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ABSTRACT 

A basic problem associated with the development of new techniques in the fields of computer 

animation, robotics, and simulation is that many researchers utilize dissimilar constructs to 

represent common structures. Attempts to combine various models into one coherent system 

can often be painstakingly difficult. This forces the users to expend valuable time re-inventing 

previously written code. 

To resolve this problem, this thesis presents the RASP (Robotic and Animation Simulation 

Platform) toolkit - an extensible 'collection of primitives, functions, and essential abstractions 

for the creation of reusable time-varying simulations. Based on object-oriented principles, 

modern patterns of communications, and various simulation techniques, the toolkit defines a 

common architecture and set of conventions for researchers to follow when developing simula­

tions. Through these building blocks, users will be able to borrow, without considerable need 

for modifications, code segments and tools from previously developed RASP projects. 

The RASP toolkit is highlighted by the following set of features: (a) IMVCD - a frame­

work for the construction of time-varying systems; (b) Connection Paradigm - a "port"-based 

approach to data communication; (c) Hierarchical Temporal Modeling - a top down approach 

to temporal management based upon multiple world views and first-class temporal primitives; 

and (d) Hybrid Object Construction - a clear design for the development and visualization of 

complex objects. 
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CHAPTER 1 

INTRODUCTION 

'Where shall I begin, please your Majesty?' he asked. 
'Begin at the beginning' the King said, gravely, 
'and go on till you come to the end: then stop.' 

- Lewis Carroll, Alice's Adventures in Wonderland, Ch. 11 

Computer simulation serves to reproduce or represent test conditions likely to occur in real 

situations. In addition to supplying behavioral patterns, collections of statistics, and good 

estimates, simulations prove important industrial tools. Due to their off-line nature1 and their 

ability to predict the behavior of the systems they emulate, simulations are used to reduce the 

costs, hazards, and design schedules of real world applications. In certain instances, the value 

of simulations actually exceeds that of natural observations, providing otherwise imperceptible 

information such as the internal stresses within materials. 

Productivity and the power of simulation can be greatly enhanced by reusing the compo­

nents of various simulations. However, the melding of two or more simulations into one coherent 

application proves quite difficult. For example, simulations based upon alternative methodolo­

gies of specifying changes to a system can be arduous to combine. Incompatible designs force 

users to redesign the plans of their original simulations before the simulations can be combined. 

Apart from prolonging the length of time it takes to construct a simulation, the redesign process 

can introduce errors not established in the original designs. 

There are three principal features in an ideal reusable simulation environment. First, it 

should have the ability to incorporate algorithms, elements, and interfaces from other simulation 

designs. Users should not need to design new models from scratch every time a new objective 

is encountered. Second, it should be quickly modifiable. Extensive re-modeling to provide 

elementary changes defeats the purpose of reusability. Third, the domain of the simulation 

1 Off-line development does not require the actual objects being studied to be used during the simulation 
process. 

1 



Chapter 1: Introduction 2 

should not be limited in scope. This does not imply that every possible feature of every 

simulation should be enforced in one design. Rather, it should be possible to modify the 

simulation to imitate a large set of multifarious functions and behaviors. 

Most attempts to create reusable simulation environments fail to satisfy one or more of 

the above criteria. The majority of approaches to simulation are too specialized and often too 

complicated to extend. This leads to tools unusable for future research. For graphical systems, 

this can mean unavoidable revisions of the entire modeling environment. Reusable simulations 

should not constrain the user's ability to incorporate other models into already existing ones. 

Attempting to create a completely reusable set of tools for a wide variety of simulations is an 

enormous task. An all-purpose toolkit would require the development of many new ideas and 

concepts concerning the theory of modeling and simulation. A smaller task, yet still of great size, 

is the development of a reusable library for the creation of computer animations and robotics 

applications. The necessity for such a set of building blocks is sensed in both the academic and 

production community. A common development base would encourage researchers from a wide 

variety of disciplines to share their workspace, thereby, enhancing each other's facilities. 

1.1 CHARACTERISTICS OF SIMULATION TOOLS 

The task of creating reusable tools for the development of computer simulations is not an 

unfamiliar endeavor. The literature abounds with research papers written by simulationists 

delineating the features of numerous simulation libraries, languages, and systems. The major 

trait that distinguishes one approach from another is the extent to which each tool imposes 

on the design and structure of simulations. Basic tools, such as simulation libraries, provide 

users with collections of components and functions. Free to use these tools in the manner that 

befits them the best, users are not restricted to construct ~imulations that adhere to a general 

design. Although this freedom promotes the general use of these types of tools, it severely 

limits the ability of users to reuse the components from multiple simulations. Models which 

adhere to differing modeling conventions are often difficult to interchange and redefine. Inter­

mediate tools, such as simulation languages, provide users with sets of high-level expressions. 
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Users assemble expressions into meaningful phrases to define the _components and dynamic in­

teractions of a simulation. Language grammars define the rules for simulation construction. 

However, rules are usually limited to tools usage, not simulation design. Modeling precepts are 

not supplied that define a general framework for simulation development. Advanced tools, such 

as simulation systems, provide users with a complete simulation modeling environment. Users 

are supplied with sets of components, functions, high-level expressions, and simulation design 

rules that conform to a general plan. This plan promotes the creation of simulations with high 

reuse potential. Although these types of tools are powerful, their strengths contribute to their 

weaknesses. The modeling environments formed by these tools are usually difficult to extend 

and modify. In some cases, the architecture of the modeling environment is unalterable. This 

limitation restricts the number and variety of simulations which can be constructed with these 

types of tools. 

Simulation tools can also be distinguished by three additional characteristic traits. First, 

they can be characterized by the "projected range" of applications they wish to accommodate. 

Some tools attempt to serve a wide variety of applications while others cater to the needs of a 

select few. Second, the tools can be described by the "level of abstraction" of its components. 

Advanced tools usually enable users to construct from a high-level of abstraction while interme­

diate and basic tools force users to construct from lower levels of abstraction. Third, simulation 

tools can be characterized by their "design focus". Distinct sets of tools that attempt to solve 

similar problems do not always provide users with exactly the same collections of components 

and abstractions. Some tools will focus their designs on certain elements of a simulation while 

others will focus their designs on alternative elements. A tool's focus is dependent upon the 

requirements of the audience it serves. 

The composition of a set of simulation tools is directly affected by the projected range 

of applications it attempts to model. Tools intended to model a gamut of applications are 

generally composed of sets of generic components and functions. They provide users with a 

minimal amount of support to create a wide variety of scenarios. Components and functions are 

developed to meet the demands of a broad range of users' objectives. Tools intended to model 

a small range of applications provide users with specialized components. For instance, tools 
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generated from the computer animation community are typically very specific in nature. Most 

collections are usually utilized to attack only a subset of problems, such as object modeling, 

motion specification, and image synthesis, encountered in the field of graphics. 

The model specification technique, such as entity construction methods[35, 83, 66], environ­

mental planning procedures[55, 17, 3], and protocols of temporal control[70, 27, 6, 40], employed 

by a set of simulation tools dictates the level of abstraction and define the methodology used 

by users to describe their simulations. These techniques are classified as programming-based 

or scripting-based. Programming-based techniques provide users with collections of data struc­

tures and data types and an enormous amount of control. However, it requires users to develop 

simulations from an extremely low-level of abstraction and to possess proficient knowledge of 

programming techniques to accurately express their designs. Scripting-based techniques pro­

vide users with special expressions, grammars, and interpreters. Adhering to the grammars, 

users organize expressions into meaningful phrases for interpreters to transform into low-level 

descriptions. Although these techniques empower users to define simulations from a high level 

of abstraction, they limit users from making detailed modifications to their simulations. 

The design focus of a set of simulation tools is governed by the needs of its group of users. 

Distinct groups, possessing dissimilar design goals and attempting to solve analogous problems, 

generally emphasize the advancement of different aspects of the simulation modeling process. 

For instance, the drive to alter the attributes of geometrical figures over time has introduced a 

variety of animation and robotics systems. Animation systems tend to stress the development 

of constructs for user-scripted changes while robotics systems stress the importance of defining 

relationships between physical bodies and applying control algorithms to them. In turn, neither 

of these two approaches address the creation of general transitional structures, the foundation 

of many simulation languages, that serve to define, organize, and execute the passage of model 

variables from state to state. 

1. 2 THE THESIS 

In the past two decades, the field of computer science has witnessed an enormous growth in the 

variety of projects studied by researchers. A general problem associated with an outgrowth of 
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new ideas is the difficulty of combining the benefits of several research fields into one coherent 

design. For example, recent trends in robotics research[36] has seen the need to visualize and 

plan the actions of robotic elements in a complex environment. Although computer animation 

systems have addressed the problem of placing automated figures in configurable workspaces 

for some time, few constructs from the field of computer animation have been incorporated 

into robotics research. The lack of a prevailing set of tools to create time-varying simulations 

limits users from borrowing components and structures from simulations outside their domain. 

However, this problem is not limited to users across multiple disciplines. Great hardships are 

even experienced by users who attempt to merge the designs of various simulations within their 

respective fields. Simulations which share similar goals are not always easily united. It is often 

difficult to reconcile the differences between equivalent simulation components represented by 

dissimilar structures. 

The failure of simulation tools to gain widespread acceptance is attributed to the absence 

of firm theories and general principles concerning software reusability. The lack of a clear un­

derstanding of reusability has festered a general mood of apprehension and dread toward the 

usage of reusable tools[5, 38]. The lack of firm tradeoffs between generality and specialization 

exacerbates users' tendencies to neglect the usage of simulation tools. Users experience frustra­

tion when their tools are too specific or too vague. Explicit guidelines and definite structures 

limit a tool's total applicability while obscure rules of usage and ambiguous structures limit a 

tool's purpose. 

This thesis aims to present the computer graphics, robotics, and simulation community 

with a set of tools for the development of time-varying simulations. The research presented 

here synthesizes knowledge from each of these fields to determine the appropriate abstractions 

and integrates the results with existing reusable technologies. Through this careful examina­

tion, a collection of building blocks and abstractions are constructed to provide programmers, 

animators, and researchers with a foundation for application development. The toolkit's design 

especially attempts to provide users with a non-constraining environment that readily supports 

their particular designs and enables them to borrow ideas and segments of code from previously 

developed applications. Extensible data structures, modern patterns of communications, and 
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variable modes of control help to facilitate the design of new concepts and algorithms. 

1.3 THESIS CONTRIBUTIONS 

This thesis presents RASP (Robotics and Animation Simulation Platform), an object-oriented 

collection of primitives and abstractions for the development of time-varying simulations. Pro­

viding research scientists with a common platform to construct, manipulate, and visualize 

their temporally-based applications, RASP's reusability results from its employment of object­

oriented strategies, hierarchical schemes, and extensible designs. One may envisage RASP as 

providing the role UNIX2 has with respect to general application programming. While UNIX 

provides users with a consistent interface to peripheral devices, file systems, and multi-language 

support, RASP provides users with a clear framework for the development and visualization of 

complex objects, an extensible approach to simulation modeling, and a simple scripting con­

vention to manipulate temporal data. The RASP toolkit is highlighted by the following set of 

features. 

UNIFORM TERMINOLOGY 

The RASP toolkit's terminology derives from the literature related to the development of 

a toolkit for time-varying simulations. These terms reflect the various types of simulation 

techniques from different fields which inform the overall design of the RASP toolkit. The 

creation of a uniform set of tools enhances both RASP's flexibility and reusability in a large 

variety of modeling simulations. 

I-M-V-C-D FRAMEWORK 

Serving as a framework for time-varying systems, IMVCD (Informer-Model-Viewer-Controller­

Delegator) informally defines the divisions and rules of interaction between the various elements 

of a RASP constructed application. Influenced by the concepts from the MVC user-interface 

modeling paradigm[45), this object-oriented framework provides users with a relatively simple 

modeling pattern for the development of reusable applications. Simulations devised from this 

2UNIX is a registered trademark of AT&T 
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reference model enhance their ability to be examined, understood, and modified by future users. 

It strengthens their potential for reusability. 

CONNECTION PARADIGM 

The means of data communication within a simulation system affects the way information 

is transferred between the individual elements of a simulation. Patterns of communication 

that embed their rules of interaction in solitary structures promote unnecessarily the design of 

overly complex models. Concentrated patterns enforce interacting components to accommo­

date additional constructs and plans towards the maintenance and formation of data links. A 

superior plan apportions the duties and responsibilities across a number of modeling elements. 

The RASP toolkit employs a distributed3 pattern of communication based on the connection 

paradigm[55] . Using unidirectional data ports and active data links, informational pathways are 

maintained and constructed by elements not directly influenced by the data transferal process. 

External elements ensure the transportation of information between the ports of compatible 

models. Models are constructed to react to events raised on their ports, not to establish data 

links. They are never involved in the data transferal process and are always oblivious to the 

identity of the partners to which they exchange information. Apart from reducing the complex­

ity of models, this design enhances the development of reusable components and strategies. 

HIERARCHICAL TEMPORAL MODELING 

The behavior of a time-varying simulation is determined by the nature of its user-defined state 

changes and the techniques employed to regulate the progression of time. A simulation can not 

express or imitate behaviors that are not explicitly or implicitly defined in its model specifi­

cations. Hence, a simulation's validity is compromised if it is not possible for users to specify 

specific temporally-dependent state changes. In RASP, simulation developers express time­

based state changes with the assistance of a collection of temporal modeling tools. Conforming 

to the prescribed rules of the connection paradigm, these temporal primitives enable users to 

31n this context, the keyword "distributed" is not be identified with distributed· system or pa.rallel 
architectures. 
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specify the starting times, durations, and granularities of state altering actions. A clear rela­

tionship between time and state is generated from the natural hierarchical arrangement of these 

temporal building blocks. In addition, the temporal primitives offer users the ability to incorpo­

rate multiple temporal progression techniques or world views into one simulation model. This 

multiple interface approach towards simulation modeling permits users to select the technique 

that provides the most flexibility to their modeling needs. 

HYBRID MODEL CONSTRUCTION 

In simulation modeling, the intrinsic design of the elements in a system imposes a strict set of 

constraints on the transmission of information "to" and "from" the models they describe. An 

model's internal architecture defines how data is stored and accessed by other system compo­

nents. In RASP, an model's internal organization is governed by its "feature" ports. Adhering 

to the connection paradigm, these special ports encourage the delegation of model responsibili­

ties and the hierarchical organization of information. Deemed as a hybrid model, this approach 

fosters the construction of odels which responds to messages and an architecture which supports 

rendering operations. 

1.4 ORGANIZATION OF THE THESIS 

This thesis consists of four parts. The first part, chapters 1 to 5, previews the motivation 

towards and background concepts of the creation of a toolkit for the development of time­

varying simulations. Discussion encompasses previous work in computer graphics toolkit de­

sign, computer animation system development, simulation designs, and temporal manipulation 

techniques. Part two, chapters 6 to 10, defines the design features of the RASP toolkit. While 

chapters 6 and 8 present design goals, the IMVCD framework, the connection paradigm, and 

the multiple interface approach to discrete-event modeling, chapters 9 and 10 elucidate the 

relationship between time and state, and outline the hybrid model construction methodology. 

The third part, chapters 11, discusses the details of the toolkit's implementation. The final 

part, comprised of the conclusion and appendices, provides an analysis of the toolkit's design 

and implementation, suggests possible future modifications and enhancements. 



CHAPTER 2 

GRAPHICS TOOLKITS 

Give us the tools, and we will finish the job. 
- Sir Winston Leonard Spencer Churchill, 9 Feb 1941 

Computer graphics toolkits provide users with a basic set of , tools and definitions for the 

creation and manipulation of three-dimensional geometric models. In addition, they provide 

users with the ability to share resources, to build device-independent interfaces to multiple 

platforms, and to export standard database metafiles.1 

The first standard in three-dimensional graphics was called 3D Core Graphics System[28]. 

Intended as a baseline specification in computer graphics, this standard lead to the develop­

ment of several graphics packages, such as GKS-3D[35] (the Graphical Kernel System) and 

PHIGS+[89] (Programmer's Hierarchical Interactive Graphics System). Each standard defined 

a set of methods and structures for the modeling and displaying of three-dimensional data. 

The primary emphasis of these two graphics packages was the construction of geometric mod­

els. Utilizing a display list architecture, users associated physical and user-defined attributes 

with geometric primitives to define and render computer-generated images. Apart from a min­

imalistic set of dynamic features, such as scaling, rotation, and translation, there were no 

mechanisms for the specification of general dynamic movements. Graphics researchers were 

forced to define their own mechanisms for the specification of physical movement. 

The introduction of faster hardware, improved programming models and languages, and 

the demand for higher levels of abstraction spurred the construction of larger toolkits with 

greater capabilities. Enhanced features included paradigms for direct manipulation, object­

based construction and modeling, and improved modularity of toolkit components. 

1 Metafiles are data files containing collections of low-level device-independent descriptions. Although they 
are usually large in size, they provide users with a standard method to describe a picture or scene. 

9 
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The remainder of this chapter describes and analyzes several of the latest developments in 

computer graphics toolkit design. Readers already familiar with these packages may jump to 

this chapter's summary without loss of continuity. 

2.1 SURVEY OF GRAPHICS TOOLKITS 

2.1.1 DORE 

DORE[46], developed by Kubota Pacific Computer, is a semi-object-oriented photo-realistic 

three:dimensional graphics library. It supports various geometric primitives, surface property 

tools, scene manipulation elements, numerous rendering representations, and a wide variety of 

graphics database editing functions. 

Written in C and FORTRAN, DORE places an object-oriented framework on top of the 

display list approach of traditional 3D graphics systems. Sequences of drawing commands, 

which are sequentially parsed to alter the state of the rendering environment, are encapsulated 

into objects. Although these objects can not be treated as first-class items, this representation 

scheme significantly improves the display list approach to computer graphics development. 

DORE supports three types of objects: 

• primitives: These objects represent the basic set of geometric shapes supported by 

DORE. Users may define additional primitives if the pre-defined basic set does not match 

their geometrical or behavioral needs. All new primitives must define private variables, 

identification and initialization routines, and a basic set of editing and querying opera­

tions. In addition, since all DORE renderers do not render the same set of primitives, 

it is the responsibility of the user to empower the new primitive to decompose itself into 

alternate representations. 

• primitive attributes: The appearance of geometric primitives is effected by these types 

of objects. They effect the display representation, material properties, and shading style 

of primitive objects. 
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• geometric transformations: These objects affect the shape and position of 3D shapes. 

Effects such as scale, translate, rotate, and shear are defined by these objects. 

DORE utilizes reference counts to administer the process of garage collection. Each object 

has a reference count that is incremented by one every time it is added to an organizational 

object. Similarly, object reference counts are decreased by one as they are removed from 

organizational objects. Once an object's reference count reaches zero, it is removed from the 

system. The memory deallocation2 process is overridden by locking objects. This forces the 

system to retain the locked object in main memory until its reference equals zero whereupon it 

is unlocked and deallocated. 

In DORE, a group is an ordered listed of object handles. Groups contain references to 

primitive objects, primitive attribute objects, geometric transformation objects, labels, and 

other groups. The position of elements within a group is important. Only elements with higher 

precedence (lower list index) in the ordered list effect those in the remainder of the list. An 

object's appearance is not affected by attribute references possessing lower precedence. 

A group references another group in one of two manners: as a subroutine or as a macro. 

In the subroutine case, th_e referenced group's attributes can not affect the appearance of the 

parent group. In the macro (in-line) case, a child group's attributes produces display changes 

in the objects of its parent group. In-line groups are often utilized to -rapidly change dynamic 

attribute values. 

Callback objects invert execution of the DORE database. When activated, these objects pass 

user specific data to user-written functions. Callback objects initiate three special functions 

during their active lifetimes: force re-execution of the current database method, terminate 

execution of the database traversal process, or prune the current execution path. 

2Deallocation is the opposite operation to allocation. Allocated memory is freed by deallocation procedures. 
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2.1.2 INVENTOR 

INVENTOR[83] is an object-oriented toolkit for 3D graphics applications. Heavily relying on 

SGl's GL graphics library3, this toolkit enables users to created interactive programs. Uncom­

mon to previous 3D libraries, INVENTOR supports the direct manipulation (picking) of 3D 

objects and regards objects as geometric, physical entities. 

The scene database is the foundation of the INVENTOR toolkit. The dynamic represen­

tation of scenes are stored as a composition of objects, called nodes, in a hierarchical graph 

structure. Each node in a graph represents a geometrical shape, physical property, database 

traversal behavior, or composite group. The group nodes define the framework and method of 

interpretation for each graph. Individual nodes are connected as they associate with groups. 

The type of group node defines how children are traversed and how properties are inherited. 

Some group nodes have the ability to cache the traversal state, while others dynamically prune 

the tree traversal path. 

INVENTOR's database provides a set of basic actions that are applied to entire scenes or 

segments of scenes. Fundamental operations, such as rendering, picking, calculating bounding 

boxes, event handling, and scene storing, are defined as action objects. Encapsulating actions 

into objects enables users to define new database traversal tasks. 

In addition to the basic set of actions, the toolkit supports sensors and callbacks. Sensors 

are special objects that enable users to build simple animations. They are utilized to detect 

changes in groups of nodes or to continuously trigger changes to the scene database. Callback 

objects are defined to invoke user-defined functions. These nodes enable users to create their 

own application-specific mechanisms. 

2.1.3 CONDOR 

CONDOR (Constraints Dynamics Objects and Relationships)[41], written by Micheal Kass 

of Apple Computer, Inc., is an interactive datafiow programming environment for computer 

graphics. Most properly viewed as a next-generation math compiler, it supports constraints, 

3GL is a registered trademark of Silicon Graphics, Inc. 
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dynamics, and various other computational models. Every CONDOR dataflow element per­

forms derivative evaluation and interval arithmetic. Utilizing an interactive graphics interface, 

users compose new functions by linking vector ( or scalar) inputs to vector ( or scalar) outputs. 

An efficient c++ "generating" compiler and a special set of optimization operations enhance 

system performance by producing efficient C++ code segments. 

CONDOR relies on the dynamic composition of compiled functions to configure quickly 

complex systems. As users form links between data ports, the environment associates efficiently 

compiled modules together. Error-free functional units are generated by CONDOR's compiler. 

Written in Lisp, the compiler utilizes the Mathematica symbolic math package to generate 

streamlined C++ code. It is important to note that only c++ code is called during application 

run-time. The Lisp compiler and Mathematica package are utilized only to generate c++ 

code. Essentially, the CONDOR expression tree evaluation process consists of a series of calls 

to compiled functions. 

2.1.4 GRAMS 

GRAMS[18], developed by Parris Egbert of the University of Illinois, is an object-oriented 

system for 3D computer graphics applications. Using a multi-layer paradigm, this system 

separates the modeling and rendering aspects of traditional graphics systems into separate 

entities. This approach to graphical support allows users to define applications at high levels 

of abstraction. The extendibility of this model is attributed to its object-oriented design and 

structured scheme to the image synthesis process. 

The three main components in GRAMS are the application, graphics, and rendering lay­

ers. Each layer is responsible for a separate phase of the image generation and application 

development process. 

• Application: All user's applications reside in this layer. This layer separates the appli­

cation architecture from the graphics sub-system. Application data may be stored and 

manipulated by each program in any form that is most convenient. At image genera­

tion time, vital rendering data, such as object coordinate transformations, materials, and 

geometries, are extracted from this level and passed to the graphics layer. 
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• Graphics: This layer performs as an intermediary between the Application and Ren­

dering layers. It is responsible for transforming the high-level data objects from the 

application layer into a suitable format for the rendering layer. This process is handled 

by well-defined paths of communication and an internal translation mechanism. 

• Rendering: The actual rendering process is performed at this level. Given information 

from the Graphics layer, this layer generates a static image. It is important to note that 

this layer defines the type of information that will be accepted from the Graphics layer. 

The format and quantity of information may vary from application to application. 

GRAMS' greatest contribution to the design of an extensible graphic toolkit is the concept 

of independent construction. Allowing users to focus attention on separate aspects of the 

application design process enables them to build a variety of 3D programs. Useful ideas, such 

as the independent construction of renderers and geometric objects, are valuable concepts to 

the development of reusable components. 

2.2 SUMMARY 

This chapter has presented a brief summary of a variety of three-dimensional computer graphics 

toolkits. Each toolkit provides users with a set of constructs to associate information with 

geometric models and to manipulate their physical structures. Toolkits differ in the manner they 

store, interpret, and access a model's information. Some toolkits emphasize the interaction of 

the geometric models with their users and the simulation environments while others emphasize 

the interaction of the models with toolkit image renderers. 

A careful review of computer graphics toolkits permits the creation of a general feature list. 

• scenario modeling tools: Basic operations are provided to facilitate the development of 

the simulation environment. The global behavior and organization of models are regulated 

by these tools. 

• geometric primitives: A common set of geometric objects, such as spheres, cylinders, 

cones, etc., is defined for user-convenience. Primitives serve as building blocks for physical 

design. 
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• geometric composition: The hierarchical or flat4 construction of geometric primitives 

enhances users's abilities to build complex geometric entities. Complex geometries are 

formed using a variety of composition techniques. 

• transformations: Associating transformation, such as rotation, translation, scaling, etc., 

with primitives enables users to alter the shape and position of their models, lights, 

and cameras. 'lransformations are linked with temporal information to define simple 

animations. 

• geometric attributes: Attribute techniques allow users t'o fasten physical properties 

and application dependent information to geometric primitives and user-created objects. 

• camera primitives: Camera types allow users to alter the viewing configuration of image 

without manipulating the attributes of an image renderer. Viewing parameters, such as 

field of view, aspect ratio, and point of view, are controlled by these tools. 

• illumination primitives: A basic set of illumination devices, such as directional lights, 

spot lights, point lights, and area lights, is defined for user-convenience. 

• direct manipulation: Direct support of user interface events provides users with simple 

methods to perform picking and highlighting operations. 

• callbacks & sensors: The placement of user-defined routines into toolkit structures 

facilitates the construction of complex applications. Callbacks enable users to invoke user­

dependent operations while sensors enable users to test the values of specific variables. 

• object-oriented design: The incorporation of object-oriented principles in graphic li­

braries enhances the coherency of toolkit constructs, improves the reusability of the pack­

age, and assists in the design of independent components. 

Although the strength of a toolkit can be documented by its features, a toolkit should also 

be assessed by its extensibility. Supporting user-defined structures and components enhances 

4 A flat composition of multiple objects places every entity on common ground. No object has precedence or 
advantage over another. 
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the usability of a package. A well-planned extension process must be defined if new constructs 

are to be added to any system. If a well-defined set of rules is not established, the extension 

process will meaninglessly clutter the contents of any toolkit. 



CHAPTER 3 

COMPUTER ANIMATION SYSTEMS 

For tribal man space was the uncontrollable mystery. 
For technological man it is time that occupies the same role. 

- Marshall McLuhan, The Mechanical Bride, "Magic that Changes mood" 

Animation is generated from the rapid display of images. The slight alteration of successive 

images imparts the illusion of motion. A computer animation system aims to provide users 

with powerful, but easy to use, mechanisms to coordinate the motion of animated objects. 

The strength of an animation system can be partially judged by its ability to separate its 

internal control constructs from its user interface. An unencumbering interface allows users 

to concentrate on the design of sequences of animation without interacting with the low-level 

system architecture. 

3.1 CONTROL MODES 

Three-dimensional animation systems can be classified according to the methods they use to 

describe the behavior of animated objects[lO0]. The three primary methods or control modes are 

labeled as guiding, animator level, and task-level. In a guiding system, the motion of animated 

objects must be defined explicitly. Guiding systems, such as BBOP[82]and TWIXT[27], require 

users to specify the details of motion. In an animator-level system, users are allowed to specify 

the behavior of objects algorithmically. Typical animator-level systems, such as GRAMPS[62], 

ASAS[72], and MIRA[52], support adaptive motion and abstraction. In a task-level system, 

the animation of objects is described in terms of events and relationships. For example, in 

Zeltzer's knowledge-based animation system[99], animation is specified using broad outlines of 

movements. 

17 
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3.2 MOTION SPECIFICATION 

Every animation system employs a methodology to specify motion. The simplest of these 

techniques, key-framing, emulates the steps used in traditional hand drawn animation. Users 

specify the values of particular variables at key points in time while the computer fills the 

temporal gaps with intermediate values. Although very powerful, this technique requires users 

to manipulate an extraordinary large number of variables. For complex sequences of animation, 

key-framing is arduous and unwieldy. 1 

In the most advanced computer animation systems, motion is specified with a scripting 

language. Containing many special mechanisms for animation, a scripting language provides 

users with a notation to describe the dynamic changes in sequences of animation. Essentially, , 

a layer of abstraction is created between users and the intricate detailing of the parameters of 

motion. A number of dissimilar approaches have been developed which attempt to simplify 

the complexity of this abstraction and yet still maintain a powerful scripting system. These 

include new animation languages[19, 72, 11, 98], extensions to existing programming languages 

(by adding constructs for graphics and animation)[52, 40], and object-oriented designs[21, 25]. 

The remainder of this chapter discusses the design of several computer animation systems 

developed in academic environments.2 Emphasis is placed on the methodology used to specify 

motion and temporal progression. The systems are presented in chronological order to elucidate 

the relative changes appearing in animation research during the last two decades.3 Readers 

already familiar with the design of these systems may jump to this chapter's summary without 

loss of continuity. 

3.2.1 ANIM8 

ANIM8[93] ( designed as an education tool) utilizes a block diagram notation very similar to a 

data flow graph. The flexible block diagram syntax facilitates the interpretation of data paths 

1 Although quite burdensome, key-framing systems prove extremely popular in the consumer field of animation. 
Most non-key-framing animation systems have not reached a state for general use by the public. 

2The general lack of literature about "production" systems precludes their discussion in this chapter 
3Subsection titles refer to the names of systems being described. However, when a system name is unknown, 

the author's name has been used as a surrogate title. 
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for animation. It supports three ways to specify motion: algorithmic descriptions, tabular 

descriptions, and real-time data. 

3.2.2 GRAMPS 

GRAMPS[62] (developed at the National Resource for Computation in Chemistry, Berkeley 

Laboratory) utilizes framed object data types and delayed update functions to produce anima­

tion. The framed objects permit dynamic variations of an object's coordinate data, while the 

delayed update functions provide for the variations to the transformations. 

3.2.3 DIAL 

DIAL[l9] (developed at Brown University) utilizes an action specification scheme very similar 

to musical notation. Each line of a stave describes when actions are to occur and how long 

they will last. DIAL notation is separated into two distinct parts: the definitions and the 

execution lines. In the definition phase, particular actions are assigned to animated objects. 

Execution lines formalize the length and time of occurrences of these actions. The DIAL system 

is actually only a pre-processor. It functions to convert all of its notation into event definitions, 

event executions, and timing actions. 

3.2.4 ASAS 

ASAS[72] (developed at the Architecture Machine Group at MIT) is an object-oriented system 

that utilizes several types of objects to produce animation sequences: 

• Actors are the main driving forces behind the ASAS system. One may think of an Actor 

as "an independent computing process in a non-hierarchical system with synchronized 

activation and able to communicate with other actors by message passing." [72) . Actors 

can be initialized, activated, or terminated by scripts, themselves, or other actors. Unlike 

previous scripting systems, ASAS Actors can be defined to respond to external state 

changes. This enables users to describe an Actor's behavior in terms of its relationship 

with its environment. 
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• Newtons represent animated numbers. Their values are automatically updated every time 

step according to a predefined sequence (chain of cubic piecewise continuous curves). 

3.2.5 MIRA 

MIRA[52] (developed at the University of Montreal) is a procedural based system utilizing the 

concept of language extensions. With regards to scripting, MIRA's extended language supports 

animated basic types and actors. Programmers describe how the traits of many standard types, 

such as integers, floats, and vectors, vary with time. They can define the starting and ending 

times, the starting and ending values, and the evolutionary law[53] or function that governs 

each basic type's value. An actor data type is a time constrained abstract graphical type. It is 

only valid within a specific interval of time. An actor is constructed from a time range and a 

graphical representation. 

3.2.6 TWIXT 

TWIXT[27] (developed at Ohio State University) is a multi-track event driven animation sys­

tem. Events on every track (stored as events lists) indicate the transitional behavior of display 

parameters. At each frame, the system evaluates the activity of every track of every object. 

Higher levels of functionality are provided through transformations, such as coping, shifting, 

and scaling, on individual tracks. 

3.2.7 AVENUE 

AVENUE[l 7] (developed in Japan) is a rule-based motion system that generates animation 

automatically based on environmental information and user-specified criterion. Utilizing an 

implicit representation, animation is presented as a collection of events. Each event refers to 

the changes in objects and their environments with respect to place and time. Special events 

called rules enable users to specify prescribed guides for conduct or action. Every event (and 

rule) is represented by the following tuple < L, R, (x1, x2, x3, ... , xn), F >, where Lis a time­

space location, R is n-array relation (logical expressions), xi's are individuals, and Fis a boolean 

flag indicating whether the event is to be labeled as "true" or "false". 
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The system generates motion data from the analysis of events and rules. At each point in 

time, the system selects an appropriate rule (from a rule set) and determines its validity. If 

valid, the rule is applied and if necessary, new events or rules are created. The system repeats 

itself until all rules ( or events) are exhausted. 

3.2.8 FIUME 

Fiume[21] (when at the University of Geneva) created an object-oriented language for express­

ing the temporal co-ordination of animated objects. Every expression denotes a temporal 

relationship between instances of animated objects. Temporal operators allow users to specify 

the chronological sequencing, repetition, asynchronous and nondeterministic execution, temporal 

overlap, conditional triggering and simultaneous activation and termination of multiple objects. 

Operators also exist to pause or delay the activation of objects relative to others. Since all 

objects are defined over a continuous time domain, the scaling speed of animations can be 

enforced by reducing the sampling rate. 

To enhance reusability, all object displacements, for example, trajectories, are encapsulated 

as motion objects. Motion objects have duration and temporal properties, and provide users 

with the ability to script complex motion patterns. 

The system scheduler utilizes multiple binary expression trees to generate animation. Every 

expression creates an independent tree in which the nodes represent the displacement in ticks 

between the left and right subtrees. Each scene in an animation is composed of a forest of 

expression trees - in particular, one synchronous tree linked with multiple active asynchronous 

trees. Each tick from the scheduler enables time to percolate down each tree, causing the 

formation of messages to affected objects. 

3.2.9 SOLAR 

SOLAR[ll] (developed at the Institute of Systems Science) is an object-oriented three-pass 

interpreted animation language utilizing abstraction, adaptive motion, and controlled environ­

mental access to create complex scenarios. Utilizing a master clock to synchronize all opera­

tions, all statements are either synchronous or asynchronous. At every clock cycle, asynchronous 
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statements are checked and, if necessary, executed before synchronous ones. 

3.2.10 CLOCKWORKS 

CLOCKWORKS[25] ( developed at the Rensselaer Design Research Center at RPI) is an object­

oriented animation system embracing a variety of image synthesis, modeling, and simulation 

capabilities. CLOCKWORKS' scripting system CORY[56] utilizes a two tiered approach to 

isolate the data structures and data manipulation from the user interface. All animation se­

quences are broken down hierarchically into sets of cues and scenes. A cue provides the starting 

and ending times for particular actions, while a scene represents the consolidation of a set of 

cues that are interrelated. 

Scenes serve to limit the time that a set of common cues remain active. To enhance top 

down design, all cue frame times are local; their starting times are relative to the start of the 

scene in which they are contained. Only scenes utilize the global clock. In CORY, all scenes 

are deemed to be independent of the others and non-overlapping in time. 

3.2.11 PINOCCHIO 

PINOCCHIO[54] (developed at the Politecnico di Milano, Italy) utilizes a motion database 

(movement dictionary) and an object-oriented mechanism to animate a sequence of actions. 

Motions in the movement database are classified according to a movement grammar. Movements 

(verbs) are classified as either transitional, locomotional, environmental, or communicational. 

Additional action parameters include space and time attributes, object and position attributes, 

and qualitative aspects. 

The system is composed of four special subclasses of the class object. These include the 

director, person, motion, and camera. It is the responsibility of the director to control the general 

execution and coordination of scenes by defining an animation script and by associating motions 

to all the active objects. Motions are related through a set of temporal operators which include 

rules for sequential execution, parallel execution, repeated execution, time delay, and grouping 

of motions. The director also associates with every motion object a set of initial and final 

constraints. Constraints specify motion timing, spatial location, and coordinations with other 
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motion objects. 

