram, the optimal policy can be computed by sequentially 

computing the optimal decision functions for decision nodes, one at a time, starting 

from the last one backwards. The computation of the optimal decision function of a 

decision node is independent of those decision nodes that precede the decision node. 

Cooper [11] gives a recursive formula for computing the maximal expected values 

and optimal policies of influence diagrams. To some extent, the formula serves as a 

bridge between the evaluation of Bayesian nets and that of influence diagrams. 

Shachter and Peot show in [88] that the problem of influence diagram evaluation 

can be reduced to a series of Bayesian net evaluations. To this end, the value node of 

an influence diagram is first replaced with an "observed" probabilistic utility node v' 

with frame {O, 1} and a normalized probability distribution. The optimal decision 

function On for the last decision node dn can be computed as follows: for each 

element e E n,r(dn) ' 

The optimal decision function Di of the decision node di is computed after the optimal 

decision functions Di+i ... , On have been obtained. The decision nodes di+I, ... , 

dn are first replaced with their corresponding deterministic random-nodes in the 

influence diagram. The decision function Di is then computed as follows: for each 

element e E !11r(d;) , 

The problem of influence diagram evaluation is then reduced to a series of problems 

of computing posterior probabilities in Bayesian nets. Shachter and Peot [88] also 



CHAPTER 6. REVIEW OF ALGORITHMS FOR ID EVALUATION 100 

point out that an influence diagram can be converted into a cluster tree, which is 

similar to the clique trees [47] of Bayesian nets, and that the problem of evaluating 

the influence diagram can thus be reduced to evaluating the cluster tree. A similar 

approach has also been used by Shenoy for his valuation based systems [90] and by 

Ndilikilikesha for evaluating potential influence diagrams [61]. 

Zhang and Poole [108] propose a divide-and-conquer method for evaluating step­

wise decomposable influence diagrams. This method is further studied in [109, 106]. 

Like Shachter and Peot's algorithm, Zhang and Poole's method also deals with one 

decision node at a time. Unlike Shachter and Peot's algorithm, Zhang and Poole's 

method takes a reduction approach. Suppose node d is a leaf decision node of a 

stepwise decomposable influence diagram I. 1r( d) separates the influence diagram 

into two parts, namely a body and a tail. The tail is a simple influence diagram with 

only one decision node ( d). The body's value node is a new node whose value func­

tion is obtained by evaluating the tail. A reduction step with respect to the decision 

node d transforms I to the body. The main computation involved in a reduction 

step, however, is for evaluating the tail. 

Since the tail is a simple influence diagram with only one decision node, its eval­

uation can be directly reduced to a problem of computing posterior probabilities 

in a Bayesian net, as suggested in [88, 109]. The result of the evaluation consists 

of two parts: a value function g' : !l,r(d) --t 'R.,, and an optimal decision function 

hd : n1r(d) --t nd. The same reduction is applicable to the resulting body. 

6.2.3 Some common weaknesses of the previous algorithms 

One common weakness of the influence diagram evaluation algorithms that we have 

reviewed is that they fail to provide any explicit mechanism to make use of domain 



CHAPTER 6. REVIEW OF A LGORITHMS FOR ID EVALUATION 101 

dependent information (e.g., a heuristic function estimating the optimal expected 

values of influence diagrams), even when it is available for some problems. 

Another notable and common shortcoming of these algorithms is inherited from 

the disadvantage of conventional influence diagrams for asymmetric decision prob­

lems. This was also observed in [85]. 

To be represented by an influence diagram, an asymmetric decision problem must 

be "symmetrized." This symmetrization results in many "impossible" information 

states (they have zero probability). The optimal choices for these impossible states 

need not be computed at all. 

Current algorithms for directly evaluating influence diagrams have two weaknesses, 

stemming from the symmetrization. The first one is that, for each decision node d, 

they will perform a maximization operation conditioned on each information state in 

n7r(d), even though the marginal probabilities of some states are zero. This weakness 

arises from the fact that these algorithms compute the decision functions in the reverse 

order of the decision nodes in the influence diagram. At the time of computing the 

decision function for decision d, the marginal probabilities of the information states in 

n7r(d) are not computed yet. The second weakness is that optimal choices for a decision 

node are chosen from the whole frame nd , instead of from the corresponding effective 

frames. Thus, it is evident that these algorithms involve unnecessary computation. 

In the next chapter, we develop an influence diagram evaluation method that avoids 

such unnecessary computation. 



Chapter 7 

A Search-Oriented Algorithm 

In this chapter, we present our method for influence diagram evaluation. We first 

formulate influence diagram evaluation as a stochastic dynamic programming problem 

[80]. Then we give a graphical depiction of the computational structure of the optimal 

expected value by mapping an influence diagram into a decision graph. Next, we 

point out how to avoid unnecessary computation in computing the optimal policy 

and propose a search-oriented approach to influence diagram evaluation. Finally, we 

analyze how much our meth~d can save in evaluating an influence diagram. 

7 .1 Preliminaries 

A decision node d directly precedes another decision node d' if d precedes d' and 

there is no other decision node d" such that d precedes d" and d" precedes d' . In a 

regular influence diagram, a decision node can directly precede at most one decision 

node. 

A decision node that is preceded by no other decision node is called a root decision 

node. 

Let I be a regular, stepwise decomposable influence diagram with a single value 

102 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 103 

node v. Suppose the decision nodes in I are d1 , ... , dn in the regularity order, 

then d1 is the only root decision node and dn is the only leaf decision node. For 

each k with 1 ::; k < n , dk directly precedes dk+i . Let ½k denote the downstream 

of dk. Let I(dk, dk+1 ) denote the subgraph consisting of dk, 1r(dk), 1r(dk+1) and 

those nodes in ½k that are not m-separated from dk+l by 1r(dk+1). Procedurally, 

I(dk, dk+i) can be obtained from I as follows: (1) remove all nodes that are m­

separated from dk by 1r( dk), excluding the nodes in 1r( dk); (2) remove all descendants 

of dk+1 ; (3) remove all barren nodes not in 1r(dk+i); (4) remove all arcs among nodes 

in 1r( dk) U { dk} and assign uniform distributions to the root nodes1 in 1r( dk) U { dk} . 

I(dk,dk+i) is called the sector2 of I from dk to dk+1 • The sector I(-,d1 ) 

contains only the nodes in 1r(d1) and those nodes that are not m-separated from d1 

by 1r( d1). The sector I( dn, - ) contains those nodes in 1r( dn) U { dn} and those nodes 

in the downstream "Ycin of dn . 

Note that the sector I(-, di) is a Bayesian net. Furthermore, because I is step­

wise decomposable, dk is the only decision node in the sector I( dk, dk+i) that is not 

in 1r( dk)- Similarly, dn is the only decision node in the sector I( dn, - ) that is not in 

As an example, consider again the oil wildcatter problem. The sector I( - , T) 1s 

empty. The sectors I(T, D) and I(D, - ) are shown in Fig. 7.1. 

Let 8 = (81, ... , 8n) be any policy for I. We have the following results on Is. 

Lemma 7.1 For any j, k with I::; j < k::; n, the set 1r(v) is independent of 1r(dj) 

1The assignment of uniform distributions to the root nodes in 1r( dk) U { dk} is only to make 
I(dk, dk+1) a Bayesian network. Since we will only be considering probabilities conditioned on 
1r( dk) U { dk} , the distributions of those nodes are irrelevant. 

2Previously, such a part of an influence diagram has been called a section [109]. 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 104 

G}---? 
Q--------0 

(a) I (T, D) (h) X(D,-) 

Figure 7.1: Two sectors of the influence diagram for the oil wildcatter problem. 

and dj , given 1r( dk) . Formally, the following relation holds: 

for any O E n1r(v) 1 y E n,r(dk), a E ndj I and for any X E n,r(dj) consistent with y 

(i.e., the projections of x and y on the common variable are the same). 

Proof Immediately follows from the m-separation property of a stepwise decompos­

able influence diagram. 

Lemma 7.2 For any k with l ~ k ~ n J and any OE n,r(v) and X E n1r(dk) J 

Proof. Recall that, with respect to a policy 8 = (81 , ... on), the decision node di, 

for i = 1, ... , n, is characterized by the following probability distribution: 

if oi(c) = x, 
otherwise. 

Thus, 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 

D 

= I: Ps{7r(v) = ol7r(dk) = x,dk =a}* Ps{dk = a17r(dk) = x} 
aEi\dk) 

= Ps{ 7r( v) = o17r( dk) = x, dk = 8k( x)} 

105 

Lemma 7.3 For any x E !11r(di) 1 the probability Ps{ 7r( d1 ) = x} depends only on 

nodes in the sector I(-, d1 ) 1 and is independent of 8. Consequently1 for any other 

policy 8' 1 

Proof. Since all nodes not in I(-, d1 ) are non-ancestors of the nodes in 7r(d1), they 

are irrelevant to the marginal probabilities of 7r( d1 ) . Since there is no decision node 

in I(-,d1), then Ps{7r(d1 ) = x} is independent of 8. □ 

Lemma 7.4 (1) For any O E n1r(v), X E n1r(dn) and a E ndn J the conditional 

probability Ps { 7r ( v) = ol 7r ( dn) = x, dn = a} depends only on those nodes in the sector 

I( dn, - ) 1 and is independent of 8. In other words1 for any other policy 8' 1 

(2) For any y E n1r(dk+d' x E n1r(dk) and a E ndk I the conditional probabil­

ity Ps{7r(dk+i) = yl1r(dk) = x,dk = a} depends on only those nodes in the sector 

I( dk, dk+I) 1 and is independent of 8. In other words, for any other policy 8' 1 

(3) Suppose 8' = ( 8~, ... , 8~) is another policy for I such that 8~ = 81 , ... , 8,._1 = 

8k-1 for some k, 1 ~ k ~ n I then1 for any j, l ~ j ~ k I and any x E n1r(dj) 1 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 106 

Proof. Follows from the definition of sectors and the m-separation property of a 

stepwise decomposable influence diagram. D 

Lemmas 7 .3 and 7.4 indicate that some conditional probabilities in an influence 

diagram are independent of policies for the influence diagram, and can be computed 

in a sector of the influence diagram. The computation can be carried out by any 

well-established algorithms for Bayesian nets. This fact facilitates a clean interface 

between influence diagram evaluation and Bayesian net evaluation. 

7.2 Influence Diagram Evaluation via Stochastic 
Dynamic Programming 

In this section, we establish a stochastic dynamic programming formulation for influ­

ence diagram evaluation by studying the relationship among the conditional expected 

values of influence diagrams. 

Let e be any event in Is and let E0 [vle] be defined as follows: 

Es[vle] = ~ g(o) * Ps{7r(v) = oje}. 
oEO,r(v) 

For each k with 1 :::; k ::::; n , let Uk be a function defined as follows. 

(7.1) 

Informally, Uk(x, 8) is the expected value of the influence diagram with respect to 

policy 8, conditioned on 7r( dk) = x. 

Lemma 7.5 The expected value of the influence diagram with respect to policy 8 can 

be expressed in terms of Uk as: 

Es[v] = L Uk(x, 8) * Ps{7r(dk) = x }. 
xEO,r(dk) 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 107 

Proof By the definition of Es[v], we have: 

Es[v] = L g(o) * Ps{11"(v) = o}. 
oen,,.(.,) 

Since 

Ps{11"(v) = o} = L Ps{11"(v) = ol11"(dk) = x} * Ps{11"(dk) = x}, 
xEfl,r(dk) 

thus, 

Es[v] = L g(o) * L Ps{11"(v) = ol1!"(dk) = x} * Ps{11"(dk) = x}. 
oEfl,,.(.,) xEfl,,.(ctk) 

By changing the order of the two summations, we have: 

By the definition of Uk , we have: 

Es[v] = L Uk(x,8) * Ps{11"(dk) = x}. 
xEfl,,.(ctk) 

D 

Lemma 7.6 The following relation between functions Uk and Uk-I holds. 

Uk-1(x,8)= L Uk(y,8)*Ps{11"(dk)=yl11"(dk-1)=x} 
yEfl,r(dk) 

Proof By the definition of Uk-I , we have: 

Uk-1(x,8) = L g(o) * Ps{11"(v) = ol1!"(dk-i) = x}. 
oen ... (.,) 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 108 

Since 

Ps{ 7r( v) = ol?r( dk-1) = x} = 

L Ps{7r(v) = ol?r(dk-1) = x,?r(dk) = y} * Ps{?r(dk) = Yl?r(dk-1) = x}, 
yEO,,.( dk) 

then by Lemma 7.1, we have: 

uk-1(x,8) = L g(o)* L Ps{7r(v) = ol?r(dk) = Y}*Po{?r(dk) = Yl?r(dk-1) = x} . 
oEfl,,.(v) yEO,,.(dk) 

By reordering the two summations, we obtain: 

By the definition of Uk , we have: 

Uk-1(x,8) = L Uk(y,8) * Po{?r(dk) = Yl?r(dk) = x}. 
yEO,,.(ak) 

D 

Lemma 7.7 Let 8' = (8~, ... , 8~) be another policy for I such that 8~ = 8k, ... , 8~ = 

8n, for some k, 1 $ k < n. Then, Uj(x, 8) = Uj(x, 8') for each j, k $ j $ n and 

each X E n7r(dj) . 

Proof By induction. 

Basis: Consider Un. By the definition of Un, we have: 

Un(x, 8) = L g(o) * Po{7r(v) = ol?r(dn) = x} 
oEfl,,.(v) 

and 

Un(x,8') = L g(o) * Ps1 {7r(v) = ol?r(dn) = x}. 
oEO,r(v) 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 109 

By Lemma 7.2, we have: 

and 

Since Sn= 8~, then by Lemma 7.4-(1), we have: 

Thus, Un(x, 8) = Un(x, 8'). Therefore, the basis holds. 

Induction: Suppose Ui(x, 8) = Ui(x, 8') for all i, k < i ~ n. By Lemma 7.6, we 

have: 

Ui-1(x, 8) = L Ui(Y, 8) * Ps{7r(di) = yj7r(di-1) = x} 
yEO,r(d;) 

and 

By the induction hypothesis, we have: 

By Lemma 7.2, we have: 

and 

Since Si-1 = 8L1 , then by Lemma 7.4-(2), we obtain: 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 110 

Thus, 

Therefore, 

Therefore, the lemma holds in general. D 

So far, we have developed some results on the expected values of an influence 

diagram with respect to an arbitrary policy. Let us now examine the properties of 

an optimal policy. Let 8° =(or, ... , 8~) be an optimal policy for influence diagram 'I 

and let ½ be a function defined as 

Intuitively, ½(x) is the optimal expected value of the influence diagram 'I condi­

tioned on 1r(dk) = x. In other words, ½(x) is the expected value a decision maker 

can obtain if he starts to make optimal decisions in the situation represented by the 

event 1r(dk) = x. 

Let V£(x, a) be an auxiliary function defined as: 

V~(x,a) = L 9v(Y) * Pso{1r(v) = yl1r(dn) = x,dn = a} (7.2) 
yEO,.(v) 

V{(x,a) = L Vk+1(Y) * Pso{1r(dk+1) = yj1r(dk) = x,dk = a} (7.3) 
yEO,,.(dk+i) 

Intuitively, Vt( x, a) is the optimal expected value of the influence diagram 'I condi-

tioned on 1r(dk) = x, dk =a. In other words, V£(x, a) is the expected value a decision 

maker can obtain if he starts to make decisions in the situation represented by the 

event 1r( dk) = x, and first chooses a for dk (in this situation) and then follows an 

optimal policy for the remaining decisions. 

The next two lemmas characterize the relationship between ½ and v,: . 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 111 

Lemma 7.8 For all k = l, ... , n, 

V{(x, 8Z(x)) = Vi(x). 

Proof 

V{(x, 8Z(x)) 

L Vi+1(y) * P.,0{1r(dk+1) = yj1r(dk) = x,dk = 8Z(x)} 
yEO,r(dk+1l 

L Vi+i(Y) * P.,0{1r(dk+1) = yJ?r(dk) = x} by Lemma 7.2 
yEO,r(dk+1l 

L Uk+1 (y, 8°) * P.,o { 7r( dk+1) = yJ?r( dk) = x} by the definition of Vi 

= Uk(x, 8°) by Lemma 7.6 

= Vi ( x) by the definition of Vi . 

□ 

Lemma 7.9 For all k = l, ... , n, 

Proof Suppose the inequality does not hold. Thus, there exist x0 E Slrr(dk) and 

ao E ndk such that 

Construct a policy 8' = ( 8~, ... , 8~) such that 8: = 8? for all i , 1 ~ i ~ n, i -:/ k 

and 8k(xo)=ao,and 8k(x)=8f(x),forall xE01r(dk),x-:/xo. For any xE01r(dk), 

any a End,. and any y E n1r(dk+1)' by Lemma 7.7, we have 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 112 

by Lemma 7.3, we have 

by Lemma 7.4, we have 

We can prove Es,[v] > E6o by the following derivation: 

Es,[v] 

- L Uk(x,c5')*Ps1 {1r(dk)=x} 

= ( L uk+i(y,c5°) * Ps,{1r(dk+1) = yl1r(dk) = xo}) * Pso{1r(dk) = Xo} 
yEO,r(c:lk+1l 

+ L ( L uk+1(y,c5°)*Pso{1r(dk+1)=yl1r(dk)=x})*Pso{1r(dk)=x} 

= ( L Vi+1(Y) * Ps1 {1r(dk+1) = yl1r(dk) = xo,dk = ao}) * Pso{1r(dk) = xo} 
yEO,r( c:!k+1) 

+Eso[v] 

-( L Vi+1(Y) * Pso{1r(dk+1) = yl1r(dk) = Xo, dk = c5o(xo)) * Pso{1r(dk) = xo} 

= ( L Vi+i (y) * Pso { 1r(dk+1) = yl1r(dk) = Xo, dk = ao}) * Pso{ 1r(dk) = xo} 
yEO,r( c:!k+l) 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 

+Eso[v] - V{(xo,8°(xo)) * P00{1r(dk) = xo} 

= V{(xo,ao) * P00{7r(dk) = xo} - V{(xo,8°(xo)) * Pso{7r(dk) = xo} + Eso[v] 

= (V{(xo,ao) - V{(xo,8°(xo)) * Pso{1r(dk) = xo} + Eso[v] 

> E0o[v] 

This contradicts the optimality assumption of 8° . □ 

113 

The results we have obtained so far are summarized by the following theorem. 

Theorem 7.10 Let I be a regular and stepwise decomposable influence diagram, let 

functions Vi and Vt be defined as before, and let 8° = (8f, ... ,8~) be an optimal 

policy for I. For any k with l ~ k < n' and X E n,r(dk) and a E ndk' the following 

relations hold: 

V{(x,a) = L Vk+1(Y) * P{7r(dk+i) = y/7r(dk) = x,dk = a} (7.4) 
yEO,r(dk+1) 

(7.5) 

(7.6) 

(7.7) 

where P{7r(d1 ) = x} = P6o{7r(d1 ) = x} can be computed in the sector I(-,d1 ) and 

P{7r(dk+I) = y/1r(dk) = x,dk =a}= P00{7r(dk+1) = y/7r(dk) = x,dk = a} can be 

computed in the sector I( dk, dk+I) , both independently of 8° . 

Equations 7.4, 7.5 and 7.6 establish the computational structure of influence diagram 

evaluation in the form of finite-stage stochastic dynamic programming [80]. They 

essentially describe an expectation-maximization iteration for computing the optimal 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 114 

policy and the optimal expected value. Equations 7.4 and 7 .5 collectively form a 

variation of Bellman's optimality equation [5] for stochastic dynamic programming. 

Theorem 7.10 shows that functions ½., ... , Vn and 8~, ... , 8~, as well as E8o[v] can 

be computed from V~ . The computation process is similar to the one implied in the 

recursive formula given in [11]. For an influence diagram, the computation can be 

roughly divided into two parts: one for computing conditional probabilities in the 

sectors of the influence diagram and one for the summations and maximizations as 

specified in Equations 7.4 and 7.5. The definition of V~ is given in Equation 7.2. The 

computation of V~ can be computed from the sector I( dn, - ) . 

As shown in the previous example, the sectors of an influence diagram can have 

some overlap. Consequently, some redundancy may be involved in computing condi­

tional probabilities in different sectors. This problem does not arise for smooth in­

fluence diagrams [109). A non-smooth influence diagram can be transformed into an 

equivalent smooth influence diagram by a series of arc reversal operations [106, 109]. 

Therefore, we can either deal with an influence diagram directly or first transform the 

influence diagram into a smooth influence diagram and deal with the smooth one. 

It is now fairly clear that the amount of computation involved in the above men­

tioned process is comparable to that involved in the other algorithms such as those 

in [88, 108]. 

In the above mentioned process, the value 8?(x) will be computed for each di 

and each x E n1r(d;) . Thus, unnecessary computation has not been avoided. 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 115 

7.3 Representing the Computational Structure by 
Decision Graphs 

In this section, we use decision graphs to depict the computational structures of the 

optimal expected values of influence diagrams. For each influence diagram, we can 

construct a decision graph and define a max-exp evaluation function for the decision 

graph in such a way that the solution graphs of the decision graph correspond to the 

policies for the influence diagram, and the optimal solution graphs correspond to the 

optimal policies. 

