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Abstract

Robots are generally composed of electromechanical parts with multiple sensors and ac-

tuators. The overall behavior of a robot emerges from coordination among its various parts

and interaction with its environment. Developing intelligent, reliable, robust and safe robots,

or real-time embedded systems, has become a focus of interest in recent years. In this thesis,

we establish a foundation for modeling, specifying and verifying discrete/continuous hybrid

systems and take an integrated approach to the design and analysis of robotic systems and

behaviors.

A robotic system in general is a hybrid dynamic system, consisting of continuous, discrete

and event-driven components. We develop a semantic model for dynamic systems, that we

call Constraint Nets (CN). CN introduces an abstraction and a unitary framework to model

discrete/continuous hybrid systems. CN provides aggregation operators to model a complex

system hierarchically. CN supports multiple levels of abstraction, based on abstract algebra

and topology, to model and analyze a system at di�erent levels of detail. CN, because of its

rigorous foundation, can be used to de�ne programming semantics of real-time languages for

control systems.

While modeling focuses on the underlying structure of a system | the organization and

coordination of its components | requirements speci�cation imposes global constraints on a

system's behavior, and behavior veri�cation ensures the correctness of the behavior with re-

spect to its requirements speci�cation. We develop a timed linear temporal logic and timed

8-automata to specify timed as well as sequential behaviors. We develop a formal veri�ca-

tion method for timed 8-automata speci�cation, by combining a generalized model checking

technique for automata with a generalized stability analysis method for dynamic systems.

A good design methodology can simplify the veri�cation of a robotic system. We develop

a systematic approach to control synthesis from requirements speci�cation, by exploring a

relation between constraint satisfaction and dynamic systems using constraint methods. With

this approach, control synthesis and behavior veri�cation are coupled through requirements

speci�cation.

To model, synthesize, simulate, and understand various robotic systems we have studied

in this research, we develop a visual programming and simulation environment that we call

ALERT: A Laboratory for Embedded Real-Time systems.
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The heaven attained Oneness and became clear.

The earth attained Oneness and became settled.

The spirit attained Oneness and became numinous.

Valleys attained Oneness and became reproductive.

All things attained Oneness and became alive.

| Tao Teh Ching, Lao Tzu

Time attains Oneness and becomes linear.

Domains attain Oneness and become universal.

Components attain Oneness and become functional.

Systems attain Oneness and become alive.

Design and analysis attain Oneness and become productive.

| Zhang Ying



Chapter 1

Motivation and Introduction

In applications such as nuclear and chemical plants, forest industries, space and undersea ex-

ploration, there is a demand for intelligent, reliable, robust and safe robots. Building control

systems for autonomous robots working in complex environments is an important challenge for

research in computer science, electrical and mechanical engineering.

Robots are generally composed of electromechanical parts with multiple sensors and ac-

tuators. Robots should be reactive as well as purposive systems, closely coupled with their

environments; they must deal with inconsistent, incomplete and delayed information from var-

ious sources. Robots are usually complex, hierarchically organized and physically distributed;

each component functions according to its own dynamics. The overall behavior of a robot

emerges from coordination among its various parts and interaction with its environment. We

call the coupling of a robot and its environment a robotic system, and the dynamic relationship

of a robot and its environment the robotic behavior.

A robot controller (or control system) is a subsystem of a robot, designed to regulate its

behavior to meet certain requirements. In general, a robot controller is an integrated soft-

ware/hardware system implemented on various digital/analog devices. Designing control sys-

tems for robots that meet certain requirements has become an active topic studied in many

areas, such as reactive systems, intelligent systems, real-time embedded systems and integrated

hybrid systems. The issues raised in this interdisciplinary research range from programming

languages and software/hardware engineering to control theory and dynamic systems.

In this thesis, we establish a uni�ed foundation for modeling, specifying and verifying dis-

crete/continuous hybrid systems and take an integrated approach to the design and analysis of

robotic systems and behaviors.

2
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1.1 The Problems

A robotic system is a dynamic system. The study of dynamic systems is the study of dynamics

and the study of systems. The study of dynamics is concerned with how things change over

time. The study of systems is concerned with how a system's overall behavior is generated

through interaction among its components.

From the systemic point of view, a robotic system is a coupling of a robot to its environment,

while the robot is a coupling of a controller to its plant (Figure 1.1). The roles of these three

U YX

PLANT

CONTROLLER

ENVIRONMENT

Figure 1.1: A robotic system

subsystems can be characterized as follows:

� Plant: a plant is a set of entities that must be controlled to achieve certain requirements.

For example, a robot arm with multiple joints, a car with throttle and steering, an airplane

or a nuclear power plant can each be considered as the plant of some robotic system.

� Controller: a controller is a set of sensors and actuators, which, together with soft-

ware/hardware computational systems, senses the observable states of the plant (X) and

the environment (Y ), and computes desired control inputs (U) to actuate the plant. For

example, an analog circuit, a program in a digital computer, various sensors and actuators

might be parts of the controller of some robotic system.

� Environment: an environment is a set of entities beyond the (direct) control of the con-

troller, with which the plant may interact. For example, obstacles to be avoided, objects

to be reached, and rough terrain to be traversed might from part of the environment of

some robotic system.
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From the dynamics point of view, the relationship of a robot and its environment changes over

time. In order to develop a robotic system, analyze its behavior and understand its underlying

physics, we need a mathematical model for characterizing the behaviors of its components and

deriving the behavior of the overall system.

Let us introduce an example that will be used throughout this thesis. In our Laboratory for

Computational Intelligence, a testbed has been installed for radio-controlled cars playing soccer

[SM94]. Each \soccer player" has a car-like mobile base. It can move forward and backward

with a throttle setting, and can make turns by steering its two front wheels. However, it cannot

move sideways and its turns are limited by mechanical stops in the steering gear.

Figure 1.2 illustrates the con�guration of a car. Let v be the velocity of the car and � be

the current steering angle of the front wheels; v and �, for now, can be considered as control

inputs to the car. The dynamics of the car can be simply modeled by the following di�erential

equations [Lat91]:

_x = v cos(�); _y = v sin(�); _� = v=R (1:1)

where (x; y) is the position of the tail of the car, � is the heading direction and R = L= tan(�)

is the turning radius given the length of the car L. The controller of such a car is equipped

θ

y

x

L

R α

α

(x,y)

Figure 1.2: The con�guration of a car

with both digital and analog devices [SM94].

Although di�erential equations have been used to model continuous dynamic systems, they

are not su�cient to model discrete and event-driven systems. Although the continuous and

discrete components of a system can be modeled and analyzed separately, it is essential to use

a unitary model for discrete/continuous hybrid systems, in order to derive the behavior of the

overall system.
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Control systems are designed to meet certain requirements. Typical requirements include

safety, reachability and persistence. Safety declares that a system should never be in a certain

situation. Reachability declares that a system should reach a certain goal eventually. Persistence

declares that a system should approach a certain goal in�nitely often. A formal language for

requirements speci�cation is essential for characterizing desired properties of a system and a

formal method for behavior veri�cation is essential for ensuring the correctness of the behavior

of the system with respect to some requirements speci�cation.

Yet another challenging task in the design of a robotic system is control synthesis, i.e., given

the dynamics of the plant and the environment, produce a controller so that the behavior of

the overall system meets certain requirements.

As a whole, we propose four problems involved in the design and analysis of robotic systems

and behaviors:

� How to model a robotic system?

� How to specify desired properties?

� How to synthesize a control system according to its requirements speci�cation?

� How to guarantee the robot will do the right thing?

Figure 1.3 presents an overall picture of the problems and our corresponding solutions that we

will develope in this thesis.

1.2 The Proposed Solutions

We claim in this thesis that a uni�ed foundation for discrete/continuous hybrid dynamic systems

can be established and an integrated approach to the design and analysis of robotic systems

and behaviors should be taken.

First, we develop a semantic model for dynamic systems, that we call Constraint Nets

(CN). CN introduces an abstraction and a unitary framework to model discrete/continuous

hybrid systems. CN provides aggregation operators to model a complex system hierarchically;

therefore, the dynamics of the environment as well as the dynamics of the robot can be modeled

individually and then integrated. CN supports multiple levels of abstraction, based on abstract

algebra and topology, to model and analyze a system at di�erent levels of detail. CN, because

of its rigorous foundation, can be used to de�ne programming semantics of real-time languages

for control systems.
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What Is The Right Thing For The Robot To Do?

Will The Robot Do The Right Thing?

What Is The Possible Realization Of The Robot?

TLTL & Timed       Automata

The Verification Rules

Constraint Methods

The Constraint Net Model

 Robotic Systems

How To Make The Robot  Do The Right Thing?

 Requirements Specification

Behavior Verification

Control Synthesis

Figure 1.3: The problems and our solutions

Second, we develop a timed linear temporal logic (TLTL) and timed 8-automata as spec-
i�cation languages. TLTL is a linear temporal logic developed on abstract time and domain

structures. Timed 8-automata are essentially �nite automata that accept timed traces; yet they
are powerful enough to specify properties of sequential and timed behaviors of hybrid systems,

such as safety, reachability, persistence and real-time response. We develop a formal veri�ca-

tion method for timed 8-automata speci�cation, by combining a generalized model checking

technique for automata with a generalized stability analysis method for dynamic systems. This

veri�cation method can be semi-automated for discrete time systems and further automated

for �nite domain systems.

Third, we develop a systematic approach to control synthesis from requirements speci�ca-

tion, by exploring a relation between constraint satisfaction and dynamic systems using con-

straint methods. With this approach, control synthesis and behavior veri�cation are coupled

through requirements speci�cation. In particular, requirements speci�cation imposes global

constraints over a system's behavior and controllers can be synthesized as embedded constraint

solvers that solve constraints over time. For complex control systems, we advocate a two-

dimensional hierarchical structure. A system with such hierarchical structure will simplify

design and analysis signi�cantly.
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1.3 Semantic Model and Behavior Analysis

In the past decades, models for continuous, discrete and event-driven dynamic systems have

been developed and matured. Models for continuous and discrete dynamic systems include

di�erential and di�erence equations, respectively [Lue79, San90]. Models for event-driven dy-

namic systems include Mealy-Moore Machines [Mea55, Moo56], Petri Nets [Pet81], Calculus

for Communicating Systems (CCS) [MM79] and Communicating Sequential Processes (CSP)

[Hoa85]. However, a robotic system in general is a continuous/discrete hybrid dynamic system.

First, the plant and the environment of a robotic system are normally modeled in continuous

dynamics. Second, most advanced robots today are controlled by distributed and asynchronous

processes in digital computer networks, as well as by analog circuits. In order to develop a

system whose behavior can be analyzed and understood, a model for hybrid dynamic systems

is essential.

In the last two years, hybrid systems have become a focus of interest of a wide community

for two reasons. One is that analog computation once again is gaining attention because of the

neural net model and analog VLSI technology. Another is that the use of computers to control

and monitor continuous dynamic systems shows increasing importance.

Our approach to developing a model for hybrid systems is motivated by the following ar-

guments. First, hybrid systems consist of interacting discrete and continuous components.

Instead of �xing a model with particular time and domain structures, a model for hybrid sys-

tems should be developed on both abstract time structures and abstract data types. Second,

hybrid systems are complex systems with multiple components. A model for hybrid systems

should support hierarchy and modularity. Third, hybrid systems are generalizations of basic

discrete or continuous systems. A model for hybrid systems should be at least as powerful

as existing computational models. In short, a model for hybrid systems should be unitary,

modular, and powerful.

In this thesis, we start with a general de�nition of time. Time is a linearly ordered set. In

addition, a metric distance is associated with any two time points and a measure is associated

with some intervals of time points. Such a time structure abstracts the notion of event-based as

well as discrete and continuous time. We then examine domain structures in abstract algebra

and topology so that discrete and continuous domains can be studied in a unitary framework.

Given a time structure and a domain structure, we de�ne two basic types of element in dynamic

systems: traces that are functions from time to domains, and transductions that are mappings

from traces to traces with the causal restriction, viz., the output value at any time is determined
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only by its input values up to that time. For example, a �nite state automaton with an initial

state de�nes a transduction from input traces to state traces, and temporal integration is a

typical transduction in continuous dynamics.

We then develop the Constraint Net model on an abstract dynamics structure composed of

a multi-sorted set of trace spaces and a set of basic transductions: transliterations (memory-less

combinational processes), transport delays and unit delays (sequential processes), and event-

driven transductions. Event-driven transductions play an important role in this model, acting as

ties between continuous and discrete time components, or as synchronizers among asynchronous

components.

Syntactically, a constraint net is a graph with two types of node: locations and trans-

ductions, and with a set of connections between locations and transductions. Locations are

depicted by circles, transductions by boxes and connections by arcs. A location is an input i�

it is not connected to the output of any transduction. A constraint net is open if there is an

input location; it is otherwise closed.

Semantically, a constraint net represents a set of equations, with locations as variables and

transductions as functions. The semantics of the constraint net, with each location denoting a

trace, is the least solution of the set of equations.

A complex system is generally composed of multiple components. We de�ne a module as

a constraint net with a set of locations as its interface. A constraint net can be composed

hierarchically using modular and aggregation operators on modules. The semantics of a system

can be obtained hierarchically from the semantics of its subsystems and their connections.

For example, Equation 1.1 is denoted by an open constraint net, as shown in Figure 1.4 in

which sin, cos, tan and � are transliterations, and R is a temporal integrator. A module can

be de�ned with locations v; �; x; y; � as its interface.

In general, we can model a control system as a module that can be further decomposed into a

hierarchy of interactive modules. The higher levels are composed of event-driven transductions

and the lower levels are analog control components. Furthermore, the environment of the robot

can be modeled as a module as well. A robotic system (Figure 1.1) can be modeled as an

integration of a plant, a controller and an environment. Formally, the semantics (or behavior)

of the system is the solution of the following equations:

X = PLANT (U; Y ); U = CONTROLLER(X;Y ); Y = ENV IRONMENT (X):

As we can see here, a robot, composed of a plant and a controller, is an open system, and a

robotic system, composed of a robot and its environment, is a closed system.
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Figure 1.4: The constraint net of Equation 1.1

We �nally study the issue of behavior analysis for robotic systems. We de�ne the concepts

of abstraction and re�nement for time and domains based on homomorphism and quotient

algebra, and derive equivalence relations on dynamic systems.

A semantic model for hybrid dynamic systems de�nes a formal semantics for real-time

programming that may involve hardware/software co-design and digital/analog hybrid com-

putation. A formal semantics, in turn, supports the formal analysis of real-time embedded

systems.

1.4 Requirements Speci�cation and Behavior Veri�cation

A semantic model for a robotic system can be considered an executable speci�cation that de-

�nes the underlying structure of the system, i.e., the organization and coordination of the

components. Even though a system can be modeled at di�erent levels of abstraction, each com-

ponent is local in terms of constraints on time and its input/output domains. A requirements

speci�cation, in contrast, imposes global constraints on a system's behavior.

Let us consider the car-like robot we introduced previously. We will design control systems

for such a robot to perform the following tasks:

1. Maze Traveler: traveling in a maze and trying to get out of the maze

The environment of this system is a maze that is composed of various static obstacles. A

requirements speci�cation for this robot is to get out of the maze.
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2. Ball Shooter: tracking a moving ball and carrying the ball to a target

The environment of this system is a moving ball, a target and a �eld with boundaries.

A requirements speci�cation for this robot is to eventually kick or carry the ball to the

target.

A requirements speci�cation declares what a system should achieve, while an executable

speci�cation shows how a system is implemented (at a certain level of abstraction). A formal

language for requirements speci�cation is essential for both formal veri�cation and systematic

synthesis. Since robotic behaviors are inherently temporal, it is natural to adopt temporal logic

as a language for requirements speci�cation.

We �rst develop a timed linear temporal logic (TLTL) as a speci�cation language, in which

\linear" stands for linear orders and \timed" indicates metric distances between time points.

Let modal operators 3 and 2 denote \eventually" and \always," respectively. One possible

control for the maze traveler is to make the robot move in a particular direction persistently

in order to escape a maze of �nite size. This property can be speci�ed in TLTL as 23ME

where ME is a predicate for moving east, or j�j < � and v > � for small � > 0 and � > 0;

23P is normally referred to as liveness or persistence. Kicking or carrying a ball to a target

eventually can be speci�ed as 32BT where BT is a predicate for the ball arriving at the target,

or distance(Ball; Target)< �; 32G is normally referred to as reachability or goal achievement.

In addition, operators can be augmented with metric time so that real-time properties can be

speci�ed. For instance, 2(E ! 3
�R) declares that any event (E) will be responded to (R)

within time � .

Even though TLTL can provide a formal speci�cation, there is no general procedure for

verifying the behavior of a system. An alternative to temporal logic for representing sequential

behaviors is automata. If we take the behavior of a system as a language, then a speci�cation

can be represented as an automaton, and the veri�cation checks the inclusion relation between

the behavior of the system and the language accepted by the automaton.

We then develop timed 8-automata, a generalization of (discrete) 8-automata [MP87], for

requirements speci�cation. 8-automata have been proposed for the speci�cation and veri�cation
of concurrent systems; they are essentially �nite automata that accept !-languages, i.e., sets

of sequences of in�nite length. We extend 8-automata to timed 8-automata to accept timed

discrete/continuous traces.

There are two reasons to adopt automata-type languages. First, automata provide graph-

ical representations, which are more illuminating, and, in some cases, simpler than their tex-
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tual counterparts. The corresponding timed 8-automata speci�cation of 23ME, 32BT and

2(E ! 3
�R) are shown in Figure 1.5 (a), (b) and (c), respectively, where nodes are automaton-

states and arcs are state transitions; 3 denotes a recurrent state, indicating a condition the

system should satisfy periodically, and 2 denotes a stable state, indicating a \�nal condition"

the system should satisfy.

ME BT

E

R E

ME

E
E

R

(a) (b) (c)

BT τ

Figure 1.5: Timed 8-automata speci�cation

Second, automata facilitate a formal veri�cation method| a set of sound and complete

veri�cation rules| based on a model checking technique and a stability analysis method. Given

a constraint net model of a discrete time system, the set of veri�cation rules can be used to

deduce a set of state formulas that can be checked using an automatic or interactive theorem

prover. If, in addition, the discrete time system is of a �nite number of states, the set of

veri�cation rules can be used to deduce an automatic veri�cation algorithm that has polynomial

time complexity in both the size of the speci�cation and the size of the system.

1.5 Control Synthesis and Robotic Architecture

The problem of behavior veri�cation in general is hard. However, a well-organized and struc-

tured system will simplify the problem of veri�cation. Therefore, robotic architecture plays an

important role in both design and analysis.

We �rst develop a general framework for the synthesis of control systems from require-

ments speci�cation in timed 8-automata. In this framework, constraint satisfaction is viewed

as a dynamic process approaching the solution set of the given constraints asymptotically. A

constraint solver is a constraint net whose semantics corresponds to a dynamic process of this

type. Constraint solvers can be systematically synthesized based on various constraint methods.

In particular, continuous time constraint solvers are based on gradient methods and discrete

time constraint solvers are based on relaxation algorithms in numerical computation. Control

synthesis and behavior veri�cation are coupled through requirements speci�cation. While re-
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quirements speci�cation imposes constraints over the behavior of a system, the controller is

designed as a set of embedded constraint solvers that, together with the dynamics of the plant

and the environment, solve the constraints over time.

A control system is a complex system. In this thesis, we advocate a modular and hierar-

chical robotic architecture. We study two types of hierarchy: composition hierarchy that is

the modular or compositional structure of a system, and interaction hierarchy that is the com-

munication or interaction structure of a system. Furthermore, we propose a two-dimensional

structure for the interaction hierarchy: abstraction hierarchy that reects the granularity of

time and domain structures, and arbitration hierarchy that reects constraint priorities.

As a whole, a control system is designed as a set of embedded constraint solvers distributed

over the two-dimensional interaction hierarchy. Constraint solvers at lower levels of the abstrac-

tion hierarchy are normally either continuous or discrete at fast and �xed sampling rates, while

constraint solvers at higher levels are either event-driven or with noticeable computational de-

lays. Constraint solvers at the same level of the abstraction hierarchy are coordinated through

various arbitrations, which form an arbitration hierarchy.

1.6 How This Thesis Fits In

This thesis provides a foundation for the design of robotic systems and the analysis of robotic

behaviors. Robotic systems are integrated hybrid systems and robots are intelligent real-time

systems. In this section, we illustrate how this thesis relates to these subjects.

1.6.1 Integrated hybrid systems

Integrated hybrid systems are systems consisting of a non-trivial mixture of discrete and contin-

uous components, such as a controller realized by a combination of digital and analog circuits,

a robot composed of a digital controller and a physical plant, or a robotic system consisting of

a computer-controlled robot coupled to a continuous environment. Integrated hybrid systems

are more general than traditional real-time systems; the former can be composed of continuous

subsystems in addition to discrete or event-controlled components. With the development of

computation, control and communication technologies, integrated hybrid systems will come to

everyday life, in such things as computer-controlled TVs, autonomous cars and smart buildings.

Integrated hybrid systems engineering is a combination of computer engineering and con-

trol engineering. The life cycle for computer engineering includes speci�cation, implementation

and veri�cation. The life cycle for control engineering includes modeling, design and analy-
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sis. In practice, integrated hybrid systems require novel design principles and development

environments for modeling, design and analysis, as well as speci�cation, implementation and

veri�cation. From a theoretical point of view, integrated hybrid models, languages, algorithms

and programs propose brand new approaches to computation and control.

Research and development in integrated hybrid systems have become very active for the

last two years. Typical commercial products for integrated modeling and simulation environ-

ments are Simulink [Incc] and SystemBuild [Incb]. Both Simulink and SystemBuild provide

graphical modeling environments, simulation and animation tools, for discrete/continuous hy-

brid systems, as well as linear systems analysis libraries. Both systems support modularity and

hierarchy with dataow-, net- or circuit-like representations. Both systems have their advan-

tages: Simulink is more exible and simpler, while SystemBuild has more built-in functions.

In addition, SystemBuild supports automatic code generation [Inca], which can greatly reduce

the cost and time for developing real-time embedded control systems.

Some research on languages of hybrid systems for modeling and simulation has also been

proposed: a typical example is SHSML: Standard Hybrid Systems Modeling Language [Tay92].

SHSML is based mostly upon the conceptual de�nition of a hybrid system that underlies hy-

brid DSTOOL [GN92] and on the modeling and simulation environment provided by SIMNON

[Elm77]. A system modeled by SHSML consists of continuous (continuous time and domain,

e.g., di�erential equations), discrete (discrete time and continuous domain, e.g., di�erence equa-

tions) and logic (discrete time and domain) components. SHSML can be considered as an

architecture de�nition language for software/hardware co-design.

Some theoretical work on hybrid models and topologies has been carried out recently. There

are two types of model: models for synchronous systems and models of hybrid automata.

SIGNAL [BL90] and LUSTRE [CPHP87] are based on the synchronous models derived from

the Dynamic Network Processes model [Kah74], with the augmentation of clocks. Synchronous

models can be considered as general models for discrete time and hybrid domain dynamic

systems. Phase transition systems [MMP91], event-driven hybrid systems [NK93a] and hybrid

automata [ACHH93] are automata-based models in which states are di�erential equations,

trajectories, or continuous activities. The theory of topological structures for hybrid domains

has been brought up [NK93a], so that continuity, stability and controllability of systems with

hybrid domains can be further studied.

Our work contributes to the research and development of integrated hybrid systems in the

following ways.
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First, Constraint Nets serve as a formal semantic model for hybrid dynamic systems; the

mathematical rigor underlies the foundation for both modeling and simulation. Just as with

formal semantics for programming languages, formal semantics for modeling, control and sim-

ulation will not only bring unambiguousness and precision to existing real-time programming

languages and simulation environments like Simulink and SystemBuild, but will also provide

insight into the design of new programming languages for hybrid systems.

Second, unlike other e�orts to combine discrete and continuous models, we begin by de�ning

concepts of dynamic systems on the abstraction that captures both discrete and continuous time

and domains. The Constraint Net model is a model of models, preserving the general structure

of dynamic systems. Constraint Nets can be used not only for system design with modeling,

control and simulation, but also for behavior analysis with re�nement and abstraction.

1.6.2 Intelligent real-time systems

Intelligent real-time systems are reactive as well as purposive systems, closely coupled with

unstructured/unpredictable environments, such as robots that should promptly make correct

decisions in various situations, and accurately perform complex tasks in changing environments.

Intelligent real-time systems have attracted researchers from both the Arti�cial Intelligence (AI)

and real-time control communities [Sch91]. In the past, AI and control have focused on solving

di�erent problems with di�erent interests and applications [DW91]. AI systems focus on high-

level activity like planning, reasoning, and inferencing with facts and rules in knowledge base,

while control systems involve sensing and acting in real time. Currently, there are two major

trends in the cross-fertilization of AI and control: one is to combine AI techniques (planning,

knowledge and belief representation, symbolic processing, temporal and qualitative reasoning,

inference rules, heuristic search, etc.) with control theory (linear and nonlinear control, adaptive

and fuzzy control, etc.), and the other is to experiment with reactive or situated systems. From

the AI point of view, the former is revisionary and the latter is revolutionary. The key di�erences

are the understanding of what is intelligence and the methodology of how to realize intelligence

in embedded real-time systems.

In cognitive science, intelligence is considered as the ability to plan, reason or apply knowl-

edge to manipulate one's environment. For robots, intelligence reects ways of acquiring, form-

ing, storing and maintaining knowledge as well as planning and reasoning about actions to

achieve desired goals. Much work has been done in AI on knowledge representation, planning

and reasoning. However, it has been shown that domain-independent representation, planning
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and reasoning are di�cult to �t in to a real-time framework. Many planning and reasoning

problems are computationally intractable [Cha87]. For both planning and reasoning, the more

powerful and general the knowledge and action representations are, the less feasible it is that

these computations can be realized. For example, universal planning [Sch87], generating plans

of mappings from situations to actions (reaction plans), and planning under uncertainty [Qi94],

producing plans with maximum expected utilities or minimum expected cost, are in general

harder than planning action sequences. For any real applications, some compromise between

the complexity of plan representation and the complexity of planning must be achieved. Two

typical strategies have been studied: one is to adopt reactive planning, and the other is to ap-

ply any-time algorithms. Reactive planning [GL87, RK89] produces a partial planning strategy

given current states, so that the plan representation is simple, but planning and execution are

tightly coupled to realize reactive and situated behaviors. Any-time algorithms [BD89, Bod91]

are algorithms producing results approaching the solution over time, so that a compromise can

be made between the accuracy of the results and the time for computation.

In behavior science, real-time interaction with one's environment is considered as the intrin-

sic characteristic of intelligence. Furthermore, such intelligence is not from deliberate decision,

but from distributed constraint satisfaction and cooperation among various components in the

system. This view of intelligence is shared by many researchers in AI and psychology (Brooks

[Bro91], Meas [Mae89], Agre and Chapman [AC87], Hewitt [Hew91], Minsky [Min86], Beer

[Bee90], Braitenberg [Bra84]). Brooks and his colleagues did very interesting work on building

arti�cial creatures [BCN88, Bro88, Con90]. Brooks [Bro86, BC86] proposed a robust, layered

control system for mobile robots, called the subsumption architecture. Unlike the traditional

decomposition of a mobile robot control system into functional modules, Brooks decomposed

a mobile robot control system into task-achieving behaviors. Maes [Mae89] suggested that ra-

tional action selection could be modeled as an emergent property of an activation/inhibition

dynamics among modules. Similarly, Hewitt [Hew91], Minsky [Min86] and researchers in Dis-

tributed AI [Huh87] argued that intelligence comes from the interaction between multiple com-

ponents and their environment. Agre and Chapman [AC88] claimed that pure planning and

reasoning are not suitable for dealing with inconsistent, uncertain and immediate situations;

rather, reaction and moment-to-moment improvisation play a central role in most activity.

From the point of view of an experimental psychologist, Braitenberg [Bra84] studied various

incrementally complex life-like systems. Beer [Bee90] performed a series of simulations of an

arti�cial insect with adaptive behavior.
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Our work contributes to the research and development of intelligent real-time systems in

the following ways.

First, by avoiding the controversial issues surrounding intelligence, we focus on formal meth-

ods for specifying properties of behaviors and on systematic approaches to synthesizing control

systems. Because there can be no rigorous de�nition of intelligent or stupid behaviors, we use

the concept of desired properties of behaviors. Furthermore, behavior equivalence and system

robustness are formalized and studied.

Second, instead of advocating one particular type of implementation (knowledge-based or

reaction-based) for intelligent real-time systems, we focus on general structures of complex

systems and principles for the organization of hybrid dynamic systems. Because Constraint

Nets provide a unitary model for components with diversity in both time and domain structures

(continuous, discrete or event-based time, and real, integer, logical, or symbolic variables), the

behavior of an overall system can be derived and analyzed.

1.7 Thesis Outline

This thesis consists of three major parts. Part I presents a mathematical structure of dynamics,

the syntax and semantics of the Constraint Net model, and the method of behavior analysis

based on algebra and topology. Part II develops two languages, TLTL and timed 8-automata,
for requirements speci�cation, and examines formal veri�cation methods for timed 8-automata
speci�cation. Part III discusses a relation between behavior veri�cation and control synthesis

through requirements speci�cation using constraint satisfaction, and proposes a robotic archi-

tecture with hierarchy and modularity. Each part starts with an introduction, and ends with a

summary of our approaches and a survey of related work.

Mathematical preliminaries on topology, algebra and analysis are presented whenever nec-

essary; however, most of the proofs are given in Appendix A. A visual programming and sim-

ulation environment, ALERT | A Laboratory for Embedded Real-Time systems | has been

developed for modeling, synthesizing, simulating, and understanding various robotics systems

studied in this research. ALERT and some simple examples are presented in Appendix B. The

car-like robot is used as a running example throughout the thesis. Two more complex exam-

ples, an elevator system and a hydraulically actuated robot arm, are presented in Appendix

C to further illustrate our approaches. A model estimation technique for the car-like robot is

discussed in Appendix D.
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1.8 A Guide to the Reader

We assume that, by now, you have read this chapter, Motivation and Introduction. You also

have an overall picture of the problems and our proposed solutions. In the rest of this thesis

we will systematically develop these solutions.

We take an integrated approach towards modeling, speci�cation, veri�cation and control

synthesis, each of which, nevertheless, is a research topic by itself.

Those who are interested in real-time/hybrid models should start with Part I. Besides using

standard techniques in denotational semantics like partial order topologies, we develop topolog-

ical structures of time, domains and traces. Based on these topological structures, we develop,

in series, the concepts of primitive and event-driven transductions, nets, modules, semantics and

behaviors. Even though the minimum background for understanding this part is elementary dis-

crete mathematics (set, relation, function) and calculus (integrals and derivatives), knowledge

of dynamic systems, general topology, metric space and partial order would be an asset.

Those who are interested in real-time speci�cation/veri�cation should continue onto Part

II. The minimum materials from Part I for understanding Part II are topological structures

of time, domains and traces (Chapter 3), and general concepts of behaviors and requirements

speci�cation (Chapter 6). Besides predicate calculus and the �rst order logic, knowledge of

dynamic systems, temporal/modal logic and regular languages would be an asset.

Those who are interested in planning and control should not miss Part III. The minimum

materials from Part I and Part II for understanding Part III are parameterized nets (Chapter

4) and generalized 8-automata (Chapter 10). Knowledge of nonlinear dynamics and constraint
methods would be an asset.

Those who are interested in applications of the theory should �nish (or start) with the

appendixes, where the modeling and simulation environment is discussed, and the methods

developed in this thesis are illustrated by examples.

The problems of design and analysis are interesting and challenging enough to spend more

time on. We hope everyone, with every kind of background, will �nd something useful in this

thesis at every reading.



Part I

Semantic Model and

Behavior Analysis
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The Tao that can be taught is not the everlasting Tao.

The Name that can be named is not the everlasting Name.

That which has no name is the origin of heaven and earth.

That which has a name is the Mother of all things.

| Tao Teh Ching, Lao Tzu

A system that can be modeled is not the system itself.

A model that can be made is not the absolute model.

That which has no model is the origin of a system.

That which has a model is the understanding of the system.

| Zhang Ying



Chapter 2

Introduction

In this chapter, we present an overview of Part I, Semantic Model and Behavior Analysis.

There are four major chapters in Part I. Chapter 3 gives a topological structure of dynamics.

Chapter 4 describes the Constraint Net model, its syntax and semantics. Chapter 5 illustrates

the modeling aspects of the Constraint Net model and discusses its computational power.

Chapter 6 focuses on behavior analysis.

2.1 Topological Structure of Dynamics

One important feature of this research is abstraction. The purpose of abstraction is for gen-

eralization. Hybrid systems are systems with possibly multiple data types and multiple time

structures. Instead of combining di�erent models, we extract the commonalities shared by

various models for dynamic systems.

First, we develop a general structure of time, capturing linearity, metric and measure prop-

erties of time, i.e., for any two time points, there are two important attributes: order and metric

distance, and for any interval of time points, there is a measure. Discrete and continuous time

can be modeled by this structure uniformly. Two time structures may relate to each other in

terms of reference mapping.

Second, we develop a general structure of domains that can be either simple or composite.

Domains are associated with metrics capturing discreteness or density. They are also associated

with partial orders characterizing de�nedness or information hierarchy.

Third, we develop a general structure of traces that are mappings from time to domains.

We further formalize event traces as a special kind of trace for modeling event-based time.

Fourth, we de�ne transductions as causal mappings from traces to traces. We further

characterize two types of transduction: primitive transductions and event-driven transductions.

20
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A primitive transduction is a functional composition of transliterations and delays for memory-

less processes and sequential processes, respectively. An event-driven transduction is a primitive

transduction augmented with an event trace input that de�nes an event-based time structure

for the primitive transduction.

Finally, we de�ne a dynamics structure, based on a reference time structure and a domain

structure, as a pair consisting of a multi-sorted set of trace spaces and a set of primitive and

event-driven transductions.

All structures are de�ned on two types of topology: partial order topology and metric

topology. The preliminary concepts of general topology, partial order and metric space are

given �rst, following which all concepts are de�ned formally.

2.2 The Constraint Net Model

We start with the syntax of constraint nets. A constraint net is a bipartite graph, with two

types of node: locations and transductions. A location is an input if it is not connected to the

output of any transduction; it is otherwise an output. A module is a constraint net with a set

of locations as its interface and with the rest of its locations as hidden locations. A complex

module can be composed hierarchically from simple ones. Also a module can be considered as

an abstraction of its net: hidden inputs capture nondeterminism, and hidden outputs capture

information encapsulation.

We then develop the semantics of constraint nets using continuous algebra. Locations denote

traces and transductions are causal mappings from traces to traces. A constraint net denotes a

set of equations, each of which corresponds to a transduction. The semantics of a constraint net

is the least solution of the set of equations. We further study the well-de�nedness of constraint

nets and modules, and its relationship with algebraic loops. We �nally introduce parameterized

nets and limiting semantics for temporal integration.

2.3 Modeling in Constraint Nets

The Constraint Net model (CN) is an abstraction of dataow-like models. CN provides a

unitary framework to model a hybrid system composed of components of di�erent dynamics.

We �rst de�ne various event generators and synchronizers. Using event generators and

synchronizers, components of di�erent time structures can be coordinated.
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We then illustrate the modeling methodology with an example of a typical hybrid system, a

maze traveler, whose overall system is composed of both discrete and continuous components.

We �nally explore the computational power of constraint nets, in terms of sequential compu-

tation and analog computation. We discover that a constraint net can model discrete sequential

computation in which the sequential order of a computation is controlled by events, and simi-

larly, that it can model nondeterministic choices and time-out. We prove, for a simple domain

structure, that the Constraint Net model is as powerful as the Turing Machine model for se-

quential computation. We also establish, for analog computation, a relationship of smooth

non-hypertranscendental functions and constraint nets of continuous dynamics.

2.4 Behavior Analysis

We discuss the basic concepts of behavior analysis. Intuitively, the behavior of a system is the set

of observable traces of the system. We characterize two important types of behavior: state-based

behavior and time-invariant behavior. We then briey discuss the following issues: requirements

speci�cation, robustness of parameterized nets with respect to requirements speci�cation, and

behavioral complexity that is analogous to functional complexity in sequential computation.

Since the Constraint Net model is developed on abstract time and domains, we can model

and analyze a system at di�erent levels of abstraction. We �rst de�ne the concepts of abstrac-

tion and re�nement for time and domains, and then derive the concepts of abstraction and

equivalence for behaviors.

2.5 Summary and Related Work

Part I is the kernel and is considered as one of the major contributions of this thesis. It is the �rst

time that a unitary and comprehensive model for discrete/continuous hybrid systems has been

proposed. The theory that supports the model is developed from algebra and topology. Even

though similar techniques such as continuous algebra and �xpoint theory have been applied to

the semantics of sequential or concurrent programs, it is the �rst time that such techniques are

applied to the semantics of dynamic systems.



Chapter 3

Topological Structure of Dynamics

In this chapter, we present a topological structure of dynamics. We start with concepts in

general topology, then focus on two particular types of topology: partial order topology and

metric topology. Based on these two types of topology, we formalize time, domain and trace

structures. We then present transductions as causal mappings from traces to traces. Finally,

we de�ne abstract dynamics structures.

3.1 General Topology, Partial Order and Metric Space

In this section, we summarize some mathematical preliminaries that will be used later. For a

more comprehensive introduction, the reader is referred to other sources (e.g., [Gem90, Hen88,

Vic89, MA86, War72, Roy88]).

3.1.1 General topology

General topology studies the limit-point concept based on which connectivity and continuity

can be de�ned.

De�nition 3.1.1 (Topology and Topological space) Let X be a set and ; be an empty

set. A collection � of subsets of X is said to be a topology on X i� the following axioms are

satis�ed:

� X 2 � and ; 2 � .

� If X1 2 �;X2 2 � , then X1 \X2 2 � .

� If Xi 2 � for all i 2 I, then [iXi 2 � , given an arbitrary index set I.

hX; �i is called a topological space.

23
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The members of a topology � are said to be � -open subsets of X , or merely open if no ambiguity

arises. A subset S of X is closed i� X � S is open. We will use X to denote topological space

hX; �i if no ambiguity arises.

Proposition 3.1.1 For any topology on X, X and ; are both open and closed.

Two topologies �1 and �2 on a set can be compared in the following sense: �1 is a �ner

topology than �2 i� �1 � �2.
There are two extreme topologies on X . The coarsest topology is trivial topology in which

only X and ; are open and the �nest topology is discrete topology in which all subsets of X are

open.

Let x 2 X and N(x) be a � -open subset of X containing x, N(x) is called a neighborhood

of x w.r.t. � . A point x of X is a limit point of a subset S of X i� every neighborhood of x

also contains a point of S distinct from x, i.e., 8N(x); N(x)\ S � fxg 6= ;.
Topologies can also be de�ned in terms of limit points.

Proposition 3.1.2 (1) A subset is closed i� it includes all its limit points. (2) A topology is

trivial i� every point x is a limit point of any subset with elements distinct from x. A topology

is discrete i� no point is a limit point of any subset.

Now we de�ne connectivity and continuity on topological spaces. A topological space is

separated if it is the union of two disjoint, non-empty open sets; it is otherwise connected.

Proposition 3.1.3 A topological space is connected i� the only sets that are both open and

closed are the empty set and the total set.

Let hX; �i and hX 0; � 0i be topological spaces. A function f : X ! X 0 is continuous i� for

any � 0-open subset S0 of X 0, f�1(S0) = fxjf(x) 2 S0g is � -open.

Proposition 3.1.4 (1) Continuous functions are closed under functional composition. (2) A

function f : X ! X 0 is continuous, i� x 2 X is a limit point of S � X implies that f(x) is a

point or a limit point of f(S) = ff(x)jx 2 Sg.

It is natural to ask if there exists any smaller collection of subsets that can be used to

represent the open sets. The answer is a�rmative, and the following de�nitions provide such

collections.

De�nition 3.1.2 (Basis and Subbasis) A subset B of a topology � is said to be a basis for

� i� each member of � is the union of members of B. A subset S of � is said to be a subbasis

for � i� the set B = fBjB is the intersection of �nitely many members of Sg is a basis for � .
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We can derive new topologies based on known ones. Subspace topology and product topol-

ogy are two important types of derived topology.

Proposition 3.1.5 Let hX; �i be a topological space, X 0 � X and � 0 = fW jW = X 0 \ U; U 2
�g. The collection � 0 is a topology on X 0.

We call � 0 the subspace topology on X 0, and hX 0; � 0i a subspace of hX; �i.
Let fhXi; �iigi2I be a family of topological spaces and let �IXi be the product set of fXigi2I .

Let S = f�IVijVi = Xi for all but one i 2 I , and Vi 2 �i for all i 2 Ig: We call � the product

topology on �IXi i� S is a subbasis for � . We call h�IXi; �i the product space of fhXi; �iigi2I.
If Xi = X with the same topology for all i 2 I , �IXi is denoted by XI .

Proposition 3.1.6 Let fXigi2I be a family of topological spaces and J be an arbitrary index

set. Then (�IXi)
J = �IXJ

i
.

A Hausdor� topologies is one with the property that for any two points, there are disjoint

neighborhoods. The trivial topology is non-Hausdor� and the discrete topology is Hausdor�.

In the next two sections, we will introduce two important types of topology that are between

the two extremes: partial order topology and metric topology. We will see that partial order

topologies in general are non-Hausdor� and metric topologies are Hausdor�.

3.1.2 Partial order

A set and a partial order relation on the set de�ne a partially ordered set, or simply, a partial

order.

De�nition 3.1.3 (Partial order) Let A be a set. A binary relation �A� A � A is called

a partial order relation i� �A is reexive, anti-symmetric and transitive. hA;�Ai is called

a partial order; it is called a linear order i�, in addition, 8a1; a2 2 A, either a1 �A a2 or

a2 �A a1.

For any partial order relation �A, let �A denote the inverse of �A, viz., a1 �A a2 i� a2 �A a1,
and let <A (>A) denote the strict relation of �A (�A), viz., a1 <A a2 (a1 >A a2) i� a1 �A a2
(a1 �A a2) and a1 6= a2. We will use A to denote partial order hA;�Ai if no ambiguity arises.

De�nition 3.1.4 (Subpartial order) Let hA;�Ai be a partial order and A0 � A. A partial

order relation �A0� A0�A0 is called the subpartial order relation on A0 i� a1 �A0 a2 whenever
a1 �A a2. hA0;�A0i is called a subpartial order of hA;�Ai.
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De�nition 3.1.5 (Product partial order) Let fAigi2I be a set of partial orders and A =

�IAi. A partial order relation �A� A � A is called the product partial order relation on A

i� a �A a0 whenever ai �Ai
a0
i
for all i 2 I. hA;�Ai is called the product partial order of

fhAi;�Ai
igi2I.

A partial order may have a least element and/or a greatest element.

De�nition 3.1.6 (Least (Greatest) element) Let A be a partial order. An element ?A
(>A) 2 A is a least (greatest) element in A i� it satis�es ?A�A a (>A �A a) for every a in

A.

It follows from the antisymmetry of �A that least (greatest) elements, if they exist, are unique.

Any set A can be extended to a at partial order by augmenting a least element ?A 62 A.

De�nition 3.1.7 (Flat partial order) A at partial order, written A, is a set A augmented

with a new element ?A, viz., A = A [ f?Ag such that a �
A
a0 implies a = a0 or a =?A.

Element ?A is the least element of A. Usually ?A means unde�ned in A. With this augmen-

tation, any partial function to A can be extended into a total function to A, i.e., f(a) =?A if

f is not de�ned at a. In this thesis, functions mean total functions unless explicitly stated.

A subset of a partial order may have a least upper bound and/or a greatest lower bound.

De�nition 3.1.8 (Least upper (Greatest lower) bound) Let A be a partial order, D � A
and a 2 A. Then a is an upper (lower) bound of D i� d �A a (d �A a) for every d 2 D.

Moreover, a is a least upper bound (lub) (greatest lower bound (glb)) of D i�

1. a is an upper (lower) bound of D and

2. if d0 is an upper (lower) bound of D then a �A d0 (a �A d0).

It follows from the antisymmetry of �A that least upper bounds (greatest lower bounds), if

they exist, are unique. We use
W
AD (

V
AD) to denote the least upper (greatest lower) bound

of D in A, when it exists. We will drop the subscript A if it is clear from context. If A is

the set of real numbers with arithmetic ordering, we use \sup" and \inf" to denote
W
and

V
,

respectively. If D is �nite, we may use \max" and \min" to denote
W
and

V
, respectively.

One important kind of subset of a partial order is directed subset.

De�nition 3.1.9 (Directed subset) Let A be a partial order and D � A. D is directed i�

D 6= ; and for all d1; d2 2 D, the set fd1; d2g has an upper bound in D.
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A chain in a partial order A is a linearly ordered subset of A. A chain is a directed subset.

One important kind of partial order is complete partial order.

De�nition 3.1.10 (Complete partial order (cpo)) A partial order A is complete i�:

1. it contains a least element, denoted ?A, and

2. every directed subset of A has a least upper bound in A.

Following are two propositions related to cpos.

Proposition 3.1.7 A at partial order is a cpo.

Proposition 3.1.8 The product of cpos is a cpo. Let fAigi2I be a set of cpos and A = �IAi.

The least element of A is ?A with (?A)i =?Ai
; 8i 2 I. Let D be a directed subset of A. The

least upper bound of D is
W
AD with (

W
AD)i =

W
Ai
Di; 8i 2 I, where Di is the projection of D

onto its ith component, i.e., Di = �iD.

A topology can be de�ned from a partial order.

De�nition 3.1.11 (Partial order topology) Let A be a partial order. A subset S of A

is open i� (1) S is upward closed, i.e., a 2 S implies that 8a0 �A a, a0 2 S, and (2) S is

inaccessible from any directed subset D of A, i.e., if
W
AD 2 S, then 9a 2 D, such that a 2 S.

This collection of open sets on A forms the partial order topology of A.

A partial order hA;�Ai is non-trivial i� there exist two elements a; a0 in A such that a <A a
0.

Proposition 3.1.9 The partial order topology of a non-trivial partial order is non-Hausdor�.

The following two propositions declare the properties of continuous functions in partial order

topologies.

Proposition 3.1.10 Any continuous function is monotonic, i.e., if f : A! A0 is continuous,

then a1 �A a2 implies f(a1) �A0 f(a2).

Proposition 3.1.11 Let A and A0 be two cpos. Then f : A ! A0 is continuous i� for every

directed subset D � A,

1. f(D) = ff(d)jd 2 Dg is directed and

2. f(
W
AD) =

W
A0 f(D).
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3.1.3 Metric space

Metric topology is the most direct generalization of the topology used for real numbers in

analysis.

De�nition 3.1.12 (Metric and Metric Space) Let X be a set and R+ be the set of non-

negative real numbers. A function d : X �X ! R+ is a metric on X i�

� d(x; y) = d(y; x).

� d(x; y)� d(x; z) + d(z; y).

� d(x; y) = 0 i� x = y.

hX; di is called a metric space.

Let hX; di be a metric space, x 2 X and � be a positive real number. The spherical �-

neighborhood of x is fx0jd(x0; x) < �g, denoted N �(x).

De�nition 3.1.13 (Metric topology) The metric topology of a metric space is a topology

with the set of spherical neighborhoods as a subbasis.

Proposition 3.1.12 Metric topologies are Hausdor�.

Another important concept used in analysis is measure. Let X be a set. A family � of

subsets of X is a �-�eld on X i� it contains the empty set, the complement in X of every

element in � and the union of every denumerable subcollection. hX; �i is called a measurable

space.

De�nition 3.1.14 (Measure and Measure space) Let hX; �i be a measurable space. A

function � : � ! R+ [ f1g is a measure i� �(;) = 0, and for any denumerable index set J

and any set of mutually disjoint elements fXjgJ of �, �([j2JXj) = �j2J�(Xj). hX; �; �i is
called a measure space.

If hX; �i is a topological space, then the smallest �-�eld containing � is called the Borel �eld of

sets, denoted �Borel(X). A measure de�ned on �Borel(X) is called a Borel measure.

Finishing up this section, we de�ne the concept of limits. Given any linear order L and

topological space X , v : L ! X is called a linear set of values. A limit of v is de�ned as a

generalization of a limit of a sequence.
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De�nition 3.1.15 (Limit) Let X be a topological space and v : L ! X be a linear set of

values. A point v� 2 X is called a limit of v, written v ! v�, i� for every neighborhood N(v�)

of v�, 9l0, 8l �L l0; v(l) 2 N(v�).

If L has a greatest element l0, then v ! v(l0). Therefore, the concept of limits is also a

generalization of the \�nal" value. We will use liml!1 v(l) to denote the limit of v if it is

unique.

One important property of Hausdor� topologies is the uniqueness of limits.

Proposition 3.1.13 If X is of a Hausdor� topology and v : L ! X is a linear set of values,

then v ! v�1 and v ! v�2 imply v�1 = v�2.

One important property of product topologies is the pointwiseness of limits.