A person object contains the geometric description of an entity and a script to coordinate 

its behavior by controlling the various motion objects associated with it. It is the responsibility 

of a person and its motion objects to coordinate themselves once the director has specified the 

constraints on motion performance. In other words, the purpose of the director is only to issue 

general instructions to actors. It is the burden of the actors to determine how they should 

perform. 

Finally, the camera is utilized to manipulate the viewing parameters of each animation 

sequence. It also follows an animation script given to it by the director. 

3.2.12 ZELEZNIK 

Zeleznik et. al[98] (developed at Brown University) created an object-oriented animation system 

that utilizes a hierarchical delegation architecture to dynamically change the attributes of all its 

objects. Objects send and receive time dependent messages indicating how it and its influencees 

are to change. Changes can be specified using scripted, gestural, or behavioral specifications. 

This novel interactive modeling and animation system provides users with an environment 

where both time and behavior are modeled as first-class objects. 

The systems's flexibility can be attributed to it use of time-varying messages, lazy evaluation 

schemes, caching, time-varying delegation hierarchies, and multiple controllers. Time-varying 

messages extend modeling tools to support animation. Lazy evaluation and caching exploit 

inter- and intra-frame coherency, while multiple controllers enable users to specify complex 

animations. The time-varying delegation scheme enables objects to alter their prototypical 

behaviors. Unlike most delegation-based systems, object hierarchies can be altered, they are 

not "static". 

3.2.13 KALRA 

Kalra[40] (developed at Caltech) utilizes a time primitive, called an event unit, to create complex 

time sequences or event systems with discontinuous behaviors. The organization of event units 

provides users with a time programming language to develop hierarchical schemes for motion 



Chapter 3: Computer Animation Systems 24 

sequences. Event units are specified as triplets, S : (Bi(X), L(X), Bi+1 (X)), where X is the 

state of the system, Bi(X) is the behavioral rules of the system before the event, L(X) is the 

logical condition signifying the event, and Bi+l (X) is the behavioral rules of the system after 

the event. General behavioral rules include known functions of time, differential equations of 

motion, constraints, zero time behaviors, and initializations. 

Event systems are constructed from the manual linking of event units. Directed graphs with 

event systems as nodes and edges representing the connections between the event units can be 

utilized to connect event systems. General composition techniques include the following: 

• time line: a linear arrangement of event systems. Each event system can be entered from 

and lead to only one other event system, and only one event can occur in every event 

system. 

• time tree: allows multiple connections (without loops) between event units. Behaviors 

may enter from or lead to more than one event system. 

• time graph: same as time trees, except for loops. The system may visit events that has it 

been to before. 

3.3 SUMMARY 

This chapter has presented a brief survey of computer animation systems from past to present. 

Each system is designed to provide users with an alternative and powerful interface to control 

the behavior of animated objects. Animation systems are distinguished according to their degree 

of abstraction and technique of motion specification. Variable control modes enable animators 

to design complex scenarios at a variety of different abstract levels. Scripting languages provide 

users (those with programming experience) a special notation to specify time-varying actions. 

The continual push to provide users with advanced modeling features, alternative control 

modes, and new animation techniques has produced a variety of innovative features in computer 

animation systems. Although new tools have emerged from a variety of domains, three key 

research fields have been dominant contributors. They are as follows: 
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• Motion Patterns: To facilitate the reuse of previously defined motions, several ani­

mation systems use some variation of a motion pcitterns[53, 21, 11, 54, 40]. Also called 

controllers[98], motion patterns are used to assign pre-defined movements or state changes 

to user-defined entities. Ideally, an animator's chore becomes easier as he or she accumu­

lates a personal collection of motion controllers. 4 

• Adaptive Motions: The necessity of modeling discontinuous behaviors has guided the 

development of adaptive motions[lO0]. These structures enable animators to define an 

object's state in terms of its relationship with its environment. Objects can be instructed 

to observe its surroundings and respond to particular stimuli. Adaptive specifications 

are integral elements of rule-based[ll, 17, 40] and goal-directed systems. From a simu­

lationist's viewpoint, adaptive techniques are produced with the discrete-event activity 

scanning model (described in section 5.1.3). 

• Temporal Reasoning: The unwieldy nature of organizing large collections of parallel 

actions in complex models has spurred the induction of temporal reasoning abstractions 

into computer animation systems[21, 25, 54]. Providing users with the ability to define 

relationships between sets of actions enables them to coordinate the behaviors of objects 

at a high level of abstraction. 

Recent research has shifted to accommodate new lines of thought toward the creation of 

computer animations. The need to develop realistic models, to control all modeling attributes, 

and to use multiple simulation techniques has induced several new fields of research. Mod­

ern topics include physically-based modeling[86], first-class temporal representations[98], and 

discrete-event techniques[20, 40]. 

4This has yet to be proven true. 



CHAPTER 4 

SIMULATION 

Who controls the past controls the future. 
Who controls the present controls the past. 

- George Orwell, Nineteen Eighty-Four 

All computer animations are simulations of objects in motion. Using a pre-defined set of 

laws and objectives, (most) animators attempt to design computers animations that impart the 

illusion of life.1 The influence of physical laws, realistic models of motion, and patterns of inter­

action have narrowed the gap between simulation and animation. Although the development of 

time-varying simulations has become an integral part of computer animation research, very few 

researchers have incorporated simulation constructs or languages. Most users emphasize the 

accomplishments of their research without concern for the methodology they use. The lack of 

a common foundation between various simulation frameworks has hindered the development of 

general animation systems supporting a variety of simulation models. The inclusion of modeling 

concepts and tools from simulation languages is essential to the construction of a powerful, yet 

flexible, computer animation system. 

Although computer animation scripting languages and simulation languages may have com­

mon goals, they do not attempt to solve similar problems in the same fashion. These incongru­

ous views of problem solving are a result of the differing design philosophies of each approach. 

In a script-based model, a central description defines all the actions within a system. Individual 

entities do not usually control their own actions. The system follows the strict script of behav­

iors. Scripting languages provide many different ways to specify change: interpolation schemes, 

sets of behaviors, and time-dependent variables. Unlike script-based systems, simulation lan­

guages do not usually support the concept of a central database controlling the evolution of 

change within a simulation. Simulation languages localize the control within the components of 

1Some animators exaggerate the motions of their objects to induce greater dramatic effect. 
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the simulation. After connections are created between system modules, a simulation proceeds. 

A central control mechanism is defined only to ensure the passage of messages between modules 

and to guarantee the uniform passage of time. Scripting languages are generally used to exhibit 

a particular behavior while simulation languages are commonly utilized to discover the behavior 

of a system over time. 

The next two sections of this chapter provide a brief synopsis of simulation languages and en­

vironments. Each section enumerates the distinguishing features of various simulation building 

tools. The chapter terminates with a discussion of the development of simulators using stan­

dard programming languages. Particular attention is given to the influence of object-oriented 

principles on their designs. 

4.1 GENERAL SIMULATION LANGUAGES 

Most simulation systems allow users to describe their models using a prescribed descriptive 

language. Descriptive specifications range from a straightforward sequential style to the extreme 

general network type. The system translates (or sorts) the descriptive statements into a formal 

description that is carried out by a sequential program. For parallel models, the order of the 

statements does not usually make a difference. Each statement describes independent, yet 

interacting, actions or processes[96]. This type of design provides a strong foundation to utilize 

object-oriented constructs and principles. 

Simulation languages can be divided into two major groups. They can be classified as 

either scenario or procedural. In scenario languages, active transactions execute descriptive 

scenarios, typically in the form of block diagrams, to model simulations. The languages SLAM 

II[70], SIMAN[67], and GPSS[77]fall into this category. Although procedural languages do not 

support as many simulation constructs as scenario languages, their strength comes from the 

inclusion of general-purpose programming devices with simulation-specific techniques. Their 

power and flexibility enable users to attack a wider range of problems. Languages falling into 

this category include HSL[74], SIMULA[6], SIMSCRIPT II.5[42], CSIM[79], and GPSS/H[78]. 
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4.1.1 SCENARIO LANGUAGES 

There are four major disadvantages in using scenario languages. First, implementing a hi­

erarchical stepwise refinement scheme2 for modeling is arduous. The scenario block network 

approach to modeling does not facilitate the use of hierarchies. All the components of a simula­

tion are designed at one level of abstraction. Hence, the introduction of additional detail to any 

simulation component may require a complete replacement of the component with a component 

of higher detail. Second, high level modularity is not supported. There is no separation between 

"control information" and "model actions" statements. The static and dynamic characteristics 

of a system are defined according to the experimental conditions under which it is run.3 Third, 

models not readily supported by scenario constructs require complex implementation. Fourth, 

the limited use and length of user-defined identifiers inhibit program readability. 

However, scenario languages do provide one good feature. Their modeling construction 

methods are conducive to graphical specification techniques. This advantage can enhance the 

ability of users to comprehend the characteristics and properties of any system[74]. 

4.1.2 PROCEDURAL LANGUAGES 

Unlike scenario languages, procedural languages provide stepwise refinement schemes, high­

levels of modularity, full complements of structured control statements, and long meaningful 

variable names. For example, SIMSCRIPT, an event-oriented language, is organized in a five­

level hierarchy: three levels of a general purpose programming language, one level of entity 

manipulation, and one level of additional simulation features, such as time manipulation tech­

niques. Its pseudo self-documenting code helps bridge the gap between modeling and program­

ming. 

2Stepwise refinement means building components from abstract elements and then refining t.hose elements 
deemed to be important into sub-elements to introduce additional detail. 

3Ziegler(96] stresses that a proper simulation system must make a distinction between the models of a simu­
lation and the experimental frame under which the models are run. Altering the experimental frame should not 
require the models to be altered. 
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4.2 SIMULATION ENVIRONMENTS 

Despite the large pool of simulation languages, many users do not embrace their usage to con­

struct their simulations. Many users view the strict interface and design methodologies imposed 

by simulations languages as detrimental qualities. Consequently, many users spend consider­

able effort developing their own simulation environments. Each new system accomodates the 

needs of users in a specialized field. Unfortunately, the range of requirements for this multi­

tude of users precludes the incorporation of generic constructs into many new languages.4 This 

loss of generality has prohibited the widespread usage of many exceptional systems. Although 

simulation environment lack large audiences, the abundance of features established within each 

new framework supplies designers of new simulation languages with an exhaustive set of useful 

suggestions, innovative ideas, and novel concepts. 

Every simulation environment partitions the simulation modeling process. According to 

[69], an ideal distribution which promotes greatest reusability is achieved when distinctions 

are made among the physical, informational, and control/decision elements of a simulation. 

Physical objects represent tangible things found in the real world such as parts, machines, 

and robots. Informational objects may also be tangible,5 but most often they represent facts 

or pieces of data. For example, constraints or series of operations are represented by these 

type of objects. Control/decision objects represent the creative intelligence of a simulation. 

Their primary function is to evaluate the state of the system, exercise logic algorithms, and 

incite appropriate actions when required. Basically, they provide the interconnections between 

physical and informational objects. 

The following sections discuss the frameworks of various simulation environments. Each 

system exemplifies an alternative approach toward the creation of physical simulations. Careful 

attention has been made to emphasize each environment's division of the simulation modeling 

process. 

4Given enough time and resources, many researchers would probably choose to increase the viability of their 
systems. However, the realities of life preclude this type of activity from occurring. 

5 An tangible object whose information content is of primary importance may be classified as an informational 
object. e.g. bills of materials. 
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4.2.1 SIMLAB 

SIMLAB[66] is a software environment for creating reusable physical systems. Although narrow 

in scope, it introduces an interesting alternative view concerning the production of simulations. 

Unlike most simulation tools, SIMLAB does not require users to build simulators using a conven­

tional programming language. Simulations are automatically created from high-level expressive 

descriptions defined by users. Users are not required to define data structures, combine numer­

ical packages, implement visualization routines, or implement algorithms via a programming 

language. All these steps are performed by SIMLAB without user interaction. 

To create a simulation with SIMLAB, users must define two pieces of information: the 

physics model and the global formulation. A SIMLAB physics model is very simple. Each 

instance contains definitions of primitives, connections, quantities and constraints. Primitives 

represent the basic entities in the model while the connections serve to specify the interactions 

between primitives. Quantities and constraints represent any primitive's state or constrained 

behavior. Every physics model is interpreted by the global formulation. This formulation 

specifies how SIMLAB creates a set of equations from the primitives, connections, quantities, 

and constraints. 

SIMLAB's power comes from its unusual interface. The simulator allows users to concen­

trate on the problem of modeling without worrying about writing complex programming data 

structures and algorithms. Users design physics models and formulations while the system 

handles the creation and operation of the simulation. While limited to the construction of less 

complex simulations, this method does have it merits. Users can create simulations from a high 

level of abstraction. 

4.2.2 INEFFABELLE 

INEFFABELLE[64] is a simulation environment (written in LISP) for the development of 

reusable robotic models and programs. Central to INEFFABELLE's design is the common body 

of information and family of functions found in all robot simulation programs. For example, 

all robotic applications require some set of methods to delineate the geometric and kinematic 
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parameters of a robot. With INEFFABELLE, users create model robots and workcells6 through 

a simple and clear set of rules and procedures. Application specific properties can be assigned 

to these models using built-in functions. 

INEFFABELLE functions can be categorized into three distinct groups: entity modeling, 

entity manipulation, and display. Robot models and their environments are designed using 

entity modeling functions. Standard entities found in INEFFABELLE's library include joints, 

work cells, coordinate frames, links, and sensors. Users can create new entities or alter the 

properties of existing models through INEFFABELLE's flexible modeling mechanisms. The 

motion of robots, grasping of objects, and other common robot related tasks are performed 

using entity manipulation functions. Display and entity manipulation function work together 

to provide users with computer animations of their animated models. 

4.2.3 WADE 

WADE (A Workcell Application Design Environment)[36), a process-oriented system written 

in AML/X,7 was developed to meet the needs of simulationists designing workcell applications. 

Before WADE, most robotic systems focused primarily on the aspects of robot programming 

and simulation while ignoring issues introduced by the broad range of industrial equipment 

typically found in workcells. Not enough attention had been directed to building tools for 

creating scenes with interacting components. WADE's designers envisioned a system with 

tools that would provide users with important information, useful methodologies, and multiple 

representation schemes during the various stages of workcell development. 

WADE can be decomposed into three basic constituents: modeling, simulation, and user­

interaction. The modeling component supplies tools to create and manipulate the relevant 

characteristics of abstract entities (robots, sensors, etc.). The simulation component visualizes 

the dynamic behaviors of these abstract entities. The user-interaction component provides users 

with a highly interactive and user-friendly interface. 

6 A workcell is a collection of interconnected pieces of industrial equipment, such as robots, cooperating on a 
single manufacturing taskl36). 

7 AML/X (A Manufacturing Language/eXtended) is a· multi-layered programming languages designed primar­
ily for manufacturing applications 
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4.3 OBJECT-ORIENTED SIMULATION DESIGN 

Many well known simulation languages such as GPSS, SIMAN, and SIMULA, are based upon 

object-oriented principles. Each language assists in reducing program development time and 

enhancing model understandability by providing users with high level simulation constructs. 

However, most users do not utilize these special programming languages to create their simula­

tions. Most simulations are written in general purpose language such as ADA, FORTRAN, C, 

and PASCAL. For many users, every new application is constructed from scratch. It is not com­

mon for users to generate their own simulation libraries. The failing of simulation languages to 

gain widespread acceptance can be attributed to the fact that most users lack experience with a 

simulation language. Compounded with additional learning time, the limitations of simulation 

languages have hindered users from incorporating them into their arsenal of programming tools. 

The major disadvantage with simulations designed with general purpose program languages is 

that users spend too much time specifying the state changes in the simulation system. Valuable 

developmental time is lost in designing the characteristics of the simulated targets. 

Fortunately, the growing popularity of object-oriented programming and the demand for 

reusable tools have fostered the creation of flexible simulation constructs and environments 

using popular programming languages. Users can profit from the benefits of simulation tools 

without expending the time to gain the understanding of another programming language. Tools 

for simulation development can be roughly divided into two categories: clients and servers. 

Clients tools assist in the creation, manipulation, and destruction of the simulation target 

entities. Targets, labeled as clients, usually represent physical or informational objects. Servers 

attend to service the clients of a simulation. They perform duties "for" and "on" clients. A 

client's state and behavior is controlled by sets of servers. The power behind this division is 

that it enable users to construct independently the characteristics of their clients and the details 

of their servers. Clients can be constructed without much foreknowledge of their usage, and 

servers can be built without concern for the internal architecture of the clients they serve. 

The following sections present the highlights of several object-oriented simulation and mod­

eling environments constructed from commonly used programming languages. 
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4.3.1 DOSE 

DOSE[55] is a discrete-event C++ simulation environment based on the connection paradigm. 

The entire system is structured as a set of components interconnected through their "input" and 

"output" ports. A component is defined as an object with its own internal state and collection 

of handlers. Each handler is a response to a set of internal and external events. Component 

behaviors are specified with respect to their ports. Once a connection is established, output 

ports notify its connected input ports, via an event, whenever a change or update occurs. An 

output port can be utilized to signal an event or to multicast8 an internal state or variable. An 

input port can be linked to an internal variable or attached to an event handler. The dynamic 

attachment and detachment of ports provide users with a flexible simulation mechanism. 

The simulator object Sim provides users with an interface to the run time system support. 

It is assisted by three run time support objects: a component manager for the handling of 

components, a connection manager for the creation and maintenance of connections, and an 

event scheduler for the planning and sequencing of internal and external events during the 

simulation. 

4.3.2 PRISM 

PRISM[90] is a generic event-processing simulator written in C++. Communications is sup­

ported with events and (if desire, hierarchically constructed) simulation units or models. The 

execution of events, called Sim.Events, is the driving force behind this simulation system. Events 

are posted to a simulation engine (a Simulator) by simulation units (SimUnits) to cause future 

computations. The two most important member functions declared in Sim.Event is doEvent 

and cancelEvent. 

Rather than offering one global simulation engine, PRISM allows users to define multiple 

simulation engines (instances of the class Simulator). Each engine manages an event queue 

and deals directly with the system model (instance of the class Model). Members functions 

declared in Simulator interactively control time, post events, cancel events, and obtain infor­

mation. Although multiple engines can be defined, there seems to be no method to design 

8To (simultaneously) issue data to multiple ports. 
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two separate, yet interdependent engines. No procedures exist to regulate the progression of 

mutually dependent engines. Users must define their own methods to balance and control the 

operation of multiple engines. 

4.3.3 DESADA 

DESAda[48] is a simulation template based on tasking in Ada. The system is composed of a 

combination of servers that provide service to clients and clients which acquire services from 

the servers. Users are given several "off the shelf" modules to handle the transitions occurring 

within data entities. The simulation system is divided into five major components. 

• Clients ( user-implemented): Implemented as objects, clients are composed of sequential 

descriptions of their life cycles. A client becomes active the instant it is declared or 

allocated. Each client posts a (time) signal to the task controller as to when it wants to 

be notified. Specific client requirements or needs are sent to the task controller via the 

parameters of the signal. 

• Task Controller ( built-in): This unit is responsible for maintaining the simulation clock 

and processing all the signal requests from every client. After a particular client completes 

its own logic (after being notified to proceed), the controller continues to process the 

special needs of the client. Clients may make a particular request such as "get service 

from a server", "schedule a future event", or "execute one more signal". 

• Event List (built-in): Each node in this unit represents an event to be activated at a 

future time. Nodes contain two pieces of information not commonly found in standard 

implementations of event lists. They contain direct links to their clients, and each event 

node has no knowledge of the effect of the event on the client. Unlike many traditional 

system where events control the execution threads of the simulation, this system delegates 

the process of a clients' life cycle to itself. The system merely narrates the timing of events. 

• Servers ( built-in or user-implemented): Servers are dynamic objects which provide service 

to clients and other servers. There are two types of servers: built-in and user-implemented. 
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Built-in servers are simple functional objects utilized to serve clients one by one. These 

type of servers usually maintain waiting queues for multiple "service requesting" clients. 

To handle more complex server sharing, queueing and allocation strategies, users can 

implement their own server packages. 

• Data Collection ( user-implemented): Data collection is performed by each of its separate 

entities. Upon request, each object can pass along its collected (summarized) data to a 

user-defined system collector. 

4.4 SUMMARY 

This chapter has provided a brief overview of simulation languages, systems, and modeling en­

vironments. Each approach provides users with special constructs to facilitate the specification 

of "transitions" . Transitional elements reduce users' torment in forming their own methods to 

alter the states of the system. In addition, all three models support methods to form relation­

ships or communication pathways among collections of objects. Links empower objects with 

the ability to react to influential forces and external stimuli. Apart from the primary bene­

fits, both mechanisms enable users to focus their attention toward the improvement of their 

models. Users are not compelled to continually redefine sets of structures common to all their 

applications. 

Although tools for simulation come in a variety of forms, each tool can be gauged according 

to the strength of its underlying framework. A superior design is distinguished by its ease of use 

and reusable potential. Providing users with the ability to easily reuse segments of previously 

defined simulations enhances their productivity. A simulation tool's potential can be measured 

according to three important qualities. 

• It must be able to support modular design. Modularity enables users to construct complex 

simulations from the amalgamation of various well-defined components. Modules can also 

serve as building blocks for the creation of multifarious components. In an ideal modular 

environment, the task of modifying or creating new models is reduced to replacing old 

objects with new ones. 
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• Simulation tools must provide users with appropriate abstractions to refine hierarchically 

their models. Alternative viewpoints empower users to manufacture simulations at dis­

parate perspectives. High-level expressions[66] and stepwise refinement techniques[6, 42] 

are common abstraction building mechanisms. 

• A division of the simulation modeling process must be apparent. A highly evolved frame­

work provides users with a clear path for application development. Model creation, entity 

manipulation, temporal management, and display techniques are commonly defined parti­

tions in many simulation environments. Although a clear division has not been solidified 

by the simulation community, an observable consensus can be extracted from recent re­

search. Modern developments have advocated a separation of decision making algorithms 

from the models they are controlling. An environment's reusable potential decreases when 

it disperses and embeds control logic into its models. A strong division enhances a user's 

ability to alter continually a model's interaction with its surroundings. 

The increasing demand for general simulation mechanisms as well as the rise of object­

oriented methodologies have influenced the design of a variety of new simulation environments. 

Using an assortment of common object-oriented languages, several simulationists have objec­

tified the simulation modeling process. The drive to maintain object-oriented principles, such 

as encapsulation and modularity, has introduced additional perspectives on the development 

of simulation environments. Design philosophies, such as first-class events[90] and first-class 

object interfaces[55], introduce new architectures and issues not commonly found in standard 

simulation systems. 
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TEMPORAL MANAGEMENT 

What then is time? If no one asks me, I know what it is. 
If I wish to explain it to him who asks, I do not know. 

-St. Augustine, Confessions 

In time-varying simulations, 1 a variety of techniques are employed to control and manipulate 

the flow of time. An assortment of methodologies provide different techniques to advance time, 

to structure time, and to define the logic and sequence of events. The capabilities of each 

approach is directly proportional to its complexity. In general, systems and languages possessing 

an advanced set of features require users to define and specify a large set of simulation variables. 

Therefore, in many cases, users may opt to choose simpler tools. The needs and requirements 

of users vary from individual to individual. Therefore, to obtain a large following, an optimal 

tool for simulation should define a simple interface with a large collection of features. 

This chapter provides a brief introduction to a variety of important topics related to the 

manipulation of time. A quick analysis of temporal management techniques is followed by a 

discussion of the advantages and difficulties associated with the design and development of a 

process-oriented simulation. 

5.1 TEMPORAL ADVANCEMENT 

Underlying every time-varying simulation resides a methodology to regulate the progression of 

time. It the responsibility of this simulation engine to ensure that every module in one system 

efficiently dwells in the same time frame. For most simulations, it is essential that simultaneous 

system actions are performed at the same point in time. The progression of concurrent actions 

and activation of mutual interactions are indispensable qualities of a sound temporal based 

1 In a time varying simulation, time enters explicitly as an argument of the rules of interaction. 
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simulation. Time must not progress faster than the quickest acceptable rate of any element in 

a simulation. 2 

5.1.1 CLASSIFICATION 

Time-Varying Simulation 

! 
Time-Varying Simulation 

! 
Discrete Time Continuous Time Autonomous 

i 
Non-Autonomous 

l 
! 

l 
Continuous State Discrete Event 

l I l 
Event Scheduling Activity Scanning Process Interaction 

Figure 5 .1: Classification of Time-Varying Simulations 

All time-varying simulations can be classified as either continuous or discrete time ap­

proaches. In the former case, time flows continuously3, while in the latter, time advances in 

pre-defined periodic jumps. Most animation research is discrete. The clock continually moves 

forward in discrete time intervals, while the simulation's descriptive variables assume a discrete 

set of values. 

The continuous time approach can be further divided into the continuous state and the 

discrete event. In the continuous state approach, state changes are continuous and the system's 

time derivatives are governed by its differential equations. The discrete event approach is 

characterized by state changes occurring in discontinuous jumps and events arbitrarily separated 

from each other. 

Time-varying simulations can also be classified according to their interaction with their 

21n real-time simulations, time may advance faster than the quickest desired rate of any system module. It is 
the obligation of every system element to compensate whenever the pace of the simulation exceeds its ideal rate. 
However, for this thesis, real-time demands a.re not in effect . This is a.n issue for future work. 

3Beca.use most simulations a.re performed on digital computers, time does not truly flow continuously. State 
variables within continuous systems a.re usually described by deterministic differential (or algebraic) equations 
which a.re solved using standard step-by-step methods.[58] 
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environment[96] . If the simulation is not influenced by its environment, it is labeled as au­

tonomous. Conversely, a nonautonomous simulation is directly influenced by the events oc­

curring in its environment.4 The general structure of time-varying simulations is shown in 

Figure 5.1. 

5.1.2 DISCRETE TIME 

Discrete time simulations are generally sequential and iterative. They continually repeat the 

same set of steps until a terminating condition is met. There are usually no constructs for the 

scheduling, creation, or deletion of events and no methods to control the passage of time. All 

discrete time simulation are variations of the following prototypical procedure[96]. 

1 Initialize state variables. 
2 Initialize the clock to a starting time. 
3 Apply the rules of interaction to the contents of the state 

variables to produce new values. 
4 Advance the system clock. 
5 Check if the clock value exceeds the termination time. 

If yes, stop. If no, go to step 3. 

Because most of the interactions of a simulation's components are not sequential, the discrete 

time approach is limited to a small subset of the possible simulations. The "parallel" nature 

of most simulations require that the simulation engine handle many simultaneous actions. A 

good simulation kernel must be able to coordinate, control, and execute concurrent actions in 

their proper time sequence[96]. 

5.1.3 DISCRETE EVENT 

The discrete event philosophy frees the simulator from fixed time step intervals. The system is 

driven by an event list containing the sequential ordering of "next clock" times when components 

are scheduled to alter their state. Scheduled events times are known as hatching times. The 

simulator advances the clock to the closest hatching time on its list and executes all component 

actions prescribed for that time. Since the system is not confined to a constant time step, the 

41n the field of dynamical systems, simulations are defined to be autonomous or nonautonomous if they are 
dependent on time. This nomenclature is ignored to comply with the terminology used in simulation literature. 

i-· 
I 
I 

r 

i· 
I 



Chapter 5: Temporal Management 40 

simulator ignores the intervals between clock jumps where no actions are known to occur[96] . It 

is only recently that research[20] has addressed the usage of discrete event modeling in computer 

animation. 

The discrete event simulator relies on two basic presumptions. First, the predictable hatch­

ing times of some events are a direct result of (the hatching of) other events. When an event's 

hatching time is predictable, it can be scheduled. Second, unless ( or until) the state change of 

a prescheduled event causes a model to alter its state, the model will not undergo any modifi­

cation in its condition. The validity of any simulation using the discrete event philosophy fails 

if either of these two presumptions are violated. 

Conflicts arise in the discrete event philosophy when two or more events are triggered at 

the same time. Since computers are inherently sequential processors, concurrent events can not 

be resolved in the same instant of time. Because only one event can be processed at a time, 

several different tie-breaking schemes have been developed. The three most basic methods are 

as follows: 

• Select events as they are found. If A was found before B, process A before B. 
• Select an event at random. 
• Specify a tie-breaking rules that select the most "imminent" event. 

The third approach is the most widely utilized method. Its simplicity and automatic se­

quencing of individual events is ideal for many situations[96]. 

In discrete event simulations, special attention must be paid to external events that effect 

the state of the system. Controlling the effects of external events should not necessarily be a 

large responsibility of the autonomous system rules. Only internal events should be controlled 

by the autonomous rules, while external events are controlled by special rules[96]. 

5.2 DISCRETE EVENT STRATEGIES 

Discrete-event simulations can be separated into three related categories: event scheduling, 

activity scanning, and process interaction. The third being a combination of the first two. 

In all three cases, actions are executed at specific event times. In this section, we briefly go over 
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the main structure and features of each classification using an informal description5 developed by 

Zeigler[96]. The description is divided into three major parts: components, descriptive variables, 

and component interactions. The components are the elements from which the simulation is 

constructed. The descriptive variables serve to characterize the range of states each component 

can achieve, and each component's role in the simulation. The component interactions are the 

rules that govern the behavior of the simulation. They define how components interact other 

components. 

5.2.1 EVENT SCHEDULING 

In an event-oriented scheduling approach, every event is prescheduled. Each event contains 

a reference to a point in time when it is to be executed. An event is not triggered until its 

reaches its time of activation. The scheduling of events is controlled by an event list.6 This list 

sorts every event awaiting activation by its hatching time. Events with earlier activation times 

are situated near the head of the list. As a simulation progresses, events are placed, executed, 

and removed from the event list. The event scheduling approach requires all users to design 

their simulations from a global viewpoint. A complete description of all the changes to the 

entire system must be given for each event occurrence. Additionally, only explicitly designated 

state changes can alter the behavior of the system. It is not possible to test the state of any 

system component to invoke state transitions. The event scheduling methodology is structured 

as follows: 

1. Components: 

In the event scheduling approach, the set of components, D = { a1, a 2, •.. , aN}, is divided 

into ACTIVE and PASSIVE types. ACTIVE components invoke changes in a system, 

while PASSIVE types retain their state indefinitely unless acted upon by other compo­

nents. 
5The description is informal because it is open to certain intrinsic problems, such a.s incompleteness, incon­

sistency, and ambiguity. However, it is very useful because it communicates the essential nature of a simulation 
strategy. 

6 Although the word 'list' implies a linear data structure, other possibilities exist, such a.s indexed lists a.nd 
heaps. Therefore, event queues is a more appropriate term than event list. However, event list is used to conform 
to the standard terminology used in simulation literature. 
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2. Descriptive Variables: 

Every ACTIVE type is described by its state, time to activation, and set of influences. At 

any moment during a simulation, an ACTIVE component is defined by its value and the 

time that remains before it influences the behaviors of other components in the simulation. 

STATE-OF-a TIME-LEFT-IN-a INFLUENCES-OF-a 

ACTIVE-a 
Range: So: (a set) Ro:= {O,oo} D 
Value: So: (J' 0: {/31, /32, ···,/3M} 

PASSIVE-a 
Range: So: 
Value: So: 

3. Component Interaction: 

For each ACTIVE a a local transition function 7 { 80:} is specified. This function simply 

maps the set of state assignments to the INFLUENCES-OF-a. 

ACTIVE PASSIVE 

The transition function Uo: is split into m distinct functions {u~}, where m represents the 

number of states that So: can assume. Each function describes the activity of component 

a when it is started in one of its possible states. For many simulations, each u~ is coded 

separately as a program or routine. This design facilitates the use of object-oriented 

programming since every function can be represented as a separate object or member 

function. 

NEXT EVENT SIMULATION 

Simulation systems providing event scheduling operations are often called next event simula­

tions. Apart from the development of a temporal metric to schedule the activity of events, all 

next-event modeling systems require the creation of an NEXT-EVENTS-LIST and a SELECT 

function. The NEXT-EVENTS-LIST is used to dynamically sort pairs of the form [event, time], 

where each pair defines the activation time of a specific action. Actions associated with earlier 

7 Given a list of values of the state variables of a model at time t;, a state transition function produces a list 
of values for the model's state variables at time t;+l. 
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activation times are placed at the head of the list. Given a set of active types from the NEXT­

EVENTS-LIST, the SELECT function singles out an individual pair. For many simulations, 

the behavior of the system is decided from the choices determined by the selection function. 

To ensure the selection of certain events over others, some simulations incorporate a priority 

ordering. 

All next-event simulation are subtle variations of the prototypical procedure shown in Fig­

ure 5.2. Developed by Zeigler[96), this algorithm advances time from event to event. As events 

are executed, the states of influenced events are adjusted. This usually entails the reordering 

of future events ih the event-list. 

Initialization 

Time Advance 

Tie Breaking 

State Transition 

Any events left? 

Termination 
Test 

1 
2 
3 

4 

5 

6 
7 

8 

9 

Set CLOCK to initial simulation time to 
Set variables Ba1 , ••• , San to hold the initial values of Sa 's. 
For every ACTIVE a, place the pair (EVENT-sa, to+ o-a) on 
the NEXT-EVENT-LIST. (order the list by low time) 
Advance the CLOCK to the time of the first pair on the 
NEXT-EVENT-LIST. Call the new time, t, the NEW-EVENT-
TIME. 
Apply SELECT to all components with events scheduled at 
NEW-EVENT-TIME. Let a denote the winning component. 
Remove (EVENT-s0 , t0 ) from the NEXT-EVENTS-LIST. 
Invoke routines for EVENT-s0 

(a) Check if each ACTIVE-INFLUENCEE-,B-OF-a is a member 
of a pair on the NEXT-EVENT-LIST. If yes, remove it from the 
list. t;-t if (EVENTS-s,a;-OF-,Bi, t,a;) was 
0-13, = removed from the NEXT-EVENT-LIST) 

00 otherwise 
(b) Adjust the state for every INFLUENCEE-/3-0F-a (set Sµ 
to Sp), For every ACTIVE-,B with o-13 < oo, place the pair 
(EVENT-s13-0F-,0, NEW-EVENT-TIME +o-/3) in its proper 
place on the NEXT-EVENT-LIST. 
If CLOCK and the time of the first pair on the NEXT-EVENT-
LIST are equal, jump to 5. 
If NEW-EVENT-TIME exceeds termination time, STOP. 
Else goto 4. 

Figure 5.2: Next-Event Prototype 
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5.2.2 ACTIVITY SCANNING 

The activity scanning approach is an augmented event-oriented system. Apart from allowing 

the explicit prescheduling of component activation times, contingency tests allow the conditional 

activation of state changes. Every satisfied test implicitly schedules the execution of a collection 

of events. This enhanced approach, unlike the event oriented, enables components to possess 

negative "time to activation" times. At any time, there may be many components in the "ready" 

(a-TIME-LEFT= 0) or "due" (a-TIME-LEFT< 0) condition. A component is defined to be 

due if is ready to be triggered and its activation is being precluded by the absence of an 

external influence. Only when the external influence obtains a certain state will the component 

be activated. Therefore, the ordering of waiting components is controlled by a conditions list 

or activities list, not an event list. The activity scanning methodology is structured as follows: 

1. Components: 

The set of components, D = {a1,a2, .. ,,aN}, is divided into ACTIVE and PASSIVE 

types. ACTIVE components impose changes to a system, while PASSIVE types retain 

their state indefinitely unless acted upon by others. 

2. Descriptive Variables: 

Activity scanning ACTIVE types are characterized by the same set of descriptive variables 

that describe next-event ACTIVE types. Each type is distinguished by its value and 

capability to alter the states of other components in a simulation. However, activity 

scanning ACTIVE types are also distinguished by a set of influential components which 

define when and how ACTIVE types exercise its authority over others. 

STATE-OF-a 
TIME-LEFT-IN-STATE-a 

INFLUENCEES-OF-a 
INFLUENCERS-OF-a 

ACTIVE-a 
Range Value 

Sa 
Ra= {-00,00} 

D 
D 

So, 

(j 0, 

{,81, .. ·,,BM} 
{81, .. ,,/JM} 

PASSIVE-a 
Range Value 



Chapter 5: Temporal Management 45 

3. Component Interaction: 

• For each ACTIVE-a a local transition function { 8a} is specified. Given the union of 

the current values for the INFLUENCERS-OF-a and the INFLUENCEES-OF-a, this 

function simply produces a new list of values for the INFLUENCEES-OF-a. Assigning s 

to represent this union, 8a(s) defines the value of the INFLUENCEES-OF-a immediately 

after a is tested and activated. 

