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Abstract 

We present a logic for representing and reasoning with qualitative statements of preference and 

normality and describe how these may interact in decision making under uncertainty. Our aim is to 

develop a logical calculus in which goals or objectives can be derived in defeasible settings. This 

system employs the basic elements of classical decision theory, namely probabilities, utilities and 

actions, but exploits qualitative information about these elements directly. Preferences and judge­

ments of normality are captured in a modaVconditional logic called QDT, for which we present 

a semantics and sound, complete proof theory. A simple model of action is incorporated into 

QDT for the purpose of deciding appropriate courses of action. Without quantitative information, 

decision criteria other than maximum expected utility are pursued. We describe how techniques 

for conditional default reasoning can be used to complete information about both preferences and 

normality judgements, and we show how maximin and maximax strategies can be expressed in 

our logic. We also describe a qualitative analog of the notion of value of information. 

Keywords: Goals, preferences, beliefs, defaults, decision theory, conditional logic, strategies, 

observations 
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1 Introduction 

We typically expect a rational agent to behave in a manner that best furthers its own interests. 

However, an artificial agent might be expected to act in the best interests of a user (or designer) who 

has somehow communicated its wishes to the agent. In the usual approaches to planning in AI, a 

planning agent is provided with a description of some state of affairs, a goal state, and charged with 

the task of discovering ( or performing) some sequence of actions to achieve that goal. This notion of 

goal can be found in the earliest work on planning (2) and persists in more recent work on intention 

and commitment (2). In most realistic settings, however, an agent will frequently encounter goals that 

it cannot achieve. As pointed out by Doyle and Wellman (2) an agent possessing only simple goal 

descriptions has no guidance for choosing an alternative goal state toward which it should strive. 

Straightforward goal-driven behavior tends to be inflexible: an agent told to ensure that part A and 

part B are at location L by 5P M will be unable to do anything if it cannot locate B or if something 

prevents it from reaching L by 5PM. One might suppose that the agent should at least deliver A 

to L as close to 5PM as possible. While such partial fulfillment of deadline goals (2) undoubtedly 

arises frequently is practice, more general mechanisms will often be required. If A and B can't both 

be delivered, perhaps alternate parts C and D should be; or if the 5PM deadline can't be met, the 

agent should wait until next week. To this end, a recent trend in planning has been the incorporation 

of decision-theoretic methods for constructing optimal plans (2). Decision theory provides most of 

the basic concepts we need for rational decision making, in particular, the ability to specify arbitrary 

prefere~ces over circumstances or outcomes. This allows desired outcomes or goals (and hence 

appropriate behaviors) to vary with context. For instance, if the most desirable outcome, say having 

both parts delivered by 5PM, is unachievable (or achievable with low probability) the appropriate 

course of action may be to strive for the less desirable "goal" of having different parts delivered. 

Decision-theoretic methods ensure that proper goals and behaviors are derivable, accounting for 

the context-dependent nature of preferences, uncertainty of knowledge and factors that the decision 

maker is able or unable to control. This ranges from the classical "one step" decision making 

framework to multi-step optimal policy construction (2). The aim in all cases is to choose an action 

or course of behavior that has maximum expected utility (MEU). In other words, the goals of an agent 

can be derived, in a context-dependent fashion, from more basic (and robust) information. 

Most decision-theoretic analysis is set within the framework of maximum expected utility (MEU). 

One impediment to the general use of such decision-theoretic tools is the requirement to have both 

numerical probabilities and utilities associated with the possible outcomes of actions. It is quite 

conceivable that such information is not readily available to the agent. We can often expect users 
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to present infonnation in a qualitative manner, including qualitative preferences over outcomes ( one 

outcome or proposition is preferred to another) and qualitative probabilities (describing the relative 

likelihood of propositions or outcomes). The ability to reason directly with such qualitative constraints 

.is therefore crucial. An appropriate knowledge representation scheme will allow the expression of 

constraints of this fonn and allow one to logically derive goals and reasonable courses of action, to 

the extent the given infonnation allows.1 

In this paper, we describe a logic and natural possible worlds semantics for representing and 

reasoning with qualitative probabilities and preferences, and suggest several reasoning strategies for 

qualitative decision making using this logic. We can represent conditional preferences, allowing 

( derived) goals to depend on context. Furthennore, these conditional preferences are defeasible: I 

might have a general preference for the proposition A (e.g., that parts be delivered to customers on 

time) but have a more specific "defeating" preference for -,A given B (e.g., a customer's account is past 

due). Semantically, preferences will be captured by an ordering over possible worlds, corresponding 

to an ordinal value function. The logic that captures such default preferences will exactly match 

existing conditional logics for default reasoning and belief revision (2; 2; 2). The component of the 

logic for capturing qualitative probabilities will be isomorphic, with a (separate) normality ordering 

on worlds representing their relative likelihood. 

In order to strengthen possible conclusions, we will also present reasoning strategies for complet­

ing infonnation about preferences and likelihoods, in essence, making assumptions about unstated 

constraints. To specify complete infonnation about preferences can be an especially onerous task. 

This burden has been acknowledged in default reasoning, logic programming and reasoning about 

action. For instance, the frame problem (2) involves having a user specify the direct changes associ­

ated with an action without being forced to explicitly list things that do not change. In our setting, 

we want preferences for specific propositions to be specified naturally. However, since users will 

be indifferent to many propositions and outcomes, we want to ease the burden by assuming that the 

stated preferences are the only preferences held by the user. Our completion strategies do just this. 

1While the foundations of decision theory are, in fact, based on such qualitative preferences (2; 2), the move to numerical 
utilities (and probabilities) requires that a preferences and likelihoods be calibrated by means of questions concerning 
acceptable exchanges between outcomes and lotteries. For an agent behaving according to the preferences of some user, 
this requires that either a) the user's preferences be so completely specified that such calculations can be made; orb) the 
user (or the source of preference information) be available to be queried about preference information as the need arises. 
Furthermore, a complete calibration of just the preference ranking, in the most fortunate circumstances, requires a number 
of queries at least as large as the number of possible worlds (exponential in the number of propositional atoms). Such a 
mechanism is also often criticized because the queries require answers to which a user does not have ready access or might 
be uncertain (2). While we do not question the need for such approaches - common in decision analysis and medical 
decision making domains - there will be many circumstances in which this information is inconvenient or impossible to 
obtain, or in which adequate decisions can be made without precise calibration of utilities and probabilities. 
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In addition, we describe several ways of making decisions with such completed information. 

These derivation strategies are motivated by the fact that the scales of normality and preference on 

which worlds are ranked are incomparable. This reflects the fact that user specified constraints provide 

qualitative information about the structure of the two rankings, not their relative magnitudes. We will 

discuss conditions under which decisions are reasonable in this framework. 

We note that this paper deals primarily with single-step or "one-shot" decision making, rather 

than multistage, sequential problems. Goals are assumed to be reachable with a single action (which 

may of course be a compound "macro" action consisting of a sequence of primitive actions or the 

joint occurrence of several actions). While this is not a realistic assumption for many planning and 

decision problems, it does provide the foundations for extensions to qualitative multistage decision 

making, as we describe in the conclusion. We will also explain how this framework can be used to 

derive goals for use by a planning system, which plots a course of concrete actions. 

In Section 2, we present the basic logic of preferences and its semantics, and show how existing 

techniques for conditional default reasoning can be used to make various assumptions about incomplete 

preference orderings. We briefly describe its relationship to deontic logic, developed for reasoning 

about permission and obligation. In Section 3, we add normality orderings to our semantics and 

describe a logic for dealing with both orderings. We describe the derivation of ideal goal states, 

roughly, the best situations an agent can hope for given certain fixed circumstances. This generalizes 

the usual notion of a goal in AI, for such goals are context-dependent and defeasible, and can be 

derived from more basic information rather than simply being asserted directly by a user. Such 

goals do not take into account the ability of an agent to change the fixed circumstances from which 

they are derived, nor the potential inability of an agent to achieve a goal. In Section 4, we explore 

a more realistic notion of goal that accounts for a simple form of ability. In planning, as in the 

decision theory, the ultimate aim is to derive appropriate actions to be performed that will achieve 

derived goal states. The ability of an agent to affect the world will have a tremendous impact on the 

actual goal states it attempts to achieve. One feature that becomes clear in our model is that, given 

incomplete knowledge, various behavioral strategies can emerge. In Section 5 we describe several 

strategies and show how these can be expressed in our logic. We also discuss observations and their 

role in improving decisions. Finally, in Section 6, we point out some related work, and on-going 

investigations into how the trade-offs between utility and probability can be captured in a qualitative 

manner. We also discuss the possible extension to multistage decision problems. 
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2 Conditional Preferences 

A goal is typically taken to be some proposition that we desire an agent to make true. Semantically, a 

goal can be viewed as a set of possible worlds, those states of affairs that satisfy the goal proposition 

(2). Intuitively, if we ignore considerations of ability, the set of goal worlds should be those considered 

most desirable by an agent (or its designer). To achieve all goals is to ensure that the actual wodd lies 

within this desirable set. 

Unfortunately, goals are not always achievable. My robot's goal to bring me coffee may be 

thwarted by a broken coffee maker. Robust behavior requires that the robot be aware of desirable 

alternatives ("If you can't bring me coffee, bring me tea"). Furthermore, goals may be defeated for 

reasons other than an inability to perform the actions that ensure them. It is often natural to specify 

general goals, but list exceptional circumstances that make the goal less desirable than the alternatives. 

For instance, a general preference for delivering parts within 24 hours may be overridden when the 

account is past due (which may in tum be overridden if the customer is important enough). To 

capture these ideas, we propose a generalization of standard goal semantics. Rather than a categorical 

distinction between desirable and undesirable situations, we will rank worlds according to their degree 

of preference. The most preferred worlds correspond to goal states in the classical sense. However, 

when such states are unreachable, a ranking on alternatives becomes necessary. Such a ranking can 

be viewed as an ordinal value function. 

It is important to have a language in which such preferences can be specified. We typically expect 

an artificial agent to act in accordance with the desires of a user. We cannot expect a system designer 

to anticipate the needs of all users, thus an agent must be capable of accepting instructions - and 

often the most natural way to specify a goal is to ensure the agent is aware of the direct preferences 

that give rise to that goal, as well as "background" preferences that constrain how that goal is to be 

achieved (or perhaps modify the goal). Recent work in software agents for example has emphasized 

the important role of user preferences (2; 2). However, much of this work centers on learning user 

preferences. While certainly a vital component of intelligent systems, equally important is the ability 

to tell an agent what preferences should motivate and constrain its behavior. One typically does not 

want agents to go through hundreds or thousands of learning trials before having the ability to do 

anything useful. 