Proposition 3.1.14 If �IXi is of the product topology and v : L ! �IXi is a linear set of

values, then v ! v� i� vi ! v�
i
for all i 2 I.

3.2 Time Structures

Understanding time is the key to understanding dynamics. We formalize time using an abstract

structure that captures its important aspects. A time structure, in general, can be considered

as a linearly ordered set with a start time point, an associated metric for \the distance between

any two time points" and a measure for \the duration of an interval of time."

De�nition 3.2.1 (Time structure) A time structure is a triple hT ; d; �i where

� T is a linearly ordered set hT ;�i with 0 as the least element;

� hT ; di forms a metric space with d as a metric satisfying: for all t0 � t1 � t2,

d(t0; t2) = d(t0; t1) + d(t1; t2);

ftjm(t) � �g has a greatest element and ftjm(t) � �g has a least element for all 0 � � <
supfm(t)jt 2 T g where m(t) = d(0; t);

� hT ; �; �i forms a measure space with � as the Borel set of topological space hT ; di and �
as a Borel measure satisfying �([t1; t2)) � d(t1; t2) for all t1 � t2 where [t1; t2) = ftjt1 �
t < t2g and �([t1; t2)) = �([0; t2))� �([0; t1)).
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For simplicity, we will use T to refer to time structure hT ; d; �i when no ambiguity arises. For

most applications, we have �([t1; t2)) = d(t1; t2). However, if T is an abstraction of another

time structure, it is possible that 9t1; t2; �([t1; t2)) < d(t1; t2). Discussions on time abstraction

will be found in Chapter 6, Behavior Analysis.

A time structure T is in�nite i� T has no greatest element and �(T ) =1. T is discrete i�

its metric topology is discrete. T is continuous i� its metric space is connected.

For example, the set of natural numbersN and the set of nonnegative real numbersR+, with

d(t1; t2) = jt1 � t2j and �([0; t)) = t, are time structures. N is discrete and R+ is continuous.

The set f1 � 1
2n
jn 2 Ng with the metric d and the measure � also de�nes a discrete time

structure. However, the sets f1 � 1
2n
jn 2 Ng [ f1g, f0g [ f 1

2n
jn 2 Ng and [0; 1] [ [2; 3] with

the metric d and the measure � form time structures neither discrete nor continuous. The set

of rational numbers Q with the metric d and the measure � does not form a time structure.

Proposition 3.2.1 (1) For any time structure T , if T � T has an upper bound in T , T has

a least upper bound in T .
(2) The following properties for a time structure are equivalent:

(a) T is discrete.

(b) Let (t1; t2) = ftjt1 < t < t2g. For all t, if t is not the least element of T , then 9t0 < t,

denoted pre(t), such that (t0; t) = ;, and for all t, if t is not the greatest element of T ,
then 9t0 > t, denoted suc(t), such that (t; t0) = ;.

(c) T is well-founded, i.e., 8t 2 T , [0; t) is �nite.

(3) The following properties for a time structure are equivalent:

(a) T is continuous.

(b) T is dense, i.e., for all t1 < t2, there exists t0 such that t1 < t0 < t2.

Intuitively, discrete time is isomorphic to an ordered subset of natural numbers and continuous

time is isomorphic to a left-closed interval of a real line. Even though our de�nition of time

structures is general, discrete and continuous time structures are most commonly used.

A time structure hT ; d; �i may be related to another time structure hTr; dr; �ri, where
hTr;�ri is a linear order with 0r as the least element, by a reference time mapping h : T ! Tr
satisfying

� the order among time points is preserved: t < t0 implies h(t) <r h(t
0),
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� the least element is preserved: h(0) = 0r ,

� the distance between two time points is preserved: d(t1; t2) = dr(h(t1); h(t2)), and

� the measure on any �nite time interval is preserved: �([0; t)) = �r([0r; h(t))).

Tr is called a reference time of T , and T is called a sample time of Tr. For example, if

h : N ! R+ is de�ned as h(n) = n, R+ is a reference time of N . For any time structure T , a
reference time of T is as \dense" as T . Furthermore, the reference relation is transitive:

Proposition 3.2.2 If T0 is a reference time of T1 and T1 is a reference time of T2, then T0 is

a reference time of T2.

3.3 Domain Structures

As with time, we formalize domains as abstract structures so that discrete and continuous

domains are de�ned uniformly. A domain can be either simple or composite. Simple domains

denote simple data types, such as reals, integers, Booleans and characters; composite domains

denote structured data types, such as arrays, vectors, strings, objects, structures and records.

De�nition 3.3.1 (Simple domain) A simple domain is a pair hA [ f?Ag; dAi where A is a

set, ?A 62 A means unde�ned in A, and dA is a metric on A.

Let A = A [ f?Ag. For simplicity, we will use A to refer to simple domain hA; dAi when no

ambiguity arises. For example, let R be the set of real numbers, R is a simple domain with a

connected metric space; let B = f0; 1g, B is a simple domain with a discrete topology on B.
Any simple domain A is associated with a partial order relation �

A
. hA;�

A
i is a at partial

order with ?A as the least element. In addition, A is associated with a derived metric topology

� = �A [ fAg where �A is the metric topology on A derived from the metric dA.

Proposition 3.3.1 f?Ag is not � -open. The only neighborhood of ?A is A.

A simple domain hA; dAi can also be represented as a triple hA;�
A
; �i where �

A
is the partial

order relation and � is the derived metric topology.

A domain is de�ned recursively based on simple domains.

De�nition 3.3.2 (Domain) hA;�A; �i, with �A as the partial order relation and � as the

derived metric topology, is a domain i�:
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� it is a simple domain; or

� it is a composite domain, i.e., it is the product of a family of domains fhAi;�Ai
; �iigi2I

such that hA;�Ai is the product partial order of the family of partial orders fhAi;�Ai
igi2I

and hA; �i is the product space of the family of topological spaces fhAi; �iigi2I.

Note that there is no restriction on the index set I , which can be arbitrary (�nite or in�nite,

countable or uncountable). For simplicity, we will use A to refer to domain hA;�A; �i when
no ambiguity arises. For example, let n be a natural number, then Rn

is a composite domain

with n components; let N be the set of natural numbers, then N ! B (or equivalently, BN ) is
a composite domain with in�nitely many components.

Given a simple domain A, a value a 2 A is well-de�ned i� a 6=?A. Given a composite

domain �IAi, a value a 2 �IAi is well-de�ned i� ai is well-de�ned for all i 2 I . A value in a

domain is unde�ned i� it is the least element of the domain.

Intuitively, for any domain, its partial order topology characterizes the information (or

de�nedness) hierarchies of data and its derived metric topology characterizes the limit properties

of data.

Proposition 3.3.2 For any domain, its partial order topology is �ner than its derived metric

topology, and both are non-Hausdor�.

A signature is a syntactical structure of a multi-sorted set of data with associated functions.

De�nition 3.3.3 (Signature) Let � = hS; F i be a signature where S is a set of sorts and F

is a set of function symbols. F is equipped with a mapping type: F ! S��S where S� denotes

the set of all �nite tuples of S. For any f 2 F , type(f) is the type of f . We use f : s� ! s to

denote f 2 F with type(f) = hs�; si.

For example, the signature of Boolean algebra can be described as: �b = hfbg; f0;:; ;̂_gi
with 0 :! b, : : b! b, ^ : b; b! b, and _ : b; b! b. �b has one sort with a constant 0 (nullary

function), a unary function :, and two binary functions ^ and _.
A domain structure of some signature is de�ned as follows.

De�nition 3.3.4 (�-domain structure) Let � = hS; F i be a signature. A �-domain struc-

ture A is a pair hfAsgs2S ; ffAgf2F i where for each s 2 S, As is a domain of sort s, and for

each f : s� ! s 2 F with s� : I ! S and s 2 S, fA : �IAs�
i
! As is a function denoted by f ,

which is continuous in the partial order topology.
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To be continuous on a domain in its partial order topology is not a real restriction on a

function. Strict functions are continuous functions in partial order topologies. A function is

strict w.r.t. an argument i� its output is unde�ned whenever its input of that argument is

unde�ned. A function is strict i� it is strict w.r.t. all of its arguments.

Given any partial or total function f : �IAi ! A, a continuous function �f : �IAi ! A can

be de�ned as:

�f(a) =

(
f(a) if a 2 �IAi and f(a) is de�ned

?A otherwise:

We call �f a strict extension of function f . We will also use f to denote its strict extension

if no ambiguity arises. For example, let �r = hfrg; f0;+; �gi with 0 :! r, + : r; r ! r and

� : r; r! r. Then hfRg; f0;+; �gi is a �r-domain structure, where + and � are strict extensions
of addition and multiplication on R, respectively.

However, not every extension of a function that is continuous should also be strict. For

example, hfBg; f0;:;^;_gi is a �b-domain structure where :, ^ and _ are negation, conjunction
and disjunction, respectively. Function _ : B � B ! B is continuous but not strict, since _ is

an \or" logic satisfying 1 _ x = 1 for all x 2 B, thus, 1_ ?B 6=?B.
The following propositions characterize the general properties of continuous functions on

simple domains.

Proposition 3.3.3 (1) Function f : A ! A0 is continuous in the partial order topology i� f

is strict or constant. (2) If f : A ! A0 is continuous in the derived metric topology, then f is

continuous in the partial order topology. (3) Function f : A ! A0 is continuous in the derived

metric topology i� f is continuous in the partial order topology and the restriction of f on A

and A0 is continuous in the metric topology, namely, for any open subset S of A0, f�1(S)\ A
is open.

The properties of continuous functions in partial order topologies can be generalized to

composite domains. A function f : �IAi ! A is continuous w.r.t. an argument j, i� function

�aj :f(a; aj)
1 is continuous for all a 2 �I�fjgAi.

Proposition 3.3.4 Let I be a �nite index set. (1) Function f : �IAi ! A is continuous in

the partial order topology i� f is continuous w.r.t. all i 2 I. (2) If f : �IAi ! A is continuous

in the derived metric topology, then f is continuous in the partial order topology. (3) Function

f : �IAi ! A is continuous in the derived metric topology i� f is continuous in the partial

1�x:expr(x) is a lambda expression of a function f , equivalent to 8x; f(x) = expr(x).
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order topology and the restriction of f on �IAi and A is continuous in the product metric

topology, namely, for any open subset S of A, f�1(S)\ �IAi is open.

A function is well-de�ned i� its output is well-de�ned whenever its input is well-de�ned.

Both well-de�nedness and strictness are closed under functional composition, and a function

can be both well-de�ned and strict.

For example, a widely used conditional function, cond : A�A�A0�A0 ! A0, is de�ned as

follows:

cond(x; y; u; v) =

8><
>:
?A0 if x =?A or y =?A
u else if x = y

v otherwise.

(3:1)

Function cond is continuous in the partial order topology; it is continuous in the derived metric

topology if A is of a discrete topology. Furthermore, it is well-de�ned and strict w.r.t. arguments

x and y.

3.4 Traces and Events

Intuitively, a trace denotes changes of values over time. Formally, a mapping v : T ! A from

time T to domain A is called a trace. A trace v is well-de�ned i� v(t) is well-de�ned for all

t 2 T . For example if T = R+ and A = R, v1 = �t: sin(t) and v2 = �t:e�t are well-de�ned

traces. A trace v is unde�ned i� v(t) is unde�ned for all t 2 T .
A trace provides complete information at every (�nite) time point. Values at in�nite time

points are not represented explicitly, they can, however, be derived when limits are introduced.

For example, limt!1 sin(t) =?R and limt!1 e�t = 0.

Let A be a domain and v : L ! A be a linear set of values. A value v� 2 A is a limit of

v, written v ! v�, i� v� is a limit of v in the derived metric topology of A. In the rest of this

thesis, limits de�ned on a domain will mean those in its derived metric topology. Limits of v

may not be unique. However, the set of limits of v has the following properties.

Proposition 3.4.1 Let v : L! A be a linear set of values. Then

(1) v !?A, and
(2) v ! v�1 and v ! v�2 imply that either v�1 = v�2 or one of v�1 and v�2 is ?A.

Proposition 3.4.2 Let v : L! A for A = �IAi. Then

(1) v ! v� i� vi ! v�
i
for all i 2 I, and

(2) the set of limits fv�jv ! v�g is a directed subset in hA;�Ai and has a greatest element.
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The greatest limit of v, written lim v, is de�ned as the greatest element of the set of limits

of v, i.e., lim v =
W
A
fv�jv ! v�g. Note that the greatest limit of a linear set of values always

exists and is unique. We will call the greatest limit simply the limit if no ambiguity arises.

The following two propositions capture two important properties of the limits.

Proposition 3.4.3 Let v : L! A for A = �IAi. Then (lim v)i = lim vi; 8i 2 I.

Proposition 3.4.4 If v1; v2 : L! A and v1(l) �A v2(l) for all l 2 L, then lim v1 �A lim v2.

Proposition 3.4.3 characterizes the composite property of the limits. Proposition 3.4.4 charac-

terizes the monotonic property of the limits.

Using the concept of the limits, we can complete a trace with its values at limit time points.

Given a time structure T , let T 1 be the set of downward closed intervals, i.e., for any T 2 T 1,
(1) T 6= ; and (2) t 2 T implies that for all t0 � t, t0 2 T . A trace v : T ! A can be extended

to its completion v1 : T 1 ! A as v1(T ) = lim vjT where vjT denotes the restriction of v onto

T . If T has a greatest element t0, then v1(T ) = v(t0). A trace completion provides values

at in�nite as well as at �nite time points. Note that T 2 T 1, for any trace v : T ! A,

v1(T ) = lim v can be considered as the \�nal" value. For simplicity, we will use v to refer to

both v and its completion v1 when no ambiguity arises.

Let T<t = ft0jt0 < tg. Then T<t 2 T 1 whenever t > 0. We use pre(t) to denote both T<t

and the greatest element of T<t, if it exists.

Let T�t�� = ft0jt0 < t; d(t; t0) � �g for � > 0. Then T�t�� 2 T 1 whenever m(t) � � .

Proposition 3.4.5 For any time structure T , T�t�� has a greatest element wheneverm(t) � � .

We use t� � to denote the greatest element of T�t�� when m(t) � � .
The set of all possible traces from a time structure to a domain, associated with a partial

order relation and a derived metric topology, forms a trace space.

De�nition 3.4.1 (Trace space) Given a time structure T and a domain hA;�A; �i, the trace
space is a triple hAT ;�AT ;�i where AT is the product set (the set of all functions from T to

A), �AT is the product partial order relation constructed from the partial order relation �A,
and � is the product topology constructed from the derived metric topology � .

For simplicity, we will use AT to refer to trace space hAT ;�AT ;�i when no ambiguity arises.

A trace space is essentially a composite domain. Therefore, limits of a linear set of traces

can be de�ned accordingly. Given a linear set of traces V : L ! AT , limits and the greatest
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limit of V are de�ned as follows. A trace V � 2 AT is a limit of V , written V ! V �, i� V � is a

limit of V in the derived metric topology of AT . Similar to the properties of limits of a linear

set of values, the properties of limits of a linear set of traces are as follows.

Proposition 3.4.6 Let V : L! AT for a linear order L and a trace space AT . Then

(1) V ! V � i� V (t)! V �(t) for all t 2 T , and
(2) the set of limits fV �jV ! V �g is a directed subset in hAT ;�

AT
i and has a greatest

element.

The greatest limit of V , written lim V , is de�ned as the greatest element of the set of limits of

V , limV =
W
AT
fV �jV ! V �g. We will call the greatest limit simply the limit if no ambiguity

arises. Furthermore, the composite property of the limits holds as well.

Proposition 3.4.7 Let V : L! AT . Then (limV )(t) = lim V (t); 8t 2 T .

The concept of the limit of a linear set of traces will be used when we introduce limiting

semantics in the next chapter.

A nonintermittent trace is a special type of trace de�ned as follows. A trace v : T ! A

is nonintermittent i� for any T 2 T 1, v(T ) =?A implies that 8T 0 � T , v(T 0) =?A. A trace

v : T ! �IAi is nonintermittent i� vi is nonintermittent for all i 2 I .
A right-continuous trace is a special type of trace de�ned as follows. A trace v : T ! A

is right-continuous at t0 i� 8t > t0; t ! t0 implies v(t) ! v(t0); v is right-continuous i� it is

right-continuous at all t 2 T . A discrete-time trace is always right-continuous according to this

de�nition.

An event trace is a nonintermittent and right-continuous trace whose domain is B. An event
trace e : T ! B with e 6= �t: ?B generates a structure hTe; de; �ei from hT ; d; �i where:

� Te � T is de�ned as Te = f0g [ ft > 0je(t) 6=?B ; e(t) 6= e(pre(t))g,

� de = djTe�Te ,

� 8t 2 Te, �e([0; t)) = �([0; t)), and �e(Te) = �(T ) for T = ftje(t) 6=?Bg.

Proposition 3.4.8 For any time structure T and any event trace e, hTe; de; �ei is a discrete

sample time structure of T .

For any event-based time, each transition point of the event trace de�nes a time point (Figure

3.1).
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t

e(t)

Figure 3.1: An event trace: each dot depicts a time point

The set of all possible event traces on a reference time structure, associated with a partial

order relation and a derived metric topology, forms an event space.

De�nition 3.4.2 (Event space) An event space is a triple hET ;�ET ;�0i where T is a time

structure, ET � BT is the set of all event traces on T , �ET is the sub partial order relation of

�
B
T , and �0 is the subspace topology of � that is the derived metric topology of BT .

3.5 Transductions

Transductions are mathematical models of general transformational processes. In this section,

we �rst de�ne general concepts of transductions, then discuss two types of basic transduction:

transliterations and delays. Finally, we introduce event-driven transductions for constructing

systems with components of di�erent time structures.

3.5.1 General concepts

A transduction is a mapping from input traces to output traces that satis�es the causal rela-

tionship between its inputs and outputs, i.e., the output value at any time depends only on

inputs up to that time. Formally, causality can be de�ned as follows.

De�nition 3.5.1 (Causality and Transduction) Given v1; v2 2 AT and � 2 R+, v1 and v2

are coincident up to � i� 8t;m(t) � �; v1(t) = v2(t). A mapping F : AT ! A0T
0

from a trace

space to a trace space is causal i� for any t0 2 T 0 , F (v1)(t0) = F (v2)(t
0) whenever v1 and v2

are coincident up to m0(t0). A causal mapping on trace spaces is called a transduction.

For instance, a state automaton with an initial state de�nes a transduction on a discrete time

structure; a temporal integration with a given initial value is a typical transduction on a con-

tinuous time structure. Just as nullary functions represent constants, nullary transductions

represent traces. Transductions are closed under functional composition.



CHAPTER 3. TOPOLOGICAL STRUCTURE OF DYNAMICS 38

We characterize two classes of transduction: primitive transductions and event-driven trans-

ductions.

3.5.2 Primitive transductions

Primitive transductions are de�ned on a generic time structure T . Primitive transductions are
functional compositions of two types of basic transduction: transliterations and delays.

De�nition 3.5.2 (Transliteration) A transliteration is a pointwise extension of a function.

Formally, let f : A ! A0 be a function and T be a time structure. The pointwise extension of

f onto T is a mapping fT : AT ! A0T satisfying fT (v) = �t:f(v(t)):

By this de�nition, (f � g)T = fT � gT . We will also use f to denote transliteration fT if no

ambiguity arises.

Intuitively, a transliteration is a transformational process without memory or internal state,

such as a combinational circuit. For example, let � : B � B ! B be a function de�ned

as x � y = (:x) ^ y _ x ^ (:y), i.e., an \exclusive or". Then a pointwise extension of � is a

transliteration, functioning as the basic \or" logic in asynchronous event control [Sut89] (Figure

3.2). We will discuss more on event logics in Chapter 5, Modeling in Constraint Nets.

e1

t

e2

t

e1 or e2

t

Figure 3.2: Event logic for \or"

There are two types of delay: unit delays and transport delays.
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De�nition 3.5.3 (Unit delay) Let A be a domain, v0 a well-de�ned value in A, and T a

time structure. A unit delay �A
T
(v0) : A

T ! AT is a transduction de�ned as

�AT (v0)(v) = �t:

(
v0 if t = 0

v(pre(t)) otherwise

where v0 is called the initial output value of the unit delay.

A unit delay �A
T
(v0) acts as a unit memory for data in domain A, given a discrete time structure.

We will use �(v0) to denote unit delay �
A

T
(v0) if no ambiguity arises.

Unit delays may not be meaningful for non-discrete time structures.

De�nition 3.5.4 (Transport delay) Let A be a domain, v0 a well-de�ned value in A, T a

time structure and � > 0. A transport delay �A

T
(�)(v0) : A

T ! AT is a transduction de�ned

as

�A

T (�)(v0)(v) = �t:

(
v0 if m(t) < �

v(t� �) otherwise

where v0 is called the initial output value of the transport delay and � is called the time delay.

We will use �(�)(v0) to denote transport delay �A

T
(�)(v0) if no ambiguity arises. Transport

delays are essential for modeling sequential behaviors in dynamic systems.

3.5.3 Event-driven transductions

A primitive transduction maps traces to traces with the same time structure. A hybrid system

consists of components of di�erent time structures. In this section, we consider event-driven

transductions, which are an important component of our model.

We de�ne sample and extension traces as follows. Let Tr be a reference time of T with

a reference time mapping h. The sample trace of v : Tr ! A onto T is a trace v : T ! A

satisfying

v = �t:v(h(t)):

The extension trace of v : T ! A onto Tr is a trace v : Tr ! A satisfying

v = �tr:

(
v(h�1(tr)) if 9t 2 T ; �r([0r; tr)) � �([0; t)) or �r([0r; tr)) < �(T )
?A otherwise

where h�1(tr) = ftjh(t) �r trg 2 T 1.
Sampling is a type of transduction whose output is a sample trace of its input. Extending

is a type of transduction whose output is an extension trace of its input.
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An event-driven transduction is a primitive transduction augmented with an extra input

which is an event trace; it operates at each event point and the output value holds between two

events. The additional event trace input of an event-driven transduction is called the clock of

the transduction. Intuitively, an event-driven transduction works as follows. First, the input

trace with the reference time T is sampled onto the sample time Te generated by the event trace
e. Then, the primitive transduction is performed on Te. Finally, the output trace is extended
from Te back to T .

De�nition 3.5.5 (Event-driven transduction) Let T be a time structure and FT : AT !
A0T a primitive transduction. Let ET be the set of all event traces on time structure T . The

event-driven transduction of F is a mapping F �
T
: ET � AT ! A0T satisfying:

F �
T (e; v) =

8><
>:
�t: ?A0 if e = �t: ?B

FTe(v) otherwise:

We will use F � to denote event-driven transduction F �

T
if no ambiguity arises.

3.6 Dynamics Structures

With preliminaries established, we de�ne an abstract structure of dynamics.

De�nition 3.6.1 (�-dynamics structure) Let � = hS; F i be a signature. Given a �-domain

structure A and a time structure T , a �-dynamics structure D(T ; A) is pair hV ;Fi such that

� V = fAT
s
gs2S [ ET where AT

s
is a trace space of sort s and ET is the event space;

� F = FT [ F�T where FT is the set of basic transductions, including the set of transliter-

ations ffAT gf2F , the set of unit delays f�As

T
(vs)gs2S;vs2As, and the set of transport delays

f�As

T
(�)(vs)gs2S;�>0;vs2As, F�T is the set of event-driven transductions derived from the

set of basic transductions, i.e., fF �jF 2 FT g.

Finishing up this chapter, let us explore the properties of dynamics structures.

The following propositions establish the fact that the partial order of a trace space and the

partial order of an event space are cpos.

Proposition 3.6.1 The partial order of a domain is a cpo.

Proposition 3.6.2 The partial order of a trace space is a cpo.
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Proposition 3.6.3 The partial order of an event space is a cpo.

The following propositions characterize the continuity of basic transductions in partial order

topologies.

Proposition 3.6.4 A transliteration fT : AT ! A0T on any time structure T is continuous if

f : A! A0 is continuous.

Proposition 3.6.5 A unit delay on any discrete time structure is continuous.

Proposition 3.6.6 A transport delay is continuous.

The following proposition characterizes the continuity of event-driven transductions.

Proposition 3.6.7 An event-driven transduction F � is continuous if its primitive transduction

F on any discrete time structure is continuous.

The following theorem concludes these properties.

Theorem 3.6.1 (�-dynamics structure) Let A be a �-domain structure and T a time struc-

ture. The �-dynamics structure D(T ; A) = hV ;Fi satis�es (1) V is a multi-sorted set of cpos

and (2) transliterations, transport delays and event-driven transductions in F are continuous in

the partial order topology. If, in addition, T is discrete, all transductions in F are continuous

in the partial order topology.

Transductions are functions. The well-de�nedness and strictness of a transduction is the

well-de�nedness and strictness of the function, respectively. The following propositions charac-

terize well-de�ned and/or strict transductions in dynamics structures.

Proposition 3.6.8 A transliteration fT is well-de�ned i� function f is well-de�ned; fT is

strict w.r.t. an argument i� f is strict w.r.t. the argument.

Proposition 3.6.9 Any delay is not strict. A unit delay on any discrete time structure is

well-de�ned. A transport delay is well-de�ned.

Proposition 3.6.10 An event-driven transduction F � is well-de�ned i� F on any discrete time

structure is well-de�ned; F � is strict w.r.t. its event input, and F � is strict w.r.t. one of the

other input arguments i� F is strict w.r.t. the argument.
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Event traces are nonintermittent and right-continuous. We call a transduction nonintermit-

tent i� its output is nonintermittent whenever its input is nonintermittent. We call a transduc-

tion right-continuous i� its output is right-continuous whenever its input is right-continuous.

The following propositions characterize nonintermittent and/or right-continuous transductions

in dynamics structures.

Proposition 3.6.11 A transliteration fT is right-continuous if f is continuous in the derived

metric topology; fT with f : �IAi ! A is nonintermittent if f is strict, well-de�ned and

continuous in the derived metric topology.

Proposition 3.6.12 A delay is nonintermittent. A transport delay is right-continuous.

Proposition 3.6.13 An event-driven transduction is right-continuous. An event-driven trans-

duction F � is nonintermittent if F is nonintermittent.

For example, the \event or" transduction � (Figure 3.2) is well-de�ned and strict; it is also

right-continuous and nonintermittent. \Event or" is a typical event synchronizer. In Chapter

5, Modeling in Constraint Nets, we will de�ne other event synchronizers that are all noninter-

mittent and right-continuous.

We have presented a topological structure of dynamics by formalizing time, domains and

traces in topological spaces and by characterizing primitive and event-driven transductions.

With such a topological structure, continuous/discrete time and domains can be represented

uniformly, and hybrid dynamic systems can be studied in a unitary model.



Chapter 4

The Constraint Net Model

A hybrid dynamic system can have multiple sorts corresponding to di�erent data types that

can be numerical, symbolic or logical. It can have multiple components with di�erent time

structures generated by di�erent clocks, and clocks can be generated or synchronized.

In this chapter, we present a formal model for hybrid dynamic systems, that we call Con-

straint Nets (CN). We �rst de�ne the syntax of CN. We then provide a �xpoint semantics of CN

using the �xpoint theory of partial orders. Finally, we discuss parameterized CN and temporal

integration in CN.

4.1 Syntax of Constraint Nets

In this section, we introduce the syntax of constraint nets and characterize the composite

structure and modularity of the model.

4.1.1 Syntax and graphical representation

A constraint net consists of a �nite set of locations, a �nite set of transductions and a �nite set

of connections.

De�nition 4.1.1 (Syntax) A constraint net is a triple CN = hLc; Td; Cni, where Lc is a

�nite set of locations, each associated with a sort; Td is a �nite set of labels of transductions,

each with an output port and a set of input ports, and each port is associated with a sort; Cn is

a set of connections between locations and ports of the same sort, with the following restrictions:

(1) there is at most one output port connected to each location, (2) each port of a transduction

connects to a unique location and (3) no location is isolated.

43
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Intuitively, each location is of �xed sort; a location's value typically changes over time. A

location can be regarded as a wire, a channel, a variable, or a memory cell. Each transduction

is a causal mapping from inputs to outputs over time, operating according to a certain reference

time or activated by external events. Connections relate locations with ports of transductions.

A clock is a special kind of location connected to the event ports of event-driven transductions.

A location l is an output location of a transduction F i� l connects to the output port of F ;

l is an input location of F i� l connects to an input port of F . A location is an output of the

constraint net if it is an output location of a transduction; it is otherwise an input . A constraint

net is open if there is an input location; it is otherwise closed . We use I(CN) and O(CN) to

denote the set of input locations and the set of output locations, respectively, of a constraint

net CN .

A constraint net is depicted by a bipartite graph where locations are depicted by circles,

transductions by boxes and connections by arcs. For example, the graph in Figure 4.1, where

f is a transliteration and � is a unit delay, depicts an open net. The net, with a discrete time

structure, models a state automaton: s(0) = s0; s(n) = f(i(n� 1); s(n� 1)). The closed net

(s 0 )δ s
i

s’f

Figure 4.1: The constraint net representing a state automaton

depicted by the graph in Figure 4.2, with a continuous time structure, models a di�erential

equation _s = f(s).

s(s   )0s’f

Figure 4.2: The constraint net representing _s = f(s)

4.1.2 Modules and composition

A system may be composed of subsystems. In order to capture the hierarchical composition

structure of systems, we introduce subnets and modules.
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De�nition 4.1.2 (Subnet) A constraint net CN1 = hLc1; Td1; Cn1i is a subnet of CN2 =

hLc2; Td2; Cn2i, written CN1 � CN2, i� Lc1 � Lc2, Td1 � Td2, Cn1 � Cn2 and I(CN1) �
I(CN2).

De�nition 4.1.3 (Module) A module is a triple hCN; I; Oi, also denoted CN(I; O), where

CN is a constraint net, I � I(CN) and O � O(CN) are subsets of the input and output

locations of CN , respectively; I [ O de�nes the interface of the module.

A module CN(I; O) is closed if I = ;; it is otherwise open. Locations in I(CN)� I are hidden
inputs and locations in O(CN)� O are hidden outputs. A module will be depicted by a box

with rounded corners.

We de�ne three basic operations | union, coalescence and hiding | that can be applied

to obtain a new module from existing ones.

The union operation generates a new module by putting two modules side by side. Formally,

let CN1 = hLc1; Td1; Cn1i and CN2 = hLc2; Td2; Cn2i be two constraint nets, with Lc1\Lc2 =
; and Td1 \ Td2 = ;, 1 then the union of CN1(I1; O1) and CN2(I2; O2), written CN1(I1; O1) k
CN2(I2; O2), is a new module CN(I; O) where CN = hLc; Td; Cni is a constraint net with

Lc = Lc1 [ Lc2, Td = Td1 [ Td2 and Cn = Cn1 [ Cn2, I [ O de�nes its interface with

I = I1 [ I2 and O = O1 [O2.

The coalescence operation coalesces two locations in the interface of a module into one,

with the restriction that at least one of these two locations is an input location. Formally,

let CN = hLc; Td; Cni be a constraint net, l 2 I and l0 2 I [ O be of the same sort, the

coalescence of CN(I; O) for l and l0, denoted CN(I; O)=(l; l0), is a new module CN 0(I 0; O0)

with CN 0 = hLc[l0=l]; Td; Cn[l0=l]i, I 0 = I � flg and O0 = O, where X [v=x] denotes that x in

X is replaced by v.

The hiding operation deletes a location from the interface. Formally, let CN = hLc; Td; Cni
be a constraint net and l 2 I [ O, the hiding of CN(I; O) for l, denoted CN(I; O)nl, is a new
module CN 0(I 0; O0) with CN 0 = CN , I 0 = I � flg and O0 = O � flg.

In addition, we de�ne three combined operations: cascade connection, parallel connection

and feedback connection. The cascade connection connects two modules in series. The parallel

connection connects two modules in parallel. The feedback connection connects an output of

the module to an input of its own.

Figure 4.3 depicts the three operations. The formal de�nitions of these operations, in terms

of basic operations, are as follows.

1Note that Td is a set of transduction labels, which can be di�erent for the same transduction.
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Figure 4.3: Cascade, parallel and feedback connections
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Let o1 2 O1 and i2 2 I2. A cascade connection of CN1(I1; O1) and CN2(I2; O2), denoted

CN2(I2; O2) � CN1(I1; O1), produces a new module CN(I; O),

CN(I; O) = [(CN1(I1; O1) k CN2(I2; O2))=(i2; o1)]no1:

Let i1 2 I1 and i2 2 I2. A parallel connection of CN1(I1; O1) and CN2(I2; O2), denoted

CN1(I1; O1) + CN2(I2; O2), produces a new module CN(I; O),

CN(I; O) = (CN1(I1; O1) k CN2(I2; O2))=(i1; i2):

Let i 2 I and o 2 O. A feedback connection of CN(I; O), denoted F(CN(I; O)), produces

a new module CN 0(I 0; O0),

CN 0(I 0; O0) = [CN(I; O)=(i; o)]no:

The following relations hold for these syntactic operations.

Proposition 4.1.1

CN1(I1; O1) k CN2(I2; O2) = CN2(I2; O2) k CN1(I1; O1):

CN1(I1; O1) � (CN2(I2; O2) � CN3(I3; O3)) = (CN1(I1; O1) � CN2(I2; O2)) �CN3(I3; O3)

if both sides are de�ned.

CN1(I1; O1) + (CN2(I2; O2) + CN3(I3; O3)) = (CN1(I1; O1) + CN2(I2; O2)) + CN3(I3; O3)

if both sides are de�ned.

Proposition 4.1.2 Following are some properties of subnets:

(1) CN1 and CN2 are subnets of CN1 k CN2.

(2) CN1 and CN2 are subnets of CN1 + CN2.

(3) CN1 is a subnet of CN2 � CN1, however, CN2 is not a subnet of CN2 � CN1.

There are at least three reasons to introduce modules.

First, modules facilitate hierarchical composition structures for complex systems. For ex-

ample, we can create a state automaton module SA by selecting fi; sg or fi; s0g as the interface
for the constraint net in Figure 4.1. An input/output automaton IOA can be constructed by

cascading SA to a transliteration g as shown in Figure 4.4. IOA de�nes a transduction from

input traces to output traces.
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*sSA oi g

IOA

Figure 4.4: An input/output automaton (s� denotes either s or s0)

Second, modules provide a exible way to generate di�erent systems from the same set of

components. To illustrate this idea, let us again consider input/output automata. In general,

an input/output automaton is a tuple hI;S; s0; fs;O; foi where I is the set of input values, S is

the set of states with s0 2 S as the initial state, fs : I �S ! S is a state transition function, O
is the set of output values and fo is an output function. However, there are two ways to de�ne

an output function, corresponding to two types of input/output automata, fo : I � S ! O
for Mealy machines [Mea55] and fo : S ! O for Moore machines [Moo56]. In a constraint

net model, a Mealy or Moore machine is derived by selecting di�erent output locations as the

interface of its state automaton module. If we select fi; s0g as the interface of SA, then IOA
is a Mealy machine with fs = f and fo = g � f . If we select fi; sg as the interface of SA, then
IOA is a Moore machine with fs = f and fo = g.

Third, modules capture the notion of abstraction through hidden locations. Hidden outputs

encapsulate internal structures of a system. However, the role of hidden inputs is not so

obvious. Consider again the state automaton in Figure 4.1. By hiding the only input location

i, we obtain a closed module representing a nondeterministic state transition system. More

speci�cally, the state transition function f de�nes a state transition relation R � S � S, such
that (s; s0) 2 R i� 9i 2 I; s0 = f(i; s), or equivalently, the set of next possible states of a state s

is ff(i; s)ji 2 Ig. In general, any module CN(I; O) with I � I(CN) de�nes a nondeterministic

system. Similar concepts have been explored in general systems theory [MT75]. We will discuss

more on nondeterministic behaviors of modules in Chapter 6, Behavior Analysis. Furthermore,

we can associate hidden locations with random distributions. Thus, while simpler than most

inherently nondeterministic models, the Constraint Net model can also incorporate probabilistic

and stochastic analysis.

4.2 Semantics of Constraint Nets

We have presented the syntactical structure of constraint nets, which is graphical and modular.

However, syntax only serves as a mechanism for creating a model, the meaning of which is not
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provided. There are many models with syntax similar to constraint nets (Petri Nets [Pet81] for

example) that have totally di�erent interpretations.

Since transductions are mappings from traces to traces, a constraint net denotes a set

of equations with locations as variables and transductions as functions; the semantics of the

constraint net should be a solution of the set of equations.

A set of equations may have no solution, or exactly one solution, or more than one solution.

For example, if x 2 R, x = x � 2 has no solution, x = 0:5x � 2 has one solution (�4), and
x = x2� 2 has two solutions (�1 and 2). The �xpoint theory of partial orders has been applied
to provide denotational semantics for programming languages and models [Hen88]: a program

or a model de�nes a function f and its semantics is the least solution of x = f(x), or the least

�xpoint of f .

In this section, we will �rst present the �xpoint theory of partial orders and then apply this

theory to provide a �xpoint semantics for the Constraint Net model.

4.2.1 Fixpoint theory of partial orders

A �xpoint of a function f can be considered as a solution of the equation x = f(x). The least

�xpoint is the least element in the �xpoint set.

De�nition 4.2.1 (Fixpoint and Least �xpoint) Let f : A ! A be a function on a partial

order A. An element a 2 A is a �xpoint of f i� a = f(a). It is the least �xpoint of f i�, in

addition, a �A a0 for every �xpoint a0 of f .

Least �xpoints, if they exist, are unique. The least �xpoint of f will be denoted by �:f .

The �rst �xpoint theorem is stated as follows.

Theorem 4.2.1 (Fixpoint Theorem I) Let A be a cpo. Every continuous function f : A!
A has a least �xpoint.

We shall provide the proof of this theorem next, since the proof itself is to construct the least

�xpoint.

Proof: De�ne xn
f
by induction on n:

x0f =?A ;
xn+1
f

= f(xn
f
):

x0
f
� x1

f
because x0

f
is the least element in A. Since f is monotonic (Proposition 3.1.10), we

have f(x0
f
) � f(x1

f
), i.e., x1

f
� x2

f
. Continuing this we have a chain

x0f � x1f � x2f : : :� xnf � : : : :
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Since A is a cpo, this chain has a least upper bound
W
A
fxn

f
jn � 0g, which we denote by xf .

Since f(xf ) =
W
A
ff(xn

f
)jn � 0g = W

A
fxn

f
jn � 1g = xf (Proposition 3.1.11), then xf is a

�xpoint of f .

We now show that xf is the least �xpoint. Suppose y is a �xpoint of f . We have: x0
f
� y

because x0
f
is ?A. Furthermore, suppose xn

f
� y, then xn+1

f
= f(xn

f
) � f(y) = y. Therefore

xk
f
� y for any k by induction. Thus, y is an upper bound for the chain fxn

f
jn � 0g. Hence,

xf � y.
Therefore, for a continuous function f : A! A, �:f =

W
A
ffn(?A)jn � 0g. 2

By extending f to a function of two arguments, we have the second �xpoint theorem.

Theorem 4.2.2 (Fixpoint Theorem II) Let A and A0 be two cpos. If f : A � A0 ! A0 is

a continuous function, then there exists a unique continuous function �:f : A ! A0, such that

for all a 2 A, (�:f)(a) is the least �xpoint of �x:f(a; x), or equivalently, 8a 2 A; (�:f)(a) =
f(a; (�:f)(a)).

The continuous function �:f : A! A0 is called the least �xpoint of function f : A�A0 ! A0 or

the least solution of the equation y = f(x; y).

Now we further investigate general properties of equations in complete partial orders.

Proposition 4.2.1 Let I � J be an index set. If f : �IAi ! A is a continuous function, then

the extension of f , f 0 : �JAj ! A satisfying f 0(a) = f(ajI), is a continuous function.

Proposition 4.2.2 Let ffk : �JAj ! Akgk2K be a family of continuous functions. Then

~f : �JAj ! �KAk with ~f(a)k = fk(a) is a continuous function.

Proposition 4.2.3 If ~f : �JAj ! �KAk is a continuous function, K � J and I = J � K,

then ~f has a least �xpoint �:~f : �IAi ! �KAk.

Proposition 4.2.4 Let X be a set of variables and O � X a set of output variables. Let ffo :
�IoAi ! Aogo2O be a set of continuous functions. Then the set of equations fo = fo(~x)go2O
with ~x : Io ! X has a least solution.

A set of equations can also be written as ~o = ~f(~i; ~o) where ~i is a tuple of input variables and ~o

is a tuple of output variables. If ~f is continuous, then its least �xpoint is a continuous function,

denoted �:~f .
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4.2.2 Semantics of constraint nets

In this section, we de�ne the �xpoint semantics of constraint nets. Let � = hS; F i be a

signature and c 2 S be a special sort for clocks. A constraint net with signature � is a triple

CN� = hLc; Td; Cni where
� each location l 2 Lc is associated with a sort s 2 S, the sort of location l is written as sl;

� each transduction F 2 Td is a basic transduction or an event-driven transduction, the

sorts of the input and output ports of F are as follows:

1. if F is a transliteration of a function f : s� ! s 2 F , the sort of the output port is s
and the sort of the input port i is s�(i);

2. if F is a unit delay �s or a transport delay �s, the sort of both input and output

ports is s;

3. if F is an event-driven transduction, the sort of the event input port is c, the sorts

of the other ports are the same as its primitive transduction.

Let D(T ; A) = hV ;Fi be a �-dynamics structure. CN� on hV ;Fi denotes a set of equations
fo = Fo(~x)go2O(CN), such that for any output location o 2 O(CN),

� Fo is a continuous transduction in F whose output port connects to o,

� ~x is the tuple of input locations of Fo, i.e., the input port i of Fo connects to location

~x(i).

The semantics of a constraint net is de�ned as follows.

De�nition 4.2.2 (Semantics) The semantics of a constraint net CN on a dynamics structure

hV ;Fi, denoted [[CN ]], is the least solution of the set of equations fo = Fo(~x)go2O(CN), given

that Fo is a continuous transduction in F for all o 2 O(CN); it is a continuous transduction

from the input trace space to the output trace space, i.e., [[CN ]] : �I(CN)A
T
si
! �O(CN)A

T
so
.

Given any set of output locations O, the restriction of [[CN ]] onto O, denoted [[CN ]]jO :

�I(CN)A
T
si
! �OATso , is called the semantics of CN for O. For example, the constraint net in

Figure 4.1 denotes equations s0 = f(i; s) and s = �(s0)(s). Given a discrete time structure N ,

a domain I for inputs and a domain S for states, the semantics for s is F : IN ! SN such

that F (v)(0) = s0 and F (v)(n) = f(v(n� 1); F (v)(n� 1)).

The nonintermittent and right-continuous transductions are closed under all types of com-

position.
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Proposition 4.2.5 If a constraint net is composed of nonintermittent transductions, then its

semantics is nonintermittent. If a constraint net is composed of right-continuous transductions,

then its semantics is right-continuous.

The semantics of a subnet can be extended.

Proposition 4.2.6 If CN 0 is a subnet of CN , [[CN ]]jO(CN 0)(~i) = [[CN 0]](~ijI(CN 0)).

4.2.3 Semantics of modules

We have de�ned the semantics of a constraint net as a transduction. We now de�ne the

semantics of a module as a set of transductions.

De�nition 4.2.3 (Semantics of modules) Given that the semantics of a constraint net CN

is [[CN ]] : �I(CN)A
T
si
! �O(CN)A

T
so
, the semantics of a module CN(I; O) is [[CN(I; O)]] =

fFu : �IATsi ! �OATsogu2U where Fu(i) = [[CN ]]jO(u; i) and U � �I(CN)�IA
T
si

is the set of

well-de�ned hidden input traces.

For example, if locations i and s0 in Figure 4.1 are hidden, the semantics of the module is a set

of traces fF (i)gi2IN .
The semantics of a composite module can be derived from the semantics of its components.

Proposition 4.2.7 Following are some properties associated with module operations:

� Union: If CN(I; O) = CN1(I1; O1) k CN2(I2; O2), then

[[CN(I; O)]] = [[CN1(I1; O1)]]� [[CN2(I2; O2)]]:

� Cascade connection: If CN(I; O) = CN2(I2; O2) � CN1(I1; O1), then

[[CN(I; O)]] = fF2 � F1jF1 2 [[CN1(I1; O1)]]; F2 2 [[CN2(I2; O2)]]g:

� Parallel connection: If CN(I; O) = CN1(I1; O1) + CN2(I2; O2), then

[[CN(I; O)]] = fhF1; F2ijF1 2 [[CN1(I1; O1)]]; F2 2 [[CN2(I2; O2)]]g

where hF1; F2ijO1
(i) = F1(ijI1) and hF1; F2ijO2

(i) = F2(ijI2).

� Feedback connection: If CN 0(I 0; O0) = F(CN(I;O)), then

[[CN 0(I 0; O0)]] = f�:F jF 2 [[CN(I; O)]]g

where �:F is the the least �xpoint of F .
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Now we discuss the well-de�nedness of systems. A constraint net CN is well-de�ned i� its

semantics, transduction [[CN ]], is well-de�ned. For example, the constraint net in Figure 4.1,

given a well-de�ned function f and with a discrete time structure, is well-de�ned. A module

is well-de�ned i� all the transductions in its semantics are well-de�ned. If a constraint net is

well-de�ned, all its modules are well-de�ned.

The well-de�nedness of modules is closed under some module operations.

Proposition 4.2.8 If CN1(I1; O1) and CN2(I2; O2) are well-de�ned modules, then CN1(I1; O1)

k CN2(I2; O2), CN1(I1; O1)�CN2(I2; O2) and CN1(I1; O1)+CN2(I2; O2) are well-de�ned mod-

ules.

However, well-de�nedness is not closed under the feedback operation.

There is a relationship between the well-de�nedness of a constraint net and the strictness

of transductions in the constraint net, which is derived from the following property of strict

continuous functions.

Proposition 4.2.9 Let A and A0 be two cpos. If f : A � A0 ! A0 is a strict continuous

function w.r.t. its second argument, then the least �xpoint of f , or the least solution of the

equation o = f(i; o), is unde�ned.

For example, let +; � : R � R ! R be strict extensions of + and �, respectively. Let +; � :
RT �RT ! RT

be the corresponding transliterations. The least solution of x = 0:5x+ 2 on

D(T ;R) is unde�ned, even though �t:4 is a well-de�ned solution.

In general, a net is not well-de�ned if there is an algebraic loop.

De�nition 4.2.4 (Algebraic loop) Let CN be a constraint net. A location l is strictly

dependent on a location l0 in CN , written l l0, i�: (1) there is a transduction F in CN such

that l is the output location of F , l0 is an input location of F , and F is strict w.r.t. the input

port (indicating an input argument) that connects with l0; or (2) 9l00 : l  l00; l00  l0. CN has

an algebraic loop on a location l i� l l.

Proposition 4.2.10 A module CN(I; O) is not well-de�ned if there is an output location l 2 O
such that CN has an algebraic loop on l.

A common strategy to break an algebraic loop is to insert a delay. For example, by inserting

a unit delay �(0) to the equation x = 0:5x + 2, we have y = 0:5x + 2; x = �(0)(y): Let N
be the time structure. The semantics of the net for x is a sequence 0; 2; 3; 3:5; 3:75; : : : and
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limn!1 x(n) = 4. Note that 4 is a solution of x = 0:5x + 2 on R. In general, a well-de�ned

solution of x = f(x) for a continuous function f can be computed via a relaxation method:

x(n+ 1) = f(x(n)) = fn+1(x(0)) if limn!1 fn(x0) is well-de�ned, and any relaxation method

can be modeled as a state automaton in constraint nets. We will discuss this type of computation

further in Part III.

4.2.4 Parameterized nets

In this section, we introduce parameterized nets and discuss the limiting semantics of parame-

terized nets.

A system may have qualitatively di�erent properties with respect to di�erent parameters. A

parameter is a variable in a transduction whose value does not change over time. For example,

mass, friction coe�cient, initial state, time delay, gain and threshold are typical parameters of

robotic systems. Let CN be a constraint net and P be a set of parameters in CN . We use

CNP and CNP (I; O) to denote a parameterized net and a parameterized module, respectively.

Associated with each parameter p 2 P is a set of values Dp; �PDp is called the parameter

space. The semantics of a parameterized net CNP is de�ned as follows.

De�nition 4.2.5 (Semantics of parameterized nets) The semantics of a parameterized net

CNP , denoted [[CNP ]], is a mapping from the parameter space to the set of transductions, i.e.,

[[CNP ]] : �PDp ! (�I(CN)A
T
si
! �O(CN)A

T
so
) such that for any parameter tuple v 2 �PDp,

[[CNP ]](v) = [[CN [v=P ]]] where CN [v=P ] denotes that each p 2 P in CN is replaced by its

corresponding value v(p).

The semantics of a parameterized module CNP (I; O), denoted [[CNP (I; O)]], is a function of

parameters as well: [[CNP (I; O)]](v) = [[CN(I; O)[v=P ]]].

There are at least two reasons to introduce parameterized nets.