• Associated with every INFLUENCERS-OF-a is a boolean predicate. This logical as­

sertion represents the condition that determines if a's state is to be altered. Imme­

diately after the condition is deemed to be true, a set of actions is performed on the 

INFLUENCEES-OF-a. Given that Ca represents the boolean predicate on the state as­

signments to the INFL UEN CERS-0 F-a and fa 8 defines the action performed by a on 

the INFLUENCEES-OF-a, the transition function 8a is implemented as follows: 

INFLUENCEES INFLUENCERS 

Oa( (S{Ji' <Tf31 ), ... 'Sf3m' (siJ1' <TiJ), ... , SiJ) = 

{ 
!a((s131' <1131 ), ... 'Sf3m (sii1' (Tii1 ), ... 'siim) if Ca((sii1' (Tii1 ), ... 'siim) = TRUE 

((srii, u131 - t(s) ), ... , spm) otherwise 

If Ca is TRUE, then apply fa to obtain the new states of the INFLUENCEES-OF-a. 

Otherwise, perform no actions except for clock updates. 

ACTIVITY SCANNING SIMULATION 

In the activity-oriented approach, the actions of the simulator are partitioned into segments 

called activities. Every activity, defined as the state of a model over an interval, is delimited 

by two successive events. Each activity is associated with a boolean condition set to true or 

false depending on the state of the system. As the simulation progresses from event to event, 

the simulator scans the status of all the activities in the model. Every activity satisfying its 

contingency test is immediately scheduled for execution. The activity scanning approach is 

more attractive than the event oriented approach when the number of events in a simulation 

8 The function / 0 has the same domain and range as 60 . 
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grows to great size. However, this approach has difficulties when used to accurately model 

continuously changing operations. Continually varying variables must be discretized into several 

distinct states if they are to be manipulated in an activity scanning approach. Apart from the 

introduction of errors by poor apportionment, this approach requires the user to specify a 

discretization algorithm. 

In the activity scanning approach, the CONDITIONS-LIST dynamically orders a list of 

activities according to a priority-based metric. Activities with superior rank are situated at the 

top of the list. Each activity is usually stored as a triplet of the form (ACTIVE-a, fa, Ca), where 

fa represents CONDITIONS-ROUTINE-FOR-a {boolean predicate on state assignments) and 

Ca identifies the ACTIVITY-ROUTINE-FOR-a (state altering action). After every event, 

activities in the list are scanned from top to bottom. Although it is possible to develop an 

autonomous SELECT function, the descending scan eliminates the need of such a routine. 

Activities are selected by a SCAN pointer, as shown in Figure 5.3, according to their location 

in the list. 

TOP 
01 CONDITIONS-ROUTINE-FOR-01, ACTIVITY-ROUTINE-FOR a 

SCAN -+ 02 CONDITIONS-ROUTINE-FOR-02, ACTIVITY-ROUTINE-FOR-a 

aA CONDITIONS-ROUTINE-FOR-aA , ACTIVITY-ROUTINE-FOR-a 
BOTTOM 

Figure 5.3: Conditions List 

All activity scanning simulations are subtle variations of the prototypical procedure shown 

in Figure 5.4. This routine, developed by [96], advances time from one event to another. As 

events are triggered, the algorithm scans its conditions list to determine if any conditional 

events need to be activated. The simulation languages CSL[9] and SIMON[31] are based upon 

this approach. Although it may seem redundant to continually scan the conditions-list after 

every event, it is a required operation. If events occur between successive scans, it is possible 

for the scan to miss a state change. The diagram in Figure 5.5 illustrates this problem. 
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Initialization 

Activity 
Scanning 

State Transition 
Test for End 
of Scanning 

Time Advance 

Termination 
Test 

1 Set CLOCK to initial simulation time t0 

2 Set state variables So. 's to initial values of s0 's. 
3 Initialize CONDITIONS-LIST. 
4 Set time cells T0 's to initial values a~s 
5 Move the SCAN to TOP of CONDITIONS-LIST. 
6 SCAN down until the first ACTIVE-a is found 

(ta. :::; t) and its CONDITION-ROUTINE-FOR-a re-
turns TRUE when applied to the INFLUENCERS-
OF-a. 

7 Execute the ACTIVITY-ROUTINE-FOR-a 
8 If SCAN has not reached the BOTTOM of the 

CONDITIONS-LIST then goto 5. 
9 Advance the CLOCK to the time of the next event 

(the minimum T0 > the current CLOCK value) 
10 If CLOCK exceeds termination time, 

then STOP! else goto 5. 

Figure 5.4: Activity Scanning Prototype 

5.2.3 PROCESS INTERACTION 

41 

The process interaction approach is a combined event scheduling - activity scanning system. 

In addition to a list of scheduled events, this approach maintains a list of conditional activi­

ties. As planned events are executed, the contingency tests of each activity is scanned. Unlike 

event scheduling and activity scanning, the process interaction method stresses the interaction 

between the entities of the system. Model component descriptions are amalgamated into units 

called processes rather than unstructured collections of unconnected events and activity rou­

tines. The behavior of a system is described by the flow of its processes through time. Users 

specify the behaviors of processes, while the system implicitly handles the detection and acti­

vation of events. This type of programming construct provides greater control over the actual 

structure of the system they are simulating. The languages GPSS[77] and SIMULA[6] use this 

approach to simulation modeling. 

Unlike an event or activity, a process's routines are explicitly described in terms of time 

flow. A process's behavior may be interrupted at any point in time. It may be forced into an 

inoperative state when it comes into conflict with an another process or while it is awaiting the 
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l .a 
0 B -0 

! (I) A --

Condition 
Scan 

Event #1 Event #2 

.J, ~ 
- -------

1 

~---- ~--

Condition 
Scan 

Time 

Figure 5.5: The scan does not note the change in the object's state 
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arrival of a future event. Multiple entry points, called reactivation points, within individual 

processes enables users to define a variety of conditions to reinstate the activity of any halted 

or delayed process. The process interaction methodology is structured as follows: 

1. Components: 

The set of components, D = { a1, a2, ... , aN }, is divided into ACTIVE and PASSIVE 

types. ACTIVE components modify the behavior of the system. Their conduct is regu­

lated by time or conditional predicates. PASSIVE types maintain their state values unless 

they are altered by external stimuli. Although they do not have the ability to directly 

control system execution, they can influence the behavior of ACTIVE components. An 

ACTIVE type's behavior may be suspended if it can not obtain essential information from 

an engaged PASSIVE component. 

2. Descriptive Variables: 

Process interaction ACTIVE types are qualified by a set of features similar to those 

that characterize activity scanning ACTIVE types. Every component's state, time to 

activation, and sphere of influence is described by its descriptive variables. Unlike the 

next-event and activity scanning approaches, the process interaction method decomposes 

a component's state description into two distinct elements. An ACTIVE type's state is 
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defined by the values of its local variables and the status of its control instructions. 

STATE-OF-a= CONTROL-OF-ax MEMORY-OF-a 

ACTIVE-a PASSIVE-a 
Range Value Range Value 

CONTROL-OF-a La {0,1,2, ... ,M} La {O, 1, 2, ... , M} 
MEMORY-OF-a Va Vo, Va Vo, 

TIME-LEFT-IN-STATE-a Roo (J'Q 

INFLUENCEES-OF-a D {,81, ,82 , .. • 1 .BM} 
INFLUENCERS-OF-a D {/31,/32, .. ,,/3M} 

3. Component Interaction: 

• In the activity scanning approach, the transition functions of ACTIVE components were 

characterized by two parts, the conditions predicate Ca and the action function f 0. In 

the process interaction approach, each part is broken down into several segments. Each 

segment is associated with a substate corresponding to the control state of the program 

implementing 8a, Thus, C0 and la are decomposed into sets of { C1.} and{!}.}. Employing 

this design, the transition function 80 is expressed as follows: 

Control State 
Control 0 
Control 1 

Control M 

If c2 is TRUE --+ apply f 2 else nothing. 
If C! is TRUE--+ apply/~ else nothing. 

If C!f is TRUE --+ apply f !! else nothing. 

If o's control algorithm is in state 1, only the condition C! and/~ are used to construct the 

local transition function. This design enables every ACTIVE component to dynamically 

alter its transition function according to its needs. Unlike the activity scanning approach, 

a component's transition function is not static. 

• If should be noted that if a does not possess the ability to alter its own behavior 

(a (/. INFLUENCEES-OF-a), then every C~ will be equivalent to C0 and /1. will be 

identical to /er for all l E L 0 • However, for many scenarios this situation will not arise. 

Most o's will influence their own behavior. For these o's, their C~ and !1. are defined as 
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follows: 

PROCESS-FOR-a 

I CONDITIONS-I-OF-a 
ACTION-I-OF-a 

a-POINTER-+ l CONDITIONS-l-OF-a 
ACTION-l-OF-a 

M CONDITIONS-M-OF-a 
ACTION-M-OF-a 

Figure 5.6: Process Definition 

SUBSTATE INFLUENCERS ------ ----------
C~(( Va, O'a), (lµ

2
, Vp

2
, uµ), · · ·, Vpm) - Ca( (l, Va, O'a) , (lµ

2
, Vp

2
, uµ), · · ·, Vpm) 

J~((va,ua), ... ,Vpm) - fa((l,va,ua), ... ,Vpm) 
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These two equations are derived by fixing the control component of a to value l in C0 . 

PROCESS INTERACTION SIMULATION 

In a process-oriented simulation, every active component is represented as a process. A process 

is configured as a sequence of statements divided into M distinct segments. Each segment 

corresponds to one of the substates of the transition function Oa• Every segment is composed of 

two divisions. Each division corresponds to one of the elements of { C~} and {!~}. The diagram 

in Figure 5.6 portrays the basic structure of a process. 

The first component of every segment represents the activation position of a process. The 

execution of a process always begins at an activation point. As the process's control algorithm 

sequentially progresses from segment to segment, it examines the conditional predicate of every 

division. If a segment's cond.itional predicate evaluates to true, its associated "action" routine is 

executed. Unlike the components of the previous strategies, processes retain their state during 

their periods on inactivity. A reactivated process continues processing from the point of last 
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abandonment. The temporary withdrawal of a process does not force the process to re-initialize 

its state. 

The process-oriented simulator schedules the operation of all the processes in a simulation. 

Each process is given the opportunity to execute their actions within the given time frame. 

For a single processor simulator, this operation is accomplished with a quasi-parallel algorithm. 

The illusion of parallelism is imparted by a piecemeal execution of the statements associated 

with individual processes. 

A typical process interaction simulation, as shown in Figure 5.7, employs a future-activations 

list and current-activations list. Storing triplets of the form (a:, la, ta), each list reflects the 

states and activation times of individual processes. Functionally equivalent to a next-event list, 

the future-activations list maintains a list of processes waiting to be activated. The forward 

progression of time is determined by the activation times of the members in this list. The 

current-activations list contains references to processes whose scheduled time has just arrived 

and to processes waiting for their activation conditions to become true. As active processes are 

act.ivated, the conditional tests of suspended processes are examined. Although the current­

activations list is functionally similar to the conditions-list of the activity scanning approach, 

each of the lists serves a slightly different purpose. Items in the current-activation list maintain 

references to running processes while members of a conditions-list represent processes waiting to 

be executed. Components waiting for future activation do not reside in the current-activations­

list. 

5.3 PROCESSES COORDINATION 

In a process-oriented simulation, the primary mechanism of computation is a process. A process 

is an "independent" program or procedure that uses the resources of a system to fulfill its 

goals. This approach to simulation facilitates the definition of parallel activities. After users 

define, describe, and initiate a collection of processes, the underlying simulation architecture 

controls their concurrent execution. The simplicity of this design places a greater burden on 

the simulation engine. Apart from ensuring t-he proper activation and deactivation of processes, 

the engine must protect individual processes from becoming deadlocked. A process is defined 
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Initialization 

Scanning 
Phase 

State 
Transition 

Scan Done? 

Time Advance 

Update 
lists 

Termination 
Test 

1 
2 
3 

4 
5 

6 

7 
8 

9 

10 

Set CLOCK to initial simulation time to 
Set Va's to the initial values Va's of MEMORY-OF-a: variables. 
For each ACTIVE o:: 
--+ la = initial value of CONTROL-OF-a: 

--+ Place (o:, la, to+ O'a) in 
FUTURE-ACTS-LIST if 0'0 > 0 

CURRENT-ACTS-LIST if O'a $ 0 
Set SCAN to top of CURRENT-ACTS-LIST 
(a) Move SCAN down until the first o: is found whose scanned 
triplet (o:, la, t0 ) returns TRUE when the CONDITIONS-OF-a: 
is executed. Denote the winning o: as a. 
(b) Remove (o, la, ta) from the CURRENT-ACTS-LIST. 
Execute ACTION-lo-OF-a associated with activation point la): 

--+ execute f? for each /3 E INFLUENCEES-OF-o. The action 
function will yield new state ( v13 , 113 , u13 ) for every {3. 

--+ if /3 is an ACTIVE type, remove it from the FUTURE or 
the CURRENT-ACTS-LIST. , 

FUTURE-ACTS-LIST if O'p > 0 
--+ Insert (/3, 113 , t/J + o-13 ) in ◄ 

CURRENT-ACTS-LIST if aa $ 0 
If SCAN has not reached bottom of CURRENT-ACTS-LIST goto 5. 
Advance the CLOCK to the time of the first triplet on the 
FUTURE-ACTS-LIST. Let NEXT-TIME-EVENT denote the 
new CLOCK value. 
Remove imminent activations from the FUTURE-ACTS-LIST 
and insert them into the CURRENT-ACTS-LIST. 
If NEXT-TIME-EVENT exceeds termination time, 
then STOP! else goto 5. 

Figure 5.7: Process Interaction 

52 
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to be deadlocked if it is inactive and none of its reactivation conditions can ever become true. 

Because a process-oriented simulation is decomposed into a collection of distinct events, 

users do not design simulations in terms of events. The design philosophies of an event-based 

and a process-based simulation are not equivalent. In an event-oriented simulation, users define 

events and event processing subroutines. The logic associated with every event is developed 

after the events have been created. In a process-oriented simulation, users define interacting 

processes. Focus is on the creation of entities and the descriptions of behaviors. Unlike the 

event-orient approach, it is not necessary to define the logic associated with processes. The 

simplicity of this approach to simulation is derived from pre-defined logic associated with every 

process-oriented statement. 

In process-oriented simulations, processes can simulate the resources of a system or act as 

the active entities of a system. Processes of the former type are labeled as resource processes, 

while processes of the latter type are labeled transaction processes. Neither approach has a 

distinct advantage over the other. The nature of a simulation dictates which process type 

serves as a better tool for a given situation. 

Process-oriented languages contain collections of mechanisms to coordinate the communi­

cation and synchronization of concurrent processes. These constructs facilitate the transferral 

of information from process to process and from process to system resource. In addition, these 

structures attempt to properly handle a variety of conflicts that may arise between processes. 

If a process requests the use of an already busy system resource, the structures must execute 

resolving actions. Typical responses include: the invocation of resource allocation schemes, 

process suspension strategies, and data locking tactics. 

The remainder of this chapter examines three paradigms of process coordination. The first 

section covers traditional approaches, while the last two designs offer alternative proposals. 

Readers wishing to further explore coordination algorithms are directed to examine the plethora 

of articles found in the fields of concurrent systems[32], parallel languages, and simulation[4]. 
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5.3.1 COMMON SCHEMES 

Common process synchronization methods include Hoare monitors, Kessels monitors, Robert & 

Verjus control modules, and Campbell & Habermann path expressions. Each of these techniques 

may be combined in an hierarchical fashion to create elaborate synchronization schemes. A 

monitor is basically a shared data structure accessible by only one process at a time. Most 

monitors contain special constructs to manage waiting queues of processes. Control modules 

separate pure synchronization instructions from the description of the process and are mainly 

composed of sets of methods and synchronization rules. These rules dictate authorization 

for processes to execute particular methods. Path expressions also emphasize the separation 

between the scheduling of and functionality of operations. 

5.3.2 LINDA 

LINDA[l0], developed by Nicholas Carriero and David Gelernter, is an approach to process 

creation and coordination that enables users to organize and control the execution of multiple 

threads. Utilizing tuple-space operations, this approach is based on generative communication. 

Data is never exchanged between processes through messages or shared variables. Instead, 

processes place and receive persistent data objects (called tuples) from a region called tuple 

space. There is no direct communication between individual processes. A tuple can be an 

inactive data object or a "live" computing process. 

It is important to note that LINDA is not a language by itself. It is a conceptual model that 

must be embedded into a base "computing" language. Currently, LINDA has been successively 

combined with C, FORTRAN, and LISP. 

5.3.3 MANIFOLD 

MANIFOLD[3] is a co-ordination language. Its primary purpose is to describe and manage 

the complex interconnections between independent concurrent processes. Based upon a cheap 

lightweight process paradigm, MANIFOLD enables users to explicitly define the parallel exe­

cution of various computational modules. The interaction and communication of autonomous 
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active agents are controlled by addressless messages9 and the activation of global flags. The 

language's primary focus is on how processes are dynamically interconnected during the lifetime 

of a system. The design of reusable components is enhanced by separating the communication 

issues from the functionality of the component modules in a concurrent system. This separation 

enables users to control the operations of co-operating processes at a high level of abstraction. 

In MANIFOLD, processes are black box elements with sets of well-defined ports. Ports are 

joined via connections to facilitate the transferral of information from one process to another. 

Each process is oblivious to the identity of any other process with which it exchanges infor­

mation. The sequential flow of information between process ports is represented by a stream. 

A stream can be dynamically constructed by the sender or receiver of information, or by any 

third party MANIFOLD process. The additive nature of stream definitions enable single ports 

to be simultaneously connected to many other ports. The flows of information in streams are 

replicated or merged at port junctions. 

It is important to note that ports within MANIFOLD processes are separate structures. 

This enables ports to maintain input and output queues, and store tables of connectivity infor­

mation. In addition, ports can be associated with filters that change, combine, and split units 

of information that pass through them. 

In MANIFOLD, the primary mechanism of control is the event. Events are atomic pieces 

of information that define upcoming state changes in the system. As events are broadcast into 

the environment, individual processes select, interpret, and react to each event. It is important 

to note that all events are observed10 asynchronously. Once an event is raised by an external 

source, the process generally continues with its own processing. Every event propagates through 

the environment independently from its source. 

Unlike L.INDA, MANIFOLD is a separate language for defining processes. It allows any 

process to directly influence the execution of other processes. Communication is not restricted 

to a single tuple-space environment. 

9 Addressless message are not directed to be sent to specific places. They roam freely. 
10Because events are not directly sent to processes, they are observed, not received by processes. 
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5.4 SUMMARY 

This chapter has provided a brief overview of several temporal management strategies. Each 

strategy was evaluated according to its method of temporal advancement and its implicit ap­

proach to world modeling. The temporal advancement methodology of a strategy dictates how 

the progression of time is regulated and how the activity of concurrent action is governed within 

a simulation. The world modeling approach of a strategy establishes the perspective from which 

users construct their simulations. 

The table in figure 5.4 compares, in their "purest" form, 11 four of the most popular strategies 

in temporal management. Each strategy uses a different set of structures and primitives to 

provide users with an alternative approach to simulation modeling. 

Primary 
Control Structure 
Temporal Jumps 

Coordination Schemes 
Concurrency Control 

Ease of Use 
State Transition Types 

Discrete-Time 

NA 
NA 

Constant 
NA 
No 

Easy 
None 

Event 
Sched·uling 

Event 
Event list 
Variable 

None 
Yes 

Easy 
None 

Activity 
Scanning 
Activity 

Conditions List 
Variable 

None 
Yes 

Moderate 
None 

Table 5.1: Temporal Management Methodologies 

Process 
Interaction 

Process 
Process List 

Variable 
Many 
Yes 

Complex 
None 

The discrete-time strategy is the simplest to use and easiest to implement. As time flows 

uniformly forward, users apply rules of interaction to the state variables of a simulation. How­

ever, the simplicity of this strategy contributes to its failure to handle complex scenarios. Users 

are not provided with structures to control the passage of time or to schedule the operations of 

state altering actions. 

Discrete-event strategies vary in complexity: from the easy, event scheduling, to the complex, 

process interaction. The complexity of a strategy is directly linked to the world view it implicitly 

embodies. Since not one world view is intrinsically the best, no one discrete-event strategy 

11 The pure form is identified as the first historically attempted strategy of its type. 
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dominants. One world view can neither naturally express nor efficiently process all the forms of 

model description. Unlike the discrete-time strategy, discrete-event strategies have the ability 

to manipulate the passage of time and to schedule the creation and deletion of state altering 

actions. Time may advance non-uniformly and simultaneous actions may occur. 

Although temporal management strategies provide users with an attractive base, they do 

not guarantee the production of reusable simulations. Rules of interaction and simulation 

structures are only supplied to control the passage of time and to schedule the activation of 

state changes. Users are not provided with any structures to facilitate the definition of state 

transitions. This shortcoming, which compels users to define their own types of state changes, 

limits the reusability of a simulation. Distinct simulations which utilize dissimilar structures to 

alter the values of state variables are difficult to combine. 

An ideal reusable temporal management strategy would provide the following benefits: 

• State Transition Times: A set of methods to assist users in specifying the execution 

times, durations, and frequencies of state changes. 

• State Transition Types: A set of extensible structures that define the type and variety 

of state transitions which can occur in a simulation. 

• Multiple World Views: Simulation languages and systems which embody multiple 

world views allow users to construct simulations from multiple points of view. Users 

intermix the various approaches to world modeling to create simulations which naturally 

express and efficiently process their designs. 

• Coordination Schemes: A set of rules and structures to assist users in coordinating 

the actions of concurrent operations. The co-ordination rules will manage the complex 

interconnections between simulation models and regulate the transfer of data between 

them. 



CHAPTER 6 

RASP: THE DESIGN GOALS 

'The time has come,' the Walrus said, 
'To talk of many things: 
Of shoes - and ships - and sealing-wax -
Of cabbages - and kings -
And why the sea is boiling hot -
And whether pigs have wings.' 

- Lewis Carroll, Through the Looking-Glass, Ch. 4 

It is the aim of the RASP toolkit to provide computer graphics researchers, simulationists, 

and robotic scientists with a common set of tools to build applications within their respective 

domains. Providing these users with basic structures enhances their ability to reuse components 

and ideas from previously defined applications. Components of applications from multiple 

domains can also be freely exchanged without sizeable modifications promoting the development 

of new and innovative simulations. Users are not forced to build from scratch each time a new 

application is constructed. 

This chapter discusses the four major goals embraced by the RASP toolkit. RASP solutions 

to each of these goals are described in subsequent chapters. 

6.1 SIMULATION FRAMEWORK 

6.1.1 RULES OF INTERACTION 

A set of tools is ineffectual unless accompanied by a set of rules of interaction. Labeled as 

a framework (see section B.2.3), these rules abstractly define how users organize relationships 

between the various components of their simulations. The precepts of a framework define how 

the state and behavioral patterns of simulation components are regulated. 

58 
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6.1.2 DECOMPOSABILITY 

A framework is extremely useful when decomposable. A partitioned framework enables users 

to control effectively the overall design of their simulations. An organized separation of a 

framework provides users with a standard set of sub-goals. Each sub-goal is used as a measuring 

device for the individual segments of an application. Any segment that fails to meet the 

requirements of a sub-goal fails the regulations of the complete framework. 

6.1.3 COMMUNICATION ARCHITECTURE 

The communication pathways between framework components establish the behavior of an 

object-based system. The transfer of information from one object to another defines the per­

formance and capabilities of a system. A favorable communication architecture promotes the 

design of reusable components, endorses the formation of dynamic connections (links), and 

facilitates the creation of objects directly involved in the communication process. 

6.2 MULTIPLE TEMPORAL STRATEGIES 

The temporal management strategy employed by a simulation system dictates the point of 

view from which users see the system they are modeling. It influences greatly the structure 

and manner in which models and their interactions are specified. The inability of individual 

strategies to express naturally and process efficiently all forms of model description hampers 

the construction of simulations which are generally easy to manipulate, decipher, and reuse. A 

better foundation of simulation development supports the use of a wide variety of formalisms 

and multiple temporal management strategies[97]. Users select the strategy that provides the 

most flexibility to their modeling needs and enables them to construct simulations which closely 

emulate the behaviors of real-world systems. Recent trends which have seen the emergence of 

simulation languages and systems which employ multiple strategies reveal the importance of 

such a design. 
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6.3 TIME AND STATE 

6.3.1 DEFINITIONAL UNIFORMITY 

A basic set of definitions is needed to distinguish the time and state relationship. A clear 

distinction is critical to the design of reusable simulations and the realization of simulation 

foundations. A muddled understanding impedes the communication between model developers 

and model users, contributes to cost overruns, and aggravates model disutility[13]. A defini­

tional uniformity is necessary to clarify simulation concepts, unify simulation structures, and 

facilitate the portability of models[57). 

6.3.2 HIERARCHICAL TEMPORAL MODELING TOOLS 

The behavior of a time-varying simµlation is guided by the nature of its state changes and 

the techniques employed to regulate the progression of time. Therefore, it is important for 

the toolkit to provide an extensible set of temporal modeling tools which standardizes the 

specification of state changes and the employment of temporal management methodologies. 

A standardization adhering to the connection paradigm and conforming to a uniform set of 

definitions promotes the creation of simulations that are easy to interpret, alter, and reuse. 

The need to alter rapidly the behavioral specifications of a simulation at various levels of 

detail requires a natural hierarchical relationship to exist among the set of temporal modeling 

tools. Tools at the highest level administer global changes while those at the lowest level 

administer local changes. A natural hierarchy contributes to stepwise modeling refinement and 

program readability. 

6.3.3 TEMPORAL GRANUALITY 

A simulation is heavily influenced by the granularity of time between system events. In many 

cases, the magnitude of the temporal step size can effect the accuracy of a model. Large intervals 

reduce the precision of many computations. To reduce this problem, many systems let users 

set the size of the maximum interval. Although this approach reduces the possibility of error, 

it can introduce one major side effect. Unless proper structures are defined, it will confine all 
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the operations of a simulation to a single minimum temporal interval. This scheme is extremely 

inefficient for parallel computations soliciting disproportionate step sizes. An improved design 

allows dissimilar computations to operate at disparate step sizes. Although this enhanced model 

burdens the system with the task of organizing unevenly computing operations, it affords users 

with the ability to define optimized simulations. 

6.3.4 MINIMAL KERNEL 

At the heart of every computer simulation resides a simulation kernel. The driving engine of a 

simulation, the kernel employs a temporal advancement methodology (see Chapter 5) to control 

the progression of time, to ensure that every module in a system is aware of the global state, to 

manage the execution of concurrent activities, and to coordinate the activation of simultaneous 

actions. A kernel's design profoundly affects the operation and structure of a simulation. To 

function properly, all the components of a system must adhere to a single organizational pat­

tern. Apart from a possible reduction in a kernel's efficiency, multiple formulations can induce 

undesirable behaviors. 

A kernel's performance and understandability is enhanced when its collection of responsibil­

ities are confined to a small set. Kernels serving many roles are frequently difficult to manage 

and reuse. Although many designers are aware of this fact, it is not uncommon for them to 

add an assortment of miscellaneous operations within their simulation kernels. A system's 

readability and tractability is routinely swapped for system optimizations. For example, some 

kernels are directly responsible for controlling the interaction between user-interface devices 

and the models of a simulation. Although these additions may enhance a system's outward 

performance, this scheme hampers a system's versatility. Operations and functions that are 

incorporated into a kernel are usually difficult to modify or control. 

The diagrams in figure 6.1 illustrate the difference between a minimal and expanded kernel 

design. In the minimal model, the kernel controls only the elements of the system. Each element 

governs a distinct duty. In the expanded model, the kernel fulfills all the expectations of the 

minimal model plus more. This design impedes a system's versatility because it does not provide 

users with methods to alter the behavior of the kernel's additional operations. Although it is 
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Figure 6.1: Simulation Kernel Designs: Items within the grey boxes are internal to the kernels 
and inaccessible to simulation components. 

possible to define constructs to control the extra behaviors, this is not recommended because of 

two unfavorable side effects. First, unpredictable configurations may corrupt the operation of 

the kernel, causing the entire system to crash or generate inaccurate solutions. Second, a kernel 

exhibiting multiple behaviors w:ill induce additional constraints on a users' designs. Users must 

ensure that their designs accommodate various kernel configurations. 

6.4 GEOMETRIC MODEL CONSTRUCTION 

6.4.1 MODEL CREATION METHODOLOGY 

The intrinsic designs of the models in a simulation impose a strict set of constraints on the 

specification of state changes and the transmission of information between system components. 

Similarly, the external interfaces employed by models restrict the range of operations support­

able by the models. Therefore, it is necessary to establish a standard approach to model creation 

which promotes a manageable and extensible internal architecture and a versatile external in­

terface. 

To permit alterations of model traits at various levels of detail, the internal architecture 

must support a natural hierarchical arrangement of information. Major changes are induced by 
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altering information at top of the hierarchy while minor ones are induced by altering information 

near the lower end of the hierarchy. 

To enable models to respond to state changes during runtime, the model's external interface 

must permit the toolkit's temporal modeling tools to access the value of internal state variable 

and to alter the relationships formed between models and their environments. 

6.4.2 RENDERING SUPPORTIVE ARCHITECTURE 

Graphical views of (geometric) models in action are valuable elements of many simulations, 

especially computer animations. They ease the verification and augment the validity of sim­

ulation designs. Therefore, there is a great need to construct models and image synthesizers 

(renderers) which facilitate the translation of model descriptions into visual images. In addition 

to the design goals previously mentioned, a model's internal architecture must support readily 

the interaction between models and renderers. However, this interaction must not lead to the 

development of models and renderers which strongly depend upon each other. A clear division 

must be established to promote independent and reusable design. 

6.4.3 COMPLETE CONTROL 

The design of a powerful toolkit enables users to control dynamically every attribute of a model. 

Providing users with the authority to manipulate many of the individual features of a model 

enhances their ability to create complex systems. The value of every state variable associated 

with a model must be alterable. After state variables have been initialized, operators should 

be available to revise their values during the lifetime of the simulation. 
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RASP:THEFRAMEWORK 

Only connect! 
- Edward Morgan Forster, Howards End, Epigraph 

Recent trends in the field of simulation have demonstrated the necessity to divide the sim­

ulation modeling process into distinct components (see section 4.4). Adhering to a well-defined 

framework, a clear division enables the development of the components of a simulation one at a 

time. After all the individual components have been developed, they can be assembled together 

to form an operative simulation. 

This chapter describes RASP's simulation framework. Discussion entails an examination of 

the patterns of change, a description of the IMVCD Pentad, and a definition of the connection 

paradigm. 

7.1 PATTERNS OF CHANGE 

The essence of every temporal simulation or computer animation involves the continual evolu­

tion of state variables through time. As time progresses forward, a pre-defined set of laws or 

rules modify state variables. These "controlling" rules may influence the literal values of these 

state variables in one of two ways: explicitly or implicitly. Explicit rules precisely dictate the 

values for state variables while implicit rules define the behavioral response pattern for state 

variables. For example (see Figure 7.1), if a rule informs an object to move to a particular 

position, an explicit rule determines the object's position. However, if the object is told to 

move away from its closest associate, an implicit rule influences the object's position. Implicit 

rule are commonly used in activity scanning simulations. For example, in the animation system 

developed by Kab:-a[40], state variables are controlled by behavioral rules. Whenever a specific 

rule is triggered, it alters the state of the system. In either case, if a state variable changes 

value, it is always possible to deduce some motivating factor that is forcing it to change. 

64 
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Figure 7.1: Explicit vs. Implicit Rule 
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Controlling rules can be also classified according to their association to the variables of 

influence and the ways in which they define a change to a variable. If embedded into the design 

of a specific variable, then the controlling influence of change is defined to be internal. However, 

if an influence is not an integral part of a variable, it is labeled to be external. In contrast to 

external influences, the former tightly bind variables to sets of behaviors. The same rules of 

conduct always govern a variable's reaction to foreign stimuli. A variable's behavior is usually 

unalterable. External influences do not elicit unalterable behaviors because they regulate a 

variable's behavior from afar. This loose binding enables users to alter a variable's behavior by 

simply changing its controlling influence. In an object-based environment, one may envision 

an internal motivation as a sub-unit of one monolithic entity while an external influence is an 

entirely separate entity. Figure 7.2 illustrates this concept. 

MODEL 

Behavior#3 

Rule12 

Intemill Influences Extemill Influences 

Figure 7.2: Internal vs. External Rule 

Examples of internal rule are commonly found in many animation systems which support 

"animated basic types". In ASAS[72] and MIRA[52], special variables are defined that au­

tomatically update themselves according to an "evolutionary law". Although ideal for some 
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situations, this is not a suitable control mechanism. Directing an animated type to follow dy­

namically a variety of evolutionary laws can be difficult or impossible. The inability to remove 

or modify an internal rule from any variable type hampers the variable's reusability. 

External rules provide a better device for general control than internal rules because they 

separate a variable from its behavioral patterns. External rules enable users to build inde­

pendent models of change without directly influencing the variables they are manipulating. 

Exemplary usage of external rules is found in the PINOCCHIO animation system[54] and in 

the motion objects of Fiume's temporal system[21]. In both works, external controlling rules 

are associated with state variables to produce sequences of animations. 

7.2 THE 1-M-V-C-D PENTAD 

RASP's simulation framework, known as IMVCD (Informer-Model-Viewer-Controller-Delegator), 

is based upon the development and usage of external controlling rules. Individual models are 

not allowed to make changes to their own state. Only external controllers can induce modifi­

cations to the state variables of a model. Therefore, it is duty of the models of a simulation to 

interpret and execute changes issued by controllers. 

The IMVCD framework is divided into five abstract components, each representing a dif­

ferent aspect of the simulation modeling process. Dividing the process into separate sections 

promotes modular design and enhances the reusability of RASP-built applications. IMVCD's 

object-oriented design provides users with a common architecture and organizational plan to 

build their applications. IMVCD's components, as shown in figure 7.3, include the following: 

• Informer: These elements define the physical traits and immaterial characteristics of 

various models in a simulation. Informational traits are affixed to a common substructure 

to create complex models. Constituents of this group control a model's shape, material 

attributes, associations, properties, and qualities. For example, Figure 7.4 shows a model 

constructed with four Informer objects. 

• Model: All application objects are representative elements of this grouping. Models 

define the physical or active elements of a simulation. External rules place constraints on 
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Figure 7.3: The IMVCD Framework 

Figure 7.4: Model with Informers 

a model's interface to control its interaction with other models. Models are not directly 

responsible for their own behavior. Every model must organize sets of Informer elements 

to regulate its appearance and to react to external influences. A model interprets its 

externally situated constraints to control the flow of information between the external 

environment and its Informer objects. 

• Viewer: Responsible for the production of static images, these objects interpret data 

from the physical models of the systems to form visual displays of a simulation. 

• Controller: The foundation of RASP's bi-level hierarchy of simulation control, these 

objects are "indirectly" responsible for modifications to the attributes and state variables 

of all the models. Controllers do not form direct links with the variables they are altering. 

Rather, they establish constraints on the links that bond the controller and an object's 

interface to induce modifications. This form of external influence promotes the design of 
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Figure 7.5: From Model to Viewer to Image 

"independent" controlling objects. A controller induces a change to its interface, not to 

its controlling objects. State modifications are produced by the propagation of changes 

from a controller's interface to a model's interface. The nature of this scheme permits 

users to construct non-adaptive and adaptive influential links for complex simulations. 

• Delegator: Members from this class of objects serve to control the interactions between 

the Controllers and Models in a time-varying simulation. Forming the upper layer 

of RASP's bi-level hierarchy, these objects administer the linking of component inter­

faces. They delegate to individual Controllers "when" and "how" they are to direct the 

behaviors of the models in a simulation. 

The communication pathways established by the interactions of these five components con­

stitute an integral element of RASP's IMVCD framework. A strict set of rules for data trans­

mission regulates the flow of information between components. In many cases, data. is examined 

by a variety of objects called ports. Ports ensure that legitimate data is being sent from compo­

nent to component. In addition, some ports can signal the occurrence of state changes. Ports 

are discussed in section 7.3.3. 

7.3 CONNECTION PARADIGM 

The IMVCD framework communication architecture is based upon the connection paradigm[55]. 