The basic concept of interest will be the notion of conditional preference. We write /(BIA), read 

"ideally B given A," to indicate that the truth of B is preferred, given A. This holds exactly when 

B is true at each of the most preferred of those worlds satisfying A. From a practical point of view, 

!(BIA) means that if the agent (only) knows A, and the truth of A is fixed (or beyond its control), 

5 



then the agent ought to ensure that B holds. Otherwise, should -,B come to pass, the agent will 

end up in a less than desirable A-world. The statement can be roughly interpreted as "If A, do B." 

Of course, this is a rough gloss as we will see. Often A is within the agent's power, and it may be 

better to "change A" than "do B." In addition, ensuring B is usually not sufficient to guarantee a best 

A-situation, for other preferences may also be applicable. We address these issues once we present 

the foundations for preference. 

We propose a bimodal logic CO for conditional preferences using only unary modal operators. 

The presentation is brief. Further details can be found in (2; 2). 

2.1 The Logic CO 

We assume a propositional bimodal language Ls over a set of atomic propositional variables P, with -the usual classical connectives and two modal operators D and □. Our possible worlds semantics for 

preference is based on the class of CO-models, reflecting a preference ordering on situations. 

Definition 2.1 A CO-model is a triple M = (W, $, cp}, where: W is a set of possible worlds; 

valuation function cp : P 1-+ 2W (where cp(A) is the set of worlds at which A is true); and $ is 

a transitive connected binary relation on W .2 

The relation $ is a total preorder over W, thus W consists of a set of $-equivalence classes or clusters 

of equally preferred worlds, with these clusters being totally ordered by $. We take $ to represent 

an ordering of preference: v $ w just in case vis at least as preferred as w.3 This ordering is taken 

to reflect the desirability of situations, however this is to be interpreted (e.g., personal utility, moral 

acceptability, etc.). For our purposes, this ordering is assumed to reflect the preferences or utilities of 

some user, but below we describe other interpretations. We will speak of preferred situations as being 

more ideal or more acceptable than others. Figure 1 illustrates a typical CO-model. 

We write M l=w A to indicate that A holds at world w, and denote by IIAII the set of such 

A-worlds (Mis usually understood). We also us this notation for sets of sentences S, 11S11 denoting 

those worlds satisfying each element of S. The satisfaction relation is straightforward for purely 

propositional sentences. The truth conditions for the modal connectives are 

1. M l=w Do ifffor each v such that v $ w, M l=v a. 

2. M Fw Ba iff for each v such that w < v, M l=v a. 

2Relation $ is connected iff w $ v or v $ w for all v, w. 
3While w < v usually means v is a preferred outcome, the usual convention in AI is to "prefer" minimal models, hence 

we take w < v to mean w is preferred. 
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Figure 1: A CO-model 

□a is true at a world w just in case a is true at all worlds at least as preferred as w, while □a holds 

just when a holds at all less preferred worlds. The dual "possibility" connectives are defined as usual: 

◊a =df -,0-,a: means a is true at some equally or more preferred world; and ◊a: =df -,0-,a: means 
+-+ +- +-+ +-

a is true at some less preferred world. Da =df □a I\ Do and ◊o =df ◊a: V ◊a mean a is true at all 

worlds and at some world, respectively. The logic CO is axiomatized in (2; 2) (see also Section 3). 

2.2 Expressing Conditional Preferences 

We now define a conditional connective J(-1-) to express conditional preferences. !(BIA) can be 

read as "In the most preferred situations where A holds, B holds as well," or "If A then ideally B ." 

Intuitively, I(BIA) should hold just when B holds at the most ideal A-worlds. These truth conditions 

can be expressed in L8 (see also (2; 2)): 

1(BIA) =de a_,A v o(A" □(A=> B)). (1) 

Since nothing in our models forces the existence of minimal or most preferred A-worlds, the second 

clause of definition captures the condition that A holds at some world and that B holds at all A-worlds 

at least as preferred as that one. The first clause reflects the usual convention that the conditional holds 

vacuously when A is impossible. For ease of presentation, we will usually speak as if our models 

are well-founded, or that there exist minimal A-worlds for any proposition A. The set of minimal 

A-worlds, if it exists, is denoted min(A, ~). 
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J(BIA) can be thought of, as a first approximation, as expressing "HA then an agent ought to 

ensure that B," for unless Bis true an agent cannot be in a best possible A-situation. We note that 

an absolute preference A, capturing the standard unconditional goal semantics, can be expressed as 

J(AIT), or equivalently, ODA. We abbreviate this as J(A) and read this as "ideally A". This can be 

read as expressing an unconditional desire for A to be true. Semantically, J(A) ensures that A is true 

at all most preferred worlds min(T, ~). The model in Figure 1 satisfies I(BIA) and J(A = B). 

The dual of preference gives a notion of toleration or "don't care conditions." H -,J (-,BI A) holds, 

then in the most preferred A-situations it is not required that -iB; hence Bis "tolerable" given A. We 

abbreviate this sentence T( BIA). Loosely, we can think of this as asserting that an agent is permitted 

to do B if A. Unconditional toleration is denoted T(A) and stands for -,J(-,A), or equivalently, 

Ei◊A. In Figure 1, we have that T(BIC), T(-,BIC) and T(A). 

The relative preference of two propositions can be also expressed directly in CO. We write 

A ~PB to mean A is at least as preferred as B (intuitively, the best A-worlds are at least as good as 

the best B-worlds), and define it as: 

A ~PB =dr D(B:) ◊A) 

In our example, we have C ~P -,c since there is a world satisfying C that is preferable to any 

-iC-world. Another useful notion is that of strict preference. If some proposition is more desirable 

than its negation no matter what other circumstances hold (e.g., deliveries to customer C must be on 

time), we can assert 

D(C:) DC) 

which ensures that every C-world is preferred to any -iC-world. Of course, we cannot a priori abolish 

such strictly dispreferred situations, for they may occur due to events beyond an agent's control, and 

the relative preference of these strictly dispreferred -,c worlds is important. But in achieving stated 

goals condition -,c will be avoided if at all possible. In Figure 1, A = B is strictly preferred. Strict 

preferences can also be combined and prioritized (2). 

The properties of the connective I are identical to those of the conditional connective =} defined 

in (2; 2) for default reasoning (see also Section 3). They are distinguished simply by their reading and 

the interpretation of the underlying ordering ~. The crucial feature of the conditional connective is 

its defeasible and context-dependent nature. It is consistent to assert that one prefers coffee J( C), but 

prefers tea if the coffee um is empty and coffee will be delayed I ( -,q D). This conditional preference 

can in tum be defeated by a preference for coffee if it's late at night despite the wait, J( CID I\ L ). 

As one should expect, absolute preferences, as well as preferences in any fixed context, must be 
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consistent, for the following is a theorem of CO (for any possible A): 

I(BIA) ::> ~1( ~BIA) 

However, an agent's preferences needn't be complete, for T(BIA) /\ T( ~BIA) is generally consistent. 

The property of preferential detachment holds in CO: 

I(BIA) I\ I(A) ::> I(B) 

However, the principle of factual detachment 

I(BIA) I\ A ::> J(B) 

is not valid. This has implications for the manner in which an agent should derive its actual preferences 

in a given situation, as we describe in the next section. Finally, we list a few other theorems associated 

with conditional preference: 

RCM From B ::> C infer I(BIA) ::> I(CjA) 

LLE From A= B infer I(CIA) ::> I(BIA) 

And /(BIA) I\ I(CIA) ::> I(B /\ CIA) 

Or I(CIA) I\ I(CIB) ::> I(CIA VB) 

ID I(AIA) 

RT I(BIA) ::> (J(CIA /\ B) ::> !(CIA)) 

CM I(BIA) I\ /(CIA) ::> I(CIA I\ B) 

RM i(CIA) I\ T(~CIA I\ B) ::> I(~BIA) 

In the remainder of the paper, will take the models with which an agent evaluates its preferences 

to have two special properties, neither of which is crucial to the logic, but which enable some of 

our logical characterizations of goals to be expressed very compactly in our language. Intuitively, 

we expect the degree of preference associated with a world to depend only on the propositions that 

hold at that world. In other words, preference is a function of the state of the world. CO-models 

do not enforce this assumption - a model may contain two worlds w, v such that c,o(w) = c,o(v), 

but one world is preferred to another. While such "duplicate" worlds have no bearing on the truth 

of conditional statements, they can influence compact characterizations of goals and they violate our 

intuitions. For the most part then we will consider only functional models satisfying the condition that 
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Figure 2: Possible Interpretations of Preferences 

for any two ( distinct) worlds w, v, ip( w) =/: <p( v). A second assumption we will make from time to 

time is that our language is logically finite, that is, the set of variables P upon which our language is 

based is finite. This ensures that there are a finite number of distinct states of affairs and, together with 

functionality, ensures our models are finite. This assumption is used primarily to allow deductively 

closed sets of beliefs and goals to be expressed in the language, but is not crucial. For logically finite, 

functional models, the truth conditions of a conditional preference can be reformulated as 

M l=w !(BIA) iff min(A, :::;) ~ IIBII 

2.3 Varieties of Preference 

As noted above, the most important feature is that preferences are conditional and can vary with 

context. I can consistently assert J(UIR) and J(UIR), that my agent should take an umbrella if it's 

raining, and leave it home if not. The potential goals U or -,U depend on context and need not be 

asserted categorically. Furthermore, these conditionals are defeasible: I can consistently assert that 

J(U) without fear of contradicting I(UIR). Notice that these two statements allow the conclusion 

I(R) to be drawn -the agent can derive its (or a user's) preference for sunny weather. 

This defeasibility also allows one to assert, together with the previous conditionals, J(UIR /\ D), 

that an umbrella is not desired if I drive a car to work (D) instead of walking (-,D) in the rain. Such 

a theory induces a partial structure like that illustrated in Figure 2(a). However, just as above, this 

entails J(-,DIR), that ideally I want to walk to work in the rain. Is this conclusion truly intended? 

On the surface, it seems reasonable to accept all three preference statements, but allow the assertion 
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that I prefer to drive when it's raining. Yet I(DIR) contradicts these other premises. 

Suppose we actually intend I(DIR). The (intuitive) source of the inconsistency is the statement 

I(UIR). If I prefer to drive when it's raining, and prefer not to have an umbrella when I drive, it 

should be clear that the most preferred R worlds are those in which D and hence -,U hold. Therefore, 

I should not assert that at the most ideal R-worlds, U holds. Intuitively, the preference for U given 

R only holds when I do not drive; thus, I(UIR I\ -,D) is a reasonable assertion, but I(UIR) is 

not. Figure 2(b) shows a model capturing this intention. Figure 2(a), which validates I(UIR), is 

appropriate when J(-,DIR) is intended, when I prefer walking to driving, even when it's raining. 