First, a system can be modeled and analyzed against its parameters. A property of a system

may change qualitatively when the value of its parameters changes from one to another. For

example, let k be a gain parameter with Dk = R, and y = kx + 2; x = �(0)(y) be a net on

dynamics structure D(N ;R). The semantics for x is a sequence 0; 2; 2k + 2; : : :. If jkj < 1,

we have limn! x(n) = 2
1�k

; if jkj � 1, we have limn!1 x(n) =?R. In general, limn!1 fn(x0)

exists in R, if f is a contractor [MA86], i.e., 9k < 1; jf(x)� f(y)j � kjx � yj. A qualitative

property is stable w.r.t. its parameter i� the parameter region that supports the property is

open. In the previous example, the convergent property is stable since fkjk 2 R; jkj < 1g is
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open. Intuitively, a stable property means that a small change in the value of its parameters

will not cause a qualitative change of the property.

Second, limiting semantics can be de�ned. Let P be a set of parameters, �PDp be the

parameter space, and ��PDp be a partial order relation. If h�PDp;��PDpi is a linear order, and
CNP is a closed parameterized net whose semantics is a mapping [[CNP ]] : �PDp ! �LcATsl ,
the limiting semantics of CNP w.r.t. the parameter set P , written [[CN�]], is de�ned as the

limit of the linear set of traces [[CNP ]], i.e., [[CN�]] = lim[[CNP ]].

In�nitesimal is an important parameter for limiting semantics. Let � be a parameter with

D� = (0; 1)� R. Let �D� be a partial order relation such that �1 �D� �2 i� �2 �R �1. hD�;�D�i
is a linear order. The limiting semantics of CN � w.r.t. � is lim�!0[[CN

�]]. We call such a

parameter � an in�nitesimal. For example, let CN �, with parameter � as an in�nitesimal, be a

closed parameterized net denoting y = f(x); x = �(�)(x0)(y) on D(R+;R). If f = �x:x, then

x = �t:x0; if f = �x:(�x) and x0 6= 0, then x(t) =?R for all t > 0.

4.2.5 Temporal integration

So far we have no de�nition for temporal integration, the most important type of transduction

on continuous time structures. We now de�ne temporal integration on vector spaces and provide

the semantics of constraint nets with temporal integration using limiting semantics.

A vector space [War72] is a set X associated with the functions sum and product: + :

X �X ! X and � : R�X ! X and with 0X 2 X satisfying the following conditions:

x+ y = y + x; (x+ y) + z = x + (y + z);

�(x+ y) = �x+ �y; (�+ �)x = �x+ �x;

�(�x) = (��)x; x+ 0X = x; 0x = 0X ; 1x = x:

Let �Ixi denote the sum of all elements in fxigi2I . A topological vector space is a vector space

with a topology such that + and � are continuous functions.
Let U be a vector space with functions + : U � U ! U and � : R� U ! U continuous in

metric topology. Temporal integration
R
(s0) : U

T ! U
T
with an initial state s0 2 U can be

de�ned as follows.

Let + and � be strict extensions.
Given that T is a discrete time structure, for all t > 0, pre(t) denotes the previous time

point. Temporal integration is de�ned as follows:Z
(s0)(u) = �t:

(
s0 if t = 0

�0<t0�t�([pre(t
0); t0)) � u(pre(t0)) otherwise:
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We can represent
R
(s0) as the least solution of the following equation

s = �(s0)(s) + dt � �(0)(u)

where

dt = �t:

(
0 if t = 0

�([pre(t); t)) otherwise:

This equation can be represented by a constraint net that computes temporal integration on

discrete time structures.

Given that T is an arbitrary time structure, temporal integration is de�ned as follows: Let

Te be a discrete sample time of T , generated by an event trace e with e = �(�)(0)(:e) for
an in�nitesimal �. Let ints0(u; s) = �(s0)(s) + dt � �(0)(u). Temporal integration R (s0) can be

computed by a module CN(u; s) where CN denotes the following two equations:

s = int�s0(e; u; s); e = �(�)(0)(:e)

with � > 0 as an in�nitesimal.

This de�nition can be considered as derived by the forward Euler method; however, we are

interested in semantics, rather than numerical simulation of di�erential equations.

As an example, let us investigate the limiting semantics of the net in Figure 4.2 with U

as R, T as R+ and f : R ! R where f = �s:(�s) is a strict function. This closed net is

represented by three equations:

s = int�s0(e; u; s); e = �(�)(0)(:e); u = �s:

The solution for e is:

e = �t:

(
0 if b t

�
c is even

1 otherwise:

The solution for s is the least solution of s = int�s0(e;�s; s). Following the proof of Fixpoint
Theorem I, let s0 = �t: ?R be the least element, then we have

s1 = int�s0(e;�s0; s0) = �t:

(
s0 if t < �

?R otherwise;

s2 = int�s0(e;�s1; s1) = �t:

8><
>:
s0 if t < �

s0 � �s0 if � � t < 2�

?R otherwise;

...
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sk+1 = int�
s0
(e;�sk; sk) = �t:

8>>>>>><
>>>>>>:

s0 if t < �

s0 � �s0 if � � t < 2�
...

(�k

i=0(�1)iCi

k
�i)s0 if k� � t < (k+ 1)�

?R otherwise:

Let s =
W
R
R+ fskg. Then s = �t:sb

t
�
c+1(t) is the least solution of the equation s = int�

s0
(e;�s; s).

The limiting semantics of the net for s is s� = �t: lim�!0 s(t) = �t: lim�!0(�
k

i=0(�1)i k!
i!(k�i)!

�i)s0

where k = b t
�
c, i.e., s� = �t:(�1

i=0(�1)i t
i

i!
)s0 = �t:s0e

�t, which is the solution of _s = �s.
Some remarks follow about this semantics of constraint nets with temporal integration.

First, limiting semantics only applies to a closed parameterized net and is not composite.

For a constraint net with more than one temporal integrator, we will use a single in�nitesimal

for all the temporal integrators.

Second, temporal integration in constraint nets is de�ned on any time structure, discrete or

continuous, and any vector space, numerical or symbolic.

Third, in general, a set of di�erential equations can have no solution or more than one

solutions. The limiting semantics produces a unique solution in any case, which might not

be well-de�ned. For example, _x = 2
p
x with x(0) = 0 on dynamics structure D(R+;R)

has in�nitely many solutions; two signi�cant ones are x = �t:0 and x = �t:t2. However, the

limiting semantics gives only x = �t:0. For another example, _x = 1
2x

with x(0) = 0 on dynamics

structure D(R+;R) has two normal solutions x = �t:
p
t and x = ��t:pt. However, the limiting

semantics gives an unde�ned one x = �t: ?R. In the next chapter, we will come back to this

issue and discuss the conditions under which the constraint net produces the \correct" solution.

We can also de�ne three variations of temporal integration: (1) temporal integration with

bounds, (2) temporal integration with reset, and (3) integration against another trace on domain

R.
A bounded temporal integration, denoted

R
hm;Mi

(s0), ensures that the output values at all

time points are between m and M , i.e., 8u; t;m � R
hm;Mi

(s0)(u)(t) � M . We can realize this

restriction by simply letting

ints0(u; s) = min(max(�(s0)(s) + dt � �(0)(u); m);M)

where \min" and \max" are strict continuous extensions of conventional \min" and \max,"

respectively.

A reset temporal integration, denoted
R
r
(s0), is a transduction of two arguments with the

second argument as an event input.
R
r
(s0)(u; c) sets the output value back to s0 whenever there



CHAPTER 4. THE CONSTRAINT NET MODEL 58

is an event at c. A reset temporal integration can be realized as follows. Let

ints0(u; c; s) = cond(c; �(0)(c); �(s0)(s) + dt � �(0)(u); s0)

where cond is the conditional function de�ned in Equation 3.1. The reset temporal integra-

tion
R
r
(s0) can be computed by a module CN(fu; cg; s) where CN denotes the following two

equations:

s = int�
s0
(e; u; c; s); e = �(�)(0)(:e)

where � > 0 is an in�nitesimal.

A trace-based temporal integration, denoted
R
t
(s0), is a transduction of two arguments with

the second argument as a trace on domain R. R
t
(s0)(u; v), also denoted

R
(s0)(u)d(v), integrates

u against the changes of v. A trace-based temporal integration can be realized as follows. Let

ints0(u; v; s) = �(s0)(s) + dv � �(0)(u)

where

dv = �t:

(
0 if t = 0

v(t)� v(pre(t)) otherwise:

The trace-based temporal integration
R
t
(s0) can be computed by a module CN(fu; vg; s) where

CN denotes the following two equations:

s = int�s0(e; u; v; s); e = �(�)(0)(:e)

where � > 0 is an in�nitesimal.

4.3 Summary

We have presented CN, a formal model for hybrid dynamic systems. The syntax of CN is

graphical and modular, and the semantics of CN is denotational and composite. The modular

aspect of CN not only provides hierarchical structures of system composition, but also provides

a simple and general concept for nondeterminism. The �xpoint semantics provides a rigorous

and straightforward interpretation for the meaning of CN. Furthermore, parameterized nets and

temporal integration increase the representational power of CN. As a result, CN can be used

to model a discrete/continuous hybrid dynamic system with various event-driven components,

while events can be generated and synchronized within the system. In the next chapter, we will

focus on some typical types of event computation and then discuss modeling aspects of CN via

examples.



Chapter 5

Modeling in Constraint Nets

A dynamic system is de�ned on a dynamics structure D(T ; A) where T is a time structure and

A is a domain structure; the time and domain structures can be either continuous or discrete.

Table 5.1 shows examples of the four basic types of model for dynamic systems. We call a

dynamic system composed of components of more than one basic type a hybrid system.

We have developed Constraint Nets (CN) as a formal model for hybrid dynamic systems.

A hybrid dynamic system consists of modules with di�erent time structures, with its domain

structure multi-sorted. A typical hybrid domain structure would include a continuous domain

R and a discrete or �nite domain S, with associated functions. A typical reference time for a

hybrid dynamic system is the set of nonnegative real numbers R+. Event-driven modules can

be associated with di�erent clocks, characterizing di�erent sample time structures generated

by event traces. An event trace can be either of �xed sampling rate, or created by some event

generator that responses to changes of its inputs. Multiple event traces can also be combined to

generate other event traces. Typical event interactions are \event or," \event and," and \event

select" that can be de�ned in terms of event logics. With event logic modules, asynchronous

components can be coordinated.

In this chapter, we �rst focus on some general issues on event control logics and typical

event generators and synchronizers. We then illustrate constraint net modeling via an example

Table 5.1: Basic types of model for dynamic systems

Dynamic Systems Discrete Time Continuous Time

Discrete Domain Finite State Machines Asynchronous Circuits

Continuous Domain Di�erence Equations Di�erential Equations

59
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that characterizes the features of CN. Finally, we discuss the power of CN in terms of both

discrete and continuous computation.

5.1 Event Generators and Synchronizers

Introducing event-driven transductions makes a simple and unitary model for arbitrary event-

triggered components as well as for various components with �xed sampling rates. Furthermore,

events can be generated and synchronized within the model. In this section, we discuss some

typical event generators and synchronizers for modeling, programming and design.

5.1.1 Event generators

An event generator is a transduction whose output is an event trace. For example, e =

�(ts)(0)(:e) is an event generator whose output is an event trace of �xed sampling rate.

There are event generators with its output capturing the changes of its input. For example, a

transition is generated whenever a certain property becomes true.

We introduce some basic modules that will be used mostly for event control.

δ(0)
NE

ne

δ(0)

ne1

NE1
δ(0)

G

g

(a) (b) (c)

i ii
o o

o

Figure 5.1: Basic modules for event logics

Let cond be the conditional function de�ned in Equation 3.1.

� Module NE(i; o) (Figure 5.1(a)) is composed of a unit delay and a transliteration ne

where ne : B � B ! B is de�ned as ne(x; y) = cond(x; y; 0; 1).

� Module NE1(i; o) (Figure 5.1(b)) is the same as NE(i; o) except that ne is replaced by

ne1 : B � B ! B, ne1(x; y) = cond(x; y; 0; cond(x; 1; 1; 0)).

� Module G(i; o) (Figure 5.1(c)) is composed of a unit delay and a transliteration g where

g : B � B ! B is de�ned as g(x; y) = cond(x; 0; y;:y).
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(As a matter of fact, both ne and g are �, an \exclusive or".) If the reference time is not

discrete, unit delays in these modules are performed at a fast (relative to its inputs and/or

outputs) �xed sampling rate.

Note that both NE and NE1 are nonintermittent and right-continuous. Furthermore, G

is an event generator, and any cascade connection to G is an event generator. For example,

\rising transition" | an event generator that generates an event whenever its input changes

from 0 to 1 | is a cascade connection of NE1 to G, i.e., G �NE1.

5.1.2 Event synchronizers

An event synchronizer is a transduction that maps event traces to new event traces. For

example, \event or" (Figure 3.2) is an event synchronizer that merges events in its two input

traces as long as no two events happen at the same time.

Now let us consider \event and" (Figure 5.2), another important event synchronizer. The

e1

t

e2

t

t

e1 and e2

Figure 5.2: Event logic for \and"

Muller C-element [Sut89] acts as the \and" for events: if both of its inputs are of the same

value, the output and its next state are copies of that value, otherwise the output and its next

state are unchanged. The Muller C-element can be modeled as a state automaton (Figure 4.1)

with a state transition functionmc : B�B�B ! B,mc(i1; i2; s) = cond(i1; i2; i1; s): The Muller

C-element is a module with i1; i2 and s
0 as the interface, i.e., a Mealy machine. We can verify

that the transduction of the Muller C-element is indeed nonintermittent and right-continuous;

therefore, its output is an event trace as long as its inputs are event traces.
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We should also notice, according to the de�nition, that the Muller C-element works as

\event and" only for inputs with the following properties:

1. both inputs start at the same value (0 or 1), and

2. the order of events in two inputs are paired such that exactly one event in each pair is

produced by one of its inputs.

Only after an event takes place on both of its inputs will the output produce an event, i.e.,

an event in the output corresponds to the second event in a pair of input events. The Muller

C-element generalizes easily to three or more inputs. Such elements are also called rendezvous

elements [Sut89].

Although the absolute value (from 0 to 1, or 1 to 0) of a transition in a single event trace

does not matter, the value relative to other related traces does matter. Thus, it is sometimes

important to invert transition signals. We use the standard \and" logic symbol with a \C"

inside it to represent Muller C-elements and \bubbles" on input or output ports to represent

inversions.

\Event and" elements have been used to coordinate asynchronous events in distributed

systems [Sut89]. Consider a simple 1-bu�ered producer-consumer problem. Both producer

and consumer are processes that repeat the following two steps: ask the synchronizer to grant

permission for an action (to produce or to consume), and then whenever the request is granted,

do the action (the producer produces or the consumer consumes a product).

In Figure 5.3, R1 is the request from the producer and R2 is the request from the consumer.

We use clock C1 to grant the producer and clock C2 to grant the consumer. Assume that either

producing or consuming takes time � . Two negated Muller C-elements (with initial state 0)

and two transport delays are used to synchronize events.

Requests from R1 and R2 may arrive asynchronously. Given that R1 starts at 0 and R2

starts at 1, we can check by hand that C1 generates a new event i� there is a transition at

R1 and the bu�er is empty (C1 = C2). C2 generates a new event i� there is a transition at

R2 and the bu�er is full (C1 6= C2). In Part II, we will provide formal speci�cation languages

for declaring desired properties of a given system and explore formal veri�cation methods for

checking the correctness of the given system.

\Event �lter" is an event synchronizer that selects events from its two event inputs according

to the value in its �rst input. Figure 5.4 is a module for an \event �lter" element that is

composed of basic modules NE and G as well as a transliteration f de�ned as f(b; x; y) =

cond(b; 0; x; y).
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Figure 5.3: A producer-consumer event synchronizer

NE

NE

Gf

FILTER

Figure 5.4: An event �lter
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Similarly, \event select" is an event synchronizer that steers events in its second input to

one of two of its outputs according to the value in its �rst input. Figure 5.5 is a module for an

\event select" element that is composed of basic modules NE and G as well as a transliteration

s de�ned as s(b; x) = cond(b; 0; hx; 0i; h0; xi).

NE G

G

s

SELECT

Figure 5.5: An event select

FILTER (resp. SELECT) can be extended to three or more input (resp. output) event

traces.

In this way, we can also model all the event logic elements described in Sutherland's paper

[Sut89], such as \Switch," \Event-Controlled Storage Element" (ECSE), \Toggle," \Arbiter,"

etc.

5.2 Modeling Hybrid Systems

A robotic system is a hybrid system in general, which is an integration of a plant with continuous

dynamics, a continuous/discrete hybrid controller, and a possibly changing environment (Figure

1.1).

Let us consider an example, a car-like maze traveler. Suppose a maze is composed of blocks

of bounded size placed on an unbounded plane. A car-like robot with two touch sensors, forward

sensor SF and right-side sensor SR (Figure 5.6(a)), is required to traverse the maze from west

to east (Figure 5.6(b)).

As any robotic system, this system consists of a plant, a controller and an environment.

The plant is the body of the car-like robot, which can move forward/backward by setting a

speed v and can make turns by steering two front wheels to some angle �. The environment is

the maze, and the controller connects sensor signals and motor commands (Figure 5.7).

The plant of the robot has been modeled as a constraint net in Figure 1.2 on dynamics

structure D(R+;R). The environment can be modeled as a transliteration that maps any
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Figure 5.6: (a) The car-like robot (b) Traveling through a maze
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Figure 5.7: The maze traveler robotic system
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con�guration of the car-like robot (hx; y; �i 2 R � R�R) to sensor signals (SF; SR 2 B) over
time (continuously). If the robot is facing (or to the left of) a wall within some distance, the

forward (or right) sensor SF (or SR) is on, i.e., SF = 1 (or SR = 1); otherwise it is o�, i.e.,

SF = 0 (or SR = 0).

The simplest strategy for a robot to move out of a maze is to follow a wall with one side (e.g.,

the right side) [Ad81]. Starting at any position with the correct heading j�j < � (e.g., east), the

robot is always moving forward until it hits a wall (SF becomes on). Whenever it hits a wall,

it turns left (� = �+ �

2
), with its right side against the wall, and moves forward. Whenever the

right side is o� the wall (SR becomes o�) and the heading is not correct (j�� �

2
kj < �; k > 0),

it turns right (� = � � �

2
), again with its right side against the wall, and moves forward, � � �.

This strategy can be modeled as a transliteration that maps the heading of the car and the

sensor signals h�; SF; SRi to a control signal c 2 f0;�1; 1g where 0 means \continuing in the

current direction," �1 means \turning right" and 1 means \turning left:"

j� � �

2
kj < �; k > 0 : if SR = 0 then c = �1

elseif SF = 1 then c = 1

else c = 0

j�j < � : if SF = 1 then c = 1

else c = 0

We will see that (in Part II) if the car is not in a closed block and if there is always enough

space for the robot to turn, the robot will move in the correct direction (j�j < �) persistently.

This strategy is made in discrete time, but without any �xed sampling rate, since it may

not be known how long the car takes to turn to the next direction, and how long before it hits

a wall or moves o� a wall. Therefore, the strategy should be event-driven. There are three

types of event: (1) � enters f(�
2
k� �; �

2
k+ �)jk = 0; 1; 2 : : :g, (2) SF changes from 0 to 1 or (3)

SR changes from 1 to 0. \Rising transition" elements are used to generate these events and

\event or" elements are used to synchronize these events. An event generator (Figure 5.8(a))

is created by combining these elements.

As a result, the control circuit is composed of the event generator, the event-driven strategy

module and an actualizer (Figure 5.8(b)), which, for simplicity, is set to be v = 1 and � = �

4
c.

Even though it is a simple hybrid system, in order for the system to work properly, we have

to consider the interface between discrete and continuous domains carefully.

� The \event or" logic works correctly only when no two events happen at the same time.
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Figure 5.8: (a) Event generator (b) Control circuit
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In this example, we assume that the sizes of the blocks and the spaces between the blocks

are much larger than the size of the car.

� The error angle � should be assigned based on the sizes of the blocks and the turning

radius. Given that the steering angle � is �=4 and the length of the car is L, the turning

radius R becomes L (since R = L= tan�). Let the maximum size of blocks be M . We

have � < L=M so that the car will not hit the right wall when it moves forward with some

error � in its heading.

� The front and right sensor ranges are designed according to the the sizes of the blocks,

the turning radius and the error angle. Let the turning radius be L and � < L=M . If

the initial distance from the right wall is L, the distance from the right wall will always

be less than 2L when it moves forward with some error � in its heading. Therefore,

suppose DF is the distance between the front of the car and the front wall, and DR is

the distance between the right side of the car and the right wall, we have SF = DF � L
and SR = DR < 2L (so that SR will not be o� because of error � in its heading).

These problems seem particular to this special design and the solutions seem ad hoc. However,

similar situations, such as choosing errors, thresholds, gains, sampling rates, etc., would be

encountered in the design of every hybrid system. In Appendix C, we will study more examples

of hybrid system design and analysis. In Part III, we will design a more complex control system

for the car-like robot.

5.3 Power of Constraint Nets

Any computational model is suitable for representing a certain type of computation. For ex-

ample, Turing machines are used to represent sequential computation and analog circuits are

used to represent parallel and continuous computation. The Constraint Net model (CN) is an

abstraction of models for dynamic systems. Even though CN is inherently parallel, sequential

computation can also be modeled. In this section, we �rst focus on sequential computation in

CN and then discuss continuous computation in CN.

5.3.1 Sequential computation

We model any sequential computation as a module with an event input indicating the start of

a computation and an event output indicating the end of the computation (Figure 5.9). The
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time duration between the start and the end of the computation is variable, depending on the

input data. We call such a module a sequential module.

Start End

Data_In Data_Out

F

Start

End

Figure 5.9: A sequential module

A transliteration f is modeled as a sequential module with End = Start and Data Out =

f(Data In), i.e., there is no time delay in a transliteration. A functional composition of two

sequential computations is modeled as a cascade connection of the two sequential modules

(Figure 5.10).

Start

Data_In Data_Out

End

F G

Figure 5.10: A functional composition G � F

Let g : A! A0 and h : N �A�A0 ! A0 be functions. A recursive function f : N �A! A0

based on g and h can be de�ned as f(0; x) = g(x); f(n+ 1; x) = h(n; x; f(n; x))). Given that

g and h are computed by sequential modules G and H, respectively, a sequential module for f

can be constructed as follows.

Let COUNTER be a module with two event inputs and one output on domain N . The �rst

event input resets the output to zero and the second event input increases the output value

by one. COUNTER(fc1; c2g; n) (Figure 5.11) is composed of module NE (Figure 5.1(a)), two

transliterations suc and cond, and an event-driven unit delay ��(0), where

suc(n) =

(
?N if n =?N
n + 1 otherwise

is a successor function.

The sequential module for f (Figure 5.12) is composed of sequential modules G and H,

modules COUNTER, FILTER and SELECT, and transliteration cond. Unit delays are also
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c1

c2

NE

cond

δ(0)

n

suc

COUNTER

0

0

Figure 5.11: An event counter

added to avoid algebraic loops. We can see that in order to compute f(n; x), the sequential

module G will be triggered initially and the sequential module H will be triggered up to n � 1

times.

A function f : A! N is de�ned using theminimization operation on a function g : N�A!
N if:

f(x) =

(
minfnjg(n; x) = 0g if the set is not empty

?N otherwise:

Thus, f(x) is de�ned as the smallest n for which g(n; x) = 0 if there is such an n; it is otherwise

unde�ned. Given that g is computed by a sequential module G, a sequential module for f can

be constructed as in Figure 5.13. If f(x) = n 2 N , the sequential module G will be triggered

n + 1 times, otherwise G will be triggered in�nitely many times and there will be no event

generated in End.

Therefore, given a set of basic functions and their sequential modules, the set of functions

closed under functional composition, recursive schemes and minimization operations can be

computed by sequential modules. In fact, this set is large enough to include all the computable

functions given a small set of basic functions. It is well known that the set of Turing computable

functions is equal to the set of partial recursive functions. A function f is de�ned partial-

recursively i� [Yas71]:

� it is the constant 0, the successor function suc, or a projection function proji,

proji(x1; : : : ; xi; : : : ; xn) = xi;

or

� it is de�ned as a functional composition of functions de�ned partial-recursively; or
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H

h

g

G

cond

FILTER

cond

SELECT

f

cond

COUNTER

n

x

δ(0)

δ(0)

0

0
0
1

0
1

Start

End

Figure 5.12: A sequential module for a recursive function
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G

x

SELECT

condδ(0)

g

COUNTER f

0
0
1

Start
End

Figure 5.13: A sequential module for the minimization operation

� it is de�ned as a recursive function based on functions de�ned partial-recursively; or

� it is de�ned using the minimization operation on a function de�ned partial-recursively.

A function f is a partial recursive function if it equals a function that is de�ned partial-

recursively.

Theorem 5.3.1 Let �n = hfng; f0; suc; condgi be a signature. A partial recursive function

can be computed by a sequential module on �n-dynamics structure D(N ;N ) where N denotes

the �n-domain structure hfNg; f0; suc; condgi.

Finishing up this section on sequential computation, we give two more examples used mostly

in concurrency and real-time models.

� Internal choice A + B: either A or B will be computed. Figure 5.14 is a sequential

module for this scheme, where id is an event-driven transliteration of an identity function

id = �x:x and location n is a hidden input with Boolean domain.

Internal choices are often used for modeling nondeterminism in concurrent systems.

� External choice C ! AjD ! B: if an event in C comes before an event in D, A is

computed, otherwise B is computed. Figure 5.15 is a sequential module for this scheme,
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A

B

SELECTStart

n id

FILTER

cond

End

0

Figure 5.14: A sequential module for internal choice A+ B

C

D

FIRST

FILTER

FILTER

B

A

Start

cond

SELECT End

0

0 0

Figure 5.15: A sequential module for external choice C ! AjD! B
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where FIRST is a module that outputs 0 if an event in C comes �rst and 1 if an event in

D comes �rst.

Module FIRST (Figure 5.16) is composed of a transliteration cond for resetting the state

whenever there is an event in Start, a transliteration of state transition function f de�ned

as f(hc; di; hsc; sdi) = hsc_c^:sd; sd_d^:sci, and a transliteration of an output function
g de�ned as g(hsc; sdi) = :sc ^ sd. Note that events in c have higher priorities for this

de�nition of g, i.e., if events in c and d come at the same time, the event in c will be

selected.

NE
cond

fδ(<0,0>) c

d

sc s
d<    ,     >

Start

NE

NEg

FIRST

1
<0,0>

Figure 5.16: The FIRST module

External choices are often used for modeling time-out in real-time systems. For example,

if C is a module that generates time-out events (Figure 5.17), C ! AjD! B means that

if D generates an event before time-out, B will be executed, otherwise A will be executed.

>= τ
Start

(0)
r

1

TIMEOUT

Figure 5.17: The TIMEOUT module

5.3.2 Analog computation

We have seen that the Constraint Net model (CN) can represent sequential computation as

well, by using events to coordinate the order of computation. However, in general, CN is used
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for modeling computation over time, i.e., relationships between input traces and output traces.

If a constraint net CN is closed, the semantics of CN is simply a trace, i.e., a function of time.

Many functions that are not easy to model in sequential computation are easy to compute as

traces. For example, �t:Cekt is the solution of a constraint net x =
R
(C)(kx); �t:hsin(t); cos(t)i

is the solution of a constraint net x =
R
(0)(y); y =

R
(1)(�x). In the rest of this section,

we will ask two questions. First, given a set of basic functions on R, say + and �, what is
the set of traces that can be represented as solutions of di�erential equations? Second, given

di�erential equations modeled in constraint nets, what is the relationship between the semantics

of constraint nets and the solutions of the di�erential equations?

The �rst question was answered by Shannon. Here we present a variation of the results in

[Sha41]. Let T = [t0; t1] � R. A trace x : T ! R can be obtained as a solution of a set of

di�erential equations composed of only + and �, i� x = x1 can be written as:

_xk = Pk(t; x1; : : : ; xn) = �iait
i0xi11 : : :x

in
n k = 1; : : : ; n (5:1)

where the i's denote natural numbers. We use P 's to denote polynomial functions. The question

is then reduced to: what is the set of functions that can be written in Equation 5.1? It has

been shown [Sha41] that this set is equal to the set of non-hypertranscendental functions.

A function x = �t:f(t) is non-hypertranscendental i� it can be written as

P (t; x; _x; �x; : : :; x(n)) = �iait
i0xi1( _x)i2(�x)i3 : : : (x(n))in+1 = 0: (5:2)

Proposition 5.3.1 [Sha41] Equations 5.1 and 5.2 are equivalent, i.e., a function written in

one form can be transformed into another.

Most common analytic functions are non-hypertranscendental [Sha41] such as exponential

and logarithmic, trigonometric and hyperbolic, Bessel functions, elliptic functions, probability

functions, and solutions of an algebraic equation in terms of a parameter. Non-hypertranscendental

functions are also closed under various operations.

Proposition 5.3.2 [Sha41] If x = �t:f(t) is non-hypertranscendental, then its derivative y =

�t:f 0(t), its integral z = �t:
R
t

t0
f(t)dt, and its inverse w = �t:f�1(t) are non-hypertranscendental.

Proposition 5.3.3 [Sha41] Non-hypertranscendental functions are closed under functional com-

position.

The second question is that given a trace as a solution of a set of di�erential equations,

can that trace be computed as the limiting semantics of the constraint net representing the set
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of di�erential equations? This question is further decomposed into two questions: �rst, does

the constraint net have a well-de�ned limiting semantics? second, does the set of di�erential

equations have a unique solution? If the answers to both questions are positive, the trace can

be computed by the constraint net.

Proposition 5.3.4 Given a constraint net of di�erential equations _xk = fk(~x); k = 1; : : : ; n

with xk(t0) 2 R and fk : Rn ! R as partial or total functions, and given that all fk are smooth

at ~x(t0), the limiting semantics of the constraint net, based on the forward Euler method, is

well-de�ned over T = [t0; t1] for some t1 > t0. In particular, x = �t:�1
n=0

x
(n)(t0)

n!
(t� t0)n.

If fk is a polynomial function, then fk is smooth over Rn. If, in addition, the initial value for

~x is well-de�ned, the limiting semantics of the constraint net is well-de�ned.

It has been shown that a su�cient condition for di�erential equations _~x = ~f(~x) to have

a unique solution is the Lipschitz condition [MA86]. The Lipschitz condition is de�ned as

follows. Given hRn; di as a metric space, we say that ~f : Rn ! Rn satis�es a Lipschitz

condition uniformly with respect to t 2 [t0; t1] i� there exists a number K > 0 such that

d(~f(~x(t)); ~f(~y(t))) � Kd(~x(t); ~y(t)) for all t 2 [t0; t1]:

Let j~xj2 =
q
�n

i=1x
2
i
and d(~x; ~y) = j~x � ~yj2. If ~f is a linear function, i.e., ~f(~x) = A~x,

j~f(~x(t))� ~f(~y(t))j2 � jAj2j~x(t)� ~y(t)j2, for all t. Therefore, linear functions always satisfy the
Lipschitz condition, and linear di�erential equations always have a unique solution.

A more general result is as follows.

Theorem 5.3.2 Let �r = hfrg; f+; �gi be a signature. A non-hypertranscendental function

that is de�ned and smooth over a closed segment T = [t0; t1] can be computed by a constraint

net of di�erential equations on �r-dynamics structure D(T ;R), where R denotes the �r-domain

structure hfRg; f+; �gi.



Chapter 6

Behavior Analysis

We have presented the Constraint Net model, its syntax and semantics, and its power in model-

ing dynamics and computation. In this chapter, we relate systems to their behaviors. We start

with some preliminaries in abstract algebra on equivalence and abstraction. We then present a

formal de�nition of behaviors and discuss various properties of behaviors. Finally, we formalize

the concept of behavior abstraction at di�erent levels of granularity, and the meaning of system

equivalence with respect to a certain type of abstraction.

6.1 Abstraction, Quotient and Homomorphism

This section introduces some basic, but important, concepts in abstract algebra. These concepts

are related to the question of how to generate an abstraction of a given system.

Intuitively, equivalence induces partitions, and partitions induce abstraction. An algebraic

system is a set with an associated structure, i.e., a set of functions and relations. A structure

that is consistent with a partition can be abstracted to a quotient structure on the partition.

An algebraic system A0 is a quotient of an algebraic system A if A0, with the quotient structure,

is a partition of A. A quotient of an algebraic system can be considered as an abstraction of the

algebraic system. An algebraic system A is homomorphic to an algebraic system A0, if there is

a surjective (onto) mapping from A to A0 that is consistent with the associated structure; it is

isomorphic if the mapping has an inverse. On the other hand, a homomorphic mapping induces

a partition and a quotient structure. An algebraic system is homomorphic to its quotient.

Given algebraic systems A and A0, if A is homomorphic to A0, A0 is isomorphic to the quotient

of A induced by the homomorphic mapping. We present these concepts more formally in the

rest of this section.

Equivalence relations are characterized as congruences. A binary relation 'A over a set A

77
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is a congruence i� it is reexive, transitive and symmetric.

A congruence induces a partition. A partition of a set A induced by a congruence 'A,
written A='A, is a set of sets fAig such that (1) A = [iAi (2) 8i 6= j; Ai \ Aj = ; and (3)

a1 'A a2 and a1 2 Ai imply a2 2 Ai. We use [a] to denote the set that a belongs to. Intuitively,

a partition of a set can be considered as an abstraction of the set; [a] is an abstraction of a.

If a congruence is consistent with a function f , it is called an f -congruence. Let f : A! A0

be a function. A congruence ' over A[A0 is an f -congruence i� a1 ' a2 implies f(a1) ' f(a2).
Given f : A ! A0 and ' as f -congruence, an abstraction of f can be de�ned on the partition

of A and A0 induced by the f -congruence. Let f : A ! A0 be a function and ' be an f -

congruence over A [ A0. The quotient function of f w.r.t. ', written f' : A=' ! A0=', is
de�ned as f'([a]) = [f(a)]. We also say that function f is abstractable w.r.t. ' when ' is an

f -congruence.

The concepts of abstraction and quotient structures can be extended to multi-sorted algebra.

Let � = hS; F i be a signature and A be an arbitrary �-algebra. A �-congruence on A is an

S-sorted relation ', '= f'sgs2S satis�es

1. for each s 2 S, 's is a congruence on As, and

2. for any f : s1; : : :sn ! s 2 F and all a1; a
0
1 2 As1

; : : : ; an; a
0
n
2 Asn , if a1 's1 a01; : : :, and

an 'sn a0n hold, then fA(a1; : : : ; an) 's fA(a01; : : : ; a0n). Namely, ' is an fA-congruence

for all f 2 F .

Given a �-congruence ' on a �-algebra A, we can de�ne a quotient algebra A='. Let

' be a �-congruence over a �-algebra A. The quotient �-algebra A=' of A is de�ned as

(A=')s = As='s and for f : s1; : : : ; sn ! s 2 F , a1 2 As1
; : : : ; an 2 Asn , f

A='([a1]; : : : ; [an]) =

[fA(a1; : : : ; an)]. The quotient �-algebra A=' of A can be considered as an abstraction of A

induced by the �-congruence '.
The relationship between an algebra and its quotient algebras can be characterized by

homomorphism. In general, a homomorphism on �-algebras is de�ned as follows. Let A, A0 be

two �-algebras. A �-homomorphism h : A! A0 is a family of surjective (onto) mappings h =

fhs : As ! A0sgs2S such that for each f : s1; : : : ; sn ! s 2 F and each a1 2 As1
; : : : ; an 2 Asn ,

hs(f
A(a1; : : : ; an)) = fA

0

(hs1(a1); : : : ; hsn(an)). It is a �-isomorphism if h is a bijection. If A0 is

a quotient algebra of A, there exists a homomorphism h from A to A0 with h(a) = [a]. On the

other hand, if there is a homomorphism h from A to A0, A0 is isomorphic to a quotient algebra

of A. To see this, let us de�ne a congruence 'h on A as follows: a1 'h a2 i� h(a1) = h(a2).
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Since h is a �-homomorphism from A to A0, 'h is an fA-congruence on A for any f 2 F .

Therefore, A0 is isomorphic to the quotient algebra of A induced by 'h. And, A0, which is

isomorphic to a quotient of A, is also considered as an abstraction of A.

6.2 Behavior Analysis: General Concepts

Now we discuss the relationship between dynamic systems and their behaviors. Intuitively,

the behavior of a dynamic system is the set of observable input/output traces of the system.

Formally, let CN(I; O) be a module. An input-output pair hi; oi is an observable trace of

CN(I; O) i� 9F 2 [[CN(I; O)]] such that o = F (i). The behavior of CN(I; O) is the set of all

observable traces of CN(I; O). We will also use [[CN(I; O)]] to denote the behavior of CN(I; O)

if no ambiguity arises. We will use [[CN ]] as an abbreviation of [[CN(I; O)]] if I = I(CN) and

O = O(CN). Two modules are equivalent, written CN1(I; O) ' CN2(I; O), i� they have the

same behavior, i.e., [[CN1(I; O)]] = [[CN2(I; O)]]. For example, two state transition modules are

equivalent if they have the same initial state and the same state transition relation. A behavior

B is deterministic i� for any pair of traces hi1; o1i; hi2; o2i 2 B, i1 = i2 implies o1 = o2; it

is otherwise nondeterministic. In general, a module CN(I; O) will exhibit a nondeterministic

behavior if there are hidden inputs, i.e., I � I(CN).

Two important types of behavior are state-based behavior and time-invariant behavior.

State-based behavior is formalized as follows. Let B be a behavior. Given any time point

t 2 T , two traces v1; v2 2 B are coincident up to t, written v1 '�t v2, i� 8t0 � t, v1(t0) = v2(t
0).

Let [v]t = fv0j>tjv0 '�t vg where vj>t denotes the restriction of v onto ft0 2 T jt0 > tg. B is

state-based i� for all v1; v2 2 B and t 2 T , v1(t) = v2(t) implies [v1]t = [v2]t, i.e., the behavior

in the future is fully determined by the current snapshot.

Time-invariant behavior is formalized as follows. Let B = fvjv : T ! Ag be a behavior.

For any a1; a2 2 A, let a1 � a2 i� 9v 2 B; t1 < t2 such that a1 = v(t1) and a2 = v(t2). B is

time-invariant i� � is transitive, i.e., � is independent of time.

A state automaton in Figure 4.1 exhibits a state-based and time-invariant behavior. How-

ever, an input/output automaton in Figure 4.4 may not exhibit a state-based and time-invariant

behavior. Any state-based and time-invariant behavior of discrete time corresponds to a state

transition system.

A state transition system is a pair hS;!i where S is a set of states and !� S � S is a

transition relation between two states. For any discrete time T , v : T ! S is a trace of hS;!i
i� 8t > 0, v(pre(t))! v(t). A behavior B corresponds to a state transition system hS;!i i� B
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is equal to the set of traces of hS;!i. State transition systems can be considered as a compact

representation of state-based and time-invariant behaviors.

A requirements speci�cation R for a system CN(I; O) is a set of allowable input/output

traces of the system: R � �I[OATl . CN(I; O) satis�es a requirements speci�cation R, written
[[CN(I; O)]] j= R, i� [[CN(I; O)]]� R. With the formal de�nition of requirements speci�cation,

robustness and complexity can be formally de�ned.

The robustness of systems is de�ned on parameterized nets. A parameterized system

CNP

1 (I; O) is less robust than CNP

2 (I; O) w.r.t. a requirements speci�cation R, written
CNP

1 (I; O) �R CNP

2 (I; O), i� [[CNP

1 (I; O)]](v) � R implies [[CNP

2 (I; O)]](v) � R, for all
v 2 �PDp. Two parameterized systems CNP

1 (I; O) and CN
P

2 (I; O) are equivalent w.r.t. a re-

quirements speci�cation R, written CNP

1 (I; O) 'R CNP

2 (I; O), i� CN
P

1 (I; O) �R CNP

2 (I; O)

and CNP

2 (I; O) �R CNP

1 (I; O).

Behavioral complexity is de�ned with respect to some kind of measurement on the size of a

dynamic system: the number of transductions, the number of delay elements, or the maximum

number of delay elements in any path. Let jCN jm denote the size of CN w.r.t. measurementm.

The complexity of behaviors satisfying R w.r.t. m, denoted jRjm, is the minimum realization

of the dynamic systems satisfying R w.r.t. m, i.e., jRjm = minfjCN jmg[[CN(I;O)]]j=R.

Proposition 6.2.1 If R1 � R2, jR1jm � jR2jm.

In Part II, we will present two formal requirements speci�cation languages and a formal

method for behavior veri�cation.

6.3 Time and Domain Abstraction

We have introduced reference and sample time for modeling multiple time structures of a hybrid

dynamic system. Here we study another kind of mapping between two time structures, which

is for modeling dynamic systems at di�erent levels of detail.

A time structure hT ; d; �i may be related to another time structure hT 0; d0; �0i by a ho-

momorphic time mapping h : T ! T 0 where h is a surjective partial or total function, or

h : T ! T 0 [ f?g is a surjective function, such that

� it is monotonic: t1 �T t2 implies h(t1) �T 0 h(t2) if both sides are de�ned ( 6=?),

� the least element is preserved: h(0) = 00,

� the metrics are preserved: m0(t0) = inffm(t)jh(t) = t0g,
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� it is continuous: for any open T 0 � T 0 in its metric topology, h�1(T 0) is open in its metric
topology, and

� the measures are preserved: �0(T 0) = �(h�1(T 0)):

T 0 is an abstraction of T , and T is a re�nement of T 0. For example, let h : R+ ! N be a

partial mapping with

h(t) =

(
0 if t < 1

n else if n < t < n+ 1.

Function h is a homomorphic time mapping. N is an abstraction of R+, and R+ is a re�nement

of N .

A domain A may be related to a domain A0 by a homomorphic domain mapping h : A! A0

where h is surjective and continuous in the derived metric topology. A0 is an abstraction of A,

and A is a re�nement of A0. For example, let h : R ! S, where S = f�1; 1g, be a mapping

with

h(x) =

8><
>:
�1 if r < 0

1 if r > 0

?S if r = 0 or r =?R.
(6:1)

Function h is a homomorphic domain mapping. S is an abstraction of R, and R is a re�nement

of S.
Let � = hS; F i be a signature. A �-domain structure A may be related to a �-domain

structure A0 by a homomorphic domain structure mapping h = fhs : As ! A0sgs2S where (1)

A0s is an abstraction of As for all s 2 S, and (2) h(fA(x1; : : : ; xn)) = fA
0

(h(x1); : : : ; h(xn)) for

all f 2 F . A0 is an abstraction of A, and A is a re�nement of A0.

The condition for a homomorphic domain structure mapping is very strong, since the con-

gruence induced by the mapping must be a �-congruence. For example, let �r = hfrg; f+; �gi
and hfRg; f+; �gi be a �r-domain structure. The mapping de�ned in Function 6.1 is not a

homomorphic domain structure mapping, since 'h is not a +-congruence. For another ex-

ample, let � = hfsg; f0; f;ggi be a signature with 0 :! s; f : s ! s and g : s; s ! s, and

hfNg; f0; suc;+gi and hfBg; f0;:;�gi be �-domain structures. Let h : N ! B be a mapping

with

h(n) =

8><
>:

0 if n is even

1 if n is odd

?B if n =?N .
Function h is a homomorphic domain structure mapping. hfBg; f0;:;�gi is an abstraction of

hfNg; f0; suc;+gi, and hfNg; f0; suc;+gi is a re�nement of hfBg; f0;:;�gi.
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Because it is hard to satisfy the strong condition on homomorphic domain structure map-

pings for most domain structures, in many cases a weaker version of abstraction may apply. So

called qualitative algebra/dynamics [Wd90, Wil91] in AI belong to this category. Let � = hS; F i
be a signature. A �-domain structure A may be related to a �-domain structure A0 by a do-

main structure mapping h = fhs : As ! A0sgs2S where (1) A0s is an abstraction of As for all

s 2 S, and (2) fA
0

(x01; : : : ; x
0
n
) =

V
A0
fh(f(x1; : : : ; xn))jh(x1) = x01; : : : ; h(xn) = x0

n
g for all

f 2 F . A0 is a qualitative domain structure of A, and A is a quantitative domain structure of

A0. We should point out here that the partial order structure for any domain is a semilattice,

i.e., any two elements have a lower bound, and if A is a domain, the greatest lower bound
V
A

is de�ned for any subset of A. This de�nition is similar to the de�nition in [Wil91], except

that we enforce continuity in domain mapping. For the previous example, let hfSg; f+; �gi be
a �r-domain structure, with + and � de�ned as:

x+ y =

8><
>:

1 if x = y = 1

�1 if x = y = �1
?S otherwise, and

x � y =

8><
>:

1 if x = y = 1 or x = y = �1
�1 if x = 1; y = �1 or x = �1; y = 1

?S otherwise.

The mapping h de�ned in Function 6.1 is a domain structure mapping. hfSg; f+; �gi is a

qualitative domain structure of hfRg; f+; �gi, and hfRg; f+; �gi is a quantitative domain struc-
ture of hfSg; f+; �gi. However, h is not a homomorphic domain structure mapping, since

h(x+ y) = h(x) + h(y) does not hold for all x; y 2 R. Qualitative algebra, along with qualita-

tive diagnosis and qualitative physics [Wd90], has been a major area in AI. In this thesis, we

focus only on abstraction with quotient structures.

6.4 Behavior Abstraction and Equivalence

A trace is a function from a time structure to a domain. Given T 0 as an abstraction time of T
with mapping hT and A0 as an abstraction domain of A with mapping hA, a trace v : T ! A

is abstractable to a trace v0 : T 0 ! A0 i� hT (t1) = hT (t2) 6=? implies hA(v(t1)) = hA(v(t2)).

The abstraction trace of v w.r.t. h = fhT ; hAg is v0 = �hT (t):hA(v(t)). Two traces v1 and

v2 : T ! A are equivalent w.r.t. h, written v1 �h v2, i� v2 and v2 are abstractable to the

same abstraction trace w.r.t. h. We should point out here that �h is not a congruence since

�h is not reexive (not every trace is abstractable). For example, let v1; v2 : R+ ! R, with
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v1 = �t: sin(�t) and v2 = sign(v1) where sign : R ! R is a function de�ned as the sign of its

argument. Traces v1 and v2 are both abstractable to a trace v0 : N ! S, with v0(0) = 1 and

v0(n+ 1) = �v0(n) (Figure 6.1).

v
1

v
2

t t

v’

n

Figure 6.1: Equivalent traces and their abstraction

Consider again the example of the car-like maze traveler. The heading trace of the car

� : R+ ! R (Figure 6.2(a)) can be abstracted to a discrete trace (Figure 6.2(b)). Notice that

the \ambiguous directions" during the turnings are abstracted away.

θ

t

0

east

north

west

direction

n

(a)

(b)

Figure 6.2: The heading of a maze traveler and its abstraction
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Similar to the abstraction and equivalence de�ned for traces, abstraction and equivalence

for transductions are de�ned as follows. A transduction F : AT11 ! AT22 is abstractable to a

transduction F 0 : A0
T 01
1 ! A0

T 02
2 w.r.t. h = fh1; h2g i� F (v) �h2 F (w) whenever v �h1 w. If there

is no input, an abstractable transduction reduces to an abstractable trace. The abstraction of

F w.r.t. h = fh1; h2g is F 0(h1(v)) = h2(F (v)). Two transductions F1 and F2 are equivalent

w.r.t. h, written F1 �h F2, i� F1 and F2 are abstractable to the same abstraction transduction
w.r.t. h.

Abstraction and equivalence for behaviors are based on the abstraction and equivalence for

traces. A behavior B is abstractable w.r.t. h i� for all hi; oi 2 B, o is abstractable w.r.t. h

whenever i is abstractable w.r.t. h. If there is no input, an abstractable behavior reduces

to the set of abstractable traces. The abstraction of B w.r.t. h is B0 = fhi0; o0ijhi; oi 2
B and i is abstractableg. Two behaviors are equivalent w.r.t. h, written B1 �h B2, i� B1
and B2 are abstractable to the same abstraction behavior w.r.t. h. Two modules CN1(I; O)

and CN2(I; O) are equivalent w.r.t. h, written CN1(I; O) �h CN2(I; O), i� [[CN1(I; O)]] �h
[[CN2(I; O)]].

We should notice that behavior abstraction may not preserve the property of being state-

based or time-invariant. Now we investigate the abstractable condition of a state transition

system. A state transition system hS;!i is abstractable w.r.t. a congruence ' on S i� s1 !
s2; s

0
2 ! s3 and s2 ' s02 imply that 9s 2 [s2] such that s1 ! s ! s3. Let hS=';!'i be a

state transition system de�ned as [s1]!'[s2] i� 9s 2 [s1]; s
0 2 [s2] such that s ! s0. If hS;!i

is abstractable w.r.t. ', hS=';!'i is called the abstraction of hS;!i w.r.t. '; otherwise, it is
called the approximate abstraction of hS;!i w.r.t. '.
Proposition 6.4.1 (1) If hS0;!0i is an abstraction of hS;!i, the behavior corresponding to

hS0;!0i is the abstraction of the behavior corresponding to hS;!i. (2) If hS0;!0i is an ap-

proximate abstraction of hS;!i, the behavior corresponding to hS0;!0i is a superset of the

abstraction of the behavior corresponding to hS;!i.