Based upon first-class links and first-class interfaces, the connection paradigm structures a sys­

tem as a set of components interconnected through unidirectional ports. Component behaviors 

are specified with respect to their ports, not their bindings with other components. Bindings 

between components are formed by elements not directly influenced by the data transferal 
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process. The separation of binding information from behavioral specifications promotes the 

development of reusable components. 

The following three subsection describe the advantages and minor drawbacks of systems that 

adhere to the connection paradigm. Discussion entails the benefits of indirect communication, 

first-class links, and first-class interfaces. 

7.3.1 DIRECT VS. INDIRECT COMMUNICATION 

Communication techniques are distinguished according to their means of establishing data links. 

If a system relegates the duty to the components of the system, it uses a "direct" approach. If 

the components, such as those following the connection paradigm, are not directly involved in 

the establishment of their data paths, the system uses an "indirect" approach. 

In the direct approach, all the components of a system define their own links. They ensure 

that all the communication protocols between themselves and their partners are correct. Al­

though simple and easy to implement, this plan has several drawbacks. First, every component 

must have explicit knowledge of its partner's identity and interface if it wishes to exchange 

successfully information. Second, it can be very difficult to alter an component's partner. Un­

less the new partner has an identical interface to the previous partner, a change may require a 

modification to the repertoire between the two components. Figure 7.6a illustrates the direct 

approach to component communication. 

My partner is •consumer" 

(A) 

------ ' 

~ ""=,~ ~ 
0 '-;_-.:_-;;.' t:7 

My partner Is "???". 

(B) 

Figure 7.6: Direct vs. Indirect Communication 

The indirect approach transcends these drawbacks. In the indirect approach, an external 

governing body establishes all the links between the various compopents of a system. The 
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governing body obtains datum from a "producer" component and delivers it to a "consumer" 

component. This prpcess is illustrated in Figure 7.6b. Individual component do not generate 

their own data links. They are always oblivious to the identity of their partners. Although the 

additional level of indirectness created by this approach is not as efficient as a direct commu­

nicational link, it affords three important qualities to reusable simulation design. 

• Indirect communication enhances the independent construction of complex components. 

Dependencies are extracted from all components. This differs from the direct approach 

which may unnecessarily force users to incorporate dependency information into object 

designs. 

• Indirect connections provide an attractive base for the maintenance of temporally depen­

dent informational pathways because dynamic links are formed and destroyed by external 

sources. This design enables objects to be constructed without any time-varying con­

structs. A component's dynamic behavior is not controlled by the component itself. 

• Multiplex links, as seen in Figure 7.7, are easy to form. Many paths may meet at or 

originate from a single source. Sources and consumers involved in multiplex links are not 

required to manage all their connections. For example, a source with multiple links is not 

required to send repeatedly one piece of datum to multiple objects. 

Figure 7. 7: Multiplex Connection 
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7 .3.2 FIRST-CLASS LINKS 

The indirect approach to component communication requires an external source to define the 

data pathways between individual components. To accomplish this task, the governing source 

may establish passive or active links. With passive links, the external source must ensure 

that proper bonds are formed between compatible components. If a consumer component 

requires a double-precision value, it should not be linked to a producer component that generates 

only "string" values. Unlike p~ssive links, active links are first-class objects. They are well­

defined entities with structure. Performing as moderators between components, they ensure 

the transferal of identical "types" of information from one entity to another. In addition to 

"type-checking", active links can create couplings between incongruous objects. After receiving 

data from a source component, the link can filter or modify the data to an appropriate form. 

, ------
I \ 
, Governing , 

: Body : , 

#'lnt-Cltul UM 

My partner Is •717•, My partner Is •111•. 

Paalve Indirect Link Active Indirect Link 

Figure 7.8: Indirect Link Types 

The diagram in Figure 7.8 and the following set of pseudo-code illustrate the difference 

between the two approaches of component linking. 

procedure passive_indirect_foo( obj producer, obj consumer) 
{ 

a= producer.get(); /• get data from source •I 
if (type(a) == type(consumer)) /• type-check data vith consumer•/ 

consumer.send(a); /• pass data to consumer •I 
} 

procedure active_indirect_foo( obj producer, obj consumer) { 
link bar( producer, consumer);/• create indirect link•/ 
bar.execute() /• pass info along link•/ 

} 
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7 .3.3 FIRST-CLASS INTERFACE 

The structure and definition of passive or active links in any system depends upon the interfaces 

of the components to be joined. Each interface asserts the type and quantity of information 

produced or consumed by a component. In addition, the interface specifies all the prerequisites 

for a component. In common object-oriented languages, such as C++, an component's interface 

consists of a collection of second-class procedures. These routines, called member functions, are 

the interface to a component's internal assembly. Passive elements of a component's framework, 

they serve to ensure the proper transferal of information from the source to the environment, 

and vice-versa. Because they do not retain state or react to messages, member functions do 

not usually manage other types of behaviors or functions. 

Although prevalent in object-oriented languages this type of component interface provides 

limited support for simulation models based on links. The inability of links to obtain informa­

tion, such as data requirements or state changes, from member functions hampers their flexibil­

ity. An interface composed of first-class objects provides a superior foundation for linking-based 

systems. Behaving as member functions, these objects, called ports, provide users with powerful 

mechanism to control the flow of information "in" and "out" of an object. Although ports are 

similar to member functions, they are not easily interchangeable. Their differing designs and 

capabilities induce alternative approach to simulation design. 

Member functions and ports contrast in the following ways: 

Direct access to data members? 
Datafiow 

Can be Queried? 
Component composition? 

Attach Information? 
Ease of development 

Member Functions 
Yes 

Bidirectional 
No 
No 
No 

Easy 

Table 7.2: Member functions vs. Ports 

Ports 
No 

Unidirectional 
Yes 
Yes 
Yes 

Moderate 

• All ports are unidirectional. They are defined as either "in" or "out", but not both. They 

can not alter their directional behavior at any time. 
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• The arity of port routines is at most one. This prohibits all "out" ports from defining a 

list of arguments. Parameter values must be set by an associated list of "in" ports. For 

example, the following member function can not be expressed by a single "out" port. 

int PROCEDURE poof( argument!); I* get arg, run poof & return data *I 

The procedure poof must be partitioned into two separate "port" functions as follows: 

InPort arg1( argument!); 
OutPort poof(); 

I* get argument and store for poof *I 
I* run poof and return data *I 

Although appearing to be a major drawback, this constraint actually enhances the design 

of independent components. Functions that simultaneously edit (consume data) and 

query (produce data) an component's state are not encapsulated into one command. 

The separation of functions enables multiple links to query concurrently the state of 

the component whenever a change occurs. A single function that performs editing and 

querying operations may delay the activation of vital "state" monitoring actions.1 

Compolind Object 
ObjectB 01),JedD 

Ow Part 

lnPart 

<Jul Part 

Figure 7.9: Amalgamated Component 

• A port-based system aids the construction of large "black-box" components from numer­

ous smaller components. Users simply link the "out" ports of components to the "in" 

ports of other components to create amalgamated components. Diagram 7.9 depicts an 

example construction. Without a pre-defined organizational plan, the creation of amal­

gamated components is not possible in member function-based systems. 
1 A state monitoring action is a special function that is immediately triggered whenever a component reaches 

a particular state. 
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• Ports can accept queries and additional arguments not directly related to its purpose. 

For example, a port can be informed to invoke a specific operation when it receives new 

information or observes changes in its associated component's state. 

• Ports are generally harder to implement than standard member functions. Users must de­

fine additional parameters and links to ensure their proper usage. However, this difficulty 

may vanish with future language support. 

Object 

vo.ld aetPosltion( double); 
dou~legelPOiSIUonO; 
vofd setColor( kolor ), 

Object w/Member Functions 

Object 

inPort inPosition(); 

oulPort oulPosition(); 

lnPort inColor(); 

Object w/Ports 

Figure 7.10: Members vs. Ports 

The diagram in Figure 7.10 illustrates the difference between a component created with 

standard member functions and an component created with ports. 

7.3.4 CONNECTIONS VS. DATAFLOW 

The first-class links formed by the connection paradigm are similar to the links found in dataflow 

networks[30, 15]. Each interconnects the components via port-like structures to form a working 

system. However, several key differences exist between the connection paradigm and dataflow 

architecture. First, the nodes in a dataflow network usually perform an operation roughly 

equivalent to an assembly instruction while nodes in a connection paradigm system can have 

arbitrary computational power. Second, the topology of a dataflow network is static while that 

of a connection paradigm system is dynamic. State transition can reorganize the networks of 

connection paradigm systems at run time. This advantageous scheme fosters the development 

of complex systems which closely resemble the real-world systems they model. 
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7.4 IMVCD vs. MVC 

Figure 7.11: MVC Framework 

The IMVCD and MVC[45] (see figure 7.11) object-oriented frameworks share many com­

mon traits. Each architecture decomposes an application into several abstract components and 

each establishes communication pathways between the individual components. In some ways, 

IMVCD may be viewed as an augmented or enhanced MVC framework. However, IMVCD dif­

fers from MVC in many other ways. IMVCD defines an alternate modularization of a system. 

Some of IMVCD's modules generalize certain MVC components, while others partition them. 

IMVCD incorporates temporal information and defines a communication protocol between com­

ponents. The difference between the two frameworks can be contributed to their differing design 

goals. MVC supplies an architecture to design reusable user-interface application while IMVCD 

supplies an architecture to design reusable time-varying simulations. 

MODELS 

MVC modeLs and IMVCD Models are similar in that both represent the active entities of 

a simulation, and both are distinguished by their attribute traits. However, each component 

differs in the way it is constructed. In MVC, models are constructed to follow only a rudimentary 

set of modeling constraints. Users are free to build all the models within a simulation differently. 

In IMVCD, Models are constructed solely to organize sets of Informers objects. No model is 

permitted to deviate from this design. 
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IMVCD enforces its design methodology by requiring all user-defined Models to inherit 

properties and procedures from "model templates". Templates (OOP base classes) define basic 

operations, which Models (subclasses) use to organize Informers and to control the exchange 

of information between Informers and the environment. 

MVC does not support model templates2 because it would be detrimental to its framework. 

It is MVC's belief that " .. the model is completely application-dependent and must therefore be 

implemented by the application programmer."[92] Although this method of model development 

can be viewed as an acceptable manufacturing technique, it does not promote the design of 

reusable models. The lack of a structured design methodology endorses the creation of a wide 

variety of non-reusable model configurations. 

VIEWS 

MVC views and IMVCD Viewers are similar in that both objects produce visual representations 

of the models in a simulation. However, each differs in the number of duties it performs. 

MVC views embrace many responsibilities. They interpret information from models, form links 

between controllers and models, and react to the changes occurring in a simulation. The problem 

with this design is that it promotes the creation of views of monolithic size and it requires views 

to have direct knowledge of the models they are manipulating. These two impediments seriously 

undermine an object's reusable potential. 

IMVCD Viewers avoid these difficulties because they embrace only one responsibility. They 

interpret information obtained from the models of a simulation to generate synthetic images. 

Additional tasks associated with MVC views are distributed to other components. For example, 

link formation duties are relegated to Delegators, while observation tasks are dispatched to 

Controllers and Models. 

CONTROLLERS 

IMVCD Controllers differ from those of MVC's in that the former are "general" manipulators, 

are oblivious to the identity of the models they control and the operations which the models 

2MVC supports templates for its views and controllers, but not for its models. 
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provide, and are not required to inherit properties and data from an abstract controller (class). 

These three properties enhance their reusability: 

Controllers are general because they influence all the states and behaviors exhibited by 

models (or other controllers). They are not restricted to handle only one responsibility, such 

as the one delegated to MVC controllers - to manage the interaction between models and 

user-interface devices. 

Controllers are oblivious to the identity of the objects govern because they do not actually 

interact directly with them. All modifications are relayed from Controllers to models via 

Delegators and ports. This level of indirection, not found in the relationship between MVC 

controllers and models, promotes the construction of controllers which are not constrained to 

interact with only a few types of models. 

Unlike MVC, IMVCD does not require controllers to inherit information from one abstract 

class. The expanded functionality of IMVCD Controllers restricts the creation of such a 

class. One abstract class would hamper the construction of a wide variety of controller types. 

However, it should be noted that this latitude may change in the future. Abstract or base 

classes may need to be created to promote greater reusability. 



CHAPTER 8 

RASP: DISCRETE-EVENT MODELING 

To choose time is to save time 
- Francis Bacon, 1st Baron Verulam, Viscount St. Albans 
Essays, "Of Dispatch" 

Many computer animation systems and robotic applications are based upon a discrete time 

approach. The variables of the system change discretely at specific times. Although easy 

to implement and use, this approach does not provide a robust foundation for time-varying 

simulations. The lack of event scheduling constructs limits the user's ability to control the 

passage of time. In addition, the approach's inability to describe the execution of concurrent 

actions precludes it from coordinating the parallel nature of many simulations. The discrete­

event approach provides a better foundation for building time-varying simulations because 

its variable time step philosophy permits the definition of future actions and events are not 

constrained to occur at pre-defined intervals. 

Temporal systems based upon the discrete-event philosophy can be separated into three 

world views: event scheduling, activity scanning, and process-interaction (see sec­

tion 5.2). Events can be explicitly pre-defined, activated by environmental factors, or initiated 

by running processes. Historically, most simulation systems supported only one world view. 

However, recent trends have seen the emergence of simulation systems which support multiple 

world views. For instance, SIMSCRlPT 11.5[42], SLAM[71], and SIMAN[67] offer users the 

choice to create simulations using events and proces~es. 

This chapter introduces RASP's technique to simulation modeling. Labeled as a multiple 

interface approach, this scheme enables users to design simulations through any of three world 

views in union or separately. 

78 
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8.1 MULTIPLE INTERFACE APPROACH 

All three views toward discrete-event modeling are based upon the creation and activation of 

events. Although each view supports a different design philosophy, their common foundation 

suggests the development of an approach encompassing all three. A multiple interface approach 

to discrete-event modeling enables users to develop simulation systems with pre-defined events, 

conditional events, and processes. 

It is important to distinguish the difference between a multiple interface approach and a 

"combined" approach. The process-interaction approach to discrete-event modeling is a com­

bined approach.1 It enables users to create pre-defined events and conditional activities. How­

ever, it is not a multiple interface approach. Users are relegated to define a process interaction 

simulation with only processes. All events and conditional-events are defined in terms of pro­

cesses. Although one may view this approach to modeling as a positive quality, it does not 

facilitate the creation of simple events and conditional activities. A multiple interface approach 

enables users to create events, activities, or processes using an event, activity, or process inter­

face. 

8.2 ACTIVITY SCANNING MODELING 

An aggregate interface approach to modeling places a heavy burden on a simulation system. 

As ·events, conditional activities, and processes are defined (using three different interfaces), the 

system must translate them into one unified event-based framework. This task is simplified by 

shifting some of the event handling responsibility from the central processor ( of the simulation 

loop) to the data components of the system. Aside from reducing the quantity of computations 

performed by the system kernel, this shift improves the maintainability of a model. It is usually 

easier for users to maintain a system composed of components with minimal responsibilities. 

The activity scanning approach to discrete-event modeling necessitates the inspection of 

contingency tests for conditional actions. Because the activity scanning approach dispatches 

1 Although any simulation approach that supports continuous and discrete time can be defined as a combined 
approach, this is not the definition proposed in this chapter. 
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this service to the simulation kernel, the kernel must maintain a dynamically ordered conditions­

list. After the completion of every event, the kernel scans the list to determine if any activity's 

condition has been satisfied. Apart from imposing an additional burden on the simulation 

kernel, this approach introduces redundant operations. The continual review of unvarying 

conditions is inefficient. If the elements of a condition do not change their state, it should not 

be necessary to evaluate the condition's state. An alternative approach to activity scanning 

transfers the responsibility of contingency condition testing from the simulation kernel to the 

state variables of the system. As variables have their state's altered, they inform all conditional 

tests of their new values. This scheme initiates contingency testing only when it is required. 

Querying operations are performed only after relevant state changes occur. 

Although this alternative scheme has a higher computational overhead, it affords three 

additional beneficial qualities. First, it eliminates the need for a conditions-list. The simulation 

kernel is freed from continually performing tests of conditional activation. Second, it promotes 

the design of reusable first-class conditionals. Developed as an object with "ports", a first-class 

condition possesses state and is viewed as a simulating entity. States variables are linked with 

conditionals during the progression of a simulation. A condit_ional's predicate is evaluated each 

time it receives a new value from one of its external linkages. Third, it contributes to a modular 

approach to simulation development. It coerces users to balance the distribution of conditional 

tests throughout a system. 

8.2.1 FIRST-CLASS CONDITIONALS 

In RASP, conditional predicates are constructed as first-class entities with sets of "input" and 

"output" ports. Input ports values are evaluated by internally-defined predicates to produce 

values for output ports. The values of output ports are altered each time a conditional object 

perceives a change in its input ports. Adhering to the connection paradigm, this scheme enables 

users to construct temporally dependent conditional tests. One conditional object can be 

used to evaluate the states of several variables at specific times. For example, the diagram in 

Figure 8.1 illustrates two configurations of the same conditional entity during different stages 

of a simulation. At time ti, the states of objects A and B are being tested, while at time t 2 , the 
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values of objects A and C are being evaluated. It is important to note that the conditional is 

never aware of the variables supplying its input ports with state values. Its behavior is strictly 

dependent on the values of its "input" ports. 

Condlllonal Object 

Time=t 1 If ln 1> 100 & In.,< 200 tlun Out= TRUE 

Condlllonal Object 
Time=t 2 If ln1> 100 & ln2< 200 tMn Out c TRUE 

Figure 8.1: First Class Conditional 

An activity scanning action is constructed in three steps. First, a first-class conditional 

with n number of input ports is declared. The cardinality of the input ports depends upon 

the arity2 of the conditional's predicate. Second, all state variables involved in the contingency 

test are informed to monitor their states. Any noted state modifications are transmitted to the 

conditional. In the last step, the conditional observes the value of its predicate test. If a state 

change is perceived, the conditional immediately schedule the activation of an event or activity. 

The following segment of pseudo-code illustrates the commands users would issue to define the 

configuration in Figure 8.1. 

FROM t={O, 100} if (object A changes state) then 
''pass values from A and B to CONDITIONAL''. 

FROM t .. {0,100} if (object B changes etate) then 
''pass values from A and B to CONDITIONAL''. 

FROM t={lOl,200} if (object A changes state) then 
''pass values from A and C to CONDITIONAL''. 

FROM ts{101,200} if (object B changes state) then 

FROM t • {0,200} 

''pass values from A and C to CONDITIONAL''. 

if (CONDITIONAL predicate changes state) then 
''schedule nev ACTIVITY'' 

2Computer terminology defining the number of arguments an expression requires. 
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The first two statements apply to the period from t = 0 to t = 100. During this temporal 

interval, the values of objects A and B are observed. The following two statements alter the 

observed variable list to objects A and C. This observation period is established to occur from 

t = 100 to t = 200. Sustained from t = 0 to t = 200, the last statement orders the activation 

of a new activity if the conditional's predicate evaluates as true. 

8.3 PROCESS MODELING 

A process is a powerful simulation modeling abstraction. It enables a modeler to group sets 

of activities, events, and conditions into one functional unit. Without this mechanism, it is 

relatively difficult to construct relations between otherwise unrelated events and conditional 

activities. One might view a process to be a complex activity with dynamic qualities that can 

alter its behavior according to the presence or absence of specific external or internal variables. 

Theoretically, all process-oriented simulation models can be emulated by a system support­

ing only events or activities. However, requiring the definition of complex processes using only 

simple temporal management tools can prove an arduous task. Users risk generating errors 

every time they utilize their own "process-type" constructs. Providing users with "process" 

abstraction tools reduces their time of implementation, enhances their ability to focus on their 

problem domains, and increases the reusability of their designs. 

8.3.1 PROCESS REQUIREMENTS 

A robust process-oriented simulation system must provide users with three important features. 

First, it must support multiple mechanisms for creating communication pathways between pro­

cesses. This includes structures for synchronous and asynchronous communication. Second, it 

must provide constructs for the resolution of conflicting requests of exclusive-use resources. It 

should not allow for competing processes to access simultaneously restricted sources of infor­

mation. Third, structures for processes to receive and to send information to their environment 

must be available. Processes must coordinate their activities with other processes and resources 

to accomplish their aims. 
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8.3.2 PROCESS STATES 

In a process-oriented simulation, every process is an individual entity. It interacts with other 

processes and uses the resources of a system to fulfill its immediate goals. The runtime envi­

ronment for a process-oriented simulator must manage the interactions between processes and 

regulate the behaviors of processes according to their states. At any time during its lifetime, a 

process is in only one of three states. It may be idle, holding, or waiting. A process awaiting 

activation ( or reactivation) is deemed to be idle. Idle processes neither invoke operations nor 

affect the state of other processes in a system. A process enters a holding state when awaiting 

simulated time to pass. Viewed as an interrupted process, a holding process resumes execution 

after its waiting time expires. A process is in a waiting state when it is accessing an unavailable 

data server (resource). A process withdraws from a waiting state immediately after the data 

resource becomes available. 

Process-oriented simulators implemented on single processor machines require a scheduler 

to govern adequately the actions of the concurrent processes. The emulation -of a genuine 

parallel management system is accomplished with an interleaving technique, such as those used 

in multi-tasking operating system. As the simulator leaps from process to process, it executes 

enough code for each process until it advances it to its next state. This incremental scheme 

ensures that every process progresses through time at the same rate. 

8.3.3 PROCESS DEFINITION 

All process-oriented languages provide developers with special constructs or commands to con­

struct processes. Based upon their approach to process assembly, process-oriented languages 

can be classified as either program-based or object-based. 

In program-based languages, a process is defined by a collection of routines or procedures. 

Each time a process is required to interpret information or change its state, one of these routines 

is invoked. The major disadvantage of this approach is that it does do not allow multiple 

instantiations of a single process. Users must duplicate code segments or define "state" caching 

statements to initiate repeated instances of an individual process. Notable program-based 

languages include GPSS[77], SLAM[71], and CSIM[79). 
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In object-based languages, processes are instances of process templates. Each template is 

composed of a collection of routines and data members that defines the logic of a single process. 

Every instance of a template defines a new process. This approach to process assembly offers 

three distinct advantages. First, processes are first-class objects and are manipulated as basic 

elements of the simulation language. They may be used in the following ways: (a) as parameter 

values to functions or other processes; (b) as return values of functions; ( c) as arguments of 

equality or inequality tests; or (d) in assignment to process variables. Second, processes may be 

instantiated more than once. The use of templates facilitates the creation of similar processes. 

Third, it is possible to embed protocols of interaction into a process' design. Processes can be 

supplied with rules to regulate their employment during a simulation. For example, a process 

may be specified to govern selectively the visibility of its ·operations according to its state. This 

mechanism can ensure that the process is properly manipulated by external influences. Notable 

object-based languages include SIMULA[6], HSL[74], and Concurrent-C++[24]. 

8.4 RASP PROCESS 

The RASP toolkit uses an object-based approach to process modeling. Processes are created 

from general process templates. To enhance a process' efficacy, the toolkit provides users with 

additional constructs to control their progression through time. Commands are furnished to 

initiate, suspend, and terminate a running process. These tools facilitate the placement of 

processes into the hierarchy of temporal tools. To promote greater reusability, the toolkit 

advocates a set of design rules for the development of processes. These guidelines enforce 

users to construct processes as an enclosed entities interacting with their environment only 

through unidirectional ports. Conforming to the connection paradigm, this design methodology 

is consistent with the regulations administered by the IMVCD framework. 
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8.4.1 PROCESS STATES 

A process' period of activity can be confined to a closed temporal interval.3 Not commonly 

used in process-oriented languages,4 this scheme enhances users' abilities to construct variably 

operating processes. At any point during a simulation, a process may be coerced into an active 

or inactive state; thus the five5 behavioral states are defined as follows: 

• idle: Processes are defined to be idle if they are not actively attempting to alter one or 

more of the state variables of a simulation. Inactive processes do not process informa­

tion or wait for time to pass. Processes are declared idle before their first summons to 

activation and immediately after they have been deactivated. 

• active: A process is declared active if engaged in processing information. A process will 

enter an active state: (1) immediately after initializing; (2) directly after it has waited 

for time to pass; (3) as soon as a locked resource has been freed; or (4) after it subsides 

from a suspended state. 

• holding: A process waiting for time to pass is defined to be in a holding state. A holding 

process can not query the environment or react to external events. It is (usually) the 

responsibility of a process to define the length of time it is to remain in a holding state. 

After a 'process' holding time has expired, it immediately passes into an active state. 

• waiting: Some processes require direct interaction with their surroundings. Often, they 

will attempt to use or alter the resources of a system. However, not all resources may be 

readily available when they are requested for use by a process. When this situation occurs, 

a process can respond in two ways. First, it can alter its conduct to avoid utilization of the 

unavailable resource. This behavior does not (usually) require the process to forebear its 

processing of information or to suspend itself temporarily. Second, it can wait indefinitely 

for the resource to become obtainable. If a process chooses to pursue this second option, 

3The association of temporal periods with processes is described in section 9.2.4. 
4 Except for languages using light-weight threads. 
5RASP processes exhibit two additional states. However, this may change in the future. 
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it will be placed in a waiting state. A waiting or "blocked" process instantly becomes an 

active process the moment the previously unavailable resource becomes available. 

• suspended: A suspended process is temporarily inoperative. It does not engage in any 

information processing tasks, and is not waiting for external events or holding times 

to expire. Only processes defined to be in an active, holding, or waiting state can be 

suspended. 

8.4.2 PROCESS DESIGN 

The reusability of an object's defin.ition in a programming environment is directly influenced by 

the measure and type of constraints incorporated into the object's design. Design constraints 

establish the domain of an object's usage. An object's domain is easily expanded or altered 

when it is easy to alter its embodied constraints. Therefore, to enhance an object's usage, it 

should be clear how to identify and modify the object's constraints. In section 7.3.1, it was 

shown that indirect links coupled with a first-class interface affords important qualities to the 

design of reusable components. Objects purposely using indirect links reduce the exactness and 

highlight the identity of their constraints. Viewed and defined as objects in the RASP toolkit, 

processes can also utilize indirect links. The usage of indirect links, which alleviates an object 

from knowing the exact identity of its interacting companion, enhances the design of reusable 

processes. 

Influenced by Manifold[3], the connection paradigm, and Kerridge's port language (CPP)[44], 

RASP processes are designed to interact with the environment through first-class "ports", uni­

directional data entry or egress gateways. A process obtains or transmits data through its 

set of ports. Datum transfers occur only through ports. Although process languages, such 

as SIMULA, CSIM, and Concurrent C, support port-like structures,6 each language's port de­

vices apply only to incoming information. This scheme empowers processes to be oblivious of 

their data sender's identity but requires them to be aware of their data receiver's identity. To 

transmit data to its environment, a process must notify every data receiver of the impending 

transaction. This difficulty does not arise when processes issue data through output ports. After 
6 CSIM's "mailboxes" and Concurrent C's "transactions" are similar to RASP process ports. 
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a process transfers information to its ports, the system is responsible for advancing the data 

from the ports to the appropriate receivers. 

This process design scheme separates communication issues from the functionality of process 

modules. Processes are developed independently of a context. The communication pathways 

between collections of processes and data entities are specified by users after a process' design 

has been completed. In RASP, all pathways are constructed with the assistance of a set of tem­

poral management tools (see section 9.2). These tools establish links between separate objects 

(processes) contingent upon the value of time or the observation of state changes. Unlike well­

known process organization paradigms, such as Communicating Sequential Processes[32], the 

communicational pattern between distinct processes is not fixed at compile time. The topology 

of the communication network and the potential connectivity of individual processes is estab­

lished and alterable during run-time. The ability to change dynamically the communicational 

patterns of a running simulation can better emulate the properties of a real world system. 

8.4.3 MESSAGE PASSING 

In process-based systems, processes interact via message passing. The transfer of information 

occurs when one process transmits a message to another. Message passing schemes are classified 

as either synchronous or asynchronous. In the synchronous model, distinct processes synchro­

nize their behaviors to accommodate the transfer of information. This scheme requires one or 

both of the processes to suspend (block) their behavior until the delivery of information is com­

pleted. In asynchronous (non-blocking) message passing, processes do not block to transmit or 

receive information. Communicating processes are not enforced to synchronize their behaviors 

to exchange data. Synchronization methods are replaced with message buffers and sizable mes­

sage controllers. As data flows from process to process, it must pass through a message buffer 

to enter or exit a process. "Bufferless" schemes are used when the loss of information between 

processes is deemed as acceptable. 

RASP processes support three types of message passing schemes: asynchronous send, asyn­

chronous receive, and synchronous receive. Although a general plan to permit "synchronous 

send" is not defined, it does not imply that it is not possible to formulate. This commonly used 
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message passing scheme is consigned under the topic of future work. 

ASYNCHRONOUS MESSAGE SEND 

A process sends messages asynchronously by setting the value of one or more of its "output" 

ports, whereupon it continues to execute. The simulation kernel directs the data from the 

process' outport ports to the "input" ports of other objects or processes. It should be noted that 

RASP ports do not buffer information. Immediately after new data arrives, old information is 

overwritten. Thus objects or processes loose old values unless they choose to cache it themselves. 

The impact of buffering ports into RASP design is consigned for future work. 

ASYNCHRONOUS MESSAGE RECEIVE 

A process asynchronously receives a message by polling one of its "input" ports for a value. 

If a new value is not available, the process suspends its progress for an explicit period of 

time, after which the process is free to re-examine its input port or execute other procedures. 

This temporary suspension mechanism is vital to process-oriented simulations implemented on 

single-processor machines. A process continually polling its ports for values without repose 

hinders the forward progression of a simulation. An enormous amount of processor time would 

be devoured by this non-stop polling process. 

SYNCHRONOUS MESSAGE RECEIVE 

To receive messages synchronously, a process examines one of "input" ports for a value. Unlike 

the asynchronous method, the failure to obtain a valid value does not force the process to 

re-examine its ports at a later time. A failure induces the invalid "input" port to block the 

process' progression and wait for the arrival of information. Upon obtaining a valid value, the 

port notifies the blocked process to restart its state of operation. The diagram in Figure 8.2 

shows a few lines of pseudo-code delineating the steps involved in the reception of a synchronous 

message. 
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Input A 
Process 

Input Resume 

If (A has no value) 
wait for A. ------;~ when (A receives a value) 

notify system to resume Procel!IS 

Figure 8.2: Synchronous Receive 

8.4.4 BENEFITS 

89 

The construction of independent processes is enhanced by alleviating each process from ac­

knowledging the identity of its data partners. Eliminating the "naming" restriction allows 

processes to be developed without concern for the demands and requests of its surrounding 

environment. In addition, port-based processes afford four important qualities to simulation 

design. They are as follows: 

• Parallelism: Although the current toolkit is not devised to take advantage of parallel 

architectures, its design can be modified for concurrency. The influence of Manifold, Con­

current C, and Kerridge's CPP language, to RASP's design advocates the development 

of a parallel toolkit. 

• Reusability: The ability to develop RASP processes with little regard for the envi­

ronment where it interacts contributes to the design of reusable processes. Liberating a 

process from its external constraints enables it to be used in a wide variety of applications. 

• Composition: The toolkit's black-box approach to process development encourages the 

creation of composite processes. Consolidated processes are formed by an orchestration of 

user-defined connections. All unconnected ports serve as the ports for the new composite 

process. The diagram is Figure 8.3 depicts a complex process created from a collection of 

smaller processes. 

• Proper Usage: Process ports are useful to ensure a process' protocol for usage is ob­

served. As a port is provided with a value, it can signal its governing process to disregard 
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Compound Process 
Process 8 Process D 

Out Port 

InPort 

Proc:ts., C 

Out Port 

Figure 8.3: Composite Process 

information from other ports. This scheme safeguards the process from attaining improper 

values or ascertaining a corrupt state. 

8.4.5 COROUTINES 

In a process-oriented simulation, all active processes execute in parallel. Each process may 

be viewed as a self-governing entity. Unless specifically defined, there are no naturally occur­

ring hierarchical relationship existing between separate processes. Therefore, a process-based 

simulator must be able to guide fairly the concurrent actions of multiple processes. Unfortu­

nately, this is not truly possible to accomplish on machines with only one central processing 

unit (CPU). However, the quasi-parallel execution of processes may be achieved by making 

each process temporarily suspend its thread of execution after it has performed a subset of its 

operations. This technique enables multiple processes to carry out their patterns of behavior 

at approximately uniform rates. 

The traditional procedure-based approach to programming does not permit routines totem­

porarily suspend themselves. Once they exit their train of execution, their procedure instances 

are terminated. This problem can be alleviated by utilizing special routines called "coroutines". 

These routines enable suspended routines to become reactivated after having been dormant for 

indefinite periods of time. Reactivation automatically restores the pre-suspension state of a 

routine. All variables and registers are reset to their previously active values. Most impor­

tantly, reactivation will begin execution from the point immediately following the statement 
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which suspended the process. 

Despite their apparent usefulness, coroutines are not directly supported by the popular high­

level languages. They have only been provided by specialized programming languages, such 

as SIMULA and BLISS. Fortunately, it is possible to emulate the functionality of coroutines 

within basic languages. This can be accomplished in two ways. First, assembly code can be 

developed to store and restore the registers of the stack. This would enable users to explicitly 

suspend the execution of any routine. The major drawback to this method is that one must 

write a different set of assembly code for each machine used. Second, the explicit features of a 

programming language can be manipulated to store states of routines and bypass segments of 

code. Although this method preserves the portability of code, it requires users to incorporate 

additional constructs into their programs. This drawback can be eliminated via the development 

of a language pre-processor and/or definable macro expansions. 

The RASP toolkit employs the second method. It requires users to incorporate basic struc­

tures into their code. This enables standard procedures to emulate coroutines. 

8.4.6 UNRESOLVED ISSUES 

The RASP toolkit provides users with a common framework to define processes and describe 

their interactions. Although this scheme provides enough guidance for the incorporation of 

processes in a simulation model, it does not attempt to resolve every issue associated with 

process-oriented simulations. Common design problems, such as deadlocking, process priorities, 

and port visibilities are not addressed. 

8.5 INFORMAL DESCRIPTION 

Using Zeigler's informal description, RASP's multiple interface approach to simulation modeling 

is structured as follows: 

1. Components: 

The set of components is partitioned into two groups: D = { o:1 , 0:2, ... , O:Af} and E = 

{ ¢1, ¢2, ... , ¢ N}. Each partition is divided into ACTIVE and PASSIVE types. ACTIVE 
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components impose changes to a system, while PASSIVE types retain their state unless 

acted upon by others. 

2. Descriptive Variables: 

Every ACTIVE-D is described by its state, time to activation, set of influencees, and set of 

influencers. At any moment in time, an ACTIVE-D is defined by its value, its capability 

to alter the states of other components (D or E), and its ability to be altered by others 

components (D or E). ACTIVE-E's are described by the same set of characteristics, 

except that their states are defined by the values of their local variables and the status of 

their control instructions. 