Before we discuss how to construct decision graphs for influence diagrams, we 

need some terminology. 

Let d be a decision variable in an influence diagram. For each x E 01r(d) , we 

call assignments of the form 1r( d) = x a parent situation for the decision variable d. 

For each alternative a E nd, we call assignments of the form 1r(di) = x, d = a an 

inclusive situation for the decision variable d. Two situations are consistent if the 

variables common to the two situations are assigned the same values. 

For an influence diagram, we define a decision graph in terms of situations. In the 

graph, a choice node represents a parent situation and a chance node represents an 

inclusive situation. The following is a specification of such a decision graph. 

• A chance node denoting the empty situation is the root of the decision graph. 

• For each information state x E 01r(di) , there is a choice node, denoting the 

parent situation 1r( d1 ) = x, as a child of the root in the decision graph. The 

arc from the root to the node is labeled with the probability P{1r(d1 ) = x}. 

• Let N be a choice node in the decision graph denoting a parent situation 1r( d) = 
x for some decision variable d and some x E 01r(d). Let h(x) be the effective 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 116 

frame for the decision variable d in the information state x . Then, N has 

lh(x)I children, each being a chance node corresponding to an alternative3 in 

fd( x) . The node corresponding to alternative a denotes the inclusive situation 

1r( d) = x, d = a . 

• The node denoting an inclusive 1r(dn) = x,dn = a is a terminal in the decision 

graph, having value v:(x, a). 

• Let N be a chance node denoting an inclusive situation 1r(di-I) = x,di-I =a, 

and let A be the subset of the parent situations for decision variable di which 

are consistent with 1r(di-I) = x, di-I = a. Node N has IAI children, each 

being a choice node denoting a parent situation in A. The arc from N to 

the child denoting a parent situation 1r( di) = y is labeled with the conditional 

probability4 P{1r(di) = yi1r(di-1) = x,di-1 =a}. 

In such a decision graph, a choice node represents a situation of the form 1r(di) = x 

for some i and x E n1r(d;). In such a situation, the decision agent needs to decide 

which alternative among h;(x) should be selected for di. Thus, the choice node 

has lid; ( x) I children, each for an alternative in h, ( x) . The child corresponding to 

alternative a is a chance node, representing the probabilistic state 1r( di) = x, di = a. 

From this probabilistic state, one of the information states of di+I may be reached. 

The probability of reaching information state y is P{ 1r( di+1) = y l1r( di) = x, di = a}. 

As an example, consider the oil wildcatter problem. The probability distributions 

and the value functions are given in Tables 7.1-7.5. A complete decision graph for the 

oil wildcatter problem is shown in Fig. 7.2. As we know, a probability is associated 

3Note that here we are using the effective frame fd(x) instead of the frame nd. 
4Note that probabilities of this kind on arcs are not computed unless necessary. This point will 

be clear in Section 7.4.l. 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 117 

Table 7.1: The function of the value node 

T D 0 CD V T D 0 CD V 
no no -- -- 0 yes no -- -- -10 
no yes dry 1 -40 yes yes dry 1 -so 
no yes dry m -50 yes yes dry m -60 
no yes dry h -70 yes yes dry h -80 
no yes vet 1 80 yes yes vet 1 70 
no yes vet m 70 yes yes vet m 60 
no yes vet h 50 yes yes vet h 40 
no yes soaking 1 230 yes yes soaki ng 1 220 
no yes soaking m 220 yes yes soaking m 210 
no yes soaking h 200 yes yes soaking b 190 

Table 7.2: The conditional probability distribution of R 

T s R prob 
no -- nobs 1.0 
no -- others 0 
yes -- nobs 0 
yes ns ns 1.0 
yes cs cs 1.0 
yes OS 08 1.0 

with each arc from a chance .node to a choice node. These probabilities can be 

computed in the sector I(T, D) as shown in Fig. 7.1. 

In Fig. 7.2, those arcs without labels are associated with zero probability. Non­

zero probabilities are computed as follows. 

P{T=yes,R=nslT=yes} 

= P{R=ns IT=yes} 

= P{R=nslT=yes,S=ns} * P{S=ns} 

Table 7.3: The conditional probability distribution of CD 

CD prob 
1 0.2 
m 0.7 
h 0.1 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 

Table 7.4: The prior probability distribution of 0 

0 prob 
dry 0.5 
vet 0.3 
soaking 0.2 

Table 7.5: The conditional probability distribution of S 

0 s prob 
dry ns 0.6 

cs 0.1 
OS 0 . 3 

vet ns 0.3 
cs 0.3 
OS 0.4 

soaking ns 0.1 
cs 0.5 
OS 0 . 4 

+P{R=ns IT=yes ,S=os} * P{S=os} 

+P{R=ns IT=yes ,S=cs} * P{S=cs} 

= 1 * P{S=ns} + 0 * P{S=os} + 0 * P{S=cs} 

= P{S=ns} 

Similarly, we have: 

P{T=yes,R=oslT=yes} = P{S=os} 

and 

P{T=yes, R=cs I T=yes} = P{S=cs }. 

The marginal probabilities of S are computed as follows. 

P{S=ns} - P{S=ns I O=dry} * P{O=dry} 

+ P{S=ns I O=wet} * P{O=wet} 

+ P{S=ns I □=soaking}* P{O=soaking} 

118 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 

- 0.6 * 0.5 + 0.3 * 0.3 + 0.1 * 0.2 = 0.41 

Similarly, we can obtain that P{S=os} = 0.35 and P{S=cs} = 0.24 . 

1.0 

T•yes 

j :.~· 
ll•DB 

. 

s 
~ T .. yes 

~ ll=os 

Tayes 
ll•cs 

Figure 7.2: A complete decision graph for the oil wildcatter problem 

119 

Let DG be a decision graph derived from a regular stepwise-decomposable influ­

ence diagram with a single value node. We can define an evaluation function, u1 , on 

DG as follows: 

• If N is a terminal representing a situation 1r(dn) = x, dn =a, then 

u1(DG, N) = V~(x, a) 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 

• If N is a chance node with children N1 , ... , N1 , then 

I 

u1(DG,N) = "'£p(N,Ni) * u1(DG,Ni) 
i=l 

where p(N, Ni) is the probability on the arc from node N to node Ni. 

• If N is a choice node with children N1 , ... , N1 , then 

u1(DG,N) = max~=1{u1(DG,Ni)}. 

120 

The following lemma can be easily proved by induction on nodes in the decision graph. 

Lemma 7.11 (1) If N is a choice node representing a parent situation 1r(dk) = x, 

then u1(N)=¾(x). 

(2) If N is a chance node representing an inclusive situation 1r( dk) = x, dk = a, 

then u1(N) = V{(x,a). 

(3) If N is the root, then u1(N) is equal to the optimal expected value of the 

influence diagram. 

The correspondence between the optimal policies of the influence diagrams and the 

optimal solution graphs becomes apparent. As a matter of fact, an optimal solution 

graph of the decision graph can be viewed as a representation of decision tables in 

which all the unreachable situations are removed (111]. 

7.4 Computing the Optimal Solution Graph 

As we discussed in Chapter 3, an optimal solution graph of a decision graph can be 

computed either "bottom-up" or "top-down." If a bottom-up approach is taken, the 

values of the leaves are computed first. The max-exp values of interior nodes can 

be computed when the max-exp values of all children of the node are available. The 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 121 

max-exp value of a choice node denoting a parent situation 1r( d) = x is computed 

by a maximization operation ranging over the children of the choice node, each corre­

sponding to an alternative in the effective frame f d( x) . As a result of this operation, 

an optimal choice for the decision variable d is also determined for the information 

state x . The computational complexity of this process is linear in the size of the 

decision graph5
• This method cannot avoid computing optimal choices for decision 

nodes with respect to impossible states. 

7.4.1 Avoiding unnecessary computation 

We observe that the asymmetry of an influence diagram is reflected by arcs with zero 

probability in the corresponding decision graph. As we know, the value of a chance 

node in a decision graph is the weighted sum of the values of its children. If the 

probability on the arc to a child is known in advance to be zero, then there is no need 

to compute the value of the child (as far as this chance node is concerned). In case 

the probabilities on the arcs to a choice node are all zero, the value of the node will 

never be required. Thus, we need not compute the max-exp value of, and the optimal 

choice for, the node. In this case, the probability of the information state denoted 

by the choice node is zero. Thus, it is equivalent to say we need not compute the 

optimal choice for the corresponding decision variable for the impossible information 

state. One way to avoid such computation for the impossible states is by pruning 

those choice nodes corresponding to impossible states. The following procedure for 

generating a decision graph for an influence diagram effectively realizes this objective: 

(1) generate the root node and put it into set G; 

5N ote that the size of the decision graph is normally exponential in the size of the decision node's 
parents. See the analysis in the next section. 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 

(2) if G is empty then stop; 

(3) pick a node N from G and set G to G - {N}; 

( 4) if N is a terminal node then go to (2); 

122 

(5) generate the child set C(N) of node N; if N is a choice node, set G to GU 

C(N), otherwise let C'(N) be the subset of C(N) such that the probabilities 

of the arcs from N to the nodes in C'(N) are non-zero; set G to GU C'(N); 

(6) goto (2); 

The above procedure will not expand a choice node unless its probability is not zero. 

Thus, the procedure effectively ignores subtrees rooted at nodes corresponding to 

impossible states. Thus, the computation (for computing optimal choices for choice 

nodes and for computing the conditional probabilities) involved in the subtrees is 

totally avoided. 

Consider again the decision graph for the oil wildcatter problem shown in Fig. 7 .2. 

In the figure, those arcs without labels have zero probability. If we apply the above 

procedure to the influence diagram of the problem, we obtain the simpler decision 

graph shown in Fig. 7.3. With this decision graph, we no longer need to compute 

optimal choices for decision D with respect to impossible states such as T=no ,R=ns. 

Values for the other terminals can be computed locally in the sector I(D, - ) ( as 

shown in Fig. 7.1) as follows. The solution graph in Fig. 7.4 corresponds to the policy 

of no test and drill. The expected value of the influence diagram with respect to the 

policy is 40, which is the optimal expected value of the influence diagram. Thus, the 

solution graph corresponds to an (the) optimal policy of the influence diagram. 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 123 

-10 

'l'•ye• 
R•n■ 

52.5 

T•yes 
R•oa 

1.0 
0.24 97.5 

'l'"YII• 
R•ca 

LO 

40 

Figure 7 .3: A simplified decision graph 

40 

1.0 

1.0 

40 
.-•· 

'; 40 
··-.... : 

Figure 7.4: The optimal solution graph for the oil wildcatter problem 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 124 

7 .4.2 Using heuristic algorithms 

The method just described effectively exploits asymmetry in decision problems. Bet­

ter performance will be achieved if the algorithms presented in Chapter 3 are used 

for computing an optimal solution graph. By using these algorithms, some subgraphs 

may not be processed at all. 

To use these algorithms, we need a heuristic function that gives admissible es­

timation on u1 ( s) for any situation s . Note that the notion of admissibility for a 

heuristic function here is different from the traditional one. Because we are maximiz­

ing merit instead of minimizing cost, we define a heuristic function to be admissible 

if it never under-estimates for any situation s. Formally, a function h is admissible 

if h( s) ~ u1 ( s) for any situation s. An obvious admissible heuristic function for an 

influence diagram evaluation problem is the one returning +oo for each situation. 

Performance can be further enhanced if we can obtain a more informed heuristic 

function by using domain-dependent knowledge. 

7.4.3 A comparison with Howard and Matheson's method 

The relationship between our method and Howard and Matheson's should now be 

clear. In both methods, an influence diagram is first transformed into a secondary 

representation from which an optimal policy is computed. However, there are a few 

notable differences between the two methods. 

First, Howard and Matheson's method works only for no-forgetting influence di­

agrams while ours is applicable to regular stepwise decomposable influence diagrams 

( we handle influence diagrams with multiple value nodes in the next chapter). 

Second, the sizes of the secondary representation generated by the two methods 

are different. For a given influence diagram, the depth of the decision tree obtained by 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 125 

Howard and Matheson's method is equal to the number of variables in the influence 

diagram, while the depth of the decision graph obtained by our method is 2n , where n 

is the number of decision variables in the influence diagram. Typically, there are more 

random variables than decision variables in a decision problem, thus the depth of the 

decision tree obtained by Howard and Matheson's method is larger than the depth of 

the decision graph obtained by ours for the same influence diagram. Furthermore, the 

number of nodes in the decision tree obtained by Howard and Matheson's method 

from an influence diagram is exponential in the depth of the tree, but this is not 

necessarily true for the decision graph obtained by our method. In fact, the number 

of nodes in a decision graph obtained by our method is: 

n-1 

1 + 1!1,r(dn)I + I:(1!1,,-(di)I + l!11r(d;)I * l!1d;I), 
i=l 

Third, our method provides a clean interface to those algorithms developed for 

Bayesian net evaluation. 

7.5 How Much Can Be Saved? 

In this section, we first give a general analysis of how much can be saved by exploit­

ing asymmetry in a typical decision problem and then examine the used car buyer 

problem. Since the number of optimal choices to be computed is a relative measure 

on the time an algorithm takes for evaluating an influence diagram, we compare the 

number of optimal choices to be computed by our method against other methods. 

7.5.1 An analysis of a class of problems 

In this subsection, we analyze our algorithm against the following generalized buying 

problem: 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 

Suppose we have to decide whether to buy an expensive and complex item. 

Before making the decision, we can have n tests, denoted by T1 , ... , Tn, on 

the item. Suppose test Ti has ki alternatives and ji possible outcomes 

for i = 1, ... , n .. Among the ki alternatives for test Ti, one stands for the 

option of no-testing. Correspondingly, among the ji possible outcomes 

of test Ti, one stands for no observation, resulting from the no-testing 

alternative. 

126 

An influence diagram for this problem is shown in Fig. 7 .5. In this influence diagram, 

decision variable Ti has a frame of size ki, including an alternative nt for not testing, 

and random variable ~ has a frame of size ji , including an outcome nr for no 

observation. Let Hi = kdi- The size of n?r(T,) is rrt:~ H1 . Thus, the decision Ti 

has II};;;;~ H1 information states, the decision B has II1=1 Hz information states. If we 

do not exploit the asymmetry of the problem, we will have to compute an optimal 

choice for every decision and each of its information states. The total number is 

"n+I rri-IH 
L..,i=l l=l I· 

Let us consider for how many information states our method will compute optimal 

choices for each decision variable. To do so, we simply count the number of choice 

nodes in the decision graph ( actually, decision tree) generated by our method from 

the influence diagram. 

Before counting, let us first make some notes on the conditional probabilities we 

will use in the process of decision graph construction. During the process, we need the 

conditional probabilities P { 1r( di+I) l1r( di), di} , where di denotes Ti for i = 1, ... , n 

and dn+I denotes B, the purchase decision. First, because 1r(di+1) = 1r(di)U{di, Ri}, 

we have: 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 127 

Second, for any given information state y E 01r(d;) with 1 ~ i ~ n, the total 

number of test-choice/test-result combinations is kdi. Among these combinations, 

some have zero probability, as illustrated by the partial decision tree shown in Fig. 

7.6, where shadowed boxes correspond to the zero probability combinations. The 

number of zero probability condition/ outcome combinations determines the degree 

of asymmetry of the problem. Let Jir(Y) denote the set of possible outcomes of R 

if the choice for Ti in situation 1r( di) = y is ar E OT;. In terms of probability 

distributions, this is equivalent to saying that, for all y E 01r(di), for all ar E Od; and 

for all x E OR; - Jir(Y) 

and for all y E n1r(di) and for all ar E nd; 

I: P{R = xj1r(di) = Y, di= llr} = 1. 
:cEJ;r(Y) 

Thus, the total number of non-zero probability combinations of test-choice/test­

result, conditioned on 1r(di) = y, is bounded from above by I:~~1 IJir(Y)I. Let hi(Y) = 
I:;~1 IJir(Y)I and hi= maxy hi(y). 

At the most conservative extreme, we can assume that for any y E 01r(d;), there 

exist some a E nd; and some X E nR; such that 

In this case, the total number of non-zero probability combinations of test-choices /test­

results is bounded from above by kdi - l. 

A reasonable assumption we can make about a practical decision problem is that, 

for any decision variable, the choice of do-nothing will always lead to no result while 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 128 

a choice other than do-nothing will always lead to some results. We call this assump­

tion the "no action, no result" assumption. For the generalized buying problem, this 

assumption means that no-test choice nt for decision node Ti will lead to no obser­

vation nr as the only possible outcome of Ri , and other test choices will not lead 

to no observation nr. The partial decision tree in Fig. 7.6 depicts this case, where 

shaded nodes correspond to the states with zero probability. In terms of probability 

distributions; we have: 

P{R = xl1r(di) = y, di= nt} = o 

P{Ri = nrJ1r(di) = y, di= nt} = 1 

for any X E nR;' X # nr' and any y E n,r(di), and 

for any a E nd;, a # nt, and y E n1r(di)· In this case, the total number of non­

zero probability combinations of test-choices/test-results is bounded from above by 

1 + (ki - l)(ji - 1). 

Now, let us count the number of choice nodes in the decision graph that correspond 

to information states with non-zero probabilities. Based on the above analysis of the 

probability distributions, we have the following: T1 has one parent situation; T2 

has at most h1 parent situations with non-zero probabilities; T2 has at most h1 h2 

parent situations with non-zero probabilities; etc., and B has at most II1=1 h1 parent 

situations with non-zero probabilities. Thus, the total number of choice nodes in the 

decision graph is bounded from above by I:fil nt;;;} hz . 

Let Pi = Hi/ hi . We call Pi the "savings factor" with respect to decision Ti . 

Since hi~ 1 + (ki - l)ji ~ Hi, we have Pi~ (kdi)/(l + (ki - l)ji) ~ 1. 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 

Figure 7 .5: An influence diagram for a generalized buying problem 

The overall savings factor is given by 

" n+1 rr•-lH rrn H rrn 
_ L..,i=1 1=1 I > 1=1 I I Pl 

p - ,;;-"n+l n i-lh - '°'n+l rri-'lh - "n+l l • 
L.,i=l l=l I L..,i=l l= l I L..,i=l ITf=, hi 

It is reasonable to assume that hi ~ 2 for i = 1, ... , n. Then we have p ~ rr~2'P;. 

129 

For example, suppose ki = 4 ( each test has three alternatives plus the alternative 

of no test) and ji = 4 for i = 1, ... , n. Then we have Pi~ 16/15 in the most conser­

vative extreme, and Pi ~ 16/10 under the "no action, no result" assumption. Then, 

the overall savings factor is bounded from below by (161
2
15t in the most conservative 

d b (16/lo)n d h " . 1 " . extreme, an y 2 un er t e no action, no resu t assumption. 

In the above analysis, we assume that test Ti has exactly ki alternatives in every 

information state. In fact, the set of legitimate alternatives for test decision Ti in 

an information state s is JT; ( s) and may have fewer than ki elements. Thus, the 

actual overall savings factor could be much greater than Ili=1 pi/2. 

Finally, let us note that the above analysis is applicable to any decision problem: 

as long as it satisfies the "no action, no result" assumption, exploiting asymmetry 



CHAPTER 7. A SEARCH-ORIENTED ALGORITHM 130 

__ x_ti@ 

---lllil 
---lmmul 

nr D 
1.0 

nr 

0 
y 

□ 

nr ·mrni 

0 

Figure 7 .6: An illustration of the asymmetry of a decision variable 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 131 

will lead to a savings factor that is exponential in the number of asymmetric decisions 

in the decision problem. 

It is worth pointing out that an exponential savings factor for an exponential 

problem may not change the exponential nature of the problem. More specifically, 

suppose that problem P will take algorithm A 0( en) time units and take algorithm 

B O(c/at time units with a > 1. We say that algorithm B has an exponential 

savings factor in comparison algorithm A because algorithm B runs an times faster 

than algorithm A. Although algorithm Bis still an exponential algorithm, for a fixed 

time resource, algorithm B may be able to handle larger problems than algorithm A. 

Let n 0 and nb be the size of the largest problems algorithms A and B can handle, 

respectively. Then n 0 and nb satisfy: 

or 
nb log c 

na. = log c - log a· 

For example, let us consider again the generalized buying problem. Suppose that 

each decision in the problem has two alternatives and each random node has three 

outcomes, i.e., ki = 2 and ji = 3 for i = 1, .. , n. It takes those algorithms that do not 

exploit asymmetry 0( (2*3t) time units and it takes our algorithm 0(3n) time units. 

In this case, we have c = 6 and a= 2. Thus, we have nb = n 0 log 6/ log 3 = l.63na.. 

Note that for the same a, the bigger the value of c, the smaller the ratio nb/na.. 

7.5.2 A case analysis of the used car buyer problem 

When applying our algorithm to the used car buyer problem, a decision tree as shown 

in Fig. 7. 7 will be generated. In the tree, the leftmost box represents the only state 



CHAPTER 7. A SEAROH- ORIEJNTED ALGORITHM 132 

m which the first test decision is to be made. The boxes in the middle column 

correspond to the information states in which the second test decision is to be made. 