6.5 Summary

We have presented formal de�nitions of the behavior of a system and requirements speci�cation,

and a formal relationship between the behavior of a system and a requirements speci�cation.

Within this framework, the robustness of parameterized systems and the complexity of behav-

iors can be studied. We have also presented a systematic approach to the study of behavior

abstraction and equivalence using concepts from abstract algebra.



Chapter 7

Summary and Related Work

We have presented a semantic model for hybrid dynamic systemsmodeling and behavior analysis

in this modeling framework. In this chapter, we summarize the results of Part I and discuss

some related work on models for dynamic systems.

7.1 Summary

In this section, we summarize the Constraint Net model for design and analysis in terms of its

power and limitations.

7.1.1 Power

The Constraint Net model is powerful in the following aspects.

� Power of Abstraction: The Constraint Net model is based on the abstract notions of time

and domains. With this abstraction, both continuous and discrete time and domains can

be represented in a uniform framework. Given abstract structures of time and domains, an

abstract structure of dynamics can be derived based on the abstract notion of traces and

transductions. Developed on abstract algebra and topology, a system can be represented

at di�erent levels of abstraction. Quotient and qualitative dynamics can be formalized,

behavior abstraction and equivalence can be studied.

� Power of Expression: The syntax of the Constraint Net model is graphical and modular,

and its semantics is denotational and composite. Nondeterministic and stochastic systems

can be represented with hidden inputs. Parameterized systems and various forms of

temporal integration can be incorporated into the model.

85
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� Power of Computation: The Constraint Net model is an abstraction and generalization

of dataow-like models, so that hybrid systems | systems with components in di�erent

domain and time structures | can be modeled. Furthermore, both sequential computa-

tion and analog computation are special types of dynamic system that can be modeled

with a simple domain and time structure.

7.1.2 Limitations

The Constraint Net model is limited in the following sense.

� Limitations of Abstraction: The Constraint Net model is based on the abstract notion

of traces and transductions, while transductions are causal mappings from input traces

to output traces. Not every physical process can be considered as a transduction. For

example, a frequency bandwidth �lter is not a transduction, since the output at any time

may depend on the whole input trace. Furthermore, partial di�erential equations cannot

be modeled.

� Limitations of Expression: The Constraint Net model is developed on the principles of

simplicity and generality. There is no inherent notion of nondeterminism, which must

be explicitly expressed by hidden inputs. There is no inherent notion of synchronization

for communicating systems nor that of time-out for real-time systems, which must be

explicitly modeled by event generators and synchronizers. Sequential computation must

be explicitly represented via event coordinations.

� Limitations of Computation: We call our model Constraint Nets for two reasons. First,

semantically, a constraint net is a set of equations, each of which imposes a constraint

on traces. The semantics of a constraint net is the least solution of the set of equations.

Second, we will see, in Part III, constraint satisfaction can be viewed as a dynamic process

that can be modeled by a constraint net. Such a constraint net may approach a stable

equilibrium that is the solution set of the constraint satisfaction problem. However,

not every constraint satisfaction problem can be solved using the Constraint Net model.

Furthermore, since the semantics of a constraint net is the least solution of the equations,

any constraint net with algebraic loops may result in an unde�ned solution. From the

computational point of view, algebraic loops represent in�nite amount of computation

in any instant of time. A well-de�ned constraint net performs only a �nite amount of

computation in any instant of time.
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7.2 Related Work

Various models for concurrent and distributed systems [FF84] have been developed in the theory,

AI and systems communities. Roughly speaking, these models can be characterized as belonging

to one of the three categories: (1) Automata or State Transition Models, (2) Communicating

Processes or Multi-agent Architectures, and (3) Nets, Circuits or Dataow Structures. Models

in any of these forms can be equivalent in computational power (as with sequential models).

The selection of models depends on applications. Typical criteria for model seletion are:

� Simple and Uniform,

� Modular and Composite,

� Parallel or Concurrent,

� Sequential or Synchronous,

� Nondeterministic or Probabilistic.

Some of these criteria are opposed to each other.

Most of these models can be augmented with the notion of time for modeling real-time

and/or hybrid systems. There are also constraint-based models and biology-based models. We

survey some typical models in every category and their extensions to real-time and/or hybrid

models, then we discuss the relationship between the Constraint Net model and other existing

models.

7.2.1 Automata or state transition models

Automata or state transition models are typical for studying discrete event systems [Hol82],

and most recently, for modeling hybrid systems [GNRR93]. However, for complex systems with

multiple components, global state description will cause the exponential growth of the number

of states. Nevertheless, modeling global transitions of a system is important for analyzing the

system's overall behavior. Although nondeterminism can be expressed by this type of model

inherently, automata or state transition models go to the extreme for simplicity and global

analysis, with little concern for modularity and parallelism.

Examples of this type of model are Mealy/Moore Machines and Statecharts. Various forms

of timed and hybrid automata have been studied recently.
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Mealy/Moore Machines

Mealy/Moore machines [Mea55, Moo56] are the simplest form of input/output transducer for

event control systems [CWG88]. Various adaptations can be made to particular domains. For

example, Rosenschein [RK87, Ros89] proposed the situated-automata approach, which seeks

to analyze knowledge in terms of relations between the states of a machine and the states of

its environment over time. This approach, in contrast to the interpreted-symbolic-structure

approach that has prevailed in AI for decades, provides a way of compromising between the

representational power and real-time execution of AI systems. A situated automaton is in fact

a variation of a Moore machine [Moo56]. The Requirement State Machine (RSM) [JLHM91], a

special form of Mealy machine [Mea55], has been proposed as a software requirement analysis

language for real-time process-control systems.

Statecharts

The Statechart method was introduced [HP85] as a visual formalism for specifying the behavior

of complex reactive systems. It describes a system's behavior in terms of states, events and

conditions, with combinations of the latter two causing the transitions between the former. Both

states and transitions can be associated in various ways with output events, called activities,

which can be triggered either by executing a transition or by entering, exiting, or simply being

in a state. A system's inputs are thus the events and its outputs are the activities; their union

comprises the interface set.

In Statecharts, the exponential growth of states is avoided by de�ning higher-level states.

States in a Statechart can be repeatedly combined into higher-level states using AND and OR

modes of clustering.

Timed and Hybrid Automata

Much work has been done recently on introducing real-time concepts into formal models of

concurrency [dHdR91]. For example, Merritt et al. [MMT91] augmented the input-output

automaton model with a notion of time that allows to reason about timed behaviors. Alur

and Dill [AD91] developed the theory of timed automata to reason about timed behaviors.

Henzinger et al. [HMP91b] incorporated time into an interleaving model of concurrency in

which upper and lower bounds on time delay are associated with each transition. None of these

models, however, are able to represent continuous change.
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Some e�ort has been made recently to develop models for hybrid systems [GNRR93], systems

with both discrete and continuous components. By generalizing timed transition systems to

phase transition systems [MMP91, NS91], computation consist of alternating phases of discrete

transitions and continuous activities. More speci�cally, Nerode and Kohn [NK93a] present a

model consisting of two automata: a digital control automaton and a plant automaton. The

plant automaton can be modeled as a state transition system over intervals. The inputs of a

plant automaton are control signals and disturbances, while its states are the solutions of the

set of di�erential equations of the plant for the given control signals and disturbances.

7.2.2 Processes or multi-agent architectures

Models in this category represent a system with multiple processes or agents that communicate

with each other via channels or shared memories. In most cases, agents and channels can

be created dynamically and communication patterns are not �xed at run time. Modularity,

compositionality, as well as nondeterminism are features of this type of model. This type of

model can be very complex with various communication and synchronization operators; both

parallel and sequential computation can be incorporated. Even though discrete time structures

can be added to these models, they are concurrent rather than real-time models.

Examples of this type of model are algebraic processes, the Actor model and the cc family.

Algebraic Processes

Much work has been done in algebraic processes. Typical models of this type are CSP and CCS.

C.A.R. Hoare's Communicating Sequential Processes (CSP) [Hoa85] is a model describing con-

current and distributed computation. A CSP program is a static set of explicit processes. Pairs

of processes communicate by naming each other in input and output statements. Communica-

tion is nonbu�ered and synchronous with unidirectional information ow. Guarded commands

are used to introduce indeterminacy. Some work has been done for specifying a robot control

system in CSP and formally verifying some properties [LD89]. However, it is hard to capture

the essential structure of an analog control system and the dynamics of robot manipulators in

CSP.

The work of George Milne and Robin Milner [MM79] is an attempt to describe a mathemat-

ical semantics for concurrent computation and communication. Their goal is a formal calculus

of concurrent computation, much as the lambda calculus is a formal calculus of uniprocess com-

putation. Their model, Calculus for Communicating Systems (CCS), has explicit processes that
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communicate synchronously and bidirectionally over labeled channels. The number of processes

and their communication connections can change dynamically. Syntactically, a system modeled

by CCS is a owgraph with composition, restriction and relabeling. The semantics of CCS is

based on the theory of sets, powerdomains and �xpoint of continuous algebra. Though CCS

allows the analysis of the temporal ordering of events, there is no way to specify the relative

speeds of events. Synchronous CCS (SCCS) has been studied by Milner [Mil83], in which events

are synchronized by timesteps. Timed CCS (TCCS) has also been proposed [MT90, MT91] as

a tool for real-time analysis, which introduces willing-to-delay and forcing-to-delay operators.

Many basic tools for communication protocol speci�cation and veri�cation are CCS-like lan-

guages [QAF89, Atl89]. Some more general work on the semantics of communicating processes

has been presented by Hennessy [Hen88]. His approach relies heavily on abstract algebra |

�-algebras and the �xpoint theory of continuous functions | which shows that algebraic theory

is a powerful tool for programming semantics.

Actors

The Actor model was proposed by Hewitt for developing highly parallel machines and open

systems [Hew88]. The Actor model takes the theme of object-oriented computation seriously

and to an extreme. In an Actor system, everything is an actor (object). Actors communicate by

sending each other messages, which are themselves actors. Every actor has a script (program)

and acquaintance (data, local storage). When a message arrives at an actor, the actor's script is

applied to that message. Clinger [Cli81] gave a denotational semantics for an Actor-like system

based on powerdomains and �xpoint theory, and also de�ned a set of laws that are meant to

restrict Actor systems to those that can be physically implemented. Agha [Agh85] further gave

a structured operational semantics for an Actor language and discussed compositionality and

abstraction from irrelevant detail.

The Robot Schema (RS) Model is a variation of the Actor model, where a schema can be

considered as a class of object. RS is a special model of computation for sensory-based robot

programming [LA89]. RS is a typical concurrent object-oriented model, in which a schema

is a general speci�cation and a schema instance is a concurrent object. Each object can be

created and terminated by other objects. Therefore, a network is created and changed during

computation. Objects communicate with each other through input and output channels. The

concept of RS can be implemented via any concurrent object-oriented language [Zha89, Zha90].
However, the formal semantics of RS is very complicated, due to various interpretations of the
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composition, communication and nondeterminism. Furthermore, again, continuous dynamics

cannot be represented in this model.

The cc Family

Saraswat [Sar89] has developed a framework of concurrent constraint programming, that he

called the cc Family. In this paradigm, computation emerges from the interaction of the con-

currently executing agents that place, check and instantiate constraints on shared variables that

range over some domain of discourse.

Constraints are partial speci�cations of (possibly in�nite) sets of values, and the agents may

either collaborate or compute in placing constraints. The major form of concurrency control in

the system is through the notion of Atomic Tell and Blocking Ask. The former allows an agent

to (instantaneously) place constraints only if they are consistent with the constraints that have

already been placed. The latter forces an agent to block when it checks a relationship that is

not yet known to hold.

This paradigm is a generalization of research in concurrent logic programming languages

[Sha87]. It has been shown that concurrent logic programming languages are good candidates

for open systems [KM88] and for the simulation of robot behaviors [ZM92]. However, they are

not real-time languages, since their computation time is unpredictable.

A timed extension of the cc family, timed cc, has been proposed [SJG94] in which real-time

requirements (such as time-out) can be expressed.

7.2.3 Nets or dataow structures

Unlike state transition models that represent ow of control, computation in dataow structures

is data-driven. Unlike process-based systems in which processes and communication can be

created dynamically, operators and connections in dataow models are �xed. The advantages

of a dataow model are its inherent parallelism or concurrency, its locality (modularity), its

graphical orientation, and most importantly, its generality and simplicity. Nondeterminism

is inherent for interleaving concurrency models. However, neither sequential computation nor

synchronization is explicitly represented.

Examples of this type of model are Petri Nets, circuit models, communicating state machines

and operator nets.
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Petri Nets

The Petri Net model is a formal modeling technique that encodes the states of a dynamical sys-

tem as the markings of tokens on a graph [Pet81]. The graph is a bipartite, directed multigraph

that has two kinds of node, places and transitions, and arcs connect places and transitions.

A marked Petri net is the association of a number with each place (the number of tokens

on that place), which is not bounded but is always �nite. A transition is enabled if every place

connected to that transition with k arcs has at least k tokens. A transition may �re at any

time if it is enabled. When a transition �res, it moves tokens from its input places to its output

places. If multiple transitions are enabled at that time, it nondeterministically choose one to

�re.

The Petri Net model of a system can be used to prove properties such as mutual exclusion,

liveness and reachability. Various extensions (for example, inhibition) of Petri Nets have been

proposed to make it Turing equivalent. The Time Petri Net model is a current area in Petri

Net theory research [Pet86, BD91].

Circuit Models

Circuit models are a typical kind of dataow model. There are digital circuit models and

analog circuit models. Analog circuits are basic systems for analog control. Analog circuits

may include resistors, capacitors, ampli�ers, di�erential or integral elements. Digital circuits

include synchronous and asynchronous models.

Synchronous circuits (sequential circuits) are the building blocks of most digital computer

systems. A synchronous circuit consists of a set of basic gates (e.g., and, or and not) and

all the gates operate at the same sampling rate controlled by a single clock. The idea of

asynchronous circuits was demonstrated by Sutherland's Turing Award paper \Micropipelines"

[Sut89]. Sutherland discards the clocked-logic conceptual framework and thinks instead about

a di�erent but equally simple form of control called transition signaling. The basic elements

of asynchronous circuits are the exclusive or (xor) element that acts as the \or" element for

events, and the Muller C-element that acts as the \and" element for events. Asynchronous

circuits have advantages in hardware design, software and system development.

Variations of circuit models have been adapted in AI. For example, the action network

[Nil89] is composed of a forest of logical gates that select actions in response to sensory and

stored data. The elementary unit of an action net implements a logical and gate.
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Communicating State Machines

Communicating state machines are networks of state machines, each of which has a set of input

ports and a set of output ports. Typical examples of this type are the the Augmented Finite

State Machine, the Extended State Machine, and temporal automata.

The Augmented Finite State Machine (AFSM) [Bro88] was used as the model for the sub-

sumption architecture. Each AFSM has a set of registers and a set of timers, or alarm clocks,

connected to a conventional �nite state machine that can control a combinatorial network fed

by registers. Registers can be written by attaching input wires to them and receiving messages

from other machines. The arrival of a message, or the expiration of a timer, can trigger a change

of state in the interior �nite state machine. The �nite state machine can wait on some event,

conditionally dispatch to one of two other states based on some combinational predicate on the

registers, or compute a combinatorial function of registers directing the result either back to

one of the registers or to an output of the augmented �nite state machine.

The Extended State Machine (ESM) [Ost89] is a framework for modeling systems composed

of real-time discrete event processes. ESM can be used to model the processes and devices of

a plant, as well as the software tasks of controllers implemented as real-time software. Each

ESM description of a process will have a distinguished variable called an activity variable that

ranges over a set of activities. In addition, an ESM may have a set of data variables to store

numerical or quantitative information. States in ESM refer to values of all the activities and

data variables. In addition, each ESM has a set of event labels, a set of communication channels

and a set of basic actions. The occurrence of an ESM event causes an instantaneous change

from the current activity to some new activity, as well as causing a change in the values of the

data variables.

The Temporal Automaton model [LS90] is closer to dataow models than to automata. A

temporal automaton has the characteristics of explicit representation of process time, symmetric

representation of a machine and of the environment in which it operates, the wiring together of

asynchronous automata, and the ability to aggregate individual machines to form one machine

at a coarser level of granularity. Temporal automata are de�ned on entities and transductions.

Entities associate time with data domains and transductions induce causal relationships between

entities. Two temporal automata can be connected by wires to form a new temporal automaton.

A temporal automaton with empty input entities de�nes a closed system, it otherwise de�nes

a causal system.
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Operator Nets

The Operator Net model is a generalized deterministic dataow model [Ash86]. A graphical

language is de�ned that is syntactically extremely simple and that is mainly uninterpreted, i.e.,

using operator symbols rather than particular operators. This uninterpreted graphical language

can then be interpreted in several di�erent ways, by starting with di�erent (continuous) sequence

algebras. A mathematical semantics is given by the �xpoint theory that is referred to as Kahn's

Principle [Kah74].

Di�erent possible sequence algebras form families, each of which is based on a di�erent

continuous data algebra. If A is a data algebra, then I(A) is a sequence algebra based on

pointwise extensions of functions in A, and E(A) is an enlargement of I(A) by the addition of

a set of continuous operators that are not pointwise based, e.g., next, merge, follow-by, etc.

SIGNAL [BL90] and LUSTRE [CPHP87] are specializations of the Operator Net model.

Both of them augment the notion of clocks that are represented by streams of Booleans. Each

operator can be associated with a clock such that the operator is performed at the clock's

sampling rate. This type of model can be considered as a general model for real-time systems

and for discrete time and hybrid domain dynamic systems.

7.2.4 Constraint-based and biology-based models

Models in this category are motivated by physical and biological natural systems. They are not

mainly for providing the syntax or semantics of a programming language. Instead, they can be

considered as philosophical or mathematical structures of natural systems.

Most natural systems are constraint-based, following some natural laws or keeping certain

relationships. There are two types of relationship, dynamic or algebraic. Constraint-based

models explore relations rather than causalities.

There are various biology-based models, such as neural nets and cerebellar models. The

categorical theory of biological systems has also been proposed.

Constraint-based Models

The constraint paradigm [Ste80] is a model of computation in which values are deduced when-

ever possible, under the limitation that deductions must be local in a certain sense. One may

visualize a constraint \program" as a network of devices connected by wires. Data values may

ow along the wires, and computation is performed by the devices. A device computes using
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only locally available information and places newly derived values on other locally attached

wires. In this way computed values are propagated.

An advantage of the constraint paradigm is that a single relationship can be used in more

than one direction. The connections to a device are not labeled as inputs and outputs; a device

will compute with whatever values are available, and produce as many new values as it can. A

disadvantage is that it can only deal with very limited classes of constraint satisfaction problem.

Di�erential (resp. di�erence) algebraic equations (DAE) can be considered as taking both

dynamic (causal) and algebraic (relational) constraints in one framework. In general, a dynamic

system in continuous time (resp. discrete time) is a set of di�erential (resp. di�erence) algebraic

equations:

_x = f(x; y) (resp: x((n+ 1)�) = f(x(n�); y(n�)));

y = g(x; y):

Biology-based Models

The Neural Net model is motivated by the principle in physics, i.e., minimizing the energy of a

system. Such minimization is performed dynamically by changing the parameters of the system,

that is parallel and distributed in general. A neural net can solve a constraint satisfaction

problem [RM86] if the energy function is de�ned according to the degree of satisfaction. The

advantages of the Neural Net model for solving constraints are that it can solve soft constraints

and that it involves dynamics that is important in behavior simulation and animation [Pla89].

The Cerebellar Model Arithmetic Computer (CMAC) is motivated by the structure and

function of the various cells and �ber types in the cerebellum [Alb81]. CMAC is de�ned by

a series of mappings, S ! M ! A ! P , where S is a set of input vectors, M is a set of

mossy �ber used to encode S, A is a set of granule cells contacted by M , and P is a set of

outputs. The overall mapping S ! P is a function that represents the causal relationship

between the input and the output. Feedback is introduced in the model so that the system can

learn. Furthermore, CMAC can simulate �nite state automata, as well as compute integrals

and other general functions. Hierarchical structures can be used for modeling complex systems.

The categorical theory of biological systems was studied by mathematical biologists [Ros85].

Using the categorical theory, the dynamics of a composition system, quotient dynamics, and

hierarchies can be studied formally and abstractly.
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7.2.5 Relationships with the Constraint Net Model

A distinguished feature of the Constraint Net model (CN), comparing with all the existing

models, is abstraction. CN is an abstraction and generalization of dataow-like models. With

abstract time and domain structures, CN models dynamic systems with components of di�erent

dynamics. It is the �rst time that the programming semantics techniques are applied to dynamic

systems modeling.

Some important concepts in CN are inuenced by Temporal Automata and Operator Nets.

Comparing with Temporal Automata, CN is de�ned on more general and abstract structures of

time and domains, based on which, traces, event-driven as well as primitive transductions are

formalized. In addition, CN has a more rigorous semantics based on �xpoint theory. Comparing

with Operator Nets, CN introduces reference time structures that can be continuous as well as

discrete. In addition, events in event traces are transitions so that Sutherland's event logic is

adopted.

CN is a net-oriented model, while a component in a net can be an automaton or a state

transition system. Processes or components in CN cannot be created or destroyed, and inter-

connections are �xed. However, such e�ects can be achieved by event-driven computation. CN

can model synchronous, asynchronous and analog circuits. Even though CN does not directly

represent synchronous communication and sequential computation, such mechanisms can be

generated by event synchronization using the event logic. The syntactic structure of CN is

similar to that of Petri Nets, i.e., a bipartite directed graph. However, the semantics of CN

is for maximum parallelism, while the semantics of Petri Nets is for concurrency. CN is an

inherently deterministic model, while nondeterminism can be captured by hidden inputs. CN

can e�ciently model di�erential and di�erence equations, Neural Nets and CMAC. CN can also

simulate constraint-based models, given the underlying dynamics that keeps the relationship as

a stable state. Since CN is based on algebraic theory, homomorphism and quotient dynamics

can be studied under this model.

In summary, the major contributions of CN are: (1) CN models asynchronous and syn-

chronous components, as well as coordination among components with di�erent time structures;

(2) CN supports abstract data types and functions, as well as algebraic speci�cation; (3) CN

can provide a programming semantics for the design and analysis of hybrid real-time embedded

systems; (4) CN serves as a foundation for the speci�cation and veri�cation of hybrid systems.
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Requirements Speci�cation and

Behavior Veri�cation
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The way of human follows the way of earth.

The way of earth follows the way of heaven.

The way of heaven follows the way of Tao.

The way of Tao follows the way of Nature.

| Tao Teh Ching, Lao Tzu

Implementations follow algorithms.

Algorithms follow speci�cations.

Speci�cations follow ideas.

Ideas follow the way of Nature.

| Zhang Ying



Chapter 8

Introduction

We have developed a semantic model for dynamic systems. A model of a dynamic system rep-

resents the whole system as a set of components and their connections. However, the behavior

of the system is not explicitly represented, since most dynamic systems have no closed form

solutions at all. On the other hand, most design requirements can be expressed by qualitative

properties and can be satis�ed by many models. As a simple example, _x = �x is a model of a

dynamic system, which fortunately has a closed form solution: x = �t:x0e
�t. A requirements

speci�cation may simply be a limit property limt!1 x(t) = 0. In this case, the model _x = �x
satis�es the speci�cation limt!1 x(t) = 0. In Part II, we propose and answer the following

two questions: What is an appropriate requirements speci�cation language? How to verify the

behavior of a system against certain requirements speci�cation?

In this chapter, we present an overview of Part II, Requirements Speci�cation and Behavior

Veri�cation. There are three major chapters in Part II. Chapter 9 develops timed linear tem-

poral logic. Chapter 10 develops timed 8-automata. Chapter 11 develops a formal method for

ensuring that the behavior of a system satis�es a timed 8-automata speci�cation.

8.1 Timed Linear Temporal Logic

Since we consider time as a linearly ordered set with a least element, linear temporal logic is

the simplest speci�cation language for sequential (dynamic) behaviors.

First, we develop a propositional linear temporal logic (PLTL). As with other temporal

logics, we de�ne the basic temporal operators U and S; F1 U F2 indicates that F1 is true after
the current time until F2 becomes true, and F1 S F2 indicates that F1 is true up to the current

time since F2 becomes true. From these basic operators, we further de�ne 3 (eventually),

2 (always),  (next), 	 (previous), etc. Unlike other temporal logics, PLTL is de�ned for
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arbitrary time structures, with discrete and continuous time as special instances.

Second, we extend PLTL with two real-time operators U � (real-time until) and S� (real-time
since) where � > 0 is any positive real number. The resultant language is called a propositional

timed linear temporal logic (PTLTL), where \timed" indicates the representation of metric or

measure properties of time. From these two basic real-time operators, we further de�ne other

real-time operators such as 3� (real-time eventually) and 2� (real-time always).

Third, we de�ne FTLTL, a �rst order TLTL. FTLTL is strongly typed, i.e., its domain is

a multi-sorted �-algebra. Terms of FTLTL are de�ned on the signature � and predicates are

associated with types too. Furthermore, any global variable (variable whose value is a constant

over time) can be quanti�ed. RFTLTL, a restricted version of FTLTL, is also de�ned, in which

quanti�ers are restricted to state formulas (formulas without temporal or real-time operators).

FTLTL is strictly more powerful than RFTLTL, however, RFTLTL gains its advantage in the

simplicity of veri�cation.

Finally, we propose the concept of open state speci�cation and briey discuss the importance

and the use of open state speci�cation.

8.2 Timed 8-automata

An alternative to linear temporal logic for representing sequential behaviors is automata. Con-

sider an automaton as a language recognizer that accepts a set of traces. If a trace is accepted

by the automaton, the trace satis�es the speci�cation de�ned by the automaton. The simplest

automata are �nite state automata.

First, we present discrete 8-automata, adopted from the de�nition given by Manna and

Pnueli [MP87]. Discrete 8-automata are �nite state automata accepting in�nite sequences,

i.e., traces of discrete time. 8-automata have a graphical representation that is useful and

illuminating. Furthermore, it has been shown [MP87] that discrete 8-automata are strictly

more powerful than PLTL.

Second, we extend discrete 8-automata to discrete timed 8-automata, by augmenting time
bounds on automaton-states. With this augmentation, various types of real-time property can

be speci�ed.

Finally, we generalize discrete timed 8-automata to timed 8-automata. Timed 8-automata
can accept traces of arbitrary time structures, with discrete and continuous time structures as

special cases.
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8.3 Behavior Veri�cation

We start with the concepts of behavior veri�cation in general and the discussion of the theorem

proving approach to veri�cation in particular. The rest of the chapter focuses on veri�cation

techniques for timed 8-automata speci�cation.
One of the important advantages of timed 8-automata speci�cation is that there exists a

formal veri�cation procedure. This veri�cation procedure is derived from the integration of a

model checking technique and a stability analysis method.

For verifying state-based and time-invariant behaviors of discrete time systems, we modify

the veri�cation rules developed by Manna and Pnueli [MP87] in the following ways:

� Ranking functions are replaced by Liapunov functions that generalize the functions for

stability analysis in dynamic systems.

� Veri�cation rules for real-time bounds are augmented so that real-time properties can be

veri�ed.

We apply the veri�cation rules to the semi-automatic veri�cation of constraint nets on

discrete time structures. A veri�cation of this type reduces to a set of �rst order state formulas

that can be checked by a theorem prover.

We translate the veri�cation rules into an algorithm for �nite domain and discrete time

dynamic systems. The algorithm has a polynomial time complexity in both the size of the

model and the size of the speci�cation. With the concept of state transition abstraction, further

savings in complexity can be explored.

Finally, we generalize the veri�cation rules so that behaviors with continuous as well as

discrete time structures can be formally veri�ed.

8.4 Summary and Related Work

The novelty in speci�cation languages includes: a temporal logic de�ned on abstract time and

domains, a timed extension to �nite automata, and a generalized version of �nite automata that

accepts traces of continuous time. The novelty in behavior veri�cation includes a semi-automatic

veri�cation method for discrete constraint nets, an e�cient algorithm for �nite domain systems,

and a formal veri�cation method for behaviors of hybrid systems.



Chapter 9

Timed Linear Temporal Logic

Temporal logic provide a simple and precise speci�cation for sequential behaviors [Eme90].

We develop timed linear temporal logic (TLTL) for specifying desired properties of system

behaviors, where \linear" refers to linearly ordered time structures and \timed" implies metric

distances. First we generalize the propositional linear temporal logic to specifying properties

of arbitrary traces (instead of �nite or in�nite sequences). Then we augment real-time modal

operators so that real-time properties (e.g., real-time response) can be speci�ed. Finally, we

develop a �rst order TLTL for arbitrary time and domain structures.

9.1 Propositional Linear Temporal Logic (PLTL)

The simplest temporal logic is the propositional linear temporal logic (PLTL). In this section,

we present a form of PLTL that can incorporate both discrete and continuous time, so that

properties of arbitrary traces can be speci�ed and reasoned about.

9.1.1 PLTL: syntax and semantics

The basic form of the propositional linear temporal logic (PLTL) is the classical propositional

logic extended with temporal operators. Formally, the syntax of the logic is de�ned as follows.

De�nition 9.1.1 (Syntax of PLTL) Let � be a set of propositions. The basic syntax can be

de�ned using BNF:

F ::= false j p j F1 ! F2 j F1 U F2 j F1 S F2
where p 2 � is a proposition, ! is a logical connective denoting \implication," U is a temporal

operator denoting \until" and S is a temporal operator denoting \since."
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We will use the convention that temporal operators have higher priorities than logical connec-

tives, and unary connectives (operators) have higher priorities than binary connectives (opera-

tors).

A frame of PLTL is a triple hT ; A; V i where T is a time structure, A is a domain, and

V : �! 2A is an interpretation that assigns to each proposition p 2 � a subset V (p) of A. We

will use a j= p or p(a) to denote a 2 V (p).
A model of PLTL is a pair hF ; vi where F = hT ; A; V i is a frame and v : T ! A is a trace.

Formally, the semantics of the logic is de�ned as follows.

De�nition 9.1.2 (Semantics of PLTL) Let F = hT ; A; V i be a frame and hF ; vi be a model

of PLTL. Let F be a PLTL formula. Then v j=t F denotes that v satis�es F at time t:

� v 6j=t false.

� v j=t p for p 2 � i� v(t) j= p.

� v j=t F1 ! F2 i� v j=t F1 implies v j=t F2.

� v j=t F1 U F2 i� 9t0 > t; v j=t0 F2 and 8t00, t < t00 < t0; v j=t00 F1.

� v j=t F1 S F2 i� 9t0 < t; v j=t0 F2 and 8t00, t0 < t00 < t; v j=t00 F1.

We will use v j= F to denote that v satis�es F initially, i.e., v j=0 F . F is valid over a frame

F , i� for any model hF ; vi, v j= F . F is valid, i� for any frame F , F is valid over F . F is

satis�able over a frame F , i� for some model hF ; vi, v j= F . F is satis�able, i� for some frame

F , F is satis�able over F .

9.1.2 PLTL: extensions

More logical connectives and temporal operators can be de�ned using the basic logic connec-

tive ! and the basic temporal operators U and S.
Some commonly used logical connectives are de�ned as follows:

� Negation: :F � F ! false.

� True: true � :false.

� Disjunction: F1 _ F2 � :F1 ! F2.

� Conjunction: F1 ^ F2 � :(F1 ! :F2).
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� Equivalence: F1 $ F2 � (F1 ! F2) ^ (F2 ! F1).

Some commonly used temporal operators are de�ned as follows:

� Eventually: 3F � F _ trueU F .

� Always: 2F � :3:F .

� Next: F � F U F .

� Previous: 	F � F S F .

� Wait: F1W F2 � 2F1 _ F1 ^ (F1 U F2) _ F2.

Various stronger and weaker variations of these temporal operators [Eme90] can also be de�ned.

The semantics of these logical connectives and temporal operators can be derived from their

de�nitions. Let F = hT ; A; V i be a frame and hF ; vi be a model of PLTL. Let F be an extended

PLTL formula:

� v j=t :F i� v 6j=t F .

� v j=t true.

� v j=t F1 _ F2 i� v j=t F1 or v j=t F2.

� v j=t F1 ^ F2 i� v j=t F1 and v j=t F2.

� v j=t 3F i� 9t0 � t, v j=t0 F .

� v j=t 2F i� 8t0 � t; v j=t0 F .

� v j=t F i� 9t0 > t, 8t00; t < t00 � t0; v j=t00 F .

� v j=t 	F i� 9t0 < t, 8t00; t0 � t00 < t; v j=t00 F .

� v j=t F1W F2 i� 8t0 � t, v j=t0 F1, or 9t0 > t, v j=t0 F2 and 8t00, t � t00 < t0; v j=t00 F1, or

F2.

We should note that the temporal operators  and 	 are generalizations of the \next" and

\previous" operators, respectively, from discrete to arbitrary time. However, :(F )^:(:F )
and :(	F )^:(	:F ) are satis�able, andF $(F ) and 	F $ 	(	F ) are valid, for any
frame with dense time.



CHAPTER 9. TIMED LINEAR TEMPORAL LOGIC 105

For the maze traveler example in Part I, let ME be a proposition denoting that the robot

is moving east. A desired property of the maze traveler is 23ME, i.e., moving east in�nitely

often, which ensures the escape of the robot from any �nite maze, for the given design and

environment.

We can de�ne some more abbreviations that are more convenient to use in many situations.

� final � : true.

� initial � :	 true.

� rise(p) � (:p ^p) _ (	:p ^ p).

� change(p) � rise(p) _ rise(:p).

� event(p) � (	:p ^ p) _ (	p ^ :p).

Some important properties of behaviors can be speci�ed using PLTL.

� Safety: If B is a proposition denoting a bad situation, 2:B.

� Goal achievement: If G is a proposition denoting a �nal goal, 32G.

� Persistence: If P is a proposition denoting a persistent condition, 23P .

� Precedence QBR: Q happens before R, i.e. :RW(:R ^Q).

� Interleaving QIR: Q and R interleave, i.e. 2(R! QBR) ^2(Q! RBQ).

Now we can formally specify desired properties of the producer-consumer circuit in Figure

5.3. The �rst desired property is that producing precedes consuming, i.e.,

event(C1)B event(C2):

The second desired property is that producing and consuming interleave, i.e.,

event(C1) I event(C2):

9.2 Propositional TLTL

In order to specify the metric properties of time, we develop Timed Linear Temporal Logic

(TLTL). In this section, we introduce propositional TLTL (PTLTL), and in the next section,

we present the �rst order TLTL (FTLTL).
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The basic syntax and semantics of PTLTL are the same as those of PLTL. In addition,

we augment the basic form of PLTL with two real-time operators. Let � > 0 be a positive

real number, Tt+� = ft0jt < t0; d(t; t0) � �g and Tt�� = ft0jt0 < t; d(t0; t) � �g. Two real-time

operators are de�ned as follows:

� v j=t F1U �F2 i� 9t0 2 Tt+� , v j=t0 F2 and 8t00; t < t00 < t0; v j=t00 F1.

� v j=t F1S�F2 i� 9t0 2 Tt�� , v j=t0 F2 and 8t00; t0 < t00 < t; v j=t00 F1.

Other real-time and temporal operators can be de�ned using the two basic real-time oper-

ators.

� 3�F � trueU �F .

� 2�F � :(3�:F ).

� 3�F � trueS�F .

� 2�F � :(3�:F ).

The semantics of these real-time operators can be derived as follows:

� v j=t 3
�F i� 9t0 2 Tt+� , v j=t0 F .

� v j=t 2
�F i� 8t0 2 Tt+� , v j=t0 F .

� v j=t 3�F i� 9t0 2 Tt�� , v j=t0 F .

� v j=t 2�F i� 8t0 2 Tt�� , v j=t0 F .

With real-time operators, real-time properties can be speci�ed, for example, real-time response

can be speci�ed as 2(E ! 3
�R).

9.3 First Order TLTL

We present FTLTL and its restricted version RFTLTL. RFTLTL imposes a constraint that

quanti�ers are associated only with state formulas (formulas without temporal and real-time

operators).

To de�ne the syntax for FTLTL, we shall �rst de�ne terms. Let � = hS; F i be a signature,
Xl be a set of trace variables, also called local variables, and Xg be a set of parameter variables,

also called global variables. X = Xl [ Xg is the set of S-sorted variables. The set of terms of
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sort s 2 S induced by � and X , denoted T (�; X)s, is the least set of strings that satis�es one

of the following:

� if x 2 Xs, then x 2 T (�; X)s,

� if x 2 Xl \Xs, then pre(x); x� � 2 T (�; X)s for � > 0,

� if f 2 F with type ! s, then f 2 T (�; X)s,

� if f 2 F with type s� ! s where s� : I ! S, then f(T ) 2 T (�; X)s where T : I ! T (�; X)

with Ti 2 T (�; X)s�
i
.

Given � = hS; F i as a signature, let � be a set of S-sorted predicate symbols, such that for

each p 2 �, the type of p is a tuple s� : I ! S. The syntax of FTLTL can be de�ned given �

and �.

De�nition 9.3.1 (Syntax of FTLTL) The basic syntax of FTLTL can be de�ned as:

F ::= false jT 1
s = T 2

s j p(T ) jF1! F2 jF1U F2 jF1S F2 jF1 U � F2 jF1S� F2 j 9xF

where Ts 2 T (�; X)s is a term of sort s, p 2 � is a predicate symbol with type s� : I ! S,

T : I ! T (�; X) with Ti 2 T (�; X)s�
i
, and x 2 Xg is a global variable.

A frame of FTLTL is a triple hT ; A; V i where T is a time structure, A is a �-domain

structure and V is an interpretation that assigns to each predicate symbol p 2 � a subset V (p)

of �IAs�
i
, given that the type of p is s� : I ! S.

A model of FTLTL is a pair hF ; �i where F = hT ; A; V i is a frame and � = h�l; �gi is a
valuation for X = Xl [ Xg, i.e., �g : Xg ! A and �l : Xl ! (T ! A). By extending the

valuation � from variables to terms, we have � : T (F;X)! (T ! A), such that for any t 2 T :

� �(x)(t) = �g(x) for any x 2 Xg,

� �(x)(t) = �l(x)(t); �(pre(x))(t) = �l(x)(pre(t)); �(x� �)(t) = �l(x)(t� �) for any x 2 Xl,

� �(f(T ))(t) = fA(�(T )(t)) for any f 2 F .

De�nition 9.3.2 (Semantics of FTLTL) Let F = hT ; A; V i be a frame and hF ; �i be a

model of FTLTL. Let F be an FTLTL formula, � j=t F denotes that � satis�es F at time t:

� � 6j=t false.
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� � j=t T
1
s
= T 2

s
i� �(T 1

s
)(t) = �(T 2

s
)(t).

� � j=t p(T ); p 2 � i� �(T )(t) 2 V (p).

� � j=t F1 ! F2 i� � j=t F1 implies � j=t F2.

� � j=t F1 U F2 i� 9t0 > t, � j=t0 F2 and 8t00; t < t00 < t0; � j=t00 F1.

� � j=t F1 S F2 i� 9t0 < t, � j=t0 F2 and 8t00; t0 < t00 < t; � j=t00 F1.

� � j=t F1U �F2 i� 9t0 2 Tt+� , � j=t0 F2 and 8t00; t < t00 < t0; � j=t00 F1.

� � j=t F1S�F2 i� 9t0 2 Tt�� , � j=t0 F2 and 8t00; t0 < t00 < t; � j=t00 F1.

� � j=t 9xF , x 2 Xs i� there is a value a in As, � j=t F [a=x], where F [a=x] stands for

substitution of x in F by a.

We will use � j= F to denote that � satis�es F initially, i.e., � j=0 F . F is valid over a frame F ,
i� for any model hF ; �i, � j= F . F is valid , i� any frame F , F is valid over F . F is satis�able

over a frame F , i� for some model hF ; �i, � j= F . F is satis�able, i� for some frame F , F is

satis�able over F .
Various logical connectives, temporal and real-time operators can be de�ned as for PTLTL.

In addition, let 8 be the dual of 9, i.e., 8xF � :9x:F .
If we restrict quanti�ers to state formulas (formulas without temporal and real-time oper-

ators), we have RFTLTL, a restricted version of FTLTL. Formally, a state formula is de�ned

as

Fs ::= false jT 1
s = T 2

s j p(T ) jF 1
s ! F 2

s j 9xFs
where Ts 2 T (�; X)s is a term of sort s, p 2 � is a predicate symbol with type s� : I ! S,

T : I ! T (F;X) with Ti 2 T (F;X))s�
i
and x 2 Xg. Let FV (Fs) be the set of free variables in

Fs. A state formula Fs is a state proposition i� FV (Fs) � Xl.

A RFTLTL formula can be de�ned as

F ::= Fs jF1 ! F2 jF1 U F2 jF1S F2 jF1 U � F2 jF1S� F2

where Fs is any state formula.

Every RFTLTL formula is also a FTLTL formula, but not vice versa. FTLTL is strictly

more expressive than RFTLTL. For example, limt!1 x(t) = 0 can be expressed by FTLTL as

8�; � > 0! 32jxj< �. However, there is no equivalent RFTLTL formula.



CHAPTER 9. TIMED LINEAR TEMPORAL LOGIC 109

A RFTLTL formula with all free variables as local variables can be interpreted as a PTLTL

formula, with domain �Xl
Asl

and state propositions. For example, we may use state proposition

j�j < �^ v > � to represent proposition ME, where � is the heading and v is the velocity of the

car.

9.4 Open State Speci�cation

Now we discuss an important issue for requirements speci�cation, the openness of state formulas.

If Fs is a state formula and FV (Fs) is the set of free variables in Fs, let V (Fs) be the set of

tuples satisfying Fs, i.e., V (Fs) = fa : FV (Fs)! Aja j= Fsg.
A state formula Fs is open (closed) in A i� V (Fs) is open (closed) in the derived metric

topology. The following properties are directly from the de�nition of general topology: (1)

State formulas true and false are both open and closed; and (2) if F , F1, F2 are open (closed),

then:

� F1 _ F2 is open (closed);

� F1 ^ F2 is open (closed);

� :F is closed (open);

� 9xF is open (8xF is closed).

We will further discuss the openness of state formulas in the next chapter. Now we consider

the meaning of open state formulas for the de�nedness of information. If a predicate p on �IAi

is open, �iV (p) is either a set of well-de�ned values or a total set. Extra attention should be

paid to this property. For example, let > on R�R be de�ned as fhx; yijx 2 R; y 2 R; x > yg;
it is an open predicate that is true only on well-de�ned tuples R � R. Similarly, let � on

R�R be de�ned as fhx; yijx 2 R; y 2 R; x � yg; it is a predicate neither open nor closed that

holds only on R� R too. We should notice that for the domain R� R, an obvious relation

x > y $ :(x � y) does not hold any more, since both ?R>?R and ?R�?R are false.

Open state speci�cation is important for requirements speci�cation. For example, for a

safety requirements speci�cation 2:B(x) where B is a predicate, B should be closed, so that

:B is open. Otherwise, if B is open and :B is closed, an unde�ned value will satisfy the safety

property. That is usually not what safety means.



Chapter 10

Timed 8-Automata

An alternative to temporal logic for specifying sequential behaviors is automata. Consider

traces as a generalization of (�nite or in�nite) sequences. A desired property of traces can be

speci�ed by an automaton; a trace satis�es the speci�cation i� the automaton accepts the trace.

In this chapter, we develop extensions of 8-automata, proposed by Manna and Pnueli [MP87]

for the speci�cation and veri�cation of concurrent programs. We start with an introduction

to basic 8-automata that are de�ned for sequences, or traces with discrete time structures.

Then, we augment discrete 8-automata to discrete timed 8-automata by specifying real-time

constraints on automaton-states. Finally, we generalize discrete timed 8-automata to timed 8-
automata whose time structure can be arbitrary. The relationship between timed 8-automata
and TLTL will also be discussed.

10.1 Discrete 8-Automata

Discrete 8-automata are non-deterministic �nite state automata over in�nite sequences. These
automata were originally proposed as a formalism for the speci�cation and veri�cation of tem-

poral properties of concurrent programs [MP87]. We briey introduce discrete 8-automata, but
in the role of specifying discrete time traces rather than concurrent programs.

Formally, a 8-automaton is de�ned as follows.

De�nition 10.1.1 (Syntax of 8-automata) A 8-automaton A is a quintuple hQ;R; S; e; ci
where Q is a �nite set of automaton-states, R � Q is a set of recurrent states and S � Q is a

set of stable states. With each q 2 Q, we associate a state proposition e(q), which characterizes

the entry condition under which the automaton may start its activity in q. With each pair

q; q0 2 Q, we associate a state proposition c(q; q0), which characterizes the transition condition

110
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under which the automaton may move from q to q0.

R and S are the generalization of accepting states to the case of in�nite inputs. We denote by

B = Q � (R [ S) the set of non-accepting (bad) states.
A 8-automaton is called complete i� the following requirements are met:

� W
q2Q e(q) is valid.

� For every q 2 Q, W
q02Q c(q; q

0) is valid.

We will restrict ourselves to complete automata. This is not a substantial restriction, since any

automaton can be transformed to a complete automaton by introducing an additional error

state qE 2 B, with the entry condition:

e(qE) = :(
_

q2Q�fqEg

e(q));

and the transition conditions:

c(qE ; qE) = true

c(qE; q) = false for each q 2 Q� fqEg
c(q; qE) = :(

_
q02Q�fqEg

c(q; q0)) for each q 2 Q� fqEg:

Let T be a discrete time structure, A be a domain and v : T ! A be a trace. A run

of A over v is a mapping r : T ! Q such that (1) v(0) j= e(r(0)); and (2) for all t > 0,

v(t) j= c(r(pre(t)); r(t)).

A complete automaton guarantees that any discrete trace has a run over it, and that any

partial run1 can always be extended to a total run.

If r is a run, let Inf(r) be the set of automaton-states appearing in�nitely many times in

r, i.e., Inf(r) = fqj8t9t0 � t; r(t0) = qg. If T has a greatest element t0, Inf(r) = fr(t0)g.
Therefore, Inf(r) is a generalization of the \�nal value."

A run r is de�ned to be accepting i�:

1. Inf(r)\R 6= ;, i.e., some of the states appearing in�nitely many times in r belong to R,

or

2. Inf(r) � S, i.e., all the states appearing in�nitely many times in r belong to S.

1Consider a run as a function.
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De�nition 10.1.2 (Semantics of 8-automata) A 8-automaton A accepts a trace v, written

v j= A, i� all possible runs of A over v are accepting.

One of the advantages of using automata as a speci�cation language is its graphical rep-

resentation. It is useful and illuminating to represent 8-automata by diagrams. The basic

conventions for such representations are the following:

� The automaton-states are depicted by nodes in a directed graph.

� Each initial automaton-state (e(q) 6= false) is marked by a small arrow, an entry arc,

pointing to it.

� Arcs, drawn as arrows, connect some pairs of automaton-states.

� Each recurrent state is depicted by a diamond shape inscribed within a circle.

� Each stable state is depicted by a square inscribed within a circle.

Nodes and arcs are labeled by state propositions. A node or an arc that is left unlabeled is

considered to be labeled with true. The labels de�ne the entry conditions and the transition

conditions of the associated automaton as follows.

� Let q 2 Q be a node in the diagram corresponding to an initial automaton-state. If q

is labeled by  and the entry arc is labeled by ', the entry condition e(q) is given by

e(q) = ' ^  : If there is no entry arc, e(q) = false.

� Let q; q0 be two nodes in the diagram corresponding to automaton-states. If q0 is labeled

by �, and arcs from q to q0 are labeled by 'i; i = 1 � � �n, the transition condition c(q; q0)

is given by c(q; q0) = ('1 _ � � � _ 'n) ^  : If there is no arc from q to q0, c(q; q0) = false.

A diagram representing an incomplete automaton is interpreted as a complete automaton

by introducing an error state and associated entry and transition conditions.

Some examples of 8-automata are shown in Figure 10.1. Figure 10.1(a) accepts any trace

that satis�es :G only �nitely many times, Figure 10.1(b) accepts any trace that never satis�es

B, and Figure 10.1(c) accepts any trace that will satisfy R in the �nite future whenever it

satis�es E.

Now we give a de�nition of open speci�cation. A 8-automata speci�cation is open i�

8q 2 R[S; e(q) is open and c(q0; q) is open for any q0 2 Q. For discrete domains, open speci�ca-
tion implies the well-de�nedness of accepting states; for continuous domains, open speci�cation
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B

(a) (b) (c)

G G

E
E

E

E

R

R

Figure 10.1: 8-automata: (a) goal achievement (b) safety (c) bounded response

provides a relaxed representation for asymptotic behaviors. For example, a relaxed representa-

tion for limt!1 x(t) = 0 is an automaton in Figure 10.1 (a) with G � jxj < � for some � > 0.