STATE-OF­
CONTROL-OF­
MEMORY-OF­

TIME-LEFT­
INFLUENCEES­
INFLUENCERS-

Range 

±oo 
D,E 
D,E 

ACTIVE-a 
Value 

s,. 

u,. 
{,8v1, • • • , ,OvM, .aEu · ••> ,OEN} 
{/3 D1'" " · '7J DM' 7J E1' .. " ' 7J EN} 

3. Component Interaction: 

Range 

L,t, 
V,t, 

±oo 
D,E 
D,E 

ACTIVE-¢> 
Value 

{O, 1, 2, . . . , M} 
V,j, 

U,j, 

{.8Du • • • 1 ,OvM, .aE1, •• •,,OEN} 
{jj D1' " • " ' 7J DM' 7J E1' '' ' '?JEN} 

• For each ACTIVE-a a local transition function { 60 } is specified. Given the union of 

the current values for the INFLUENCEES-a and INFLUENCERS-a, the function simply 

produces a new list of values for INFLUENCEES-a7• 

Active & Passive Substate Active & Passive 

Inf luencees0 

Influencer s0 

(s13D1 'Uf3D1 ), .. . 'Sf3Dm' ( ( l, v;, a;) (l13E2 'Vf3E2' Uf3E2 ), ... 'Vf3En ) 

- (s-13 , a-13 ), ... , s-13 , ((l, vq,, aq,)(l-13 , '!h;/3 , a-13 ), ... , '!h;/3 ) 
D1 D1 Dm E2 E2 E2 En 

60 [Influencees0 , lnfluencers0 ] = 

! 
f a(Jnfluencees0 , lnfluencers0 ) 

((sf3D1 'Uf3D1 - t(s)),. •. 'Sf3Dm' 

((l, Vq,, Uq,)(l13E2, Vf3E2, Uf3E2 - t(s)), ... , Vf3EJ 

if Ca(Influencers 0 ) = TRUE 

otherwise 

7Except for the inclusion of variables associated with t/>, this local transition function is similar to the one 
described section 5.2.2. 
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• For each substate of ACTIVE-¢ a local transition functions { 8~} is specified8 • 

Influencees~ = 

Influencers~ -

(s/JD1 'UfJD1 ), ... 'SfJDm' ((v41, a41)(l/JE2' VfJE2' UfJE2 ), ... 'VfJEn) 

(s~ ,a~ ), ... ,s~ ,((v41,a41)(la ,~,a~), ... ,~) 
I' D1 I' D1 I' Dm I' E2 I' E2 I' E2 I' En 

o~[Influencees~,Influencers~] = 

l 
f~(In f liLen cees~, Influencer s41) 

((s/Jv1•a/Jn1 - t(s)) , . .. ,SfJv.,.. , 

( ( V<t, , a <t,) (l(Js
2

, Vf3E2, UfJe2 - t( s) ), ... , VfJEJ 

if C~(Influencers~) = TRUE 

otherwise 
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To integrate this approach with the toolkit's set of temporal tools (section 9.2), a description 

of a prototype multiple interface simulation is withheld until section 9.3. 

8Except for the inclusion of variables associated with a, this local transition function is similar to the one 
described section 5.2.3. 



CHAPTER 9 

RASP: TIME AND STATE 

We must use time as a tool, not as a couch. 
- John Fitzgerald Kennedy, 
The Observer, "Saying of the Week", Dec 10, 1961 

A simulation specifies how a system changes over time. The validity of a model is compro­

mised if it lacks descriptive declarations of important state changes. Before users can specify 

vital state changing information, they must have a clear understanding of the relationship be­

tween time and state. The association of time and state imposed by the structure of a simulation 

language severely effects a user's comprehension. Therefore, it is essential to provide users with 

a precise set of "implementation-free" 1 definitions which carefully characterize the state and 

time relationship. 

This chapter describes the relationship between time and state in the RASP toolkit. It is 

"implementation-free" design. Basic definitions, important classifications and descriptive labels 

are discussed in detail. It should be noted that the following deliberately attempts to conform 

the terminology in this section to the descriptions used in Nance's theory of time and state[57] 

which has provided an excellent foundation for the development of the RASP toolkit. The 

chapter concludes with an informal description of RASP's multiple interface to simulation and 

a description of RASP's simulation kernel. 

1Implementation-free ideas or objects were not designed to conform to any specific programming language. 

94 
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9.1 TIME REPRESENTATION 

9.1.1 TIME STRUCTURE 

An important design of any simulation language is the specification of a time structure. The 

structure of time defines the unit of measurement for a temporal system. Time can be mapped 

to the set of rational numbers, floating point numbers, or integer numbers. Although an integer 

valued time axis is used in many simulation languages, the RASP toolkit uses floating point 

numbers. Real numbers provide a better foundation for continuous time simulations. The 

inability to specify actions at non-integer times constrains all time-varying simulations to a 

discrete-time foundation. 

9.1.2 CENTRAL CLOCK 

Every simulator maintains an internal clock whose values represent the passage of time. Since 

the definition of the system's state is often a direct function of time, the behavior of the 

simulation clock is important. All simulations created with the RASP toolkit observe one 

global clock. The state of this clock represents the "absolute" time of a simulation. Although 

there is only one timepiece, the toolkit does not constrain users to reference continually the 

global clock as the only source of a "time" value. The nature of RASP's temporal management 

tools enables users to design a variety of modeling situations relative to "local" time frames. 

9.2 TEMPORAL MANAGEMENT TOOLS 

The RASP toolkit provide users with a set of temporal management primitives to produce 

scripted animations or self-governing simulations. These primitives are divided into two groups: 

action types and governor types. The two primary action types, events and processes, serve to 

alter the values of state variables within a system. The two primary governor types, activities 

and processions, serve to manage the behavior of action types and to dictate when action 

types become active. The well-formed relationships (shown in Figure 9.1) formed between the 

primitives facilitates the construction of complex simulations. 
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Figure 9.1: Breakdown of Temporal Tools 

9.2.1 EVENTS 
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Representing non-decomposable elemental actions, an event promotes a modification to the state 

or structure of a system. These modifications include function calls, simple data transactions, 

and link declarations. All events produce instantaneous changes to a system. It is important 

to note that events do not possess any temporally based information. It is not an event's 

responsibility to regulate its conduct through time. The exclusion of temporal information 

enables users to concentrate on the development of system changes without concern for when 

they are to occur. 

Although all event-driven languages support the concept of an "event", most of them do 

not define structures for the creation of an "event". The pervasive ideology of most simulation 

languages is that all events should be created by users. Users create events for the system to per­

form. The lack of common event types contributes to the hardship of joining two independently 

constructed models. A common foundation does not always guarantee an effortless process of 

model assembly. In addition to facilitating the integration of two models, a classification of 

event types enhances the language's reusability and ability to create complex simulations. 

The RASP toolkit introduces a set of event "templates". Developed to take advantage of the 

connectionist structure imposed by the toolkit's design, each event type executes an important 

state changing operation. Events are defined as follows: 

• CallEvent: This is the simplest type of event. It performs only one function during 

actuation. It simply activates (executes) a target port. There is no transfer of data or 

analysis of port state. 



Chapter 9: RASP: Time and State 97 

• Event: An instance of this type of event performs one of two actions. When triggered 

by the simulation kernel, it may transfer data from a source port to a target port, or it 

may execute any procedure requiring no arguments. 

• TimeEvent: This type of event is similar to an Event. It supports two types of actions 

and can be specified during run-time. Only the functional requirements of the two events 

differ. A TimeEvent does not require a source port and it can only execute a procedure 

requiring one argument of type "double". 2 When this event is triggered, a system time 

value is transmitted to either the target port or the single argument procedure. 

• StateEvent: This event type is unlike any of the three other events. Never explicitly 

activated by the simulation kernel, its actuation is entirely dependent upon the state of an 

associated source port. If the port changes state, this event type will immediately trigger 

the occurrence of another event or activity. Events of this type facilitate the building of 

any models requiring an activity scanning world view. Once a StateEvent is activated, it 

remains active until disabled. 

• DisableEvent: Given a source port, this event type clears the port of all previously 

associated StateEvents. 

• ChainEvent: In many simulations, several sets of events occur simultaneously or execute 

in tandem during a single instance of time. Requiring the user to continually pass the 

individual elements (events) of each set can become burdensome. This onerous task 

is alleviated by using ChainEvents. This collection type (class) enables instances of 

Events, TimeEvents, StateEvents, and CallEvents to be grouped into one single 

multi-action event. 

9.2.2 EVENT ACTIVATION 

When an Event or CallEvent is triggered, each event type executes one or more of its associated 

set of actions. Target ports are activated or data is transferred between two locations. The 

2Time values are of type "double" to accommodate the floating point time axis established in section 9.1.1. 
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result of activating a TimeEvent or StateEvent is not as simple. The activation of a TimeEvent 

provides a port (or procedure) a temporal value. This value is elicited from either the "global" 

system time or the "local" lifetime of an activity. It is the responsibility of the user to specify 

the time frame from which the temporal value is deduced. This is usually specified when an 

event is created. 

0 1 

I 
K---- Activity 
I 

~ t 3 4 

Local Time = 1.0 

Absoltute Time = 2.5 

I 

- - - - ;i,,J 
I 

5 6 

Figure 9.2: Absolute vs. Relative Time 

I .- Simulation Time 

The diagram in figure 9.2 illustrates the difference between the "global" and "local" time 

frames. One explicit instance of time is labeled twice. The first label indicates the "local" 

value, while the second label indicates the corresponding "global" value. In the "local" frame, 

a "zero" time value is defined to be the beginning of an activity. Zero time in the global time 

frame is defined by the beginning of the simulation. 

The behavior of a StateEvent is dissimilar to the three other event types. Its activation 

may or may not produce any noticeable results. When activated by an activity, this event 

type notifies an associated port to signal the occurrence of any change in the port's state. 

Immediately after receiving a positive state change affirmation from the port, the event will 

direct the appearance of its associated action or activity. It should be noted that the state 

inspection request does not endure forever. The query is recalled the moment the event's 

activity is deactivated. 
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9. 2. 3 ACTIVITIES 

Activities3 are used to associate temporal information with events. They provide meaning 

(purpose) to collections of otherwise independent events. Only when an activity obtains an 

"active" state can its corresponding set of events become "active". The systematic activation 

of events defines an occurrence. An occurrence represents a continual action occurring over a 

finite length of time.4 Although every activity delimits the duration its existence, no activity 

can trigger itself. Actuation notification must come from an external source. The inclusion 

of self-triggering mechanisms would unnecessarily clutter the structure and operation of an 

activity. 

Timing information governs the state of every activity. Defined as an ·interval, this span 

establishes two important rules of conduct. First, it defines a set of conditions to transform a 

"passive" activity into an "active" one and vice-versa. Conditions delimit specific instances of 

time or identify prerequisite conditions to signal the beginning and termination of the activity. 

Second, it defines the temporal rate at which the activity is to progress. An activity with a 

high rate executes its events more often than a low rate activity. This important feature allows 

concurrent activities to advance time using different increments. 

Every activity partitions its events into one of three categories. Each classification defines 

a different frequency and timing patterns for its set of events. Categories are as follows: 

• Initial Event: Events placed in this category are instantly activated when its governing 

activity is assigned an "active" state. These events will be triggered only once during the 

lifetime of the activity. 

• Acting Event: Every event assigned to this group will be continually activated for 

the entire duration of its ruling activity's "active" existence. Events will be activated 

during the initialization, advancement, and termination of the activity. It is important 

to note that all "initial events" trigger before all "acting events" at the beginning of the 

31n the activity scanning approach (described in section 5.2.2), activities are delimited by two successive 
events and are defined to represent the state of an entity over an interval of time. RASP activities differ in that 
the delimiting events need not be successive and the state of the entity may vary. Allowing events to occur in 
between enables users to model simple continuous actions. 

4This is not entirely true. An activity may be defined to endure for an infinite length of time. 
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activity's life span. Similarly, all "finish events" execute after all "acting events" during 

the completion of the activity. 

• Finish Event: Events set in this category are immediately activated when their governing 

activity is completing. Nothing occurs between the activation of final events and the final 

moment of the activity's existence. 

Events are placed into one or Jl!.Ore categories. No regulations exist as to the quantity or 

type of events linked with each category. Therefore, an event may simultaneously belong to 

more than one category and to several activities. 

I I 

:-=- - - - Activity - - - - --l 
I 

-+-+-~1~·· 1-I --+---t-....... i--+--+--+--+--+-1 '-· +---ll__.., Simulation Time 

0 2 3 4 5 6 

Figure 9.3: Activity Event Partitions 

9.2.4 PROCESSES 

In the RASP hierarchy of temporal tools, processes are ranked at a level equivalent to events. 

This ranking does not imply that processes are identical to events. It implies that both temporal 

primitives are manipulated in a similar fashion. Each requires the assistance of an activity to 

initiate their actions and manage their temporal existence. A process' activity determines 

the exact time when the process is triggered. Unlike events, once a process is activated, it 

can be designated to exist for an indefinite length of time. Until terminated, the process will 
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continually accept information and alter the state variables of the system as time advances 

forward. A governing activity can not alter the progression of an indefinite process after it has 

been initiated. Regardless of the designated time span of a process, RASP activities do not 

have the ability to alter the internal behavior of any process. 

A process can be terminated in one of three ways. First, it can intentionally discontinue its 

state of activation. When a process completes it last operation, it will not require reactivation. 

Second, it can receive a termination message from an external source, such as other processes, 

routines, events, etc. Third, the process' governing activity can expire. Unless explicitly desig­

nated to exist for an indefinite length of time, a process can endure only as long as the activity 

which initiated it. 

9.2.5 PROCESSIONS 

A governing entity for collection of activities, a procession organizes sets of activities, activates 

them in chronological order, and controls their behaviors. Through a procession, activities 

are placed into a common event-list. 5 This list determines the order in which activities are 

processed. 

Procession Procession Procession 

!f--Activity#l-+-Activity#2-,j > Ir- Aclivity ti +-Adlvity 11'2 ...JI > !f--Activity#l-+-Activity#2-,, > 

JO 20 30 JO 17.5 25 25 35 

Figure 9.4: Variational Timing of Processions 

Each procession defines a "local" timeframe. Through specifying the placement of activities 

within the timeframe of a procession, users form temporal relationships among collections of 

activities without references to the global clock. A procession's placement in absolute time 

defines the activation times for its set of activities. In addition, this design makes it easier to 

shift, contract, or expand the timing patterns of a set of activities. Figure 9.4 illustrates the 

timing intervals of three processions containing identical activities. The interval in the middle 

5Every Procession utilizes two event-lists. One list maintains a set of "waiting" activities, and the other list 
contains a collection of "active" activities. 
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has been temporally contracted while the right one has been shifted forward five units in time. 

9.2.6 HIERARCHICAL STRUCTURE 

SimulatlonKemel 

Figure 9.5: Simulation Hierarchy 

The relationship between RASP events, activities, processes, and processions forms a natural 

hierarchy, as shown in Figure 9.5. It provides users with a well-defined conceptual framework 

for the modeling of time-varying simulations. The responsibilities of each node at any level in 

the tree are clearly delineated. The effects of modifications applied to the parameters of any of 

the temporal primitives is localized. 

9.3 RASP'S KERNEL 

RASP's kernel is designed to take advantage of the toolkit's multiple interface approach to 

discrete-event modeling and its hierarchy of temporal tools. Simulations are defined using a 

combination of events, contingent activities, and processes. Using an object-oriented approach, 

the kernel minimizes the size of its control algorithm to a simple set of steps by apportioning , 

duties to the set of temporal tools, such the activation of events and the maintenance of process 

activation points, 

RASP's kernel simply stores and manages the processions of a simulation. Through ex­

amining of each procession, the kernel advances time forward. The kernel does not maintain 
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any type of sorted list and it is unaware of the existence of events, activities, or processes. The 

kernel's purpose is to manage the progression of time. 

A procession stores and manages the activities of a simulation. Activities are partitioning 

into two groups according to the value of simulated time. Those waiting for activation are placed 

into a "waiting activity" list while those already activated are placed into an "active activity" 

list. Both lists are sorted by activation times to facilitate the rapid retrieval of activities with 

earliest activation times. A procession serves to organ~ze activities (for the simulation kernel). 

An activity stores and manages the events of a simulation. Events are partitioned into 

three groups according to their frequency, as described in section 9.2.3. An activity serves to 

organize events and define the temporal granularity between events (for the simulation kernel). 

The diagram in Figure 9.6 illustrates the interactions which occur between the kernel and the 

toolkit's temporal tools. The direction of the arrows indicate the flow of information between 

the components. 

MULTIPLE INTERFACE SIMULATION 

The diagram in Figure 9.7 shows a complete expansion of the algorithm driving RASP's kernel.6 

The algorithm's object-oriented design, shown in Figure 9.6, is omitted to emphasize its ,overall 

structure. The statement in line 9 enables users to restrict the temporal jump size of a simulation 

to a maximum value. This restriction allows users to design discrete-time simulation without 

specifying enormous numbers of events. Future enhancements, which further decompose the 

RASP kernel, may decide to consign this restriction to a kernel subclass. 

6Variables used in the diagram are described in section 8.5. 
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3. Calculate new CLOCK time. 
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Figure 9.6: Object Kernel Design 
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Initialization 
1 Set CLOCK to initial simulation time to 
2 Set AMAX-TIME to initial value Ao 
3 Set state variables So. 's to initial values of so. 's. 
4 Place every ACTIVITY in a PROCESSION's WAITING-LIST 
5 Place every PROCESSION in the PROCESSION-LIST. 

Scanning Phase 
6 (a) Scan the PROCESSION-LIST to determine which PROCESSION's 

-+ PASSIVE-LIST has the ACTIVITY with the smallest 6. Let 8 denote the winner 
-+ ACTIVE-LIST has the ACTIVITY with the smallest w. Let w denote the winner. 

(b) Set NEXT-EVENT-TIME to the smaller of 6 and w. 
7 Set AN EXT-TIME to (NEXT-EVENT-TIME - CLOCK). 
8 (a) Examine the ATIME-INC of every ACTIVITY in each PROCESSION'S 

ACTIVE-LIST. 
(b) Let AREQ-TIME denote the temporal step that satisfies every ACTIVITY's 
requirements. 

/ AMAX-TIME if(AMAX-TIME < AREQ-TIME) 

9 and (AMAX-TIME < ANEXT-TIME) 
Set ANEW-TIME= ◄ 

AnEQ-TIME i f (AREQ-TIME < ANEXT- T IME) 

AN E XT- TIME otherwise 
Time Advance 

10 Advance the CLOOK by ANEW-TIME· 

List Update 
11 Move every ACTIVITY in each PROCESSION's PASSIVE-LIST with u < 0 to its 

corresponding ACTIVE-LIST. 
12 Remove every ACTIVITY in each PROCESSION's ACTIVE-LIST with u = oo. 
13 Mark every ACTIVITY in each PROCESSION's ACTIVE-LIST as unselected. 

Tie Breaking 
14 Apply SELECT1 to every PROCESSION's ACTIVE-LIST. Let AAct denote the list 

containing the winning ACTIVITY of each PROCESSION. 
15 Apply SELECT2 to the AAct• Let ACT denote the final winning ACTIVITY. Mark 

ACT as selected. 
State Transition 

EVENTS1nit and EVENTSAci, if CLOCK = ACTtime-begin 
16 Invoke ACT' s EVENTSAcb and EVENTS Fini if CLOCK= ACTt,me-end 

, EVENTS Acta otherwise 
17 Adjust the state for every INFLUENCEE-,B-OF-ACT-EVENTSANY• 

(a) For every ACTIVITY-,B with: 
-+ up < oo, place ACTIVITY-,B in the PASSIVE-UST containing ACT. 
-+ up~ 0, place ACTIVITY-,B in the ACTIVE-UST containing ACT. 

(b) For every EVENT-,B, invoke its operation. 
Any Activities Remaining? 

18 If there exists an unmarked ACTIVITY in any PROCESSION's ACTIVE-LIST, 
then goto 11. 

Termination Test 
I 19 U NEW-EVENT-TIME exceeds termination time, STOP. Else goto 6. 

Figure 9. 7: RASP Multiple Interface Kernel 
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CHAPTER 10 

RASP: GRAPHICAL MODELS 

People see only what they are prepared to see. 
- Ralph Waldo Emerson, Journals, 1863 

A place for everything and everything in its place. 
- Samuel Smiles, Thrift 

Visualizing the attributes, behaviors, and actions of a simulation enhances the transfer of 

information. Graphical views serve as valuable tools for the development, explication, and 

augmentation of complex simulations. The visualization process is especially important to the 

production of computer animations. Visual representations of time-varying models aid in verify­

ing the validity of any simulation. The visualization process can be segmented into two phases, 

model creation and data-to-image translation. In the model creation phase, the components of 

the simulation are linked with visual attributes. Common attributes include geometric shapes, 

physical properties, and material characteristics. Data-to-image translation entails the genera­

tion of computer images from the data of the first phase. Component attributes are interpreted 

for rendering engines to form resplendent pictures. 

This chapter presents RASP's approach to model creation and data-to-image translation. 

Discussion includes an analysis of previous approaches to the visualization process and a de­

scription of a new design which improves upon these previous approaches. 
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10.1 MODEL CREATION 

The primary purpose of the model creation phase is to create "visual" entities with "informa­

tional" characteristics. Properties associated with models define their appearance and shape. 

For time-varying systems, the ability to dynamically manipulate all the characteristics of an 

model proves essential. 

There are two traditional approaches to model creation. Popularized by computer graphics 

toolkits[35, 89, 92, 46, 83], the first approach forms models by amassing physical, material, and 

viewing primitives into one large ordered list. Users edit the elements of the list to produce a 

visual change to an model's appearance. The diagram in figure 10.lA demonstrates the usage 

of the display-list approach to model creation. A red cube is placed along the x-axis. The ben­

efits of this approach include the simple incorporation of new attributes and a straightforward 

protocol to hierarchical modeling. 1 Although simple to use and implement, the display-list 

approach has two major drawbacks. First, models are first-class entities. The lack of a formal 

object-oriented interface prevents users from directing queries or creating local changes to a 

model. In addition, users are not separated from an model's internal representation. Although 

previous works by [92, 46, 83] layer an object-oriented interface on top of the display-list struc­

ture, these approaches do not attempt to conceal the display-list implementation from users. 

Model procedures (data members) are primarily used to edit the display list structure. Second, 

to alter a specific trait of a model, the attribute's position in the display-list must be known. 

This requirement usually entails the creation of "tags" or tables of "index" or "path" values. 2 

The second approach to model creation uses geometric primitives to represent basic geo­

metric shapes, such as a cube, square, etc. As shown in Figure 10.1B, a primitive's appearance 

is defined by its associated set of "visual" characteristics which are attached to them using a 

pre-defined set of procedures or member functions, A model's capability is expanded by adding 

new functions to its inventory of operations. There are several benefits to this design. Inheri­

tance and polymorphism assist in the creation of compatible model interfaces. For example, in 

GRAMS[18], all primitives are sub-classes of the abstract class "GraphicObject" that defines 

1In Phigsl89], attributes not defined in a sublist are inherited from the sublist's parent. 
2The position of an element in a hlerarchical data structure can be represented by a "path" . 
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Figure 10.1: Display-list vs.Geometric Primitive 
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the common attributes and member functions for all primitives. In addition, "pure" virtual 

declarations require the creation of a collection of routines by all of its inheritors. Model are 

first-class entities and sets of operations that may be performed by them are publicly known. 

Models are defined by their operations, not their internal implementation. Lastly, complex 

geometric figures are created by hierarchically combining collections of primitives. 

Although this approach to model creation is powerful, its strengths are also its weaknesses. 

First, models may become difficult to use or manage as repeated addition of new operations 

produce "enormous" models that use more memory and are not easy to modify or extend. Sec­

ond, geometries are not usually modifiable. Most definitions enable the primitive to change its 

representation but not its overall shape.3 In a complex simulation, an model's entire appear­

ance may need to change. Third, a model's interface that does not provide access to specific 

encapsulated data structures or data members may hinder an model's usefulness in time-varying 

environments. A model may be unusable if it is not possible to animate all of its features. 

The discrepancies between the display-list and geometric primitive approaches can be at­

tributed to their dissimilar aims. Each model emphasizes a different aspect of object modeling. 

In the display-list approach, importance is placed on the hierarchical ordering of geometrical 

shapes and the attributes needed for image rendering. The content and quality of an image are 

defined by a one-pass traversal of the elements in the display-list because traversed elements 

3 A sphere may be represented by a collection of quadrilaterals or one large triangular mesh. The representation 
is different, but its external shape is still spherical. 
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change the state of the rendering process. Although the geometric primitive approach provides 

rendering support, the primary emphasis is placed on unifying the interface between users and 

models. The definition of first-class models with clearly defined member functions enables 

users to manipulate models as "physical" objects. The disparate placement of importance is 

highlighted in figure 10.2. 

© 
Uaer 

Geometric 
Primitive 
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Object 
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Attributes 

Display-List 
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Rendering Syatem 

Figure 10.2: Object-User vs. Object-Render 

10. 1. 1 THE HYBRID MODEL 

The RASP method of model creation combines the two approaches. Based on an object-oriented 

design, this hybrid model uses a unified user interface and rendering architecture. Models are 

first-class entities while visual characteristics are referenced in a display-list fashion. Slots and 

ports provides a simple method to manage and manipulate the internal structures of any model 

during a simulation. 

Proper11es 
Color: R,d 

T,:,tu~Map: Clu,curboard 

Hit?: Balll2 

Figure 10.3: Object "Ball" with three features 



Chapter 10: RASP: Graphical Models 110 

In the hybrid model, an model is defined as a collection of "unordered" slots.4 Each slot 

contains a reference to a feature object that controls the primary function or the regulation of 

a set of attributes. For example, in Figure 10.3, the model "Ball" has three slots: geometrical 

information, material attributes, and collision data.5 To add additional feature objects to a 

model, users simply create new slots. 

The hybrid model approach discourages the creation of massive models by delegating ad­

ditional duties to other feature objects. Hybrid models do not define new operations and are 

not in themselves, a geometrical primitive. An model's shape is defined by its geometrical 

feature object. There are two primary benefits to this design. First, an model's shape can be 

easily manipulated because geometry is a not a part of an model's definition. It is a separate 

feature. Second, object features allow the geometry of an model to change without affecting its 

additional characteristic attributes. For example, if model "Ball" in figure 10.3 alters its shape, 

it retains its material attributes and collision data.6 

ATl'RIB_SLOTS 

Figure 10.4: Hybrid Model Inheritance Tree 

The diagram in Figure 10.4 shows the relationships of components (classes) of a hybrid 

model. The solid lines represent direct inheritance links, the dashed lines identify component 

4Because slots are unordered, tags a.nd tables are not required to access specific slots. 
11 Collision data is associated with models to facilitate collision detection operations. 
6Collision data will probably need to be recalculated. 
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employments,7 and the solid circles define object slots. A HYBRID..MODEL represents a hy­

brid model, while the descendants of the class GEO-8ASE describe geometrical shapes. A 

GEO-8ASE type object is a feature object in each instance of a HYBRID_MODEL. Classes 

derived from the base class GEOMETRY define geometric classes, while GEO_OBJECTS store 

collections of GEO-8ASEs. This organization facilitates the hierarchical construction of com­

posite geometries. The classes, GEO_OBJECTS and HYBRID..MODELS, inherit the ability 

to store feature objects in slots from the class ATTRIB_SLOTS which enables hybrid models 

and collections of geometrical objects to define their own feature objects. Although sets of 

geometrical objects are not required to define supplementary features objects, this property 

provides added flexibility in the design of complex hybrid models. For example, the illustration 

in Figure 10.5 portrays the visual and internal representation of a hybrid model composed of 

two spherical shapes of differing colors. 

Visual Repreaentation Internal Repreaentation 

Figure 10.5: Complex Hybrid Model: Dark circles represent slots, while the arrows define the 
contents of the slots. Solid arrows emphasize the location of geometric slots. 

Note that every slot established within ATTRIB..SLOTS does not necessarily control a 

single attribute or function of a model. Often, groups of similar features are clustered into 

one slot. For example, one of the primary slots defined within ATTRIB..SLOTS refers to a 

"material properties" feature object. This object manages the attributes defining a model's 
7 A class employs another class if it utilizes that class within its internal representation. 
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"visual" appearance. Coupling features allow changes to a model's attribute set to occur at 

two levels of detail. A single feature may be manipulated as an individual object or as a part 

of a larger set. Coupling also provides a simple organizational pattern for the management of 

feature objects. The hierarchical grouping of attributes reduces the complexity of managing an 

extensive list of features. 

10.1.2 "FEATURE" PORTS 

In the hybrid model, all slots are governed by feature ports. Each port regulates the contents 

of its associated slot during the lifetime of a simulation. Adhering to the connection paradigm 

of section 7.3, these ports enable users to induce changes to slots according to a well-defined 

script or as a consequence of the activation of a series of indeterminate events. For example, the 

following set of pseudo-code changes an model's color at the halfway point of the simulation. 

1 MaterialObject colorR = red, colorB = blue; 
2 Sphere sph; 
3 
4 send sph.attribPort = colorR at time t=1; 
5 send sph.attribPort = colorB at time t=15; 
6 
7 do simulation from t=1 to t=30; 

Feature ports are not simple variables or member functions as the preceding lines of pseudo­

code may indicate. They are first-class entities with their own set of routines that act as 

administrators for slots. Data is sent to a port; ports do not point to data. Additionally, the 

statement in lines four and five do not actually send any information to the port attribPort. 

They are actions to be performed at a particular time in the simulation. This additional layer of 

indirection between an action and an model's internal components structures any changes made 

to a model's features and ensures that slots receive the correct type of information. Figure 10.6 

shows an model with its associated ports. 

10.2 DATA-TO-IMAGE TRANSLATION 

The data-to-image translation phase uses information from the model creation phase to generate 

visual images by directly translating or interpreting information from the models of a scene. 
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Figure 10.6: A model with its "feature" ports 

As simple as this task may seem, no general approach has achieved widespread acceptance in 

the computer graphics community. The diverse set of requirements of rendering and geometry 

groups hampers the design of a common extensible interface for the two disciplines. Common 

difficulties include: the inability of renderers to support all model shapes and characteristics, 

an model's failure to produce alternative representations, and the inability to introduce new 

functionality and algorithms into the data-to-image translation process. 

A variety of techniques have been used to administer the data-to-image translation phase 

of the visualization process. The following list, provided by [18], provides a brief summary of 

an assortment of methods. 

• Multiple geometries, multiple renderers: In this approach, every renderer is knowl­

edgeable of all types of geometries. Though simple, this method requires the development 

of complex renderers. In addition, extending the capabilities of the model can be arduous 

because of the many dependencies between the geometries and renders. 

• Conversion to common primitive(s): Advocated in systems developed by [88, 95, 46], 

this technique requires geometrical objects to be decomposed or translated into a single 

or common set of primitives before being forwarded to any renderer. The reduced set 

of primitives permits the development of moderately sized renderers. In this approach, 
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geometries may become overly complex because of the necessity of providing a set of 

methods to decompose themselves into ail primitives. In addition, a renderer that can 

efficiently handle a larger set of primitives will not be used to its fullest capability. 

• Common interface: In this approach, a common interface is established between the 

modeling and rendering components. The interface defines a standard set of routines, 

data formats, and data communication mechanisms that must be supported by both 

geometries and renderers. Renderers do not need to be familiar with geometrical types 

and the independent construction of geometrical objects is enhanced. Research systems 

described in [29, 87, 68, 63] follow this approach. The additional complexity of geometrical 

objects constitutes the major drawback .of this method. 

• Single primitive: This method restricts all modeling to one geometric primitive. Al­

though this design reduces the complexity of the rendering components of a system, it 

unduly burdens users - they must spend considerable time editing and combining the 

single primitive to generate their geometric objects - and it may be difficult or impossible 

to produce certain geometries. Modeling testbeds described in [22, 61] adhere to this 

approach. 

10.2.1 MULTIPLE GEOMETRIES, PRIMITIVES, AND RENDERERS 

The RASP toolkit's data-to-image translation technique represents as a combination of the 

"multiple geometries, multiple renderers" and "conversion to common primitive" approaches. 

Each renderer specifies the type of geometric representations it can render, and every geomet­

rical object identifies the type of geometric representations it can form. The union of these 

two lists defines the form used to render a geometric object. Based upon work by [18], this 

method promotes the independent construction of image renderers and geometric objects. New 

geometries can be created without the need to update existing renderers, and similarly, new 

renderers can be produced without knowledge of the existing geometries. 

In the combined model, every renderer is a first-class entity composed of a set of rendering 

routines and two distinct lists. Each list is used for the data-to-image translation process. The 
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first list, the primitive list, contains the primitive geometric types that the renderer can use. 

Values are assigned to this list immediately after a renderer is instantiated. The second table, 

called the geometry list, stores a similar list of types, but unlike the first list, every entry in this 

list corresponds to a different geometric type and defines the method of data exchange between 

the renderer and all of its known geometric types. To render a geometric object, the renderer 

examines its geometry list and notifies the object of what representation type it must produce. 

Not containing static values, each entry of the geometry list is updated during the lifetime of 

a simulation. Usually performed at the beginning, every object informs the set of renderers of 

the type of representations they can supply. Renderers cross-reference this information against 

its primitive list to generate values for its geometry list. The caricature in Figure 10. 7 depicts 

the formation of both lists for a rendering object called Renderer. 

0 
0 

I Geo-Obj«t "Bar" I 

0 
0 

I Geo-Obj«t "Foo" 

+ 
(,,_,_"°_,,'8,C,D. ) 

0 
0 -- Renderer 

Primitive U.t 

A.B,C,D 

Geometry Lui 

0/,jod Typ, 'Foo'·> B 
0/,jod Typ, 'Bar' ·> D 

Figure 10. 7: Renderer Object List Formation 

Although permitting the independent construction of geometries and renderers, this dual­

list scheme requires all geometric objects to support more than half the members of a common 

set of representation types. Any object that fails this requirement is not guaranteed to be 

renderable. For example, if a geometric object can not produce a particular representation 

type for a single-type renderer, it will not be possible to produce an image. However, if both 

objects are constrained to support a minimalistic set of representations, it will always be possible 

to create an image. 



Chapter 10: RASP: Graphical Models 116 

10.2.2 IMAGE CREATION 

During rendering, a renderer object is passed to every geometric object in a scene. Each 

geometric object passes geometrical information of an appropriate type to the renderer. To 

determine the suitable type, the object notifies the renderer of its type and identity. Using 

this information, the renderer searches its geometric list to locate the appropriate form of 

information it should receive from the geometric object. Once the geometric object is told 

what graphic representation to produce, it generates the proper information and passes it to 

the renderer - this includes a complete set of material attributes. Since all this information is 

encapsulated within the object's material attributes slot, the material feature object is the only 

item that needs to be passed to the renderer. The following lines of pseudo-code identify the 

basic set of function calls required to generate a single image. 

PROCEDURE drawObject() { 
1 Object ball; 
2 Sphere sph; 
3 Renderer rend; 
4 
5 ball.addGeometry( sph 
6 
7 rend.addObject( ball 
8 
9 ball.render( rend); 

I• create an object •I 

) ; 

) ; 

} 

I• create a spherical geometry •I 
I• create a renderer•/ 

I• set the object's geometry•/ 

I• let render know about object, so it 
an entry for it in its ''geometry'' 

generate 
list. •I 

The following lines of pseudo-code detail the operations of ball . render on line 9 above. 

MEMBER FUNCTION Object: :render( Renderer rend) 
{ 

1 I• ask renderer for appropriate data type•/ 
2 type= rend.getType( geometryldentity, ME); 
3 
4 /• generate the appropriate data•/ 
5 representation= makeData( type); 
6 
7 I• send material info the renderer •I 
8 rend.sendMaterial( materialFeatureObject ); 
9 
10 I• send data to renderer •I 
11 rend.sendData( representation); 
} 

Currently, renderers require only the geometric representation and material attributes of 

any model. However, since future renderers may request supplementary information, every 
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model passes its identity to the current renderer. This operation is exemplified in line 2 above. 

The value "ME", representing the model being rendered, provides the renderer with a reference 

to use in requesting additional data. 



CHAPTER 11 

RASP: THE IMPLEMENTATION 

When we build, let us think that we build forever. 
- John Ruskin, The Seven Lamps of Architecture 

This chapter discusses the implementation of the RASP toolkit. It is intended to exemplify 

the power and flexibility of the toolkit's design. Although the library is exclusively developed in 

C++, it does not preclude the development of a similar toolkit written in another programming 

language. The selection of C++ was driven by three motivating factors: 

Abstraction capabilities To properly realize the toolkit's design, it was essential to be able 

to construct high-level abstractions that support the object-oriented ideology. The ability 

to create objects and to define relationships between various types of objects was of vital 

importance. 

Platform availability Practicability constraints limited language selection to its availability 

on various hardware platforms. The importance of image synthesis to the toolkit's design 

encouraged the selection of a language supported by machines specializing in computer 

graphics application development. 

Popularity To entice users to develop applications with the toolkit, it was imperative to select 

a language with widespread acceptance. Many users are easily discouraged from using 

libraries and tools constructed with uncommon languages. 

c++ was the only language that satisfied all three design criteria. 
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11.1 CLASS DESIGN 

In C++, the main abstraction mechanism is a class. A class enables users to define their own 

data types. Classes serve as templates from which objects (data types) are created. Every class 

consists of a set of data members and member functions. Data members represent the state 

variables of an object while member functions represent operations that are applied to data 

members. Users invoke member functions to alter the state of an object. A class' interface is 

defined by the number and type of member functions it possesses. 