Similarly, the boxes in the right column correspond to the information states in which 

the purchase decision is to be made. From the figure we can see that among those 

nodes corresponding to the information states of the second test, all but two have only 

one child because the second test in the corresponding information states has only 

a single legitimate alternative - no-test. Making use of the framing function this 

way is equivalent to six prunings, each cutting a subtree under a node corresponding 

to an information state of the second test. The shadowed boxes correspond to the 

impossible states. Our algorithm effectively detects these impossible states and prunes 

them when they are created. Each pruning amounts to cutting a subtree under the 

corresponding node. Consequently, our algorithm does not compute optimal choices 

for a decision node for those impossible states. For the used car buyer problem, our 

algorithm computes optimal choices for the purchase decision for only 12 information 

states, and optimal choices for the second test for only 8 information states ( among 

which six can be computed trivially). These constitute the minimal information state 

set one has to consider in order to compute an optimal policy for the used car buyer 

problem. This suggests that, as far as decision making is concerned, our method 

exploits asymmetry to the maximum extent. In contrast, those algorithms that do 

not exploit asymmetry will compute the optimal choices for the purchase decision for 

96 ( 4 x 4 x 2 x 3) information states and will compute the optimal choices for the 

second test for 16 information states. The overall savings factor is 5.5. 

By applying the analysis results we obtained in the previous section to this prob­

lem, we have: H1 = 16, H2 = 6, h1 = 8, and h2 = 3. Thus, p1 = 2 and p2 = 2. 

p = (1 + 16 + 96)/(1 + 8 + 24) = 3.7. 



CHAPTER 7. A SEARCH- ORIENTED ALGORITHM 133 

r 

1~J :·, 35 , .. 
,_, 13 
;: , -9 

(fil) 9 

"' I~ 
1:-1 ::, -45 

~ ... , 23 
,_, -9 

di ·"'· :~:,:: 

34 
1. 

-13 
::, 34 
: _, 12 
::, -10 
, J 
~ .. 39.60 
,_ J -14 
"_-, 6.80 ~---=---·-, -50 

--__,.~ _t----:-----+-~~-::118 
~:, -46 

~_.,.~~---, -14 
m: -:.-:.' 22 

,,., -10 
: ... , -18 
:_, 14 
-:, -14 

,.....__,_. ---==-= ... n 'r-...~ _ __......._,!;i,J--~,of-=.._-; ,-~-=---:·,-11 

-2 ----L...r--~-------ir-----f!-: .. , 26 ,~ J : ·, 40.6 , .. ---1.fl..O -:-, -14 
twollm 40~~-,, 

u­
:::: 

-:.-:.' 7.80 
, _, -13 

Figure 7.7: A decision graph (tre.e) generated for the used car buyer problem 



Chapter 8 

Handling Influence Diagrams with 
Multiple Value Nodes 

In the previous chapter, we developed a method for influence diagram evaluation. 

We assumed that the influence diagrams were regular and had one value node. As 

pointed out in [101], if the value function of an influence diagram is separable, then 

the separable nature can be exploited to increase the efficiency of influence diagram 

evaluation. The separability of a value function can be represented by multiple value 

nodes. Thus, it is desirable to develop algorithms that can be used to evaluate 

influence diagrams with multiple value nodes. 

A generalization of Shachter's algorithm [85] has been developed in [101] that can 

exploit the separability of value functions. Zhang and Poole's algorithm [108] and the 

later study [109, 106] is developed for influence diagrams with multiple value nodes. 

In this chapter, we generalize the method presented in the previous chapter so that 

it applies to regular influence diagrams with multiple value nodes as well. 

134 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 135 

8.1 Separable Value Functions 

If the value function of the value node in an influence diagram can be expressed as 

the sum of two or more functions with fewer variables, we say the value function is 

separable. More precisely, let 9(Z) be a value function with variable set Z, let 91 , 

... , 9q be functions with variable sets Z1 ... Zq respectively, where Z1 ... Zq are 

all proper subsets of Z . Function 9 is separable if 

q 

9(Z) = L9i(Zi)-
i=l 

Consider again the oil wildcatter problem. The value node depends on four variables: 

T, D, 0 and CD. The value function can be separated into three parts: a function 

91 on the cost of the seismic structure test, a function 92 , on the drilling cost, and a 

function 93 on the value of the oil. Formally, this can be expressed as 

With this separation of the value function, the value node can be split into three value 

nodes, v1 , v2 and v3 , with 91 , 92 and 93 as their value functions respectively. This 

separation results in a new influence diagram as shown in Fig. 8.1. 

The semantics of influence diagrams with multiple value nodes is the same as that 

of influence diagrams with a single value node except that, for an influence diagram 

with multiple value nodes, we interpret the sum of the values of all individual value 

nodes as the value of the influence diagram. Therefore, all the terminology we have 

used before can be used here for influence diagrams with multiple value nodes. 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 136 

T 

8 
Figure 8.1: A new representation of the oil wildcatter problem by an influence diagram 
with multiple value nodes 

8.2 Decision graphs for influence diagrams with 
multiple value nodes. 

As for influence diagrams with a single value node, the computational structure of the 

optimal expected value of an influence diagram with multiple value nodes can also be 

represented as a decision graph. The difference is that in the case of a single value 

node, the values are associated only with the terminals in the decision graph while in 

the case for influence diagrams with multiple value nodes, values can be associated 

with arcs as well. In order to illustrate this, consider the influence diagram shown in 

Fig. 8.1, which is an influence diagram with three value nodes for the oil wildcatter 

problem. Since the value node v1 depends only on node T, its value can be determined 

in any situation where the variable T is instantiated. Thus, at the nodes representing 

the situations T=yes and T=no, the value of v1 can be determined. In particular, the 

value of 91 for the situation T=yes is -10 and the value of 91 for the situation T=no 

is 0. The value -10 can be viewed as the value resulting directly from performing 

the test action, while the value O can be viewed as the value resulting directly from 

performing the ri.o-test action. 



· CHAPTER 8. HANDLING MULTIPLE VALUE NODES 137 

In order to deal with general cases, we introduce a new concept. Let ?r( dk) = x 

be a parent situation for dk, ?r(dk) = x, dk = a be an inclusive situation for dk 

and let I(dk, dk+I) be the sector of I from dk to dk+I. Without loss of generality, 

suppose nodes Vi, ... , Vj are the value nodes in I(dk, dk+I). For i :::; l :::; j, let 

Er(dk,dk+ 1 )[vd?r(dk) = x, dk = a] denote the expected value of the value node v1 , 

conditioned on ?r(dk) = x, dk =a, in sector I(dk, dk+I). We call the sum 

j 

L Er(dk,dk+i)[vzl?r(dk) = x, dk = a] 
l=i 

the value of the inclusive situation 1r( dk) = x, dk = a. This value can be computed 

by a method in [109). Intuitively the value can be viewed as the utility directly 

resulting from selecting a as the choice for decision node dk in the parent situation 

?r( dk) = x. Using the terminology for decision graphs, the value can be associated 

with the arc from the choice node representing the parent situation ?r( dk) = x to the 

chance node representing the inclusive situation 1r( dk) = x, dk = a. The following is 

a new specification of the decision graph of an influence diagram with multiple value 

nodes. 

• A chance node denoting the empty situation is the root of the decision graph. 

• For each information state x E O,r(di) , there is a choice node, denoting the 

parent situation ?r( d1 ) = x, as a child of the root in the decision graph. The 

arc from the root to the node is labeled with the probability P{ ?r( d1 ) = x}. 

• Let N be a choice node in the decision graph denoting a parent situation 

1r(d) = x for some decision variable d and some x E O,r(d). Let fd(x) be the 

effective frame for the decision variable d in the information state x . Then, N 

has l!d(x)I children, each being a chance node corresponding to an alternative 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 138 

in h( x) . The node corresponding to alternative a E fd( x) denotes the inclusive 

situation 1r(d) = x, d = a. The arc from the choice node to the chance node 

denoting the inclusive situation ,r( d) = x, d = a is labeled with the value of the 

inclusive situation. 

• The node denoting an inclusive ,r(dn) = x, dn = a is a terminal in the decision 

graph having value O. 

• Let N be a chance node denoting an inclusive situation 1r(di-i) = x,di-l =a, 

and let A be the subset of the parent situations for decision variable di which 

are consistent with 1r(di-i) = x, di-l = a. Node N has IAI children, each 

being a choice node denoting a parent situation in A. The arc from N to 

the child denoting a parent situation ,r( di) = y is labeled with the conditional 

probability P{1r(di) = yji(di-1) = x,di-i =a}. 

As an example, consider again the influence diagram as shown in Fig. 8.1. A decision 

graph for the influence diagram is shown in Fig. 8.2. 

Let DG be a decision graph derived from an influence diagram with multiple value 

nodes, we can define an evaluation function, u2 , on it as follows: 

• If N is a terminal, then 

• If N is a chance node with children N1 , ... , N1, then 

l 

u2(DG, N) = LP(N, Ni)* u2(DG, Ni) 
i=l 

where p(N, Ni) is the probability on the arc from node N to node Ni. 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 139 

40 

1.0 

40 

Figure 8.2: A decision graph for the influence diagram shown in Fig. 8.1 



CHAPTER 8. HANDLING MULTIPLE VALUE NODE8 140 

• If N is a choice node with children N1 , ... , Nz ,then 

where c(N, Ni) is the value on the arc from node N to node Ni. 

The reader may have noticed that the decision graphs corresponding to the examples 

we have considered so far are decision trees. This need not be true in general. Here 

we consider another example whose decision graph has shared structure. 

Consider the following variation of the oil wildcatter problem. In the previous 

examples, we implicitly assumed that the amount of oil the oil wildcatter can obtain 

is equal to the amount of the oil underground. Now we replace this assumption by 

a more realistic one, namely, the amount of oil the oil wildcatter can obtain depends 

also on the equipment status. Thus, the oil wildcatter needs also to decide whether to 

upgrade his equipment. Furthermore, suppose the profit by selling oil also depends 

on market information and the sale policy. This more elaborate problem can be 

represented by the influence diagram shown in Fig. 8.3. 

drill oil-obtained - sale-policy 

underground-oi l 

Figure 8.3: A variation of the oil wildcatter problem 

The amount of obtained oil can be zero, low, medium or high. The decision 

graph corresponding to the problem is shown in Fig. 8.4. The decision problem 

is asymmetric in the following sense: if the drill decision is yes, then the amount 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 141 

of obtained oil must not be zero, and if the drill decision is no, the amount of ob­

tained oil must be zero. Therefore, some of the arcs to the nodes representing the 

situations for oil-obtained are labeled with zero probability. After removing these 

zero-probability arcs, the decision graph becomes the one in Fig. 8.5, which is indeed 

a graph (not a tree) . 

..... .. 
upgrade=yes 

upgrade=no 
• .. 

oil-obtained=high 

oil-obtained=low 

oil-obtained=zero 

upgrad~=yes __ ... ·· 
_ ... • 

upgrade;;no 

Figure 8.4: A decision graph for the influence diagram in Fig. 8.3 

A possible heuristic function for this problem can be defined as follows: For any 

node N, if N represents a situation in which the drill decision is no, return zero, 

otherwise, return M where M is a large integer. Obviously, if M is large enough, 

this heuristic function is admissible. Suppose we use Algorithm DFS presented in 

Chapter 3 with this heuristic function to search the decision graph in Fig. 8.5. If the 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 

upgrade=yes 

upgrade=no 
·- . 

---··--- ... 

upgrade=yes __ .. -··· 
-·· 

upgrade=no 

142 

oil-obtained=high 

oil-obtained=low 

oil-obtained=zero 

Figure 8.5: A decision graph, with zero probability arcs removed, for the influence 
diagram in Fig. 8.3 



CHAPTER 8. HANDLING MULTIPLE VALUE NODES 143 

algorithm searches the branch corresponding to drill=yes first, then the subgraph 

under the branch corresponding to drill=no could be pruned altogether, provided 

that, according to the actual numerical setting, it is profitable to drill. Furthermore, 

if we have a stronger heuristic function asserting that the optimal expected value 

for the node representing the situation drill=no equals zero, then the lower half of 

the decision graph in Fig. 8.5 need not be expanded at all. As a matter of fact, 

when building a decision tree for the decision problem, one will use exactly the same 

heuristic information to avoid expanding the branch corresponding to drill=no. 

8.3 Summary 

We have developed a new method for influence diagram evaluation. The basic idea of 

the method is to transform an influence diagram into a decision graph in such a way 

that the optimal policies of the influence diagram correspond to the optimal solution 

graphs of the decision graphs. In this respect, our method is similar to Howard and 

Matheson's original approach to influence diagram evaluation. However, our method 

is more sophisticated and efficient than theirs. 

To the best of our knowledge, our method is the only one enjoying all of the 

following merits simultaneously. 

( 1) It is applicable to a class of influence diagrams that is more general than the 

class of no-forgetting influence diagrams. 

(2) It provides an interface to algorithms for Bayesian net evaluation. 

(3) It can make use of heuristic search techniques and domain dependent knowl­

edge. 

( 4) It exploits asymmetry in decision problems. 



Part III 

NAVIGATION IN UNCERTAIN 
GRAPHS 

144 



145 

This part of the thesis is concerned with the problem of navigation in uncertain 

environments. We propose U-graphs (uncertain graphs) as a framework for uncertain 

environment representation. A U-graph is· a distance-graph in which edge (arc) 

weights are not constants, but are random variables. We consider this problem for 

two reasons. First, the problem is of importance in its own right and there has been 

in the literature a growing interest in it. Second, as we will show, such a navigation 

task can be represented by a decision graph whose optimal solution graphs correspond 

to the optimal plans for the navigation task. Thus it provides an ideal application 

domain for the decision graph search algorithms discussed in Chapter 3. 

In the next chapter, we first outline two domains where the problem of navigation 

in uncertain graphs arises and show how to represent uncertain environments by U­

graphs, then define the problem of U-graph based navigation, and finally discuss 

some related work. In Chapter 10, we develop a decision theoretic formalization for 

the problem of U-graph based navigation. In Chapter 11, we discuss two algorithmic 

approaches to the problem: the off-line approach and the on-line approach. In the 

off-line approach, an agent computes a complete navigation plan for the task and 

then follows the plan. The algorithms presented in Chapter 3 are used for computing 

complete plans. In the on-line approach, the agent needs to decide where to go next 

in each encountered situation. We present a polynomial-time algorithm for on-line 

navigation. We also give some experimental data on the performance of some off-line 

algorithms and the on-line algorithm:. 



Chapter 9 

U-graph based navigation 

In this chapter, we introduce a problem of decision making under uncertainty - nav­

igation in uncertain environments. We first discuss some motivations to the problem, 

and then introduce U-graphs as a framework for representing uncertain environments. 

Next, we define the problem of U-graph based navigation. Finally, we discuss the 

related work in this area. 

9.1 Motivation 

In this section we outline two major domains where the problem of navigation in 

uncertain environments arises. One is autonomous agent navigation and the other is 

computer network communication. 

9.1.1 High-level navigation for autonomous agents 

Robotics has been an active research area in the past decade. One of the ultimate 

goals of robotics research is to make robots capable of autonomous navigation in 

practical and large environments. A large environment is an environment whose 

structure is at a significantly larger scale than the observation range of the agent 

[42]. Practical environments often change over time. A central part of the navigation 

146 



CHAPTER 9. U- GRAPH BASED NAVIGATION 147 

system of a robot is a path planning component. The primary goal of the path 

planning component is to generate a description of a route which can guide the robot 

to the desired destination. However, due to the complexity and the uncertainty of 

the environment, it is unreasonable to expect the path planning component to have 

a priori knowledge of every relevant detail necessary to generate an executable plan 

for a given task. Consequently, the path planning component has to appeal to some 

perception components for obtaining information dynamically. 

In order to strike a balance between the use of prior knowledge and dynamic 

information, various kinds of hierarchical structure are commonly employed in most 

navigation systems [2, 13, 55, 58, 89). In these systems, a distinction is made between 

a high-level (global) path planner and a low-level (local) path planner (as shown in 

Fig. 9.1). 

The basic motivation for making this distinction between the low-level and high­

level path planners is to isolate a component that can make maximum use of infor­

mation known about the environment. Mitchell et al. (58) classifies path planning 

techniques into three categories: deterministic, stochastic and servo control, based 

on the nature of available information and the way in which a goal is decomposed 

into subgoals. A deterministic planning process is one in which the available infor­

mation is relatively static and is assumed to be complete. With complete data, a 

deterministic planner can generate a plan which bridges the gap between the initial 

state and the goal state. A stochastic planning process is one in which the available 

information is not complete, but may be augmented as a result of plan execution. A 

stochastic planning process typically consists of an infinite loop of three steps: plan­

ning a primitive subgoal based on available information, achieving the subgoal and 

perceiving the environment. A servo control planning process is characterized by its 



CHAPTER. 9. TI-GRAPH BASED NAVIGATION 148 

Global Path Planner 

Sensory 

Local Path Planner 

System 

Executive 

Figure 9.1: The block diagram of a typical autonomous navigation system 



CHAPTER 9. U- GRAPH BASED NAVIGATION 149 

inherent use of feedback as a mechanism for control. Servo control processes may be 

used to achieve a goal which can be expressed in terms of a measurable state variable. 

In most navigation systems, the high-level path planner takes a deterministic 

approach while the low-level path planner takes a stochastic approach. For a given 

navigation task in an environment, the high-level path planner generates a plan 

consisting of an ordered set of subgoals based on a high-level representation, usually 

called a global map, of the environment. In order to be relatively static and complete, 

the granularity of the global map must be coarse. Consequently, the granularity of 

the plan generated by the high-level path planner is also coarse. In order to carry 

out these subgoals, the low-level path planner needs to further elaborate them. This 

elaboration may involve a stochastic loop as described above. 

With this distinction, the low-level path planner, along with the executive, can be 

regarded as a highly reactive system with limited reasoning capability [1, 7, 13, 58, 63], 

but able to perform local navigation, while the high-level path planner provides the 

source of global rationale, but is limited in its ability to react quickly to changes in 

the environment [55, 58]. 

In most navigation systems for autonomous robots, primary attention is focused 

on the low-level path planner and the executive, while little attention is paid to 

problems related to high-level path planning. This is largely due to the fact that, 

based on current technology, the development of a quality agent that can navigate 

locally is still a challenge to researchers and practitioners. The problem of high-level 

path planning is usually modeled as a variation of computing the shortest distance 

path from a distance-graph which serves as a representation of the global map. 

However, a major drawback of using distance-graphs as global maps is that the 

uncertainty arising from practical environments cannot be modeled. For example, 



CHAPTER 9. U- GRAPH BASED NAVIGATION 150 

suppose we are in a region where traffic jams may occur along some roads. The 

traveling cost (time) along a road in the event of a traffic jam can be different from 

that without a traffic jam. Furthermore, we do not know in advance whether there 

is a traffic jam along a road, though we can estimate the "probability" that such a 

jam may happen. As another example, we know that there is a route between two 

places, and that the route may be blocked; we are not sure whether the route is 

blocked now, though we know that, according to past experience, the probability for 

the route being traversable is about 0.8. Clearly, distance-graphs are not sufficient to 

precisely model such situations, and it is highly desirable to take this uncertainty into 

consideration when we decide whether to go to a destination via an uncertain route. 

Therefore, some natural questions arise: how do we model this kind of uncertainty? 

how do we define the path planning problem? how do we characterize the quality of 

a navigation plan? how do we compute a "good" plan for a navigation task in an 

uncertain environment? 

9.1.2 Packet routing in computer networks 

In a computer network, a key issue for the network layer is how messages (packets) 

are routed from source nodes to destinations. This issue is referred to as the network 

routing problem. 

A commonly used approach for network routing is called packet switching [97, 100]. 

In this approach, each packet is routed independently. A packet going from a source 

to a destination in a network is analogous to an autonomous agent traveling from the 

source to the destination in an environment. Unlike an autonomous agent, a packet is 

not able to decide where to go. Instead, whenever a packet arrives at an intermediate 

node, the node is responsible for deciding where the packet goes next ( which link it 



CHAPTER 9. U-GRAPH BASED NAVIGATION 151 

goes through or which neighbour it reaches next). This approach is used widely in 

modern computer networks. 

A class of commonly used routing algorithms in the computer network community 

is based on the concept of shortest distance paths (e.g., [54]). In these routing algo­

rithms, a distance-graph is used to represent the topology of a network. In such a 

graph, nodes represent the computer nodes and arcs represent communication links. 

The weight of an arc from node A to node B represents the time that it will take 

for a packet to be forwarded from node A to node B through the communication 

link represented by the arc. Based on this model, a simple shortest path algorithm 

is used to make an optimal decision for every node-packet pair. Furthermore, if the 

network is static (i.e., neither the network topology nor the arc weights ever change), 

a fixed optimal routing table, indexed by all possible destinations, can be constructed 

for each node. When a packet arrives at a node, the node needs only to look up the 

destination of the packet in the table in order to decide through which link the packet 

should be forwarded. 

Despite its simplicity, the routing model described above suffers from an obvious 

problem arising from the impracticality of the stasis assumption. In a network, the 

time for a packet to go through a link can be roughly divided into three components: 

the transmission time, the CPU processing time, and the time the packet has to wait 

in a buffer. Although the first two components are comparatively stable, the third 

component varies depending on the traffic load in the network. 

A standard way to alleviate this problem is "routing-information updating" [100]. 