We notice, however, that the assertion I(UIR), I prefer an umbrella when it's raining, seems 

(potentially) appropriate even when Figure 2(b) is the intended model. Although, I might like to 

drive to work when it rains, the utterance "I want my umbrella if it's raining" does not strike one as 

inconsistent. This can be explained by considering the variety of preference statements one might 

make. In this case, my wish for an umbrella might reflect the fact that I am usually unable to drive 

to work. Even though I prefer to drive, I probably won't be able to, so my stated preference for U 

given R might reflect this fact. In this case, the typical R-world is one in which -,D holds, and hence 

one in which U should hold: my robot should bring an umbrella along. Very often stated preferences 

do not express ideal preferences. Rather, they may incorporate into the stated context (here, R) 

certain assumptions or default conclusions (such as -,D), and thus express a preference conditioned 

on this extended context (R /\ -,D). The intended assertion I(UIR I\ -,D) is perfectly consistent with 

Figure 2(b), but it may be abbreviated as I(UIR) if the default conclusion -,D is understood. It is 

therefore crucial to realize that linguistically stated preferences can be come in different varieties: 

• Conditional ideal preferences are expressed in the usual way. A statement I(DIR) ensures that 

D is true in the best possible R-worlds. These have the semantics described above and are 

defeasible. 

• Strict preference for a proposition C is expressed as above, D(C :::> DC). This expressed a 

desire for C "at all costs." 

• Expected preferences express a desire for a proposition in a given context anticipating the 

expected consequences of that context. The preference for U given R above takes into account 

the likely truth of the (dispreferred) proposition -,D in the explicitly stated context R. The 

preference for U is based on this extended context. To analyze such statements, we require the 

additional machinery introduced in Sections 3 and 4.4 

4Similarly, one can impose this alternate interpretation on direct statements of preference A <P B, as Jeffrey (2) does. 
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2.4 Defeasible Reasoning with Preferences 

The conditional logic of preferences we have proposed above is similar to the (purely semantic) 

proposal put forth by Hansson (2) for deontic reasoning, or reasoning about obligation and permission. 

In our logic, one may simply think of I(BIA) as expressing a conditional obligation to see to it 

that B holds if A does.5 Loewer and Belzer (2) have criticized this semantics "since it does not 

contain the resources to express actual obligations and no way of inferring actual obligations from 

conditional ones." In particular, they argue that any deontic logic should validate something like 

factual detachment, not just deontic detachment (the deontic analog of preferential detachment). The 

criticism applies equally well to our preference logic - one cannot logically derive actual preferences 

- because the principle of factual detachment does not hold. Factual detachment expresses the idea 

that if there is a conditional preference for B given A, and A is actually the case, then there is an 

actual preference for B. While the inference is a reasonable one, we do not expect, nor do we want it 

to hold logically because it threatens the natural defeasibility of our conditionals. For instance, if R 

and I(UIR) entailed U or I(U), so too would R, D, I(UIR) and I(UIR!\D). Defeasible conditional 

preferences could not be expressed. 

Various logics have been proposed to capture factual detachment in the deontic setting, and recently 

several complex default reasoning schemes have been applied to this problem (2; 2). We propose 

a simple solution based on the following observation: to determine preferences based on certain 

actual facts (propositions), we consider only the most ideal worlds satisfying those facts, rather than 

all worlds satisfying those facts. Let KB be a knowledge base containing statements of conditional 

preference and propositions. Given that such facts actually obtain, the ideal situations are those most 

preferred worlds satisfying KB. For instance, although RI\ I(UIR) Ii U, we are guaranteed that U 

holds at the most preferred R worlds in any model of these premises. This suggests a straightforward 

mechanism for determining actual preferences. We simply ask for those propositions a such that 

f-co I(alKB) 

This is precisely the preliminary scheme for conditional default reasoning suggested in (2). 

This mechanism unfortunately has a serious drawback: seemingly irrelevant factual information, or 

information about the consequences of actions, can paralyze the derivation of actual preferences. 

Example 2.1 Let P denote that a certain part is painted, B that it's blemished, and S that it's destined 

On our definition, A <P B means the best A-worlds are preferred, whereas Jeffrey defines such a statement to mean the 
expected utility of all A-worlds is greater than that for B. 

5We elaborate on this connection below. 

12 

I. 



for shipment to a specific warehouse. Let D, E and F denote possible locations for a certain 

piece of equipment. If 

KB= {l(PIB), B} 

then the actual preference Pis derivable using the scheme suggested above; that is, f- I(PIKB). 

However, it is not derivable from KB' = KB U { S}. Because conditionals are defeasible, it is 

consistent with KB' to assert I(PIB I\ S). Although intuitively Sis irrelevant to the preference 

for P, this irrelevance is not logically derivable. 

Again consider KB with actual preference P. Suppose a painting action that achieves P requires 

the equipment in question to be moved, making either D, E or F true. Even though not stated, 

one can consistently assert l(P I\ DIB), I(P I\ EIB) or I(P I\ FIB). Thus the agent cannot 

show that any of the moves D, E or F is tolerated - it cannot decide what to do. ■ 

In this example, the fact that I(PIB) is the only stated preference suggests that other factors are 

irrelevant to the relative preference of situations. Intuitively, these factors should be discounted. 

Unless stated otherwise, the part should be painted regardless of its destination (S); and the manner 

in which P is achieved (by moving either D, E or F) is not of concern. 

One possible way to deal with this difficulty is to make certain assumptions about the preference 

ordering. In particular, it is possible to adopt the default reasoning scheme System Z (2) in this 

context. Given a set of conditional constraints, System Z enforces the assumption that worlds are 

assumed to be as preferred as possible consistent with these constraints. In other words, worlds are 

pushed down as far as possible in the preference ordering, "gravitating" toward absolute preference. 

In our example, the model induced by this assumption is shown in Figure 3. (For convenience we 

assume that I(PIB) holds and that propositions D, E and Fare mutually exclusive.) In this model, 

any -iB-world that satisfies P is deemed acceptable, regardless of the truth of the irrelevant factors. 

The technical details of System Z may be found in (2) and are summarized in Appendix B. In (2) 

we describe how the Z-model for any conditional theory can be axiomatized in CO. Intuitively, each 

world is assumed to be as acceptable as possible consistent with the constraints of the theory. The 

important features of this model are: a) the assumption induces a unique, "most compact" preference 

ordering; and b) the consequences associated with these assumptions can sometimes be efficiently 

computed (2; 2). 

Is the assumption that worlds are preferred unless stated otherwise reasonable? Tan and Pearl 

(2) argue that worlds should gravitate toward "indifference" rather than preference. We cannot, of 

course, make .sense of such a suggestion in our framework, since we do not have a bipolar scale 
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Figure 3: The Compact Preference Ordering 

(where outcomes can be good, bad or neutral).6 However, even if an "assumption of indifference" 

were technically feasible, we claim that the "assumption of preference" is the the right one in our 

setting. 

Recall that we wish to use preferences to determine the set of goal states for a given context C. 

These are simply the most preferred C-worlds according to our ranking; call this set Pref( C). If the 

agent brings about any of these situations, it will have behaved correctly. A conditional preference 

I(AIC) constrains the set Pref(C) to contain only A-worlds. Thus an agent will attempt to bring 

about some A I\ C-world when C holds. But which A I\ C-world is the right one? With no further 

information, System Z will set Pref(C) = IIA I\ GIi; all A I\ C-worlds will be assumed to be equally 

acceptable. This seems to be appropriate: with no further information, any course of action that 

makes A true should be judged to be as good as any other. Any other assumption, such as gravitation 

of worlds toward indifference, must make the set Pref( C) smaller than IIA /\ CII. For example, if we 

rule out worlds satisfying a from Pref( C), then Pref( C) = II A I\ C I\ -,a II- This requires that an agent 

striving for Pref( C) make -,a true as well as A. This imposes unnecessary and unjustified restrictions 

6Note that in classical decision theory, such distinctions do not exist. An outcome cannot be good or bad, nor can an 
agent be indifferent toward an outcome, in isolation; it can only be judged relative to other outcomes. An agent can adopt 
an attitude of indifference toward a proposition, as we explain below. 
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on the agent's goals, or on the manner in which it decides to achieve them. In our example, gravitation 

toward preference ensures that an agent is not biased against any of the alternatives D, E or F. 

Notice that when worlds gravitate toward preference, our agent becomes indifferent toward most 

propositions. By maximizing the size of Pref( C) (subjectto the constraint that A be true), we minimize 

the number of propositions an agent will care about or attempt to make true in context C. In our 

example, if A I\ C If a and A I\ C If -,a, then T(alC) and T(-,alC) will both be true in the Z-model. 

Again, in our example, one can see that System Z forces the agent to be indifferent regarding the 

propositions D, E and F, since no preference for any one was specified. Such indifference toward 

propositions in a given context seems to be the most appropriate assumption. 

In (2; 2) we characterize System Z, in a default reasoning context, as embodying the principle 

of conditional only knowing. When certain beliefs are stated, either actual or conditional, System 

Z ensures that only propositions that can be shown to be believed (in a given context) are actually 

believed. We show this to be a generalization of the notion of only knowing often adopted in belief 

logics (2) that accounts for defeasible beliefs. In the preference setting, System Z captures the 

analogous assumption of "only preferring." Those preferences that can be derived in a given context 

C are assumed to be the only propositions the agent prefers or cares about in that context. 

Certain problems with System Z have been shown to arise in default reasoning. These problems 

occur when reasoning about preferences as well. For example, if we have two independent (in this 

case, absolute) preferences J(A) and I(B), System Z will sanction both T(Al-,B) and T(-,Al-,B); 

once the preference for B has been violated, one cannot ensure that A is still preferred. Various 

modifications to System Z have been proposed to deal with such problems, for instance, the "rule 

counting" systems of (2; 2). Such solutions can be applied in this setting as well, but the assumption 

of "only preferring" lies at the heart of these solutions as well. 

We should point out that, while our presentation will assume a unique preference ordering, the 

definitions to follow do not require this assumption. We are typically given a set of conditional 

premises of the form J(BIA), plus other modal sentences constraining the ordering. Unless these 

premises form a "complete" theory, there will be a space of permissible orderings. A defeasible 

reasoning scheme such as System Z can be used to complete this ordering, but we do not require the 

use of a single ordering - the definitions presented below can be re-interpreted to capture truth in 

all permissible orderings. One simply needs to derive the consequences of the premises in the logic 

QDT, the extension of CO presented in the following section. 
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2.5 Deontic Logic 

Deontic logics have been proposed to model the concepts of obligation and permission (2; 2; 2;; 

2). While originally proposed using a unary modal connective, it has been widely recognized that 

this modal formulation has certain limitations. In particular, it is difficult to represent conditional 

obligations (2). For this reason, conditional deontic logic (CDL) has been introduced to represent the 

dependence of obligations on context (2). Obligation is then represented by a two-place conditional 

connective. The sentence O(BIA) is interpreted as "It ought to be that B given A" or "If A then it is 

obligatory that B," and indicates a conditional obligation to do Bin circumstances A. These logics 

can be interpreted semantically using an ordering on worlds that ranks them according to some notion 

of preference or ideality (2; 2). Such a ranking satisfies O(BIA) just in case B is true at all most 

preferred of those worlds satisfying A. Thus, we can think of B as a conditional preference given A. 