11.1.1 MEMBER FUNCTION CLASSIFICATION 

Although a class' usefulness is primarily judged by its design and functionality, a class is deemed 

to be useless if it is unreadable. If users can not rapidly correlate an association between a 

class' member functions and its functional objectives, the class will be difficult to use. Ob­

scure or abstract public interfaces obfuscate the intended meaning of a class. To clarify a class' 

implementation, every header file1 in the RASP toolkit segments each class' set of member func­

tion into six distinct categories. This scheme enables users to identify member functions with 

commons aims and to determine swiftly the general purpose of individual member functions. 

Influenced by [51]'s classification plan, class member functions are categorized as follows: 

• manager: The construction and destruction of class instances are governed by manager 

member functions. Management activities, such as initialization, assignment, memory 

management, and type conversion, are performed by these of functions. 

• interface: Explicit duplication and equality testing operations are defined as interface 

members. These member functions provide users with a variety of methods to copy a 

single object or test the equality of two distinct objects. 

• access: Any function that enables users to access private data members are incorporated 

into this category. Functions of this type are usually preceded with the prefix "set" or 

"get". Predicate operating functions are also included in this set. 

11n C++, header files are distinguished by ".h" endings. 
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• implementor: Functions that serve to invoke the capabilities associated with a class' 

abstraction are placed in this category. In general, the behavior of a class object is 

altered when functions of this type are activated. 

• helper: All protected or private member functions are defined to be helpers. These 

functions are not intended to be invoked by users. They serve to perform hidden auxiliary 

tasks. 

• operator: Any function that operates to work on instantiated objects of a class are 

placed in this last category. All testing functions, pseudo-math like functions, and logical 

operation functions are listed under this category. 

• port: Port member functions are unlike all the previous member functions because they 

do not induce state changes or return the values of data members. They return ports 

( "in" and "out") which are similar to member functions. Ports offer users an alternative 

class interface more appropriate for simulation. 

The result of applying this classification scheme to a class' member functions is illustrated 

in the following class definition. The general aim of each member function is quickly determined 

from its classification grouping. 

class Rectangle { 
long x,y, x2, y2; /• data members•/ 

public: /• member functions•/ 

/• manager functions•/ 
Rectangle() ; 
Rectangle( long, long, long, long); 

/• interface functions•/ 
Rectangle• copy() const; 

I• access functions •I 
long left() const 
long height() const 

/• implementor functions•/ 
void translate( const long, const long); 
void scaleFromCenter( const ); 

{ return x;} 
{ return y2-y; } 
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}; 

/• operator functions •I 
Rectanglet operator=( const Rectanglet ); 
Rectangle operator•( const long); 

I• port functions•/ 
OPort• outX(); 
IPort• inX(); 

private: 
/• helper functions•/ 
void initialize(); 

11.1.2 IDENTIFYINFO CLASS 
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Many regular classes and abstract classes in the RASP toolkit inherit information and properties 

from the base class ldentifylnfo. This base class supplies its inheritors with data members 

and member functions to manage their identity. For clarity, most references to the base class 

Identifylnfo are omitted from many of the diagrams and discussions in this chapter. Readers 

are advised to examine Figure D.1 for a complete diagram of the toolkit's inheritance tree. 

11.1.3 ROGUEWAVE CLASSES 

To alleviate the creation of many common data structures, the RASP toolkit uses various cl~ses 

from the RogueWave class libraries. The RogueWave library set[73], developed by Rogue Wave 

Associated, is composed of Tool.h++, Math.h++, and Matrix.h++. Although the header files 

and documentation for these libraries are slightly obscure, their usage is highly recommended. 

Further references to RogueWave classes and data structures are omitted from this chapter for 

clarity. 
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11.2 WORLD MODELING 

This section describes the basic concepts and essential programming constructs found in all 

RASP built simulations. It provides a brief overview of the four required components of a 

visual simulation: Setting, Cameras, Renderers, and HybridModels. A fully-functional 

simulation can not be created without at least one instance of each these components. 

11.2.1 THE SETTING 

The heart of every RASP simulation, the Setting describes the global environment, initiates the 

progression of time, and invokes rendering routines. Users specify the parameters and contents 

of the setting. By analogy, the setting is the stage on which all the models of a simulation 

perform. A stage is empty unless the director places objects, lights, and actors on it. 

Users must specify at least one Renderer, Camera, and Window to synthesize static 

images of the simulation. The camera holds the viewing parameters of the rendering. One may 

visualize the parameters of the camera as defining the location where the camera sits relative 

to a stage where actors are performing. 2 The window defines the size and type of user-interface 

window to be displayed on users' screens and it delimits the size of viewing screens for cameras. 

This latter feature is important because Cameras do not define the size of their own viewing 

screen. Extracting the size of the viewing screen from a camera's definition permits users to 

construct independently new camera types and window types. 

The following sample program, redsphere.c, creates a simple image of one red sphere. It 

explicitly renders the sphere once, then quits. 

main() 
{ 

/• Create a setting and a renderer•/ 
RaspSetting vorld; 
GLRenderer3D glRend; 

/• create a user interface vindov •/ 
fRect vi ndRect( 0, 0, 200,200); 
GLWindov3D vind( vindRect, "RedSphere EJ:ample" ); 
vind.open_vindov(); 

2RASP cameras may be place anywhere, even on the stage 
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} 

/• create a camera•/ 
Camera ltamera( "Example Camera" ) ; 
ltamera.setViev( Point3(20,35,110), Point3(0,0,0) ); 
kamera.associateWindov( wind); 
kamera.associateRenderer( glRend ); 
vorld.addObject( kamera ); 

I• create a red sphere•/ 
Sphere sph1( 10. ); 
HybridModel obj1( Point3(0,0,0), sph1 ); 
vorld.addObject( obj1, BASIC_RED ); 

vorld.renderlll(); 

The first line of the program initializes the object variable world to an instance of a 

RaspSetting. The second line creates an instance, called glRend, of a GLRenderer3D. This 

object represents a renderer that utilizes three-dimensional GL-library3 calls to synthesize its 

images. 

The next group of lines creates a GLWindow3D window. The argument windRect represents 

the size and location of the window. The following set of lines creates a Camera named "Example 

Camera". Along with its instantiation, the camera's viewing parameters, associated window 

and renderer have been set. Notice in the final line that the kamera is added to the world. 

Without this statement, the world would not be able to draw anything. 

The last set of statements creates a red sphere. Just like the camera, the ball is added 

to the world because all objects must be placed into the setting if they are to be recognized. 

However, objects need not be placed into the setting at the beginning of a simulation. They 

may be added at any time during the course of a simulation. The final statement informs the 

setting to render everything. 

11.2.2 HYBRIDMODELS 

In the last example, two separate statements were used to create one spherical object. Unlike 

standard object-oriented graphics libraries, RASP distinguishes between objects and geometries: 

• Attributes of HybridModels represent those aspects of an object that are independent 

of its geometrical configuration. Properties such as surface color, position in world space, 
3GL (Graphics Library) is a. registered trademark of Silicon Graphics, Inc. 

I. 
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texture, and identity are examples of non-geometric attributes. 

• Geometrical classes, such as Sphere, only contain information directly associated with its 

geometric shape because direct incorporation of non-geometric attributes only increases 

the complexity of a class' design. For example, in RASP, all Geometry-based classes are 

constructed within a local reference frame. Their position in world space is not defined 

in their class designs. 

In the RASP environment, instances of either class can not stand alone. Only via the 

combination of both classes can an object be useful. An object without geometry does not have 

form while a geometry without an associated object does not have real world properties. The 

many benefits of this separation are: 

• independent construction of ( complex) geometrical classes. 

• animation of an object's geometry allowing an object to changes its form and shape during 

run-time. 

• multiple objects with (pointers to) the same geometrical configuration. Animating the 

common geometrical form will change all the shapes of the relating entities. 

• an efficient hierarchical construction of geometric objects. Non-geometrical informational 

attributes are not repeatedly stored within the multiple levels of the hierarchy. 

The following example illustrates the creation of two geometric entities: a cube and a cubic 

spline. For clarity, all statements concerned with the construction and control of cameras, 

windows, and renderer have been omitted. 

main() 
{ 

I• Create a setting•/ 
RaapSetting vorld; 

/• create a cube-oid object (6x6x5) at the global origin•/ 
Cube cube( 0, 0, 0, 5, 6, 5 ); 
HybridModel obj1( Point3(0,0,0), cube); 

/• set color to RED and add to vorld •/ 
obj1.setColor( BASIC_RED ); 
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} 

vorld.add0bject( obj1 ); 

/• create a cubic spline at location (10,10,0) in global space•/ 
Basis sBasis( CUBIC_BASIS ); 
Spline spl1( 10, sBasis, FALSE); 
BybridModel obj2( Point3(10,10,0), spl1 ); 

/• set color to BLUE and add to world •I 
vorld.add0bject( obj2, BASIC_BLUE ); 

vorld.renderAll(); 
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After creating the world, the first group of statements creates a cube of length, width, and 

height of five units, assigns this geometry to obj 1, and places it at the origin in global space. 

The following statements assign a RED color to obj 1 and adds it to the setting. 

To create a spline-based object, spl1 a basis function (class), the ten control vertices spline 

is assigned to obj 2, which is placed at location (10, 10, 0) in global space. Finally, obj2 is 

assigned a BLUE color while it is being added to the world. 

Note the difference between the two addObject statements. In the first call, no color 

argument is given. The object is added to the setting without declaring a color. This small 

example illustrates an important feature found throughout the RASP library - there are many 

ways (function-calls) to produce matching results. Multiple methods permits the design and 

development of many diverse programs. 

11.2.3 MULTIPLE VIEWS 

The RASP architecture does not limit the number of Renderers, Windows, Cameras, or 

HybridModels present in a setting. It does not even place a limit on the number of RaspSet­

tings. However, the current toolkit does not support the parallel execution of multiple settings. 

Multiple setting can only be executed in tandem. Therefore, the usage of numerous setting is 

not advised at this point. 

The following example illustrates a simple model with two cameras, two renderers and 

two windows. Please note the appearance of several member function calls not shown in the 

previous examples. These additional functions illustrate the high degree of control users possess 

in altering and defining the parameters of a model. 
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void main() 
{ 

} 

I• create 11. setting and tvo renderers•/ 
RaspSetting world; 
GLRenderer3D glRend; 
OptikRenderer opRend; 

/• camera attributes•/ 
fVector viewp (-1.0, -1.0, O. ); 
dAngle fovx = 90., fovy = 90.; 

I• create 11. 3-Dimensional GLWindow •/ 
fRect w( 100., 100., 300., 200 ); 
GLWindov3D •wind= new GLWindow3D( v, "Test", TRUE); 
vind->open_window(); 
vind->setColor( DlRK_GREY ); 
wind->clear_windov(); 

/• create a basic window•/ 
fRect w2( 0, 0, 100, 100 ) ; 
Windov •wind2 = new Window( v2, "Test"); 
wind2->setColor( DARK_GREY ); 

I• create a camera•/ 
Camera camera( "Main Camera" ) ; 
camera.setViev( Point3(20,35,110), Point3(0,0,0), vievup, fovx, fovy ); 
camera.setClipPlanes( .001, 3500. ); 
camera.associateWindow( wind); 
camera.associateRenderer( glRend ); 
camera.wind_Set_OrthRt( .5 ); 

/• create another camera•/ 
Camera camera2( "Other Camera"); 
camera2.setView( Point3(0,30,100), Point3(0,0,0), vievup, fovx, fovy ); 
camera2.setClipPlanes( .1, 1200. ): 
camera2.associateWindow( vind3 ); 
camera2.associateRenderer( opRend ); 
camera2.wind_Set_OrthRt( .6 ); 

/• add cameras to the setting•/ 
world.addObject( camera); 
world.addObject( camera2 ); 

/• create a spherical object •I 
Sphere sph1( 10. ); 
HybridModel obj1( Point3(0,0,0), sph1 ); 
world.addObject( obj1, BASIC_RED ); 

world.renderAll(); 
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11.3 PORT CLASSES 

This section discusses the design of RASP's port classes. Unlike many of the classes found in 

the toolkit, port classes are used only to assist in the development of other classes. They serve 

as tools to construct objects that adhere to the connection paradigm. 

11.3.1 INHERITANCE TREE 

As described in section 7.3.3, RASP inports and outports are similar to standard class member 

functions. Both regulate the value of data members and direct actions performed by the class. 

However, ports differ in that they are first-class, unidirectional, and able to respond to queries. 

Functionally, inports and outports are equivalent. Both ports access data members, associate 

conditional tests with data members, and invoke class actions. They differ only in direction. 

This commonality permits the construction of a basic Port class (see Figure 11.1) from which 

both ports inherit data and operations. 

Port 

( RaspPorts ) /SA erived !SA erlved 
( Connection ) 

OPort JPort 

ISA lllSsi/ied ISA la.,sijied 

OutPon<Type> lnPort<Type> 

Figure 11.1: Port Hierarchy 

The classes OutPort<Type> and InPort<Type> in Figure 11.1 are parameterized types. 4 

They represent special port classes formulated especially for C++. Each class facilitates the 

construction of ports which maintain references (pointers) to class member functions. Each 

class is parameterized because C++ does not permit the construction of simple generic member 

function references. All reference declarations must state explicitly the class type from which 

the member function it references is defined. 
4See section B.2.2. 
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11.3.2 POINT CLASS 

The following header file for the class Point exemplifies the definition of a class with ports. 

The data members outPort and InPort<Point> facilitate the creation of outports and inports. 

The constants declared in both typedef statements supply ports with simple identifiers. The 

port function outThis () returns a port which references the class itself. 

!•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
class POINT definition 

······································································•·! class Point { 
private: 

typedef enum { 
0P_X, 
0P_THIS 
}; /• outports identifiers•/ 

typedef enum { 
IP_X 

}; I• inports identifiers•/ 

RaspPorts outPort; 
InPort<Point> •inPort; 

protected: 
double JC, y; 

public: 
/• manager functions•/ 
Point( const double, const double); 

/• access functions•/ 
void •etX( const double); 
double getX( void) const; 

I• port functions•/ 
0Port• outXO; 
0Port• outThis(); 
IPort* inX O ; 

}; 

The following segment of code implements the constructor function for the class defined 

above. In addition to setting the values of the data members, the constructor creates the class' 

ports, associates data members and member functions with individual ports, and identifies the 

data type managed by each port. 

Point::Point( const double xVal, const double yVal ): x( xVal ), y( yVal) 
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{ 

} 

outPort.aetNumOutPorta( 1 ); 
outPort[OP_X]->aetVar( tx, RASP_DOUBLE ); 

inPort • nev InPort<Point>[1]; 
inPort[IP_l].aetVarid( RASP_DOUBLE ); 
inPort[IP_l).aetBandler( this, tPoint::aetl ); 
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It should be noted that the similarities between ports and member functions are not limited 

to functionality alone. Both structures are subject to the rules of inheritance. Subclasses can 

alter the purpose and design of all inherited ports. 
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11.4 TEMPORAL TOOLS 

This section describes the implementation of RASP's set of temporal primitives, which were 

discussed in section 9.2. All primitives, except for processes, are described in detail. A discussion 

about RASP processes is relegated to section 11.6. 

11.4.1 EVENTS 

Every RASP event type is a subclass of the base class EventBase (Figure 11.2). This class 

defines three important functions which all event types must support: stateEvent, endEvent, 

and doEvent. The first function initiates actions to initialize an event. Exemplary startEvent 

actions include testing port availabilities, comparing ports types between links, and establish­

ing links between ports. The second function simply cancels all stateEvent actions, such as 

eliminating link formations between ports. The third function executes the event's objective. 

Exemplary doEvents include passing temporal values to ports (TimeEvent ), transferring val­

ues from one port to another (Event), and informing ports to test their states (StateEvent). 

/SA pecializ.ed 

Event 

/SA pecioliz.ed 

TimeEvent 

BvmtBase 

/SA !SA pecialized /SA pecialized !SA lassified 

StateEvent Call Event DisableEvent ChainEvent 

Figure 11.2: Event Hierarchy 

The following segment of code illustrates the usage of a variety of RASP event types. The 

number and type of parameters an event receives is dependent upon its objective. 

// create event to call target port with no arguments 
CallEvent ev1( coll->inRun() ); 

// 2a -> create data transaction event 
// 2b -> create event to a call a procedure vith no arguments 
Event ev2a( spl1->outMuParam(), evol->inFinishVal() ); 
Event av2b( proc ); 

// 3a -> create event to pass time value to target port 
// 3b -> create event to a call a procedure vith one arguments 
TimeEvent ev3a( evol->inCalcValue(), RS_REL_TIME ); 
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TimeEvent ev3b( proc2, RS_ABS_TIME ); 

// create event to call activity when source port target alters state 
StateEvent ev4( obj1->outCollision(), act); 

// create a chain event composed of 
ChainEvent 
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Conceptually, all RASP event types could have been constructed as one universal event. 

Its exact functionality would be extracted from an examination of its argument list during 

instantiation. However, there are three major arguments against the development of one uni­

versal event. First, one event type occupies more memory than any single-purpose event type. 

For large simulations requiring many events, an excessive use of memory can impede system 

performance. Second, augmenting the functionality of an universal event becomes an onerous 

task. Users would need to manipulate unnecessarily complex structures simply to extend the 

capabilities of the event. Third, the usage of one event type hinders the rapid analysis of a 

simulation. Users must examine the argument list of every event to determine their purposes. 

11.4.2 ACTIVITIES & PROCESSIONS 

RASP's Activity class and Procession class inherit data members and member functions 

relating to temporal actions from the base class Timing (Figure 11.3). This base class provides 

operations to establish and compare the timing information (temporal interval and granularity) 

of individual activities and processions. Because the toolkit's current design defines only one 

type of an activity and one type of procession, the class Activity and class Procession are 

not abstract. However, this does not preclude the development of abstract classes for activities 

and processions. Future enhancement to the toolkit's design may compel the creation of such 

classes. 

The following example illustrates the creation of an two activities and one procession. 

/• create an activity with time span from 6 to 10 •I 
Activity act( ''Example Activity'', 6, 16 ); 
act.addlnitEvent( evt1 ); 
act.addlctEvent( evt2 ); 
act.addFiniEvent( evt3 ); 

Activity act2( ''Example Activity#2'', 10, 26 ); 
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Figure 11.3: Activity Hierarchy 

act.addActEvent( evt2 ); 
act.addActEvent( evt4 ); 

/• add activities to procession•/ 
Procession seq1( ''Example Procession'' ); 
seq1.addlctivity( act); 
seq1.addlctivity( act2 ); 
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It is important to note that the toolkit does not restrict the quantity or type of events 

associated with each activities. Therefore, any event may simultaneously belong to more than 

one category and to several activities. 

11.4.3 EXAMPLES 

This section concludes with two examples to exemplify the usage of events, activities, and 

processions. Each example defines the motion path of a spherical object. Both paths are 

illustrated in Figure 11.4. The route in the first example is defined by a linear interpolation of 

three points. In the second example, the parametric values of a spline object generate the path 

for the object in motion. 

LINEAR INTERPOLATING PATH 

This example is divided into two routines. The first routine, main, is responsible for creating 

a setting and running the simulation, while the second procedure, initWorld, is assigned to 

create all the temporal actions of the model. 

main() 
{ 

I• create a setting•/ 
RaspSetting world; 
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Figure 11.4: Motion Paths 

/• create objects, events, activities, and processions•/ 
initWorld( vorld ); 

/• run the simulation•/ 
vorld.run(); 

void initWorld( RaspSetting •vorld) 
{ 

I• create a light blue sphere•/ 
Sphere sph( 10. ); 
HybridModel •obj• nev HybridModel( Point3(0,0,0), sph ); 
vorld.add0bject( obj, LIGHT_BLUE ); 

/• create an Point3 evolution object•/ 
Point3 pt1( 0, 0, 0 ), pt2( 20, 30, 40 ), pt3( 40, -10, 30 ); 
ptEvolve evol( pt1, pt2, 10 ); 

/• create timeEvent and data transfer event•/ 
TimeEvent evt1( evol.inCalcValue() ); 
Event evt2( evol.outCurVal(), obj->inSetPosition() ): 

I• create an event to alter the evolution start and end values • / 
ChainEvent evt3; 
evt3.addEvent( pt2.outThis(), evol.inBeginVal() ): 
evt3.addEvent( pt3.outThis(), evol.inFinishVal() ); 

I• create an activity, and add both events•/ 
Activity move1( 6., 16. ); 
move1.add!ctEvent( evt1 ); 
move1.addActEvent( evt2 ); 

Activity move2( 16., 26. ); 
move2.addinitEvent( evt3 ); 
move2.add!ctEvent( evt1 ); 
move2.add1ctEvent( evt2 ); 
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} 

I• create a procession, add the activity, and add procession to setting•/ 
Procession seq1( ''Move Ball'' ); 
seq1.addActivity( move1 ); 
seq1.addActivity( move2 ); 

vorld.addProcession( seq1 ); 

The first set of statements in ini tWorld defines a blue spherical object. The next set of 

statements defines three distinct points and an evolutionary object of type ptEvolve.5 Given 

an initial and final value, ptEvol ve uses a linear interpolation scheme to generate a set of 

intermediate values. Its last argument represents the number of interval values that are to be 

calculated. 

The next set of declarations defines two distinct events. The first statement creates an 

event to pass time to evol. The omission of a second argument to TimeEvent indicates that 

evol requires "local" (not "absolute") time values. The "local" time will be determined from 

the event's (yet to be defined) associated activity. The second statement creates an event to 

transfer data from evol to obj. This transaction will set the spatial location of the spherical 

object to equal the value produced by the evolutionary object. 

After composing events evt1 and evt2, the next set of statements creates a ChainEvent. 

This event is composed of two separate Events. When triggered, the tandem events will alter 

evol's initial and terminal value. It is important to note that no explicit Event statements were 

required to generate the individual events. The ability to overload functions in C++ enables 

the member function "addEvent" to accept explicit events or special sets of arguments. In this 

case, "addEvent" automatically generates an Event from the combination of the two ports. 

The circumvention of basic declarations enables users to design rapidly simulations and reduce 

code size. For example, the following two statements are equivalent: 

1=> evt3.addEvent( pt2->outThis(), evol->inBeginVal() ); 
Event aaa( pt2->outThis(), evol->inBeginVal() )); 

2•> evt3.addEvent( aaa ); 

The first statement does not require the user to define explicitly an Event. Users may utilize 

5ptEvolve is a type definition of the template class Evolve with Point3 passed as the parameterization 
argument. 
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either method to add events to a ChainEvent. Programmers may wish to utilize the second 

method if they require to reference the basic event more than once. 

Following the event definitions is the activity declarations. The activities move 1 and move2 

are very similar. Each endures for ten temporal units and activates identical "acting" events. 

However, only move2 defines an "initial" event. This one time only activation event will alter 

evol's interpolation range from (pt1,pt2) to (pt2,pt3) . 

The final declaration set performs three tasks. It defines a procession, insert activities into 

the procession, and adds the procession to the world. 

SPLINE-BASED PATH 

The following example defines an alternative motion path for the spherical object. It creates 

one activity, composed of several events, to move the object along a spline-based route. The 

structure of this code is very similar to the one utilized in the previous example. 

main() 
{ 

} 

/• create a setting•/ 
RaspSetting world; 

/• create objects, events, activities, and processions•/ 
initWorld( world); 

/• run the simulation•/ 
world.run(); 

void initWorld( RaspSetting •world) 
{ 

/• create a light blue sphere•/ 
Sphere sph( 10 . ); 
HybridModel •obj1 • new HybridModel( Point3(0,0,0), sph ); 
world->add0bject( obj1, LIGHT_BLUE ); 

/• create a dark green spline vith 10 CV■ •I 
Basis ■Basis( CUBIC_B!SIS ); 
Spline •spl • new Spline ( 10, sBasis ); 
HybridModel obj2( origin, ■pl); 
world->add0bject( obj2, D.lRK_GREEN ); 

/• create a ''double'' evolution object•/ 
dEvolve •evol • new dEvolve( 0, 0, 20 ); 

I• set evolution finish value to spline's maximum parametric value•/ 
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} 

Event evtl( spl->outMu:Param(), evol->inFinishVal() ); 

I• create a chain event•/ 
ChainEvent evt3; 

/ • send time to evolution object, then set spline's parametric value to 
value of evolution, then set spherical object's position to equal 
spline's parametric position•/ 

evt3.addEvent( TimeEvent( evol->inCalcValue() )); 
evt3.addEvent( evol->outCurVal(), spl->inParamVal() ); 
evt3.addEvent( spl->outParamPos(), objl->inSetPosition() ); 

I• create an activity, and add both events•/ 
Activity move( 2., 22. ); 
move.addinitEvent( evtl ); 
move.addActEvent( evt3 ); 

/• create a procession, add the activity, and add procession to setting•/ 
Procession seql( ''Move Sphere'' ); 
seq1.addActivity( move); 

vorld->addProcession( seq1 ); 

136 

The first set of statements in ini tWorld create one spherical and one spline-based object. 

Each entity is placed at the origin, given a distinct color, and added to the world. The 

next statement defines a pointer to an object of class dEvolve. This referenced interpolation 

object is responsible for generating successive values ( of type "double") from zero to a currently 

unspecified number. 

The next collection of declarations defines two events. The first event, evt1, defines an 

action to modify the terminal or maximum value of evol. The second event, evt3, is a multiple 

action event. When triggered, it will execute, in succession, three events. A visual illustration 

of the action performed by each event is portrayed in Figure 11.5. 

Time 

Parametric 

§ Evolution ?1-EV::al::u::e:=~~ 

Positional 
Value 

Figure 11.5: Spline Path Events 

1. A temporal value is transmitted to the evolution object. 

8 
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2. A value from the evolution object to transferred to the spline object. This value represents 

an index into the spline's parametric space. Give this index, the spline will generate a 

position in three-space. 

3. The spline's three-space value is transferred to the sphere. This value will be utilized to 

set the sphere's spatial location in the setting. 

After creating all the events, one activity, entitled move, is declared. It is characterized by 

one initializing event, one active event, and a duration of twenty temporal units. 

The last set of statements defines a procession and associates it with the setting. Labeled 

"Move Sphere", this procession is declared to have one activity and no special temporal at­

tributes. 

DIRECT AND INDIRECT REFERENCING 

In the last two examples, some objects were referenced indirectly (via pointers). Without 

these references, both examples would have failed to produce a valid simulation. Most likely, 

the programs would have crashed or generated obscure results. The source of this problem 

is lodged in the manner that the C++ language defines and controls the memory associated 

with an object. Objects having "local" scope - directly referenced objects - fail to sustain their 

allocation of memory when their local environment disappears. Therefore, any reference to 

an object beyond the object's scope proves "undefined". Undefined references arise in RASP 

simulations if events attempt to reference ports of extinct objects. It is important to remember 

that all ports are directly linked with the objects they serve, and objects and their ports expire 

together. Therefore, when defining variables, the following general rule should be followed: 

Pointers references should be generated for any objects having one or more of their 

"in" or "out" ports referenced in any type of an event. 
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11.5 CHRONOS 

This section discusses the design of RASP's simulation kernel, Chronos. This class interacts 

with the Processions of a simulation to control the flow of time. Currently, the class Chronos 

is instantiated and employed by the class Setting. Therefore, unless users explicitly wish to 

alter the behavior or functionality of the simulation kernel, most users will never directly use 

or invoke operations of the kernel. However, future modifications and enhancements to RASP's 

design may increase the interaction between users and the kernel. 

The following c++ header file defines all the member functions of the class Chronos. 

Functions enable users to reset the simulated clock time, adjust the number of Processions 

the kernel controls, and initiate the start of the simulation. 

/•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
class CHRONOS definition 

·····································································•·! class Chronos { 
protected: 

double globalClock; 
double globalTimeStep; 
GSlist(Procession) pList; 

public: 
/• manager functions•/ 
Chronos( double•O., double•1.0 ); 

I• access 
double 
void 
void 

functions•/ 
getWorldTime() const 
resetClock( double); 
adjustStep( double); 

{ return globalClock;} 

void 
Procession• 
void 
void 

addProcession( Procession•); 
getProcession( char•); 
removeProcession( Procession•); 
removeAllProcessesions(); 

I• implementor functions•/ 
void run( RaspSetting• ); 

private: 
/• helper functions•/ 
double getNextProcessionStep(); 
void advanceTime( double); 

}; 

The following segment of code shows Chronos' member function run. The function iterates 
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a simple set of steps to advance the simulated time of a simulation. The list, eventCameraList, 

contains references to all the cameras in the simulation which are required to synthesize images 

at every new time step. Although this scheme increases the functionality of the kernel, it 

optimizes the system's performance and minimizes users' modeling efforts. The widespread 

usage of cameras which update at every time step justifies the insertion of this data structure 

into the routine. 

void Chronos::run( RaspSetting •vorld) 
{ 

} 

GSlist(Camera) •eventCameraList; 
double nextTime, advanceVal; 
Bool bLoop; 

eventCameraList • vorld->eventCamerasOnly(); 
advanceTime( 0 ); 

vhile( TRUE) { 

/• get event cameras•/ 

/• get the next value of time to procession tovards •/ 
if ((nextTime "'getNextProcessionStep()) •= STOPTIME) 

break; 

} 

I• don't advance time too fast•/ 
if ((advanceVal = nextTime) > globalTimeStep) 

advanceVal • globalTimeStep; 

bLoop • TRUE; 
vhile (bLoop =• TRUE) { 

if (globalClock + advanceVal >= nextTime) { 
bLoop"' FALSE; 
advanceVal a nextTime - globalClock; 

} 

globalClock += advanceVal; 
advanceTime( globalClock ); 

/• tell update event cameras to render•/ 
for(int i•O; i<eventCameraList->entries(); i++) 

eventCameraList->at(i)->doSnapShot( globalClock ); 
} 
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11.6 PROCESSES 

This section outlines the design of RASP processes. Readers are forewarned that process 

creation in c++ is not an easy task. Since c++ does not support co-routines,6 users are 

required to incorporate mandatory "support" constructs into their process designs. Fortunately, 

users are not required to develop these additional constructs. All processes are developed with 

the assi$tance of previously defined structures and a set of essential guidelines. Adherence to 

these rules is mandatory. 

The rules of process creation are very precise. They require users to utilize a basic set of 

structures and commands when developing processes. They do not restrict the behavioral devel­

opment of a process. Only the structure of a process is confined to a standard set of operations. 

Processes are not obligated to alter the state variables or operations of any model. Attempting 

to stray from these prescribed regulations is not recommended. Irregularly developed processes 

may produce unwanted consequences. 

11.6.1 ABSTRACT CLASS 

Every process of a RASP simulation model must be an instantiation of a process-type class. 

This class must be a descendant of the abstract class Process. The class Process provides all 

process-type classes with a collection of important routines and data members. This class also 

defines a list of member functions which must be supported by all derived classes. Referred to 

as pure virtual functions, these routines can not be left undefined. The absence of one or more 

of these member functions will evoke errors during program compilation. 

The abstract class Process declares that it is essential for all process-type classes to provide 

definitions for three particular argument-free member functions. They are as follows: 

/• pure virtual implementor functions•/ 
virtual void initialize()• O; 
virtual int body()• O; 
virtual void finish()• O; 

6The usage of P-Threa.ds may enable users to utilize structures which a.re functionally equivalent to co-routines. 
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VOID INITIALIZE() 

This routine is called upon by the RASP kernel when a process is to be activated. It is 

not invoked during process instantiation. Any class variables explicitly defined to control a 

process' behavior is to be initialized within this routine. All data members which support the 

interface between the process and simulation kernel is to be initialized within the process' class 

constructor. 

INT BODY() 

This routine is the most important member function for a process. It defines the behavior of 

the process from start to finish. Once this routine terminates, the process will end. Concep­

tually, this routine need only be invoked once. Whenever a process must suspend its thread of 

operation, it should use coroutines. If C++ inherently supported coroutines, a sample body 

routine could have been written as follows: 

void MyProceas::body() 
{ 

} 

cout <<"Can't"<< endl; 
hold( 3 ); 
cout <<"touch"<< endl; 
hold( 6 ); 
cout <<"this"<< endl; 

However, since coroutines are not directly supported by the c++ language, this routine 

will be invoked multiple times. Immediately after each invocation, the flow of execution will 

leap to the line following the line that suspended it. This is accomplished with the assistance 

of a large switch statement containing multiple goto statements. However, for this scheme to 

work, users must set a particular variable to a value representing the line after the suspension 

statement. 

JumpTo MyProcess::body() 
{ 

/• this svitch statement is mandatory•/ 
svitch( jumpLine) { 
case JUMP _1: 

goto JMP_l; 
break; 



Chapter 11: Rasp: The Implementation 

} 

case JUMP_2: 
goto JMP_2; 
break; 

}; 

cout <<"Can't"<< endl; 
hold( 3 ); 
return( JUMP_1 ); 

JMP_1: cout <<"touch"<< endl; 
hold( 6 ); 
return( JUMP_2 ); 

JMP_2: cout <<"this"<< endl; 
return( NO_JUMP ); 
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In this example, body contains two "hold" statements. These statements define the dura­

tion of simulation time that must pass before the next statement after each "hold" command 

is to be executed. A return statement must immediately follow each "hold" statement. This 

statement enables the process to suspend temporarily its thread of execution. Each return 

statement must be provided one argument of type JumpTo. This enumerated type defines all 

the possible values this argument can receive. The predefined enumeration is defined in the 

base class Process. This argument notifies the routine as to where it is to continue execution 

when it is restored. 

The switch statement at the beginning of this routine is used to leap over segments of code. 

It enables this routine to believe that all of its "hold" statements are coroutines. It springs over 

fragments of code according to the value of the variable jumpLine. This variable is redefined 

every time a return statement is invoked. 

VOID FINISH() 

This routine will be invoked when a process is to be terminated or extinguished. It should 

contain all declarations ending a process' behavior. It is important to note the difference be­

tween a terminated and an extinguished process. A terminated process can restart its thread of 

execution after re-initialization while an extinguished process can not. Any memory associated 

with an extinguished process has been freed up. All references to extinguished processes are 

considered to be dangling. 
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11.6.2 PROCESS PORTS 

There are two ways a process can communicate with its environment. It can explicitly reference 

external sources or it can make use of its ports. Although external references provide direct 

links with environmental sources, they hinder the development of independent processes. The 

formation of dependent links, created by external calls, constrains a process to make strong 

assumptions about the environment and the sources it references. These problems are not evi­

dent in processes communicating only through ports. Ports assist in the reduction of dependent 

links and direct reference calls. Ports are also very helpful is suspending and restoring the state 

of a process. 

It is important to note that each method of communication has its own set of relative merits. 

There does not exist a straightforward procedure to choose one method over the other. The 

selection process is entirely context dependent. As a general guideline, ports are most useful 

when a process does not need to be concerned with the source of its external information. When 

the value of information is more important than the entity generating it, the port communication 

mechanism should be used. However, if the source of information is also very important, direct 

referencing may be the better choice. 

The ports of a process and the ports of any other object within the toolkit are created in 

an identical fashion. Every "in" port requires the address of a class data member and every 

"out" port requires the service of an internal class member function. However, port processes 

and non-process ports are not completely equivalent. The ports of a process possess extra 

functionality not inherent in standard ports. For example, process ports provide additional 

query functions. Without these additional routines, it would not be possible to employ all the 

capabilities of a process. 

Many process-oriented modeling situations require a process to temporarily halt its progress 

until it has obtained a particular resource. The process will resume its thread of execution im­

mediately after the resource is freed or found to be available. The following routine exemplifies 

a process waiting for a valid value from one of its input ports. 

int WaitProcess::body() 
{ 

/• this switch statement is mandatory•/ 
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} 

svitch( jumpLine) { 
case JUMP _1: 

goto JMP_1; 
break; 

} 

cout << 11 Waiting .•. 11 « endl; 

JMP_1: /• vaiting for value from port•/ 

if ( inPort[IP_VAL].getValue() ) { 
cout << " Got It! 11 << endl; 

} 

else { 
hold() i 
return( JUMP_1 ); 

} 

return NO_JUMP; 
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This process will declare itself to be "Waiting ... ", until it obtains a value for the port 

inPort [IP _VAL]. Once a value has been obtained, the suspended . process will produce the 

statement "Got It!". The key feature to note in this example is the if-else clause. The if 

expression queries the port to determine if it has obtained a value. If the expression evaluates 

true, the process will continue its execution. If not, it will invoke the else clause. This clause 

will suspend the process until re-activation. In this case, a re-activation signal will originate 

from the port inPort [IP _VAL]. This port is automatically notified that it is responsible for 

resuming the process when it receives the get Value query and returns a vaiue of "FALSE". It 

is important to note that it is not the responsibility of the process to query continually the port 

to ascertain if a valid value has been obtained. The process will remain in a waiting state until 

notified by the queried port. 