We will see that openness should be imposed for any useful requirements speci�cation.

8-automata may provide a more compact representation than TLTL. For example, the two

desired properties of the producer-consumer synchronizer, precedence and interleaving, can be

speci�ed by one 8-automaton in Figure 10.2 (a), where E(Ci) indicates there is an event in Ci

and NE(Ci) indicates there is no event in Ci. E(Ci) and NE(Ci) can be represented as state

propositions as follows. Let Qi be the hidden location of the Muller C-element with output

location Ci, E(Ci) � neq(Ci;Qi) and NE(Ci) � eq(Ci;Qi) with both neq and eq open. The

persistent property of the maze traveler can be represented by a 8-automaton in Figure 10.2

(b), meaning that the robot will persistently move east.

q0 q1E(C2)

E(C1)

NE(C1) NE(C2)

NE(C2)

NE(C1)

NE(C1) NE(C2)

ME ME

q0 q1

(a) (b)

Figure 10.2: The speci�cation of (a) the producer-consumer problem (b) the maze traveler

It has been shown [MP87] that discrete 8-automata have the same expressive power as

Buchi automata [Tho90] and the extended temporal logic (ETL) [Wol83], which are strictly

more powerful than the propositional linear temporal logic (PLTL) [Tho90, Wol83].
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10.2 Discrete Timed 8-Automata

In order to represent timeliness, we develop timed 8-automata. Timed 8-automata are 8-
automata augmented with timed automaton-states and time bounds. Formally, a timed 8-
automaton is de�ned as follows.

De�nition 10.2.1 (Syntax of timed 8-automaton) A timed 8-automaton T A is a triple

hA; T; �i where A = hQ;R; S; e; ci is a 8-automaton, T � Q is a set of timed automaton-states

and � : T [ fbadg ! R+ [ f1g is a time function.

A 8-automaton is a special timed 8-automaton with T = ; and �(bad) = 1. Graphically, a

T -state is denoted by a nonnegative real number indicating its time bound. The conventions

for complete 8-automata are adopted for timed 8-automata.
Let v : T ! A be a trace. A run r of T A over v is a run of A over v; r is accepting for T A

i�

1. r is accepting for A and

2. r satis�es the time constraints. If I � T is an interval of T and q� : I ! Q is a segment of

run r, i.e., q� = rjI , let �(q
�) denote the measure of q�, i.e., �(q�) = �(I) = �t2I�(t) since

I is discrete. Furthermore, let �B(q
�) denote the measure of bad automaton-states in q�,

i.e., �B(q
�) = �t2I;q�(t)2B�(t). Let Sg(q) be the set of segments of consecutive q's in r,

i.e., q� 2 Sg(q) implies 8t 2 I; q�(t) = q. Let BS be the set of segments of consecutive B

and S-states in r, i.e., q� 2 BS implies 8t 2 I; q�(t) 2 B [ S. The run r satis�es the time
condition i�

(a) (local time constraint) 8q 2 T; q� 2 Sg(q); �(q�) � �(q) and
(b) (global time constraint) 8q� 2 BS; �B(q�) � �(bad).

De�nition 10.2.2 (Semantics of timed 8-automaton) A timed 8-automaton T A accepts

a trace v, written v j= T A, i� all possible runs of T A over v are accepting.

For example, the real-time response 2(E ! 3
�R) is depicted by the timed 8-automaton in

Figure 10.3, meaning that any event will be responded to within time � (assuming d(t1; t2) =

�([t1; t2))).

We should notice that timed 8-automata are closed under conjunction and disjunction, but

not under complementation. Even though discrete 8-automata are strictly more expressive than
PLTL, discrete timed 8-automata and PTLTL are not strictly more expressive than each other,

since PTLTL is closed under complementation.
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Figure 10.3: Real-time response

10.3 Timed 8-Automata

Now we generalize discrete timed 8-automata to timed 8-automata that can accept general

traces, with discrete time traces as special cases. The syntax and semantics of timed 8-automata
are the same as those of discrete timed 8-automata, except for the de�nitions of runs and

accepting runs.

The important concept of general runs is the generalization of the consecution condition.

Let T be a time structure and t < 1 denote that t is not the greatest element of T . Let

v : T ! A be a trace. A run of A over v is a trace r : T ! Q satisfying

1. Initiality: v(0) j= e(r(0));

2. Consecution:

� inductivity: 8t > 0; 9q 2 Q; t0 < t; 8t00; t0 � t00 < t; r(t00) = q and v(t) j= c(r(t00); r(t))

and

� continuity: 8t < 1; 9q 2 Q; t0 > t; 8t00; t < t00 < t0; r(t00) = q and v(t00) j=
c(r(t); r(t00)).

When T is discrete, the two conditions in Consecution are reduced to one, i.e., 8t > 0; v(t) j=
c(r(pre(t)); r(t)); and if, in addition, A is complete, every trace has a run. However, if T is not

discrete, even if A is complete, not every trace has a run. For example, a trace with in�nite

transitions among Q within a �nite interval has no run. A trace v is speci�able by A i� there

is a run of A over v. For example, if T and A are [0; 1], trace v : T ! A with v = �t:t is not

speci�able by the automaton in Figure 10.4.

The de�nition of accepting runs for 8-automata is the same as that for discrete cases. A

run r is de�ned to be accepting for A i�:

1. Inf(r)\R 6= ;, i.e., some of the states appearing in�nitely many times in r belong to R,

or
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[0]

(1/2n,1/(2n-1)]

(1/(2n+1),1/2n]

Figure 10.4: A generalized 8-automaton
2. Inf(r) � S, i.e., all the states appearing in�nitely many times in r belong to S.

We should notice that dense 8-automata is no longer more powerful than PLTL, since the ability
of counting in automata [MP71] is lost when time is dense. In other words, meaningful dense

automata are counter-free only, since for any transition between two automaton-states, there is

a self-loop at one of the automaton-states.

The de�nition of accepting runs for timed 8-automata is similar to that for discrete cases,
except for the measures of segments. If I � T is an interval of T and q� : I ! Q is a segment of

run r, i.e., q� = rjI , let �(q
�) denote the measure of q�, i.e., �(q�) = �(I) =

R
I
dt. Furthermore,

let �B(q
�) denote the measure of bad automaton-states in q�, i.e., �B(q

�) =
R
I
�B(q

�(t))dt,

where �B is the characterization function for set B. A run r is accepting for a timed 8-
automaton i�

1. r is accepting for its 8-automaton and

2. r satis�es the time constraints. Let Sg(q) be the set of segments of consecutive q's in r,

i.e., q� 2 Sg(q) implies 8t 2 I; q�(t) = q. Let BS be the set of segments of consecutive B

and S-states in r, i.e., q� 2 BS implies 8t 2 I; q�(t) 2 B [ S. The run r satis�es the time
condition i�

(a) (local time constraint) 8q 2 T; q� 2 Sg(q); �(q�) � �(q) and
(b) (global time constraint) 8q� 2 BS; �B(q�) � �(bad).

Timed 8-automata are powerful enough to represent various temporal and timed properties
of dynamic systems, such as persistence or liveness, goal achievement or reachability, safety and

real-time response. More importantly, there is a formal veri�cation method based on a model

checking technique and a stability analysis method.
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Behavior Veri�cation

While modeling focuses on the underlying structure of a system | the organization and coordi-

nation of its components | requirements speci�cation imposes global constraints on a system's

behavior, and behavior veri�cation checks the relationship between the behavior of a system

and a requirements speci�cation. In this chapter, we �rst discuss general issues of behavior

veri�cation, then focus on a formal veri�cation method for timed 8-automata speci�cation.

11.1 Behavior Veri�cation: General Issues

We have de�ned the behavior of a dynamic system as the set of observable input/output traces.

Given B as the behavior of a dynamic system andR as a requirements speci�cation, the behavior

satis�es requirements, written B j= R, i� 8v 2 B; v j= R. The veri�cation procedure is to certify
the relationship B j= R for any given behavior B and requirements speci�cation R.

It is not hard to see that there is no automatic veri�cation procedure for behaviors of

discrete time and domain dynamic systems and TLTL speci�cation in general. We have seen

that any partial recursive function f can be computed by a constraint net. And whether or not

f is de�ned for an input value n (the halting problem) can be represented by a speci�cation

2[(Data In = n)^E(Start)! 3E(End)], where E(X) indicates that there is an event at X .

There are, as we will see, automatic veri�cation procedures for discrete time and �nite domain

dynamic systems and PLTL speci�cation.

There are generally three methods for system veri�cation: simulation, theorem proving

and model checking. Simulation is a procedure of generating partial traces1 by executing the

model, and then checking the set of partial traces against its speci�cation. However, simulation

1Note that time might be in�nite.
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is like program testing, which can only discover errors, but cannot guarantee correctness2. Both

theorem proving and model checking are formal methods for ensuring correctness.

Theorem proving is based on syntactic deduction in a formal system. A formal system � is

a pair hA;Ri consisting of a set of axioms A and a set of rules R each of which has the form

P1; : : : ; Pl ) P . A formula F is a theorem in �, written `� F , i� (a) F is an axiom in A or (b)

there exists a sequence of theorems F1; : : : ; Fm; F such that either Fi is an axiom or Fi can be

derived from fF1; : : : ; Fi�1g using a rule in R, namely, there is some P1; : : : ; Pl ) P such that

P = Fi and fP1; : : : ; Plg � fF1; : : : ; Fi�1g.
A frame F is axiomatizable i� F can be captured by a formal system, also denoted by F , such

that F is valid over the frame F i� `F F , i.e., there is a sound and complete axiomatization.

If we can represent a constraint net CN by a formula, also denoted by CN , in the formal

system of the speci�cation language F , the behavior of CN satis�es requirements R, written
[[CN ]] j= R, i� `F CN ! R. For example, a state automaton s0 = f(i; s); s = �(s0)(s

0) in Figure

4.1 can also be represented by a FTLTL formula 2(s0 = f(i; s))
V
(s = s0) ^2(s = pre(s0)).

There are some inherent di�culties with the theorem proving approach. First, to be ax-

iomatizable is a strong condition. In fact, according to Goedel's incompleteness theorem, there

is no sound and complete axiomatization for any set as complex as natural numbers. Second,

even the frame is axiomatizable, there might be no computable decision procedure for an in�-

nite frame. Third, even for �nite frames, the problem of checking the validity of a formula is

hard in general.

However, in many cases, a proof theoretic approach can assist the veri�cation process. One

can always have a set of sound axioms and rules describing the properties of the frame and

the logic [Ost89, MP92]. With an interactive theorem prover like HOL | a higher order logic

theorem prover developed by Cambridge University and SRI International | one can add

more sound axioms and rules for any particular problem at hand. In addition, the reasoning

mechanism of theorem proving based on natural deduction might be easier for human to follow.

In conclusion, there are three levels of formal speci�cation for the theorem proving approach:

� frame speci�cation: a set of axioms and rules of the temporal logic for the given time

structure, a set of axioms and rules characterizing �-domain structure, a set axioms and

rules for the given set of predicates;

� model speci�cation: a set of formulas specifying the equations of a constraint net;

2Symbolic simulation [BS87] is a di�erent procedure that generates symbolic representations of behaviors.
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� requirements speci�cation: a set of formulas specifying the desired temporal relations on

the interface of the module.

We will not discuss further in this thesis the issues on the theorem proving approach, rather,

in the rest of this chapter, we will focus on the model checking approach for timed 8-automata
speci�cation. Model checking is a formal procedure of verifying behaviors of models. Given

the behavior of a system and a timed 8-automaton, model checking is to certify the inclusion

relation between the behavior and the language accepted by the automaton.

First, we develop a formal veri�cation method for state-based and time-invariant behaviors

of discrete time, modi�ed from Manna & Pnueli's veri�cation rules [MP87]. Then, we apply the

method to construct a semi-automatic veri�cation procedure for constraint nets with discrete

time structures, and translate the veri�cation rules into an automatic algorithm for �nite domain

systems. Finally, we generalize the veri�cation rules for behaviors of hybrid dynamic systems.

11.2 Veri�cation for Behaviors of Discrete Time Systems

Manna & Pnueli [MP87] gave a formal method for checking the validity of a 8-automata
speci�cation over a concurrent program. We modify the method to verify state-based and

time-invariant behaviors of discrete time. First, we generalize ranking functions to Liapunov

functions. Then, we augment timing functions to verify real-time behaviors.

A state-based and time-invariant behavior B of discrete time corresponds to a state transi-

tion system hSB;!i with � denoting the initial set of states.

We write n(s; s0) i� s! s0, and f'gBf g i� the consecutive condition:

'(s) ^ n(s; s0)!  (s0)

is valid.

Let A = hQ;R; S; e; ci be a 8-automaton. A set of propositions f�qgq2Q is called a set of

invariants for B and A i�

� Initiality: 8q 2 Q;� ^ e(q)! �q .

� Consecution: 8q; q0 2 Q; f�qgBfc(q; q0)! �q0g.

Proposition 11.2.1 Let f�qgq2Q be invariants for B and A. If r is a run of A over a trace

v 2 B, then 8t 2 T ; v(t) j= �r(t).
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Let f�qgq2Q be a set of invariants for B and A. A set of partial functions f�qgq2Q is called

a set of Liapunov functions for B and A i� �q : SB ! R+ satis�es the following conditions:

� De�nedness: 8q 2 Q;�q ! 9w; �q = w.

� Non-increase: 8q 2 S; q0 2 Q; f�q ^ �q = wgBfc(q; q0)! �q0 � wg.

� Decrease: 9� > 0; 8q 2 B; q0 2 Q; f�q ^ �q = wgBfc(q; q0)! �q0 � w � ��:g

The �rst two conditions are derived from [MP87]. The last condition generalizes the decrease

condition for ranking functions on discrete domains [MP87].

Proposition 11.2.2 Let f�qgq2Q be a set of invariants for B and A and r be a run of A over

a trace v 2 B. If f�qgq2Q is a set of Liapunov functions for B and A, then

� �r(t)(v(t)) � �r(pre(t))(v(pre(t))) when r(pre(t)) 2 S,

� �r(t)(v(t))� �r(pre(t))(v(pre(t)))� �� when r(pre(t)) 2 B, and

� if BS is the set of segments of consecutive B and S-states in r, then 8q� 2 BS; q� has a
�nite number of B-states.

Let T A = hA; T; �i. Corresponding to two types of time bound, we de�ne two timing

functions. Without loss of generality, we assume that the measurement of time is encoded in

the state transition system and let � : SB ! R+ be a function of time measure on states.

Let f�qgq2Q be a set of invariants for B and A. A set of partial functions fqgq2T is called

a set of local timing functions for B and T A i� q : SB ! R+ satis�es the following conditions:

� Boundedness: 8q 2 T; �q ! � � q � �(q).

� Decrease: 8q 2 T; f�q ^ q = w ^ � = ugBfc(q; q)! q � w � �ug.

A set of partial functions f0
q
gq2Q is called a set of global timing functions for B and T A i�

0q : SB ! R+ satis�es the following conditions:

� De�nedness: 8q 2 Q;�q ! 9w; 0q = w.

� Boundedness: 8q 2 B; �q ! 0q � �(bad).

� Non-increase: 8q 2 S; q0 2 Q; f�q ^ 0q = wgBfc(q; q0)! 0
q0
� wg.

� Decrease: 8q 2 B; q0 2 Q; f�q ^ 0q = w ^ � = ugBfc(q; q0)! 0
q0
� w � �ug.
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Proposition 11.2.3 Let f�qgq2Q be a set of invariants for B and A and r be a run of A over

a trace v 2 B. If there exist local and global timing functions for B and T A, then

� if Sg(q) is the set of segments of consecutive q's in r, then 8q 2 T; q� 2 Sg(q); �(q�) �
�(q), and

� if BS is the set of segments of consecutive B and S-states in r, then 8q� 2 BS; �B(q�) �
�(bad).

Following is the set of veri�cation rules for a behavior B and a timed automaton T A =

hA; T; �i:

(I) Associate with each automaton-state q 2 Q a state formula �q, such that f�qgq2Q is a

set of invariants for B and A.

(L) Associate with each automaton-state q 2 Q a partial function �q, such that f�qgq2Q is a

set of Liapunov functions for B and A.

(T) Associate with each timed automaton-state q 2 T a partial function q, such that fqgq2T
is a set of local timing functions for B and T A. Associate with each automaton-state q 2 Q
a partial function 0q, such that f0qgq2Q is a set of global timing functions for B and T A.

Theorem 11.2.1 For any state-based and time-invariant behavior B with an in�nite time

structure and a complete timed 8-automaton T A, the veri�cation rules are sound and com-

plete, i.e., B j= T A i� there exist a set of invariants, Liapunov functions and timing functions.

We shall provide the proof of this theorem next, since the proof itself will be used later in the

veri�cation algorithm for behaviors of �nite state systems.

Proof: The construction of these rules guarantees the soundness of the veri�cation method.

For any trace v, there is a run because T A is complete. For any run r over v, if any automaton-

state in R appears in�nitely many times in r, r is accepting. Otherwise, there is a time point

t0 2 T , the sub-sequence r on I = ft 2 T jt � t0g, denoted q�, has only bad and stable

automaton-states. If there exist a set of invariants and a set of Liapunov functions, q� has only

a �nite number of B-states. Since time is in�nite, all the automaton-states appearing in�nitely

many times in r belong to S; so r is accepting too. Therefore, every trace is accepting for the

automaton. If there exists a set of local and global timing functions, every trace satis�es the

timing constraints.
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On the other hand, if T A is valid over B, then there exist a set of invariants, a set of

Liapunov functions, and a set of local and global timing functions that satisfy the requirements.

The construction of invariants and functions will be used later for the veri�cation algorithm.

For any state s and proposition �, we write �(s) i� s j= �. The invariants can be constructed

as the �xpoint of the set of equations:

�q0(s
0) = (9q; s; �q(s) ^ n(s; s0) ^ c(q; q0)(s0))

_
(�(s0) ^ e(q0)(s0)): (11:1)

We can verify that f�qgq2Q is a set of propositions over SB and satis�es the requirements of

initiality and consecution. Furthermore, s j= �q i� hq; si is a reachable pair for T A and B.
Given the constructed invariants f�qgq2Q, a set of Liapunov functions f�qgq2Q and a set of

global timing functions f0
q
gq2Q can be constructed as follows:

� 8q 2 R; s j= �q, let �q(s) = 0 and 0q(s) = 0.

� 8q 62 R; s j= �q, �q(s) and 0q(s) are de�ned as follows. Construct a directed graph

G = hV;Ei, such that hq; si 2 V i� q 62 R; s j= �q, and hq; si ! hq0; s0i in E i� n(s; s0) ^
c(q; q0)(s0). For any path p starting at hq; si, let jpjB be the number of B-states in p and

�B(p) be the measure of B-states in p. Let �q(s) = supfjpjBg and 0q(s) = supf�B(p)g.

We can verify that f�qgq2Q is a set of Liapunov functions, and that f0qgq2Q is a set of global

timing functions.

Similarly, a set of local timing functions fqgq2T can be constructed as follows. For all

q 2 T , construct a directed graph G = hV;Ei, such that s 2 V i� s j= �q, and s ! s0 in E

i� n(s; s0) ^ c(q; q)(s0). For any path p starting at s, let �(p) be the measure of the path. Let

q(s) = supf�(p)g. We can verify that fqgq2T is a set of local timing functions. 2

This veri�cation method for behaviors of discrete time systems will be the basis of veri�ca-

tion for behaviors of hybrid dynamic systems. On the other hand, many hybrid systems can

be veri�ed at di�erent levels of implementation. If a system has an event-driven component,

we can verify, using this method, the discrete time behavior, where the time is generated by

events. For the maze traveler example, the persistent property | the robot moves to the east

in�nitely many times represented by the 8-automaton in Figure 10.2 | can be veri�ed at the

strategy level. We can construct a state transition system hS;!i such that S is the set of con-

�gurations of the car and! is the state transition relation derived from the strategy. Formally,

let hx; yi 2 R�R and � 2 R be the position and the orientation of the car, respectively, and let

hx; y; �i ! hx0; y0; �i i� hx0; y0; �0i is the con�guration of the car at the next event according to
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the strategy. Associate with q0 and q1 the state proposition :(j�j < �) and j�j < �, respectively;

q0 and q1 are invariants. Associate with q0 a function � : R�R�R! R+ such that �(x; y; �)

is the distance between the current con�guration and the \desired" con�guration with heading

j�j < �. Associate with q1 a constant function 0. Given that the block sizes are �nite, � and 0

are are Liapunov functions for q0 and q1, respectively. Therefore, the maze traveler controlled

by the strategy will satisfy the desired property.

11.2.1 Semi-automatic veri�cation

Now we apply the veri�cation rules to constraint nets with discrete time structures. Let CN =

hLc; Td; Cni be a constraint net composed of transliterations and unit delays only. CN can be

represented by two sets of domain equations, each of the form l00 = l, if l0 is an output location

of a unit delay with the input location l, or l0 = f(l1; : : : ; ln), if l0 is an output location of a

transliteration f with the input location tuple hl1; : : : ; lni. For example, consider the producer-
consumer circuit in Figure 5.3, and assume that any delay is unit (if not, it can be modeled by

a �nite number of unit delays), the domain equations for the control circuit are:

C1 = mc(R1;:Q2; Q1); C2 = mc(Q1;:R2; Q2) (11.2)

Q10 = C1; Q20 = C2: (11.3)

Let T be a discrete time structure and A be a domain structure. The behavior of CN on

dynamics structure D(T ; A) corresponds to a state transition system hS;!i where (1) S �
�LcAl and s 2 S i� for every equation of the form l0 = f(l1; : : : ; ln), s(l0) = f(s(l1); : : : ; s(ln)),

and (2) s ! s0 i� for every equation of the form l00 = l, s0(l0) = s(l). However, the behavior of

CN can be veri�ed without generating its state transition system.

Let CNt �
Vfl0 = f(l1; : : : ; ln)g and CNd �

Vfl00 = lg. Let ' and  be state formulas with

a subset of Lc as local variables. We use [']CN [ ] to denote that the consistent condition:

' ^ CNt !  

is valid, and f'gCNf g to denote that the consecutive condition:

'
^
CNt ^ CNd ^ CNt[l

0=l]!  [l0=l]

is valid, where x0=x denotes the replacement of x by x0.

Let � be a state formula imposing constraints on the set of initial states of CN . Let

A = hQ;R; S; e; ci be a 8-automaton. A set of state propositions f�qgq2Q is called a set of

invariants for CN and A i�
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� Initiality: 8q 2 Q; [� ^ e(q)]CN [�q].

� Consecution: 8q; q0 2 Q; f�qgCNfc(q; q0)! �q0g.

Let f�qgq2Q be a set of invariants for CN and A. A set of partial functions f�qgq2Q is

called a set of Liapunov functions for CN and A i� �q : �LcAsl
! R+, satis�es the following

conditions:

� De�nedness: 8q 2 Q; [�q]CN [9w; �q = w].

� Non-increase: 8q 2 S; q0 2 Q; f�q ^ �q = wgCNfc(q; q0)! �q0 � wg.

� Decrease: 9� > 0; 8q 2 B; q0 2 Q; f�q ^ �q = wgCNfc(q; q0)! �q0 � w � ��:g

Let T A = hA; T; �i. Corresponding to two types of time bound, we de�ne two timing

functions. Without loss of generality, we assume that the measurement of time is encoded in

a location and let � : �LcAsl
! R+ be a function of time measure. Let f�qgq2Q be a set

of invariants for CN and A. A set of partial functions fqgq2T is called a set of local timing

functions for B and T A i� q : �LcAsl
! R+ satis�es the following conditions:

� Boundedness: 8q 2 T; [�q]CN [� � q � �(q)].

� Decrease: 8q 2 T; f�q ^ q = w ^ � = ugCNfc(q; q)! q � w � �ug.

A set of partial functions f0qgq2Q is called a set of global timing functions for CN and T A i�

0
q
: �LcAsl

! R+ satis�es the following conditions:

� De�nedness: 8q 2 Q; [�q]CN [9w; 0
q = w].

� Boundedness: 8q 2 B; [�q]CN [0q � �(bad)].

� Non-increase: 8q 2 S; q0 2 Q; f�q ^ 0q = wgCNfc(q; q0)! 0
q0
� wg.

� Decrease: 8q 2 B; q0 2 Q; f�q ^ 0q = w ^ � = ugCNfc(q; q0)! 0
q0
� w � �ug.

We say that the veri�cation method based on this set of rules is semi-automatic because

given the invariants, Liapunov functions and timing functions, the method is reduced to checking

the validity of a set of formulas in the domain structure A. If there is a �rst order theorem

prover for the domain structure A, the procedure can be done semi-automatically.

Now we illustrate the veri�cation method using an example. Some other examples are also

studied [ZM94].
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A desired property of the asynchronous event controller has been expressed by the 8-
automaton in Figure 10.2(a). The automaton is not complete. To make it complete, in-

troduce an error state qE with e(qE) = false; c(qE; qE) = true; c(qE; qi) = false, and let

c(q0; qE) be (Q1 =?) _ (Q2 =?) _ (C1 =?) _ (C2 =?) _ neq(C2; Q2) and c(q1; qE) be

(Q1 =?) _ (Q2 =?) _ (C1 =?) _ (C2 =?) _ neq(C1; Q1). The domain equations of the

controller have been expressed in Equations 11.2 and 11.3.

Let the initial condition � be Q1 = Q2 = 0; R1 = 0; R2 = 1, and assume that values at

R1 and R2 are always well-de�ned. Let AECt denote the conjunction of domain equations in

11.2 with :(R1 =?) and :(R2 =?), and AECd denote the conjunction of domain equations in
11.3. Furthermore, let AEC denote the conjunction of all domain equations, AECt ^ AECd ^
AECt[l

0=l].

(I) Associate with q0; q1; qE the state propositions eq(C1; C2), neq(C1; C2) and false, re-

spectively. The following veri�cation conditions are satis�ed:

� Initiality:

q0 : � ^ true ^AECt ! eq(C1; C2):

q1 : � ^ false ^AECt! neq(C1; C2):

qE : � ^ false ^AECt! false:

� Consecution:

(q0; q0) : eq(C1; C2)^ AEC ! (eq(C10; Q10) ^ eq(C20; Q20)! eq(C10; C20)).

(q0; q1) : eq(C1; C2)^ AEC ! (neq(C10; Q10)^ eq(C20; Q20)! neq(C10; C20)).

(q0; qE) : eq(C1; C2)^ AEC !

((Q10 =?) _ (Q20 =?) _ (C10 =?) _ (C20 =?) _ neq(C20; Q20)! false):

: : :

Therefore, eq(C1; C2), neq(C1; C2) and false are invariants for q0; q1 and qE , respectively.

(L) Since q0; q1 2 R and the invariant of q2 2 B is false, any set of functions is a set of

Liapunov functions for q0; q1 and qE .

Therefore, according to the veri�cation rules, the behavior of the constraint net satis�es its

requirements speci�cation.
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11.2.2 Automatic veri�cation

The existence of the semi-automatic veri�cation method for constraint nets presented in the

previous section does not necessarily imply the existence of an automatic procedure. First,

the invariants, Liapunov functions and the timing functions are de�ned separately, and not

automatically generated. Second, there is, of course, no decision procedure for determining the

validity of a �rst-order formula in general.

However, for �nite constraint nets | nets with �nite domains | we can automate the

veri�cation process against a timed 8-automata speci�cation. Derived from the veri�cation

rules, the algorithm consists of three phases:

1. Invariant Generation,

2. Boundedness and Global Timing, and

3. Local Timing.

Let CN = hLc; Td; Cnibe a constraint net composed of transliterations and unit delays only.
We write CN(s) i� for every equation of the form l0 = f(l1; : : : ; ln), s(l0) = f(s(l1); : : : ; s(ln)),

and CN(s; s0) i� CN(s); CN(s0), and for every equation of the form l00 = l, s0(l0) = s(l).

Invariant generation is a process that produces all reachable pairs of (q; s), denoted a(q; s),

where q 2 Q and s 2 �LcAsl
. According to Equation 11.1, this �xpoint operation can be

e�ciently realized in two steps:

1. Initiality: Generate a(q; s) if �(s); e(q)(s); CN(s).

2. Consecution: Generate a(q0; s0) if a(q; s); CN(s; s0); c(q; q0)(s0).

The algorithm is shown in Figure 11.1, where start(s) denotes �(s).

We write bstate(q; s) i� a(q; s) and q 2 B, and sstate(q; s) i� a(q; s) and q 2 S. Let hV;Ei be
the state transition graph where V is the set of pairs (q; s) satisfying sstate(q; s) or bstate(q; s),

E is the set of transitions (q; s; q0; s0) between two states in V , (q; s; q0; s0) 2 E if CN(s; s0)

and c(q; q0)(s0). Boundedness checks whether or not there is a loop consisting of bstate(q; s) in

the state transition graph. Global timing checks whether or not there is a path p in the state

transition graph whose time measure of bstate(q; s), denoted m(p), is greater than the time

bound �(bad), denoted time(bad). The algorithm is shown in Figure 11.2.

For each q 2 T let hV;Ei be the state transition graph where V is the set of s satisfying

a(q; s) and E is the set of transitions (s; s0) between two states in V , (s; s0) 2 E if CN(s; s0) and
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||||||||||||||||||||||||||

Algorithm: Invariant Generation

Qs = [];

Rs = [];

for all q, s do /* Initiality */

if start(s) and e(q)(s) and CN(s)

{ Qs = [a(q, s)|Qs];

Rs = [a(q, s)|Rs];

}

while Qs = [a(q, s)|Qs1] do /* Consecution */

{

NRs = [];

for all q', s' do

if a(q, s) and CN(s, s') and c(q, q')(s')

and a(q', s') not in Rs

NRs = [a(q', s')|NRs];

Rs = append(Rs, NRs);

Qs = append(Qs1, NRs);

}

||||||||||||||||||||||||||-

Figure 11.1: The algorithm for invariant generation
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||||||||||||||||||||||||||-

Algorithm: Boundedness and Global Timing

1. /* Generate state transition graph <V,E> */

for all q in B do

for all s do

if a(q, s) put bstate(q, s) in V

for all q in S do

for all s do

if a(q, s) put sstate(q, s) in V

for all (q, s), (q', s') in V do

if CN(s, s') and c(q, q')(s')

put (q, s, q', s') in E

2. /* Check the acyclicity of bstate */

for all bstate(q, s) in V do

for all path p starting from (q, s) do

if p ends at (q, s) return false

/* Check the time bound of bstate */

for all bstate(q, s) in V do

for all path p starting from (q, s) do

if m(p) > time(bad) return false

return true

||||||||||||||||||||||||||-

Figure 11.2: The algorithm for boundedness and global timing
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c(q; q)(s0). Local timing checks whether or not there is a path p in the state transition graph

whose time measure, denoted m(p), is greater than the time bound �(q), denoted time(q). The

algorithm is shown in Figure 11.3.

||||||||||||||||||||||||||-

Algorithm: Local Timing

for all q in T do

if not ttest(q) return false

return true

ttest(q):

1. /* Generate state transition graph <V,E> */

for all s do

if a(q, s) put s in V

for all s, s' in V do

if CN(s, s') and c(q, q)(s')

put (s, s') in E

2. /* Check the longest path */

for all s in V with no input edges do

for all path p starting from s do

if m(p) > time(q) or p has loop return false

return true

||||||||||||||||||||||||||-

Figure 11.3: The algorithm for local timing

The complexity of the veri�cation algorithm is obtained as follows. The invariant generation

can be done in polynomial time in jQj �Lc jAsl
j, which is the total number of (q; s) pairs. For

each bstate(q; s), searching for a loop including bstate(q; s) or a longest bad state path starting

at bstate(q; s) is linear in the number of transitions in the state transition graph, since each state

needs to be visited only its outdegree number of times in the search algorithm. Therefore, both

checking boundedness and global timing are polynomial in jQj �Lc jAsl
j. Similarly, checking

local timing is in polynomial in jQj �Lc jAsl
j.

As a result, the veri�cation algorithm is polynomial in both the size of the model and the

size of the speci�cation. This result seems a little surprising, since it is well-known [Eme90] that

model checking for the linear propositional temporal logic is PSPACE-complete in the length

of the formula. However, we should notice that, in the worst case, the size of a 8-automaton
may be exponential in the length of its equivalent linear propositional temporal logic formula.
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On the other hand, for many system properties, such as safety, liveness, reachability and

bounded response, 8-automata do have size equivalent to the length of their corresponding

linear propositional temporal logic formulas. However, the number of automaton-states in the

complement of a 8-automaton may be exponential in the number of automaton-states in the

original 8-automaton [Tho90]. This suggests that we should choose the simpler 8-automaton,
A or :A, as a basis to verify �nite systems.

However, we should also notice that even though the complexity of the algorithm is poly-

nomial in the size of the model, it is exponential in the number of local variables or locations

of the constraint net. In most cases, a property of a system is expressed by only a small subset

of locations, for example, locations in the interface of a module. If the algorithm can explore

only this small portion of the system, there is an exponential savings in complexity.

For a constraint net CN = hLc; Td; Cni, let !Lc denote the transition relation of CN , i.e.,

s1 !Lc s2 i� CN(s1; s2). For a subset of locations U � Lc, let!U denote the projected relation,

i.e., s01 !U s02 i� 9s1; s2, s01 = h(s1) and s
0
2 = h(s2), such that CN(s1; s2), where h = �s:sjU .

U is an abstraction of the set of locations Lc for CN i� h�LcAsl
;!Lci is abstractable to

h�UAsl
;!Ui. The following proposition provides an equivalent de�nition of this concept.

Proposition 11.2.4 Given Lc as the set of locations and U � Lc, U is an abstraction of Lc

i� [[CN(U)]] is state-based and time-invariant.

The following propositions underpin the application of this concept of abstraction.

Proposition 11.2.5 If U is an abstraction of Lc, any property restricted on relations on U

can be veri�ed by exploring the abstraction transition system, h�UAsl
;!Ui.

Proposition 11.2.6 If CNs is a subnet of CN , the set of locations of CNs is an abstraction.

Proposition 11.2.7 The set of output locations of unit delays is an abstraction.

Proposition 11.2.8 The set of input locations of unit delays is an abstraction.

Proposition 11.2.9 If U is an abstraction and I � I(CN), U[I or U�I is still an abstraction.

We have implemented the veri�cation algorithm in Prolog, where the model is represented by

the initial state predicate start(s) and the state transition predicate cn(s; s0), the speci�cation

is represented by the entry condition predicate e(q; s) and the consecution condition predicate

c(q; q0; s). For simplicity, each state is assumed to take one unit time. Examples of the producer-

consumer synchronizer, with an interleaving property, and an elevator system (in Appendix C),

with a real-time response property, have been veri�ed in this implementation.
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11.3 Veri�cation for Behaviors of Hybrid Dynamic Systems

Now we generalize the veri�cation rules for behaviors of hybrid dynamic systems.

The set of veri�cation rules is the same as that for behaviors of discrete time systems,

however, the de�nitions of invariants, Liapunov functions and timing functions are generalized.

For any trace v : T ! A, let f'gvf g denote the validity of the following two consecutive

conditions:

� f'gv�f g: for all t > 0, 9t0 < t; 8t00; t0 � t00 < t; v(t00) j= ' implies v(t) j=  .

� f'gv+f g: for all t <1, v(t) j= ' implies 9t0 > t; 8t00; t < t00 < t0; v(t00) j=  .

If T is discrete, these two conditions are reduced to one, i.e., 8t > 0; v(pre(t)) j= ' implies

v(t) j=  .

Given B as a behavior, let � = fv(0)jv 2 Bg denote the set of initial values in B. Let

A = hQ;R; S; e; ci be a 8-automaton. A set of propositions f�qgq2Q is called a set of invariants

for B and A i�

� Initiality: 8q 2 Q;� ^ e(q)! �q .

� Consecution: 8v 2 B, 8q; q0 2 Q; f�qgvfc(q; q0)! �q0g.

Proposition 11.3.1 Let f�qgq2Q be invariants for B and A. If r is a run of A over v 2 B,
8t 2 T ; v(t) j= �r(t).

Without loss of generality, we assume that time is encoded in domain A by tc : A ! T .
Given that f�qgq2Q is a set of invariants for B and A, a set of partial functions f�qgq2Q : A!
R+ is called a set of Liapunov functions for B and A i� the following conditions are satis�ed:

� De�nedness: 8q 2 Q; �q ! 9w; �q = w.

� Non-increase: 8v 2 B, 8q 2 S; q0 2 Q;

f�q ^ �q = wgv�fc(q; q0)! �q0 � wg

and 8q 2 Q; q0 2 S;
f�q ^ �q = wgv+fc(q; q0)! �q0 � wg:
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� Decrease: 8v 2 B, 9� > 0, 8q 2 B; q0 2 Q;

f�q ^ �q = w ^ tc = tgv�fc(q; q0)! �q0 � w
�([t; tc))

� ��g

and 8q 2 Q; q0 2 B;

f�q ^ �q = w ^ tc = tgv+fc(q; q0)! �q0 � w
�([t; tc))

� ��g:

Proposition 11.3.2 Let f�qgq2Q be invariants for B and A and r be a run of A over a trace

v 2 B. If f�qgq2Q is a set of Liapunov functions for B and A, then

� �r(t2)(v(t2)) � �r(t1)(v(t1)) when 8t1 � t � t2; r(t) 2 B [ S,

� �r(t2)
(v(t2))��r(t1)(v(t1))

�([t1;t2))
� �� when t1 < t2 and 8t1 � t � t2; r(t) 2 B, and

� if BS is the set of segments of consecutive B and S-states in r, then 8q� 2 BS; �B(q�) is
�nite.

Let T A = hA; T; �i. Corresponding to two types of time bound, we de�ne two timing

functions. Let f�qgq2Q be invariants for B and A. A set of partial functions fqgq2T is called

a set of local timing functions for B and T A i� q : A! R+ satis�es the following conditions:

� Boundedness: 8v 2 B, 8q 2 Q; q0 2 T ,

f�qgv�fq0 � �(q0)g

and 8q 2 T; q0 2 Q,
f�q ^ tc = t ^ q = wgv�fw � �([t; tc))g:

� Decrease: 8v 2 B, 8q 2 T; f�q ^ q = w ^ tc = tgvfc(q; q)! q�w

�([t;tc))
� �1g.

A set of partial functions f0qgq2Q is called a set of global timing functions for B and T A i�

0q : A! R+ satis�es the following conditions:

� De�nedness: 8q 2 Q;�q ! 9w; 0q = w.

� Boundedness: 8q 2 B; �q ! 0
q
� �(bad).

� Non-increase: 8v 2 B, 8q 2 S; q0 2 Q;

f�q ^ 0q = wgv�fc(q; q0)! 0
q0
� wg

and 8q 2 Q; q0 2 S;
f�q ^ 0q = wgv+fc(q; q0)! 0

q0
� wg:
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� Decrease: 8v 2 B, 8q 2 B; q0 2 Q;

f�q ^ 0q = w ^ tc = tgv�fc(q; q0)! 0
q0
� w

�([t; tc))
� �1g

and 8q 2 Q; q0 2 B;

f�q ^ 0q = w ^ tc = tgv+fc(q; q0)! 0
q0
� w

�([t; tc))
� �1g:

Proposition 11.3.3 Let f�qgq2Q be invariants for B and A and r be a run of A over a trace

v 2 B. If there exist local and global timing functions for B and T A, then

� if Sg(q) is the set of segments of consecutive q's in r, then 8q 2 T; q� 2 Sg(q); �(q�) �
�(q), and

� if BS is the set of segments of consecutive B and S-states in r, then 8q� 2 BS; �B(q�) �
�(bad).

The following theorem is a generalization of the soundness and completeness of the set of

veri�cation rules.

Theorem 11.3.1 The veri�cation rules (I), (L) and (T) are sound if the following conditions

on B and T A are satis�ed:

� T is an in�nite time structure.

� All traces in B are speci�able by T A.

The veri�cation rules are complete if the following conditions on B and T A are satis�ed:

� fhv; rijv 2 B; r is a run over vg is time-invariant.

� All transitions from R to non-R-states are left-closed, i.e., if r is a run, and there is a

transition from a R-state to a B-state or a S-state at t, then r(t) 2 B [ S.

The conditions for the completeness of the rules are imposed so as to be able to de�ne Liapunov

functions for a behavior and an automaton, as long as the behavior satis�es the automaton. The

second condition for completeness is always satis�ed for traces with discrete time structures.

More generally, the following proposition may apply.

Proposition 11.3.4 All transitions from R to non-R-states are left-closed, if the following

conditions are satis�ed:
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� T A is open and complete.

� 8q 2 R, q1 62 R and q2 2 R, c(q; q1)^ c(q; q2) is not satis�able.

� All traces in B are right-continuous.

This formal method has no practical use yet; we aim at understanding the concept of

behavior veri�cation for hybrid systems. In part III, we will discuss an important class of

behavior with asymptotic properties. By characterizing certain types of hybrid system and

property, we may obtain a semi-automatic veri�cation method, similar to the one for discrete

time systems. There is much more left to be explored than what we have already understood.



Chapter 12

Summary and Related Work

We have developed two requirements speci�cation languages, TLTL and timed 8-automata, for
representing desired global properties of dynamic systems. We have also developed a set of

formal veri�cation rules for timed 8-automata speci�cation. In this chapter, we summarize the

results of Part II and discuss some related work on speci�cation and veri�cation.

12.1 Summary

In this section, we summarize the speci�cation languages and the veri�cation procedures, then

discuss their power and limitations.

12.1.1 Speci�cation

Timed Linear Temporal Logic (TLTL) has the following properties:

� Simple properties of dynamic systems (such as safety, reachability and persistence) can

be speci�ed.

� Some metric or measure properties of dynamic systems (such as real-time response) can

be speci�ed.

� TLTL is de�ned for arbitrary time and domain structures; therefore, continuous as well

as discrete time dynamic systems can be speci�ed in a unitary framework.

Timed 8-automata have the following properties:

� They are a simple alternative, though not equivalent in expressive power, to TLTL.

� They have a graphical representation.

135
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� They are powerful enough to specify many important properties of sequential and timed

behaviors.

� They are simple enough to have a formal veri�cation procedure for behaviors of hybrid

dynamic systems, a semi-automatic veri�cation procedure for discrete time systems, and

an automatic veri�cation procedure for discrete time and �nite domain systems.

12.1.2 Veri�cation

The veri�cation procedures have the following properties:

� A model checking technique and a stability analysis method are integrated.

� The automatic algorithm derived from the veri�cation rules has a polynomial time com-

plexity in both the size of the model and the size of the speci�cation.

� The generalized veri�cation rules can be used to formally verify behaviors of hybrid dy-

namic systems.

12.1.3 Power and limitations

Both TLTL and timed 8-automata are powerful enough to specify various properties of sequen-
tial and timed behaviors. However, there are still many important behaviors that cannot be

speci�ed in these languages, such as

� energy minimization over time, i.e., min
R
T
Edt, where E is a function of states,

� probabilistic or stochastic properties, and

� timed properties on intervals.

However, we should also point out that the power of speci�cation and the simplicity of veri-

�cation are in conict with each other. The more powerful the speci�cation language is, the

more complex is the veri�cation procedure. A compromise between these two should be made

for any application.

Although most research in this area mixes modeling and speci�cation languages, we claim

that two di�erent kinds of language are necessary for specifying two di�erent aspects of systems

and behaviors: composite structures and global functionalities. We have not yet worked on

axiomization for TLTL, since we focused on model checking, rather than theorem proving, for

behavior veri�cation.
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12.2 Related Work

Various languages for speci�cation, veri�cation, and reasoning about concurrent, distributed

and timed behaviors have been developed in the theory, AI and systems communities. Roughly

speaking, these languages can be characterized as belonging to one of the three categories: (1)

Automata, (2) Point Time Temporal Logics, and (3) Interval Time Temporal Logics. In any

of these languages, there are always two ways to introduce real-time (metric time). One is to

embed metric time in modal operators, the other is to use an explicit time variable. Di�erent

languages can have di�erent expressive power; some of them may have no formal veri�cation

procedures at all.

We survey some typical examples in every category, and discuss their relationships with

TLTL and timed 8-automata.

12.2.1 Automata-based approaches

Automata play two kinds of role: as an input/output transducer modeling on-line computation

(e.g., Mealy/Moore machines), or as a language recognizer (e.g., 8-automata). We have surveyed

some related work on automata for modeling in Part I. Here we emphasize their roles for

speci�cation and veri�cation.

The simplest form of an automata-based representation for sequential behaviors is Buchi

automata [Tho90]. Buchi automata are �nite state automata for de�ning !-languages, lan-

guages consisting of in�nite sequences. The expressive power of Buchi automata is the same

as that of 8-automata [MP87]. In fact, a restricted version of 8-automata is a dual of Buchi

automata [MP87].

Timed Buchi Automata (TBA) has been proposed [AD90] to express constant bounds on

timing delays between system events. These automata accept languages of timed traces, traces

in which each event has an associated real-valued time of occurrence. A TBA is a Buchi-

automaton associated with a �nite set of (real-valued) clocks. A clock can be set to zero

simultaneously with any transition of the automaton. At any instant, the reading on a clock

equals the time elapsed since the last time it was set. With each transition, there is an enabling

condition that compares the current values of clocks with time constants. TBAs are not closed

under complementation and it is undecidable whether the language of one automaton is a

subset of the language of another. However, there exists a subclass represented by Deterministic

Timed Muller Automata (DTMA) closed under all Boolean operations, and there is a decidable

computation to check the subset relation for this class.
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Hybrid automata [ACHH93] can be viewed as a generalization of timed automata, in which

the behavior of variables is governed in each state by a set of di�erential equations. The reach-

ability problem is undecidable even for very restricted classes of hybrid automata. However,

there exist semi-decision procedures for verifying safety properties of piecewise-linear hybrid

automata, in which all variables change at constant rates.

In both cases, explicit variables are introduced to reason about time bounds and changes.

The extra time variables, however, will increase both the expressive power of the representation

and the complexity of the veri�cation.

Similar developments along this line include timed Statecharts, timed transition systems,

hybrid Statecharts and phase transition systems [MMP91], etc.

State Transition Assertions (STA) developed by Gordon [Gor, Gor92] are variations of Hoare

logic for real-time speci�cation. A state transition assertion is a quadruple hA;B; P;Qi where
A;B are predicates on states, called state precondition and postcondition, respectively, P;Q are

predicates on state sequences, called input precondition and output postcondition, respectively.

A machine M satis�es a state transition assertion hA;B; P;Qi as follows: if M is in a state

satisfying A and a sequence of inputs arrives that satis�es P , then a state satisfying B will be

reached and the sequence of intermediate states will satisfy Q. Some laws for combining STAs

are analogous to rules of Hoare logic.

In contrast to state transition systems, where states and possible transitions are prede�ned,

the situation calculus [MH69] de�nes states on the results of actions. Similar to most temporal

logics, propositions and functions are interpreted over states (uents in the situation calculus).

Fluents at any state can be computed by frame axioms. The advantage of the situation calculus,

namely, states with no structures, is also its disadvantage because of (1) the frame problem

[MH69] and (2) the computation cost that may increase with time as the action list gets longer

and longer.

12.2.2 Point time temporal logics

There are, in general, two kinds of point time temporal logic: linear time temporal logic and

branching time temporal logic. A model of a linear time temporal logic is a trace, and a model

of a branching time temporal logic is a tree.

Computation Tree Logic (CTL) is a typical modal branching time temporal logic [Eme90].

In CTL, temporal operators occur only in pairs consisting of A (all paths) or E (exists some

path), followed by F (eventually), G (always), U (until) or X (next time). CTL has e�cient
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model-checking algorithms, however, it loses some expressive power [Eme90]. CTL has been

used for symbolic model checking of circuits [McM92].

In the rest of this section, we will focus on linear time temporal logics and their timed

extensions. There are two kinds of linear time temporal logic: modal logic in which temporal

operators are introduced, and the �rst order logic in which a special time variable is introduced.

PLTL is a basic form of modal linear time temporal logic. It has been shown that model

checking for PLTL is linear in the size of the model [LP85]. Various timed extensions are based

on PLTL. Again, there are two kinds of extension: real-time operators and time variables.

The former is simpler and more elegant, but the latter can be more powerful. Temporal proof

methodologies for both explicit and implicit time have been studied [HMP91a].

Extended Temporal Logic (ETL) [Wol83] is an extended linear (and discrete) time temporal

logic, which is strictly more powerful than (discrete) PLTL and has the same expressive power

as Buchi Automata. ETL de�nes temporal operators generated by right-linear grammars, so

that (countable) properties such as even(p) (p is true at even time points) can be speci�ed,

which, however, cannot be expressed in PLTL.

Metric Temporal Logic (MTL) [MMP91] introduces various types of real-time operator,

such as 2<u and 3�u where u is a nonnegative real number.