That is, each node periodically measures the lengths of the queues of those arcs 

emanating from it and broadcasts this information to the whole network. Upon 

receiving new routing information, each node updates its graph representation of the 



CHAPTER 9. U-GRAPH BASED NAVIGATION 152 

network and recomputes a new routing table based on the updated graph. 

Experience [6, 103] shows that a routing-information updating approach can result 

in good network performance when the general traffic load in the network is light. 

However, when a network is under heavy traffic load, the solution does not work 

well. Since the weight of each arc in the graph is measured at some earlier time, the 

distance-graph represents only a "snapshot" of the network at a particular moment. 

As the traffic load becomes heavy, the waiting times for links tend to change quickly. 

Thus, the weight information in the graph tends to be out-of-date quickly. Therefore, 

the shortest paths based on the representation of a snapshot are likely different from 

the real shortest paths. 

One way to compensate for this deviation is to increase the frequency of routing­

information updating. Unfortunately, this leads to new problems. First, frequent 

routing-information updating requires frequent re-computation of routing tables, 

therefore, the requirement on CPU resource is increased. Second, since the routing­

information is distributed across the network by "flooding," frequent routing updating 

consumes an unacceptable portion of network bandwidth. This in turn leads to even 

heavier traffic loads. A possible consequence of frequent updating can be a wild 

oscillation and performance degradation of the network [6, 103]. In practice, the 

frequency of routing information updating is chosen to be quite low to ensure the 

stability of the network. For example, in ARPANET, the typical interval between 

routing information updating ranges from 10 to 50 seconds. 

Another way to ensure that the weight information in the graph remains up-to­

date for a longer time is to use probabilistic information. Since the traffic load in a 

computer is dynamic, the lengths of the waiting queues for links change over time. 

Therefore, it is no surprise that constant estimates of the link delays will be out-of-



CHAPTER 9. U- GRAPHBASED NAVI GATION 153 

date quickly. On the other hand, the changes of the queue lengths can often exhibit 

some kind of probabilistic pattern (this is supported by queuing theory [37]). It seems 

reasonable to use probability distributions to represent the dynamic changes of the 

queues. 

If computation of the routing tables is based on probabilistic information, then the 

optimality of the routing tables can be robust against changes in link delays. Routing 

information updating will not be necessary as long as the link delay changes conform 

statistically to the corresponding probability distributions. Thus, it can be hoped 

that the frequency of routing information updating could be substantially decreased 

( say, to a few times per day). 

As in the case of autonomous navigation, the immediate questions are: how do 

we represent and use probabilistic information for network routing? 

In the next section, we propose a framework, called U-graphs, for uncertain envi­

ronment representation. In Section 9.3, we illustrate how to use U-graphs to represent 

uncertain environments. The rest of this chapter and the chapters to follow are de­

voted to problems of U-graph based navigation. By U-graph based navigation, we 

mean the process of navigating in an uncertain environment represented by a U­

graph. Although this abstract treatment is applicable to both "real" navigation in 

natural environments and to packet routing in a computer network alike (see [75]), 

we assume in the rest of this thesis that our application context is the former when 

we describe the intuitive meanings of various concepts. 

9.2 U-graphs 

AU-graph is an extension of an ordinary distance-graph. The weights of some edges 

(arcs) in a U-graph are not constants, but are random variables. Clearly, probabilistic 



CHAPTER 9. U- GRAPH BASED NAVIGATION 154 

information on the uncertainty with respect to travel costs in a natural environment 

or link delays in a computer network can be represented in a U-graph. 

AU-graph can be either directed or undirected. In this thesis, we consider undi­

rected U-graphs only, because (1) this makes the presentation less cumbersome; (2) 

undirected U-graphs are sufficient in most cases encountered in navigation; and (3) 

the techniques and the algorithms developed for undirected U-graphs can easily be 

adapted to directed U-graphs. 

If the weight of an edge is a random variable, the edge is referred to as an uncertain 

edge. Otherwise, the edge is referred to as an ordinary edge, or simply as an edge 

if no confusion arises. An uncertain edge between vertices A and B represents the 

knowledge that there exists a connection between the locations denoted by the vertices 

A and B, and that the weight of the connection is not certain and is given by a random 

variable. 

A formal definition of a U-graph is as follows. 

Definition 9.1 A U-graph is quadruple (V, E, U, P), where: 

• V is a finite set of verticesj 

• E is a set of ordinary edges over V with constant weightsj 

• U is a set of uncertain edges over V whose weights are discrete non-negative 

random variables,-

• P specifies a joint probability distribution over U . 

This definition is a generalized version of the one presented in [76]. Let G = 
(V, E, U, P) be a U-graph. For each u E U, let flu denote the set of possible 



CHAPTER 9. U- GRAPH BASED NAVIGATION 155 

weight values of u. We call nu the frame of u. For each subset U' C U, let 

nu, = TiueU' nu · 
Since P is a joint distribution over U, for each subset U' ~ U, we can talk about 

the marginal distribution over U', which is defined as follows: 

P{U'} = L P{U}. 
U-U' 

Suppose U is indexed such that U = (u1 , ... ,um). The distribution P can be 

regarded as a mapping from nu to [0, 1). For any a = ( a1 , ... , am) E nu, we 

let U = a denote the event that each uncertain edge Ui takes weight ai, for each 

i = 1, ... , m, and let P{U = a} denote the probability of that event. Let G(a) 

be a graph obtained from G by assuming that uncertain edge ui has weight ai, 

i = 1, ... , m. G( a) is called a possible realization of G. The probability that G( a) 

is the actual realization is given by P { U = a} . 

The joint distribution P can be given in various forms such as a table or a Bayesian 

net. In the rest of this thesis, we assume that there are algorithms to compute 

marginal distributions P{U'} from a joint distribution for any subset U' ~ U, and 

to compute a posterior distribution from a joint distribution and a piece of evidence. 

As an example, a U-graph is shown in Fig. 9.2. The solid lines are edges and the 

dotted lines are uncertain edges. Each edge has a positive weight. The frames of the 

uncertain edges are given as follows: ns1 = ns2 = {10, 25} and ns3 = ns4 = {20, 45}. 

The joint distribution is given in Table 9.1. 

This U-graph of Fig. 9.2 can be viewed as a representation of a set of locations 

connected in a ring structure by highwa:ys. The uncertain edges model those highways 

which may be jammed. The uncertain edges carry the following meaning: It will cost 

10 (in some normalized unit) to traverse the highways denoted by s1 and s2 if they 

are not jammed and cost 25 if they are jammed; similarly, it will cost 20 to traverse 



CHAPTER 9. U-GRAPH BASED NAVIGATION 156 

Table 9.1: The weight distribution P 

s1 s2 83 S4 prob 
10 10 20 20 0.0096 
10 10 20 45 0.0864 
10 10 45 20 0 .0024 
10 10 45 45 0.0216 
10 25 20 20 0.0144 
10 25 20 45 0.1296 
10 25 45 20 0.0036 
10 25 45 45 0.0324 
25 10 20 20 0.0224 
25 10 20 45 0.2016 
25 10 45 20 0.0056 
25 10 45 45 0.0504 
25 25 20 20 0.0336 
25 25 20 45 0.3024 
25 25 45 20 0.0084 
25 25 45 45 0.0756 

the highways denoted by s3 and s4 if they are not jammed and cost 45 if they are 

jammed. 

Figure 9.2: An example U-graph 

In a navigation process, the actual states of some uncertain edges may be discov­

ered. We distinguish two ways for discovering the states of uncertain edges. One way 

is to "buy" the information. The other way is to observe. 

A question related to information purchasing is: for which edges is information 

available? and at what price, in what situation? The answer to this question depends 

on the concrete problem setting. Another related question is: if a piece of information 



CHAPTER 9. U-GRAPH BASED NAVIGATION 157 

Table 9.2: The weight distribution P' after observing s1 = 10 

s2 S3 s4 prob 
10 20 20 0.0320 
10 20 45 0.2880 
10 45 20 0.0080 
10 45 45 0.0720 
25 20 20 0.0480 
25 20 45 0.4320 
25 45 20 0.01 20 
25 45 45 0.1080 

on the actual state of an uncertain edge is available at some price in some particu­

lar situations, should an agent buy this information at the price? This _problem is 

addressed in Section 9.4.3. 

If the state of an uncertain edge is observable, the agent can discover the actual 

state of the uncertain edge at no cost. A related question is: which uncertain edges 

are observable in what situations? It is plausible to assume that an agent can observe 

the state of an uncertain edge when it is at a vertex of the uncertain edge1 . Of course, 

an uncertain edge may also be observable in some other situations. For example, when 

an agent is at a location with high altitude, the uncertain edges in the nearby area 

may be observable as well. However, this depends on the concrete problem setting 

and we treat this case as a special kind of information purchase. 

Whenever an agent obtains some information I regarding the actual state of 

some uncertain edges, a new U-graph is needed to represent the updated knowledge 

about the environment. The difference between the new U-graph and the old one 

lies only in their joint probability distributions. Thus, in order to derive the new 

U-graph, we only need to compute a posterior probability distribution P' = P{·IJ} 

1 For the case of directed U-graphs, it is reasonable to assume that an uncertain edge is observable 
in the situation when the agent is at the tail of the arc (at the entry of a one way road). This is 
also the case for network routing where it is assumed that a computer node knows the buffer state 
of the outgoing channel. 



CHAPTER 9. U-GRAPH BASED NAVIGATION 158 

from the joint distribution and the new information I. If the joint distribution is 

represented as a Bayesian net [69], then the computation can be carried out by any 

well-established Bayesian net evaluation algorithm. The updating would be trivial if 

the weight variables are mutually independent. 

For example, suppose that we discovered that the actual weight of uncertain arc 

s1 in the previous example is 10. Let J denote this evidence. Then, we need to 

compute a posterior probability P' = P{·IJ} such that P'{e} = P{elJ} for any 

event e. The joint distribution P' is given in Table 9.2. 

In Definition 9.1, we make an explicit distinction between edges and uncertain 

edges. One may immediately argue that this distinction is not necessary because 

an edge is a special uncertain edge. This argument is valid. Theoretically, it is not 

necessary to make such a distinction. We do this for two reasons. First, the number of 

uncertain edges turns out to be a crucial complexity parameter - the time complexity 

of some of the algorithms to be developed is exponential in the number. Second, by 

making this distinction, we encourage the user to use ordinary edges where they are 

sufficient, in order to obtain better computational performance. 

In Definition 9.1, we make the following assumption. 

Assumption 1: The weight distribution of any uncertain edge in a U-graph is 

discrete. 

While this assumption facilitates our formulation of U-graph based navigation, it 

does not limit much the expressive power of U-graphs, since any continuous distri­

bution can, at least in theory, be approximated by a discrete distribution. 



CHAPTER 9. U- GRAPH BASED NAVIGATION 159 

9.3 Representing Uncertain Environments in U­
graphs 

The usefulness of CT-graphs can be demonstrated from two aspects. First, as a natural 

extension of distance-graphs, CT-graphs inherit the expressive power of distance­

graphs, in addition to the capability of expressing a kind of uncertainty. Thus, CT­

graphs can be useful in situations where distance-graphs can be used. 

Second, we can think of various practical situations where distance-graphs are 

insufficient and CT-graphs can be useful. We illustrate this below by considering some 

examples in high-level navigation. 

The essential knowledge that a path planner needs to have about an environment 

for high-level path planning is the environment's topological structure, which can 

be represented by a set of "interesting places", and the connectivity relation among 

these places. The places can be abstracted as vertices, and the connectivity relation 

abstracted by edges in a CT-graph. If it is uncertain how much it costs an agent 

to traverse the route between two places, this uncertainty can be represented by an 

uncertain edge. Here are some examples. 

Example 1: Fords. 

Suppose an agent is at place A in an environment as shown in Fig. 9.3-(a) and 

wants to reach place F. In this environment there are two fords (BD and CE) along 

a river. Suppose that the agent is not sure whether the fords are traversable or not, 

though it knows the joint probability for the traversability state of the two fords. 

Suppose further that the agent knows the distances between the place pairs ( the 

numbers in the figure). Based on all this information, we can construct a U-graph 

as shown in Fig. 9.3-(b) to model the environment, where the directed graph is a 



CHAPTER 9. U-GRAPH BASED NAVIGATION 160 

Bayesian net representing the joint distribution of the weights of the uncertain edges. 

sl 

A 

s2 

(a) 
(b) 

Figure 9.3: Modeling an uncertain environment by a U-graph 

Example 2: Traffic Jams. 

Consider the situation shown in Fig. 9.4. There may be a heavy traffic jam, or a 

light traffic jam along segment AB of a highway; and the probabilities for the events 

of heavy traffic jam, light traffic jam and no traffic jam along the segment are p1 , 

p2 and p3 ( p1 + p2 + p3 = 1 ), respectively. Let c1, c 2 and c3 be the costs that an 

agent needs to spend to go through the segment in light of the events heavy traffic 

jam, light traffic jam and no traffic jam, respectively. This segment can be modeled 

by an uncertain edge s with weight distribution that takes value c 1 , c 2 or c 3 with 

probabilities p1 , p2 and p3 respectively. 

A ? B 

Figure 9.4: A segment of road that may have traffic jams 

Example 3: Rooms connected by doors 



CHAPTER 9. U-GRAPH BASED NAVI GATION 161 

In a typical indoor environment, doors are a source of uncertainty since they may 

be locked from time to time. This kind of environment can be modeled by U-graphs 

as well. As an example, a simple map of the LCI lab area in the old building of 

the computer science department of UBC is shown in Fig. 9.5. Suppose this map is 

constructed for a mobile robot in the lab whose responsibility is to bring coffee from 

the coffee machine in Room 300. For each given task, the robot must go to the coffee 

machine from the lab and then come back with coffee. To accomplish such a mission, 

the robot needs to plan a return route to Room 300. Since the doors shown in the 

map are not always open and the robot is unable to go through a locked door, the 

robot should take into account the uncertainty arising from these doors. 

For high-level path planning, the map can be represented by the U-graph shown 

in Fig. 9.6, where each uncertain edge models a door in the map. The frame of each 

uncertain edge consists of two values: the small one representing the effort needed to 

go through the corresponding door when it is open, and the larger one representing 

that a locked door is not traversable. 

Example 4: Choke Regions. 

Linden and Glicksman [49] partition an environment into three kinds of regions: 

passable regions, impassable regions, and choke regions. A region is passable if the 

agent concerned can travel through it, and is otherwise impassable. A choke region is 

a relatively narrow traversable region between impassable regions, where some kind of 

blockage (hard or soft) that cannot easily be detected remotely may happen. Roads 

through dense forests and passes through mountains are examples of choke regions. 

Clearly, if the probabilities of choke regions being traversable can be estimated in some 

way, the uncertainty induced by choke regions can be readily modeled by uncertain 

edges. 



CHAPTER 9. U- GRAPH BASED NAVIGATION 162 

) d 9 dlOj 
Rm301 

I Graficl d8 
dJ. 

\a6 
I d5 LCI LCI LCI 

Rm300 Rm:307 Rm309 Rm311 
coffee d2 

d4 d3 /-dl 

Figure 9.5: A simple map of the LCI lab area 

s9 slO 

0 ·····0--0····· 

~ \ 
s8 : ~ 

coffee :s3 s l 

Figure 9.6: A U-graph representing the LCI lab area 



CHAPTER 9. U-GRAPII BASED NAVIGATION 163 

An example environment is shown in Fig. 9.7, where the dark areas are impass­

able regions and those narrow areas between the dark areas are choke regions. The 

topological structure of the environment can be depicted by a U-graph like the one 

embedded in the figure. 

Figure 9. 7: A map of an environment with choke regions 

9.4 U-graph Based Navigation 

When we refer to a navigation task, we assume that we are given a U-graph rep­

resentation of an environment. We do not consider the problem of how to obtain 



CHAPTER 9. U- GRAPH BASED NAVIGATION 164 

a U-graph representation. There is a large body of research on map acquisition by 

exploring environments (e.g., [14, 22, 41, 57)). 

9.4.1 Distance-graph based navigation vs. U-graph based 
navigation 

There are several differences between distance-graph based navigation and U-graph 

based navigation. First, the plan structures are different. Since it is assumed that 

no contingent event occurs during distance-graph based navigation, the navigation 

plan generated for a distance-graph _based navigation task is a simple path in the 

distance-graph between the start vertex and the goal vertex. On the other hand, for 

U-graph based navigation, since it is impossible to predict the actual weight of an 

uncertain edge in advance, some contingent events may occur ( e.g., a plan specifies 

traversal an uncertain edge only if its weight is less than some constant). A plan for a 

U-graph based navigation task specifies what to do in some or all of the contingencies 

encountered during the course of a traversal. 

Second, the interactions between the executives and the environments are differ­

ent. For distance-graph based navigation, the executive need not interact with the 

environment. However, for U-graph based navigation, the executive needs to exam­

ine the status of an uncertain edge when it is at a vertex of the edge. Based on the 

examination result, the environment model (i.e., the U-graph) is updated and the 

next move is selected. 

Third, the interactions between path planners and the executives are different. In 

distance-graph based navigation, the path planner computes a shortest path between 

the start vertex and the goal vertex and passes the description of the path to the 

executive. The executive simply follows the path with no interaction with the path 



CHAPTER 9. U- GRAPH BASED NAVIGATION 165 

planner. But in U-graph based navigation, if the executive encounters a situation for 

which no action is specified in the plan, the executive has to appeal to the path planner 

for a new plan. The practice of interleaving planning and execution is usually called 

reactive planning [27]. For the extreme case where the plans generated by the planner 

cover all the contingencies possibly encountered during the course of navigation, no 

replanning is ever needed. Schoppers called these plans Universal Plans [84]. In this 

thesis, we call these plans "complete plans." We will discuss the computational issues 

of navigation both in the paradigm where a path planner is used to generate complete 

plans and in the paradigm where a path planner is used to perform reactive planning. 

9.4.2 The optimality issue 

As we mentioned in the previous section, the plan generated for a given distance­

graph based navigation task is a simple path between the start vertex and the goal 

vertex in the distance graph. Thus the optimality criterion for distance-graph based 

navigation is simply to minimize the path distance. On the other hand, for U-graph 

based navigation, some contingencies may arise. It is impossible to predict the exact 

navigation trace for a given task. Therefore, the optimality criterion for distance­

graph based navigation is not applicable to U-graph based navigation. Actually, 

U-graph based navigation can be thought of as a game against nature [65]. At any 

moment, the concerned agent faces some uncertainty about the actual weights of 

those uncertain edges, and needs to decide where to go next. Thus the actual trace 

( and the actual cost) of a navigation cannot be determined based purely on the plan, 

but is also dependent on the actual state of the environment. 

An important question about U-graph based navigation is what optimality criteria 

to use. In the literature, three criteria [4] have been used for this kind of problem: 



CHAPTER 9. U- GRAPH BASED NAVIGATION 166 

minimizing the competitive ratio [94], minimizing the worst-case cost and minimizing 

the expected cost. 

In this thesis, we use the criterion of minimizing the expected cost for U-graph 

based navigation. However, the formalization we will develop is general enough for 

other optimality criteria as well. We will discuss this in Section 10.4. 

In order to illustrate the optimality criterion of minimizing the expected cost, let 

us consider a navigation task in an environment represented by the U-graph shown in 

Fig. 9.8-(a) where the weight distribution of the uncertain edge takes values d4 and 

M with probabilities p and (1 - p) respectively, where M is a very large number. 

Intuitively, this uncertain edge denotes a segment of route that may be traversable 

with probability p. Suppose that an agent is at vertex A and is asked to go to 

vertex B. 

There are two plans for the task2
• The first one is to go to B through edge AB. 

Another one is as follows: go to C first; if the weight of CD is d4 , go to D then to 

B; otherwise go back to A, then go to B through edge AB. The expected cost for the 

first plan is d1 , the weight of edge AB. The expected cost for the second plan is given 

by the following formula: 

The agent can choose between the two options based on the expected costs. 

9.4.3 The_ possibility of information purchase 

In the previous example, we assumed that the status of an uncertain edge can be 

determined when an agent reached either vertex of the uncertain edge. In many 

2 Actually, there are many "silly" plans such as repeatedly going back and forth between node A 
and C for an arbitrary number of times and then to node B. Here, we are not interested in these 
silly plans and just ignore them. 



CHAPTER 9. U- GRAPH BASED NAVIGATION 167 

(a) 

0------•-oo ______ Q 

/w 
-----{t-----G 

30 

(b) 

Figure 9.8: A simple path planning case with uncertainty 



CHAPTER 9. U-GRAPH BASED NAVIGATION 168 

situations, the status of an uncertain edge can be determined remotely, possibly at 

some cost. For example, there may be a telephone service that can tell an agent 

whether or not there is a traffic jam along some road segment. 

If we assume that an agent can "buy" information on the actual status of one or 

more uncertain edges, a natural problem arises: "at what price should an agent buy 

a particular piece of information?" In order to illustrate this problem, consider again 

the navigation situation shown in Fig. 9.8-(a). Suppose that the actual status of the 

uncertain edge is available to the agent at cost c. Then, what is the range of cost c 

such that the agent would be willing to buy the information? 

As we know, if the agent does not buy information about the status of the edge, 

the minimal expected cost is: 

On the other hand, if the agent buys the information at cost c, the expected cost is: 

Thus, the agent should buy the information if and only if: 

Or 

For the situation shown in Fig. 9.8-b, the agent should buy the information if and 

only if c < 24 . 