11.6.3 RELATIONSHIP WITH ACTIVITIES 

The following fragment of code illustrates the relationship between processes and activities. 

Process pr1, pr2; 
Activity move1( 5, 10 ); 
move1.addProcess( pr1 ); 
Activity move2( 7 ); 
move2.addProcess( pr1 ); 

/• create tvo processes•/ 
/• activity vith duration of 5 units•/ 

/• instantaneous activity•/ 
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Processes pr1 and pr2 will terminate differently. Assuming the absence of intervention from 

external sources, pr1 will expire conjunctively with activity move1 and pr2 will terminate after 

it has administered its last command. Note the difference in the instantiations of move1 and 

move 2. The activity move2 has been defined to be "instantaneous". An instantaneous activity 

does not have the ability to summon the termination of the processes it governs. 

Please note that the previous segment of code is not completely correct. Any attempt to 

compile the code segment would produce a variety of compiler errors. An intentional mistake 

appears in the first line. It is not actually possible to instantiate a variable of class Process. 

The class Process serves as an abstract class from which "real" processes are to be built. All 

legitimate processes must be derived from the class Process. For example, 

class MoveProcess: public Process { ... }; 
class CollisionProcess: public Process { ... }; 

Processes MoveProcess and CollisionProcess are derivations of the class Process. The 

erroneous code segment is presented to define the relationship existing between activities and 

processes. It should not be directly incorporated into genuine simulation models. 

11.6.4 EXAMPLE 

This chapter concludes with an extensive example illustrating the power of process-based sim­

ulation. The goal of this example is to create a process for "mouse-based" user interaction. 

Un~ike many simulations which separate the user-interface queries from the simulation model, 

this example incorporates the query task directly into the simulation. Users can control the 

number and the frequency of user-interaction queries. 

The following segment of code is the header file for the process class GLEventLoop. This 

process must be provided an active setting and single-argument procedure to perform correctly. 

The one argument procedure will be invoked whenever the process receives a LEFTBUTTON 

message from the GL event scheduler. 

class GLEventLoop: public Process { 
GL_Loop loop; 
short val; 
long event; 
Bool bLoop, (•leftBut)(short); 
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public: 

}; 

/• manager functions•/ 
GLEventLoop( RaspSetting• ); 

/• access functions•/ 
void setLeftButton( Bool (•)(short)); 

/• implementor functions•/ 
void initialize(); 
void finish(); 
int body(); 
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This next segment of code defines the three required routines every user-defined process must 

declare. The first two routines execute the initial and final GL device driver routines. These 

routines inform the GL event scheduler as to when to initiate and terminate LEFTMOUSE 

events. Close examination of the routine body reveals that this process will perform one mouse 

inquiry every five units of simulation time. It is important to remember that the process will 

make no inquires until activated by an external source. 

void GLEventLoop::initialize() 
{ 

} 

I• GL calls•/ 
qdevice( LEFTMOUSE ); 

I• insert procedures into event loop •I 
evt.insert( LEFTMOUSE, leftBut ); 

void GLEventLoop::finish() 
{ 

I• GL calls•/ 
unqdevice( LEFTMOUSE ); 

} 

int GLEventLoop::body() 
{ 

I• this switch statement is mandatory•/ 
switch( jumpLine) { 
case JUMP _1: 

}; 

goto JMP_l; 
break; 

/• event loop •I 
while( bLoop) { 
JMP_l:if (qtest()) { 

event• qread( lval ); 
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} 

} 

} 

bLoop = evt.event( event, val); 
vorld->renderAll(); 

hold( 6 ) ; 
return( JUHP_1 ); 

return HD_JUHP; 
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This last segment of code define a simple simulation with one user-interaction process. The 

mouse query process is activated when the simulation time reaches thirty-three. Since the 

process has no terminating mechanisms, the simulation has been explicitly declared to stop at 

time 100. 

Bool do_leftmouse( short) 
{ 

} 

cout <<"MOUSE"<< endl; 
return TRUE; 

main() 
{ 

} 

/• create a setting•/ 
RaspSetting vorld; 

/• create a mouse inquire process •I 
GLEventLoop •loop• nev GLEventLoop( tworld ); 
loop->setLeftButton( do_leftmouse ); 

/• create an activity•/ 
Activity •loopAct • new Activity( 33 ); 
loopAct->addProcess( loop); 

/• create a procession•/ 
Procession •seq1 • nev Procession( "GL-EVEHTS" ); 
seq1->addActivity( loopAct ); 
vorld->addProcession( seq1 ); 

/• run the simulation•/ 
vorld->endTime( 100 ); 
vorld->run(); 
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11.7 RENDERERS 

Every data-to-image translation object or image renderer is derived from the base class Ren­

derer. This class determines a collection of "implementor" operations that each derived class 

must define. In addition to these "abstract" member functions, Renderer provides a set of 

operations to maintain a primitive and geometry list. These "base" operations alleviate each 

renderer subclass from asserting their own set of "list" functions. 

Renderer's abstract "implementor" functions are divided into two basic sets. Applied to 

alter a renderer's state, the first group of routines inform a renderer when to begin and ter­

minate the synthesis of a single image. The second set of routines declares an assortment of 

commands pertinent to image synthesis. For every geometric primitive there is a corresponding 

image construction command. While each new renderer type must re-define every state altering 

routine, they are not ordained to redefine every primitive drawing command. They are man­

dated to redefine only those commands corresponding to the geometric primitives which they 

support. A renderer must redefine at least one command for each of the items in its primitive 

list. 

Point 
Triangle 
Sphere 

Particle 
Quadrilateral 

Square 

Geometric Primitives 
Line Polyline 
Disk Cone 

Superquadric Torus 

Plane 
Cube 

Bezier-Patch 

Table 11.3: Primitive List 

Polygon 
Cylinder 

Elliptic-Cone 

Renderer's "base" operations regulate the primitive and geometric lists for each derived 

renderer subclass. It is the duty of every derived renderer to register every primitive it can 

support in its associated primitive list. This task is to be accomplished immediately after the 

renderer has been initialized. After the primitive list has been completely constructed, users 

are free to manipulate its contents at any point during a simulation. This enables users to 

produce sequences of animation with frames of differing quality. The values of the geometric 

list are not defined by renderer developers. Users are not required to affix any statements 
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to their derived renderers to manipulate its contents. Renderer objects inherit commands to 

adjust automatically the contents of its geometric list as it receives notification messages from 

the toolkit's scene modeling tools. 

ISA 

GLRenderer3D 

Renderer 

!SA pecialiied 

OptikRenderer 

/SA pecialized 

GLRenderer2D 

Figure 11.6: Renderer Hierarchy 

The current toolkit supports three image translator objects: two GL-based renderers and 

one Optik-based renderer. The diagram in Figure 11.6 portrays the toolkit's rendering hierar­

chy. The GL-renderers, one for three-dimensions and the other for two-dimensions, are on-line 

translators. They directly convert primitive object definitions into SGl's graphics language 

commands. If available, GL-renderers can be directed to harness all of SGl's hardware en­

hancements. Although these renderers provide users with instantaneous feedback, they do not 

have the ability to produce high quality images. The Optik-renderer is a high quality off-line 

renderer. Primitive object definitions are used to produce a scene description file. Each file 

is fed to Optik, a ray-tracing image synthesizer, to produce vivid images. It should be noted 

that the toolkit's data-to-image translation technique does not impede the development of an 

on-line Optik-based renderer. This task is consigned for future work. 
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11.8 GEOMETRY 

In the toolkit, there are two types of geometric classes. Geometric form classes, which manage 

the properties of a simple physical shapes, and geometric assembly classes, which manage the 

construction of complex physical shape. Both geometric types are derived from the abstract 

class GeoBase (see Figure 11.8). Serving as an administrator of abstract operations, this 

abstract class ensures that all geometric classes are able to interface with rendering classes. 

Base operations are also provided by GeoBase to handle basic functions, such as the creation 

of ports common to all geometries and the management of important data members. 

Geometric form classes derive additional information from the base class Geometry. This 

base class defines a few operations relevant to simple geometric shapes. In addition, the class 

Geometry serves as a classification device to distinguish geometric form classes from geometric 

assembly classes. 

11.9 UTILITY CLASSES 

The toolkit defines a large collection of additional classes which serve to facilitate the cre­

ation of simulations. Classes organize attributes, create windows (see Figure 11.7), manage 

bounding box information, represent points, vectors, arrays, heaps, lights, and colors, provide 

user-interface controls, and assist in caching data. Users wishing to further examine these 

classes are directed to obtain a copy of the toolkit and peruse its contents. 

Window 

/SA - pecialized 

GLWlndow 

ISA erived ISA 

GLWindow2D GLWindow3D 

Window3P 

Figure 11.7: Window Hierarchy 
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CHAPTER 12 

CONCLUSION 

I have seen the future and it works. 

- (Joseph) Lincoln Steffens, Autobiography, Ch. 18 

Simulations are valuable industrial tools. They enable users to emulate and test the be­

haviors of real world applications and to improve the design of previously existing models and 

systems. Users' productivity is enhanced when they can reuse and intermi~ components from 

various simulations. Unfortunately, most simulation components are not naturally reusable. 

Many are hard to extend or modify. Although many tools, such as simulation languages, envi­

ronments, and systems, have been developed for simulation, their usage has not cultivated the 

creation of genuinely reusable components. The failure of these tools to partition clearly the 

simulation modeling process, incorporate reusable technologies, and provide well-defined tem­

poral modeling mechanisms, hampers the construction of simulations that are easy to reuse, 

decipher and decompose. 

An attempt to provide users with a clear foundation towards the development of reusable 

simulations has been presented in this thesis in the form of the RASP toolkit. Emphasizing 

the needs of the computer graphics and robotics community, this toolkit uses object-orient 

principles and modern patterns of communication to promote the development of reusable sim­

ulations. The extensibility and tractability of the toolkit's design empowers users to construct a 

wide variety of models and systems. The toolkit is highlighted by IMVCD - a modeling frame­

work, the Connection Paradigm - a communication architecture based upon ports, Hierarchical 

Temporal Modeling Tools - a set of primitives which establish a clear relationship between time 

and state, and Hybrid Object Construction - a design methodology to create graphical models. 

IMVCD defines a set of design rules for users to observe when designing RASP applica­

tions. Focusing on the architecture of programs, as opposed to the reuse of implementation, 

the framework ameliorates users' potentials to create reusable simulations. The simulation 
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modeling process is informally partitioned to highlight the communication paths between sys­

tem components: Models, constructed with Informer objects, are visualized by Viewers; and 

Controllers, regulated by Delegators, govern the behaviors of Models. 

The Connection Paradigm defines a communication architecture which delegates the 

responsibilities of creating and maintaining data pathways to a variety of modeling elements. 

Based upon unidirectional ports and first-class connections, this plan eliminates the need for 

models to be concerned with the identity of its communication partners and to be aware of the 

nature of environment in which they interact. Models react to events triggered on their ports, 

not to messages originating from other models or system components. 

Hierarchical Temporal Modeling Tools enable users to describe and organize hierar­

chically the state changes occurring within a simulation. State changes are associated with 

temporal values to produce scripted animations and adaptive simulations. Constructed as first­

class objects, the tools define a clear relationship between time and state: Processions regulate 

the activation of Activities while Activities regulate the activation of Events and Processes. 

In addition, the tools endorse the creation of a minimalistic simulation kernel and permit the 

development of simulations which incorporate multiple world views. 

Hybrid Object Construction delineates a model design methodology which combines a 

unified user interface with a rendering architecture. Constructed as first-class entities, models 

organize collections of feature ports and slots. Adhering to the connection paradigm, feature 

ports regulate the contents of slots while slots contain references to feature objects. Feature 

objects manage primary functions and regulate model attributes. 

12.1 ASSESSMENT OF RASP 

This section assesses the toolkit ability to meet the design goals of Chapter 6 and identifies the 

aspects of the toolkit which establish its uniqueness. 
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12.1.1 GOALS 

FRAMEWORK 

RASP's framework delineates a strong foundation for the development of reusable simulations. 

It leads users to develop simulations that adhere to a common design. The generality of the rules 

of interaction, the clear partitioning of the design process, and the clarity of the communication 

architecture permits the development of a wide variety of models and simulations. However, 

the framework still requires further enhancement. As yet, the rules of interaction neither 

provide regulations that manage the interaction of multiple controllers (see section 12.2) and nor 

describe the framework's relationship with the underlying system architecture. Rules are needed 

to clarify the role of the simulation kernel and its influence on the framework components. It 

is not clear yet whether the framework's current decomposition is adequate or complete. Sub­

frameworks may be needed to promote greater reusable development, and new frameworks may 

be devised to handle alternative modeling designs. 

MULTIPLE TEMPORAL STRATEGIES 

RASP's multiple interface to discrete-event modeling permits the creation of simulations via 
I 

events, conditional activities, and processes. Users intermix all three types to form simulations 

that are relatively easy to build, manage, and interpret. The main problem with this approach is 

the manner in which conditional activities are specified and examined. To reduce the complexity 

of the simulation kernel, contingency tests normally associated with activities are relegated to 

the state variables of the simulation. This action burdens variables attached to contingency 

tests to signal state change events. It is not clear if this behavior is truly desirable. Future 

designs that attempt to allay this burden may require language support. 

TIME AND STATE 

RASP's set of temporal modeling tools standardizes the specification of state changes and the 

employment of temporal management methodologies, establishes a definitional uniformity of 

simulation terms, permits the creation of uneven ( variable rate) computing operations, and 
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minimizes the responsibilities of the simulation kernel. 

Three major issues of importance relate to these tools. First, it is not clear whether the 

tools are adequately extensible. For example, there is currently only one type of "activity" 

provided by the toolkit. Further testing must be performed to determine if another type of 

activity is supportable and if the tools need to be redesigned. Second, firm guidelines must 

be established to aid in the decomposition and reuse of the simulation kernel. Although the 

kernel possesses minimal responsibilities, users may wish to produce variations of the kernel to 

optimize the operations of their simulations1 or to vary the duties and purpose of the kernel. 

Third, a clear distinction does not exist between control information and model actions. The 

tools must be altered or augmented to permit the specification of model behaviors independent 

of the experimental frame under which the models are run. 

GEOMETRIC MODEL CONSTRUCTION 

RASP's model construction methodology promotes a manageable model architecture by dele­

gating the handling of model attributes and responsibilities to feature objects. Models manage 

feature objects via slots and ports to promote an external interface that adheres to the connec­

tion paradigm and permits temporal modeling tools to influence a model's state. Delegation 

is extended to feature objects to form a hierarchical ordering of model attributes and duties. 

Alterations to model traits are generated at various levels of detail by modifying the hierarchical 

data structure at different ranks. 

RASP's model construction methodology supports the interaction between models and ren­

derers by defining a communicational protocol for data-to-image translation. Models and ren­

derers support interfaces which enable them to communicate and maintain independent knowl­

edge of their needs and capabilities. 

Although C++'s inability to support delegation limited the examination of RASP's model 

architecture, two important issues arose during testing. First, the hierarchical ordering of 

feature objects and feature ports increased the complexity of simulation models. To support 

1 Although it was noted in section 6.3.4 that optimizations to the simulation kernel reduces its versatility, this 
fact will not stop users from altering the operation of the kernel to enhance the performance of their simulations. 
Therefore, it is important to provide rules that guide any modifications made to the kernel. 
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RASP's multiple interface approach to discrete-event modeling, they needed to supply opera­

tions that transmitted information to and obtained information from its immediate predecessors 

and successors. Future enhancemeri.t need to determine if these operations can be eliminated 

via language support or new design. Second, rules must be established to coordinate the com­

munication between two or more feature objects. It is not clear whether information is to be 

exchanged via ports, direct message passing, or delegation. 

12.1.2 DISCUSSION 

Apart from obvious differences, the RASP toolkit differs from previously designed toolkits in 

four major ways. First, object-oriented principles were applied to the toolkit design from its 

inception to its current implementation. Objects were created to construct models, coordinate 

communication between components, and form simulation frameworks. RASP's construction 

process did not encounter problems, such as design specifications being far removed from im­

plementation constructs, normally associated with software projects that attempt to objectify 

their systems only during the implementation phase of software development. As noted in 

[16, 60], the application of object-oriented principles to software design, analysis, and implemen­

tation imposes good software engineering practices, fosters reusability, and promotes structural 

continuity. 2 Second, the toolkit defines a framework for simulation development that empha­

sizes the reuse of design, not just implementation. The relationships and dependencies between 

groups of objects are delineated to promote a general architecture for component reuse. Third, 

the toolkit endorses a separation of communication and co-ordination from functionality and 

computation. Serving only one purpose, tools orchestrate the the interaction among sets of 

models or manipulate the attributes or properties ·of a model. Fourth, the toolkit endorses the 

development of models which maintain a loose connection to their environments. Models form 

relationships via ports and connections, not via direct associations. This design fosters greater 

model reusability and interpretability. 

2 Classes, objects, properties, and relations described in the design phrase show up in the implementation 
phase. 
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12.2 FUTURE WORK 

More experience is needed to evaluate the potential and test the adequacy of the RASP toolkit. 

Only through experimentation is it possible to determine if the toolkit's constructs and abstrac­

tions provide enough leeway for users to create a wide variety of simulations. Nevertheless, it is 

clear that certain modifications and extensions to the toolkit will prove beneficial. The following 

itemization presents a few areas of possible enhancements. 

ALTERNATE LANGUAGE 

Although the RASP toolkit was initially designed independent of an implementation, continual 

enhancements and modification to the toolkit's design were strongly influenced by its C++ 

implementation. The inability of C++ to support delegation, garbage collection, and generic 

pointers to class members, and run-time type identification required the toolkit to supply users 

with many data structures and constants that enabled them to emulate these missing properties. 

Apart from cluttering the toolkit with extraneous structures, these additional tools attenuated 

the simplicity and power of the toolkit's design. 

An alternate implementation of the toolkit using another language, such as RAVEN[l], 

Objective-C[14], or SELF[33], may provide insights concerning the correctness and applicability 

of the toolkit's design. The incorporation of new language features may improve the toolkit's 

design and its approach to reusability. 

TEMPORAL RELATIONS 

In the real-world, users do not always define the activation of events and activities in terms 

of explicit units of time. Activation times are often expressed in relation to other activation 

times. Therefore, it would be extremely beneficial for RASP to allow users to coordinate the 

activation of state changes without explicit references to specific points in time. For example, 

it would not be extremely difficult for RASP's design to provide operators which define many 

the reference interva.ls described in [2] and shown in Table 12.4. 

By using these reference intervals, it would be possible to represent the relationship between 
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Relation Symbol Inverse Symbol Pictorial Example 
X before Y < > XXX yyy 
X equal Y = = XXX 

yyy 
X meets Y m ml XXXYYY 

X overlaps Y 0 oi XXX 
yyy 

X during Y d di XXX 
yyyyyy 

X starts Y s si XXX 
yyyyy 

X finishes Y f fi XXX 
yyyyyy 

Table 12.4: Temporal Interval Relations 

multiple temporal intervals using constraint propagation, and explicitly handle problems dealing 

with relative temporal knowledge. 

INTERFACE APPLICATIONS 

Usage of the RASP toolkit requires programming experience. Users must be familiar with pro­

gramming languages, software engineering, and object-oriented principles to construct properly 

reusable simulations. To cater to a wider audience and to improve greatly the user-friendliness 

of the toolkit, the construction of front-end programs that allow users to build RASP simulation 

via a graphical interface or high-level scripting language would be worthwhile. Such programs 

could directly interpret the simulation designed by users, or they may yield segments of source 

code that compile into RASP simulations. 

CONTROLLER INTERACTION 

The IMVCD framework dictates that only controllers are to control the dynamic properties 

of a simulation. Although this design enhances the development of reusable components, it is 

far from complete. The framework fails to provide rules which govern the conduct of multi­

ple controller acting in unison or conflict. Rules must be defined to resolve conflicts among 
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discordant controllers, to assign semantic relationship between coupled controllers, and to clas­

sify the bindings between controllers and the entities which they control. Previous works by 

[43, 47, 98, 65] support the need for such rules. 

TEMPORAL REGRESSION 

Some simulations, especially computer animations, need to run simulations backwards. Re­

versing the direction of simulated time enables users to test the operation and validity of their 

simulations and to examine the effects induced by altering the nature of previously transpired 

state changes. 

PARALLELISM & DISTRIBUTED PRINCIPLES 

The benefits derived from distributing computations across multiple platforms and conducting 

operations in parallel are numerous. Apart from increasing the efficiency and productivity of 

simulations, they enable users to devise architectures which closely resemble real-world scenar­

ios. For example, simulations which try to emulate and test the interactions between robotic 

devices may benefit from a design which distributes each device to a separate computer. There­

fore, it is of interest to determine RASP capabilities to incorporate plans for distributed and 

parallel computing. The similarities between RASP and various co-ordination languages, such 

as MANIFOLD, suggests that the toolkit's design is amenable to such improvements. 

. I 
I 



APPENDIX A 

OBJECT ORIENTED LANGUAGES 

A.1 

... objects are classified scientifically into three major categories - those that don't 
work, those that break down, and those that get lost. -Ibid. 

DEFINITION 

According to [91], a language is deemed to be object-oriented if it supports three important ele­

ments. First, it supports some notion of "objects". Every object must have a set of operations, 

called methods, and a state that is affected by these operations. Second, every object belongs 

to a class. Objects of the same class have uniform behavior and equivalent operations. Third, 

some form of an inheritance mechanism is used to define class hierarchies. Inheritance enables 

construction of new objects by extending, reducing, or modifying the functionality of existing 

objects. 

According to [7], Wegner's definition of OOP is too restrictive and unsatisfactory. He 

proposes an alternative definition based on the properties of object-oriented systems as opposed 

to their implementation mechanics. For a system to be considered object-oriented, it must 

possess the concepts of encapsulation, 1 set-based abstraction, and polymorphism. 

Encapsulation Objects are encapsulated if their data structures and procedures are enclosed 

within unpenetrable tight boundaries. Only through well-defined interfaces can an ob­

ject 's internal structures be accessed. 

Set-based Abstraction Set-based abstraction requires all entities to belong to sets. Sets 

enable clients to abstract common properties among a collection of objects. All sets are 

capable of intersection and union. Therefore, it is possible for any object to be part 
1 It is not universally accepted that encapsulation provides greater programming constructs for OOP. Some 

object-oriented languages, such as SIMULA, allow direct access to internal variables. Others, like HSL, support 
weak encapsulation structures. Some researchers believe encapsulation reduces the communication abilities 
between various objects. 
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of more than one set. Languages which support inheritance and conformance2 support 

set-based abstractions. 

Polymorphism Polymorphism is the ability of procedures or functions to operate on more 

than one data type. Stringent type-checking methods have proven to be too restrictive 

to program development. 

A.2 CLASS HIERARCHIES 

A.2.1 INHERITANCE 

Classes that inherit operations from superclasses and allow their operations to be acquired from 

subclasses exhibit inheritance. The ISA relationship, which is formed between a class and its 

superclass, can be taxonomised as follows:[85] 

• ISA-derived: If it possible to apply a derivation rule to class A to form a subclass B, then 

B is defined to be derived from A. Although derivation rules come in many forms, they 

usually impose restrictions to a class' design. For example, the class TENNIS-BALL is 

ISA-derived from BALL by applying the predicate condition type=tennis to BALL. ISA­

derived classes do not store additional data structures. They utilize the data structures 

of their parent classes to reserve their data. 

• ISA-specialized: A subclass that subsumes the properties of its parent class is defined 

to be a specialized class. Besides exhibiting all the qualities of its parent class, an ISA­

specialized class demonstrates supplementary traits. For instance, class TEAM-CAPTAIN 

is a specialized class of TEAM_pLAYER. Apart from performing the role of a typical 

player, a team captain behaves as a leader and instructor. A specialized class stores 

only distinctive information within its structures. General information, inherited from its 

genitor, is preserved in the parent class. 

• ISA-classified: A subclass is ISA-classified from its parent class if its inheritance link 

is used purely as a classification device. No additional derived or functional relationship 
2Conformance is related to the concept of subtyping. The reader is directed toward [8] for detailed discussions 

on subtyping. 
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exists between the subclass and its parent. ISA-classified classes do not rely on their 

parent classes to maintain data structures. Descriptive data is stored within the subclass' 

personal structures. 

A.2.2 DELEGATION 

Three problems are associated with the class/inheritance approach. First, it is not a precise 

method to describe resource sharing in class hierarchies. Second, object-oriented mechanisms 

are overloaded in the sense that inheritance is used to implement type checking, binding, and 

behavior sharing. Third, classes are used to describe abstract behaviors and attach functionality 

to them. Although one might consider the last two problems to be strengths as opposed to 

weaknesses, they limit the degrees of freedom implementors need to build sophisticated objects. 

Delegation is a better class independent term for dynamic hierarchical resource sharing. By 

inheriting state and behavior, delegation makes it possible to change the behavior of object 

dynamically. In a delegation-based system, every object behaves as a "prototype" for the 

creation of a new object[7]. For example, in inheritance-based languages, such as Smalltalk[26, 

34], when an object receives a message, it searches for method in its class. If a method can 

not be found, the search is expanded to the class's superclass, and the superclass's superclass, 

and so on. This hierarchical look-up mechanism results in subclasses inheriting methods from 

their superclasses. However, in delegation-based languages, like SELF[33], methods are stored in 

objects, and there are no concepts of classes. After receiving a message, if an object can not find 

a method within itself, it delegates responsibility to another object to find one. The delegated 

object can also choose to delegate responsibility to another object if it proves unable to find 

a suitable method. In the delegation hierarchy, objects inherit methods to which it delegates 

messages[38]. The following list enumerates the advantages of delegation over inheritance. 

• Simplifies the programming model. 

• Eliminates the complexity associated with metaclasses without removing their power. 

• Easier to implement one-of-a-kind objects. 

• Easier to the change the behavior of objects. 
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• Powerful enough to simulate inheritance[49]. 

Although delegation provide users with a different methodology than inheritance, there 

seems to be little difference between them in terms of implementation. Recent evidence by [81] 

seems to indicate that inheritance and delegation can provide exactly the same facilities. 

A.3 LANGUAGES 

Object-oriented languages come in a variety of forms: commercial products, research projects, 

standalone languages, language derivatives, etc. Some languages even support concurrency and 

distributed principles. The remainder of this section discusses two important OOP languages, 

c++ and SELF. Readers wishing to further explore the area of object-oriented languages are 

directed to start with [75]. 

A.3.1 c++ 
Created by Bjarne Stroustrup of AT&T Bell Laboratories, C++ was introduced in the early 

1980s as an extension to the C programming language developed by Dennis Ritchie. While 

remaining compatible and comparable to C in terms of syntax, performance, and portability, 

c++ provides data abstraction and object-oriented programming facilities. Besides increasing 

the amount of static type checking, C++'s inheritance-based design enables users to define 

user-defined types that obey identical scope, allocation, and naming rules as built-in types[39]. 

As powerful as C++ may be, it is not perfect. Currently, C++ does not support accurately 

meta-classes, exception handling facilities, typedef identification, run-time creation of new types, 

concurrency mechanisms, and persistence - the placement of objects on secondary storage so 

that they can exist across multiple platforms and applications. 

A.3.2 SELF 

SELF[33] is a delegation-based language. Using neither classes nor variables, SELF utilizes a 

prototype metaphor for object creation. SELF objects do not obtain state information in the 

same manner as objects defined in most other object-oriented languages. They send messages 
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to "self", the receiver of the current message, to attain their current condition. SELF's great 

expressive power comes from its inability to distinguish state from behavior and its uniform 

capability to access different types of stored and computer data. 

The following table provided by [33] compares SELF with class-based systems, such as 

Small Talk. 

class-based systems SELF: no classes 
inheritance relationships instance of inherits from 

creation metaphor build according to plan clone an object 
initialization executing a "plan" cloning an example 
one-of-a-kind need extra object for class no extra object needed 

infinite regress class of class of class of ... none required 

Table A.5: Class Systems vs. SELF 
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SOFTWARE REUSABILITY 

It is widely believed that software reusability enhances the productivity and development of 

quality software. A library of reusable components provides users with a basic set of well-defined 

tools to create a wide variety of software applications. A reusable library raises the level of 

abstraction to allow users to concentrate on the problem domain. Although great strides have 

been accomplished in the field of software engineering, the promise of reusability has not yet 

been fulfilled. The lack of a standard method of software development and the multifarious 

needs of application users have attributed to the limited success of reusable software libraries. 

Common problems associated with reusable component development include: 

• inability to respond to changing user needs: A component that may be appropriate 

during the early stages of development may be unsuitable for the final product. 

• excessively specialized components: Any component that is difficult to use or modify 

deters users from utilizing it. The software development process may become severely 

encumbered if users must spend valuable time deciphering the components of any library. 

• missing components: The absence of vital components hinders users from developing 

applications with the software library. If continually forced to define important constructs, 

users will reject the usage of a set of extraneous components. 

• implementation dependence: It is difficult to define a module that client modules can 

rely on without knowledge of the module's implementation. Some users may experience 

apprehension when an important component's implementation details are hidden from 

them. 

• operational problems: Without a clear organizational structure, the effective potential 

of a component library will diminish as it grows in size and functionality. Components 
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that are difficult to find or troublesome to interpret effect the reusability of any library. 

• poor early investment: Creating a viable collection of reusable components is a time 

consuming task. Careful effort must be made to ensure that each module is reliable and 

general enough to suit the needs of users. 

B.1 REUSABILITY TECHNOLOGIES 

There are two main approaches to reusable technology[5]. The first major group, composition 

technology, is characterized by the idea that all components of a reusable library are atomic 

units. Each module behaves as an independent entity. Although components may be modified 

for individual needs, this approach emphasizes that components do not need to be changed to 

be reused. Using this technology, new applications are developed by combining individual units 

into larger components. The UNIX pipe mechanism exemplifies this approach to reusability. 

The second major approach, generation technologies, is based upon the idea that reusable 

components are the patterns of a generator program. Components are not concrete modules. 

They define the underlying structure and body of target programs. Reuse is not a matter of 

compositing components together. It is a matter of the execution of component generators. 

The Draco[59] approach to reusable component design illustrates this approach. 

B.2 OBJECT-ORIENTED APPROACH 

The introduction of object oriented programming (OOP) has had a profound effect on com­

puter software construction. There are many advantages of OOP over traditional (procedural) 

programming languages. Because programming is always structured and modular, the abil­

ity to design, construct, and maintain large scale systems is enhanced. Other benefits include 

increased software re-usability, improved team project coordination schemes, and enriched facil­

ities for hierarchical design. Based on the theory of data abstraction, this technique introduces 

new ideas and constructs not commonly found in modular languages. Unlike classical func­

tional design, object-oriented design does not base the modular decomposition of a software 

application on the functions the system performs. Decomposition is generated from the classes 
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of objects the system manipulates. Applications are decomposed into systems of interacting 

objects, not interacting functions. 

Independent component design is a fundamental aspect of many object-based systems. Users 

build complex systems from the composition of various library modules. However, whenever 

a particular module (class) does not explicitly fit users' designs, they may define submodules 

(subclasses) that define new operations or redefine old operations to suit their needs. This 

process is effortless in object-oriented languages that support inheritance. Besides facilitating 

specialization, inheritance can be used for type checking and component classification. However, 

excessive use of inheritance has proven to be deleterious[94, 23, 12]. Apart from reducing the 

runtime efficiency of object oriented applications, large inheritance trees form interdependencies 

among large sets of objects. This condition makes it very difficult to transfer useful submodules 

between projects without transferring a large segment of the inheritance tree. 

The importance of generation technologies in the development of reusable modules has 

guided the development of several key constructs in object-oriented languages. The introduction 

of abstract data types, type parameterization, and frameworks have greatly enhanced the design 

of reusable libraries.1 

B.2.1 ABSTRACT DATA TYPE 

An abstract data type (ADT) is a class of objects characterized by its external properties. The 

ADT is described by the abstract features of its associated operations. For some languages, 

such as C++[84], it is impossible to generate an instance of an ADT because at least one or 

more of its operations are always left unimplemented. Users must completely define all the 

operations of an ADT before using it. From a hierarchical standpoint, the ADT represents the 

superclass (see Appendix A) of user-defined classes. The ADT proves an important construct 

for developing numerous objects with the same protocol but vastly different implementations. 

The abstract data type has three kinds of operations[37]: 

• abstract operations: These types of operations are not implemented within the body of 

1 Although the concepts of abstract and parameterized data types existed before the development of object­
oriented design, few languages provided mechanisms to implement these ideas. The introduction of object­
oriented languages provided users with concrete mechanisms to express these reusable technologies 
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an ADT but must be defined. In a class-based system, abstract operations are declared in 

the superclass, but their implementation is to be defined in a specific subclass. Abstract 

operations are part of the specification for all subclasses of the ADT. A variety of languages 

use different techniques to ensure that the syntactic part of an ADT's specification is 

correctly followed. Some languages, such as C++, inspect for definitions of abstract 

operations during compile time while other languages, like Smalltalk, delay checking for 

definitions until the operations are actually used. 

• template operations2: An abstract algorithm that is defined in terms of one or more 

abstract operations is called a template operation. Operations of this type can be in­

terpreted as being partially implemented. The user of the ADT defines the abstract 

operations within the body of each template operation. The following segment of C++ 

code illustrates a simple template operation. 

Foo: :write( Device io) 
{ 

} 

char buffer[255]; 
this->read(buffer ); I• abstract operation•/ 
io->write( buffer); 

In this example, the algorithm "write" has been defined for the abstract class "Foo". 

Within this function, the abstract operation "read" is being called. The function "read" 

must be defined by users of "Foo" if they wish to use the "write" operation. 

• base operations: A fully implemented operation of an ADT is defined as a base opera­

tion. Although users may redefine these operations, they are not required to do so. 

B. 2. 2 TYPE PARAMETERIZATION 

Languages that support type parameterization enable users to define a type in terms of another, 

unspecified type. This feature is especially useful for creating general container types, such as 

list and array, where the supported element type is defined by a parameter. Used in conjunction 

2Template operations are not needed in some object-oriented languages, such as SMALLTALK 
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with abstract data types, parameterized types are also useful for defining generic functions, 

such as "min" and "max", for a family of types. Languages such as C++ commonly refer to 

parameterized types as templates.3 

B.2.3 FRAMEWORK 

A framework is a set of design rules for a collection of collaborating objects. It defines how 

a system is divided into components and how functions are divided among each of the indi­

vidual groups of objects. This technique of high-level design focuses on the architecture of 

programs, as opposed to the reuse of implementation. Frameworks emphasize the communica­

tional paths between objects, not the dataflow between them. User-interface design packages, 

such as Model/View/Controller (MVC)[45], Interviews from Stanford[SO], and MacApp[76], 

exemplify the popularity and necessity for frameworks. 

Currently, frameworks prove difficult to define. Models of interaction and the definition 

of control flow among sets of objects are generally not easy to explain or visualize. Ideally, a 

framework would be best described in terms of operational constraints placed on objects in a 

system. This scheme facilitates the reuse of code and description of interacting objects. How­

ever, the formal specifications of object-oriented systems have not evolved to a mature enough 

state to express these ideas. This limitation, however, does not imply that it is impossible to 

define successful frameworks. Many popular frameworks, such as the ones mentioned above, 

utilize well-defined informal methods to express their designs. 

3Parameterized "templates" are unrelated to the "template" operations previously defined above. 
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'EXAMPLES 

This appendix presents two simulations created with the RASP toolkit. The first simulation 

produces a small animation of a spherical object moving along a spline path and then bouncing 

freely within a cube. The second simulation produces an application with two concurrently 

operating processes. One process manages user-interface events from a "mouse", while the 

other simply waits to consume data. 

Each simulation was developed on Silicon Graphics machines using SGI's C++ 3.0 com­

piler. Although several GL-based classes and routines are found in both simulations, neither 

simulation is GL dependent. Equivalent classes and routines, based on other architectures, may 

be freely used as substitutes. 

It should be noted that many header files, extraneous data type definitions, and constant 

declarations in both simulations were omitted intentionally to reduce clutter. In addition, 

several local variables have been defined as global variables only to facilitate the decomposition 

of large routines into smaller procedures. 