Real Time Temporal Logic (RTTL) [Ost89] is a �rst-order temporal logic, with one of the

state variables representing time. For instance, w1 ^ t = T ! 3(w2 ^ t < T + 4) may be

read as: \if w1 is true at time T then w2 must happen before the clock reads T + 4," where

T is a parameter (global variable). The problem with this speci�cation language is that the

unquanti�ed global variables about time (T in the above example) may lead to opacity [AH89].

Timed Propositional Temporal Logic (TPTL) [AH89] is the adoption of temporal operators

as quanti�ers over state variables; every modality binds a variable to the time(s) it refers to.

For instance, \if w1 is true at time T then w2 must happen before the clock reads T + 4"

can be represented as 2x:(w1 ! 3y:(w2 ^ y < x + 4)). A tableau-based decision procedure

was developed for TPTL. Introducing extra time variables increases the exibility of expressing

time constraints, and simultaneously, the complexity of veri�cation.

The Temporal Logic of Actions (TLA) [Lam91] is a logic for specifying and reasoning about

concurrent systems. Systems and their properties are represented in the same logic, so the

assertion that a system meets its speci�cation and the assertion that one system implements

another are both expressed by logical implication. TLA introduces a concept called \action,"

which is any boolean-valued expression from variables, primed variables and values. An action
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represents a relation between old states and new states, where the unprimed variables refer to

the old state and the primed variables refer to the new state. TLA imposes some constraints for

representing actions such that action A can only appear in the form 2[A]f � 2(A_ (f 0 = f)),

where f is a state tuple. [Lam91] shows that TLA is powerful enough for representing properties

such as liveness and fairness, with a simple set of axioms and rules for the proof system. A real

time version of TLA was proposed by introducing an explicit time variable now [Lam93].

Most temporal logics are de�ned for discrete time systems, i.e., with models as state se-

quences. It was suggested [BKP86] that linear temporal logic with the time structure of the

(non negative) real numbers provides a more abstract logic than that of the natural numbers.

Temporal Logic of Reals (TLR) is a logic de�ned on dense time. For each trace v there exists a

denumerable sequence 0 = t0 < t1 < t2 � � � with tn !1 such that v(t) is uniform in TLR within

each open interval (ti; ti+1). The di�erence between TLR and discrete time temporal logics is

that there is no predetermined sampling rate. TLR would be best suited for asynchronous event

control systems.

Besides modal linear temporal logics, there are �rst order temporal logics. McDermott

[McD90] developed a �rst-order temporal logic, in which it is possible to name and prove things

about facts, events, plans, and world histories. In particular, the logic provides the analysis of

causality, continuous change in quantities, the persistence of facts and the relationship between

tasks and actions. Shoham [Sho88, Sho87] generalized McDermott's temporal logic and de�ned

a clean syntax and semantics. Finer distinctions of fact/event/process trichotomy are allowed

under this framework.

12.2.3 Interval time temporal logics

Unlike point time temporal logics, formulas of Interval Temporal Logics (ITL) are de�ned on

intervals of state sequences. One distinguished advantage of ITL is that it can represent lengths

of intervals, and therefore it can represent time easily. ITL has been applied to multilevel

reasoning about hardware properties [Mos85] such as delay and stability of digital circuits. ITL

has also been used for the speci�cation of real-time systems [Hal90]. There are properties that

can be represent by ITL but not by LTL. For instance, 2(E ! Rwithinftime(�)whenSg is an
ITL formula [Hal90] representing that whenever E is true, R will be true within an interval

that S holds for time � in total.

The duration calculus [HZ91] is a kind of interval temporal logic de�ned on continuous time

structures. The duration calculus uses the integral of a predicate to formalize critical duration
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constraints. For example, \a bad situation cannot happen more often than 5 percent of the

time over any time interval" can be represented as 2(
R
B � 0:05l) where l indicates the length

of the interval. This property is hard to specify in a simple form of linear temporal logic.

Besides modal interval temporal logics, there are �rst order interval temporal logics. Allen

[All90] proposed a framework in which time is represented by intervals. The relationships

between two time intervals are characterized (before, equal, meets, overlaps, during, starts,

�nishes) and the properties of facts (that hold in an interval), events (that occur over an

interval) and processes (that are occurring over an interval) are examined by logic axioms.

Various types of action can be represented in this logic.

12.2.4 Relationships with TLTL and timed 8-automata

TLTL is a powerful and simple speci�cation language for sequential and timed behaviors. Unlike

most speci�cation languages, it is based on abstract time and domain structures. For simplicity,

TLTL introduces only two basic real-time operators U � and S� , while other real-time operators
can be derived from these basic operators. TLTL is powerful enough to represent properties

such as \if w1 is true at time T then w2 must happen before the clock reads T + 4." In fact,

this property can be represented by FTLTL without real-time operators as 8T2(w1^ t = T !
3(w2 ^ t < T + 4)), or simply by PTLTL as 2(w1 ! 34w2). TLTL can be considered as a

generalization of TLR. However, there is no axiomization for TLTL yet, since any axiomization

is de�ned for a particular time structure. FTLTL is more expressive than TLA since terms

of FTLTL can as well include pre(x) and x � � for any local variable x, and TLTL has no

restriction on formulas with these variables.

Timed 8-automata are generalizations of 8-automata to represent timed or continuous be-

haviors. A local timing constraint in (discrete) timed 8-automata can also be speci�ed in TBA.

However, global timing constraints cannot be speci�ed within TBA, since it is not possible to

stop a clock except by resetting it. On the other hand, there are properties of timed behaviors

that can be speci�ed by TBA but cannot be speci�ed by timed 8-automata. Some interval

time properties that are hard to represent in TLTL, are easy to represent in timed 8-automata.
For example, 2(E ! Rwithinftime(�)whenSg can be speci�ed in a timed 8-automaton with

a global time bound � . An example of this type of speci�cation will be discussed in Appendix

C.
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Attain utmost emptiness.

Maintain profound tranquility.

All things are running concurrently,

cycle follows cycle.

Activity overcomes cold.

Tranquility overcomes heat.

Peace and quiet is the true path in the world.

| Tao Teh Ching, Lao Tzu

Attain utmost stability.

Maintain minimum energy.

All things are running concurrently,

cycle follows cycle.

Constraints overcome chaos.

Stability overcomes disturbance.

Peace and quiet is the true path in the world.

| Zhang Ying



Chapter 13

Introduction

We have developed a semantic model for dynamic systems and two requirements speci�cation

languages for dynamic behaviors. We have also developed a formal method for verifying the

behavior of a dynamic system against its requirements speci�cation. Veri�cation in general

is hard. However, a good design methodology can result in a well-structured system, which,

in turn, may simplify the veri�cation greatly. In Part III, we present a framework of control

synthesis with a simple principle. We consider a robotic system as a constraint-based dynamic

system and the robot controller as a regulator that, together with the dynamics of the plant and

the environment, solves the constraints on-line. We then propose a two-dimensional hierarchical

structure for control systems.

In this chapter, we present an overview of Part III, Control Synthesis and Robotic Ar-

chitecture. There are three major chapters in Part III. Chapter 14 studies constraint-based

dynamic systems. Chapter 15 proposes a framework for control synthesis. Chapter 16 discusses

structures of control systems.

13.1 Constraint-Based Dynamic Systems

We view constraint satisfaction as a dynamic process that approaches the solution set of the

given constraints asymptotically. Generalizing, we view a constraint-based dynamic system as

a dynamic system that approaches the solution set of the given constraints persistently.

We �rst introduce dynamic processes, stable equilibria and attractors. We then de�ne Lia-

punov functions with respect to dynamic processes and stable states, and study the relationship

of a Liapunov function and the stability of a dynamic process.

We consider a constraint solver as a constraint net whose behavior is a dynamic process

that is asymptotically stable at the solution set of the given constraints.
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We show that various discrete and continuous time constraint methods for solving dis-

crete/continuous optimization and global consistency problems can be modeled in constraint

nets and analyzed using Liapunov functions.

We consider constraint-based dynamic systems as a generalization of constraint solvers,

whose behaviors can be speci�ed by 8-automata.

13.2 Control Synthesis

We de�ne the problem of control synthesis as follows. Given a requirements speci�cation and

the models of the plant and the environment, produce a model of the controller that, together

with the plant and the environment, satis�es the requirements speci�cation.

Control synthesis in general is hard. However, we show that there is a systematic approach to

control synthesis using constraint methods for constraint-based speci�cation; typical constraint-

based speci�cation includes safety requirements, goal achievement and persistent properties.

We illustrate, by two examples, that various control algorithms, from simple linear control

to complex nonlinear and adaptive control, can be synthesized and analyzed in this framework.

13.3 Robotic Architecture

Any complex system should have some kind of hierarchical structure. We consider here two

kinds of hierarchy: composition hierarchy and interaction hierarchy. The interaction hierarchy

can be further decomposed into a two-dimensional structure: abstraction hierarchy and arbi-

tration hierarchy. The abstraction hierarchy characterizes the multiple levels of control strategy

in a system; the arbitration hierarchy characterizes the priority of constraints to be satis�ed

within the same abstraction level.

13.4 Summary and Related Work

The major contribution of this part includes a uni�ed framework for constraint satisfaction

and a uni�ed framework for control synthesis based on a simple principle | on-line constraint

satisfaction or energy minimization. Hybrid control systems can be designed and analyzed in

this framework.
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Constraint-Based Dynamic Systems

In this chapter, we start with the basic concepts of dynamic processes, equilibria and stability,

then discuss two basic types of constraint solver, discrete state transitions and di�erential

state integrations. Furthermore, we study some typical discrete and continuous time constraint

methods for both global consistency and optimization. Finally, we introduce constraint-based

dynamic systems.

14.1 Asymptotic Stability

In this section, we study properties of dynamic processes in metric space.

Given a metric space hX; di, we can de�ne the distance between a point and a set of

points as d(x;X�) = infx�2X�fd(x; x�)g. For x� 2 X and � > 0, let N �(x�) be the spher-

ical �-neighborhood of x� and for X� � X , let N �(X�) =
S
x�2X�N �(x�) be the spherical

�-neighborhood of X�. A neighborhood of X� is strict i� it is a strict superset of X�.

Let T be a time structure, X be a metric space, and v : T ! X be a function from time to

the metric space. We say v approaches a point x� 2 X i� limt!1 d(v(t); x�) = 0; v approaches

a set X� � X i� limt!1 d(v(t); X�) = 0.

De�nition 14.1.1 A dynamic process is a mapping p : X ! XT , satisfying the following

conditions:

1. p(x)(0) = x; 8x 2 X,

2. p is state-based, i.e., 8t, p(x)(t) = p(y)(t) implies that 8t0 � t, p(x)(t0) = p(y)(t0).

3. p is time-invariant, i.e., fp(x)jx 2 Xg is a time-invariant behavior.
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Let �p(x) = fp(x)(t)jt 2 T g and �p(X�) =
S
x2X� �p(x) for X

� � X . A point x� 2 X

is an equilibrium (or �xpoint) of a process p i� 8t; p(x�)(t) = x�, or �p(x
�) = fx�g. A set

X� � X is an equilibrium of a process p i� �p(X
�) = X�. An equilibrium X� is stable [MT75]

i� 8�9�; �p(N �(X�)) � N �(X�), i.e., �p is continuous at X
�.

A set X� � X is an attractor [San90] of a process p i� there exists a strict neighborhood

N(X�) such that 8x 2 N(X�), p(x) approaches X�. The largest neighborhood of X� satisfying

this property is called the attraction basin of X�. X� is an attractor in the large i� 8x 2 X ,

p(x) approaches X�, that is the attraction basin of X� is X . If X� is an attractor (in the large)

and X� is a stable equilibrium, X� is called an asymptotically stable equilibrium (in the large).

Proposition 14.1.1 If fXigi2I are ((asymptotically) stable) equilibria, then
S
I
Xi is an ((asymp-

totically) stable) equilibrium.

Let hX; di be a metric space, p : X ! XT be a dynamic process and X� � X . A Liapunov

function for p and X� is a function V : 
 ! R, where 
 is a strict neighborhood of X�,

satisfying:

1. V is continuous, i.e., d(x; x0)! 0 implies jV (x)� V (x0)j ! 0.

2. V has its unique minimum within 
 on X�.

3. 8x 2 
; 8t; V (p(x)(t)) � V (x).

The following two theorems are analogous to the theorems of sound and complete veri�cation

rules in Part II.

Theorem 14.1.1 X� � X is a stable equilibrium of a process p i� there exists a Liapunov

function V for p and X�.

Theorem 14.1.2 X� � X is an asymptotically stable equilibrium of a process p i� there exists

a Liapunov function V : 
! R for p and X�, such that 8x 2 
; limt!1 V (p(x)(t)) = V (X�).

Furthermore, if 
 = X, X� is an asymptotically stable equilibrium in the large.

14.2 Constraint Solvers

We view a constraint as a possibly implicit relation on a set of variables. The constraint

satisfaction problem is de�ned as follows. Given a set of variables V with the associated domains

fDvgv2V and a set of constraints fCjgj2J each on a subset of the variables, i.e., Cj � �VjDv
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where Vj � V , �nd an explicit relation tuple x 2 �VDv that satis�es all the given constraints,

i.e., for all j 2 J , xjVj 2 Cj where xjS denotes the restriction of x onto S � V . If C = fCjgj2J
is a set of constraints, we use sol(C) to denote the set of solutions, called the solution set.

A constraint solver for a constraint satisfaction problem is a closed parameterized net whose

behavior is a dynamic process approaching the solution set of the constraints.

De�nition 14.2.1 (Constraint solver) A closed parameterized net CSV is a constraint

solver for a constraint satisfaction problem C on domain X = �VDv i� (1) the semantics

of CSV for V is a dynamic process [[CSV ]] : X ! XT and (2) sol(C) is an asymptotically sta-

ble equilibrium of [[CSV ]]. CSV solves C globally i� sol(C) an asymptotically stable equilibrium

of [[CSV ]] in the large.

Proposition 14.2.1 If a constraint solver CSV solves a set of constraints C on variables V

globally, every equilibrium of [[CSV ]] is a solution of C.

As an application of the concept of robustness for parameterized nets, two constraint solvers

CS1 and CS2 for the set of constraints C can be compared as follows. CS1 is more robust than

CS2 i� the attraction basin of sol(C) in CS1 is a superset of that in CS2.

We discuss here two basic types of constraint solver: state transition systems for discrete

methods and state integration systems for continuous methods.

Let S be a set of states and f : S ! S be a state transition function. hS; fi forms a
state transition system hS;!i with s ! s0 i� s0 = f(s). Such a state transition system can be

represented by a closed parameterized net with a transliteration f and a unit delay �(s0) where

s0 is the initial state parameter. The semantic of this net on the discrete time structure N is a

dynamic process p : S ! SN with p(s0)(n) = fn(s0). A state s� 2 S is an equilibrium of hS; fi
i� s� = f(s�).

Proposition 14.2.2 If V : 
 ! R is a Liapunov function for hS; fi and S� = fs�js� =

f(s�)g � 
, then V (f(x)) � V (x); 8x 2 
. In addition, if f is continuous and V (f(x)) <

V (x); 8x 62 S�, S� is an asymptotically stable equilibrium.

For continuous time structures and domains, integration is used to replace the unit delay. A

state integration system is a di�erential equation _s = f(s) that can be represented by a closed

parameterized net with a transliteration f and an integration
R
(s0) where s0 is the initial state

parameter (Figure 4.2). The semantic of this net on the continuous time structure R+ is a

dynamic process p : S ! SR
+

with p(s0) as the solution of _s = f(s) and s(0) = s0. A state

s� 2 S is an equilibrium of _s = f(s) i� f(s�) = 0.
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Proposition 14.2.3 A set S� = fs�jf(s�) = 0g � 
 is an asymptotically stable equilibrium of

a state integration system if f is continuous at S� and S� is the unique minimum of � R f(s)ds
in 
. If 
 = S, S� is an asymptotically stable equilibrium in the large.

14.3 Constraint Methods

Various constraint methods �t into our framework of constraint satisfaction. In this section, we

examine some typical constraint methods and their dynamic properties. We discuss two types

of constraint satisfaction problem, namely, global consistency and optimization, for linear,

convex and nonlinear relations in n-dimensional Euclidean space hRn; dni, where dn(x; y) =
jx � yj =

q
�n

i=1(xi � yi)2. Constraint methods for �nite domain constraint satisfaction have

been presented in [ZM93a, ZM93b].

The problem of global consistency is to �nd a solution tuple that satis�es all the given

constraints. The problem of unconstrained optimization is to minimize a function E : Rn ! R.
Global consistency corresponds to solving hard constraints and unconstrained optimization

corresponds to solving soft constraints. A problem of the �rst kind can be translated into one of

the second by introducing an energy function representing the degree of global consistency. For

example, given a set of equations gi(x) = 0; i = 1 � � �n, let Eg(x) = �k

i=1wig
2
i
(x) where wi > 0

and �k

i=1wi = 1. If a constraint solver CS solves min Eg(x), CS solves g(x) = 0. Inequality

constraints can be transformed into equality constraints. There are two approaches. Let gi(x) �
0 be an inequality constraint: the equivalent equality constraint is (i) max(0; gi(x)) = 0 or (ii)

gi(x) + z2 = 0 where z is introduced as an extra variable.

Constrained optimization is a problem of solving (soft) constraints subject to the satisfaction

of a set of hard constraints, or solving a constraint satisfaction problem within a subspace

characterized by a set of hard constraints.

There are two types of constraint method, discrete relaxation, which can be implemented

as state transition systems, and di�erential optimization, which can be implemented as state

integration systems. In the rest of this section, we demonstrate the use of both types of

constraint method.

14.3.1 Discrete methods

We discuss here two typical discrete constraint methods, the projection method for global

consistency, and Newton's method for unconstrained optimization.
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Projection method

The projection method [GPR67] can be used for solving convex constraints. A function f :

Rn ! R is convex i� for any � 2 (0; 1), f(�x+ (1� �)y) � �f(x) + (1� �)f(y); it is strictly
convex i� the inequality is strict. A strictly convex function has a unique minimal point. Linear

functions are convex, but not strictly convex. A quadratic function xTMx+ cTx is convex if M

is semi-positive de�nite; it is strictly convex if M is positive de�nite. A set R � Rn is convex

i� for any � 2 (0; 1); x; y 2 R implies �x+ (1��)y 2 R. If g is a convex function, fxjg(x) � 0g
is a convex set.

A projection of a point x to a set R in a metric space hX; di is a point PR(x) 2 R, such
that d(x; PR(x)) = d(x;R). Projections in the n-dimensional Euclidean space hRn; dni share
the following properties.

Proposition 14.3.1 [GPR67] Let R � Rn be closed and convex. The projection PR(x) of x

to R exists and is unique for every x, and (x� PR(x))T (y � PR(x)) � 0 for any y 2 R.

Suppose we are given a system of convex and closed sets, fXigi2I , each representing a

constraint. The problem is to solve fXigi2I , or to �nd \IXi. Let P (x) = PXl
(x) be a projection

of x to a least satis�ed set Xl, i.e., d(x;Xl) = maxI d(x;Xi). The projection method [GPR67]

for this problem de�nes a state transition system hRn; fi where f(x) = x + �(P (x) � x) for
0 < � < 2.

Let PM be a constraint net representing the projection method. The following theorem is

derived from [GPR67].

Theorem 14.3.1 PM solves fXigi2I globally if all the Xi's are convex.

The projection method can be used to solve a set of inequality constraints, i.e., Xi =

fxjgi(x) � 0g, where each gi is a convex function. Linear functions are convex. Therefore, the
projection method can be applied to a set of linear inequalities Ax � b, where x = hx1; : : : ; xni 2
Rn. Let Ai be the ith row of A. The projection of a point x to a half space Aix � bi � 0 is

de�ned as

Pi(x) =

(
x if Aix� bi � 0

x� cAT

i
otherwise

where c = (Aix � bi)=jAT

i
j2. This reduces to the method described in [Agm54]. Without any

modi�cation, this method can be also applied to a set of linear equalities, by simply replacing

each linear equality gi(x) = 0 with two linear inequalities: gi(x) � 0 and �gi(x) � 0.
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There are various ways to modify this method for faster convergence. For instance, a

simultaneous projection method is given in [CE82], in which f(x) = x + ��j2Jwj(Pj(x) � x)
where J � I is an index set of violated constraints, wj > 0 and �j2Jwj = 1. A similar method

is given in [YM] in which f(x) = x + �(PS(x)� x) where S = fxj�j2Jwjgj(x) � 0g, with the

same assumption about J and wj . Furthermore, for a large set of inequalities, the problem can

be decomposed into a set of K subproblems with fk corresponding to the transition function of

the kth subproblem. The whole problem can be solved by combining the results of ff1; : : : ; fKg.

Newton's method

Newton's method [San90] minimizes a second-order approximation of the given function, at

each iterative step. Let �E = @E

@x
and J be the Jacobian of �E . At each step with current

point x(k), Newton's method minimizes the function:

Ea(x) = E(x(k)) + �ET (x(k))(x� x(k)) + 1

2
(x� x(k))TJ(x(k))(x� x(k)):

Let @Ea
@x

= 0, we have:

�E(x(k)) + J(x(k))(x� x(k)) = 0:

The solution of the above equation becomes the next point, i.e.,

x(k+1) = x(k) � J�1(x(k))�E :

Newton's method de�nes a state transition system hRn; fi where f(x) = x� J�1(x)�E(x).
Let NM be a constraint net representing Newton's method. The following theorem speci�es

conditions under which NM solves the problem of local minimization of a function E .

Theorem 14.3.2 Let X� 2 Rn be the set of local minima of E. NM solves the problem if

jJ(x�)j 6= 0, 8x� 2 X�. i.e., E is strictly convex at each local minimal point. NM solves the

problem globally if, in addition, E is convex.

Here we assume that the Jacobian and its inverse are obtained o�-line. Newton's method can

also be used to solve a nonlinear equation g(x) = 0 by replacing �E with g.
For example, consider Newton's method for solving x2 = 2. Newton's method for solving

g(x) = 0 can be represented by a constraint net with domain equation: x0 = x � g(x)

g0(x)
. In our

example, g(x) = x2 � 2, x0 = x � x2�2
2x

= x

2
+ 1

x
. NM solves x2 = 2 since g0(x�) = 2x� 6= 0 for

both x� =
p
2 and x� = �p2. The attraction basin of p2 is fxjx > 0g and the attraction basin

of �p2 is fxjx < 0g.
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14.3.2 Continuous methods

We discuss here some typical continuous constraint methods: the gradient method for uncon-

strained optimization, the penalty method and the Lagrange multiplier method for constrained

optimization.

Gradient method

The gradient method [Pla89] is based on the gradient descent algorithm, where state variables

slide downhill in the direction opposed to the gradient. Formally, if the function to be minimized

is E(x) where x = hx1; � � � ; xni, then at any point, the vector that points in the direction of

maximum increase of E is the gradient of E . Therefore, the following gradient descent equations
model the gradient method :

_xi = �ki @E
@xi

; ki > 0: (14:1)

Let E : Rn ! R be a function. Let GM be a constraint net representing the gradient

descent equation (Equation 14.1). The following theorem speci�es conditions under which GM

solves the problem of local minimization of E .

Theorem 14.3.3 Let X� be the set of local minima of E. GM solves the problem if @E

@x
is

continuous at X�. GM solves the problem globally if, in addition, E is convex.

Consider again the example of solving x2 = 2. Let E(x) = 1
4(x

2 � 2)2. Let the constraint

solver GM be _x = �@E

@x
= �x(x2 � 2). GM solves x2 = 2 since �x(x2 � 2) is continuous. The

attraction basin of
p
2 is fxjx > 0g and attraction basin of �p2 is fxjx < 0g.

Penalty and Lagrange multiplier methods

The prototypical constrained optimization problem can be stated as [Pla89]: locally minimize

f(x), subject to g(x) = 0, where g(x) = 0 is a set of equations describing a manifold of the

state space. There are various methods for solving the constrained optimization problem. Here

we focus on methods derived from the gradient method. During constrained optimization, the

state x should be attracted to the manifold g(x) = 0 and slide along the manifold until it

reaches the locally smallest value of f(x) on g(x) = 0.

Di�erent methods arise from the design of the energy function E for minimizing f(x) under
constraints gk(x) = 0 for k = 0 : : :m. Let Ec be the energy function generated from the

constraints, i.e., E(x) = f(x) + Ec(x).
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� Penalty Methods: The penalty method constructs an energy term that penalizes violations

of the constraints, i.e., Ec(x) = �m

k=0ckg
2
k
(x).

� Lagrange Multipliers: The Lagrange multiplier method introduces a Lagrange multiplier

� for each constraint and � varies as long as its constraint is not satis�ed, i.e., Ec(x) =
�m

k=0�kgk(x). In addition, there is a set of di�erential equations for �, i.e., _�k = gk(x).

The advantage of the penalty method is its simplicity; however, the constrained optimization

problem may not be solved with �nite ci. The advantage of the Lagrange multiplier method is

its ability to satisfy the hard constraints.

Let LM be a constraint net representing the Lagrange multiplier method. The following

theorem speci�es a condition under which LM solves the constrained optimization problem

globally.

Theorem 14.3.4 Let A be a matrix where Aij = @
2
f

@xi@xj
+ �m

k=0�k
@
2
gk

@xi@xj
. If A is positive

de�nite, LM solves the constrained optimization problem min f(x) subject to gk(x) = 0 globally.

Consider a simple example. Given a function f(x; y) = x2 + y2 to be minimized, subject to

constraint x+ y � 1 = 0, it is easy to check that the solution to this problem is (0:5; 0:5). The

constrained optimization based on the penalty method proceeds as follows: the energy function

is E(x; y) = x2 + y2 + c(x+ y � 1)2 where c is a constant. Using the gradient method, let

dx

dt
= �0:5@E

@x
= �(x+ c(x+ y � 1));

dy

dt
= �0:5@E

@y
= �(y + c(x+ y � 1)):

The process is asymptotically stable at ( c

2c+1
; c

2c+1
). When c! 1, the state (x; y) approaches

(0:5; 0:5). The constraint optimization based on the Lagrange multipler method proceeds as

follows: the energy function is E(x; y) = x2+ y2+ �(x+ y� 1): Using the gradient method, let

dx

dt
= �@E

@x
= �(2x+ �);

dy

dt
= �@E

@y
= �(2y + �):

In addition
d�

dt
= (x+ y � 1):

The process is asymptotically stable at (0:5; 0:5) in the large.
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14.4 Summary

We have presented here a framework for constraint satisfaction. Figure 14.1 illustrates the

overall approach. First, we view constraints as relations and constraint satisfaction as a dynamic

Dynamic  Process Constraint Net

Constraint Solver
        Constraint Satisfaction
(Constraint Method + Constraint)

modeled by

is a 

models

specialized to

Figure 14.1: A framework for constraint satisfaction

process of approaching the solution set of the constraints. Then, we explore the relationship

between constraint satisfaction and constraint nets through constraint solvers.

Within this framework, constraint programming is seen as the creation of a constraint solver

that solves the set of constraints. A constraint solver \solves" a set of constraints in the following

sense (Figure 14.2). Given a constraint satisfaction problem C, and a discrete or continuous

(time) constraint method, a constraint solver CS is generated. Starting from any initial state

in the attraction basin of sol(C), CS will approach sol(C) asymptotically. In this framework,

constraint programming is o�-line and constraint satisfaction is on-line.

We have also studied various continuous and discrete time constraint methods, which can

be realized by state integration systems and state transition systems, respectively.

This framework for constraint satisfaction has two advantages. First, the de�nition of con-

straint solvers relaxes the condition of solving constraints from �nite computation to asymptotic

stability. For example, many relaxation methods with the local convergence property are in

fact \solvers" under this de�nition and many problems become \semi-computable" in this sense.

This concept is very useful in practice and can be used for generalizing Turing computability

from discrete domains to continuous domains. Second, dynamic constraints can be solved in

this framework as well. This characteristic will be important later in control synthesis.
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Constraint Method

Constraint Solver

Constraints

         Build 
Constraint Solver

Initial State
          Run
Constraint Solver

  Solution
Stable State

Off-line

On-line

Figure 14.2: Constraint solvers and constraint satisfaction
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14.5 Constraint-Based Dynamic Systems

Given a set of constraints C on variables V , let C� denote the assertion that is true on the �-

neighborhood of its solution set N �(sol(C)) � �VDv. Let A(C�;2) stand for the 8-automaton
in Figure 14.3(a).

q
0

q
1C

ε
C

ε

(a)

q
0

q
1C

ε
C

ε

(b)

Figure 14.3: Speci�cation for (a) Constraint solver (b) Constraint-based dynamic system

Proposition 14.5.1 A constraint solver CSV solves C i� there exists an initial condition

� � sol(C) such that 8� > 0, [[CSV (�)]] j= A(C�;2). CS solves C globally when � = �VDv.

For example, let C� be jx�p2j < � or jx+p2j < �. In order to prove that Newton's method

for solving x2 = 2 satis�es A(C�;2), we do the following. Let � be jxj > 0.

(I) Associate with automaton-state q0 and q1 state propositions � ^ :C� and � ^ C�,

respectively. It is easy to check that the following conditions are satis�ed.

� Initiality: q0 : � ^ :C� ! � ^ :C� and q1 : � ^ C� ! � ^ C�.

� Consecution: Let fs = �x:(x
2 +

1
x
).

q0; q0 : f� ^ :C�gx0 = fs(x)f:C� ! � ^ :C�g.
q0; q1 : f� ^ :C�gx0 = fs(x)fC� ! � ^ C�g.
q1; q0 : f� ^ C�gx0 = fs(x)f:C� ! � ^ :C�g.
q1; q1 : f� ^ C�gx0 = fs(x)fC� ! � ^ C�g.

Therefore, � ^ :C� and � ^ C� are invariants for q0 and q1, respectively.

(L) Associate with automaton-state q0 and q1 a partial function �:

� = �x:

(
x2 � 2 if jxj � p2
1 + �(x

2
+ 1

x
) otherwise.
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It is easy to check that they satisfy the de�nedness and non-increase conditions. Furthermore,

since � ^ :C� and x0 = fs(x) imply that �(x0) � �(x) � �min(1; �0) where �0 = �(
p
2 + �) �

�(fs(
p
2 + �)), the decrease condition is satis�ed. Therefore, it is a Liapunov function.

According to the veri�cation rules, Newton's method for solving x2 = 2 satis�es A(C�;2).

We should notice the importance of open speci�cation for the asymptotic goal achievement

property; Newton's method for solving x2 = 2 does not satisfy A(sol(C);2).
For another example, the gradient method for solving x2 = 2 satis�es the A(C�;2) for any

� > 0 as well. To see this, let � be jxj > 0. Associate with automaton-state q0 and q1 state

propositions � ^ :C� and � ^ C�, which are invariants for q0 and q1, respectively. Associate

with automaton-state q0 and q1 the function E(x) = 1
4
(x2 � 2)2. For any initial state x0 2 �,

_E(x) = �x2(x2 � 2)2 � �min(2; x20)�4 whenever x 2 � ^ :C�; E is a Liapunov function.

However, when constraints are dynamic, approaching the solution set asymptotically is still

too stringent for a constraint satisfaction problem with disturbance and uncertainty in its data

variables over time. If we consider the solution set of a set of constraints as the \goal" for the

system to achieve, a relaxed property for a constraint solver is to make the system approach the

goal persistently. In other words, if the system diverges from the goal by some disturbance, the

system should always be able to be regulated back to its goal. We call a system CB constraint-

based with respect to a set of constraints C, i� there exists an initial condition � � sol(C)

such that 8� > 0; [[CB(�)]] j= A(C�;3) where A(C�;3) stands for the 8-automaton in Figure

14.3(b). In other words, a dynamic system is constraint-based i� it approaches the solution set

of the constraints persistently. Since 23G ! 32G, a constraint solver is a constraint-based

system as well.

We may relax this condition further and de�ne constraint-based systems with errors. We call

a system CB constraint-based w.r.t. a set of constraints C with error �, i� 8� > �; [[CB(�)]] j=
A(C�;3); � is called the steady-state error of the system. Normally, steady-state errors are

caused by uncertainty and disturbance of the data variables.

If A(C�;2) is considered as an open speci�cation of a constraint-based computation for a

closed system, A(C�;3) can been seen as an open speci�cation of a constraint-based control for

an open or embedded system.



Chapter 15

Control Synthesis

Given a constraint-based speci�cation for a controller, the design of the controller is the syn-

thesis of an embedded constraint solver that, together with the dynamics of the plant, solves

constraints on-line. Various constraint methods can be applied to control synthesis under this

framework. More importantly, most constraint methods are associated with some type of Li-

apunov function, which can be directly used by the veri�cation method. In this chapter, we

start with general issues of control synthesis and then focus on constraint-based control design

and analysis. Finally we illustrate this approach via examples.

15.1 Control Synthesis: General Issues

A robotic system, in general, consists of a plant, a controller and an environment (Figure

1.1). The robotic behavior is the set of observable robot/environment traces of the system.

A requirements speci�cation is a subset of all the possible robot/environment traces. The

problem of control synthesis can be formalized as follows: Given a requirements speci�cation

R, the model of the plant PLANT and the model of the environment ENV IRONMENT ,

synthesize a model of the controller CONTROLLER, such that

[[X = PLANT (U; Y ); U = CONTROLLER(X;Y ); Y = ENV IRONMENT (X)]] j= R:

Both planning and control problems can be seen as instances of this formalization.

The planning problem is a special case of the control synthesis problem, with the restriction

that the controller is an 0-ary transduction (a trace), instead of a transduction in general, and

the requirements speci�cation only imposes conditions on the \�nal state" of the system. If

the integration of the plant and the environment is a �nite state automaton, with the control

158
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output as the input, planning is the generation a path in the state transition graph, given the

initial state. The complexity of this problem is linear in the size of the state transition graph.

This simple form of the planning problem can be considered as an open-loop control syn-

thesis problem. It has been shown in control system theory (and in practice) that open-loop

control is not robust. A direct generalization is then synthesizing the controller to behave

as a transliteration, i.e., a reactive (universal) plan [Sch87]. Given that S is the space of

the robot/environment state tuples and U is the set of possible control values, the number of

possible reactive controllers will be jUjjSj.
In general, requirements speci�cation may impose other forms of constraints on traces. For

example, safety and persistence are typical requirements, other than reachability, for dynamic

systems. Some aggregation evaluation of the system, such as the minimum overall energy, is also

an important kind of speci�cation. When uncertainty is concerned, minimum overall expected

cost is normally imposed as a constraint [Qi94].

Approaching a �nal goal and minimizing a global function over time (for example, energy)

can both be considered as constraints over traces; the former is a typical planning problem

and the latter is a typical control problem. Planning and control have been studied as di�erent

problems over the years. The planning problem [DW91] is de�ned as using a model to formulate

sequences of actions (or more generally, to composite descriptions of actions over time) to

achieve a certain goal. The control problem [DW91] is considered as �nding a policy to achieve

a goal or minimizing a functional. Planning is normally restricted to symbolic domains in

discrete time; while control is often for numerical domains, particularly n-dimensional Euclidean

spaces, in either discrete or continuous time. The result of a planning problem (traditionally)

is a trace (sequence) of inputs to a plant for approaching a �nal goal; the solution to a control

problem (closed-loop control) is a transduction from the sensor traces to the command traces

for minimizing a required functional, such as time, energy, cost for approaching a goal. Search

algorithms and theorem proving are basic techniques for planning; calculus of variations and

optimization are basic techniques for control. In our framework of control synthesis, planning

and control can be studied together, and techniques developed for one problem may be used

for the other.

Control synthesis in general, like veri�cation, is hard. Furthermore, there does not exist a

uniform algorithm for di�erent control synthesis problems. In the rest of this chapter, we focus

on a systematic approach to designing and analyzing constraint-based control systems.
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15.2 Constraint-Based Control

We restrict requirements speci�cation to constraint-based speci�cation. Most robotic systems

are constraint-based, since physical limitations, environmental restrictions and task require-

ments can be speci�ed as constraints. We have developed a framework of viewing constraint

satisfaction as a dynamic process. An important consequence of this framework is to be able

to design control systems as embedded constraint solvers. Such an embedded constraint solver

is an open system with inputs as observable traces of the plant and the environment. The

embedded constraint solver together with the rest of the robotic system satis�es the desired

constraint-based speci�cation (Figure 15.1).

Constraint Method
Required Property

 Build Embedded 
Constraint Solver

Initial State
          Run
CN=F(ECSoECN)

Plant+Environment

       Modeling
Plant+Environment

ECN

[[CN]]⊆ R

R

ECS

Figure 15.1: Embedded constraint solvers

Let C be a set of constraints and C� be an �-neighborhood of sol(C). Typical types of

constraint-based speci�cation are:
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� safety requirement: 2C�;

� goal achievement: 32C�;

� persistence: 23C�.

The safety requirement is the strongest and the persistence is the weakest, since 2C� ! 32C�

and 32C� ! 23C�.

Embedded constraint solvers can be either discrete or continuous according to the constraint

methods. Continuous solvers, based on energy functions, generalize potential functions. Dis-

crete solvers, based on relaxation methods in numerical computation, are more exible in many

applications.

The design of an energy function depends on the type of constraint. For goal achievement or

persistence constraints, the energy function de�nes the degree of satisfaction of the constraints;

for safety constraints, the energy function de�nes the degree of satisfaction of the constraints

within C� and in�nity outside of C�. For example, given a requirement speci�cation 23C� with

C de�ned as f(x) = 0, an energy function for this speci�cation can be 1
2
f2(x). If 2(f(x) > 0)

is required, an energy function can be max(� ln f(x)

�
; 0), i.e., if f(x) � �, then E(x) = 0, if

0 < f(x) < �, then E > 0, and if f(x) ! 0, then E(x) ! 1. Using these types of energy

function, we have designed controllers for a two-link robot arm tracking targets (persistence)

and/or avoiding obstacles (safety); details are presented in Appendix C.

15.3 Examples

Various existing controllers, from simple linear control to complex nonlinear adaptive control

or potential �eld methods, can be derived and analyzed in this framework. We analyze two

simple examples here to illustrate the approach. The �rst is on the design and analysis of linear

controllers, the second is on the design and analysis of a nonlinear controller for a car-like robot.

15.3.1 Linear control

Linear controllers are most widely used in real systems. Even though there are many advanced

control strategies in theory, linear controllers are still the most robust and reliable ones.

A linear proportional and derivative (PD) controller has the form u = kpe + kd _e where u

is the control signal, e = xd � x is the current error between the desired position xd and the

actual position x, kp is a proportional gain and kd is a derivative gain. A desired property for a

PD controller can be 32(jej< �). However, in many cases, we would also like to trade position
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errors for low oscillation or frequency. A more appropriate property for a PD controller should

be 32(e2 + � _e2 < �) where � > 0 denotes a trade-o� between position and velocity errors. If

�! 0, only position errors are taken into account.

We can synthesize a PD controller using an energy function E = 1
2(e

2+� _e2). The controller,

together with the dynamics of the plant, is to make E go to its minimum. Let _E = e _e+ � _e�e =

_e(e+��e). If we let e+��e = �k _e for k > 0, we have _E � 0, a desired property for the controller.

Therefore, we want ��e = 1
�
(e+ k _e). In most cases, �xd = 0, so �x = 1

�
(e + k _e). If the dynamics

of the plant is u = �x, let u = 1
�
(e+ k _e), which is a PD controller with kp =

1
�
and kd =

k

�
. This

design tells us that if �! 0, then kp; kd !1, and there will be possibly high oscillation since

the constraint on _e is neglected. A compromise between the position error and the oscillation

frequency should be made for any application.

Furthermore, if the dynamics of the plant is u = m�x, the PD controller u = 1
�
(e + k _e)

will make E = 1
2
(e2 + m� _e2) go to its minimum. If the dynamics of the plant is not fully

known, we can still get a good estimation of the control parameters. Since _E = _e(e + ��e) =

(�u�e)(e+��e)=k, if �juj � jej and �j�ej � jej, we have _E � 0. Therefore, let � = jejmin

max(jujmax;j�ejmax)

where jejmin is the steady state error, and jujmax and j�ejmax can be estimated even when the

dynamics of the plant is unknown. If u can be estimated on-line, � can be adapted over time,

and better performance can be achieved.

We can design and analyze nontrivial control strategies using the same simple principle |

on-line constraint satisfaction or energy minimization.

15.3.2 Nonlinear control

Linear PD controllers are simple and easy to analyze. However, they may not �t on to systems

with complex nonlinear dynamics. Consider a tracking system for the car-like robot. Let v

be the velocity of the car and � be the current steering angle of the wheels; v and � can be

considered as control inputs to the car. The dynamics of the car can be modeled by following

di�erential equations:

_x = v cos(�); _y = v sin(�); _� = v=R

where (x; y) is the position of the tail of the car, � is the heading direction and R = L= tan(�) is

the turning radius given the length of the car L (Figure 1.2). A tracking problem for the car-like

robot is to design a controller, given a target trace and an actual trace of the con�guration of

the car up to the current time, produce the control inputs to the car so that the car tracks the

target over time.
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If the target is constant (for example, parallel parking), the problem can be decomposed

into two subproblems: path planning and control. The path planning is to produce a set of

consecutive circle and line segments that connect the current and the target con�guration of

the car (Figure 15.2). Although there are more complex tracking algorithms in practice [SM94],

Current
Target

Right

Left

Right
Left

Figure 15.2: Path planning

the simplest tracking algorithm is as follows. For tracking on the line segments, set � = 0; and

for tracking on the circle segments, set � to be a nonzero constant (Left: + tan�1 L

R
and Right:

� tan�1 L

R
). In either case, the velocity can be set to a constant or to be controlled by a linear

proportional controller.

When the target is moving, the path planning can be either applied at a �xed sampling rate

or event-driven, where an event indicates a substantial change of the target. However, there is

a simple control strategy for tracking a dynamic target, so that the path planning problem can

be simpli�ed, if not eliminated.

Let C denote the constraint for the tracking problem: (x = xd) ^ (y = yd) ^ (� = �d).

The desired property for tracking is persistence that can be expressed as 23C�. We de�ne an

energy function for the controller as

E = kp

2
(xd � x)2 + kp

2
(yd � y)2 + kt

2
(�d � �)2:

The controller is designed to make E go to its minimum.
Let p =

R
vdt be the length of the path. We have

v = _p; � = tan�1(
L

v
_�):

Using the gradient method, we would like to have

_p = �k1@E
@p
; _� = �k2@E

@�
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where @E

@p
and @E

@�
can be computed as follows:

�@E
@p

= kp(xd � x)@x
@p

+ kp(yd � y)@y
@p

+ kt(�d � �)@�
@p

where
@x

@p
=

_x

v
= cos(�);

@y

@p
=

_y

v
= sin(�);

@�

@p
=

_�

v
=

tan(�)

L

and

�@E
@�

= kp(xd � x)@x
@�

+ kp(yd � y)@y
@�

+ kt(�d � �)
where

@x

@�

:
= �v sin(�); @y

@�

:
= v cos(�):

Let d =
p
(xd � x)2 + (yd � y)2 and �0 = tan�1(yd � y; xd � x). The control law for the

tracking problem is:

v = k1[kpd cos(�
0 � �) + kt(�d � �)tan(�)

L
]

� = tan�1(
L

v
k2(kpvd sin(�

0 � �) + kt(�d � �))):
Now we are able to analyze the stability of this control law. We argue that the control law

is stable, since

_E = �[kp(xd � x) _x+ kp(yd � y) _y + kt(�d � �) _�]
= �[kp(xd � x) cos(�) + kp(yd � y) sin(�) + kt(�d � �)tan(�)

L
]v

= � 1

k1
v2 � 0:

However, there are local minima or singularities. If j�0 � �j = �

2k and �d = � we get v = 0 even

when d 6= 0. We can prove that they are the only singularities of this control law.

Proposition 15.3.1 This control law satis�es the condition that v = 0 i�

(d = 0 _ j�0 � �j = �

2
k)
^
(�d = �):

We have applied this control strategy to the soccer-playing robot car with high level target

generation and low level target tracking. For the real car, the throttles and steering angles are

limited to certain ranges, errors appear in both sensing and control. Gains in the control law

are any positive reals in theory but should be chosen for the best performance in the practice.

The model of the car-like robot, with the dynamics of forces, frictions and mechanical delays,

has been developed. Even though the development itself is not closely related to the content

of this thesis, the method may have a general interest for other applications. We describe the

theory behind this model estimation method in Appendix D.
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15.4 Summary

Constraint-based control synthesis and analysis provide a unitary framework for developing

continuous/discrete hybrid control systems. However, we are not aiming either to subsume or

to replace existing control theory, rather to formalize the underlying principles that are used

informally in practice.

Local minima and/or singularities are the major problem for this type of controller. Nor-

mally singularities can be avoided if a higher level control strategy is used to detect singularities

and to produce a sequence of intermediate con�gurations between the actual and the target

con�gurations. Such a higher level control strategy becomes more important when the robot is

embedded in a complex environment. In general, any complex robot control system should be

developed and organized hierarchically. In the rest of Part III, we will propose a hierarchical

robotic architecture.



Chapter 16

Robotic Architecture

We propose two kinds of hierarchy in a robot control system: one is composition hierarchy,

the other is interaction hierarchy. Both of these hierarchies should be used as systematic

mechanisms for building, organizing and analyzing a complex system incrementally.

The Constraint Net model supports composition hierarchies with modules, that has a set

of inputs and outputs and performs a transduction from input traces to output traces. The

composition hierarchy characterizes the hierarchy of composing complex modules from simple

ones. The composition hierarchy of a system has a tree structure, in which the root is the whole

net, and leaves are basic transductions. A complex module can be incrementally composed of

simpler ones. A system can be tested and veri�ed structurally.

The interaction hierarchy imposes the hierarchy of interaction or communication between

modules. In the rest of this chapter, we focus on interaction hierarchies. We present a two-

dimensional hierarchical structure, one is abstraction (or vertical) hierarchy and the other is

arbitration (or horizontal) hierarchy.

16.1 Abstraction Hierarchy

A control system, in general, is implemented in a vertical hierarchy [Alb81] (Figure 16.1) cor-

responding to a hierarchical abstraction of time and domains (Figure 16.1). The bottom level

sends control signals to various actuators, and at the same time, senses the state of actuators.

Control signals ow down and the sensing signals ow up. Sensing signals from the environment

are distributed over levels. Each level is a black box that represents the causal relationship be-

tween the inputs and the outputs. The inputs consist of the control signals from the higher

level, the sensing signals from the environment and the current states from the lower level. The

outputs consist of the control signals to the lower level and the current states to the higher

166
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Figure 16.1: Abstraction hierarchy
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level. Usually, the bottom level is implemented by analog circuits that function in continuous

dynamics and the higher levels are realized by distributed computing networks.

In our framework of control synthesis, constraints are speci�ed at di�erent levels on di�erent

domains, with the higher levels more abstract and the lower levels more plant-dependent. For

example, a multi-joint arm can be speci�ed by two levels: the low level on joint space and the

high level on task space.

A control system can be synthesized as a hierarchy of interactive embedded constraint

solvers, that form the abstraction hierarchy. Each abstraction level solves constraints on its

state space and produces the input to the lower level. The higher levels are composed of

digital/symbolic event-driven control derived from discrete constraint methods and the lower

levels are analog control based on continuous constraint methods.

16.2 Arbitration Hierarchy

Various constraints at same level of the abstraction hierarchy may form a constraint hierarchy.

For example, safety requirements may always have the highest priority for satisfaction and

persistence properties the lowest.

In our framework of control synthesis, constraint solvers at the same level of the abstrac-

tion hierarchy are coordinated via various arbitrations to compromise among di�erent kinds of

constraint, which form the arbitration hierarchy. (Figure 16.2).

CS2

CS1

CS3

A1

A2

Figure 16.2: Arbitration hierarchy (CS's and A's denote solvers and arbiters respectively)

One type of arbitration can be modeled by the subsumption architecture [Bro86]. An output

of a module in a higher layer can be subsumed by an output of a module in a lower layer. An

input of a module in a lower layer can be inhibited by an output of a module in a higher layer.
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Some other forms of subsumption and inhibition mechanism have been proposed in terms of

compound synapses in neural activities [Bee90]. There are two di�erent interaction functions:

gated synapses where

fg(IS ; IG) = (U + IG)IS

and modulated synapses where

fm(IS ; IM) =

(
(1 + IM )IS if IM � 0

IS=(1 + jIM j) otherwise.

We can de�ne some other arbitration functions:

� Subsume:

fs(L; U) =

(
L if L 6= 0

U otherwise:

� Conditional pass:

fc(C; I) =

(
I if C 6= 0

0 otherwise:

� Compromise:

fw(I1; I2) = w1I1 + w2I2; w1; w2 > 0; w1+ w2 = 1:

In most cases, arbitration functions are nonlinear.

In general, multiple embedded constraint solvers are distributed and coordinated via various

arbiters, which implement constraint hierarchies with the subsumption architecture or with

some forms of compromise.

We have developed a control system for a hydraulically actuated arm with a low level PD

controller and a high level end-point tracking and obstacle avoidance. Obstacle avoidance

has a higher priority for satisfaction than end-point tracking. Both levels can be considered

as applications of constraint-based control. This control system is a typical example of a

hierarchical control system. The model of the arm and the hydraulic actuators, and the joint-

level and end-point level control strategies are described in detail in Appendix C.