Once A is true, the best an agent can do is B. 

CO is presented semantically in much the same manner as the semantic system of Hansson (2). 

While Hansson does not present an axiomatization of his system DSDL3, we can show that CO 

provides a sound and complete proof theory for his semantics (2). We note also that our system is 

equivalent to Lewis's conditional deontic logic VTA (2). In particular, given a deontic interpretation, 

the connectives I and T capture notions of conditional obligation and permission respectively. 

As described above, this conditional semantics for deontic statements has been criticized because it 

fails to validate the principle of factual detachment. However, as we have argued above for preferences, 

factual detachment is not required for the derivation of actual obligations. All that is required is the 

application of an appropriate defeasible reasoning scheme. Using CO we can express the conditional 

preferences involved in a number of classic deontic puzzles such as Chisholm's paradox and contrary­

to-duty imperatives (2), and our defeasible reasoning scheme allows appropriate obligations to be 

deduced. For example, we can represent the preferences involved in the following account (2): 

(a) It ought to be that Arabella buys a train ticket to vist her grandmother. 

(b) It ought to be that if Arabella buys the ticket she calls to tell her she is coming. 

(c) If Arabella does not buy the ticket, it ought to be that she does not call. 

(d) Arabella does not buy the ticket. 

We represent these sentences as I(V), I(CIV), J(-,Cj-,V) and -iV. These give rise to no inconsis­

tency in CO, and induce a natural ordering on worlds where only VI\ C-worlds are most acceptable. 

Less preferred are-, VI\ -iC-worlds, and still less preferred is any-, VI\ C-world. Notice that from this 

set we can derive J( C), Arabella should (ideally) call; however, given the actual facts of the case (say 
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KB), we can actually infer that J(-.CIKB), Arabella should not call given the actual circumstances. 

The preference logic described above should not be viewed simply as a means for representing 

the preferences (or personal utilities) of an agent. It can be used to represent any measure or ranking 

of desirability of any type, such as those reflecting moral or ethical nonns, legal codes, or some 

combination. Thus, our proposal can be used more generally in these settings. Furthennore, the way 

in which we derive goals below, in particular, our use of default infonnation and ability, also applies 

to the derivation of obligations in the deontic sense. 

3 Default Knowledge 

We should not require that goals be based only on "certain" beliefs in KB, but on reasonable default 

conclusions as well. Consider the following preference ordering with atoms R (it will rain), U (have 

umbrella) and C (it's cloudy). Assuming C /\ R is impossible, we have: 

{CRU,CRU} < CRU < {CRU,CRU} < CRU 

Suppose, furthennore, that it usually rains when it's cloudy. If KB = { C}, according to our notion 

of actual preference in the last section, the agent prefers R and U - in the best KB-world it doesn't 

rain despite the clouds. However, we cannot use factual preferences (given KB) directly to determine 

goals. Ideally, the agent would like to ensure that it doesn't rain and that it doesn't bring its umbrella. 

However, clearly the agent can do nothing to make sure R holds (we return to this in the next section). 

Given this, the "goal'' U seems to be wrong. Once C is known, the agent should expect R and act 

accordingly. 

As in decision theory, actions should be based not just on preferences (utilities), but also on 

the likelihood (probability) of outcomes. In order to capture this intuition in a qualitative setting, 

we propose a logic that has two orderings, one for preferences and one representing the degree of 

normality or expectation associated with a world. 

3.1 The Logic QDT 

The logic QDT, a step toward a qualitative decision theory, is characterized by the class of QDT­

models. 

Definition 3.1 A QDT-model is a quadruple M = (W, $p, $N, cp) where: Wis a set of possible 

worlds; cp is a valuation function for W, P; and $p and $N are each transitive, connected 

relations over W. 
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The ordering 5,_p is a preference ordering on W of the type already discussed, while '5:.N is a normality 

ordering on W. We take w '5:.N v to mean w is at least as normal a situation as v (or is at least as 

expected). The submodels formed by restricting attention to either relation are clearly CO-models. 

The language of QDT contains four modal operators: Op, Bp are given the usual truth conditions 

over 5,_p; and ON, BN are interpreted similarly using 5'N• The conditional I(BIA) is defined as 

previously, using the connectives D p and B p. A new normative conditional connective::} is defined 

in exactly the same fashion using D N and B N: 

(2) 

The sentence A =} B means Bis true at the most normal A-worlds, and can be viewed as a default 

rule. This conditional is exactly that defined in (2; 2), and the associated logic is equivalent to a 

number of other systems (e.g., the qualitative probabilistic logic of (2; 2)). QDT can be axiomatized 

using the following axioms and inference rules for both the preference operators Op, Bp and the 

normality operators D N, B N: 

K □(A ::, B) ::, (DA ::, DB) 

K' □(A ::, B) ::, (BA ::, BB) 

T □A::, A 

4 DA::, DOA 

S A::, BoA 

H ◊(DA/\ DB) ::, □(Av B) 

Nee From A infer DA. 

MP From A ::, B and A infer B 

We require the following axiom to capture their interaction: 

PN □NA= □pA 

Theorem 3.1 The logic QDT is sound and complete with respect to the class of QDT-models. 

A proof of completeness can be found in Appendix A. 

3.2 Default Conclusions and Goal Derivation 

Given a set of premises consisting statements of preference and normality as well as statements of 

actual fact, an agent is charged with the task of deciding what goals to achieve. For ease of presentation, 
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we will assume that such a unique QDT-model has been determined reflecting an agent's (or user's) 

judgements of preference and expectation. This will seldom be true due to logical considerations 

alone, but methods such as System Z can be used to make the tacit assumptions about indifference 

• and normality. What remains is to characterize exactly how the (propositional) statements of fact 

constrain the selection of goals. 

Given a QDT-model Mand a (finite) set of facts KB, we want goals to be based not just on KB, 

but also on the expected state of affairs induced by KB. We define the default closure of KB to be 

(where LcPL is our propositional sublanguage) 

Cl(KB) = {a E LcPL: MF KB* a} 

As with preferences, the actual expectations of an agent are determined by considering only the most 

expected or normal worlds satisfying the given facts.7 In other words, those propositions a that are 

normally true given KB form the agent's set of default conclusions. We assume (for simplicity of 

presentation) that Cl(KB) is finitely specifiable and take it to be a single propositional sentence.8 

Now we can assert that an agent's goals should be based on its expectations or default beliefs 

Cl(KB), not KB alone. As a first approximation of a definition of goal, we define ideal goals: 

Definition 3.2 Let M be a QDT-model M and KB ~ LcPL· A sentence a E LcPL is an ideal goal 

( with respect to M, KB) iff 

MF I(ajCl(KB)) 

The ideal goal set (given M, KB) is the set of all such a. 

Intuitively, the ideal goals are those sentences that must be true if the agent is to find itself in a 

best possible situation satisfying Cl(KB). In our previous example, where KB= {C}, we have that 

Cl(KB) = C I\ R: if Cloudy is known, Rain is expected. Since I(UIC I\ R) is satisfied by the 

ordering above, the agent's ideal goals are exactly those sentences entailed by CI\ RI\ U; in particular, 

one of the agent's goals is to have an umbrella. 

It should be clear that ideal goals are conditional and defeasible. For instance, if KB = { C} is 

extended to include R, the default conclusion R is no longer forthcoming and the agent has a different 

7 Once a unique model has been determined, statements of expectation and preference can be removed from KB without 
consequence. The fact that KB =} o holds is unaltered - for a fixed model - if KB is restricted to its propositional 
component (similarly for J(olKB)). 

8 A sufficient condition for this property is that each "cluster" of equally normal worlds in '5N corresponds to a finitely 
specifiable theory. This is the case in, e.g., System Z (2). The definitions below can easily be generalized semantically -
though not syntactically - to deal with infinite sets of sentences. 
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ideal goal, namely U. This defeasibility arises in two ways. First, addition of facts to KB (to form 

an extended knowledge base KB') can cause certain default conclusions to become invalid, as when 

knowledge of R precludes conclusion of R. This causes the set of derived preferences to be based 

on a different context, in that Cl(KB) g Cl(KB'). This simply reflects the defeasibility of default 

inference. However, even if Cl(KB) ~ Cl(KB') ideal goals can change due to the defeasibility of 

conditional preferences, as described in Section 2. 

This formulation does not provide any indication as to what an agent should do in order to achieve 

these ideal goals. This will require the introduction of actions and ability (see the next section). For 

instance, notice that an ideal goal set is always deductively closed. We should not expect an agent to 

have to consider each member of this set individually or have an infinite set of "goals" in any practical 

sense. The notion of a sufficient condition for achieving all ideal goals can be defined in QDT and 

will prove useful later. The following definitions are evaluated with respect to some fixed QDT-model 

M = (W, 5:P, 5:N, cp). 

Definition 3.3 Let X be some proposition. C is a sufficient condition given X iff C /\ X is satisfiable 

and MF Dp(X:) □p(X:) -,Q)). 

Intuitively, a sufficient condition C guarantees that an agent is in some best possible X -world. Thus, 

if X is some fixed, unchangeable context, ensuring proposition C means the agent has done the best 

it could: 

Proposition 3.2 Let C be a sufficient condition given X and let M Fw C /\ X. Then v <P w only 

if M 'r/=-v X. 

Proof By definition of sufficiency, M Fv X :) Dp(X :) -,C). Since v <P wand M Fw C /\ X, 

M Fv ◊p(C /\ X); thus, M Fv -,X. ■ 

With respect to Cl(KB), ideal goals are necessary conditions for ensuring an agent lies in some best 

situation consistent with the set of (default) beliefs Cl(KB). A sufficient condition C for Cl(KB) 

guarantees the entire ideal goal set is satisfied.9 In our example, U is a sufficient condition for 

Cl( { C}). This means the (infinite) set of ideal goals that must be made true, including such things as 

C, R, U, C::) U, and UV Pi for arbitrary propositions Pi, can be achieved simply by making U true. 

Proposition 3.3 C is sufficient for Cl(KB) if! M F C /\ Cl(KB) :) a.for all ideal goals o.. 