170 
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C.1 BOUNCING BALL 

In this simulation, a small sphere, which is confined within a large rectangular box, travels along 

a path determined by a spline from time t = 5 to t = 15. During this interval, the sphere's 

position is updated every 2 seconds. From t = 16 to t = 100, the sphere departs from the 

spline-based path and alters its position every second according to the "laws of motion". The 

sphere's direction changes each time it collides with one of the walls of the enclosing rectangular 

box. 

Images of this animation are drawn to a display device using a GL-based renderer and stored 

as "optik-script" files using a Optik-based renderer. Images drawn to the display screen are 

shown in two windows. One window updates its view each time an event transpires while the 

other updates its view every other second during the interval from t = 10 to t = 45. 

C.1.1 MAIN 

The global environment is defined by the following list of variables, which represent the setting, 

three windows, eight models, and eight geometries. For reasons described in section C.1.3, the 

enclosing rectangular box is decomposed into six geometric faces. 

/• the setting•/ 
RaspSetting •vorld; 

/• vindovs •/ 
GLWindow •wind, •wind2; 
Window •wind3; 

/• hybrid model objects•/ 
HybriclModel •obj1, •obj2, •obj[6]; 

/• geometries •/ 
Spline •spl1; 
Sphere •sph1; 
Cube •cube[6]; 

The procedure main initializes a setting; invokes functions to create windows, cameras, and 

models; calls operations to establish dynamics actions; and informs the simulation when to 

begin. 

void PROCEDURE main() 
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{ 

} 

/• create a setting•/ 
vorld • nev RaspSetting(); 

/• add objects to the vorld •/ 
create_vindovs() 
create_cameras() 
create_models(); 

/•setup dynamic qualities of simulation•/ 
script_animation(); 
create_collision_checker(); 

world->run(); 

C.1.2 CREATING WINDOWS & CAMERAS 

112 

The procedure create_windwos creates three windows. The first two, wind and wind2, open 

windows on a graphical display. The third, wind3, is unlike the first two because it does not 

cause a window to be drawn anywhere. It is a "generic" window. It is used only to set the 

viewing window for the Optik off-line renderer. 

void PROCEDURE create_windovs() 
{ 

} 

/• first vindov •/ 
fRect v( IMAISCREEN/2.,100.,(float) IMAXSCREEN, (float) YMAISCREEN/2.); 
vind • new GLWindow3D( w, "Test", TRUE ) ; 
vind->open_windov(); 
vind->setColor( DARK_GREY ); 
vind->clear_vindow(); 

I• second vindov •/ 
fRect v2( IMAXSCREEN/2., (float)YMAXSCREEN•2/3., (float) IMAISCREEN, 

(float) YMAISCREEN ); 
vind2 • new GLWindov3D( v2, "Test2", TRUE); 
vind2->open_window(); 
vind2->setColor( DARK_GREY ); 
vind2->clear_windov(); 

/• third vindow •/ 
fRect v3( 0, 0, 100, 100 ); 
vind3 s new Window( v3, ''Test'' ); 
vind3->setColor( DARK_GREY ); 

The procedure create_cameras creates one camera for each window defined in the previous 

procedure create_windows. However, this does not imply that every RASP simulation must 
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create a separate camera for every window it utilizes. One camera could have been used for all 

three windows. Separate cameras are created for this simulation so that the viewing parameters 

and update times for each of the three windows may vary. 

void PROCEDURE create_cameras() 
{ 

} 

/• create renderers•/ 
GLRenderer3D •glRend = nev GLRenderer3D(); 
OptikRenderer •opRend • nev OptikRenderer(); 

/• camera parameter values•/ 
fVector vievup (-1.0, -1.0, O. ); 
dAngle fovx = 90., fovy • 90.; 

/• set first camera parameters•/ 
Camera •camera• nev Camera( "MyCamera" ); 
camera->setViev( Point3(20,36,110), ORIGIN, viewp, fovx, fovy ); 
camera->setClipPlanes( .001, 3600. ); 
camera->associateWindow( wind): 
camera->associateRenderer( glRend ); 
camera->wind_Set_OrthRt( .6 ); 

/• set second camera parameters•/ 
Camera •camera2 • new Camera( "SecondCamera" ); 
camera2->setView( Point3(160,0,0), ORIGIN, vievup, fovx, fovy ); 
camera2->setClipPlanes( .001, 3600. ); 
camera2->associateWindow( wind2 ); 
camera2->associateRenderer( glRend ); 
camera2->wind_Set_OrthRt( .6 ): 
camera2->setUpdateEvent( FALSE): 

/• set third camera's parameters•/ 
Camera •camera3 • new Camera( "OptikCamera" ); 
camera3->setView( Point3(0,30,100), ORIGIN, vievup, fovx, fovy ); 
camera3->setClipPlanes( .1, 1200. ); 
camera3->associateWindow( wind3 ); 
camera3->associateRenderer( opRend ); 
camera3->wind_Set_OrthRt( .6 ); 

/• add cameras to the world•/ 
world->addObject( camera); 
world->addObject( camera2 ); 
world->addObject( camera3 ); 
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C.1.3 CREATING MODELS 

The procedure create...models creates a variety of hybrid models and one directional light.1 

Models are associated with geometries (Informer objects, section 7.2) to create one spherical 

object, one spline object, and six flat plates (cubes). The flat plates form the sides of the box 

enclosing the moving sphere. One large box could have been constructed to replace the six 

plates but such a scheme would have made it difficult to determine collisions between the walls 

of the box and the sphere. 

void PROCEDURE create_models() 
{ 

/• create spline with cubic basis•/ 
Basis •sBasis • new Basis( CUBIC_BASIS ); 
spl1 • new Spline( 10, sBasis, FALSE); 

/• set the spline's control point positions•/ 
(•spl1)(0) = Point3( -100, O, 0 ); 
for(int i•1; i<10; i++) 

(•spl1)(i) • (•spl1)(i-1) + Point3(20,Random(S0)-25,2); 

/• create some spherical geometries•/ 
sph1 • new Sphere( 10. ); 
sph1->setName( "redBall" ) ; 

/• create a light•/ 
DirectLight •dLight = new DirectLight( dVector(1,1,1), BASIC_WHITE ); 

I• create cubes•/ 
cube[O] • new Cube( Point3(-120, -62, -SO), Point3( 120, -60, 60 )); 
cube[1] • new Cube( Point3(-120, 62, -60), Point3( 120, SO, so)); 
cube[2] • new Cube( Point3(-122, -SO, -60), Point3( -120, 60, 60 )); 
cube[3] • new Cube( Point3( 122, -60, -50), Point3( 120, 50, 50 )); 
cube[4] • new Cube( Point3( -120, -60, -60), Point3( 120, 60, -62 )); 
cube[S] " new Cube( Point3( -120, -60, 60), Point3( 120, 60, 52 )); 

/• create Hybrid objects•/ 
obj1 • new HybridModel( ORIGIN, sph1, RED_BALL ); 
obj2 • new HybridModel( ORIGIN, spl1, 002 ); 
obj1->set_velocity( dVector( .5, 1, 0) ) ; 

char name [255] ; 
for(i• O; i<6; i++) { 

sprintf ( name, "Cube IY.d", i ) ; 
cube(i]->setName( name); 
obj[i] • new HybridModel( ORIGIN, cube(i], i+2010 ); 

} 

1 A directional light source emanates rays of light in only one direction. Directional lights are usually used to 
represent light sources which are infinitely distant from a scene, such as the sun. 
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} 

/• add models and lights to the vorld •/ 
vorld->add0bject( obj1, BASIC_RED ); 
vorld->add0bject( obj2, BASIC_BLUE ); 
vorld->add0bject( dLight ); 

/• add boxes with different colors •I 
vorld->addObject( obj[0], BASIC_GREEN ); 
vorld->addObject( obj[1], BASIC_GREEN ); 
vorld->addObject( obj[2], BASIC_ORANGE ); 
vorld->addObject( obj[3], BASIC_CYAH ); 
vorld->addObject( obj[4], BASIC_MAGENTA ); 
vorld->addObject( obj[6], BASIC_MAGENTA ); 

C.1.4 SCRIPTING ANIMATION 

175 

The procedure script...animation defines three Activitys. The first activity, move1, propels a 

spherical object along a spline-based path for 10 units of time. This action is accomplished by 

passing the maximum parametric value of the spline to the Controller evol, delegating evol 

to generate a range of numerical values (parametric positions) for spl1, and delegating spl12 

to set the position of the sphere obj 1. The second activity, move2, enables obj1's motion to be 

governed by Newton's laws of motion[80] from t = 16 tot= 25. This action is manufactured 

by creating a Controller (Motion) which is aware of Newton's law of motion and delegating it 

to control the sphere's position. The third activity, move3, simply informs the camera "Second 

Camera" to generate a new image every other unit of time during the interval t = 10 tot= 45. 

void PROCEDURE script_animation() 
{ 

Procession •seq1 = nev Procession( "Balls", 0, 60. ); 

/•• sphere moving behavior from t•6 to t•16 ••/ 
Activity •move1-= nev Activity( "SpMoving", 6., 16., 2 ); 

/• Pass the spline's maximum parametric value to the evolution object. •I 
dEvolve •evol • nev dEvolve( 0, 0, 10 ); 
Event act0( spl1->outMuParam(), evol->inFinishVal() ); 
move1->addlnitEvent( act0 ); 

/• (a) pass temporal value to evolution. 
(b) get value from evolution and pass to spline. 
(c) get value from spline and pass to object. 

2 Although a spline is inherently a geometric entity, it may also control the behavior of other objects. In 
RASP, any object may be delegated to be a Controller. 

J' 
I 
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} 

•I 
ChainEvent act123; 
TimeEvent act1( evol->inCalcValue() ); 
act123.addEvent( act1 ); 
act123.addEvent( evol->outCurVal(), spl1->inParamVal() ); 
act123.addEvent( spl1->outParamPos(), obj1->inSetPosition() ); 
move1->addActEvent( act123 ); 

I•• Sphere object follows lavs of physics••/ 
Activity •move2 = nev Activity( "Free Motion", 16., 25. ) ; 

/• (a) pass position, velocity, and acceleration from object to motion 
(b) send time to motion. 
(c) send nev position from motion to object. 

•I 
Motion •motion= new Motion(); 
Event act4( obj1->outPosition(), motion->inPosition() ); 
Event act5( obj1->outVelocity(), motion->inVelocity() ); 
Event act6( obj1->outAcceleration(), motion->inAcceleration() ); 
TimeEvent •act7 • new TimeEvent( motion->inDTime() ); 
Event act8( motion->outPosition(), obj1->inSetPosition() ); 

move2->addlnitEvent( act4 ); 
move2->addlnitEvent( act5 ); 
move2->addlnitEvent( act6 ); 
move2->addActEvent( act7 ); 
move2->addActEvent( act8 ); 

/•• Update second camera every 2 second from t=10 to t•45 ••/ 
Activity •camUpdate "' nev Activity( "Update Camera", 10, 45., 2 ) ; 

Camera •camera .. (Camera•) vorld->getCamera( "SecondCamera" ); 
TimeEvent camAct( camera->inSnapShot() ); 
camUpdate->addActEvent( camAct ); 

/•• add activities to procession••/ 
seq1->addActivity( move1 ); 
seq1->add.lctivity( move2 ); 
seq1->addActivity( camUpdate ); 

/•• add procession to the world••/ 
vorld->addProcession( seq1 ); 

C.1.5 COLLISION CHECKER 

176 

The procedure create_collision_checker induces two primary collision checking activities. 

The first activity outMove alters the color of any wall struck by the moving sphere, obj 1 during 

the interval t = 1 to t = 40. This act is accomplished by affixing the StateEvent state 

to obj 1 's outCollision port. This action forces the Activity condAct to become active 
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if outCollision ever changes value. The second activity collCheck alters the direction of 

the moving sphere each time it strikes a wall. Collision checking is performed by an collision 

checking object of type Collide and the procedure alter_sphere_direction. 

Note: The two collision checking activities could have been amalgamated into one large 

activity. However, this was not performed so that the usage of various RASP operations and 

objects could be shown. 

void PROCEDURE create_collision_checker() 
{ 

} 

/•• call on Collision reaction tester function••/ 
Activity •condAct,. nev Activity( "Collision Reaction"); 

Event condEv( alter_vall_color ); 
condAct->addlnitEvent( condEv ); 
condAct->assocProcession( seq1, 0.0 ); 

/•• if object's collision state changes during the interval t=1 to t•40, 
then initiate condAct. ••/ 

Activity •outMove • nev Activity( "Conditional Activation", 1., 40., 1 ) ; 

GeoBase •geolnfo = obj1->getGeoBase(); 
Collisionlnfo •colllnfo • geolnfo->getCollisionlnfo(); 
StateEvent state( colllnfo->outCollision(), condAct ); 
DisableEvent state2( colllnfo->outCollision(), condAct ); 

outMove->addlnitEvent( state); 
outMove->addFiniEvent( state2 ); 

/•• set collision checking parameters••/ 
Collide •collider • nev Collide(); 
BybridModel •srcObj,. vorld->getDbject( RED_BALL ); 
collider->addSource( srcObj ); 
for(i•O; i<6; i++) 

collider->addTarget( obj[i] ); 

/•• perform Collision checking from t•10 to t • 100. ••I 
Activity •collCheck • nev Activity( "CollisionChecking", 10, 100., 1 ) ; 

CallEvent collEvent( collider->inRun() ); 
collCheck->addActEvent( collEvent ); 
collCheck->addActEvent( alter_sphere_direction ); 

/• add nev activities to the vorld •/ 
Procession •seq1 = vorld->getProcession( "Balls"); 
seq1->addActivity( collCheck ); 
seq1->addActivity( outMove ); 

The procedure alter_walLcolor is invoked when the sphere's collision state changes. If 

the sphere is determined to be in collision with another object (wall), this procedure will alter 



Appendix C: Examples 

the color of the colliding object to light yellow. 

void PROCEDURE alter_vall_color() 
{ 

} 

static GeoBase •hitObj • NULL; 
GeoBase •nevHitObj, •ball• vorld->getObjectGeometry( RED_BALL ); 
Collisioninfo •eollinfo = ball->getCollisioninfo(); 

if (collinfo->getCollisionState()) { 
nevHitObj • collinfo->getCollisionObjAt( O ); 
if (nevHitDbj != hitObj) { 

} 
} 

Properties •prop• nevHitDbj->getProperties(); 
Material •mat• (Material•) prop->getProperty(ATTRIB_MATERIAL_PRDPERTY); 
ColorBase •col• mat->getDiffuse(); 
nevHitObj->setColor( LIGHT_YELLDW ); 
hitObj • nevHitObj; 

178 

The procedure alter_sphere_direction determines which wall a sphere strikes and alters 

the sphere's forward direction accordingly. 

void PROCEDURE alter_sphere_direetion() 
{ 

HybridModel 
GeoBase 
dVector 
static int 

•box, •sphere; 
•vall; 
vel; 
lastWall = -1; 

GeoBase •ball• vorld->getObjectGeometry( RED_BlLL ); 
Collisioninfo •collinfo • ball->getCollisioninfo(); 

if (collinfo->getCollisionState()) { 

for(i• O; i<6; i++) { 
box• vorld->getObject( i+2010 ); 
vall • box->get_geometry(); 

if (collinfo->collisioninfo( vall) II i !• lastWall) { 
sphere• ball->getOvner(); 
vel • sphere->get_velocity(); 

sviteh( i ) { 
case 0, 1: 

vel.J() = -vel.J(); 
break; 

case 2, 3: 
vel.I() • -val.I(); 
break; 

case 4, 6: 
vel.K() = -vel.K(); 
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} 
} 

} 

break; 
} 

sphere->set_velocity( vel ); 

Procession •seql • vorld->getProceBBion( "Balls"); 
Activity •act= seql->getActivity( "Free Motion"); 
Activity •nevAct • nev Activity( •act); 
seq1->removeActivity( "Free Motion"); 

double time• vorld->getWorldTime(); 
nevAct->setTiming( time, time+20 ); 
seq1->addActivity( nevAct ); 

lastWall = i; 
break; 
} 

C.1.6 IMAGES 

179 

The following set of images (Figures C.l to C.6) show the views of camera! and camera2. The 

view on the left is updated every time an event occurs, while the the view on the right is 

updated every other unit of time from the period t = 10 to t = 45. 

Figure C.1: Frame at t = 10 
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Figure C.2: Frame at t = 12 

Figure C.3: Frame at t = 30 

Figure C.4: Frame at t = 47 
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Figure C.5: Frame at t = 75 

Figure C.6: Frame at t = 89 
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C.2 Two PROCESSES 

In this simulation, two concurrent processes operate independently. While one process manages 

an event loop for a user-interface mouse, the other waits to consume data. Two geometric 

models (spline with control points) are rendered using a two-dimensional renderer to further 

illustrate the creation of various models and renderers. 

C.2.1 MAIN 

The procedure main initializes a setting; invokes a function to establish the contents of the 

world; calls a procedure to compose dynamic actions; and informs the simulation when to 

begin. 

/• process definition header files•/ 
#include "loop.h" 
#include "vait.h" 

RaspSetting •vorld; 
GLWindov •vind; 

PUBLIC void PROCEDURE main() 
{ 

} 

/• create a setting•/ 
vorld • nev RaspSetting(); 

/• setup the vorld and script process behaviors•/ 
init_vorld(); 
script_processes(); 

/• run simulation•/ 
vorld->run(); 

c.2.2 CREATING WINDOWS, CAMERAS, MOD]l::LS 

The procedure init_vorld sets up a 2D renderer, window, and camera; creates two models; 

and adds all of them to the world. The second geometry is created to visualize the control 

vertices of the spline. Because both geometries reference the same control point data structure, 

a modification to one geometry will automatically alter both. 

void PROCEDURE init_vorld() 
{ 
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} 

/• create a renderer•/ 
GLRenderer2D •glRend • nev GLRenderer2D(); 

/• create a vindov •I 
fRect v( XMAXSCREEN/2.,100.,(float) IKAISCREEN, (float) YMAXSCREEN/2.); 
wind-= nev GLWindow2D( v, "Test", TRUE); 
wind->open_windov(); 
wind->setColor( DARK_GREY ); 
wind->clear_vindov(); 

/• create a camera•/ 
Camera •camera"' nev Camera( "KyCamera" ); 
camera->associateWindov( vind ); 
camera->associateRenderer( glRend ); 
camera->wind_Set_OrthRt( .6 ); 

/• create spline model•/ 
Basis •sBasis • nev Basis( CUBIC_BASIS ); 
Spline •spl1 • nev Spline( 10, sBasis, FALSE); 

(•spl1)(0) • Point3(-60.,0,0); 
for(int i=1; i<10; i++) 

(•spl1)(i) • (•spl1)(i-1) + Point3(15,Random(60)-30,2); 

/• create points from spline's control vertices•/ 
GeoPoints •pts • nev GeoPoints( 10 ); 
pts->setHevPoints( spl1->getCVs() ); 

HybridModel •obj1-= new HybridModel( ORIGIN, spl1, MY_SPLINE ); 
HybridModel •obj2 • new HybridModel( ORIGIN, pts, MY_CVS ); 

/• add objects to the world•/ 
vorld->addObject( camera); 
vorld->addObject( obj1, BASIC_BLUE ); 
world->addObject( obj2, BASIC_YELLOW ); 

C.2.3 SCRIPT PROCESSES 

183 

The procedure script-process creates two activities. One activity to activate loop and wait 

and a second activity to send data to wait during the interval t = 20 to t = 25. The process 

loop, which administers the operation of a "mouse", is provided two procedures, do..l.eftmouse 

and do..rightmouse. The former outputs the position of the mouse while the latter terminates 

the simulation. 

void PROCEDURE script_process() 
{ 

/• create a procession•/ 

I­
r 
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} 

Procession •seq1 • new Procession( "GL-EVEHTS", 0, 60. ); 

/•• intiate tvo processes••/ 
Activity •loopAct .. new Activity( "Loop", 1, 1 ) ; 

/• create a mouse process •I 
GLEventLoop •loop• new GLEventLoop( world); 
loop->setLeftButton( do_leftmouse ); 
loop->setRightButton( do_rightmouse ); 

/• create a waiting process •I 
WaitProcess •wait• new WaitProcess( vorld ); 

loopAct->addProcess( loop); 
loopAct->addProcess( wait); 

/•• send time value to vaiting process during interval t•20 to t•25 ••/ 
Activity •valProcess • new Activity( "Give Value to Process", 20, 25 ); 

TimeEvent evt( wait->inValue() ); 
valProcess->addActEvent( evt ); 

/• add activities to procession •I 
seq1->addActivity( loopAct ); 
seq1->addActivity( valProcess ); 

vorld->addProcession( seq1 ); 

Bool PROCEDURE do_leftmouse( short val) 
{ 

} 

/• get mouse coordinates and print•/ 
fPoint2 pos • wind->getMouseWindCoords(); 
cout <<"MOUSE"<< pos « NL; 
return TRUE; 

Bool PROCEDURE do_rightmouse( short val) 
{ 

gexit(); /• quit program •I 
return FALSE; 

} 

184 
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C.2.4 PROCESS DEFINITIONS 

The following two segments of code show the class definitions for processes GLEventLoop and 

Wai tProcess. Each process is a subclass of the abstract class Process. 

GLEVENTLOOP 

Header File 

#include <process.h> 
#include <gl_utils.h> 

!•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
process class GL-EVERT-LOOP definition 

·······································································•! class GLEventLoop: public Process { 

loop; 
val; 
event; 
bLoop; 

GL_Loop 
short 
long 
Bool 
Bool (•leftBut)(short), (•middleBut)(short), (•rightBut)(short); 

public: 

}; 

/• manager functions•/ 
GLEventLoop( RaspSetting• ); 

/• access functions •I 
void setLeftButton( Bool (•left)(short) ) 
void setMiddleButton( Bool (•middle)(short) ) 
void setRightButton( Bool (•right)(short) ) 

/• implementor functions •I 
void initialize(); 
void finish(); 
int body(); 

{ leftBut • left;} 
{ middleBut s middle; } 
{ rightBut • right; } 



Appendix C: Examples 

Member Function Definitions 

#include <device.h> 
#include <rv/defs.h> 
#include "loop.h" 
#include "setting.h" 

!•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
process class GL-EVENT-LOOP member functions 

······································································•·! GlEventLoop::GLEventLoop( RaspSetting •environ): Process( environ) 
{ 

leftBut • middleBut = rightBut = NULL; 
bLoop = TRUE; 

} 

void GLEventLoop::initialize() 
{ 

} 

qdevice( LEFTMOUSE ); 
qdevice( MIDDLEMOUSE ); 
qdevice( RIGHTHOUSE); 

void GLEventloop::finish() 
{ 

} 

unqdevice( lEFTMOUSE ); 
unqdevice( MIDDLEMOUSE ); 
unqdevice( RIGHTMOUSE ); 

int GLEventLoop::body() 
{ 

vorld->renderAll(); 

loop.insert( LEFTKOUSE, leftBut ); 
loop.insert( KIDDLEMOUSE, middleBut ); 
loop.insert( RIGHTHOUSE, rightBut ); 

JUMPS2O; /• this jump statement is mandatory •I 

} 

vhile( bLoop) { 

} 

if (qtestO) { 
event• qread( lval ); 
bloop• loop.event( event, val); 
vorld->render!ll(); 

} 

if (bloop) { 

PR_BOlD( 5, JUMP_1 ) ; 

JMP_1: 
PR_HOLD( 4, JUMP_2 ) ; 

JMP_2: 
} 

return NO_JUMP; 
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WAIT PROCESS 

Header File 

#include <process.h> 

/••• Forward declaration•••/ 
class IPrPort_Wait; 

!•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
process class WAIT-PROCESS definition 

·······································································•! class WaitProcess: public Process { 
typedef enum { 

IP_VAL 
}; /• inPorts •/ 

IPrPort_Wait •inPort; 
Bool bloop; 
double value; 

public: 
/• manager functions•/ 
WaitProcess( RaspSetting• ); 
·wai tProceas O ; 

/• implementor functions•/ 
void initialize(){} 
void finish(){} 
int body(); 

/• inports •/ 
!Port• inValue(); 

private: 
void inValue( void•); 

}; 

#include "wait.port" 

#endif 
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Appendix C: Examples 

Member Function Definitions 

#include <rv/defs.h> 
#include "vait.h" 
#include "setting.h" 

/•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
process class Gl-EVENT-lOOP member functions 

·······································································•! WaitProcess::WaitProcess( RaspSetting •environ): Process( environ) 
{ 

bloop= TRUE; 
inPort = nev IPrPort_Wait[l]; 
inPort[IP_VAl].setVarld( RS_DOUBlE ); 
inPort[IP_VAl].setHandler( this, tWaitProcess::inValue ); 

} 

WaitProcess::·waitProcess() 
{ 

delete[] inPort; 
} 

int WaitProcess::body() 
{ 

JUMPS2(); /• this jump statement is mandatory•/ 

} 

vhile( bloop) { 

} 

JMP_l: /• jump position•/; 
if ( inPort[IP_VAl].getValue() ) { 

PR_HOlD( 10, JUMP_2 ); 
} 

else { 
hold(); 
return( JUMP_l ); 

} 

JMP_2: 

return NO_JUMP; 

!Port• WaitProcess::inValue() 
{ 

return (!Port•) tinPort[IP_VAl]; 
} 

void WaitProcess::inValue( void •arg) 
{ 

value a •((double•) arg ); 
} 

/• received value•/ 
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APPENDIX D 

RASP CLASS LIBRARY 

This appendix presents the complete list of classes found in the RASP toolkit. Classes are 

organized into tables according to functionality and purpose. A visual presentation of the 

toolkit's inheritance tree is shown in Figure D.1. 

D.1 CLASS ORGANIZATION 

I Abstract I Class Name I Subtype of I Comments 

Identity Info Name and Numld 
RaspSetting Identity Info 
RaspObject Identity Info 
HybridModel RaspObject 
Camera RaspObject 
Window Identity Info 

Yes Window3D 
GLWindow Window 
GLWindow3D Window3D, GLWindow 
GLWindow2D GLWindow 

Table D.6: Environmental Classes 

I Abstract I Class Name I Subtype of I Comments 

Yes Port 
OPort Port 
OutPort<Type> OPort 
!Port Port 
InPort<Type> !Port 
RaspPorts 
Connection 

Table D.7: Port Classes 
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j Abstract I Class Name I Subtype of I Comments 

Chronos Non-User Class 
Timing 
Activity Timing, Identityinfo 

Yes EventBase 
Event Event Base 
TimeEvent Event Base 
ChainEvent Event Base 
StateEvent EventBase 
CallEvent EventBase 
Process Identity Info 
Procession Timing, Identitylnfo 

Table D.8: Temporal Tools Classes 

I Abstract I Class Name I Subtype of I Comments 

Knot Sequence 
Basis 

Yes GeoBase 
Yes Geometry GeoBase 

GeoObject GeoBase Composite Geometry 
Sphere Geometry 
Cube Geometry 
GeoPoint Geometry 
GeoPoints Geometry 
GeoPointMatrix Geometry 
PolygonList Geometry 
Spline Geometry 
strainSpline Spline 
dataFitSpline strainSpline 

Yes BaseQuadric Geometry 
Ellipsoid BaseQuadric 
Elliptic Cone BaseQuadric 
Cone EllipticCone 

Table D.9: Geometric Classes 
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I Abstract i Class Name I Subtype of I Comments 

Yes PopupMenu Ident ity Info 
GLPopupMenu PopupMenu -
GLDrawMenu PopupMenu 
GLLinearMenu PopupMenu 
GLCircularMenu GLDrawMenu 
GL..Loop 

Table D.10: User Interface Classes 

I Abstract I Class Name I Subtype of I Comments 

Yes ColorBase 
RGBColor Color Base 
HSVColor ColorBase 
HSLColor ColorBase 

Yes Light RaspObject 
PointLight Light 
SpotLight PointLight 
Linear Light Light 
DirectLight Light 
AreaLight Light 

Yes Renderer 
GLRenderer Renderer 
GLRenderer3D GLRenderer 
GLRenderer2D GLRenderer 
OptikRenderer Renderer 

Table D.11: Rendering Classes 

I Abstract I Class Name I Subtype of I Comments 

Evolution <Type> 
Yes RefClock 

Motion RefClock 
ParameterizedData 
Trace Debugging Class 
OneTrace Trace Debugging Class 

Table D.12: Specialized Classes 
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I Abstract I Class Name I Subtype of I Comments 

dAngle 
Point2 
Point3 
Point3List 
Deriv Point3List Point3List 
Vector<Type> 
Array<Type> 
MinMax.Array<Type> Array<Type> 
MultiArray<Type> 
CollectionSet<Type> Array<Type> 

Yes CacheTiming 
ValueCache<Type> Cache Timing 
ArrayCache<Type> CacheTiming, Array<Type> 
MultiCache<Type> CacheTiming 

Yes HeapBase 
Heap<Type> HeapBase 
MinHeap<Type> Heap<Type> 
MinHeapQueue<Type> MinHeap<Type> 
PtrHeap HeapBase 
MinPtrHeap<Type> PtrHeap<Type> 
MinPtrHeapQueue<Type> MinPtrHeap<Type> 
Orientation 
Quaternion 

Yes QueueBase<Type> 
FifoQueue<Type> QueueBase<Type> 
LifoQueue<Type> QueueBase<Type> 
Rectangle 
Binary'I'ree<Type> 
N..Ary_Tree<Type> 
Value<Type> 

Table D.13: Utility Classes 
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GLOSSARY 

Abstract Class - a class that serves a prototype for its subclasses. It is not usually possible 
to create an instance of an abstract class. 

Activity - the state of an model over an interval. Delimited by two successive events, an 
activity represents a period of inactivity or period of static actions. 

Activity Scanning - a discrete event methodology where the actions of a simulation are 
partitioned into activities. Activities, maintained by a conditions-list, are executed when 
their associated contingency tests are satisfied. 

Base Class - a class that adds properties and functionalities to its subclasses. Base classes 
do not serve as prototypes, are always possible to instantiate, and are usually situated at 
the top of an inheritance tree. 

c++ Class - a prototype for user-independent data types. Classes consist of a set of data 
members and member functions. Class instantiations are first-class objects. 

c++ Method function - operation applied to a class' data members to induce changes to 
an object's state. 

Connection Paradigm - a design approach based upon the idea of structuring models and 
systems as sets of interconnected components. Components are joined via links and ports. 

Control Mode - a method used to describe the behavior of animated objects. Computer 
animation are labeled as guiding, animator level, or task-level according to their control 
mode(s). 

Controller - a thing that controls or regulates the attributes and behaviors of another entity. 
In turn, controllers may also be governed by other controllers. 

Data to Image Translation - the act of interpreting geometric data possessing physical at­
tributes into a form usable for the generation of computer images. 

Delegation - a term for dynamic hierarchical resource sharing. Delegation is the act of em­
powering or giving authority to others to perform some operation or function. 

Discrete Event - a temporal progression technique characterized by state changes occurring 
in discontinuous jumps and events arbitrarily separated from each other. All actions 
within a simulation are executed at specific event times. 

Display List - a hierarchical data structure used in many computer graphics toolkits to asso­
ciate physical information with geometric primitives. Its organizational structure accom­
modates the design image renderers. 
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Event - an important happening that instantaneously alters the state of a simulation. When 
an event is activated, time is suspended. Time is resumed immediately after the event 
induces it state altering modifications. 

Event 'List - an ordered data structure used in next event simulation to organize the activation 
of events. Events, ordered according to their activation times, are dynamically added and 
removed from the event list during the course of a simulation. 

Event Scheduling - a discrete event methodology where the scheduling of events is controlled 
by an event list. As a simulation progresses, events are placed, executed, and .removed 
from the event list. 

Feature Ports - first class entities which govern the slots of a hybrid model. 

First-Class Conditional - contingent predicate constructed as first-class object with sets 
of "input" and "output" ports. The values of output ports are altered each time the 
conditional object perceives a change in its input ports. 

First-Class Object - an object which retains state and can react to messages. 

Global State - the condition of the elements in a simulation which define the environment. 
A simulation's global state is defined by the values of its environmental state variables. 

Hybrid Model - model design based on slots and ports that promotes an unified user-interface 
and a rendering supportive architecture. 

Interface - a communication technique used to bring two or more things together in an associa­
tion. An interface describes the type, quality, and nature of the patterns of communication 
between distinct entities. 

IMVCD Pentad - an object-oriented framework for the construction of time-varying simula­
tions. Pentad components include model, informer, viewer, controller, and delegator. 

Key-framing - a computer animation technique in which users specify the values of variables 
at key points in time while the computer fills the temporal gaps with intermediate values. 

Link - anything that joins together or passes information between two connection points. In 
RASP, links are used to transfer information from "out" ports to "in" ports. 

Model - a thing which imitates an entity worth copying. A simulation is comprised of a set 
of interacting models. 

Model Specification - the act of specifying the detailed description of a model in a simulation. 
The type and behavioral patterns of models are defined during this act. 

Modeling - the act of creating the various parts of a simulation. This action entails users to 
describe the models of a simulation and to characterize each model's behavior. 
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Motion Specification - the act of specifying a change in movement of physical things. Key­
framing and scripting techniques are common paradigms of motion specification. 

Multiple Interface - a communication technique involving many interfaces. Communication 
between various entities is accomplished in a variety of manners. 

Next Event Simulation - a simulation using event scheduling to control the activation of 
state changes and the progression of time. 

Object Modeling - the act of defining the attributes, characteristic traits, and behaviors of 
simulation models. 

Object-Oriented Framework - a set of design rules for a collection of collaborating objects. 
If defines how a system is divided into components and the manner that functions are 
divided among each of the individual groups of objects. 

Object-Oriented Programming - a programming technique characterized by the develop­
ment of first-class objects and object-oriented systems. 

Object-Oriented System - a set of first-class objects working together to form a whole. In 
an object-oriented system, objects communicate via message passing and exhibit poly­
morphism. 

Occurrence - an action occurring over a finite length of time. The continual activation of a 
single event over a finite length of time defines an occurrence. 

Port - unidirectional data monitors which observe and regulate the fl.ow of information "in" 
and "out" of a host entity. 

Process - an "independent" program or procedure that uses the resources of a system to fulfill 
its goals. A process' routine can be explicitly describe in terms of time fl.ow. 

Process Interaction - a discrete event methodology which stresses the interaction between 
the entities of a simulation. The behavior of a simulation is governed by the fl.ow of 
processes through time. 

Reusable code - segments of programming code which may be used again. The use of reusable 
code facilitates the rapid development of new computer programs. 

Robotics Application - a computer program simulating the motion of articulated figures. 
Robotics applications are generally developed to design and test new articulated config­
urations before they are actually physically built. 

Scenario Modeling - the act of defining the environment of a simulation. 

Scripting Language - a special vocabulary or notation used to describe the dynamic changes 
occurring in a computer animation. 
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Second-Class Object - an object which does not retain state and can not react to messages. 
Objects of this type usually perform one function and are hard to modify. 

Simulation - a device to reproduce or represent test conditions likely to occur in real situations. 
A simulation emulates and analyzes the behaviors of its simulated conditions. 

{Simulation) Environment - all the conditions and surrounding influences that affect the 
behavior and development of a simulation. The models of a simulation exist and interact 
in an environment. 

Simulation Kernel - a central part of a simulation. It controls the progression of time and 
ensures that every model is aware of the global state. 

Simulation Language - a set of high-level expressions which facilitate the specification of 
a computer simulation. Expressions, assembled into meaningful phrases by users, are 
interpreted (by a computer's compiler) to construct, coordinate, and manage the dynamic 
changes occurring in a simulation. 

Simulationist - an individual who creates simulation tools, such as toolkits, languages, and 
simulators. Users utilize the tools created by simulationists to create simulations. 

Simulator - a thing, such as a computer, that simulates. Simulations are devised and per­
formed on simulators. 

State - the condition of a model or thing at a certain time. The state of a model is defined by 
the value of its state variables. 

State Variable - descriptive thing or quality that characterizes the range of states and types 
of behaviors a model can achieve. 

Time Structure - the unit of measurement for a temporal system. Time can be mapped to 
the set of rational number, floating point numbers, or integer numbers. 

Time-varying Simulation - a simulation whose behavior is strongly dependent upon the 
value of simulated time. References to explicit temporal values are integral elements of 
the simulation. 

Transitional Structures - programming constructs that enable users to define runtime changes 
to an entity's state. Events, activities, and processes are exemplary transitional struc­
tures. 

World View - the viewpoint from which users develop simulations. The world view embodied 
by a simulation strategy establishes the methodology users use to specify the components 
of a simulation and their interactions. 