We have also developed a modeling and simulation environment, called ALERT (A Labo-

ratory for Embedded Real-Time systems), in which all the examples described in this thesis

have been experimented. In addition to the existing linear and nonlinear modules, we develop

event, logic and arbitration modules for constructing complex hybrid control systems. ALERT

and some examples are presented in Appendix B.
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Summary and Related Work

We have developed a systematic approach to control synthesis: a framework for constraint-based

control and a framework for robotic architecture. In this chapter, we summarize this approach

in terms of its power and limitations, and discuss some related work on constraint-based control

and robotic architecture.

17.1 Summary

In this section, we summarize our framework for control synthesis and robotic architecture.

17.1.1 Power

Most robotic systems are constraint-based dynamic systems. Systems with adaptivity and

learning exhibit this type of property as well. Constraint-based control synthesis provides a

simple principle, on-line constraint satisfaction or energy minimization, that has been used

implicitly in many existing control laws. With this framework, both discrete and continuous

control strategies can be derived and analyzed, and many existing constraint methods can be

applied to control. With this synthesis principle, veri�cation can be simpli�ed as well.

17.1.2 Limitations

Similar to the limitations of 8-automata for representing dynamic behaviors, constraint-based

speci�cation cannot represent probabilistic or stochastic performance, or minimization of total

cost over time (for example, energy cost for control). Constraint-based control di�ers from

optimal control: the former is an on-line optimization that uses on-line constraint satisfaction,

and the latter is an o�-line optimization that uses calculus of variations [Lue79, War72, NK93a].
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Constraint-based control synthesis is a methodology, a framework or a concept for a system-

atic development of control systems, rather than a new technique for the automatic generation

of control systems. We will work on automatic or semi-automatic control synthesis for special

classes of system in the future.

17.2 Related Work

Much work has been done on control synthesis. In this section, we survey only the most related

and inuential work. We consider two classes of work: one is on control strategies and the other

is on control structures.

17.2.1 Constraint-based control

Early work on constraint-based control includes potential functions and the least constraint

framework.

Potential functions generalize the conceptions of potential �elds and forces, so that inten-

tion and action are intrinsically bound together in the description of the robot's task [Kod89].

Potential functions are used in obstacle avoidance and target tracking in unstructured environ-

ments [Kha86]. Various control methods, from PD controllers to adaptive control and neural

nets, can be considered as applications of potential functions [Kod89].

The least constraint framework was proposed [Pai89, Pai91] to program robots with a high

degree of freedom in changing environments. In this framework, sensed and actuated variables

are related via a set of inequality or equality constraints, possibly changing over time. Con-

straints are satis�ed at run time by a set of real-time constraint methods. This framework

can deal with redundancy and the partial speci�cation of motion, at the same time supporting

modularity and parallelism.

Some recent work on auction-based control [CH93] can be considered as constraint-based

control with the objective as the minimization of standard deviation.

To the best of our knowledge, there has been no research on formal requirements speci�cation

for control synthesis.
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17.2.2 Robotic architecture

Much work has been done on robot control structures. Our concept of a two-dimensional

interaction hierarchy derives from the work done by Albus and Brooks.

From the point of view of robotic systems design, Albus [Alb81] studied the hierarchical

goal-directed behavior and proposed the sensory-processing hierarchy. In this structure, high-

level goals are decomposed through a succession of levels, each producing strings of more speci�c

commands to the next lower level. The bottom level generates the drive signals to the robot,

such as joints and grippers. Each control level is a separate process with a limited scope of

responsibility, independent of the details at other levels. Thus, such a structure provides a

foundation for future modular, \plug compatible" hardware and software for robots and real-

time sensory interactive control applications.

Brooks [Bro86] proposed a robust layered control system for mobile robots, called the sub-

sumption architecture, Unlike the traditional decomposition of a mobile robot control system

into functional modules, Brooks decomposed a mobile robot control system into task-achieving

behaviors. Such a decomposition meets the requirements of multiple goals, multiple sensors

and robustness.

Many real control systems use the concept of hierarchy. For example, Sahota and Mackworth

[SM94] developed a hierarchical control structure for a soccer playing robot, with high level

behavior bidding and path generation and low level path tracking. Zhao [Zha91] developed a

synthesis method for nonlinear control systems with high level path planning and navigation

in phase spaces and low level path tracking using linear control.

Nerode and Kohn [NK93b] proposed a multiple agent hybrid control architecture. The key

capabilities of the architecture are: reactive and adaptive mechanisms, distributed structures

with coordination, dynamic hierarchization, provable correctness and real-time response. The

central mechanism for providing these capabilities is an on-line restricted automated theorem

prover associated with each agent. Extensibility and robustness are also considered in this

architecture. Some other work on hybrid control systems [GNRR93] has also been done recently.
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Conclusions and Further Research
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The greatest accomplishment seems un�nished,

yet its applications are endless.

The greatest fullness seems empty,

yet its applications are never exhausted.

| Tao Teh Ching, Lao Tzu

The greatest conclusion seems stuttering,

yet its implications are endless.

The greatest future work seems crude,

yet its fruits are never exhausted.

| Zhang Ying
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Conclusions and Further Research

We have taken an integrated approach to the design and analysis of robotic systems and behav-

iors by establishing a foundation for modeling, analyzing, specifying, verifying and synthesizing

complex artifacts that interact with changing environments. We have developed a seman-

tic model for hybrid dynamic systems, two languages for requirements speci�cation, a formal

method for behavior veri�cation, and a systematic approach to control synthesis.

In this chapter, we review what has been achieved in this research, and point out possible

topics for the future.

18.1 Conclusions

We have decomposed the problem of design and analysis into four phases: modeling, speci�ca-

tion, synthesis and veri�cation. We have developed formal methods for each individual phase,

and the relationships among all the phases.

First, we have developed a semantic model for hybrid dynamic systems, that we call Con-

straint Nets (CN). Based on abstract algebra and topology, we have represented both time and

domains in abstract forms, and uniformly formalized basic elements of dynamic systems in terms

of traces and transductions. We have studied both primitive and event-driven transductions.

CN is an abstraction and generalization of dataow networks, while the behavior of a system

(the semantics of a model) is formally obtained using the �xpoint theory of continuous algebra.

In particular, CN models a dynamic system as a set of interconnected transductions, while

the behavior of the system is the set of input/output traces of the system satisfying all the

relationships imposed by the transductions. CN models a hybrid system using event-driven

transductions, while the events are generated and synchronized within the system.
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The motivation for developing CN is for modeling hybrid dynamic systems. However, we

have shown that CN is as powerful as existing computational models so that both sequential

and analog computations can be modeled. In order to study system behaviors formally, we

have de�ned abstraction and equivalence of systems and behaviors using homomorphism and

quotient algebra.

Second, we have developed two languages, TLTL and timed 8-automata, for requirements
speci�cation. TLTL is a linear temporal logic extended with real-time modal operators. Timed

8-automata are nondeterministic �nite state automata augmented with local and global time

bounds. As with CN, both languages are de�ned on abstract time and domains.

Third, we have developed a formal method, based on model checking and stability analysis,

for behavior veri�cation. This veri�cation method is semi-automatic if the time structure is

discrete, and is automatic, if, in addition, the domains are �nite as well; the time complexity

of the resulting veri�cation algorithm is polynomial in both the size of the model and the size

of the speci�cation.

Fourth, we have developed a systematic approach to control synthesis. In this approach,

desired properties of behaviors are speci�ed with various forms of constraints using timed 8-
automata, such that the accepting automaton-states of the 8-automata represent the neighbor-
hoods of the solution set of the given constraints. Constraint-based control is then synthesized

as embedded constraint solvers that, together with the dynamics of the plant and the environ-

ment, solve the constraints on-line. For the purposes of both design and analysis, we advocate

a two-dimensional hierarchical structure for control systems.

As a whole, we have established a theoretical foundation for developing robotic systems and

analyzing robotic behaviors (Figure 18.1).

SYSTEMS BEHAVIORS

PART   I

PART  III

PART  II

MODELING REASONING

Figure 18.1: Summary
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The major contributions of this thesis are summarized as follows:

� Constraint Nets for hybrid systems modeling and analysis

CN possesses the essential properties of a desired model for robotic systems (modi�ed

from [LS90]), namely:

Real-Time: time is explicitly represented,

Symmetrical : the dynamics of environments as well as the dynamics of plants and

control can be modeled,

Hybrid : multiple time and domain structures are uniformly formalized,

Hierarchical : multiple levels of abstraction are provided, and

Formal : formal syntax and semantics are de�ned, and formal analysis is facilitated.

� TLTL and timed 8-automata for requirements speci�cation
TLTL speci�es discrete/continuous sequential/timed behaviors uniformly; timed 8-automata
provide a simple alternative to TLTL, which is illuminating, and, in some cases, more

powerful.

� a formal method for behavior veri�cation

This method applies to behaviors of hybrid systems in general, and is semi-automatic for

discrete time systems and automatic for discrete time and �nite domain systems.

� constraint-based requirements speci�cation and control synthesis

This approach proposes a general framework for control synthesis with a simple principle.

Control synthesis and system veri�cation are coupled via requirements speci�cation.

� an integrated approach to the design and analysis of robotic systems and behaviors

This thesis decomposes the problems in the design and analysis of robotic systems and

behaviors, and focuses on the relationships among modeling, speci�cation, synthesis and

veri�cation.
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18.2 Further Research

We propose further research in both theory and practice.

18.2.1 Theory

We have proposed a foundation for the design and analysis of robotic systems and behaviors.

There are more questions than answers; all we have done is to take the �rst step in a long

journey. Further work includes:

� modeling and analyzing probabilistic and stochastic systems and behaviors

Many robotic systems cannot be modeled exactly, due to the lack of knowledge of, or to

the uncertainty in, the dynamics of the plant and the environment. It is important to

model systems under uncertainty and to analyze their behaviors with probabilities.

� more expressive speci�cation languages

There are behaviors that are not expressible using TLTL or timed 8-automata, such
as maximizing global utilities and timed behaviors over intervals. Other speci�cation

languages, with more expressive power and pertaining formal veri�cation procedures, are

yet to be explored. For example, we can extend time bounds on timed automaton-states

to both lower and upper bounds, while keeping the veri�cation rules simple.

� (semi-)automatic veri�cation for special classes of hybrid system

There are simple hybrid systems that have algorithmic veri�cation [ACHH93]. More work

along this line can be done. For example, a �nite automaton coupled to a linear continuous

system is a special class of hybrid system that might have simpler veri�cation procedures.

� (semi-)automatic synthesis and analysis of controllers for special classes of system

For �nite domain systems, controllers can be synthesized automatically, though with a

high complexity. For linear systems, stability can be analyzed semi-automatically. More

work along this line can be done. For example, it is possible to develop an algorithm that

can (semi-)automatically synthesize and analyze a �nite automaton that controls a linear

continuous system.

� more extensive study on behavior abstraction

We have provided the notion of behavior abstraction based on homomorphism. Other

notions of abstraction can be de�ned; for example, implication can be considered as a
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type of abstraction where A! B means B is an abstraction of A. (Under this de�nition,

a requirements speci�cation is an abstraction of the system model; a nondeterministic

model is an abstraction of the deterministic system.) Given this notion of abstraction,

the properties of behavior equivalence can be further studied.

18.2.2 Practice

We have already developed, based on our semantic model, a visual programming and simulation

environment called ALERT: A Laboratory for Embedded Real-Time systems. Further work

includes:

� a programming language with a real-time semantics

CN is an abstraction of dataow models for hybrid systems, with abstract data types and

abstract reference time. An instantiation of the data types and the reference time results

in a programming language, which can be used for both modeling and programming

(control). ALERT is such a language for modeling.

� a speci�cation and veri�cation environment based on our methods

Timed 8-automata have a graphical representation, which can be implemented on a graph-
ical user interface. The formal veri�cation method for discrete time systems can be im-

plemented on an interactive theorem prover.

� an integrated design and analysis environment for developing robotic systems

Both CN and timed 8-automata can be implemented on a graphical user interface, result-
ing in an integrated environment that facilitates both veri�cation and simulation.

� more extensive study on some real machines to uncover more design problems

This thesis establishes a theoretical foundation for the problem of design and analysis,

which, nevertheless, are abstracted from our experiences on real machines. Our research

aims, not to invent, but to understand, discover, formalize and solve new problems. The

guiding research principle is \from practice to theory, and from theory to practice."
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Appendix A

Proofs of Theorems

In this appendix, we prove all the propositions and theorems in this thesis.

A.1 Topological Structure of Dynamics

Proposition 3.1.1 For any topology on X, X and ; are both open and closed.

Proof: X (;) is closed since ; (X) is open. 2

Proposition 3.1.2 (1) A subset is closed i� it includes all its limit points. (2) A topology

is trivial i� every point x is a limit point of any subset with elements distinct from x. A topol-

ogy is discrete i� no point is a limit point of any subset.

Proof: (1) If a subset S of X is closed, X � S is open and there is no point in X � S that is a

limit point of S. If there is no point in X � S that is a limit point of S, S is closed, since if S

is not closed, X �S is not open. If X �S is not open, there is at least one point in X �S that

is a limit point of S, otherwise every point in X � S has a neighborhood in X � S, thus X � S
is open.

(2) If a topology is trivial, any point has only one neighborhood, the total set. If every

point x is a limit point of any subset with elements distinct from x, the topology is trivial since

otherwise there is an open set S � X and no point in S is a limit point of X�S, contradiction.
If a topology is discrete, any point is a neighborhood of itself, thus cannot be a limit point of

any subset. If no point is a limit point of any subset, the topology is discrete since otherwise

there is a point that is not open, which is a limit point of the total set, contradiction. 2

Proposition 3.1.3 A topological space is connected i� the only sets that are both open and

closed are the empty set and the total set.

193



APPENDIX A. PROOFS OF THEOREMS 194

Proof: If there is ; � X 0 � X that is both open and closed, both X 0 and X�X 0 are non-empty

open sets. Therefore, X is separated. 2

Proposition 3.1.4 (1) Continuous functions are closed under functional composition. (2)

A function f : X ! X 0 is continuous, i� x 2 X is a limit point of S � X implies that f(x) is

a point or a limit point of f(S) = ff(x)jx 2 Sg.
Proof: The �rst property is deduced directly from the de�nition of continuous functions. The

second property is deduced from an equivalent de�nition of continuous functions, i.e., a function

is continuous i� the inverse image of any closed subset is closed, and from the property that a

closed subset includes all its limit points. 2

Proposition 3.1.5 Let hX; �i be a topological space, X 0 � X and � 0 = fW jW = X 0\U; U 2 �g.
The collection � 0 is a topology on X 0.

Proof: Deduced from the de�nition of topology. 2

Proposition 3.1.6 Let fXigi2I be a family of topological spaces and J be an arbitrary in-

dex set. Then (�IXi)
J = �IXJ

i
.

Proof: �J (�IXij) and �I (�JXij) are isomorphic. 2

Proposition 3.1.7 A at partial order is a cpo.

Proof: ?A is the least element and every directed subset is a chain with a greatest element. 2

Proposition 3.1.8 The product of cpos is a cpo. Let A = �IAi. The least element of A

is ?A with (?A)i =?Ai
; 8i 2 I. Let D be a directed subset of A. The least upper bound of D isW

AD with (
W
AD)i =

W
Ai
Di; 8i 2 I, where Di is the projection of D onto its ith component,

i.e., Di = �iD.

Proof: According to the de�nition of least elements and least upper bounds. 2

Proposition 3.1.9 The partial order topology of a non-trivial partial order is non-Hausdor�.

Proof: For any a <A a
0, every neighborhood of a includes a0. 2

Proposition 3.1.10 Any continuous function is monotonic, i.e., if f : A ! A0 is continu-

ous, then a1 �A a2 implies f(a1) �A0 f(a2).
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Proof: Suppose f(a1) 6�A0 f(a2), there is an open set S � A0 including f(a1) but not f(a2).

Therefore, f�1(S) � A is an open set including a1 but not a2. So a1 6�A a2. 2

Proposition 3.1.11 Let A and A0 be two cpos. Then f : A ! A0 is continuous i� for ev-

ery directed subset D � A,

1. f(D) = ff(d)jd 2 Dg is directed and

2. f(
W
AD) =

W
A0 f(D).

Proof: The only if part: If f is continuous, f is monotonic (Proposition 3.1.10). Therefore, if d

is an upper bound of d1 and d2, f(d) is an upper bound of f(d1) and f(d2). Therefore, if D is

directed, then f(D) is directed and f(
W
A
D) �A0

W
A0
f(D). We now prove that f(

W
A
D) �A0W

A0 f(D). If f(
W
AD) 6�A0

W
A0 f(D), there is an open set S � A0 including f(

W
AD) but

not
W
A0 f(D). Therefore, f�1(S) � A is an open set including

W
AD but not any d 2 D,

contradicting to the de�nition of open sets in partial order topologies.

The if part: If conditions (1) and (2) are satis�ed, f is monotonic. Therefore, for any upward

closed set S, f�1(S) is also upward closed. Since f(
W
A
D) =

W
A0
f(D), if S is inaccessible from

any directed subset f(D), then f�1(S) is inaccessible from any directed subset D. Therefore,

f is continuous since for any open set S, f�1(S) is open. 2

Proposition 3.1.12 Metric topologies are Hausdor�.

Proof: Given any two elements x; x0 with l = d(x; x0), N l=2(x) \N l=2(x0) = ;. 2

Proposition 3.1.13 If X is of a Hausdor� topology and v : L ! X is a linear set of val-

ues, then v ! v�1 and v ! v�2 imply v�1 = v�2.

Proof: If v�1 6= v�2, There exist N(v�1) and N(v�2) such that N(v�1) \N(v�2) = ;. Since v ! v�1

and v ! v�1, there is l0, for all l �L l0, v(l) 2 N(v�1)\N(v�2), contradiction. 2

Proposition 3.1.14 If �IXi is of the product topology and v : L ! �IXi is a linear set

of values, then v ! v� i� vi ! v�
i
for all i 2 I.

Proof: If v ! v�, then vi ! v�
i
for all i 2 I since for every neighborhood in the subbasis,

N i(v�) = f�IVj jfor all j 6= i; Vj = Xjg, there is l0, for all l �L l0, v(l) 2 N i(v�). If vi ! v�
i
for

all i 2 I , then v ! v� since every neighborhood N(v�) is the union of a set of neighborhood in

the basis and for every neighborhood in the basis NJ(v�) = f�IVijfor all i 62 J; Vi = Xig with
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a �nite subset J � I , there is l0, for all l �L l0, v(l) 2 NJ(v�). 2

Proposition 3.2.1 (1) For any time structure T , if T � T has an upper bound in T , T
has a least upper bound in T .
(2) The following properties for a time structure are equivalent:

(a) T is discrete.

(b) Let (t1; t2) = ftjt1 < t < t2g. For all t, if t is not the least element of T , then 9t0 < t,

denoted pre(t), such that (t0; t) = ;, and for all t, if t is not the greatest element of T ,
then 9t0 > t, denoted suc(t), such that (t; t0) = ;.

(c) T is well-founded, i.e., 8t 2 T , [0; t) is �nite.

(3) The following properties for a time structure are equivalent:

(a) T is continuous.

(b) T is dense, i.e., for all t1 < t2, there exists t0 such that t1 < t0 < t2.

Proof: (1) For any T � T with an upper bound t 2 T , let � = inffm(t)jt is an upper bound of Tg.
Since T is a time structure, ftjm(t) � �g has a greatest element t0. Since T � ftjm(t) � �g, t0
is the least upper bound of T .

(2) (a)! (b): For any t, t is not the least element of T , let � = supfm(t0)jt0 < tg. Since T is

a time structure, ft0jm(t0) � �g has a greatest element, denoted t0. Since T is discrete, t0 < t.

However, (t0; t) = ;. For any t, t is not the greatest element of T , let � = inffm(t0)jt0 > tg.
Since T is a time structure, ft0jm(t0) � �g has a least element, denoted t0. Since T is discrete,

t0 > t. However, (t; t0) = ;.
(b) ! (a): Every point has a neighborhood including no other points but itself. So every

point is an open (or closed) set. Therefore, T is of discrete metric topology.

(b) ! (c): If T is not well-founded, there is t 2 T , [0; t) is in�nite. Therefore, T =

fsucn(0)jn 2 Ng � [0; t) � T . According to (1), t0 =
W
T 2 T . However there is no t < t0

such that (t; t0) = ;, contradiction.
(c) ! (b): For any t > 0, there exists t0 < t, (t0; t) = ; since [0; t) is �nite. For any t, t is

not the greatest element, there exists t0 > t, (t; t0) = ; since otherwise for any t0 > t, [0; t0) is

in�nite.
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(3) (a)! (b) (Not Dense ! Not Continuous): If T is not dense, there exist t1 and t2 such

that (t1; t2) = ;. Then T is separated (or not continuous) since T is the union of two disjoint,

non-empty open sets ftjm(t) < m(t1) + d(t1; t2)=2)g and ftjm(t) > m(t2)� d(t1; t2)=2g.
(b) ! (a) (Not Continuous ! Not Dense): If T is not continuous, T is the union of

two disjoint, non-empty open (or closed) sets T1 and T2. Let �1 = supfm(t)jt 2 T1g and

�2 = inffm(t)jt 2 T2g. Since T is a time structure, ftjm(t) � �1g has a greatest element t1

and ftjm(t) � �2g has a least element t2. Since T1 and T2 are closed, t1 2 T1 and t2 2 T2.

Therefore, (t1; t2) = ;. 2

Proposition 3.2.2 If T0 is a reference time of T1 and T1 is a reference time of T2, then

T0 is a reference time of T2.
Proof: According to the de�nition of a reference time structure. 2

Proposition 3.3.1 f?Ag is not � -open. The only neighborhood of ?A is A.

Proof: According to the de�nition of topology. 2

Proposition 3.3.2 For any domain, its partial order topology is �ner than its derived metric

topology, and both are non-Hausdor�.

Proof: Trivial. 2

Proposition 3.3.3 (1) Function f : A ! A0 is continuous in the partial order topology i�

f is strict or constant. (2) If f : A! A0 is continuous in the derived metric topology, then f is

continuous in the partial order topology. (3) Function f : A ! A0 is continuous in the derived

metric topology i� f is continuous in the partial order topology and the restriction of f on A

and A0 is continuous in the metric topology, namely, for any open subset S of A0, f�1(S)\ A
is open.

Proof: (1) If f is strict or a constant, f is continuous. If f is continuous and f is not strict, f

is constant since ?A� a implies that f(?A) = f(a) for any a if f(?A) 6=?A0 .
(2) If f is continuous in the derived metric topology, f is strict or constant, since ?A is a

limit point of any fag and f(?A) is a point or a limit point of ff(a)g.
(3) If f is strict or constant, and the restriction of f on A and A0 is continuous in the metric

topology, then f is continuous in the derived metric topology, since for any open set S of A0,

f�1(S) is open. If f is continuous in the derived metric topology, f is strict or constant, since
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in either case, the restriction of f on A and A0 must also be continuous. 2

Proposition 3.3.4 Let I be a �nite index set. (1) Function f : �IAi ! A is continuous

in the partial order topology i� f is continuous w.r.t. all i 2 I. (2) If f : �IAi ! A is

continuous in the derived metric topology, then f is continuous in the partial order topology.

(3) Function f : �IAi ! A is continuous in the derived metric topology i� f is continuous in

the partial order topology and the restriction of f on �IAi and A is continuous in the product

metric topology, namely, for any open subset S of A, f�1(S)\ �IAi is open.

Proof: (1) Let I = f1; 2g. If a function f : A1 � A2 ! A is continuous, it is right continu-

ous since
W
A
f(a;D) = f(a;

W
A2
D). Similarly, it is left continuous. On the other hand, if f

is both left and right continuous, f(
W
A1�A2

D) = f(
W
A1
D1;

W
A2
D2) =

W
A
f(D1;

W
A2
D2) =W

A f(D1; D2) =
W
f(D) ([Hen88]). I can be extended to any �nite index set.

(2) If f : �IAi ! A is continuous in the derived metric topology, f is continuous in the

derived metric space w.r.t. any argument i 2 I , f is continuous in the partial order w.r.t. any

argument i 2 I (Proposition 3.3.3 (2)), f is continuous in the partial order (Proposition 3.3.4

(1)).

(3) If f is strict or constant, and the restriction of f on �IAi and A is continuous in the

metric topology, f is continuous in the derived metric topology, since for any open set S of A,

f�1(S) is open.

If f is continuous in the derived metric topology, f is strict or constant w.r.t. argument i

for all i 2 I . In either case, the restriction of f on �IAi and A must also be continuous, since

for any open set S of A, either f�1(S) � �IAi or the projection onto the i-th argument is Ai

for any i. Therefore, f�1(S)\ �IAi is open. 2

Proposition 3.4.1 Let v : L! A be a linear set of values. Then

(1) v !?A, and
(2) v ! v�1 and v ! v�2 imply that either v�1 = v�2 or one of v�1 and v�2 is ?A.

Proof: (1) The only neighborhood of ?A is A. Therefore, v(l) 2 N(?A) for all l. (2) If v�1 6= v�2,

then one of them must be ?A, since the metric topology is Hausdor� with unique limits (Propo-
sition 3.1.12, Proposition 3.1.13). 2

Proposition 3.4.2 Let v : L! A for A = �IAi. Then

(1) v ! v� i� vi ! v�
i
for all i 2 I, and
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(2) the set of limits fv�jv ! v�g is a directed subset in hA;�Ai and has a greatest element.

Proof: (1) follows from Proposition 3.1.14. (2) If v : L ! A, then fv�jv ! v�g has a greatest
element. If the set of limits of vi : L ! Ai has a greatest element v

�
i
, then the set of limits of

v : L! �IAi has a greatest element v
� with (v�)i = v�

i
for all i 2 I . 2

Proposition 3.4.3 Let v : L! A for A = �IAi. Then (lim v)i = lim vi; 8i 2 I.
Proof: (

W
A
D)i =

W
Ai
Di where Di = �iD. 2

Proposition 3.4.4 If v1; v2 : L! A and v1(l) �A v2(l) for all l 2 L, then lim v1 �A lim v2.

Proof: If A is at, v�1 6=?A implies that v�2 6=?A. If A is a product, lim v�1 i �Ai
lim v�2i. There-

fore, lim v�1 �A lim v�2 . 2

Proposition 3.4.5 For any time structure T , T�t�� has a greatest element wheneverm(t) � � .
Proof: (1) T�t�� = ft0jt0 < t; d(t; t0) � �g = ft0jt0 < t;m(t0) � m(t)��g = ft0jm(t0) � m(t)��g
since � > 0. If m(t) � � , then 0 � m(t) � � < supm(T ). Since T is a time structure, T�t��

has a greatest element. 2

Proposition 3.4.6 Let V : L! AT for a linear order L and a trace space AT . Then

(1) V ! V � i� V (t)! V �(t) for all t 2 T , and
(2) the set of limits fV �jV ! V �g is a directed subset in hAT ;�AT i and has a greatest

element.

Proof: Similar to the proof of Proposition 3.4.2. 2

Proposition 3.4.7 Let V : L! AT . Then (lim V )(t) = limV (t); 8t 2 T .
Proof: Similar to the proof of Proposition 3.4.3. 2

Proposition 3.4.8 For any time structure T and any event trace e, hTe; de; �ei is a discrete

sample time structure of T .
Proof: For any te 2 Te and 0 � � < supm(Te), let Te = ft0

e
jm(t0

e
) � �; t0

e
2 Teg and

T =
S
t0e2Te

ftjt � t0eg. If Te has no greatest element, T has no greatest element. Further-

more, e(T ) is not de�ned, otherwise 9t0 2 T; e is constant on ftjt � t0; t 2 Tg and t0 would

be an upper bound of Te in Te. However, if e(T ) is not de�ned, there will be no te 2 Te with
m(te) > � , since e is nonintermittent. Therefore, for any te 2 Te and 0 � � < supm(Te),
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Te = ft0ejm(t0e) � �; t0e 2 Teg has a greatest element.
For any te 2 Te and 0 � � < supm(Te), let Te = ft0

e
jm(t0

e
) � �; t0

e
2 Teg and T =S

t0e2Te
ftjt � t0

e
g. Let � 0 = inffm(t)jt 2 Tg and t0 be the least element of ftjm(t) � � 0g. If

Te has no least element, e(t0) is not de�ned since e is right-continuous. However, since e is

also non-intermittent, e(t) is not de�ned 8t > t0, contradiction. Therefore, for any te 2 Te and
0 � � < supm(Te), Te = ft0ejm(t0e) � �; t0e 2 Teg has a least element.

Therefore, Te is a time structure.
For any te 2 Te, te > 0, let pre(te) = ft0ejt0e < te; t

0
e 2 Teg and T =

S
t0e2pre(te)

ftjt � t0eg. If
pre(te) has no greatest element, T has no greatest element. Furthermore, e(T ) is not de�ned,

otherwise 9t0 2 T; e is constant on ftjt � t0; t 2 Tg and t0 would be an upper bound of pre(te)

in Te. However, if e(T ) is not de�ned, e(te) will not be de�ned since e is nonintermittent.

Therefore, pre(te) has a greatest element.

For any te 2 Te, te is not the greatest element of Te, let suc(te) = ft0ejt0e > te; t
0
e 2 Teg and

T =
S
t0e2suc(te)

ftjt � t0eg. Let � = inffm(t)jt 2 Tg and t0 be the least element of ftjm(t) � �g.
If suc(te) has no least element, e(t0) is not de�ned since e is right-continuous. However, since

e is also non-intermittent, e(t) is not de�ned 8t > t0, contradiction. Therefore, suc(te) has a

least element.

Therefore Te is discrete. 2

Proposition 3.6.1 The partial order of a domain is a cpo.

Proof: A at partial order is a cpo. The product partial order of cpos is a cpo. 2

Proposition 3.6.2 The partial order of a trace space is a cpo.

Proof: The product partial order of cpos is a cpo. 2

Proposition 3.6.3 The partial order of an event space is a cpo.

Proof: We �rst prove that the subpartial order with the set of nonintermittent and right-

continuous traces of a trace space is a cpo.

Let V � A
T
be the set of nonintermittent and right-continuous traces on a simple domain.

The least element in V is �t: ?A. The least upper bound of a directed subset D of V isW
V D = �t:

W
A
D(t), which is also in V for the following reasons: First, according to Proposition

3.4.4, (
W
V D)(T ) �A

W
A
D(T ), if (

W
V D)(T ) is ?A, d(T ) is ?A for all d 2 D. Second, for any

t 2 T , if (WV D)(t) =?A, (WV D) is right-continuous at t; if (WV D)(t) = a 2 A, there is d 2 D,
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d(t) = a. Since d is right-continuous at t, (
W
V D) is right-continuous at t.

Because of the composite properties of nonintermittent traces and limits, nonintermittent

and right-continuous traces are closed under least upper bounds for traces on composite domains

as well.

Therefore, the partial order of an event space is a cpo. 2

Proposition 3.6.4 A transliteration fT : AT ! A0T on any time structure T is continu-

ous if f : A! A0 is continuous.

Proof: Let D � AT be directed, and v� be the least upper bound of D. We will prove that

fT (
W
AT

D) =
W
A0
T fT (D), i.e., for any t, fT (v

�)(t) = (
W
A0
T fT (D))(t).

fT (v
�)(t) = f(v�(t)) = f(

_
A

fv(t)jv 2 Dg)

=
_
A0

ff(v(t))jv 2 Dg since f is continuous

=
_
A0

ffT (v)(t)jv 2 Dg =
_
A0
T

fT (D)(t):

2

Proposition 3.6.5 A unit delay on any discrete time structure is continuous.

Proof: Let D � AT be directed and v� be the least upper bound of D. Since T is discrete,

pre(t) has a greatest element, which is denoted by pre(t).

�AT (v0)(v
�)(t) =

(
v0 if t = 0

v�(pre(t)) =
W
A
fv(pre(t))jv 2 Dg otherwise

=
_
A

f�AT (v0)(v)(t)jv 2 Dg

= (
_
AT

�AT (v0)(D))(t):

2

Proposition 3.6.6 A transport delay is continuous.

Proof: Similar to the proof of Proposition 3.6.5. Since T is a time structure, for any � > 0,

t � � has a greatest element when m(t) � � . 2

Proposition 3.6.7 An event-driven transduction F � is continuous if its primitive transduction

F on any discrete time structure is continuous.
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Proof: First, we prove sampling and extending are continuous. Let T be a time structure and Tr
be a reference time structure of T with a reference time mapping h. Sampling is a transduction

ST ;Tr : A
Tr ! AT . We prove that it is continuous.

Let D � ATr be directed and v� be the least upper bound of D. Let v be ST ;Tr (v).

v�(t) = v�(h(t)) =
_
A

fv(h(t))jv 2 Dg =
_
A

fv(t)jv 2 Dg = (
_
AT

fvjv 2 Dg)(t):

Therefore,
W
ATr

D =
W
AT

D.

Similarly, extending is continuous since h�1(tr) = ftjm(t) � mr(tr)g has a greatest element
if 9t 2 T ; �r([0r; tr)) � �([0; t)) or �r([0r; tr)) < �(T ).

The proof is divided into two steps. First, F � is continuous w.r.t. the second argument if F

is continuous on discrete time structures, since any event-based time is discrete, both sampling

and extending are continuous, and continuity is closed under functional composition. Second,

F � is continuous w.r.t the �rst argument. Therefore, according to Proposition 3.3.4 (1), F � is

continuous.

Now we prove that it is continuous w.r.t. the �rst argument. Let T be any time structure

and v 2 AT be �xed. For any directed subsetD of ET , D is a chain. According to the de�nition,

F �

T
(D; v) is a chain too, i.e., a directed subset. Furthermore, for any t if (

W
ET D)(t) 6=?B , there

is d 2 D such that for all t0 � t; d(t0) = (
W
ET D)(t

0), i.e.,
W
A0
T F �

T
(D; v) � F �

T
(
W
ET D; v). On

the other hand, F �
T
is monotonic w.r.t. the �rst argument, i.e.,

W
A0
T F �

T
(D; v) � F �

T
(
W
ET D; v).

Therefore,
W
A0
T F �

T
(D; v) = F �

T
(
W
ET D; v), it is continuous w.r.t. the �rst argument. 2

Theorem 3.6.1 Let A be a �-domain structure and T a time structure. The �-dynamics

structure D(T ; A) = hV ;Fi satis�es (1) V is a multi-sorted set of cpos and (2) transliterations,

transport delays and event-driven transductions in F are continuous in the partial order topol-

ogy. If, in addition, T is discrete, all transductions in F are continuous in the partial order

topology.

Proof: Follows from Propositions 3.6.1 { 3.6.7. 2

Proposition 3.6.8 A transliteration fT is well-de�ned i� function f is well-de�ned; fT is

strict w.r.t. an argument i� f is strict w.r.t. the argument.

Proof: According to the de�nitions of well-de�nedness and strictness. 2

Proposition 3.6.9 Any delay is not strict. A unit delay on any discrete time structure is
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well-de�ned. A transport delay is well-de�ned.

Proof: According to the de�nitions of well-de�nedness and strictness. 2

Proposition 3.6.10 An event-driven transduction F � is well-de�ned i� F on any discrete

time structure is well-de�ned; F � is strict w.r.t. its event input, and F � is strict w.r.t. one of

the other input arguments i� F is strict w.r.t. the argument.

Proof: Event-based time is discrete, and sampling and extending are well-de�ned. 2

Proposition 3.6.11 A transliteration fT is right-continuous if f is continuous in the de-

rived metric topology; fT with f : �IAi ! A is nonintermittent if f is strict, well-de�ned and

continuous in the derived metric topology.

Proof: For any neighborhood N(f(v(t))), there is a neighborhood N(v(t)), such that x 2
N(v(t)) implies f(x) 2 N(f(v(t))). For any neighborhood N(v(t)), there is T = (t; t0), t00 2 T
implies v(t00) 2 N(v(t)). Therefore, for neighborhood N(f(v(t))), there is T = (t; t0), t00 2 T
implies f(v(t00)) 2 N(f(v(t))).

If f is strict and well-de�ned, v(t) is well-de�ned implies that fT (v)(t) is well-de�ned, v(t) is

not well-de�ned implies that for all t0 � t fT (v)(t0) is unde�ned. If, in addition, f is continuous

in the derived metric topology, lim vT is well-de�ned implies that lim f(v)jT is well-de�ned,

lim vT is not well-de�ned implies that lim f(v)jT is unde�ned. 2

Proposition 3.6.12 A delay is nonintermittent. A transport delay is right-continuous.

Proof: The output of a delay is nonintermittent if its input is nonintermittent.

The output of a transport delay is right-continuous if its input is right-continuous. 2

Proposition 3.6.13 An event-driven transduction is right-continuous. An event-driven trans-

duction F � is nonintermittent if F is nonintermittent.

Proof: Any trace on a discrete time structure is right-continuous. Any extension of a discrete-

time trace is right-continuous.

Both sampling and extending are nonintermittent and nonintermittent transductions are

closed under functional composition. 2
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A.2 The Constraint Net Model

Proposition 4.1.1

CN1(I1; O1) k CN2(I2; O2) = CN2(I2; O2) k CN1(I1; O1):

CN1(I1; O1) � (CN2(I2; O2) � CN3(I3; O3)) = (CN1(I1; O1) � CN2(I2; O2)) �CN3(I3; O3)

if both sides are de�ned.

CN1(I1; O1) + (CN2(I2; O2) + CN3(I3; O3)) = (CN1(I1; O1) + CN2(I2; O2)) + CN3(I3; O3)

if both sides are de�ned.

Proof: According to the de�nition of basic and combined operations. 2

Proposition 4.1.2 Following are some properties of subnets:

(1) CN1 and CN2 are subnets of CN1 k CN2.

(2) CN1 and CN2 are subnets of CN1 + CN2.

(3) CN1 is a subnet of CN2 � CN1, however, CN2 is not a subnet of CN2 � CN1.

Proof: According to the de�nition of basic and combined operations. 2

Theorem 4.2.2 Let A and A0 be two cpos. If f : A � A0 ! A0 is a continuous function,

then there exists a unique continuous function �:f : A ! A0, such that for all a 2 A, (�:f)(a)
is the least �xpoint of fa : A

0 ! A0, where fa = �x:f(a; x), or equivalently, 8a 2 A; (�:f)(a) =
f(a; (�:f)(a)).

Proof: Let F 0(a) = f(a;?A0) and F k+1(a) = f(a; F k(a)). Since f is continuous, it is continu-

ous w.r.t. the second argument. A continuous function in any partial order is also monotonic.

Therefore,

F 0(a) �A0 F 1(a) �A0 F 2(a) : : :�A0 F k(a) � : : : :

Let �:f(a) =
W
A0fF k(a)jk � 0g. Clearly �:f(a) is the least �xpoint of fa : A0 ! A0.

Next we prove that �:f is continuous. Clearly for every k, F k is continuous since f is

continuous and continuity is closed under functional composition. Therefore, for any directed

subset D of A,

�:f(
_
A

D) =
_
A0

fF k(
_
A

D)jk � 0g

=
_
A0

f
_
A0

fF k(D)gjk � 0g
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=
_
A0

f
_
A0

fF k(a)jk � 0gja 2 Dg

=
_
A0

�:f(D):

2

Proposition 4.2.1 Let I � J be an index set. If f : �IAi ! A is a continuous function,

then the extension of f , f 0 : �JAj ! A satisfying f 0(a) = f(ajI), is a continuous function.

Proof: According to the de�nitions of continuous functions and product topologies. 2

Proposition 4.2.2 Let ffk : �JAj ! Akgk2K be a family of continuous functions. Then

~f : �JAj ! �KAk with ~f(a)k = fk(a) is a continuous function.

Proof: According to the de�nitions of continuous functions and product topologies. 2

Proposition 4.2.3 If ~f : �JAj ! �KAk is a continuous function, K � J and I = J � K,

then ~f has a least �xpoint �:~f : �IAi ! �KAk.

Proof: According to Fixpoint Theorem II. 2

Proposition 4.2.4 Let X be a set of variables and O � X a set of output variables. Let

ffo : �IoAi ! Aogo2O be a set of continuous functions. Then the set of equations fo =

fo(~x)go2O with ~x : Io ! X has a least solution.

Proof: Derived from Proposition 4.2.1, 4.2.2 and 4.2.3. 2

Proposition 4.2.5 If a constraint net is composed of nonintermittent transductions, then its

semantics is nonintermittent. If a constraint net is composed of right-continuous transductions,

then its semantics is right-continuous.

Proof: Both nonintermittent and right-continuous transductions are closed under least upper

bounds. 2

If CN 0 is a subnet of CN , [[CN ]]jO(CN 0)(~i) = [[CN 0]](~ijI(CN 0)).

Proof: Trivial. 2

Proposition 4.2.7 Following are some properties associated with module operations:
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� Union: If CN(I; O) = CN1(I1; O1) k CN2(I2; O2), then

[[CN(I; O)]] = [[CN1(I1; O1)]]� [[CN2(I2; O2)]]:

� Cascade connection: If CN(I; O) = CN2(I2; O2) � CN1(I1; O1), then

[[CN(I; O)]] = fF2 � F1jF1 2 [[CN1(I1; O1)]]; F2 2 [[CN2(I2; O2)]]g:

� Parallel connection: If CN(I; O) = CN1(I1; O1) + CN2(I2; O2), then

[[CN(I; O)]] = fhF1; F2ijF1 2 [[CN1(I1; O1)]]; F2 2 [[CN2(I2; O2)]]g:

� Feedback connection: If CN 0(I 0; O0) = F(CN(I;O)), then

[[CN 0(I 0; O0)]] = f�:F jF 2 [[CN(I; O)]]g

where �:F is the the least �xpoint of F .

Proof: According to the de�nition of the semantics of modules. 2

Proposition 4.2.8 If CN1(I1; O1) and CN2(I2; O2) are well-de�ned modules, then CN1(I1; O1)

k CN2(I2; O2), CN1(I1; O1)�CN2(I2; O2) and CN1(I1; O1)+CN2(I2; O2) are well-de�ned mod-

ules.

Proof: According to the de�nition of the well-de�nedness of modules. 2

Proposition 4.2.9 Let A and A0 be two cpos. If f : A � A0 ! A0 is a strict continuous

function w.r.t. its second argument, then the least �xpoint of f , or the least solution of the

equation o = f(i; o), is unde�ned.

Proof: �:f = �x: ?A0 . 2

Proposition 4.2.10 A module CN(I; O) is not well-de�ned if there is an output location

l 2 O such that CN has an algebraic loop on l.

Proof: If l! l, l results in an unde�ned trace. However, the inverse is not true. If there exists

a not well-de�ned transduction, the net may not be well-de�ned either. 2
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A.3 Modeling in Constraint Nets

Theorem 5.3.1 Let �n = hfng; f0; suc; condgi be a signature. A partial recursive function

can be computed by a sequential module in �n-dynamics structure D(N ;N ) where N denotes

the �n-domain structure hfNg; f0; suc; condgi.
Proof: For any partial recursive function f , there is a sequential module CN de�ned on the

given dynamics structure. If f(x) is de�ned, for any start event, there is an end event indicating

the completion of the computation. 2

Proposition 5.3.1 [Sha41] Equations 5.1 and 5.2 are equivalent, i.e., a function written in

one form can be transformed into another.

Proof: Refer to [Sha41]. Di�erentiate Equations 5.1 n�1 times we have a total of n2 equations,
from which we my eliminate the n2 � 1 variables x2; _x2; : : : ; x

(n)
2 ; : : : ; xn; _xn; : : : ; x

(n)
n .

Equation 5.2 can be written as Equations 5.1 as follows. Di�erentiate both sides w.r.t. t

we obtain
@P

@t
+
@P

@x
_x+

@P

@ _x
�x+ : : :+

@P

@x(n)
x(n+1) = 0

and

x(n+1) = �
@P

@t
+ @P

@x
_x+ @P

@ _x
�x+ : : :+ @P

@x(n�1)
x(n)

@P

@x(n)

= �P1(t; x; _x; : : : ; x
(n))

P2(t; x; _x; : : : ; x(n))
:

Let x1 = x; x2 = _x; : : : ; xn+1 = x(n); xn+2 = x(n+1). We have

_x1 = x2

: : :

_xn+1 = xn+2

_xn+2 = x0P1(t; x1; x2; : : : ; xn+1)

_x0 = x20P
0
2(t; x1; x2; : : : ; xn+1)

where

P 0
2(t; x1; x2; : : : ; xn+1) =

@P2

@t
+
@P2

@x1
x2 +

@P2

@x2
x3 + : : :+

@P2

@xn+1

xn+2:

2

Proposition 5.3.2 [Sha41] If x = �t:f(t) is non-hypertranscendental, then its derivative y =

�t:f 0(t), its integral z = �t:
R
t

t0
f(t)dt, and its inverse w = �t:f�1(t) are non-hypertranscendental.

Proof: Refer to [Sha41]. 2
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Proposition 5.3.3 [Sha41]Non-hypertranscendental functions are closed under functional com-

position.

Proof: Refer to [Sha41]. 2

Proposition 5.3.4 Given a constraint net of di�erential equations _xk = fk(~x); k = 1; : : : ; n

with xk(t0) 2 R and fk : Rn ! R as partial or total functions, and given that all fk are smooth

at ~x(t0), the limiting semantics of the constraint net, based on the forward Euler method, is

well-de�ned over T = [t0; t1] for some t1 > t0. In particular, x = �t:�1n=0
x
(n)(t0)

n!
(t� t0)n.

Proof: If all fk are smooth, x
(n)(t0) exists, the semantics results in a Taylor expansion. 2

Theorem 5.3.2 Let �r = hfrg; f+; �gi be a signature. A non-hypertranscendental function

that is de�ned and smooth over a closed segment T = [t0; t1] can be computed by a constraint

net of di�erential equations in �r-dynamics structure D(T ;R), where R denotes the �r-domain

structure hfRg; f+; �gi.
Proof: A non-hypertranscendental function that is de�ned and smooth over a closed segment

T = [t0; t1] can be written as Equations 5.1 with x(t0) well-de�ned. Therefore, the con-

straint net has a well-de�ned solution. On the other hand, for any polynomial function P ,

P (x) � P (y) = (x � y)P 0(x; y) and P 0(x; y) is a polynomial that is bounded in any closed in-

terval. Therefore, Lipschitz condition is satis�ed. 2

A.4 Behavior Analysis

Proposition 6.2.1 If R1 � R2, jR1jm � jR2jm.
Proof: Trivial. 2

Proposition 6.4.1 (1) If hS0;!0i is an abstraction of hS;!i, the behavior corresponding

to hS0;!0i is the abstraction of the behavior corresponding to hS;!i. (2) If hS 0;!0i is an

approximate abstraction of hS;!i, the behavior corresponding to hS0;!0i is a superset of the

abstraction of the behavior corresponding to hS;!i.
Proof: Trivial. 2



APPENDIX A. PROOFS OF THEOREMS 209

A.5 Behavior Veri�cation

Proposition 11.2.1 Let f�qgq2Q be invariants for B and A. If r is a run of A over a trace

v 2 B, then 8t 2 T ; v(t) j= �r(t).

Proof: For any trace v, v(0) is an initial state, therefore, v(0) j= �. In addition, r is a run,

v(0) j= e(r(0)). Therefore, v(0) j= e(r(0))^�. Since e(r(0))^�! �r(0), we have v(0) j= �r(0).

Assume that v(pre(t)) j= �r(pre(t)). Therefore, v(t) j= c(r(pre(t)); r(t)) ! �r(t) since

n(v(pre(t)); v(t)). In addition, v(t) j= c(r(pre(t)); r(t)). Therefore, v(t) j= �r(t).

Use the induction principle for well-founded sets, v(t) j= �r(t) for all t. 2

Proposition 11.2.2 Let f�qgq2Q be a set of invariants for B and A and r be a run of A
over a trace v 2 B. If f�qgq2Q is a set of Liapunov functions for B and A, then

� �r(t)(v(t)) � �r(pre(t))(v(pre(t))) when r(pre(t)) 2 S,

� �r(t)(v(t))� �r(pre(t))(v(pre(t)))� �� when r(pre(t)) 2 B, and

� if BS is the set of segments of consecutive B and S-states in r, 8q� 2 BS; q� has a �nite

number of B-states.

Proof: According to the conditions of Liapunov functions. 2

Proposition 11.2.3 Let f�qgq2Q be a set of invariants for B and A and r be a run of A
over a trace v 2 B. If there exist local and global timing functions for B and T A, then

� if Sg(q) is the set of segments of consecutive q's in r, 8q 2 T; q� 2 Sg(q); �(q�) � �(q),

and

� if BS is the set of segments of consecutive B and S-states in r, 8q� 2 BS; �B(q
�) �

�(bad).