9Hector Levesque (personal communication) has suggested that sufficiency is the crucial "operator." 
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Proof That sufficient conditions guarantee ideal goals ( only if) holds without qualification. The 

converse (if) requires the assumption of logical finiteness and functionality. 

lfCisasufficientconditionforC/(KB)thenM F Cl(KB)::, Op(Cl(KB)::, -iC). Soif M ~w 

Cl(KB) then for all w <p v, M Fv -i(C /\ Cl(KB)) Thus IIC /\ Cl(KB)II ~ min(Cl(KB), ~P ). 

Since min(Cl(KB), ~P) ~ llall for any ideal goal a, we have MF CI\ Cl(KB):) a. 

If M F CI\ Cl(KB) ::i a for each ideal goal a, then IIC /\ Cl(KB)II ~ min(Cl(KB), ~P) 

(assuming functionality and finiteness of the model). Thus M F Cl(KB) ::i 5 p( Cl(KB) ::, 

-,c) and C is a sufficient condition. ■ 

We will explore a more detailed example in the next section. Notice also that the definition of 

ideal goals gives a certain "priority" to defaults over preferences. The belief set Cl(KB) is constructed 

before the preference ranking is consulted. This stands in contrast with the expected utility framework 

of classical decision theory, where likelihood and utility are traded against one another. We explore 

the implications of this scheme in Section 4. 

4 Ability in Goal Derivation 

The definition of an ideal goal embodies the idea that an agent should attempt to achieve the best 

possible situation consistent with what it knows, as well as what it conjectures by default. However, 

as we have emphasized, this is suitable only when the agents beliefs KB and expectations are fixed 

and unchangeable. If the agent can change the truth of certain elements in KB, ideal goals may be too 

restrictive. For example, it may be that I have not arranged to be driven to work and it's raining. An 

ideal goal is to ensure that I have an umbrella. However, if it is within my power to arrange a drive 

- and I prefer that to walking in the rain - then this ideal goal is inappropriate. Thus, some notion 

of action and ability must come into play in goal derivation. 

Actions must also play a role if we are to derive what an agent should do, rather than simply 

what it should achieve. Indeed, the term "goal" is often interpreted in this way, to denote the actions 

appropriate in a given context (as in "a goal to do A"). This becomes especially important when we 

notice that the set of propositions an agent should achieve will always be deductively closed. The 

ultimate aim of goal derivation is not the characterization of an infinite set of desirable propositions, 

but rather the discovery of a rather small set ( or sequence) of actions that will achieve this end. Finally, 

actions must play a role in factoring out unachievable desires. For instance, an agent might prefer 

that it not rain; but this is something over which it has no control. Though it is an ideal outcome, to 

call this a goal is unreasonable. 
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These considerations actually point to something of a paradox in the roles of planning and goal 

derivation, and their interaction. If an agent is to plan (in the classical goal-directed sense), it must 

know what the goal is, what desirable states exist; and as we see the propositions over which an agent 

is able to exert control influence this choice of goal (for instance, if I can arrange a drive to work, 

my goal should be to actually do so). However, knowing whether it has control over a proposition 

might require that an agent actually attempt to derive a plan to make that proposition true; and if 

successful, the resulting plan may in turn affect other believed propositions. Ultimately, it appears 

that goal derivation and planning depend in a circular way on one another. 

It seems unlikely that, prior to planning for a specific goal, an agent will have attempted to 

construct a plan for every proposition in every conceivable context, simply to determine its abilities. 

If that were the case, these plans could simply be stored and retrieved in a reactive architecture. We 

take ability to be a slightly higher level notion, one that exists prior to planning. 

4.1 Controllable Propositions 

To capture distinctions of this sort, we introduce a simple model of action and ability and demonstrate 

its influence on conditional goals. We ignore the complexities required to deal with the specification 

of effects, preconditions and such, in order to focus attention on the structure and interaction of ability 

and goals. We partition our atomic propositions into two classes: P = CUC. Those atoms A E C are 

controllable, atoms over which the agent has direct influence. For the purposes of goal derivation, 

we take the only actions available to the agent to be of the form do(A) and do(A), which make A 

true or false, for every A E C. To keep the treatment simple, we assume actions have no effects other 

than to change the truth of A. In particular, all other atoms in P retain their truth values. The atom U 

(have umbrella) is an example of a controllable atom. Atoms in Care uncontrollable, for example, R 

(it will rain). 

An abstract action do( A) should be viewed as expressing the fact that an agent has some idea 

that it can construct a plan to achieve a (high-level) proposition A without interfering with other such 

propositions. This plan may involve changing more detailed propositions, but should not affect the 

abstract facts involved in goal derivation. This plan construction may not be explicit - it may involve 

retrieval of a plan for A from an existing plan library. Indeed, such a plan may structurally partial 

(2), and the plan for achieving A may involve imply filling in certain details, or making low-level 

decisions regarding the actual means to achieve the end A. 10 A commitment to do( A) entails a 

10Leaving open several possibilities for achieving A may have a certain advantages, for example, allowing the overloading 
of intentions (2). 
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Figure 4: The Interaction of Planning and Goal Derivation 

commitment to construct or instantiate a feasible plan to bring A about; and treating A as controllable 

entails a belief that such a commitment can (typically) be fulfilled in conjunction with other such 

commitments. For example, I may exploit the fact that I can plan to bring an umbrella or plan to 

arrange a drive independently and without (unresolvable) interaction. 

This is not to say that these judgements of ability, and especially their independence, are always 

accurate; the nature of abstraction is such that the lack of detail must occasionally lead to difficulty. As 

we describe below, an agent may decide that it's goal includes making both A and B true, something 

which its abstraction admits as feasible. When the time comes to construct ( or instantiate) a plan to 

achieve both, in a particular context, the agent may realize that their joint truth is not feasible . The 

original goal must be abandoned and a new goal - accounting for the impossibility of A I\ B - must 

then be derived. In this way, goal derivation uses an abstract (or approximate) notion of ability, and is 

in some sense an operation that exists prior to planning. However, a planner can influence the actual 

choice of goal by indicating the infeasibility of a goal derived by means of this abstraction. Figure 4 

illustrates the interaction of goal derivation and planning. To the extent that the abstract judgements 

of ability are "accurate" however, goal rederivation and replanning will not be frequently required. 11 

We do not elaborate on this brief (and no doubt vague) sketch of the role of goal derivation and 

planning. A complete account will necessarily depend on more realistic accounts of ability in which 

the interactions of abilities is modeled, on the particular model of action chosen, and on the exact 

nature of the planner. However, the naive model of ability proposed here is sufficient for our purposes, 

11 This is not to say that replanning for other reasons is not common, for instance, in response to incorrect knowledge of 
the world or changes in the world. 
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namely, to illustrate how ability, beliefs and preferences interact in goal derivation. More elaborate 

models of ability will not change the fundamental nature of these interactions. 

Given that atoms are categorized as controllable or uncontrollable, we can now distinguish three 

types of propositions. 

Definition 4.1 For any set of atomic variables 'P, let V('P) be the set of valuations over this set 

(i.e., v : 'P 1-t (0, 1]). If v E V('P) and w E V(Q) for disjoint sets of variables 'P, Q, 

then (v;w) E V('P U Q) denotes the extended valuation: (v;w)(P) = v(P) if P E 'P; 

(v;w)(P) = w(P) if PE Q. 

Definition 4.2 A proposition a is controllable iff, for every u E V(C), there is some v E V(C) and 

w E V(C) such that v; u F a and w; u F -.a. 

A proposition a is influenceable iff, for some u E V (C), there is some v E V ( C) and w E V ( C) 

such that v; u Fa and w; u F -.a. 

A proposition a is uninjluenceable iff it is not influenceable. 

Intuitively, since atoms in C are within complete control of the agent, it can ensure the truth or the 

falsity of any controllable proposition a, according to its desirability, simply by bringing about an 

appropriate truth assignment. For instance, if A, B E C then propositions A V B and A I\ B are 

controllable - do(A) ensures AV B holds, do(A) and do(B) ensures it is false, and so on. If a 

is influenceable, we call an appropriate assignment u to Ca context for a; intuitively, should such a 

context hold, a can be controlled by the agent. For example, if A E C and X E C then proposition 

A V X is influenceable but not controllable: in context X the agent cannot do anything about the 

truth of AV X, but in context X the agent can make AV X true or false through do(A) or do(A). 

Note that all controllable propositions are influenceable. Uninfluenceable propositions are those over 

which the agent has no control in any circumstance. If X E C then X is uninfluenceable. 

The category of controllability into which a proposition falls is easily determined by writing it in 

minimal DNF. Let PI (a) denote the set of prime implicants of a. It is readily verified that: 

Proposition 4.1 a) a is controllable iff each clause in PI(a) contains some literal from C and some 

clause contains only literals from C. b) a is influenceable if/some literalfrom C appears in PI(a). 

c) a is uninjluenceable iffno literal from C appears in PI(a). 

4.2 Complete Knowledge Goals 

Given the distinction between controllable and uncontrollable propositions, we want to define goals 

so that an agent is required to do only those things within its control. A first attempt might simply be 
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Figure 5: User Preferences 

to restrict the ideal goal set, as defined above, to controllable propositions. Thus an agent is simply 

charged with the task of bringing about those ideal goals within its control. The following example 

shows this to be inadequate. 

Example 4.1 Consider the following scenario, using five atoms: 0, it is overcast; R, it will rain; C, 

I have coffee; T, I have tea; and H, my office thermostat is set high. Of these variables, my 

robot can control C, T and H - it can bring me coffee or tea and can tum my thermostat up 

or down. The robot has the default information O => R (it normally rains when it's overcast) 

and knows the facts KB = { 0, H, C, T}. Its default closure is Cl(KB) = { 0, R, H, C, T}. 

Finally, its preference ordering is designed to respect my preferences: when it's raining I prefer 

tea when I arrive and the thermostat set high, otherwise I prefer coffee and the thermostat set 

low. Thus, we have the preference ordering illustrated in Figure 5. (We assume 0, R do not 

contribute directly to preference, and that priority has been given to C and T over H. We also 

allow the possibility that both C and T together satisfy a preference for either.) The robot has 

to decide what to do before I arrive at the office. ■ 

It should be clear that the robot should not determine its goals by considering the ideal situations 

satisfying Cl(KB). In such situations, since H is known, H is "preferred" (indeed, it is a simple 

theorem of QDT that J(o:lo:)). Thus, the robot concludes that H should be true. This is clearly 

mistaken, for considering only the best situations in which one's knowledge of controllables is true 

prevents one from determining whether changing those controllables could lead to a better situation. 

Thus we do not require an agent to restrict attention to those situations where KB or Cl(KB) is true. 