CHAPTER 9. U- GRAPH BASED NAVIGATION 169 

9.5 Related Work 

9.5.1 Related work in path planning 

A number of approaches to path planning and navigation in uncertain environments 

have been proposed and many navigation systems for mobile robots have been built 

( e.g., [2, 13)). However, in most of these systems, attention is focused primarily 

on the problem of how to make a robot capable of moving around in relatively small 

environments. Some notable exceptions are Kuipers's TOUR model [41] , Kuipers and 

Levitt's COGNITIVE MAP [42] for the representation of spatial knowledge of large 

scale environments, and Levitt and Lawton's qualitative approach [48] to navigation 

in large scale environments. 

Th~ emphasis of Kuipers's TOUR model is on its power to express and assimilate 

knowledge gradually acquired over time. The emphasis of Levitt and Lawton's work 

on qualitative navigation is on techniques for an agent to locate itself relative to the 

goal position and various remote landmarks. The emphasis of our work on U-graph 

based navigation is, however, on the precise formulation of optimal navigation in 

environments with uncertainty, as well as algorithmic solutions to optimal navigation. 

Dean et al (15] describes a navigation system that makes use of utility theory 

in navigation planning. They emphasize the coordination of task-achieving activities 

and map.:...building activities so as to efficiently accomplish a group of navigation tasks 

in an uncertain environment. In contrast, our planner is concerned primarily with 

finding optimal plans for accomplishing given U-graph based navigation tasks. 

Linden and Glicksman's work on contingency planning [49] is also concerned with 

computing optimal plans for navigation in large and uncertain environments. They 

use uncertain grids to represent uncertain environments. A cell of an uncertain grid 



CHAPTER 9. U- GRAPH BASED NAVIGATION 170 

has value 0 or 1 or is a binary random variable. A cell with value 1 means the point 

is free; a cell with value 0 means the point is occupied. A cell with a binary random 

variable means that it is uncertain whether the point is free or not, and the actual 

state of the point is determined by the random variable. A grid is partitioned into 

three regions: passable regions, impassable regions and choke regions. It is assumed 

that all the cells in a passable region have value 1, all the cells in an impassable 

region have value 0, and the values of all the cells in a choke region are determined 

by random variables. Linden and Glicksman propose a path planning algorithm for 

this model. The algorithm is an extension of A*. 

Mobasseri has studied the problems of path planning in uncertain environments 

from a decision theoretic point of view [59]. He also uses uncertain grids to represent 

uncertain environments, and formalizes the problem in a dynamic programming style. 

9.5.2 Canadian Traveler Problems 

Papadimitriou and Yannakakis [66] first named the problem of traveling with uncer­

tainty the Canadian Traveler Problem (CTP). In their formulation, a traveler is given 

an unreliable graph (map); some of the edges of the graph may disappear at certain 

times. They also assume that the traveler cannot know whether an edge is actually 

there unless he/she reaches an adjacent vertex of the edge, and that the status of an 

edge will not change after being revealed. The problem is to devise a travel plan that 

results in optimal travel ( according to some predefined measure) from one vertex to 

another. 

Papadimitriou and Yannakakis define their optimality criteria in terms of com­

petitive ratios. Competitive ratios are used in the literature to measure the quality 

of on-line algorithms [51, 94]. The competitive ratio of an on-line algorithm with 



CHAPTER 9. U- GRAPH BASED NAVIGATION 171 

respect to a problem can be informally defined as the ratio of the performance of the 

on-line algorithm to the best performance that may be achieved for any problem in­

stance consistent with the given problem and with the information discovered during 

the operation [4]. Papadimitriou and Yannakakis show that devising an on-line travel 

plan with a bounded competitive ratio is PSPACE-complete. They also show that 

the problem of devising a plan that minimizes the expected ratio, provided that each 

edge in a graph has associated with it a given probability of being present, remains 

hard (#P-hard and solvable in polynomial space). 

Bar-Noy and Schieber have studied several interesting variations of the CTP [4]. 

One variation is the k-Canadian Traveler Problem, which is a CTP with k as the 

upper bound on the number of blocked roads ( disappeared edges). They give a 

recursive algorithm to compute a travel plan that guarantees the shortest worst-case 

travel time. The complexity of the algorithm is polynomial for any given constant k . 

They also prove that the problem is PSPACE-complete when k is non-constant. 

Another variation Bar-Noy and Schieber have studied is the Stochastic Recoverable 

CTP. In this problem, it is assumed that blocked roads can be reopened in certain 

time. They present a polynomial algorithm for devising a travel plan that minimizes 

expected travel time, under the assumption that for any edge e in a given graph, the 

recover time of e is less than the weight of any edge adjacent to it in the graph. It 

is unclear how to relax this assumption. 

Polychronopoulos studies in his Ph.D. thesis [71] a problem called Stochastic Short­

est Distance Problem with Recourse (SSDPR). There are two common aspects be­

tween his study on the SSDPR and our study on U-graph based navigation problem. 

First, the problem statement is very similar. In a SSDPR, an agent is asked to reach 

a goal vertex from a start vertex in an uncertain graph. It is assumed that the actual 



CHAPTER 9. U- GRAPH BASED NAVIGATION 172 

weight of an uncertain edge is determined only when an adjacent vertex is visited for 

the first time. The problem is to find a navigation plan minimizing expected cost. 

Second, Polychronopoulos also considers off-line and on-line navigation paradigms, 

and develops algorithms for both paradigms. 

There are four major differences between Polychronopoulos' study and ours. 

First, Polychronopoulos considers two versions of the problem, one with and an­

other without an independence assumption on the weight distributions of uncertain 

edges. In the version without the independence assumption, an uncertain graph is 

represented by a graph along with the set of possible realizations of the edges in the 

graph. In contrast, our formulation treats both cases uniformly. In both cases, a U­

graph is represented by a graph and a joint probability distribution over the uncertain 

edge set. The joint probability distribution can be given in various forms such as a 

Bayesian net. Within our framework, the case with the independence assumption is 

naturally a special case of the one without the independence assumption. 

Second, our algorithms are different. His off-line planning algorithm is a dynamic 

programming version while ours are search oriented. In the development of our algo­

rithms, we emphasize the possibility of pruning the non-optimal part of the search 

space both at problem formulation stage and at plan computing stage. For on-line 

planning, our algorithm is more sophisticated than his. In his on-line planning al­

gorithm, the weight of a substituting edge is simply the mean value of the weight 

distribution of the corresponding uncertain edge. Thus, only the information local 

to an uncertain edge is taken into account in computing the substituting weight for 

the uncertain edge. However, in our on-line algorithm, in addition to the local in­

formation, the goal position and the global structure of the U-graph of the given 

navigation task are also taken into account in computing the substituting weights for 



CHAPTER 9. U- GRAPH BASED NAVIGATION 173 

uncertain edges. Initial simulation results show that our on-line algorithm results in 

better navigation quality. 

Third, Polychronopoulos discusses navigation problems with both directed and 

undirected graphs, while our attention is focused on problems with undirected graphs, 

by noting that algorithms developed for undirected graphs can be adapted to directed 

graphs. 

Fourth, Polychronopoulos presents some theoretical results about the complexity 

of the problem. In particular, he shows that SSDPR is #-P hard and is solvable in 

P-SPACE. 

9.5.3 Related work in AI and decision theory 

In some sense, our study on U-graph based navigation can be viewed as an application 

of decision theory to planning. In the literature, much work has been reported on 

applications of decision theory to AI problems. A common characteristic of these 

applications is that a given problem is viewed as a decision making problem and 

one is interested in a "good" or optimal solution, instead of an arbitrary solution to 

the problem. These applications include general planning [9, 16, 29, 46), diagnostic 

reasoning [72, 73), reactive systems [24, 28] and domain specific problem solving 

such as the monkey and bananas problem [23], the blocks world [39] and navigation 

problems [15, 59, 60). Our work on U-graph based navigation belongs to the last 

group, i.e., applying decision theory to the domain of autonomous navigation. 



Chapter 10 

A Formalization of U-Graph 
Based Navigation 

In this chapter, we present a decision theoretic formalization for U-graph based nav­

igation. With this formalization, a U-graph based navigation problem is represented 

by a decision graph whose optimal solutions represent the optimal plans. This for­

malization reduces the problem of computing optimal plans for navigation tasks to 

a decision graph search problem, for which we have developed various algorithms. 

Moreover, the formalization is general enough to deal with various variations of U­

graph based navigation. 

In the previous chapter, we made an assumption about the weight distributions 

of U-graphs. Before starting our formalization, we make two additional assumptions 

for U-graph based navigation. 

Assumption 2: The agent can determine the status of an uncertain edge of a 

U-graph when and only when it is at either vertex of the uncertain edge. 

This assumption rules out the possibility of "buying" information on the status 

of uncertain edges. The sole motivation for making this assumption is to simplify our 

presentation. Our formulation can easily be extended to handle decisions by agents 

174 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NA VTGATION 175 

to buy or decline information. We come to this point in Section 10.2. 

Assumption 3: The status of arty uncertain edge does not change after being 

revealed. 

This assumption is crucial to the formalization and the algorithms to be developed 

in this and the next chapters. An immediate consequence of this assumption is that 

when the agent determines the actual weight of an uncertain edge, the uncertain edge 

can be regarded as an edge with this weight. 

With Assumptions 2 and 3, we can precisely specify how an agent updates a 

U-graph after observing the states of some uncertain edges. Let G = (V, E, U, P) 

be a U-graph. Suppose the agent has just arrived at vertex v E V. Let U( v) = 

{ ui1 , ••• , Uik} be the set of the uncertain edges adjacent to v. Then, according to 

Assumption 2, the agent can observe the weights of these uncertain edges and compute 

a new U-graph based on the observation. Suppose the observation is that the actual 

weights of uncertain edges Ui1 , ••• , Uik are w1 , ... , Wk respectively. Let a= (w1 , ... ,wk). 

We use U(v) = a to denote the observation. The new U-graph G(a) = (V,E,U,P') 

is the same as G except the joint distribution is the posterior distribution P' obtained 

from P based on evidence U( v) = a. More precisely, P' is a distribution over U 

such that P'{X} = P{XIU(v) = a} for any event X about the uncertain edges in 

U. 

Let n = TiueU(v) nu. For each element a E n, G( a) is one of the possible new 

U-graphs that the agent may have after the observation. The probability that G( a) 

is the actual one is given by the marginal probability 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 176 

10.1 Preliminaries 

Let G = (V, E, U, P) be a U-graph. An uncertain edge u E U is deterministic if 

there exists a value w E nu such that P{ u = w} = 1. An uncertain edge is random 

if it is not deterministic. 

Let ud = { u E Ulu is deterministic} and ur = { u E UJu is random}. ud and 

ur partition u. 

For each v Ev, let ur(v) = {u E ur1u is adjacent to v}. ur(v) is the set of 

random edges adjacent to vertex V . Let vr = { V E VJ ur ( V) =J. <P} and vd = V - vr . 

yr is the set of vertices to which at least one random edge is adjacent and Vd is the 

set of vertices to which no random (uncertain) edge is adjacent. 

If the agent comes to a vertex v in yr, it can discover the actual weights of the 

random edges in ur ( v) . Thus, the vertices in vr are called information collecting 

vertices. 

For each u E U, we say w is a possible realization of u if w E nu . Let u 0 = 

min{w E nuJP{u = w} > O} and uP = max{w E nulP{u = w} > O}. We call u 0 

the optimistic realization of u and uP the pessimistic realization of u . Notice that 

u is deterministic i.ff uP = u0 
• 

An induced graph of G is a variation of G in which each uncertain edge has a pos­

sible realization as its weight. Note that an induced graph is a distance graph. Each 

element a E nu determines an induced graph, denoted as G( a) , of G. The proba­

bility that G( a) is the actual realization of G is given by the marginal probability 

P{U = a}. 

The pessimistic induced graph GP of G is the induced graph of G in which the 

weight of each uncertain edge is equal to the corresponding pessimistic realization. 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 177 

The optimistic induced graph G0 of G is the induced graph of G in which the weight 

of each uncertain edge is equal to the corresponding optimistic realization. 

We use configurations to represent the situations that an agent may encounter 

during navigation. A configuration is a quadruple (G, Ve, v9 , c), where G is a U­

graph representing the current knowledge that an agent has about the environment; 

Ve and v9 are two vertices of the U-graph representing the current position and the 

goal position, respectively; c is a parameter representing the cost that the agent has 

incurred so far when it reaches this configuration. For a given navigation task of going 

from Vs to v9 in G, the configuration (G, Vs, v9 , 0) is called the initial configuration. 

A terminal is a configuration (G, Ve, v9 , c) such that the shortest distance from Ve to 

v9 in QP is equal to that in G0
• Obviously, (G, v9 , v9 , c) is a terminal. 

These concepts about induced graphs can be generalized to configurations. We 

simply refer to the pessimistic ( or optimistic) induced graph of the U-graph of a 

configuration as the pessimistic (or optimistic) induced graph of the configuration. 

A configuration C = (G, Ve, v9 , c) is called an uncontrolled configuration if Ve 1s 

an information collecting vertex (i.e., Ve E vr ). A configuration C = (G, Ve, v9 , c) 1s 

a controlled configuration if Ve is not an information collecting vertex (i.e., Ve E Vd). 

When an agent is in a non-terminal controlled configuration C = (G, Ve, v9 , c) 

with k (k > 0) neighbours v1 , ••. , Vk, the agent has the freedom to move to any one 

of these neighbours. Should the agent decide to move to a particular neighbour, the 

agent incurs cost equal to the weight of the edge between the current vertex and the 

neighbour1 . Such a move leads to a new configuration. In order to model such moves, 

we define k controlled transitions, each corresponding to a move to one of the k 

1 In case there are multiple edges between the two vertices, the cost is equal to the minimum of 
the weights. In the discussion to follow, we assume that there is at most one edge connecting two 
vertices, without loss of generality. 



CHAPTER 10. A FORMALIZATION OF U-GRAPH BASED NAVIGATION 178 

neighbours. We use trans( C, t) to denote the configuration to which the transition 

t can lead from configuration C . Formally, we have: 

trans( (G, Ve, v9, c), t) = (G, v', v9, c + c(t)) 

where t is the transition corresponding to neighbour v' , and c( t) is the cost of 

transition t, equal to the weight of edge (ve, v'). Since the agent chooses which 

transition will happen, these transitions are called controlled transitions. 

When in a non-terminal uncontrolled configuration C = (G, Ve, v9 , c) with Ur( ve) = 

{ Ui1, ... , Uik} ( k > 0 ), the agent can observe the states of the random edges in ur ( ve) 

and update the U-graph based on the observation. For each a E Our(vc), G(a) is 

a possible new graph and (G(a),vc,v9 ,c) is a possible next configuration. Depend­

ing on the actual state of the random edges in Ur ( ve) , the current configuration will 

change to one of the possible next configurations. Such configuration changes incur no 

cost. To model such configuration changes, we define a set of uncontrolled transitions 

for configuration C , each corresponding to a configuration change from C to one of 

its possible next configurations. We refer to these transitions as uncontrolled tran­

sitions because which transition will actually happen is not controlled by the agent, 

but determined by the probability distribution over the possible next configurations 

of the uncontrolled configuration. The probability distribution is the same as that of 

the new U-graphs. More specifically, the probability that C' = (G(a), Ve, v9, c) is the 

actual next configuration is P{Ur(ve) =a}. This probability is associated with the 

transition from C to C'. 

With these definitions, we can think of U-graph based navigation as a sequence of 

decision making and configuration transitions. When an agent is in a non-terminal 

controlled configuration, it can select a controlled transition and then reach a new 

configuration. The new configuration can be either a terminal, an uncontrolled con-



CHAPTER 10. A FORMALIZATION OF U-GRAPH BASED NAVIGATION 179 

figuration or a controlled configuration. In the case that the new configuration is a 

controlled configuration, the agent can repeat this transition selection. If we take 

a longer perspective on the transition selection, we observe that, from a controlled 

configuration, the agent will eventually either come back to the same configuration or 

reach an uncontrolled configuration or reach a terminal by taking a sequence of con­

trolled transitions. The first possibility corresponds to a case where an agent takes a 

circular trip without discovering any new information. Obviously, any navigation plan 

resulting in this kind of behavior must not be optimal. Thus, we want to exclude such 

circular behaviors. To do so, we use composite transitions to model "non-circular" 

controlled transition sequences and ignore the "circular" transition sequences. 

A sequence of controlled transitions is called a composite transition if it leads 

to the destination v9 or to an uncontrolled configuration. Formally, a sequence of 

controlled transitions T = t 1, ... , tk with k 2: 1, is a composite transition from 

controlled configuration C == (G, Ve, n9 , c) to configuration C' = (G, v', v9 , c') if C' = 
trans( ... trans(C, t 1), ••• , tk) and if v' = v9 or C' is an uncontrolled configuration. 

We use ctrans( C, T) to denote the configuration resulting from taking the composite 

transition T in C. For the above case, we have ctrans( C, T) = C'. The cost for a 

composite transition T, denoted by c(T), is defined as the sum of the costs of the 

constituent transitions of T. Intuitively, starting from any controlled configuration, 

the next intermediate vertex the agent will reach is either the goal vertex or an 

information collecting vertex. Note that, for a given controlled configuration C and 

a configuration C', there may exist zero, one or many composite transitions from 

C to C'. A composite transition from C to C' is optimal if it has the least cost. 

A configuration C' is called a composite successor of a controlled configuration C 

if there is a composite transition from C to C'. From now on, whenever we refer 



CHAPTER 10. A FORMALIZATION OF U-GRAPH BASED NAVIGATION 180 

to a successor of a controlled configuration we mean a composite successor of the 

configuration. Similarly, whenever we refer to the transition set associated with a 

controlled configuration, we mean the set of optimal composite transitions of the 

configuration. 

The composite successor set of a controlled configuration C = (G, Ve, v9 , c) can be 

computed as follows. Let ½ = vr U { v9 }. ½ is called the set of candidate vertices 

for the next move. If the shortest path from Ve to a vertex v E ½ in the pessimistic 

induced graph GP contains no vertex in ½ other than v, then v is a vertex the 

agent can reach next by a (composite) transition. Vertex v is called a next vertex 

of C. Formally, let V' denote the set of all next vertices of C and let ds( GP, Ve, v) 

denote the shortest distance from Ve to v in GP. The successor set of C is given 

by: 

{(G,v,v9 ,c+ ds(GP,ve,v))lv EV'}. 

The cost of the composite transition from C to (G, v, v9 , c+ds(GP, Ve, v)) is ds(GP, Ve, v ). 

This successor set can be computed by Dijkstra's shortest distance algorithm [21]. 

Configuration C' is reachable from configuration C if C' is a successor of C 

or if there exists a configuration C" such that C" is a successor of C and C' 1s 

reachable from C". The configurations reachable from the initial configuration along 

with the successor relationship among them form a directed graph. Such a graph is 

called the representing graph, and can be specified as follows. 

• The initial configuration is in the representing graph. 

• If a non-terminal controlled configuration C is in the graph, so are all of its 

(composite) successors, which form its children in the graph. The arc from C to 

each child configuration C' corresponds to the (optimal composite) transition 



CHAPTER 10. A FORMALIZATION OF U-GRAPH BASED NAVIGATION 181 

from C to C' and is labeled with the cost of the transition. 

• If a non-terminal uncontrolled configuration C is in the graph, so are all of 

its successors, which are the children of C. The arc from C to each child 

configuration C' corresponds to the uncontrolled transition from C to C' and 

is labeled with the probability of C'. 

We call such a graph the representing graph of the navigation because it represents 

all the possible courses of the navigation. 

Lemma 10.1 The representing graph of a U-graph based navigation task is acyclic. 

The longest path in the representing graph is bounded by 2k+2 where k = min{ m, n} , 

m is the number of uncertain edges and n is the number of vertices in the U-graph. 

Proof. The representing graph is acyclic due to the following four facts: (a) a 

child of a controlled configuration is either a terminal or an uncontrolled configuration, 

a child of an uncontrolled configuration is either a terminal or a controlled configu­

ration; (b) a terminal has no child; ( c) the number of random edges in a controlled 

configuration is equal to the number of random edges in any of its successors; ( d) the 

number of random edges in an uncontrolled configuration is strictly greater than that 

in any of its successors. Because of facts (a) and (b), controlled configurations and 

uncontrolled configurations must be interleaved along any path C1 , ... , Ci of length 

i > 2. Without loss of generality, let us assume that i is even and C2 , C4 , ... , Ci are 

all uncontrolled configurations and C1 , C3, ... , Ci-I are all controlled configurations. 

Let u( C) denote the number of random edges in configuration C. According to facts 

(c) and (d), we have u(Cj) ~ u(Cj+I) and u(Cj) > u(Cj+2 ), for j = 1, ... , i - 2. 

Suppose the lemma is false, then there must be a cycle in the graph containing at 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 182 

least one uncontrolled configuration C. Thus, we can find a path C1 , ... , Ci such 

that Cjl = cj2 = C' and J1 + 2 :s; )2 :s; i. Therefore, we have u( C) = u( cii) ' 

u( C) = u( Cj2 ) , and u( Cj1 ) > u( C52) , a contradiction. 