Proof: Let si; i = 1 � � �n be a sequence of q-states. Since

q(s2)� q(s1) � ��(s1)

q(s3)� q(s2) � ��(s2)

:::

q(sn)� q(sn�1) � ��(sn�1)
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we have

q(sn)� q(s1) � ��n�1
i=1 �(si):

Since �(sn) � q(sn) and q(s1) � �(q), we have �n

i=1�(si) � �(q).
Let si; i = 1 � � �n be a sub-sequence of B-states in a BS segment. Since

0
q
0

1
(s01)� 0q1(s1) � ��(s1)

0
q
0

2
(s02)� 0q2(s2) � ��(s2)

:::

0q0n(s
0
n)� 0q1(sn) � ��(sn)

and

0
q0
i
(s0
i
) � 0

qi+1
(si+1)

we have

0q0n(s
0

n)� 0q1(s1) � ��n

i=1�(si):

Since  0
q1
(s1) � �(bad) and 0q0n(s0n) � 0, we have �n

i=1�(si) � �(bad). 2

Proposition 11.2.4 Given Lc as the set of locations and U � Lc, U is an abstraction of

Lc i� [[CN(U)]] is state-based and time-invariant.

Proof: Trivial. 2

Proposition 11.2.5 If U is an abstraction of Lc, any property restricted on relations on U

can be veri�ed by exploring the subspace transition system, h�UAsl
;!Ui.

Proof: s01 !U s
0
2 !U : : :!U s0n i� s1 !Lc s2 !Lc : : :!Lc sn. 2

Proposition 11.2.6 If CNs is a subnet of CN , the set of locations of CNs is an abstrac-

tion.

Proof: CNs can be considered as an independent subsystem, viz. h(s1) = h(s2), s1 !Lc s
0
1 and

s2 !Lc s
0
2 imply that h(s01) = h(s02). According to the de�nition, the set of locations of CNs is

an abstraction. 2

Proposition 11.2.7 The set of output locations of unit delays is an abstraction.

Proof: The set of output locations of unit delays induces a state transition system. 2



APPENDIX A. PROOFS OF THEOREMS 211

Proposition 11.2.8 The set of input locations of unit delays is an abstraction.

Proof: The set of input locations of unit delays induces a state transition system. 2

Proposition 11.2.9 If U is an abstraction and I � I(CN), U [ I or U � I is still an ab-

straction.

Proof: Add or delete an input location does not change the property of abstraction. 2

Proposition 11.3.1 Let f�qgq2Q be invariants for B and A. If r is a run of A over v 2 B,
8t 2 T ; v(t) j= �r(t).

Proof: In order to prove this proposition, we shall introduce a variation of the method of con-

tinuous induction [Khi61]. A property � is inductive on a time structure T i� for all t0 2 T ,
� is satis�ed at all t < t0 implies that � is satis�ed at t0. � is continuous i� � is satis�ed at

a non-greatest element t 2 T implies that 9t0 > t; 8t < t00 < t0, � is satis�ed at t00. Note that

when T is discrete, any property is continuous. The theorem of continuous induction [Khi61]

says:

Theorem A.5.1 If the property � is inductive and continuous on a time structure T and � is

satis�ed at 0, � is satis�ed at all t 2 T .

We prove that the property v(t) j= �r(t) is satis�ed at 0 and is both inductive and continuous

on any time structure T .

� Initiality: Since v(0) j= � and v(0) j= e(r(0)), we have v(0) j= �^ e(r(0)). According to
the Initiality condition of invariants, we have v(0) j= �r(0).

� Inductivity: Suppose v(t) j= �r(t) is sais�ed at 0 � t < t0. Since r is a run over v,

9q 2 Q and t01 < t0; 8t; t01 � t < t0, r(t) = q and v(t0) j= c(q; r(t0)). According to

the Consecution condition of the invariants, 9t02 < t0; 8t; t02 � t < t0, v(t) j= �q implies

v(t0) j= c(q; r(t0)) ! �r(t0). Therefore, 8t;max(t01; t02) � t < t0, r(t) = q, v(t) j= �q

(assumption), v(t0) j= c(q; r(t0))! �r(t0) and v(t0) j= c(q; r(t0)). Thus, v(t0) j= �r(t0).

� Continuity: Suppose v(t0) j= �r(t0). Since r is a run over v, 9q 2 Q and t01 > t0; 8t; t0 <
t < t01, r(t) = q and v(t) j= c(r(t0); q). According to the Consecution condition of

the invariants, 9t02 > t0; 8t; t0 < t < t02, v(t0) j= �r(t0) implies v(t) j= c(r(t0); q) !
�q. Therefore, 8t; t0 < t < min(t01; t

0
2), r(t) = q, v(t0) j= �r(t0) (assumption), v(t) j=

c(r(t0); q)! �q and v(t) j= c(r(t0); q). Thus, 8t; t0 < t < min(t01; t
0
2), v(t) j= �r(t).
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2

Theorem A.5.1

Proof: We call a time point t 2 T regular i� � is satis�ed at all t0, 0 � t0 � t. Let T denote the

set of all regular time points. T is not empty since � is satis�ed at 0. We prove the theorem

by contradiction, i.e., assume that � is not satis�ed at all t 2 T . Therefore, T � T is bounded

above; let t0 =
W
T 2 T be the least upper bound of T (t0 exists according to Proposition

3.2.1). Since t0 is the least upper bound, it follows that � is satis�ed at all t, 0 � t < t0. Since

� is inductive, it is satis�ed at time t0. Therefore, t0 2 T .
Since T � T , t0 is not the greatest element in T . Let T 0 = ftjt > t0g. There are two cases:

(1) if T 0 has a least element t0, since � is inductive, t0 2 T is a regular time point. (2) otherwise,

for any t0 2 T 0, ftjt0 < t < t0g 6= ;. Since � is also continuous, we can �nd a t0 2 T 0 such that �

is satis�ed at all T 00 = ftjt0 < t < t0g. Therefore, t is a regular time point 8t 2 T 00. Both cases

contradict the fact that t0 is the least upper bound of the set T . 2

Proposition 11.3.2 Let f�qgq2Q be invariants for B and A and r be a run of A over a

trace v 2 B. If f�qgq2Q is a set of Liapunov functions for B and A, then
� �r(t2)(v(t2)) � �r(t1)(v(t1)) when 8t1 � t � t2; r(t) 2 B [ S,

� �r(t2)
(v(t2))��r(t1)(v(t1))

�([t1;t2))
� �� when t1 < t2 and 8t1 � t � t2; r(t) 2 B, and

� if BS is the set of segments of consecutive B and S-states in r, then 8q� 2 BS; �B(q�) is
�nite.

Proof: For any run r over v and for any segments q� of r with only bad and stable states, �

on q� is nonincreasing, i.e., let I be the time interval of q�, for any t1 < t2 2 I , �r(t1)(v(t1)) �
�r(t2)(v(t2)), and the decreasing speed at the bad states is no less than �. Let m be the upper

bound of f�r(t)(v(t))jt 2 Ig. Since �q � 0, �B(q
�) � m=� <1. 2

Proposition 11.3.3 Let f�qgq2Q be invariants for B and A and r be a run of A over a

trace v 2 B. If there exist local and global timing functions for B and T A, then
� if Sg(q) is the set of segments of consecutive q's in r, then 8q 2 T; q� 2 Sg(q); �(q�) �
�(q), and

� if BS is the set of segments of consecutive B and S-states in r, then 8q� 2 BS; �B(q�) �
�(bad).
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Proof: Similar to the proofs of Proposition 11.2.3 and Proposition 11.3.2. 2

Theorem 11.3.1 The veri�cation rules (I), (L) and (T) are sound if the following conditions

of B and T A are satis�ed:

� T is an in�nite time structure.

� All traces in B are speci�able by T A.

The veri�cation rules are complete if the following conditions of B and T A are satis�ed:

� fhv; rijv 2 B; r is a run over vg is time-invariant.

� All transitions from R to non-R-states are left-closed, i.e., if r is a run, and there is a

transition from a R-state to a B-state or a S state at t, then r(t) 2 B [ S. (For discrete
time structures, this condition is always satis�ed.)

Proof: Soundness is derived from Propositions 11.3.1, 11.3.2 and 11.3.3. For any trace v, there

is a run since v is speci�able by T A. For any run r over v, if any automaton-state in R appears

in�nitely many times in r, r is accepting. Otherwise there is a time point t0, the sub-sequence

r on I = ft 2 T jt � t0g, denoted q�, has only bad and stable automaton-states. If there

exist a set of invariants and a set of Liapunov functions, �B(q
�) is �nite. Since time is in�nite,

all the automaton-states appearing in�nitely many times in r belong to S; r is accepting too.

Therefore, every trace is accepting for the automaton. If there exists a set of local and global

timing functions, every trace satis�es the timing constraints.

On the other hand, if T A is valid over B, there exist a set of invariants, a set of Liapunov
functions, and a set of local and global timing functions that satisfy the requirements.

The set of invariants can be constructed as follows: 8s8q; s j= �q i� the pair hq; si is
reachable, i.e., 9r; v; t; r(t) = q ^ v(t) = s. We shall prove that f�qgq2Q is a set of invariants.

� Initiality: if �(s) ^ e(q)(s), 9r; v; r(0) = q and v(0) = s. Therefore, s j= �q.

� Inductivity: 8v; t, if 9t0 < t; 8t0 � t00 < t, 9r; r(t00) = q (v(t00) j= �q), then 9r, 9t00 <
t; 8t00 � t00 < t, r(t00) = q. If v(t) j= c(q; q0), then r(t) = q0, i.e., v(t) j= �q0 . Therefore,

v(t) j= c(q; q0)! �q0 .

� Continuity: 8v; t, if 9r; r(t) = q (v(t) j= �q), and 9t0 > t9q0; 8t0 < t00 < t; v(t00) j= c(q; q0),

8t0 < t00 < t; r(t00) = q0. Therefore, 9t0 > t; 8t0 < t00 < t; c(q; q0)! 9r; r(t00) = q0.
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Given the above constructed invariants, a set of Liapunov functions can be constructed as

follows:

� 8q 2 R and s j= �q, let �q(s) = 0.

� 8q 62 R and s j= �q , the Liapunov function is de�ned as follows. For any r; v; t with

r(t) = q and v(t) = s, let q� be a segment of r with only bad and stable states starting

at q, and �B(q
�) be the measure of B-states in q�. Let �q(s) be the longest such measure

for all r; v; t with r(t) = q and v(t) = s, i.e., �q(s) = supf�B(q�)g:
We shall prove that f�qgq2Q is a set of Liapunov functions and global timing functions. For

q; q0 62 R, let hq; si � hq0; s0i i� 9r; v; t < t0, 8t < t00 < t0; r(t00) 62 R, r(t) = q; v(t) = s

and r(t0) = q0 and v(t0) = s0. Since fhv; rig is time-invariant, � is transitive. Therefore,

hq; si � hq0; s0i implies �q(s) � �q0(s0).
� De�nedness: 8q 2 Q; s j= �q, �q is de�ned at s.

� Non-increase: 8v 2 B, 8q 2 S; q0 2 R;

f�q ^ �q = wgv�fc(q; q0)! �q0 � wg

is trivially satis�ed. 8q 2 S; q0 2 B [ S;

f�q ^ �q = wgv�fc(q; q0)! �q0 � wg

is satis�ed since hq; si � hq0; s0i.
8v 2 B, 8q 2 B [ S; q0 2 S;

f�q ^ �q = wgv+fc(q; q0)! �q0 � wg

is satis�ed since hq; si � hq0; s0i. 8q 2 R; q0 2 S; c(q; q0) is false since all transitions from
R to non-R-states are left-closed.

� Decrease: 8v 2 B, 8q 2 B; q0 2 Q;

f�q ^ �q = w ^ tc = tgv�fc(q; q0)! �q0 � w
�([t; tc))

� �1g:

8q 2 R; q0 2 B;

f�q ^ �q = w ^ tc = tgv+fc(q; q0)! �q0 � w
�([t; tc))

� �1g

is trivially satis�ed since c(q; q0) is false. 8q 2 B [ S; q0 2 B;

f�q ^ �q = w ^ tc = tgv+fc(q; q0)! �q0 � w
�([t; tc))

� �1g:
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The local timing functions can be de�ned similarly. 2

Proposition 11.4.4 All transitions from R to non-R-states are left-closed, if the following

conditions are satis�ed:

� T A is open and complete.

� 8q 2 R, q1 62 R and q2 2 R, c(q; q1)^ c(q; q2) is not satis�able.

� All traces in B are right-continuous.

Proof: Since T A is open, 8q 2 Q; q0 2 R, c(q; q0) is open. Therefore, 8q 2 Q;W
q02R c(q; q

0) is

open. Since 8q 2 R, q1 62 R and q2 2 R, c(q; q1) ^ c(q; q2) is not satis�able, (
W
q02R c(q; q

0)) ^
(
W
q02B[S c(q; q

0)) is not satis�able. Since T A is complete,
W
q02R c(q; q

0) and
W
q02B[S c(q; q

0) are

complementary. Therefore,
W
q0 62R c(q; q

0) is closed. Since all traces in B are right-continuous,

for all v, t, if t is a limit point to the right time points T , v(t) is a point or a limit point of v(T ).

If 9t0 > t; 8t < t00 < t0; v(t00) 2 W
q0 62R c(q; q

0), v(t) 2 W
q0 62R c(q; q

0). Therefore, all transitions

from R to non-R-states are left-closed. 2

A.6 Constraint-Based Dynamic Systems

Proposition 14.1.1 If fXigi2I are ((asymptotically) stable) equilibria, then
S
I
Xi is an ((asymp-

totically) stable) equilibrium.

Proof: Trivial. 2

Theorem 14.1.1 X� � X is a stable equilibrium of a process p i� there exists a Liapunov

function V for p and X�.

Proof: If there exists a Liapunov function V , X� � X is a stable equilibrium. First of all,

X� is an equilibrium since V takes the unique minimum at X�. Suppose 
 is the domain

of V . Given any �, let �0 � � such that N �
0

(X�) � 
. Let  be the minimum over the

boundary of N �
0

(X�);  > V (X�) since X� is the unique minimum. Because V is contin-

uous, there exists a �-neighborhood N �(X�) such that 8x 2 N �(X�); V (x) < . Therefore,

�p(N
�(X�)) � N �

0

(X�) � N �(X�).

If X� � X is a stable equilibrium of a process p, let V (x) = supx02�p(x)fd(x0; X�)g. We have

(1) V (X�) = 0 since X� is an equilibrium, (2) V (p(x)(t)) � V (x) since �p(p(x)(t)) � �p(x),
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and (3) V is continuous since X� is stable. 2

Theorem 14.1.2 X� � X is an asymptotically stable equilibrium of a process p i� there exists

a Liapunov function V : 
! R for p and X�, such that 8x 2 
; limt!1 V (p(x)(t)) = V (X�).

Furthermore, if 
 = X, X� is an asymptotically stable equilibrium in the large.

Proof: Since X� is the unique minimum in 
, p(x) approaches X�; 8x 2 
. Given V de�ned as

the same as that in the previous proof, if X� is an asymptotically stable equilibrium, V (p(x)(t))

approaches V (X�). 2

Proposition 14.2.1 If a constraint solver CSV solves a set of constraints C on variables

V globally, every equilibrium of [[CSV ]] is a solution of C.

Proof: Trivial. 2

Proposition 14.2.2 If V : 
 ! R is a Liapunov function for hS; fi and S� = fs�js� =

f(s�)g � 
, then V (f(x)) � V (x); 8x 2 
. In addition, if f is continuous and V (f(x)) <

V (x); 8x 62 S�, S� is an asymptotically stable equilibrium.

Proof: If limn!1 V (fn(s)) = � > V (S�), let X = fsjV (s) � �g � S�, fn(s) approaches X . If f

is continuous, however, fn(s) approaches f(X) � X and limn!1 V (fn(s)) < �, contradiction.

2

Proposition 14.2.3 A set S� = fs�jf(s�) = 0g � 
 is an asymptotically stable equilibrium of

a state integration system if f is continuous at S� and S� is the unique minimum of � R f(s)ds
in 
. If 
 = S, S� is an asymptotically stable equilibrium in the large.

Proof: Let V (s) = � R f(s)ds be de�ned on a neighborhood of S�. V is a Liapunov function

for _s = f(s) and S� since _V (s) = �f2(s) � 0. Furthermore, _V (s) < 0; 8s 62 S� since f(s) 6= 0. 2

Proposition 14.3.1 Let R � Rn be closed and convex. The projection PR(x) of x to R

exists and is unique for every x, and (x� PR(x))T(y � PR(x)) � 0 for any y 2 R.
Proof: Refer to [GPR67]. 2

Theorem 14.3.1 PM solves fXigi2I globally if all the Xi's are convex.

Proof: Let X� = \IXi be the solution set of the problem. First of all, it is easy to see that if

x� 2 X� is a solution, then x� = f(x�), i.e., x� is an equilibrium. Moreover, we can prove that
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jf(x)� x�j � jx� x�j for any x and x� 2 X� as follows.

jf(x)� x�j2 = jx+ �(P (x)� x)� x�j2

= jx� x�j2 + �2jP (x)� xj2 + 2�(x� x�)T (P (x)� x)
= jx� x�j2 + (�2 � 2�)jP (x)� xj2 + 2�(P (x)� x)T (P (x)� x�)
� jx� x�j2 � �(2� �)jP (x)� xj2 according to Proposition 14.3.1

� jx� x�j2 since 0 < � < 2:

Therefore, let V (x) = d(x;X�), we have V (f(x)) � V (x). Thus, X� is stable.

Furthermore, jfk(x)� x�j is nonincreasing and bounded below. Therefore, jfk(x)� x�j has
a limit and maxI d(f

k(x); Xi) approaches 0. According to [GPR67], limk!1 d(fk(x); X�) = 0,

since Rn is �nite dimensional. As a result, limk!1 V (fk(x)) = 0 = V (X�). Thus, X� is an

asymptotically stable equilibrium of PM in the large, i.e., PM solves the problem globally. 2

Theorem 14.3.2 Let X� 2 Rn be the set of local minima of E. NM solves the problem if

jJ(x�)j 6= 0, 8x� 2 X�. i.e., E is strictly convex at each local minimal point. NM solves the

problem globally if, in addition, E is convex.

Proof: First, we prove that 8x� 2 X�, x� = f(x�) and jJ(x�)j 6= 0 implies that x� is asymp-

totically stable. Let R be the Jacobian of f . It is easy to check that jR(x�)j = 0. There exists

a neighborhood of x�, N �(x�), for any x 2 N �(x�), jf(x)� f(x�)j � �jx � x�j for 0 < � < 1.

Therefore, limk!1 jfk(x)�x�j = 0 and x� is asymptotically stable. Therefore, X� is an asymp-

totically stable equilibrium. If E is convex, x� is the unique minimal point, which is an attractor
in the large. 2

Theorem 14.3.3 Let X� be the set of local minima of E. GM solves the problem if @E

@x
is

continuous at X�. GM solves the problem globally if, in addition, E is convex.

Proof: According to Proposition 14.2.3, a local minimum is an asymptotically stable equilib-

rium. A set of local minima is also an asymptotically stable equilibrium. If E is convex, X� is

the unique minimal set, which is an attractor in the large. 2

Theorem 14.3.4 Let A be a matrix where Aij = @2f

@xi@xj
+ �m

k=0�k
@2gk

@xi@xj
. If A is positive

de�nite, LM solves the constrained optimization problem min f(x) subject to gk(x) = 0 glob-

ally.
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Proof: Let

V (x) =
1

2
�i _x

2
i
+
1

2
�kg

2
k
(x):

It has been shown in [Pla89] that

_V = ��i;j _xiAij _xj :

Therefore, V is a Liapunov function. 2

Proposition 14.5.1 A constraint solver CSV solves C i� there exists an initial condition

� � sol(C) such that 8� > 0, [[CSV (�)]] j= A(C�;2). CS solves C globally when � = �VDv.

Proof: According to the de�nition of constraint solvers, CSV solves C, i� [[CSV ]] is asymptoti-

cally stable at sol(C), i.e., 9� � sol(C), 8x 2 �, [[CSV ]](x) approaches sol(C) asymptotically.
In other word, for any �, 9t0, 8t � t0, [[CS

V ]](x)(t) 2 C�. Therefore, [[CSV ]](x) 2 A(C�;2) for

all x 2 �.
On the other hand, if [[CSV ]](x) 2 A(C�;2) for any � > 0, [[CSV ]](x) approaches sol(C)

asymptotically. Therefore, CSV solves C. 2

A.7 Control Synthesis

Proposition 15.3.1 This control law satis�es the condition that v = 0 i�

(d = 0 _ j�0 � �j = �

2
k)
^
(�d = �):

Proof: According to the control law for �, v = 0 implies �d = �. According to the control law

for v, v = 0 implies d cos(�0 � �) = 0. 2



Appendix B

ALERT

We have developed a visual programming and simulation environment called ALERT ( A Labo-

ratory for Embedded Real-Time Systems) based on the Constraint Net model. In this appendix,

we �rst describe the current version of ALERT, then give some simple examples to illustrate

the process of analysis.

B.1 Visual Programming with Constraint Nets

Visual Programming means the use of meaningful graphic representations in the process of

programming [Shu88]. Visual programming has gained momentum in recent years primarily

because the falling cost of graphical-related hardware and software has made it feasible to use

pictures as a means of communicating with computers. CN has inherent graphical tokens and

the characteristics of hierarchy, which make it an ideal model for visual programming.

CN is a generalization of models for dynamic systems. As a �rst step, we have developed

ALERT on Simulink [Incc]. Simulink, based on Matlab, is a visual programming and simulation

environment for both continuous and discrete dynamic systems.

Each Simulink window consists of �ve pop-up menus: File ( open and save �les), Edit (cut,

copy and paste graphical tokens), Options (group, mask, ip or rotate modules), Simulation

(start, pause, and parameters for simulations) and Style (color, font and position).

Simulink provides various built-in modules such as linear and nonlinear transductions. In

addition, it provides test signals, output viewing windows, and various signal analysis tools.

Programming in Simulink is simply by choosing a set of modules from the given libraries,

setting up parameters and making connections. A system can be developed hierarchically

by group and mask operations. On the other hand, a module can be opened by an unmask

operation and then be modi�ed accordingly.

219
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Even though Simulink supports the integration of discrete and continuous modeling, the

internal semantics is di�erent from that of CN. Instead of holding values between sampling

points (as does the semantics of Constraint Nets), Simulink assumes linear interpolation. Fur-

thermore, Simulink does not support event-driven transductions, which are the most important

aspect of CN.

However, Simulink is a exible open environment so that new modules can be added easily

using Matlab functions and programs. We have extended Simulink with various event-driven

transductions and event logics, as well as with various arbitrations. In particular, we have added

four new libraries to Simulink (see Figure B.1); they are logics, events, arbiters and solvers.

Figure B.1: ALERT

The basic functionalities of these new libraries are:

� Logics: This library (Figure B.2) includes various event logics, such as event synchroniza-

tion elements, \ip-op," etc.

� Events: This library (Figure B.3) includes an event generator and various event-driven

transductions.
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Figure B.2: Logic modules

Figure B.3: Event modules
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� Arbiters: This library includes various arbiters so that arbitration hierarchies can be

constructed.

� Solvers: This library includes constraint solvers with various constraint methods (where

constraints can be given by functions de�ned in Matlab).

B.2 Simulation and Animation

A robotic system is a complex dynamic system in general; it is nonlinear in the following sense:

� the dynamics of the plant or the environment is nonlinear for any realistic modeling,

� the control is nonlinear if we model event-driven transductions or arbitration hierarchies.

For a nonlinear system, the behavior of the system is unpredictable in general, and parameters

of the system (e.g., latencies and sampling rates) play an important role in the overall behaviors.

ALERT is an integrated environment for modeling, programming and analyzing robotic

systems. Such an environment is important for building a system with a certain degree of

\correctness." Even though a real system's behavior can not be guaranteed in advance, the

more accurate the model is, the more information can be obtained in the simulation. On the

other hand, the more robust the control is, the more relaxed the accuracy of the model can be.

ALERT provides an environment for simulation that, in general, is the only approach to

analyzing nonlinear dynamic systems. Visualization can be added to the current version of

ALERT, using Matlab plot functions. Animation can be done either on-line in Simulink, which

is slow, or by saving the traces and down-loading to an SGI machine.

Now we present two simple examples to illustrate the use of ALERT.

In the �rst example, we analyze the e�ect of latencies on stability (Figure B.4). The solution

of _x = �kx is x(t) = x0e
�kt, which is asymptotically stable at state 0. If we assume latency

� for signal x, the solution of _x = �k(x � �) is not trivial, and it may become unstable at 0.

For this simple equation, we are able to analyze the solution by hand [Hub88]. Let e��t be a

solution. We have ��e��t = �ke��(t��), i.e., � = ke��. Since minfke��
�
g = �ke, for any real

number �, we have �ke � 1, i.e., �k � 1=e. If �k > 1=e, � must be a complex number, and

therefore the solution has oscillation. In general, for a stable system, if latency is introduced,

it may become unstable (Figure B.5, B.6).

In the second example, we show that the sampling of data can cause unstability too (Figure

B.7). For the same system, let the sampling rate be �. We have _x = �ku where u(�n) = x(�n)

for any integer n. The solution is not stable if j1� �kj > 1, i.e., �k > 2 (Figure B.8, B.9).
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Figure B.4: Circuit with latency

Figure B.5: Latency with �k = 0:25
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Figure B.6: Latency with �k = 2

Figure B.7: Circuit with sampling
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Figure B.8: Sampling with �k = 0:25

Figure B.9: Sampling with �k = 2
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In general, parameters like k and � play important roles in control systems design: k is the

parameter for the speed control, and � is introduced by unavoidable computation and device

latency, or the digital sampling rate. For instance, if � is known, we may choose k to achieve

fast convergence yet maintaining stability.

B.3 The Maze Traveler

We conclude this appendix with the maze traveler example.

Figure B.10 depicts the overall structure of the system. Figure B.11 shows the animation

window. The model and the controller of the car are given in Figures B.12 and B.13, respectively.

The event generator is depicted in Figure B.14.

Figure B.10: The overall structure of the maze traveler system
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Figure B.11: Animation of the maze traveler
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Figure B.12: The car model

Figure B.13: The control module
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Figure B.14: The event module



Appendix C

Examples of Design and Analysis

We present in this appendix two complete examples of the design and analysis of robotic systems

and behaviors. One is an hydraulically actuated robot arm and the other is an elevator system.

C.1 Modeling and Control of an Hydraulically Actuated Arm

Figure C.1 depicts a two-link robot arm. For simplicity, we assume that the mass distribution

of the two-link arm is extremely simple: All mass exists as a point mass at the distal end of

each link.

m1

m2

Y

X

θ1

θ2

l

l

1

2

Figure C.1: A two-link arm

230
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The dynamics of the arm is modeled by the following equations [Cra86]:

�1 = [(m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2 cos(�2)] ��1 + [m2l

2
2 +m2l1l2 cos(�2)] ��2

�2m2l1l2 sin(�2) _�1 _�2 �m2l1l2 sin(�2) _�2
2
+ (m1 +m2)gl1 sin(�1) +m2gl2 sin(�1 + �2);

�2 = [m2l
2
2 +m2l1l2 cos(�2)] ��1 +m2l

2
2
��2 +m2l1l2 sin(�2) _�1

2
+m2gl2 sin(�1 + �2):

For simplicity, we further assume m1 = m2 = m and l1 = l2 = l. Let d1 = _�1 and d2 = _�2, the

arm model is a set of equations with state variables �1, �2, d1 and d2:

x = [�1 +ml2 sin(�2) _�
2
2 + 2ml2 sin(�2) _�1 _�2 � 2mlg sin(�1)�mlg sin(�1 + �2)

�(1 + cos(�2))(�2�ml2 sin(�2) _�21 �mlg sin(�1 + �2))]=(1+ sin2(�2))

_d1 = x=ml2

_d2 = [�2 �ml2 sin(�2) _�21 �mlg sin(�1 + �2)� (1 + cos(�2))x]=ml
2

_�1 = d1

_�2 = d2

where m and l are parameters.

The joints of the arm are actuated by hydraulic actuators [SDLS90]. Valves are devices

that control the uid power. The most widely used valve is the sliding valve with spool type

construction. The inputs required to model such a valve are the spool displacement (�0:5 �
Xv � 0:5), the supply pressure (Psup), the return presure (Pres) and the lines pressure (Pin and

Pout). The governing nonlinear equations are:

Qin =

(
KvXv

p
Psup � Pin if Xv > 0

KvXv

p
Pin � Pres if Xv < 0,

Qout =

(
KvXv

p
Psup � Pout if Xv > 0

KvXv

p
Pout � Pres if Xv < 0,

where Kv is a parameter, and

_Pin =
�

V
(Qin �Dm

_�);

_POut =
�

V
(Dm

_� �Qout);

where Dm is the volumetric displacement of the hydraulic motor and V

�
is the hydraulic com-

pliance. The torque generated by the controller is:

� = Dm(Pin � Pout):
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Assume that the low level controller for a hydraulically actuated joint is a simple PD control

that produces a spool displacement Xv given �, _� and �d:

Xv = B[(�d � �) �A _�]

We select A and B by experiment, given the set of other parameters.

After we get a stable PD controller for joint tracking, a high level controller for end-point

tracking is then developed as follows. Let hx; yi be the coordinate of the end-point of the arm.
The constraints for the end-point tracking are x = xd and y = yd where hxd; ydi is the desired
position. Let E = 1

2
(xd � x)2 + 1

2
(yd � y)2 be the energy function. We have

� @E
@�1

= (xd � x) @x
@�1

+ (yd � y) @y
@�1

� @E
@�2

= (xd � x) @x
@�2

+ (yd � y) @y
@�2

where

x = l cos(�1) + l cos(�1 + �2)

y = l sin(�1) + l sin(�1 + �2)

@x

@�1
= �l sin(�1)� l sin(�1 + �2)

@y

@�1
= l cos(�1) + l cos(�1 + �2)

@x

@�2
= �l sin(�1 + �2)

@y

@�2
= l cos(�1 + �2)

Using the gradient method, we have:

_�d = �k@E
@�
:

Then we use �d as the input to the low level PD controller. We can consider this end-point

tracking controller as a variation of the transpose Jacobian controller [Cra86].

Similarly, a high level controller for avoiding obstacles is developed as follows. Let hxo; yoi
be the coordinate of the obstacle and E(d) = max(�1

2 ln(d
2=m2); 0) where m is the minimum

distance between the obstacle and the arm. Let the energy function for avoiding the obstacle

be:

E = E(dj1) + E(dl1) + E(dj2) + E(dl2)
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where

d2
j1 = (xo � l cos(�1))2 + (yo � l sin(�1))2

jdl1j = jyo cos(�1)� xo sin(�1)j
d2
j2 = (xo � l cos(�1)� l cos(�1 + �2))

2 + (yo � l sin(�1)� l sin(�1 + �2))
2

jdl2j = j(yo � l sin(�1)) cos(�1 + �2)� (xo � l cos(�1)) sin(�1 + �2)j

The obstacle avoiding controller is then designed using the gradient method.

We can combine these two high level controllers with some arbiters, such as the subsume

function, to make the obstacle avoiding control have a higher priority.

The models of the high level controllers and the PD controller as well as the models of the

arm and the hydraulic actuator are all developed in ALERT; both simulation and animation

are supported.

C.2 Modeling and Veri�cation of an Elevator System

A simple elevator system for an n-oor building consists of one elevator. Inside the elevator

there is a board with n oor buttons, each associated with one oor. Outside the elevator

there are two direction buttons for service call on each oor, except the �rst oor and the top

oor where only one button is needed (see Figure C.2). Any button can be pushed at any

Floor Buttons

(inside elevator)

1

2

3 Floor 3

Floor 2

Floor 1

(outside elevator)

Direction Buttons

Figure C.2: The interface of a simple 3-oor elevator

time. After being pushed, a oor button will be on until the elevator stops at the oor, and

a direction button will be on until the elevator stops at the oor and is going to move at the

same direction. (Note that a more complex elevator has open and close door buttons, alarm or

emergency buttons which, for simplicity, we will not model.) The atomic actions of an elevator
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consist of move-up or move-down one oor, serve-a-oor (stop at the oor, open and close the

door) and stay-idle. The complete elevator system consists of ELEVATOR BODY, ELEVATOR

CONTROL and USER INTERFACE as shown in Figure C.3.

Command Floor

Buttons

ELEVATOR 

BODY

ELEVATOR

CONTROL

USER

INTERFACE

Figure C.3: The complete elevator system

C.2.1 Discrete modeling and veri�cation

First we present a discrete model of the elevator system, in which each atomic action takes

some �nite time.

The elevator body is modeled by a transliteration and a unit delay:

nf =

8><
>:

min(f + 1; n) if cc = up

max(f � 1; 1) if cc = down

f otherwise:

f 0 = nf

where cc is the current command from the controller with domain fup; down; serve; idleg, and
f; nf are the current and next oor numbers, respectively, with domain f1; 2; : : : ; ng.

The command from the controller is modeled as a function of the current oor number, the

current request state and the last control state. Let the request state be a tuple hub; db; fbi
where ub; db; fb 2 f0; 1gn with ub(n) = 0 and db(1) = 0; let the last control state be ls with

domain fup; down; idleg. Let ur; dr 2 f0; 1g denote the up and down requests, respectively, i.e.,
� ur indicates whether or not there is a request for the elevator to go up:

ur = ub(f)
_
i>f

(ub(i)_ db(i)_ fb(i)):

� dr indicates whether or not there is a request for the elevator to go down:

dr = db(f)
_
i<f

(ub(i)_ db(i)_ fb(i)):
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The current control state cs is determined as follows:

cs =

8><
>:
up if ur ^ (ls 6= down _ :dr)
down if (:ur ^ f > 1)_ (dr ^ ls = down)

idle otherwise

ls0 = cs:

In English, if there is a request for the elevator to go up and either the last state is up or there

is no request to go down, the elevator will be in the up state; if there is no request to go up

and the elevator is not at the �rst oor, or the last state is down and there is a request to go

down, then the elevator will be in the down state; otherwise the elevator will be idle, that is,

the elevator will be parked at the �rst oor if there are no more requests.

Let cr indicate whether or not there is a request for the elevator to stop and serve the

current oor:

cr =

(
db(f)_ fb(f) if cs = down

ub(f)_ fb(f) otherwise:

In English, if there is an internal request to arrive at this oor or there is an external request

to go in the same direction as the elevator, there is a request at this oor.

The current command can be de�ned as follows:

cc =

(
serve if cr

cs otherwise:

In English, if there is a request at this oor, the elevator will stop to serve the oor (open the

door, let passengers go in and out, then close the door), otherwise the elevator will pass this

oor without stopping.

Furthermore, the request state hub; db; fbi is determined based on two factors: the user's

input and the internal reset when a request has been served. Let s denotes u, d or f , we have

sb = isb_ (:rsb^ lsb)
lsb0 = sb

where isb, rsb and lsb are the user's input, the reset and the last request state, respectively.

The reset state rsb indicates which requests have been served:

rsb0 = csb

cub(i) = (f = i)^ (cc = serve) ^ (cs = up)

cdb(i) = (f = i)^ (cc = serve) ^ (cs = down)

cfb(i) = (f = i)^ (cc = serve)
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We have implemented the discrete model of the elevator system in Strand88 [FT89], a

concurrent logic programming language. It is easy to simulate discrete time constraint nets in

Strand88, since both transliterations and unit delays can be represented:

%f(+in, -out) is a function. fT(+in_trace, -out_trace) is a transliteration.

fT([I|Is], OS) :- f(I, O), OS := [O|Os], fT(Is, Os).

%delay(+init, +in_trace, -out_trace)

delay(Init, In, Out) :- Out := [Init|In].

where a trace is represented as an in�nite list.

A well-designed elevator system should guarantee that any request will be served within

some bounded time. We can specify such requirements in timed 8-automata, and show that

the constraint net model of the elevator system satis�es the timed 8-automaton speci�cation.

There are three kinds of request: to go to a particular oor after entering the elevator, or

to go up or down when waiting for the elevator. Following are some examples of the state

propositions.

� R2 : (fb(2) = 1)^ (cfb(2) = 0) denotes that \there is a request to go to the second oor."

� R2S : cfb(2) = 1 denotes that \the request to go to the second oor is served."

� RU2 : (ub(2) = 1) ^ (cub(2) = 0) denotes that \there is a request to go up at the second

oor."

� RU2S : cub(2) = 1 denotes that \the request to go up at the second oor is served."

Bounded time responses \the request to go to the second oor will be served in �nite time"

and \the request to go up at the second oor will be served in �nite time" are represented as

Figure C.4 (a) and (b), respectively.

Let 7 be associated with q0 in Figure C.4 (a) and 11 be associated with q0 in Figure C.4

(b). The two timed 8-automata specify the properties: \the request to go to the second oor

will be served within 7 time units" and \the request to go up to the second oor will be served

within 11 time units," respectively.

These speci�cations can be checked using the veri�cation algorithm. If n = 4, the state

transition graphs of the elevator system with respect to the speci�cations in Figure C.4 (a) and

(b) are shown in Figure C.5 (a) and (b), respectively, where the dotted transitions are disabled

in our control strategy and the number associated with the state indicates the length of the
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Figure C.4: Speci�cations of real-time response
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longest path from the state to the desired states, if there are no self-loop transitions. If the

user is not allowed to issue a new request when the same request has just been served, these

speci�cations will be satis�ed. If, however, no such a restriction is imposed, an elevator may

stop at a oor forever; therefore, these speci�cations will not be satis�ed.

A more realistic speci�cation for the elevator system is that any request should be served

within bounded time of motion. Such a speci�cation cannot be expressed by TLTL, however,

it can be expressed by a timed 8-automaton. For example, \the elevator will serve the second
oor within 4 unit time of motion" can be depicted by the timed 8-automaton in Figure C.6,

with MV : (cc 6= serve), S2 : (f = 2) ^ (cc = serve), SN2 : (f 6= 2) _ (cc = serve) and

SN2

MV S2

q0 q1

q2

Figure C.6: A more realistic speci�cation

�(bad) = 4. If n = 4, and fb(2) = 1 initially, the speci�cation can be satis�ed. This example

has been veri�ed by the veri�cation procedure written in Prolog.

C.2.2 Continuous modeling and veri�cation

In the previous modeling of the elevator system, atomic actions are primitives. Now we shall

model how these actions are carried out by the low level control system, which is realized as an

analog controller. Furthermore, the user's request can come at any time on a continuous time

line. A continuous model of the elevator system should be developed for the design of the low

level control system and for the analysis of the overall behavior of the system.

First of all, the plant of the elevator is modeled by a second order di�erential equation

following the Newton's Law

F �K _h = �h
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where F is the motor force, K is the friction coe�cient and h is the height of the elevator.

We assume that the mass is 1 since it can be scaled by F and K. We ignore gravity since we

assume that it can be added to F to compensate the e�ect.

A low level PD controller is then designed to produce the force to the elevator, given the

action command (up, down or stop) and the height trace:

F =

8><
>:
F0 if up

�F0 if down

Kpds �Kv
_h if stop

where ds is the distance between the current height and the desired height of the elevator. Let

the height of each oor be H and the current oor of the elevator be f . We have f = [h=H ]+1

and ds = (f � 1)H � h where [x] indicates the closest integer of x.

We use the control strategy developed for the discrete model as a high level control. However,

this control strategy is activated by events generated from the user interface or within the

elevator itself. There are three basic types of event: (1) a user pushes a button at the elevator's

idle state, (2) the elevator becomes close to a oor (ds � 15cm, for instance) and (3) a user's

request has been served (it takes 5s to serve a request, for instance). The \event or" of these

three events triggers the high level controller to produce a new output. Furthermore, both

user's requests and the internal reset are processed at a fast sampling rate (0:1s, for instance).

We have veri�ed that the high level control strategy satis�es the desired properties. Now we

have to guarantee that the low level control system does the right thing, i.e., accomplishes every

goal that the high level strategy sets. Basically, we have to choose F0, Kp and Kv. Suppose

that the friction coe�cient K is 1, the height of each oor is 2m, and the elevator is said to

be at a oor when ds � 15cm. One basic request is that if a stop command is issued when the

elevator is crossing a oor, the elevator will remain at the oor as long as the command does

not change.

We choose F0 to be 0:5 so that both the maximum velocity and acceleration will be 0:5,

and it takes at least 4s to move up or down a oor. We choose Kp = 0:5=0:15 = 3:3 so that

the initial acceleration for stop will be no larger than 0:5. Finally, we choose Kv large enough

so that the elevator will not over-shoot. In this case Kv = 10. We have modeled and simulated

this complete elevator system in ALERT, and found that the system works correctly.
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Model Estimation for the Car

We present here a method of model estimation for the car-like robot. We have modeled the

plant of the car-like robot using the following set of equations:

_x = v cos(�); _y = v sin(�); _� = v
tan�

L

where hx; y; �i is the con�guration tuple of the car, v and � are the control inputs to the car.

However, for a real car, the velocity v is controlled by the gas throttle gs and the turning angle

� has its inherent mechanical delay. This two e�ects can be modeled by the following two

equations:

_v =

(
0 if gs < gm and v = 0

kggs � kvv otherwise;

_� = ka(�d � �)

so that gs and �d are the real control inputs to the car and gm, kg, kv and ka are parameters

to be estimated.

The minimum static gas gm is easy to estimate, by simply increasing the gas throttle of the

stopped car until the car moves.

Parameter estimation for a dynamic system with equation

_x = k1(k2 � x)

can proceed as follows. Start with x = 0, the system will asymptotically approach x = k2.

Suppose x can be sensed within error �. Then let k2 = x(t) as soon as jx(t)� x(t + �)j � � for
all � > 0. Then k1 can be estimated as follows. Let y = x � k2. The solution of _y = �k1y is

y = y0e
�k1t. Since y0 = k2 and y

:
= �, we have k1 = ln(k2

�
)=t.

240
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The gain factor kg and the friction coe�cient kv can be estimated by the above procedure.

By apply a constant throttle gs > gm to a initially stopped car, we have _v = kv(kggs=kv � v).
For example, if gs = 0:2, v ! 50 and � = 2, we have kv

:
= 3=t and kg

:
= 750=t.

The delay factor ka can be estimated similarly, except that � has to be sensed via _�. Since

_� = v
tan(�)

L
, d _� = v

L

1
cos2(�)

d�. We �rst apply a constant gs to a car until it moves in a constant

velocity; then, at time t0, we apply a constant �d until j _�(t)� _�(t + �)j � � for all � > 0. We

have ka = ln(�d
��
)=(t� t0) = ln( v�d

cos2(�d)L�
)=(t � t0). For example, if v = 50, �d = �=5, L = 12

and � = 2, we have ka
:
= 1=(t� t0).

We can also apply di�erent gs and �d to the car and average the results.



Index

8-automata
Accepting run, 115

Complete, 111

Discrete

Accepting run, 111

Run, 111

Open, 112

Semantics, 112

Speci�able, 115

Syntax, 110

Abstractable behavior, 84

Abstractable function, 78

Abstractable state transition system, 84

Abstractable trace, 82

Abstractable transduction, 84

Abstraction, 78

Behavior, 84

Domain, 81

Domain structure, 81

State transition system, 84

Time, 81

Trace, 82

Transduction, 84

Algebraic loop, 53

Algebraic system, 77

Behavior, 79

Deterministic, 79

Nondeterministic, 79

State-based, 79

Time-invariant, 79

Complexity of behaviors, 80

Congruence

Function congruence, 78

Structure congruence, 78

Constraint, 147

Constraint method, 149

Gradient method, 152

Lagrange Multiplier method, 153

Newton's method, 151

Penalty method, 153

Projection method, 150

Constraint net

Closed, 44

Connection, 43

Input location, 44

Input port, 43

Limiting semantics, 55

Location, 43

Open, 44

Output location, 44

Output port, 43

Semantics, 51

Subnet, 45

Syntax, 43

Transduction, 43

Constraint programming, 154

Constraint satisfaction problem, 147

Constrained optimization, 149

Global consistency, 149

Solution set, 148

Unconstrained optimization, 149

Constraint solver, 148

Embedded, 160

State integration system, 148

State transition system, 148

Control problem, 159

Tracking problem, 162

Control synthesis, 158

Domain, 31

242



INDEX 243

Composite, 32

Simple, 31

Domain equation, 123

Domain structure, 32

Domain structure mapping, 82

Dynamic process, 146

Attraction basin, 147

Attractor, 147

Equilibrium, 147

Stable equilibrium, 147

Liapunov function, 147

Dynamic system, 3

Constraint-based dynamic system, 157

Hybrid dynamic system, 59

Integrated hybrid system, 12

Intelligent real-time system, 14

Dynamics, 3

Dynamics structure, 40

Event space, 37

Trace space, 35

Equivalent behavior, 84

Equivalent system, 79

Equivalent system with abstraction, 84

Equivalent traces, 82

Equivalent transduction, 84

Formal system, 118

FTLTL

Frame, 107

Model, 107

Semantics, 107

Syntax, 107

Term, 106

Valid/Satis�able, 108

Valid/Satis�able over a frame, 108

Function

Fixpoint, 49

Least, 49

Hierarchy

Composition hierarchy, 166

Interaction hierarchy, 166

Abstraction hierarchy, 168

Arbitration hierarchy, 168

Homomorphic domain mapping, 81

Homomorphic domain structure mapping, 81

Homomorphic time mapping, 80

Homomorphism, 78

Isomorphism, 78

Interpretation, 103

Measurable space, 28

Measure, 28

Borel, 28

Measure space, 28

Metric, 28

Module, 45

Closed, 45

Hidden input, 45

Hidden output, 45

Interface, 45

Open, 45

Semantics, 52

Sequential module, 69

Module operation

Cascade connection, 45

Coalescence, 45

Feedback connection, 45

Hiding, 45

Parallel connection, 45

Union, 45

Parameter, 54

Parameterized module, 54

Parameterized net, 54

Partial order, 25

Complete, 27

Directed subset, 26

Chain, 27

Flat, 26

Greatest element, 26

Greatest lower bound (glb), 26

Least element, 26

Least upper bound (lub), 26

Linear, 25

Lower bound, 26



INDEX 244

Product partial order, 26

Subpartial order, 25

Upper bound, 26

Planning problem, 159

PLTL

Frame, 103

Model, 103

Semantics, 103

Syntax, 102

Valid/Satis�able, 103

Valid/Satis�able over a frame, 103

Qualitative domain structure, 82

Quantitative domain structure, 82

Quotient algebra, 78

Quotient function, 78

Re�nement

Domain, 81

Domain structure, 81

Time, 81

Relation

Congruence, 78

Partition, 78

Partial order relation, 25

Requirements speci�cation, 80

Persistence, 5

Reachability, 5

Safety, 5

RFTLTL

State formula, 108

Open, 109

State proposition, 108

Syntax, 108

Robotic behavior, 2

Robotic system, 2

Controller, 3

Environment, 3

Plant, 3

Robustness of systems, 80

Signature, 32

Function symbol, 32

Mapping type, 32

Sort, 32

State transition system, 79

Steady-state error, 157

Strict extension, 33

Strict function, 33

Strict transduction, 41

System, 3

Temporal integration, 55

Bounded, 57

Reset, 57

Trace-based, 58

Time structure, 29

Continuous, 30

Discrete, 30

In�nite, 30

Reference time, 31

Reference time mapping, 30

Sample time, 31

Timed 8-automaton
Accepting run, 116

Discrete

Accepting run, 114

Run, 114

Semantics, 114

Syntax, 114

TLTL

Real-time operator, 106

Temporal operator, 102

Topological space, 23

Connected, 24

Continuous function, 24

Metric space, 28

Product space, 25

Separated, 24

Subspace, 25

Topology, 23

Basis, 24

Closed set, 24

Derived metric, 31

Greatest limit, 35, 36

Limit, 34, 36

Discrete, 24

Finer, 24



INDEX 245

Hausdor�, 25

Limit, 29

Limit point, 24

Metric, 28

Spherical neighborhood, 28

Neighborhood, 24

Strict, 146

Open set, 24

Partial order, 27

Product, 25

Subbasis, 24

Subspace, 25

Trivial, 24

Trace, 34

Completion, 35

Event trace, 36

Extension trace, 39

Nonintermittent, 36

Right-continuous, 36

Sample trace, 39

Transduction, 37

Basic, 38

Transliteration, 38

Transport delay, 39

Unit delay, 39

Event generator, 60

Event synchronizer, 61

Event-driven, 40

Clock, 40

Extending, 39

Nonintermittent, 42

Primitive, 38

Right-continuous, 42

Sampling, 39

Unde�ned trace, 34

Unde�ned value, 32

Vector space, 55

Topological, 55

Veri�cation, 117

Model checking approach, 119

Theorem proving approach, 118

Veri�cation rules, 121

Global timing function, 120, 124, 132

Invariant, 119, 123, 131

Liapunov function, 120, 124, 131

Local timing function, 120, 124, 132

Well-de�ned constraint net, 53

Well-de�ned function, 34

Well-de�ned module, 53

Well-de�ned trace, 34

Well-de�ned transduction, 41

Well-de�ned value, 32