The fact that H is known should not unduly influence what are considered to be the best alternatives 
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-H can be made true if that is what's best. 

Of course, the goals of an agent must still be constrained by uninjluenceable propositions it knows 

to be true. The agent should not reject all of its knowledge. For example, if the preference ordering 

above were modified to reflect my preference for clear weather ( 0), my agent should not base its 

goals on this preference if it knows it is overcast (0). Making O false is beyond its control, and it 

goals should determined by restricting attention to 0-worlds. Thus we insist that the best situations 

satisfying known uninjluenceable propositions be considered. 

Notice also that we should not ignore the truth of controllables when making default predictions. 

The prior truth value of a controllable might provide some indication of the truth of an uncontrollable; 

and we must take into account these uncontrollables when deciding which alternatives are possible, 

before deciding which are best. In this example, we might imagine that the default O :::} R doesn't 

hold, but that O I\ H => R does: if it is overcast, then the thermostat is set high because I anticipated 

rain before I left last night. Our agent must use the truth of this controllable atom H to determine 

the truth of the uncontrollable R, which in tum will influence its decisions. 12 Once accounted for 

in forming Cl(KB), H can safely be ignored. This leads to the following formulation of goals that 

account for ability. We assume as usual a QDT-model M reflecting the agent's preferences and 

defaults. 

Definition 4.3 Let M be a QDT-model and KB a propositional belief set. The uninfluenceable belief 

set (given M and KB), denoted UJ(KB) is 

UI(KB) = {a E Cl(KB): a is uninfluenceable} 

For the remainder of this section we assume that UI(KB) is complete with respect to C; that is, for 

each P EC, either P E UJ(KB) or -,p E UJ(KB). We use the (complete) uninfluenceable belief set 

to determine an agent's goals. 

Definition 4.4 Let M be a QDT-model and KB ~ LcPL· Proposition a is a complete knowledge 

(CK-) goal (with respect to M, KB) iff M F I(alUI(KB)) and a is controllable. 

This definition embodies the intuition that the set of expected uninfluenceable beliefs is fixed and 

(since beyond the agent's control) unchangeable. Given UI(KB), an agent is charged with ensuring 

12If a controllable provides some indication of the truth of an uncontrollable or another controllable, (e.g., H =} R) we 
should think of this as an evidential rule rather than a causal rule. Given our assumption about the independence of atoms 
in C, we must take all such rules to be evidential (e.g., changing the thermostat will not alter the chance of rain). This can be 
generalized using a more reasonable conditional representation, and ultimately should incorporate causal structure. Note the 
implicit temporal aspect here; propositions should be thought of as fluents. We can avoid an explicit temporal representation 
by assuming that preference is solely a function of the truth values of fluents. 
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that all controllable propositions that are ideal in this context are made true. 

As with ideal goals, the set of CK-goals is deductively closed and should be viewed as a set of 

necessary conditions in any rational course of action - if some CK-goal is not true, the agent is 'in 

.a less-than-ideal U/(KB)-world. Of course, goals can only be affected by atomic actions, so we will 

typically be interested in a set of actions that is guaranteed to achieve each CK-goal. To this end, 

we define an (atomic) action set to be any set of controllable literals. If A is such a set we use it to 

denote both the set of actions do(l) for each l E A, and the proposition formed by the conjoining its 

elements. 

Definition 4.5 Let M be a QDT-model and KB ~ LcPL• An atomic goal set is any action set A such 

that, for each CK-goal a, 

MF UI(KB) /\A:::> a 

Clearly, any such atomic goal set ensures each CK-goal a holds and thus determines a reasonable 

course of action. Such action sets can be determined by appeal to sufficiency. 

Theorem 4.2 Let A be some atomic action set. Then A is a goal set iff A is sufficient for UI(KB). 

Proof The proof proceeds similarly to that of Proposition 3.3. ■ 

As a result, the fact that A is a goal set can be expressed in the language of QDT as follows: 

MF □p(A :::> 5p(A :::> -,UJ(KB))) 

In our example above, where the robot knows 0, it set of uninfluenceable beliefs is UI(KB) = 
{ 0, R}. The set of CK-goals includes any proposition entailed by the set { 0, R, T, H}. However, 

given UI(KB) all such goals are made true should the agent execute one of the two possible atomic 

goal sets, {T, H} and { C, T, H}. Typically, we will be interested in minimal goals sets, since these 

require the fewest actions to achieve ideality. We may impose other metrics and preferences on goals 

sets as well (e.g., by associating costs with various actions). 

Notice that the preference for tea does not prevent the robot from bringing coffee. While a 

pragmatic filtering mechanism such as minimality would rule out this possibility, such constraints 

can easily be imposed on the preference ordering if appropriate. Disjunctive goals and "integrity 

constraints" pose no difficulty. If I prefer exactly one of coffee of tea, the preference I( C = -iT) can 

be asserted, preventing the robot from bringing both. In such a case, the generated atomic goal sets 

will be { C, T} and { C, T}, ruling out { C, T}. 
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With default information and controllability in place, we can briefly return to the alternative 

interpretation of preference statements described in Section 2. Recall the assertion "I prefer an 

umbrella when it's raining" was interpreted as an expected preference rather than an ideal preference. 

Formally, such expected preferences can be interpreted as stating that the consequent is preferred 

given the uninfluenceable belief set induced by the antecedent. In this case, the assertion means 

I(UIUI( {R} )). Thus, the logic QDT can be used to express both types of preferences as long as the 

intended meaning of the preference "assertions" is made clear. Such expected preference statements 

can also be used to derive new information. For instance, together with the ideal preferences such 

as I(DIR) and I(UID) (and other background information as before), this statement I(UI Ul( { R})) 

allows one to draw conclusions about an user's defaults, for instance, R => -.D. This can be used to 

further influence the derivation of subsequent goals. 

4.3 A Decision-Theoretic Interpretation 

In our goal derivation scheme, a certain priority is given to defaults over preferences. Goals are 

determined by first constructing the default consequences of KB and then deciding what to do based 

on this knowledge as if it were certain. While a seemingly reasonable approach, in a truly decision­

theoretic setting acting on the basis of uncertain information is a function not only of its likelihood, 

but also the consequences of being incorrect. For instance, in our framework we might have the 

default rule R => S, stating that if I run across the freeway I will reach the other side safely. If 

this allows me to arrive at my destination five minutes sooner (assuming arriving earlier is desirable) 

than had I crossed at a crosswalk, the default assumption S will ensure that I run across the freeway, 

the reasoning being that I won't (by default) get hit by a car and I will arrive sooner. In general, 

however, the (rather drastic) consequences of my default prediction turning out poorly must be traded 

off against the probability of being right. If the five minutes saved is not worth the risk, then I decide 

to go to the crosswalk. 

To express this tradeoff we must assume that the qualitative scales of preference and normality 

are calibrated somehow; and nothing in the constraints expressed by the user in our purely qualitative 

setting allows such an assumption. In the concluding section we discuss potential "qualitative" ways 

around this problem. However, the scheme presented here has a certain naive appeal, which may be 

partly due to the observation that defaults are usually expressed with such considerations in mind (2; 

2). Furthermore, the scheme is conceptually simple in that it embodies a principle analogous to the 

separability of state estimation and control (2). An agent can calculate what is (probably) true of the 

world and subsequently and independently base its decisions upon these beliefs. Finally, our scheme 

is applicable when likelihood and preference information is truly qualitative and explicit calibration of 

28 



the orderings is not feasible. This is in fact the key motivation for our proposal. Few decision criteria 

have been proposed for dealing with purely qualitative constraints of this type. In many applications, 

quantitative or even "calibrated" scales of likelihood and preference may not exist. 

Given, the need for qualitative decision criteria, we can describe some conditions under which 

our assumption of separability is appropriate. In particular, the decisions sanctioned by our scheme, 

whereby defaults are given precedence over preferences, are approximately sound with respect to the 

MEU criterion under certain circumstances. 

The logic of conditional normality statements can be given a probabilistic interpretation as de­

scribed in (2). In particular, the purely conditional fragment is equivalent to Adams's (2) system of 

e-semantics, which has also been applied to the representation of defaults (2). This means that there 

is a probability assignment that ensures that every default rule A => B corresponds to an assertion 

of high conditional probability P(BIA) > 1 - e, for any e > 0. Thus, we may assume that a user 

chooses default rules with such a parameter in mind, and that P(Cl(KB)IKB) > 1 - e. We can also 

assume that the preference ordering is "constructed" by clustering together worlds that have actual 

utility within some reasonably small range, and treating distinct clusters as separated by a reasonably 

large gap in utility. Thus, the user treats certain outcomes as having (more or less) indistinguishable 

utility, those within the same cluster, while outcomes in different clusters have sufficiently different 

utilities. To analyze the appropriateness of our goal derivation scheme, we make this assumption 

precise by assigning a point utility 8i to each cluster in the preference ordering. Let 8 denote the 

smallest gap 8i - Oi+l between any two adjacent point utilities (the "smallest perceptible change" in 

utility) and let .6. = 80 - On denote the magnitude of the possible range in utility (see Figure 6). 

Goals (or decisions) are determined with respect to a given KB, which induces a decision problem 

in the obvious fashion: given the context UI(KB) what is an optimal course of action (or atomic action 

set)? Under our assumptions, some action set must have maximal expected utility; let U* denote the 

expected utility of any such optimal action. For an arbitrary action set A, we denote by EU(A) the 

expected utility of A. Since our goal derivation scheme suggests that any goal set A is a reasonable 

course of action, we want to compare EU(A) to U* for any goal set A. The difference between the 

two indicates the degree to which our qualitative criterion is suboptimal. 

Intuitively, an atomic goal set embodies the best decision should the default beliefs of an agent 

actually be the case. On our interpretation above, we have that P( Cl(KB)IKB) > 1 - e and hence 

that P(UJ(KB)IKB) > 1 - e. The only circumstances under which the goal set potentially reflects 

a poor decision is when one of the default beliefs is false. This is due to the fact that unexpected 

propositions (those whose negation is believed by default) play no role in goal derivation. However, 

the error is bounded by the probability of default violation and the potential loss. 
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Figure 6: Utilities Assigned to a Preference Ordering 

Proposition 4.3 u• - EU(A) $ t!::i..for any goal set A. 

Proof Let A be some goal set and B be an optimal action set for the decision problem. Since 

goal sets determine outcomes with a single ranking of preference (given Ul(KB)), let the 

outcome(s)associatedwithAhaveutility c5i, SinceP(U/(KB)IKB) ~ 1-t, wehaveEU(A) ~ 

( 1 - c )c5i + cc5n, The outcome(s) of B given U/( KB} cannot have utility greater than c5i ( otherwise 

B would be a goal set and A would not); so EU(B) $ (1 - c)c5i + tc5o. Thus, 

u• - EU(A) $ c(c5o - c5n) $ t!::i... ■ 

Furthermore, goal sets are guaranteed to be better than non-goal actions sets under certain conditions. 