From the above analysis, we can conclude that the longest path in the repre­

senting graph is bounded by 2m + 2 . Furthermore, note that any two uncontrolled 

configurations along a path must have different current vertices, thus there are at 

most n uncontrolled configurations along any path. Therefore, the longest path in 

the representing graph is also bounded by 2n + 2 . □ 

By the above lemma, we know that the representing graph of a navigation is a 

DAG with the initial configuration as the root of the graph. 

As an example, let us consider the U-graph shown in Fig. 10.1 in which CD is 

the only uncertain edge. The weight of CD is d4 with probability p and M with 

probability (1-p) where M is a very large number. Suppose an agent is asked to reach 

vertex B from vertex A in the U-graph. Note that if d1 :s; d2 +d3 +d4 , then the initial 

configuration is a terminal. Suppose d1 > d2 + d3 + d4 • The representing graph of 

this task is shown in Fig. 10.2, where solid boxes represent controlled configurations, 

dotted circles represent terminals, solid circles represent uncontrolled configurations, 

arcs represent transitions, the labels for controlled transitions are their costs and the 

labels for uncontrolled transitions represent their probabilities. In the figure, node 1 

is the initial configuration, node 2 is the configuration when the agent reaches vertex 

B through edge AB, node 3 is the (uncontrolled) configuration when the agent reaches 

vertex C through edge AC. 

The representing graph of a navigation task represents the possible traces of the 

task. In a representing graph, a controlled configuration represents a situation where 

the agent can choose the next configuration, while an uncontrolled configuration rep-



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 183 

dl 

d4/M 

p 

Figure 10.1: A simple U-graph 

. , . 
: 2 ', . ' . . . . .. "' ... 

.. ..... - ... 

Figure 10.2: The representing graph of a navigation task 



CHAPTER IO. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 184 

resents a situation where "nature" chooses the next configuration during a navigation 

process. Thus, a representing graph can be regarded as a decision graph with the con­

trolled configurations as choice nodes and the uncontrolled configurations as chance 

nodes. With this analogy, a solution graph of a representing graph can be viewed as 

a representation of a navigation plan for the corresponding navigation task. Further­

more, the plan is complete in the sense that it covers all the possible configurations 

an agent may encounter if the agent follows the plan. The evaluation function of the 

decision graph will be defined in an appropriate way to reflect our optimality criterion 

of minimizing the expected cost. Thus, the path planning problem for U-graph based 

navigation is, for any given navigation task, to compute an optimal solution graph of 

the representing graph of the task. 

10.2 Modeling Information Purchase 

When information on the status of some random edges is available to the agent at 

some cost, the agent must decide in each controlled configuration whether or not to 

buy the information. This option can be modeled by a special ( controlled) transition. 

Taking the transition will incur a cost equal to the price of the information and results 

in an uncontrolled configuration whose children can be determined according to the 

possible states of the uncertain edges. To illustrate this, consider again the task of 

going from vertex A to vertex B in the U-graph shown in Fig. 10.1. Suppose the 

agent can determine the state of uncertain edge CD at cost c. The representing 

graph of this task is shown Fig. 10.3, where the initial configuration has one more 

child (node 6 in the figure) than the one in Fig. 10.2. The new child results from the 

special transition modeling the option of information purchase. It has two children, 

one corresponding to the case where CD has weight d4 and the other corresponding 

,· 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 185 

to the case where CD has weight M. 

Figure 10.3: The representing graph of a navigation task with the information pur­
chase option 

10.3 The Expected Costs of U-graph Based Nav­
igation Plans 

In order to define the expected costs of navigation plans, we need to define a cost 

function on the solution graphs. The cost function should, for each solution graph, 

return the expected cost an agent incurs if the agent follows the plan corresponding 

to the solution graph. Let X denote a cost function with two parameters: a solution 

graph and a configuration in the solution graph. X can be recursively defined as 

follows. 

if C is a terminal, 
if C is a controlled configuration, 
if C is an uncontrolled configuration 

where GP is the pessimistic induced graph of the configuration C, d8 (GP, Ve, v9 ) 

denotes the shortest distance from the current vertex Ve to the goal vertex v9 in QP, 

q( Cj) denotes the probability of the successor Ci of the uncontrolled configuration 

C, and C' denotes the successor configuration of C in sg. Intuitively, X(sg, C) is 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 186 

the expected cost an agent incurs if the agent follows the plan corresponding to the 

solution graph starting in configuration C. The above definition can be understood 

as a formal expression of the following intuition. If C is a terminal, the agent can 

complete the task by following the shortest path from the current vertex to the goal 

vertex in the pessimistic induced graph; if C is a controlled configuration, X ( sg, C) 

is equal to the sum of the cost of the transition from C to C' prescribed by the plan 

for configuration C and the expected cost the agent incurs starting in C' ; if C is an 

uncontrolled configuration, X(sg, C) is the average of the costs that the agent incurs 

starting in C's successor configurations. 

The representing graph shown in Fig. 10.2 has two solution graphs as shown in 

Fig. 10.4, corresponding to two possible plans for the corresponding navigation task. 

Plan (a): go to B through edge AB. 

Plan (b ): go to C first, if CD's weight is d4 , go to B via D, otherwise, go back to 

A then to B through edge AB. 

1 

di 

(a) (b) 

Figure 10.4: Two solution graphs of a navigation task 

The expected costs for Plans (a) and (b) are: d1 and d2 + p( d4 + d3 ) + ( 1 - p) ( d2 + 
d1 ) , respectively. 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 187 

In order to express the optimality criterion, we can define an evaluation function 

X' for representing graphs by extending the definition of function X . The definition 

of function X' on a representing graph rg is as follows. 

if C is a terminal, 
if C is a. controlled configuration, 
if C is an uncontrolled configuration. 

Therefore, the problem of computing an optimal plan for a navigation task is reduced 

to computing an optimal solution graph of the representing graph of the task with X' 

as the evaluation function. This problem can be solved by applying the algorithms 

presented in Chapter 3. We discuss this issue in the next chapter. 

10.4 Other Variations 

So far we have presented a formalization for U-graph based navigation with respect to 

the optimality criterion of minimizing the expected cost. Our formalization is general 

enough to deal with other optimality criteria and/or other variations of the problem. 

We explore this aspect in this section. 

10.4.1 Minimizing the competitive ratio 

Papadimitriou and Yannakakis [66] define optimality criteria for the Canadian Trav­

eler Problem (CTP) in terms of competitive ratios. The competitive ratio of a plan 

with respect to a problem instance is informally defined as the ratio of the cost of 

the plan to the minimum cost that may be achieved for the problem instance. The 

competitive ratio of a plan is the maximum of the ratios of the plan with respect to all 

possible problem instances. Intuitively, a plan with competitive ratio r guarantees 

that for any problem instance, the cost of the plan is bounded from above by r times 

the minimal cost for the same problem instance. 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 188 

We define a function r to precisely express the competitive ratio of a plan. 

if C is a terminal , 
if C is an uncontrolled configuration, 
if C is a controlled configuration 

where ds( G0
, Ve, v9 ) denotes the shortest distance from Ve to v9 in G0

, the optimistic 

induced graph of configuration C. Note that in the second clause of the above 

definition, the maximization is over only those successors with non-zero probabilities. 

To express the optimality criterion of minimizing the competitive ratio, we extend the 

definition of r into an evaluation function r' for the representing graphs as follows. 

if C is a terminal, 
if C is an uncontrolled configuration, 
if C is a controlled configuration. 

Note that the representing graph with this evaluation function is a minimax graph. 

An optimal solution graph of a representing graph with r' as its evaluation function 

represents an optimal plan minimizing the competitive ratio. 

10.4.2 Minimizing the expected competitive ratio 

Similarly, we define a function re to express the expected competitive ratio of a plan. 

The function is defined as follows. 

if C is a terminal, 

if C is an uncontrolled configuration, 
if C is a controlled configuration. 

To express the optimality criterion of minimizing the expected competitive ratio, we 

extend the definition of re into an evaluation function r: for the representing graphs 

as follows. 

if C is a terminal, 

if C is an uncontrolled configuration, 
if C is a controlled configuration. 



CHAPTER 10. A FORMALIZATION OF U- GRAPH BASED NAVIGATION 189 

An optimal solution graph of a representing graph with r~ as its evaluation function 

represents an optimal plan minimizing the expected competitive ratio. 

10.4.3 Minimizing the worst case cost 

The quality measurement of plans in terms of worst case cost can be given as a 

function Cw defined on solution graphs. 

if C is a terminal, 
if C is an uncontrolled configuration, 
if C is a controlled configuration. 

To express the optimality criterion of minimizing the worst case cost, we extend the 

definition of Cw into an evaluation function c~ for representing graphs as follows. 

if C is a terminal, 
if C is an uncontrolled configuration, 
if C is a controlled configuration. 

Again, the representing graph with this evaluation function is a minimax graph. 

10.4.4 Reaching one of the goal vertices 

Suppose that an agent is given a U-graph G, a start vertex and a set Vg of goal 

vertices and is asked to reach any one of the goal vertices in Vy. The optimality 

criterion is to minimize the expected cost. 

This variation can be reduced to a problem with a single goal vertex. To do so, 

we construct a new U-graph G' which is the same as G except that all the vertices 

in Vy are "collapsed" into a single vertex v9 • The original problem is equivalent to 

the problem of going to vertex v9 in G'. 

10.4.5 Reaching multiple goal vertices 

Suppose an agent is asked to visit all of the goal vertices in ½0 (in any order), 

instead of just one of them. In order to deal with this variation, we need to modify 



CHAPTER 10. A FORMALIZATION OF U-GRAPH BASED NAVIGATION 190 

our formalization. 

First, the definition of configurations needs to be changed as follows: a configu­

ration is a quadruple (G, Ve, Vy, c) where G, Ve and c have the same meanings as 

before and ½, is a set of goal vertices yet to visit. 

Next, the definition of terminals needs to be changed as follows: a terminal is a 

configuration (G, Ve,{}, c). 

Third, the definitions of the composite successors and the composite transitions 

of controlled configurations are redefined as follows: Let C = (G, Ve, Vy, c) be a 

controlled configuration. Let 11c = vr U ½,. 11c is called the candidate vertex set 

for the next move. If the shortest path from Ve to a vertex v E 11c in QP contains 

no other vertex in 11c than v , then v is a vertex the agent can reach next by a 

(composite) transition. Vertex v is called a next vertex of C. Formally, let V' 

denote the set of all next vertices of C and let d8 (GP, Ve, v) denote the shortest 

distance from Ve to v in QP . The successor set of C is given by: 

Finally, the function returning the expected cost of a plan is defined as follows: 

Y(sg, C) = { ~i Y(sg, Ci)* q(Ci) 
Y(sg, C') + c(C, C') 

if C is a terminal, 
if C is an uncontrolled configuration, 
if C is a controlled configuration. 

Similarly, we can extend Y into an evaluation function Y' for the representing 

graphs. 



Chapter 11 

Computational Issues of U-graph 
Based Navigation 

This chapter is concerned with computational issues of U-graph based navigation. 

We first discuss off-line and on-line paradigms, and then present algorithms for U­

graph based navigation in both paradigms. Finally, we present some experimental 

data obtained for these algorithms. 

11.1 Planning Paradigms 

A plan for a U-graph based navigation task covers some or all contingencies which 

may arise during navigation. If a plan covers all possible contingencies for a navigation 

task, it is called a complete plan. The solution graphs of the representing graph of a 

navigation task represent complete plans. 

U-graph based navigation can be carried out either in an off-line paradigm or in 

an on-line paradigm. In the off-line paradigm, the planner computes a complete plan 

for each navigation task. After computing such a complete plan, the planner will not 

be invoked during the navigation process. 

In the on-line paradigm, the planner and the executive can be considered as 

191 



CHAPTER 11. COMPUTATIONAL ISSUES 192 

co-routines. At any point during a navigation process, the current U-graph and 

the current position, together with the goal position and the cost incurred so far, 

constitute a configuration. The planner acts as an "oracle," telling the agent where 

to go next. Once the agent reaches an information collecting vertex, the agent can 

update the U-graph according to the actual status of the random edges incident from 

the vertex. As the result of the updating, a new configuration is reached. Note that a 

configuration here is essentially a controlled configuration. The following procedure, 

Navigate, captures this kind of interaction between the executive and the planner. 

Navigate 

Input: G: a U-graph Vs and v9 : a pair of vertices P: an on-line planner 

Output: the amount spent for the task 

1. Set Ve= Vs and c = 0. 

2. If Ve = v9 , stop with cost c. 

3. Call P with arguments G, Ve, and v9 to obtain a plan. 

4. Follow the plan until either reaching v9 or reaching an information collecting 

vertex v. 

5. Set Ve= v. 

6. Increase c by the amount spent on following the plan. 

7. Update G based on the new information on the uncertain edges adjacent to Ve 

and go to step 2. 

I 
, .. 



CHAPTER 11. COMPUTATIONAL ISSUES . 193 

11.2 Computing Complete Plans 

In the previous chapter, we showed that a U-graph based navigation can be repre­

sented by a decision graph. A solution graph of the decision graph is a complete 

representation of a navigation plan. Computing a complete plan for a navigation 

task amounts to computing the corresponding solution graph from the decision graph. 

Thus, we can use the algorithms presented in Chapter 3 for off-line planning. 

In order to apply those algorithms, we need to define heuristic functions to esti­

mate minimum expected costs for configurations. 

For a given navigation task, let rg denote the representing graph with the function 

X' defined in Section 10.3 as its min-exp evaluation function. One possible heuristic 

function, denoted f, is defined as follows: 

where G0 is the optimistic induced graph of configuration C. Intuitively, f ( C) is the 

shortest distance between the current position and the goal position in the optimistic 

induced graph of configuration C. Thus f(C) ~ X'(rg, C) for any configuration C. 

Therefore, f is admissible. 

11.2.1 Some experimental data 

In this section, we present some experimental data obtained when applying some of 

the algorithms discussed in Chapter 3 to U-graph based navigation. Our primary 

objective for carrying out these experiments is to compare the performance of those 

algorithms. 



CHAPTER 11. COMPUTATIONAL ISSUES 194 

Problem Instances 

In our experiments, we consider two classes of U-graphs. The U-graphs in Class 1 are 

randomly generated from grids (as shown in Fig.11.1) with parameters d1 , d2 , p1 , 

p2 and two reference numbers r1 and r 2 • Here, d1 and d2 are two positive integers 

specifying the numbers of rows and columns of the grids; 0 :S p1 :S 1 specifies the 

probability that a connection ( either an ordinary edge or an uncertain edge) exists 

between any pair of neighbouring vertices on the grids; p2 specifies the probability 

of a connection, if it exists, being an uncertain edge. The reference numbers r1 > 1 

and r2 > 1 are used to generate uniform distributions from which the weights of a 

U-graph are generated. A U-graph of this kind is an abstraction of the road layout 

of a city. We assume that the weight distributions of all uncertain edges are binary 

and independent of one another. 

Given parameters d1 , d2 , P1 , P2 , r1 and r2 , a random U-graph is generated as 

follows. First, d1 x d2 vertices are generated, arranged in a d1 by d2 grid. Next, with 

probability p1 , a connection is generated between each pair of neighbouring vertices. 

Third, each connection is marked as an uncertain edge with probability p2 and as 

an ordinary edge with probability 1 - p2 • Finally, the weights for the connections 

of the graph are generated as follows. For each edge, we first randomly generate two 

numbers a1 and a2 ; a1 is drawn from a uniform distribution between 1 and r 1 , 

and a2 from a uniform distribution between 1 and r2 • Then we construct a uniform 

distribution V with a lower bound a1 and an upper bound a1 * a2 • The weight 

of the edge is a random number generated from the uniform distribution V. For 

each uncertain edge, we first generate a probability p from a uniform distribution 

between 0.01 and 0.99 and construct two uniform distributions V1 and V 2 in the 

same way as described above, and then generate two numbers c1 and c2 from the 



CHAPTER 11 . COMPUTATIONAL ISSUES 195 

uniform distributions 'D1 and 'D2 respectively. The weight of the uncertain edge is a 

binary random variable having value c1 with probability p and c2 with probability 

1 - p. For each randomly generated U-graph, we assume the navigation task is to go 

from the upper-left corner to the lower-right corner on the grid. We discard those 

U-graphs whose optimistic induced graphs are disconnected with respect to the two 

corners. 

0 -· -- 0 · · · · --- 0 -- --- -· --O ·- · · -- --O 
I I I I I 

0 I I I I 

t t f I I 

I I I I I 

: : : P1 : : 
0-- --◊- -- ---0------ -- -o- --- -- · ·0 

P2 : : 
' ' ' ' . ' ' . . I';"\ . . 0 ·· --0- --- -- · 0 ·· · · · ···O · --- · ·· ·O 

. . ' 

0 ----◊ - ---· · ◊ -· -· -· --0 · · --· · --0 
I I I I t 
I I I o I 

t I I I . ' 

0 · ---0 · --· · · 0· -· · · · · --0 · -· · ----0 

Figure 11.1: A U-graph in Class 1 - a representation of city roads 

The U-graphs in Class 2 are randomly generated from a structure as shown in 

Fig.11.2, which is a model of two parallel-highway systems joined by a bipartite graph. 

The U-graphs are generated with four parameters: n, p1 , r 1 and r2 • Here r1 and 

r2 are used in the same way as in Class 1, n is the number of parallel highways, 

and p1 is the probability that an ordinary edge exists between a pair of vertices, one 

in each half of the bipartite graph. Again, we assume the weight distributions of all 

uncertain edges are binary and are independent of one another. 



CHAPTER 11 . COMPUTATIONAL ISSUES 

·····0--0 

'~0-0-0 
0 ·---0-0 

0-0·····0/ L 

0-0·····0 

196 

Figure 11.2: A U-graph in Class 2 - an abstraction of a parallel highway system 

Given parameters n, p1 , r 1 and r 2 , a random U-graph is generated as follows. 

First, two partial graphs as shown in the boxes of Fig.11.2 are generated. Each partial 

graph has 3n + 1 vertices, 2n edges and n uncertain edges. Next, with probability 

p1 , an edge is generated between each pair of vertices, one on the right boundary of 

the left partial graph and one on the left boundary of the right partial graph. Finally, 

the weights of the ordinary edges and the weight distributions of the uncertain edges 

are generated in the same way as for the U-graphs in Class 1. For each randomly 

generated U-graph, we assume that the navigation task is to go from vertex s to 

vertex t. Again, we discard those U-graphs whose optimistic induced graphs -are 

disconnected with respect to vertices s and t . 

Note that in the process of generating a random U-graph, the weights are gener­

ated from uniform distributions that are also randomly constructed. We expect that 

this treatment reduces the correlation among the connection weights in a U-graph. 

The Lisp functions that are used in our experiments for generating random graphs 

are included in Appendix A. 



CHAPTER 11. COMPUTATIONAL ISSUES 197 

Experiment 1 

Our first experiment compares the performance of algorithms AO* and DFS. AO* is a 

best-first heuristic search algorithm. DFS is a depth-first heuristic search algorithm. 

We mentioned in Chapter 3 that the primary advantage of DFS over AO* is that 

it needs only linear space (if the solution graph need not be explicitly constructed). 

We want to test if DFS examines fewer nodes than AO* does for randomly gener­

ated problems. Because structure sharing in a decision graph of a U-graph based 

navigation task is not substantial, we did not make use of structure sharing in our 

implementation of AO*. Thus, a decision graph is essentially treated as an unfolded 

tree, and we avoid high overhead for checking whether a node is already in the graph. 

The algorithms are implemented in Common Lisp. 

In our first experiment, we made two hundred successful trials. A trial consists of 

generating a problem instance and applying DFS and AO* to the problem instance. 

A trial is aborted if it cannot be finished in a reasonable period of time ( typically an 

hour on a Sparc-2 machine). 

Of the two hundred successful trials, one hundred are generated from Class 1. The 

parameters used for generating U-graphs are set up in the following way: 

with probability 0.5, d1 and d2 are both set to 5; with probability 0.5, 

d1 is set to 4 and d2 to 6; 

p1 is a random number generated from the uniform distribution between 

0.6 and 0.9; p2 is a random number generated from the uniform distribu­

tion between 0.2 and 0.5; 

r1 is a random number generated from the uniform distribution between 

100 and 200; r 2 is a random number generated from the uniform distri-



CHAPTER 11. COMPUTATIONAL ISSUES 198 

bution between 10 and 20; 

Another hundred problem instances are generated from Class 2. The parameters 

used for generating U-graphs are set up in the following way: 

n = 5; 

p1 is a random number generated from the uniform distribution between 

0.5 and 0.8; 

r 1 is a random number generated from the uniform distribution between 

100 and 200; r2 is a random number generated from the uniform distri­

bution between 10 and 20. 

We measured for each (successful) trial the number of nodes examined by DFS and 

by AO*. For seventy-seven problems out of one hundred in Class 1, DFS examined 

fewer nodes than AO* did. For fifty-two problems out of one hundred in Class 2, 

DFS examined fewer nodes than AO* did. 

Moreover, our experiments showed that, for most of the problems, DFS spent less 

time, even when it examined more nodes than AO* did. This is due to the fact that 

DFS is a depth first algorithm, involving less overhead, and suggests that DFS is 

better suited for U-graph based navigation. 