Proposition 4.4 Let A any atomic goal set and B any (non-goal) action set. Then EU(B)-EU (A) $ 

cA - (1 - c)c5. 

Proof As above, EU(A) ~ (1 - t)c5i + cc5n, Since Bis not a goal set, its outcome(s) given U/(KB) 

must have utility less than c5i, say c5i + k. Then EU(B) $ (1 - t)c5i+k + cc50. Thus, 

EU(B) - EU(A) $ t(c5o - c5n) - (1 - t)(c5i - c5i+k) $ t!::i.. - (1 - c)c5. ■ 

Therefore, a goal set A is guaranteed to be better than any non-goal action set whenever c5 ( 1 - c) ~ c A. 

This gives some idea of the circumstances under which the assumption of separability is sound. If 

the probability of default violation is reasonably small, when "magnified" by the cost associated with 
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error, then our decisions will be acceptable and approximately sound. Of course, it is unreasonable 

to only reason with qualitative constraints that meet these stringent requirements. But they do 

suggest useful abstractions for ordinary goal derivation, and the degree to which these conditions 

-are approximated gives reasonable assurance of good decisions. Thus, the separability assumption 

provides a computationally manageable procedure for finding "satisficing" solutions. 

5 Goals in the Presence of Incomplete Knowledge 

The goals described above seem reasonable, in accord with the general maxim "do the best thing 

possible consistent with your knowledge." We dubbed such goals "CK-goals" because they seem 

correct when an agent has complete knowledge of the world ( or at least its uncontrollable component). 

But CK-goals do not always determine the best course of action if an agent's knowledge is incomplete. 

Consider an agent with the preferences and defaults of the umbrella example, but whose propositional 

knowledge base is empty. For all the agent knows it could rain or not - it has no indication either 

way. The definition of CK-goal requires that the agent do(U), for the best situation consistent with 

KB = 0 is RU. Leaving its umbrella at home is the best choice should it tum out not to rain; but 

should it rain, the agent has ensured the worst possible outcome. It is not clear that U should be a 

goal. Indeed, one might expect U to be a goal, for no matter how R turns out, the agent has avoided 

the worst outcome. 

5.1 Strategies 

CK-goals are appropriate in the case of complete knowledge because the outcome associated with 

a complete course of action is certain. Nothing is left to chance. However, in the example above 

there is uncertainty regarding the possible outcomes of any course of action: it may rain or not. This 

uncertainty manifests itself in uncertainty about the desirability of the outcome. 

In the MEU framework, one can deal with such uncertainty easily; but qualitatively, when trying to 

do as much as possible with strictly ordinal value information, a different approach is required. In the 

presence of incomplete knowledge there are various strategies for determining goals, corresponding 

to the attitude an agent adopts toward this uncertainty. In the decision theory literature, a problem 

of this type is sometimes referred to as a decision problem under strict uncertainty (2), alluding 

to the fact that while there may be several possible outcomes of different utility, the probability of 

these outcomes is unknown. Several decision criteria have been proposed for such problems, among 

them minimax regret (2) and Laplace's principle of indifference (2). However, many of these are not 

applicable in in the case of purely qualitative information, requiring that the desirability of outcomes 
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be associated with (numerically significant) utilities. Two criteria that are applicable are the maximax 

and maximin (2) decision rules. It turns out that these criteria can be fonnulated in QDT. 

We first describe some preliminary notions. Let a complete action set be any complete truth 

assignment to the atoms in C. These are the alternative courses of action available to an agent 

(sometimes referred to simply as actions). If UJ(KB) is incomplete, any complete action set A 

induces a set of possible outcomes: 

Definition 5.1 Let M = (W, 5:P, 5:N, cp} be a QDT-model, and KB an objective knowledge base. 

The set of outcomes induced by an action set A is 

OUT(KB,A) = {w E W: M Pw AA UJ(KB)} 

The relative desirability of any decision will be a function of its outcome set and those of competing 

actions. 

In the example above, an agent could decide to leave its umbrella at home. This reflects an 

optimistic strategy for goal derivation: leaving the umbrella maximizes potential gain, for it allows 

the possibility of the agent ending up with the best possible outcome consistent with KB, namely, 

R A U. More generally, for each action define its best outcome set as 

MAX(KB, A) = { w E OUT(KB, A) : if v E OUT(KB, A) then w 5:P v} 

An optimistic strategy consists of choosing any action with a maximal or most preferred best outcome 

set. This corresponds to the maximax decision rule, for among the alternative courses of action, we 

choose the action that maximizes the maximum ( or preferred) possible outcome. 

Definition 5.2 A complete action set A is an optimistic best (OB-) action set given KB iff for any 

complete action set B, if w E MAX(KB, A) and v E MAX(KB, B) then w 5:P v. 

Definition 5.3 A proposition o: is an optimistic goal given KB iff 

V { Ai : Ai is an optimistic best action set } p o 

Thus, o: is an optimistic goal iff it is required to be achieved when any optimistic best course of 

action is executed. For example, if { A, B} and { A, B} are OB-actions, A is a goal, but B is not, for 

the agent is free to choose whether to do(B) or do(B) (or let it run its own course). This notion of 

goal has controllability built in (for actions sets only entail controllable propositions) and corresponds 

to striving for the best possible outcomes consistent with UJ(KB). 
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Theorem 5.1 For any KB, o: is an optimistic goal iff MF I(o:jUI(KB)) and o: is controllable. 

Proof We note that if o: is an optimistic goal then it is equivalent to a sentence containing only atomic 

variables from C (since o: is entailed by actions, themselves formed using only variables from 

C). Thus, every (nontautological) optimistic goal is controllable, and we need only show that 

A F o: for each OB-action A iff M F I( o:I UI(KB)) for those o: containing only variables from 

C. 

By definition, A is an OB-action iff M Fw A for some w E min(UI(KB), $,p ); and o: is a goal 

iff M Fw o: for each such w. However, since o: contains only variables from C, M Fw o: iff 

A F o: for the action A such that M Fw A. Thus the disjunction of all optimistic best action 

sets entails exactly the controllable ideal goals o:. ■ 

Furthermore, while any optimistic best action set allows the possibility of a best outcome, any other 

course of action rules out the possibility: 

Theorem 5.2 Let A be a complete action set. Then A is an optimistic best action set iff 
MF T(AIUI(KB)). 

Proof This follows immediately from the definition of OB-actions, for A is an OB-action iff there 

exists a preferred UI(KB)-world satisfying A. ■ 

This fact suggests a simple "greedy" approach for the construction of optimistic best action sets. 

Suppose A1, •••An is an enumeration of the atoms in C. If MF T(A1IUI(KB)) then there exists an 

OB-action set with action A1; otherwise A1 is part of some best action set. Suppose A1 is chosen; a 

similar test for A2 can be undertaken accounting for the choice of A1: one ofT(A2IUI(KB) I\ Ai) or 

T(A2IUI(KB) I\ A1) must hold. After n such tests an optimistic best action set has been constructed. 

In addition, if at any stage I(A1 I\·•· AilUI(KB)) is true, this partial action set is also best (in that 

any completion of it is an OB-action). 

In certain domains adopting an optimistic strategy might be a prudent choice (for example, where 

a cooperative agent determines the outcome of uncontrollables). Of course, another strategy might be 

the cautious strategy that minimizes potential loss. In our example, an agent would take its umbrella 

to prevent the worst possible outcome RI\ U from occurring. For each action define its worst outcome 

set as 

MIN(KB,A) = {w E OUT(KB,A): if v E OUT(KB,A) then v $,p w} 
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The relative goodness of an action corresponds to the degree of preference of its worst outcomes. A 

cautious strategy consists of choosing any action with a maximal or most preferred worst outcome 

set. This corresponds to the maximin decision rule, for among the alternative courses of action, we 

choose the action that maximizes the minimum ( or least preferred) possible outcome. 

Definition 5.4 Let A, 13 be complete action sets. A is as good as 13 (A S 13) iff w $p v for any 

w E MIN(KB, A), v E MIN(KB, 13). Action A is an cautious best (CB-) action set given KB 

iff for any action 13, if w E MIN(KB, A) and v E MIN(KB, 13) then w $p v. 

Clearly, S imposes a transitive, connected ordering on complete actions sets, and best action sets are 

those minimal in this ordering. If an agent chooses other than a cautious best action set, it opens the 

possibility for a worse outcome (this is an immediate consequence of the definition): 

Theorem 5.3 Let A be a best action set for KB and 13 be any complete action set. For any w F 
Ul(KB) /\ A, there is some v F Ul(KB) /\ Aj such that w SP v. 

Definition 5.5 A proposition a is a cautious goal given KB iff 

V { Ai : Ai is a cautious best action set } F a 

Cautious goals correspond to preventing the worst possible outcomes consistent with Ul(KB) (and as 

usual have the notion of controllability built in). 

The relative goodness of an action sets can also be expressed in QDT. 

Proposition 5.4 A is as good as B iff 

MF ◊p(B /\ Ul(KB) /\ -i◊p(A /\ Ul(KB))) 

Proof A is as good as B iff for every w E MIN(KB, A) there is some w $p v such that A S B; 

that is, iff M Fv B /\ UI(KB). For any such v we must have M Fw -,◊ p(A /\ Ul(KB)) since 

w E MIN(KB, A). Thus A $ B iff M F ◊ p(B /\ Ul(KB) /\ -,◊ p(A /\ UI(KB)) ). ■ 

The best actions sets are those for which this condition is provable for all B. This suggests a (not 

unexpected) difficulty in choosing cautious best action sets. In the worst case, one may have to 

"search" through all action sets in order to determine if an action is a cautious best action set. This 

stands in contrast with optimistic best actions sets, for which a simple test exists (Theorem 5.2) and 

for which a greedy construction strategy exists. 
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We cannot expect best action sets, in general, to be sufficient in the same sense that CK-goal sets 

are. The potential for desirable and undesirable outcomes makes it impossible to ensure that the best 

outcomes consistent with UI(KB) are forthcoming. However, we can show that if there is some action 

set that is sufficient for KB then all cautious best action sets will be sufficient. 

Proposition 5.5 If some action set A sufficient for UI(KB), then every cautious best action set is 

sufficient. 

Proof A is sufficient for UI(KB) iff M F f3p(UJ(KB) :> Dp(UI(KB) :> -,A)) iff OUT(KB, A) ~ 
min(UJ(KB), $,p) iff MIN(KB, A) ~ min(UI(KB), $,p ). Now if Bis a cautious best action set 

then MIN(KB, B) ~ min(UJ(KB), $,p ); and by the reasoning above Bis sufficient for UJ(KB). 