Experiment 2 

If the admissibility of a heuristic function for a given problem cannot be assured, 

the solution computed by DFS may not be optimal. An algorithm with a particu­

lar heuristic function can be evaluated by two factors: its speed and the expected 

navigation cost it induces. 



CHAPTER 11. COMPUTATIONAL ISSUES 199 

Our second experiment is for testing the effect of heuristic functions on DFS. This 

experiment casts some light on the tradeoff between computational time and solution 

quality. DFS is tested with four different heuristic functions: h0 , h1 , h2 and h3 , 

defined as follows. 

ho(C) = f(C), 

h1(C) = ho(C)/(l - E), 

h2(C) = ho(C)/(l - €)2 and 

h3(C) = ho(C)/(l - €)3 

where € = 0.2. Heuristic functions h1 , h2 and h3 are not admissible. Theorems 3.4 

and 3.5 give quality bounds for DFS with these heuristic functions. 

For this experiment, we also made two hundred successful trials using the same 

approach to trial construction as in the first experiment. For each successful trial, 

we measured the cost of the solution graph and the number of nodes visited by the 

algorithm for each heuristic function. More specifically, for each problem instance, 

we measured the following data (for i = 0, 1, 2 and 3): 

• Ci: the cost of the solution graph returned by DFS with heuristic function hi. 

• ni: the number of nodes examined by DFS with heuristic function hi. 

From the measured data, we computed the following data: 

cri = ci/Co, sri = n0 /ni, for j = 1,2,3 

Intuitively, cri means the cost ratio of the solution returned by DFS with heuristic 

function hi to the cost of the optimal solution; sri means the speedup ratio of DFS 

with heuristic function hi to DFS with heuristic function ho. We use the cost ratios 

to measure the quality of the algorithm with inadmissible heuristic functions, and 



CHAPTER 11. COMPUTATIONAL ISSUES 200 

Table 11.1: The average speedup ratios of Algorithm DFS 

hi h2 h3 
Class I 1.54 2.07 2.41 
Class 2 2.77 9.71 23.04 

Table 11.2: The average cost ratios of Algorithm DFS 

hi h2 h3 
Class I 1.011 1.031 1.041 
Class 2 1.012 1.064 1.131 

use the speedup ratios to measure the performance of the algorithm with inadmissi­

ble heuristic functions. Table 11.1 contains the average speedup ratios. Table 11.2 

contains the corresponding average cost ratios. 

From these tables, we observe that the average cost ratios of DFS with heuristic 

functions h1 , h2 and h3 are all quite close to one. This implies that, even though 

these heuristic functions are not admissible, they usually give very conservative es­

timates. Therefore, there is a great potential to obtain more informed heuristic 

functions. 

Experiment 3 

This experiment tests the effect of another heuristic function, h', on DFS. Like 

heuristic functions h1 , h2 and h3 , h' is not admissible. Unlike those functions, we 

do not have a bound on the admissibility of heuristic function h'. 

Heuristic function h' is defined as follows: 

where G0 is an induced graph of the U-graph G of C in which each uncertain edge 

is replaced with an edge whose weight is the mean value of the weight distribution of 



CHAPTER 11 . COMPUTATIONAL ISSUES 201 

the uncertain edge. 

This experiment showed that, with heuristic function h', the average cost ratio 

and the average speedup ratio of DFS for the problems in Class 1 were 1.006 and 

39.49, respectively; the average cost ratio and the average speedup ratio of DFS for 

the problems in Class 2 were 1.074 and 23.18, respectively. From these data, we·made 

the following observation: 

For the U-graphs in both classes, DFS with heuristic function h' outperformed 

DFS with heuristic functions h1 , h2 and h3 • This was especially true for the 

U-graphs in Class 1. For the U-graphs in this class, the average cost ratio of 

DFS with the heuristic function h' was 1.006, less than the cost ratio of DFS 

with the heuristic function h1 ; the average speedup ratio was almost 40, far 

greater than the speedup ratios of DFS with the heuristic function h3 . 

The good performance of DFS with the heuristic function h' can be attributed to the 

fact that more domain-dependent knowledge is encoded in h' than in h1 or h2 or 

h3 • This is another illustration of the importance of domain-dependent knowledge 

for decision graph search in particular and for heuristic search in general. 

11.3 On-Line Planning 

In this section, we first discuss the issue of characterizing the quality of an on-line 

planner and then develop a polynomial algorithm for on-line planning. Finally, we 

present some experimental data. In our experiments, we compare the navigation qual­

ity of our algorithm with the navigation quality of another simple on-line algorithm 

given by Polychronopoulos [71). The experimental data show that our algorithm 

results in good navigation quality and is better than Polychronopoulos's on-line al-



CHAPTER 11. COMPUTATIONAL ISSUES 202 

gorithm in terms of navigation quality. 

11.3.1 The optimality characterization of on-line planners 

The navigation quality of an on-line planner can be measured in terms of the expected 

cost for given navigation tasks. 

Let J = (G, Vs, v9 ) be the navigation task of going from Vs to v9 in U-graph G, 

let P be an on-line planner the agent uses for the navigation task and let Ca(P, J) 

denote the expected cost of J induced by planner P. Cost Ca(P, J) can be deter­

mined by simulating the navigation process under the guidance of P against all of 

the possible realizations of the U-graph G. 

Suppose c;( J) is the minimal expected cost of J. The cost ratio of P with 

respect to task J is defined as Ca(P, J)/C;(J). We say that the planner P will 

result in an optimal navigation for task J if the cost ratio is unity. We say the 

planner is optimal if Ca(P, J)/C;(J) = 1 for any navigation task J. 

11.3.2 A graph transformation based algorithm 

The basic idea behind this algorithm is to substitute for the uncertain edges in a U­

graph by edges with "appropriate weights". In so doing, we hope that the "net effect" 

of the uncertain edges in a U-graph can be approximated by a set of substituting 

edges. Suppose we are given the task of navigating from vertex Ve to vertex v9 

in U-graph G. Assume that the uncertain edges of U-graph G can be ordered 

as u1 , u 2, ... , u1. Let W = (w1 , w2 , ... , w1) be a vector of weights. We call W a 

substituting weight vector. Let G(W) denote the graph obtained by replacing the 

uncertain edges, ui, u 2, ... , u1, in U-graph G respectively by edges e1 , e2, ... , e1 where 

ei an,d Ui have the same incident vertices and ei has weight Wi , for 1 ~ i ~ l . The 



CHAPTER 11. COMPUTATIONAL ISSUES 203 

central problem here is to compute an "appropriate" substituting weight vector W 

for a given configuration. We first define ideal substituting weight vectors. 

A vector W = (w1 , ... , w1) is an ideal substituting weight vector for U-graph G 

and the goal vertex v9 , if the following two conditions are met: 

1. for any vertex v in G, the shortest distance from v to vertex v9 in graph 

G(W) is equal to the minimal expected cost for the configuration (G, v, v9 , c); 

2. the initial segment of the shortest path from v to v9 is consistent with the 

optimal next move for the configuration (G, v, v9 , c). 

Note that, in the above definition, the second condition is sufficient for optimal navi­

gation. However, as we will see, the above definition facilitates a way to compute an 

"appropriate" substituting weight vector. 

It should also be noted that, if we have an algorithm to compute an ideal sub­

stituting weight vector for any configuration, we in effect have an on-line navigation 

algorithm that always results in optimal navigation. However, since the problem of 

optimal navigation is #-P hard [71], it should not be surprising if the substituting 

weight vectors computed by a polynomial algorithm are not ideal. 

Suppose we have magically obtained an ideal substituting vector W = (w1 , .•. , w1) 

and the corresponding substituting graph G(W); and suppose we happen to forget 

the value of Wi for some i, 1 :s; i :s; l. We want to make a good guess at the value 

of Wi on the basis of the known information. 

Suppose ui = (vi, v2). Let uf denote the optimistic realization and let uf denote 

the pessimistic realization of Ui. For each a E nu; , let W( a, i) = (w~, ... , w;) be a 

weight vector such that w: = a and wi = Wj for all j with 1 :s; j :s; l and j # i ; let 

D( G, W, i, a) denote the absolute difference between the shortest distances from v1 



CHAPTER 11 . COMPUTATIONAL ISSUES 204 

to v9 and from v2 to v9 in graph G(W(a, i)). Intuitively, D(G, W, i, a) reflects the 

difference between the expected costs for an agent to go to vertex v9 from vertices 

v1 and v2 in the U-graph under the condition that uncertain edge ui has weight a. 

We define e(G, W, i) as follows: 

e(G, W,i) = max{uf, I: P{ui =a}* D(G, W,i,a)}. 
aEOu; 

Intuitively, e(G, W, i) is the weighted sum of D(W, i, a) for each a E Ou;. 

Lemma 11.1 For any i, e(G, W,i) :5 ca(ui) where ca(ui) is the expected value of 

the weight distribution of the uncertain edge ui . 

Proof. We simply note that D( G, W, i, a) :5 a in the above definition of e( G, W, i). 

□ 

Function e can be extended to a vector function e such that e( G, W) is a new 

vector W' = (w~, ... ,wf) satisfying w; = e(G, W,i). We use e(G, W) as an estimate 

of W. We say a weight vector W is appropriate if it is a fix-point of e, i.e., 

e(G, W) = W. 

The above condition imposes l equations with l variables. Since these equations are 

not linear, it is hard to obtain an analytic solution. However, we can approximate 

their solution by iteration. 

Practically, for any initial vector W0 , we compute a sequence W0 , ... , Wj, Wj+I, ... 

satisfying Wi+ 1 = e( G, Wi) , i ~ 0. Vector Wi can be regarded as a good estimate 

to the solution if Wj-l and Wi are close enough. An iteration algorithm based on 

this idea for computing appropriate substituting weight vectors is given as follows. 



CHAPTER 11. COMPUTATIONAL ISSUES 

Algorithm AA 

Input: a U-graph G, a current vertex Ve and a goal vertex v9 • 

Output: A substituting vector. 

1. Set j = 0, Wo = (ca(u1), ... , ca(ui)). 

2. Set Wj+i = e(G, Wi). 

3. Set j = j + 1 . 

205 

4. If Wj-I and Wj are close enough, return Wj, otherwise, go back to step 2. 

The condition for termination at step 4 in the above algorithm can be tailored to 

different situations. For example, if an agent is in an urgent situation, it may adopt 

a very loose condition; otherwise it can choose a more restricted one. One candidate 

condition could be that the sum of the absolute differences between the element pairs 

from Wi and Wj-l is less than a given threshold. Our experimental data show that 

a small number of iterations is good enough for the two classes of randomly generated 

problems. We will see this later in this section. 

The time complexity of this algorithm can be roughly estimated as follows. In 

each iteration, we need to compute a new weight for each uncertain edge u. This 

computation involves !Du I calls of a shortest distance algorithm. Therefore, the time 

complexity of AA is 0( k * l * b * s) where k is the number of iterations, l is the 

number of uncertain edges, b is the average size of the frames of the uncertain edges 

and .s is the time complexity of the shortest distance algorithm used in AA. The size 



CHAPTER 11 . COMPUTATIONAL ISSUES 206 

of the space required by the algorithm is O(E + b * l), which is of the same order as 

the size of the U-graph. 

With the help of algorithm AA, an on-line planning algorithm is defined as follows. 

Algorithm AAl 

Input: G, Ve and v9 

Output: · A plan specifying where to go next 

1. If (G, Ve, v9 , -) is a terminal, return a shortest path from Ve to v9 in GP, the 

pessimistic induced graph of G. 

2. Use algorithm AA to compute a substituting vector W. 

3. Compute the substituting graph G(W) . 

4. Compute a shortest path from Ve to v9 in G(W) . 

5. Output the initial segment ( up to the first uncertain edge) of the path. 

The next issue is the size of our algorithm's average cost ratio. Unfortunately, we 

do not have theoretical results for general cases. In the next subsection, we present 

some experimental results which suggest that the cost ratio is quite low. 

11.3.3 Experimental results 

In this section, we present some experimental results on our on-line planning algo­

rithm AAl and another simple on-line planning algorithm AA2, which is given by 

Polychronopoulos [71]. 



CHAPTER 11. COMPUTATIONAL ISSUES 207 

AA2 

Input: C, Ve and v9 

Output: A plan specifying where to go next 

1. Compute a shortest path between Ve and Vg in ca , where ca is obtained 

from C by replacing each uncertain edge with an ordinary edge whose weight 

is equal to the mean value of the weight distribution of the uncertain edge. 

2. Output the initial segment of the path. 

AA2 has the same time complexity as that of the shortest distance path algorithm 

it uses. 

This experiment was conducted in the same way as were the previous experiments. 

The difference was that for each trial, we measured the cost ratios of AAl and AA2 

for the problem instance of the trial as follows. We first generated a problem instance 

for each trial, then computed the optimal expected cost of the problem by calling 

DFS. To determine the expected cost that AAl (AA2) will incur for the problem, we 

simulated AAl (AA2) against all of the possible realizations of the U-graph of the 

problem instance. Each simulation may involve up to l calls of AAl (AA2) where 

l is the number of uncertain edges of the U-graph. Thus, up to l * 21 calls of AAl 

(AA2) may be needed in order to determine the expected cost that AAl (AA2) will 

incur for the problem. 

The experimental results are summarized in Table 11.3. The two rows of the table 

correspond to the two problem classes. The data in column AA2 are the average cost 

ratios of AA2 for the problems in the two classes. The data in the AAl/i columns 



CHAPTER 11. COMPUTATIONAL ISSUES 208 

are the average cost ratios of AAl with iteration time i for the problems in the two 

classes. From these tables we observe that the average cost ratios of both algorithms 

are all close to one and that the average cost ratio of AAl is lower than that of AA2. 

It is not hard to explain why AAl is better on average than AA2. In both 

algorithms, the initial segment of the shortest path between the current position and 

the goal position in a substituting graph is computed as the plan. The difference, 

however, lies in the ways that the weights of the substituting edges are computed. In 

AA2, the weight of an edge substituting for an uncertain edge is the mean value of 

the weight distribution of the uncertain edge, thus no information on other uncertain 

edges is integrated in the computation. On the other hand, in AAl, the weight 

of an edge substituting for an uncertain edge is computed with the following kinds 

of information being taken into account: the goal vertex; the weight distribution 

of the uncertain edge; the structure of the entire U-graph; and the information on 

the other uncertain edges. Although yet to be verified through real applications, the 

initial experimental results suggest that AAl exhibits good quality for U-graph based 

navigation. 

Finally, we would like to make a note on the (lack of) convergence property of the 

algorithm AAL The main component of AAl is AA, which is an iterative algorithm 

taking a set of non-linear equations as its input and computing an approximation of 

a "fix-point" of the equations. However, there is no guarantee that the outputs of AA 

can converge to a "fix-point" as iteration time increases. It is not known whether 

the equations have a fix-point. The quality of AAl is not guaranteed to improve 

monotonically as the the number of iterations increases. This is also reflected in 

the results in Table 11.3. The average cost ratios of AAl fluctuate as iteration time 

increases. 



CHAPTER 11. COMPUTATIONAL ISSUES 209 

Table 11.3: The average cost ratios of the on-line algorithms 

AA2 AAl/1 AAl/2 AAl/3 AAl/4 AAl/5 AAl/6 
class 1 1.060 1.044 1.042 1.042 1.041 1.032 1.042 
class 2 1.082 1.014 1.011 1.008 1.010 1.009 1.010 



Chapter 12 

Conclusions 

In this thesis, we took a uniform approach to computational issues of the problems 

with decision making with uncertainty. We proposed decision graphs as a simple 

intermediate representation, for the decision making problems, and developed some 

algorithms based on this representation. 

These algorithms can be readily applied to decision problems given in the form 

of decision trees, since decision graphs are a generalization of decision trees. It is 

also straightforward to apply these algorithms to decision problems given in the form 

of finite stage Markov decision processes, since a problem in such form can be rep­

resented as a decision graph. In order to make use of these algorithms for solving 

decision making problems in influence diagrams, we developed a stochastic dynamic 

programming formulation of the problem of influence diagram evaluation and pre­

sented a method to systematically transform a decision making problem in influence 

diagram representation into a decision graph representation. In effect, we obtained a 

two-phase method for influence diagram evaluation. In comparison with other algo­

rithms in the literature for influence diagram evaluation, our method has a few notable 

merits. First, it exploits asymmetry of decision problems in influence diagram evalua­

tion, which leads to exponential savings in computation for typical decision problems. 

210 



CHAPTER 12. CONCLUSIONS 211 

Second, by using heuristic search techniques, it provides an explicit mechanism for 

making use of heuristic information that may be available in a domain-specific form. 

Third, because it provides a clean interface between influence diagram evaluation and 

Bayesian net evaluation, various well-established algorithms for Bayesian net evalua­

tion can be used in influence diagram evaluation. Finally, by using decision graphs as 

an intermediate representation, the value of perfect information [53] can be computed 

more efficiently [110]. 

High-level navigation in uncertain environments can be viewed as a decision prob­

lem with uncertainty, but is given neither in the form of Markov decision processes, 

nor in the form of influence diagrams. We developed a decision theoretic formulation 

of the problem and showed how to represent such a problem in a decision graph. As 

a result, we can use the decision search algorithms for off-line path planning. 

Since the problem is of importance in its own right, we also developed an on­

line path planning algorithm with polynomial time complexity. Experimental results 

show that the on-line algorithm results in satisfactory navigation quality. 

12.1 Contribution Summary 

The contributions of this thesis are summarized as follows. 

• A number of algorithms for decision graph search. 

• A new method for influence diagram evaluation. 

• A decision theoretic formalization of the problem of U-graph based navigation, 

and a general approach to the computation of optimal plans for U-graph based 

navigation tasks. 



CHAPTER 12. CONCLUSIONS 212 

• A polynomial time heuristic on-line algorithm for U-graph based navigation. 

12.2 Future Research 

Future research can be carried out in several directions. For decision graph search, we 

would like to have a more thorough examination of the ( absolute and/ or comparative) 

performances of the decision graph search algorithms presented in Chapter 3. A 

theoretical examination, as has been taken for minimax tree search [38, 68], would be 

very interesting, but is likely to be challenging. An experimental examination may 

also be valuable for a better understanding on the performances of the algorithms. 

Another possible research direction is, as for other search problems [43], to investigate 

parallel algorithms for decision graph (tree) search. 

Our work on influence diagram evaluation can be extended in at least two aspects. 

First, our method can be generalized to handle irregular stepwise decomposable in­

fluence diagrams as well. To do so, we need to introduce a new kind of node to our 

decision graphs: sum nodes to capture parallel decision threads. Second, an influ­

ence diagram evaluation system using our method is yet to be built. With such a 

system, we can experimentally compare the performance of our method with other 

algorithms. This would also provide a platform for experimentally comparing various 

decision graph search algorithms. 

The analysis we performed in Section 7.5.1 on potential savings by exploiting 

asymmetry of decision problems is quite conservative. We expect that an average 

case based analysis would reveal greater potential of savings. 

Some interesting future work related to U-graph based navigation would be to 

apply the approach to a practical autonomous navigation system. By experimenting 

with such a practical system, we could realistically evaluate the value of taking un-



CHAPTER 12. CO NOL USIONS 213 

certainty into consideration at high level planning stages in general, and assess the 

practical value of U-graphs and U-graph based navigation theory in particular. 

Some theoretical questions about U-graph based navigation remain open. For 

example, can we find an interesting class of navigation problems for which optimal 

polynomial algorithms exist? Can we find a good bound on the cost ratio of AAl? 



Bibliography 

[1] R. C. Arkin. Motor schema based navigation for a mobile robot: An approach 
to programming by behavior. In IEEE International Conference on Robotics 
and Automation, pages 264-271, 1987. 

[2] R. C. Arkin. Navigational path planning for a vision based mobile robot. Robot­
ica, 7:43-48, 1989. 

[3] B. W. Ballard. The *-minimax search procedure for trees containing chance 
nodes. Artificial Intelligence, 21(3):327-350, 1983. 

[4] A. Bar-Noy and B. Schieber. The Canadian traveller problem. In Proc. 2nd 
Annul ACM-SIAM Symposium on Discrete Algorithms, pages 261-270, 1991. 

[5] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, 
New Jersey, 1957. 

[6] D. Bertsekas. Dynamic behavior of shortest path algorithms for communication 
networks. IEEE transaction on Automatic Control, AC-27(1), Feb. 1982. 

[7] R. Bhatt, D. Gaw, and A. Meystel. A real time guidance system for an au­
tonomous vehicle. In IEEE Conference on Robotics and Automation, pages 
1785-1791, 1987. 

[8] M. Boddy. Anytime problem solving using dynamic programming. In Proc. of 
AAAI-91, pages 360-365, Anaham, CA., USA, 1991. 

[9] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded 
practical reasoning. Computational Intelligence, 4( 4):349-255, 1988. 

[10] P. P. Chakrabarti, S. Ghose, and S. C. DeSarkar. Admisibility of AO* when 
heuristics overestimate. Artificial Intelligence, 34(1 ):97-113, 1987. 

[11] G. F. Cooper. A method for using belief networks as influence diagrams. In 
Proc. of the Fourth Conference on Uncertainty in Artificial Intelligence, pages 
55-63, Univ. of Minnesota, Minneapolis, USA, 1988. 

214 



BIBLIOGRAPHY 215 

(12] Z. Covaliu and R. M. Oliver. Formulation and solution of decision problems 
using decision diagrams. Technical report, University of California at Berkeley, 
April 1992. 

[13] J. 1. Crowley. Navigation for an intelligent mobile robot. IEEE Robotics and 
Automation, RA-1(1):31-41, 1985. 

(14] E. Davis. Representing and Acquiring Geographic Knowledge. London: Pitman 
Publishing, 1986. 

[15] T. Dean, K. Basye, R. Chekaluk, S. Hyun, M. Lejter, and M. Randazza. Coping 
with uncertainty in control system for navigation and exploration. In Proc. of 
AAAI-90, pages 1010-1015, 1990. 

[16] T. Dean, R. J. Firby, and D. Miller. Hierarchical planning involving deadlines, 
travel time and resources. Computational Intelligence, 4(4):381-398, 1988. 

(17] T. Dean, L. P. Kaebling, J. Kirman, and A. Nicholson. Deliberation scheduling 
for time-critical sequential decision making. In Proc. of the Ninth Conference 
on Uncertainty in Atificial Intelligence, pages 309-316, Washington, DC, 1993. 

[18] T. Dean, L. P. Kaebling, J. Kirman, and A. Nicholson. Planning with deadlines 
in stochastic domains. In Proc. of AAAI-93, pages 574-579, Washington, DC, 
1993. 

[19] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann, 
1992. 

[20] C. Derman. Finite State Markovian Decision Process. Academic Press New 
York and London, 1970. 

(21] E.W. Dijkstra. A note on two problems in connection with graphs. Numerische 
Math., 1:269-271, 1959. 

(22] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph 
construction. Technical Report RBCV-TR-88-23, Research in Biological and 
Computational Vision, University of Toronto, November 1988. 

[23] J. A. Feldman and R. F. Sproull. Decision theory and Artificial Intelligence II: 
The hungry monkey. Cognitive Science, l, 1977. 

(24] R. J. Firby. An investigation into reactive planning in complex domains. In 
Proc. of AAAI-87, pages 202-206, 1987. 



BIBLIOGRAPHY 216 

[25] P. C. Fishburn. The Foundations of Expected Utility. Dordrecht, Holland: 
Reidel, 1982. 

[26] R. M. Fung and R. D. Shachter. Contingent influence diagrams, 1990. 

[27] M. P. Geogeff and A. L. Lansky. Reactive reasoning and planning: an experi­
ment with a mobile robot. In Proc. of AAAl-87, pages 677-682, 1987. 

[28) M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning 
system. In Proc. of JJCAl-89, pages 972-978, Detroit, USA, 1989. 

[29] P. Haddawy and S. Hanks. Representations for decision-theoretic planning: 
Utility functions for deadline goal. In B. Nebel, C. Rich, and W. Swartout, 
editors, Proc. of the Fourth International Conference on Knowledge Represen­
tation and Reasoning, pages 71-82, Cambridge, Mass., USA, Oct. 1992. Morgan 
Kaufmann. 

[30) L. R. Harris. The heuristic search under conditions of error. Artificial Intelli­
gence, 5(3):217-234, 1974. 

[31) E. J. Horvitz, J. S. Breese, and M. Henrion. Decision theory in expert systems 
and Artificial Intelligence. International Journal of Approximate Reasoning, 
2:247-302, 1988. 

[32] E. J. Hovitz. Reasoning about beliefs and actions under computational resource 
constraints. In Uncertainty in Artificial Intelligence, Volume 3. Armsterdam: 
North Holland, 1988. 

[33] R. A. Howard. Dynamic Programming and Markov Processes. Technology Press, 
Cambridge, Massachusetts, and .Wiley New York, 1960. 

[34] R. A. Howard. The used car buyer problem. In R. A. Howard and J.E. Mathe­
son, editors, The Principles and Applications of Decision Analysis, Volume II, 
pages 690-718. Strategic Decision Group, Mento Park, CA., 1984. 

[35] R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and 
J. E. Matheson, editors, The Principles and Applications of Decision Analysis, 
Volume II, pages 719-762. Strategic Decision Group, Mento Park, CA., 1984. 

[36] F. V. Jensen, K. G. Olesen, and K. Anderson. An algebra of Bayesian belief 
universes for knowledge based systems. Networks, 20:637-659, 1990. 

[37) L. Kleinrock. Queueing Systems. John Wiley and Sons, 1976. 



BIBLIOGRAPHY 217 

[38] D. E. Knuth and R. W. Moore. An analysis of alpha beta pruning. Artificial 
Intelligence, 6( 4) :293-326, 1975. 

[39] S. Koenig. Optimal probabilistic and decision theoretic planning using markov 
decision theory. Technical Report UCB-CSD-92-685, Computer Science Divi­
sion (EECS), University of California, Berkeley, 1992. 

[40] R. E. Korf. Depth first iterative deepening: An optimal admissible tree search. 
Artificial Intelligence, 27(1):97- 109, 1985. 

[41] B. J. Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129-153, 1978. 

[42] B. J. Kuipers and Tod S. Levitt. Navigation and mapping in large-scale space. 
AI Magzine, 9(2):25-43, 1988. 

[43] V. Kumar, P.S. Gopalakrishnan, and L. N. Kanal (Eds). Parallel Algorithms 
for Machine Intelligence and Vision. Springer-Verlag, 1990. 

[44] V. Kumar and L. Kanal. The cdp: A unifying formulation for heuristic search, 
dynamic programming, and branch-and-bound. In L. Kanal and V. Kumar, 
editors, Search in Artificial Intelligence, pages 1-27. Springer-Verlag, 1988. 

[45] V. Kumar, D. S. Nau, and L. Kanal. A general branch-and-bound formulation 
for AND/OR graph and game tree search. In L. Kanal and V. Kumar, editors, 
Search in Artificial Intelligence, pages 91-130. Springer-Verlag, 1988. 

[46] C. P. Langlotz and E. H. Shortliffe. Logical and decision-theoretic methods for 
planning under uncertainty. AI Magazine, lO(Spring):39-47, 1989. 

[47] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities 
on graphical structures and their application to expert systems. J. R. Statist. 
Soc. Ser. B, 50:157-224, 1988. 

[48] T. S. Levitt and D. T. Lawton. Qualitative navigation for mobile robots. Arti­
ficial Intelligence, 44(3):305-360, 1990. 

[49] T. A. Linden and J. Glicksman. Contingency planning for an autonomous land 
vehicle. In Proc. IJCAI-87, pages 1047-1054, Milan, Italy, 1987. 

[50] A. Mahanti and A. Bagchi. AND/OR graphs heuristic search methods. J. 
ACM, 32(1):28-51, 1985. 

[51] M. S. Mannasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms 
for on- line problems. In the 20th ACM Symp. on Theory of Computing, pages 
322-333, 1988. 



BIBLIOGRAPHY 218 

[52] A. Martelli and U. Montanari. Additive and/or graphs. In Proc. of IJCAI-13, 
pages 1-7, Stanford, CA., USA, 1973. 

[53] J. E. Matheson. Using influence diagrams to value information and control. 
In R. M. Oliver and J. Q. Smith, editors, Influence Diagrams, Belief Nets and 
Decision Analysis, pages 25-63. John Wiley and Sons, 1990. 

[54] J. M. McQuillan. The new routing algorithm for the arpanet. IEEE Transac­
tions on Communications, COM-28:711-719, May 1980. 

[55] A. Meystel. Planning in a hierarchical nested autonomous control system. In 
SPIE Mobile Robots, pages 42-76, 1986. 

[56] A. C. Miller, M. M. Merkhofer, R. A. Howard, J.E. Matheson, and T. T. Rice. 
Development of automated aids for decision analysis. Technical report, Stanford 
Research Institute, 1976. 

[57] D. P. Miller and M. G. Slack. Global symbolic maps from local navigation. In 
Proc. of AAAI-91, pages 750-755, 1991. 

[58] J. S. B. Mitchell, D. W. Payton, and D. M. Keisey. Planning and reasoning 
for autonomous vehicle control. International Journal of Intelligent Systems, 
2:129-198, 1987. 

[59] B. G. Mobasseri. Path planning under uncertainty: From a decision analytic 
perspective. In IEEE International Symposium on Intelligent Control, pages 
556-560, 1989. 

[60] B. G. Mobasseri. Decision analytic approach to weighted region problem. In 
SPIE Mobile Robots, V, pages 438-445, 1990. 

[61] P. Ndilikilikesha. Potential influence diagrams. Technical report, Business 
School, University of Kansas, 1991. Working paper No. 235. 

[62] Nils J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag Berlin 
Heidelberg New York, 1982. 

[63] J. J. Nitao and A. M. Rarodi. An intelligent pilot for an autonomous vehicle 
system. In IEEE International Conference on Robot cs and Automation, pages 
176-183, 1985. 

[64] S. M. Olmsted. On representing and Solving Decision Problems. PhD thesis, 
Engineering Economics Department, Stanford University, 1983. 



BIBLIOGRAPHY 219 

[65) C. H. Papadimitriou. Games against nature. Journal of Computer and System 
Science, 31(2), October 1985. 

[66] C.H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. In 
Proc. the Sixteenth ICALP, Lecture Note in Comp. Sci. No. 372, pages 610-620. 
Spring-Verlag, July 1989. 

[67] B. G. Patrick. Binary iterative deepening A*: An admissible generalization of 
IDA* search. In Proc. of Ninth Canadian Conference on Artificial Intelligence, 
pages 54-59, Vancouver, Canada, 1992. 

[68] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. 
Addison-Wesley Publishing Company, 1984. 

[69] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference. Morgan Kaufmann, Los Altos, CA, 1988. 

[70] L. D. Phillips. Discussion of 'From Influence to Relevance to Knowledge by 
R. A. Howard'. In R. M. Oliver and J. Q. Smith, editors, Influence Diagrams, 
Belief Nets and Decision Analysis, page 22. John Wiley and Sons, 1990. 

[71] G. H. Polychronopoulos. Stochastic and Dynammic Shortest Distance Problems. 
PhD thesis, MIT, Operations Research Center, Technical Report 199, May 1992. 
Technical Report 199. 

[72) D. Poole. Probabilistic Horn Abduction and Bayesian networks. Artificial 
Intelligence, 64(1):81-129, 1993. 

[73] G. Provan and D Poole. The utility of consistency-based diagnosis. In Proc. of 
the Third International Conference on Knowledge Representation and Reason­
ing, pages 461-472, 1991. 

[74] M. L. Puterman. Markov decision processes. In D. P. Heyman and M. J. Sobel, 
editors, Handbooks in Operations Research and Management Science, Volume 
2. Elsevier Science Publishers B. V. (North-Holland), 1990. 

[75] R. Qi. A new method for network routing: a preliminary report. In the Proc. of 
Pacific Rim Conference on Communications1 and Computers and Signal Pro­
cessing, 1993. 

[76] R. Qi and D. Poole. High level path planning with uncertainty. In B. D. 
D'Ambrosio, P. Smet, and P. P. Bonissone, editors, Proc. of the Seventh Con­
ference on Uncertainty in AI, pages 287-294, UCLA, Los Angeles, USA, 1991. 
Morgan Kaufmann. 



BIBLIOGRAPHY 220 

[77] R. Qi and D. Poole. A framework for high level path planning with uncertainty. 
In Proc. of the Second Pacific Rim International Conference on Artificial In­
telligence, pages 287-293, Seoul, Korea, 1992. 

[78] R. Qi and D. Poole. Two algorithms for decision tree search. In Proc. of the 
Second Pacific Rim International Conference on Artificial Intelligence, pages 
121-127, Seoul, Korea, 1992. 

[79] H. Raiffa. Decision Analysis. Addison-Wesley Publishing Company, 1968. 

[80] S. M. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, 
1983. 

[81] S. Russell. Fine-grained decision-theoretic search control. In Proc. Sixth Con­
ference on Uncertainty in Artificial Intelligence, 1990. 

[82] S. Russell and E. Wefald. Principles of metareasoning. In R. J. Brachman, H. J. 
Levesque, and R. Reiter, editors, Proc. of the First International Conference on 
Knowledge Representation and Reasoning, pages 400-411, Cambridge, Mass., 
USA, 1989. 

[83] L. J. Savage. The Foundations of Statistics. Dover, 1954. 

[84] Marcel J. Schoppers. Representation and automatic synthesis of reaction plans. 
Technical Report UIUCDCS-R-89-1546, Department of Computer Science, 
University of Illinois at Urbana-Champaign, 1989. 

[85] R. D. Shachter. Evaluating influence diagrams. Operations Research, 34(6):871-
882, 1986. 

[86] R. D. Shachter. An ordered examination of influence diagrams. Networks, 
20:535-563, 1990. 

[87] R. D. Shachter, B. D'Ambrosio, and B. A. Del Favero. Symbolic probabilistic 
inference in belief networks. In Proc. of AAAI-90, pages 126-131, 1990. 

[88] R. D. Shachter and M. A. Peot. Decision making using probabilistic infer­
ence methods. In Proc. of the Eighth Conference on Uncertainty in Artificial 
Intelligence, pages 276-283, San Jose, CA., USA, 1992. 

[89] S. Shafer and W. Whittaker. Development of an integrated mobile robot sys­
tem at Carnegie Mellon University. Technical Report CNU-RI-TR-90-12, The 
Robotics Institute, Carnegie Mellon University, January 1990. 



BIBLIOGRAPHY 221 

[90] P. P. Shenoy. Valuation-based systems for Bayesian decision analysis. Technical 
Report working paper No. 220, School of Business, University of Kansas, April 
1990. 

[91] P. P. Shenoy. A fusion algorithm for solving Bayesian decision problems. In 
B. D. D'Ambrosio, P. Smet, and P. P. Bonissone, editors, Proc. of the Seventh 
Conference on Uncertainty in Artificial Intelligence, pages 361-369, UCLA, Los 
Angeles, USA, 1991. Morgan Kaufmann. 

[92] P. P. Shenoy. Valuation network representation and solution of asymmetric 
decision problems. Technical Report working paper No. 246, School of Business, 
University of Kansas, April 1993. 

[93] D. J. Slate and L. R. Atkin. CHESS 4.5 - The Northwestern University 
University Chess Program. Springer-Verlag, New York, 1977. 

[94] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging 
rules. CACM, 28: 202-208, 1985. 

[95] J. E. Smith, S. Holtzman, and J. E. Matheson. Structuring conditional rela­
tionships in influence diagrams. Operations Research, 41(2):280-297, 1993. 

[96] J. Q. Smith. Decision analysis : a Bayesian approach. London ; New York : 
Chapman and Hall, 1988. 

[97] W. Stallings. Data and Computer Communications. Macmillan Publishing 
Company New York and Collier Macmillan Publishers London, 1985. 

[98] Y. Sun and D. S. Weld. Beyond simple observation: Planning to diagnose. In 
Proc. of the 3rd International Workshop on Principles of Diagnosis, 1992. 

[99] Y. Sun and D. S. Weld. A framework for model based repair. In Proc. of 
AAAI-93, pages 182-187, 1993. 

[100] A. S. Tanenbaum. Computer networks. Englewood Cliffs, N.J. : Prentice-Hall, 
1989. 

[101] J. A. Tatman and R. D. Shachter. Dynamic programming and influence dia­
grams. IEEE Transactions on Systems, Man, and Cybernetics, 20(2):365-379, 
1990. 

[102] J. von Neumann and 0. Morgenstern. Theory and Games and Economic Be­
havior. Princeton University Press, 1947. 



BIBLIOGRAPHY 222 

[103) Z. Wang and J. Crowcroft. Analysis of shortest path routing algorithms in 
a dynammic network environmrnt. Computer Communication Review, 22(2), 
1992. 

[104] M. P. Wellman. Formulation of Tradeoffs in Planning Under Uncertainty. Pit­
man and Morgan Kaufman, 1990. 

[105) P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading MA, 1984. 

[106] L. Zhang. A Computational Theory of Decision Networks. PhD thesis, Depart­
ment of Computer Science, University of British Columbia, 1993. 

[107) L. Zhang and D. Poole. Sidestepping the triangulation problem. In Proc. of 
the Eighth Conference on Uncertainty in Artificial Intelligence, pages 360-367, 
Stanford University, Standford, USA, 1992. 

[108] L. Zhang and D. Poole. Stepwise decomposable influence diagrams. In B. Nebel, 
C. Rich, and W. Swartout, editors, Proc. of the Fourth International Confer­
ence on Knowledge Representation and Reasoning, pages 141-152, Cambridge, 
Mass., USA, Oct. 1992. Morgan Kaufmann. 

[109) L. Zhang, R. Qi, and D. Poole. A computational theory of decision networks. 
accepted by International Journal of Approximate Reasoning, also available as 
a technical report 93-6, Department of Computer Science, UBC, 1993. 

[110) L. Zhang, R. Qi, and D. Poole. Incremental computation of the value of perfect 
information in stepwise-decomposable influence diagrams. In Proc. of the Ninth 
Conference on Uncertainty in Artificial Intelligence, pages 400-410, Washing­
ton, DC, 1993. 

(111) L. Zhang, R. Qi, and D. Poole. Minimizing decision tables in stepwise­
decomposable influence diagrams. In Proc. of the Fourth International Work­
shop on Artificial Intelligence and Statistics, Ft. Lauderdale, Florida, USA, Jan. 
1993. 

t' 



Appendix A 

Functions for U-graph Generation 

In this appendix, the Lisp functions used in our experiments for generating random 
graphs are included for reference. The functions random-grid and random-parallel-graph 
are for generating random grids and random parallel graphs respectively. To generate 
a random graph, we first generate a list of connections and then generate appropriate 
weights for those connections by calling function weight-generation. 

(defun random-grid (d1 d2 p1 p2 r1 r2) 
(weight-generation (random-grid-connections d1 d2 p1 p2) r1 r2)) 

(defun random-parallel-graph (n p1 r1 r2) 
(weight-generation (parallel-connections n p1) r1 r2)) 

(defun random-from-uniform-distribution (ab) 
(+ (min ab) (* (abs (-ab)) (random 1.0)))) 

(defun random-switch-prob() 
(/ (round(* 100 (random-from-uniform-distribution 0.01 0.99))) 100.0)) 

(defun random-weight (r1 r2) 
(let ((a1 (random-from-uniform-distribution 1 r1)) 

(a2 (random-from-uniform-distribution 1 r2))) 
(round (random-from-uniform-distribution a1 (* a1 a2))))) 

(defun weight-generation(connection-list r1 r2) 
(let* ((switch-list (cadr connection-list)) 

(edge-list (caddr connection-list)) 
(edge-inform nil) 

223 



A PPENDIX A: FUN CTIONS FOR U-GRAPH GENERATION 224 

)) 

) 

(dolist (e edge-list) 
(let ((weight (random-weight r1 r2))) 

(push '(,(care) ,(cadre) (,weight) (1.0)) edge-inform) 
)) 

(dolist (e switch-list) 
(let ((weight! (random-weight r1 r2)) 

(weight2 (random-weight r1 r2)) 
(p (random-switch-prob)) 

) 

(push '(,(care) ,(cadre) (,weight! ,weight2) (,p ,(- 1 p))) 
edge-inform))) 

(cons (car connection-list) edge-inform) 

(defun random-grid-connections (di d2 pi p2) 
(let ((switch-list nil) 

(edge-list nil) 
(ran-test! 0) 
(ran-test2 0) 
) 

(dotimes (j di) ; ; generating "vertical connections" 
(dotimes (i (- d2 1)) 

(setf ran-test! (random 1.0)) 
(setf ran-test2 (random 1.0)) 
(cond ((> ran-test! pi) nil) 

((> ran-test2 p2) 
(push'(,(+(* i di) j) ,(+ (* (+ i 1) di) j)) edge-list)) 

(T (push'(,(+(* i di) j) ,(+ (* (+ i 1) d1) j)) switch-list)) 
))) 

(dotimes (i d2) ; ; generating "horizontal connections" 
(dotimes (j (- di 1)) 

(setf ran-test! (random 1.0)) 
(setf ran-test2 (random 1.0)) 
(cond ((> ran-test! pi) nil) 

((> ran-test2 p2) 
(push'(,(+(* i di) j) ,(+ (* i di) j 1)) edge-list)) 

(T (push'(,(+(* i di) j) ,(+ (* i di) j 1)) switch-list)) 
))) 

(list(* di d2) switch-list edge-list) 



APPENDIX A: FUNCTIONS FOR U- GRAPH GENERATION 

)) 

(defun parallel-connections (n pi) 
(let* ((edge-list nil) 

(switch-list nil) 
(m (+ (* 6 n) 1)) 
) 

(dotimes (in) 
(push (list O (+ 1 i)) edge-list) 
(push (list (+ 1 i n) (+ i 1 (* 2 n))) edge-list) 
(push (list (+ 1 i) (+ i 1 n)) switch-list) 

(push (list (+ i 1 (* 5 n)) m) edge-list) 

225 

(push (list (+ 1 i (* 3 n)) (+ i 1 (* 4 n))) edge-list) 
(push (list (+ 1 1 (* 4 n)) (+ i 1 (* 5 n))) switch-list) 
(dotimes (j n) 

(cond ((>= pi (random 1.0)) 
(push (list(+ i 1 (* 2 n)) (+ 1 j (* 3 n)) edge-list))) 

(T nil) 
))) 

(list(+ m 1) switch-list edge-list) 
)) 