■ 

Hence, CK-sufficiency can sometimes be applied even in the case of incomplete knowledge. Its appli­

cability implies that possible outcomes of unknown uncontrollables have no influence on preference: 

all relevant factors are known. 

The cautious strategy seems applicable in a situation where one expects the worst possible 

outcome, for example, in a game against an adversary. Once the agent has performed its action, it 

expects the worst possible outcome, so there is no advantage to discriminating among the candidate 

(best) action sets: all have equally good worst outcomes. However, it's not clear that this is the best 

strategy if the outcome of uncontrollables is essentially "random." If outcomes are simply determined 

by the natural progression of events, then one should be more selective. We think of nature as neither 

benevolent (a cooperative agent) or malevolent (an adversary). Therefore, even if we decide to be 

cautious (choosing among cautious best action sets), we should account for the fact that a worst 

outcome might not occur: we should choose the action sets that take advantage of this fact. Such 

considerations also apply to games where an opponent might not be able to consistently determine 

her best moves and an agent wants to exploit this fact. It is easy to distinguish such CN-actions in 

QDT, choosing those that are "optimistic", or using other means. 

5.2 Observations 

If an agent can observe the truth values of certain unknown propositions before it acts, it can improve 

its decisions. In many cases, fortuitous observations will preclude the worst possible outcomes and 

change the actions chosen. To continue the "umbrella" example, suppose Rand C are unknown. The 

agent's cautious goal is U. If it were in the agent's power to determine C (cloudy) or C before acting, 
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Figure 7: The value of (a) single and (b) multiple observations. 

its choice of actions could change. Observing C indicates the impossibility of R, and the agent could 

then decide to exploit this information and do(U). 

To capture this notion, we distinguish two types of uncontrollable atoms, observables O and 

unobservables O; formally, we assume C = 0 U 0. Suppose KB determines a several best action sets 

of which one, A•, is chosen by the agent. Intuitively, the observation of some unknown uncontrollable 

atom O is worthwhile if it can potentially change the agent's choice of best action. Cautious and 

optimistic goals must be treated differently, for the are influenced by "positive" and "negative" 

observations respectively. 

We first describe the value of observations for an agent that has adopted a cautious goal derivation 

strategy. Suppose Ul(KB) is the agent's uninfluenceable belief set and that A* is the cautious best 

action set chosen by the agent. Furthermore, assume that variable O is observable but that that 

both O and O are consistent with the agent's beliefs. Since O is observable, it is a "worthwhile" 

observation to undertake if it has the potential to change the agent's decision. Note that we can only 

use the observation's potential for change, for no observation can be guaranteed to change an agent's 

decision. This is due to the fact that among the decision's (A*) worst outcomes must be one that either 

makes O or O true, and the observation may simply "validate" the agent's cautious choice. Consider 

Figure 7(a), where actions A and B are possible and O is observable. If the value of O is unknown, 

an agent's cautious choice is B. Should the agent decide to test 0, an outcome of 0 will cause a 

different cautious choice A. Thus, a test of O has potential impact. Notice that if the test results in O, 

the cautious best decision remains B. 

Definition 5.6 Let Ul(KB) Ii 0, Ul(KB) Ii 0. Observable O has value in context KB iff, for some 
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CB-action A (w.r.t KB), A is not a CB-action for one of KB U { 0} or KB U { 0}. 

In this case, observing O is worthwhile since it might (depending on its actual truth value) rule out 

certain feasible decisions for the agent. In our running example, not knowing whether it will rain, 

our agent would take its umbrella. However, if a phone call to the weather office could refute the 

possibility of rain, our agent's decision would differ if it had this information. This is essentially 

a qualitative analog of value of infonnation. Of course, we cannot quantify the potential value of 

making an observation; but we may compare the relative values of two pieces of information O and 

P. For simplicity, assume that positive observations O and Pare the "improving" outcomes. Let Ao 

and Ap be CB-actions for KB U { 0} and KB U { P}. The value of O is as great as that of P just when 

MI= ◊p(Ap A U/(KBU {P}) 1\-i◊p(Ao A Ul(KBU {O}))) 

Faced with the choice of observing O or P, should O have greater value, we should choose O for it 

allows (should it tum out positively) greater potential for improvement. Generally speaking, decisions 

change when an agent observes "positive" instances of observable variables (those that rule out worst 

outcomes). 

It is not hard to see that the value of an observable depends crucially on context. In particular, it 

may have no value in some context but great value in another - or its value may only be derived by 

considering its observation jointly with that of another variable. For example, in Figure 7(b), if we 

take O and P to be unknown observables, we see that neither O nor P alone have value. Observing 0 

or O, P or P, cannot affect the cautious choice: B is always the cautious best action. However, should 

0 and P both be observed, there is a possibility for a change of decision. If the outcome of this test is 

0 AP, then A is the best action. Generally, value of information is a property of sets of observations 

rather than single observations. The definition above is easily generalized to accommodate this fact. 

The considerations above for a cautious decision strategy can be applied to optimistic goals as 

well. Rather than ruling out undesirable outcomes as above, an observable has value in an optimistic 

setting just when it rules out certain acceptable outcomes. Thus, it is "negative" observations that 

have value in this setting. For instance, an optimistic agent will leave its umbrella at home if it 

doesn't know whether it will rain. A "negative" observation that it will rain (e.g., by phoning the 

weather office) will change its decision. Figure 7(a) also illustrates this phenomenon- observation 

0 changes the optimistic decision from A to B. In this setting it is not hard to see that observation 0 

has value iff one of the following hold for some optimistic best action set A (relative to KB): 

-iT(AIVI(KBU {O}) 
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-.T(AIUI(KB u {O}) 

If A is not tolerable given UI(KB U { O}) then it cannot be an OB-action should O be observed; thus 

it is ruled out as a possible choice. As above, 0 comes with no guarantees, for one of O or O must 

"confirm" the original action choice. As well, the notion applies more generally to sets of observables, 

rather than just single variables. 

6 Concluding Remarks 

6.1 Related Work 

Other attempts to define goals using preferences bear some relationship to our system. Doyle and 

Wellman (2) define goals that exhibit a conditional aspect like ours. Roughly, B is a goal given A just 

when A I\ B is preferred to A I\ -.B for any fixed circumstance. For instance, if such a relationship 

holds A I\ B should be preferred given C, given -.C, and so on. Such goals incorporate a ceteris 

paribus assumption: B is preferred to -.B given A, all else being equal. This guarantees that doing 

B will lead to a better situation whenever A holds - this is indeed a very strong, and probably rarely 

applicable, condition. Our conditional goals are much weaker. No such assurances can be provided. 

Intuitively, if B is a goal given A, then doing B will lead to a better situation, all else being normal. 

However, this permits defeasible goals, affording greater flexibility and naturalness of expression. 

Only factors directly relevant to preference need be stated, and others are assumed to be irrelevant. 

In addition, our goals incorporate elements of controllability. 

Pearl (2) has proposed a system using much the same underlying logical apparatus as ours. 

However, conditional statements are taken to impose specific constraints on utility and probability 

distributions, allowing expected utility calculations (with "order of magnitude" values) to be per­

formed. While this allows stronger conclusions to be reached in general, it makes stronger demands 

on the input information as well. Thus, the system cannot be construed as truly qualitative, so in 

a sense the aim here is different. Tan and Pearl (2) introduce a somewhat more qualitative system. 

It handles quantified conditional desires (adopting the machinery of qualitative probability (2)). To 

account for likelihood, they adopt our model of closing under default consequence before consulting 

preferences. Incompletely specified preferences induce a "compact" model where worlds gravitate 

toward neutrality, but as noted earlier, this is not an obviously useful strategy. Furthermore, condi­

tional preferences are given a ceteris paribus interpretation along the lines of Doyle and Wellman. 

Aside from the unknown impact on the computation of compact rankings, their particular semantics is 

of questionable value for representing conditional preferences. For example, a preference for A given 
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A V B requires that -.A I\ -.B be dispreferred. In our semantics, a conditional preference given any a 

imposes no constraints on the degree of preference of -.a-worlds. Finally, a crucial distinction is that 

the system of Tan and Pearl fails to incorporate any model of ability. Thus, statements of the form ''A 

is preferred given -.A" are given a direct interpretation. In our model, it is certainly possible to say 

that A is a goal given -.A, as long as A is controllable. But this is the careful result of determining 

exactly which facts can be changed and which ideal preferences hold in the reduced context. 

Our representation of preferences draws much from work on deontic logic, where preference 

may be determined by some legal or moral code. Some work in deontic logic has recently begun to 

incorporate, as we do here, default information (2; 2). However, much work in deontic logic embodies 

in some way or another the slogan "do the best consistent with what you know." As our considerations 

of ability show, this is not always the best manner in which to evaluate or derive obligations; if certain 

known facts are within an agent's control, its obligations (as its goals) should not be constrained by 

those facts. 

6.2 Summary 

We have presented a logic QDT for representing qualitative preference and likelihood information. 

We have shown how defeasible conditional preferences can be expressed, and described several 

methods for goal derivation based on the assumption that priority be given to defaults. There are a 

number of ways in which this work can be extended. Clearly, the account of action and ability is 

simplistic. An object-level characterization of actions with true causal structure can be added to the 

conditfonal framework (2) to make goal derivation more realistic. However, as more sophistication 

is added to the representation of action and ability for goal derivation, the distinction between goal 

derivation and planning becomes increasingly blurred. 

The assumption of separability and priority of default information must be relaxed in many 

circumstances. In order to allow reasonable decisions to be made, a logic that allows tradeoffs of 

likelihood and preference to be expressed in a qualitative fashion is desirable. For instance, if I 

instruct my robot that it should run across the street (instead of crossing at the crosswalk) to save three 

minutes while fetching my coffee, it can safely deduce that running across the street is worth the risk 

if a courier deadline is involved. I have implicitly calibrated parts of its preference and normality 

rankings. We are currently exploring such mechanisms for reasoning directly with such qualitative 

tradeoff information. This can be viewed as a mechanism to deal with imperatives, or commands to 

perform an action in a particular circumstance. The knowledge implicit in such commands can then 

be propagated to other contexts. 

Related to this is a fuller investigation of the different forms preference information might take 
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in such a setting. As mentioned earlier, user preferences might be stated independently of typicality 

information, or might incorporate expected circumstances and controllability information. A well­

developed logic for these and other "entangled" constraints is certainly worth pursuing. 

Finally, a full investigation of multistage decision making in this qualitative context in currently 

under way. We take belief states to be ranked models as we do here. Actions transform one such 

belief state into another. The value of a particular course of action is, as usual, a function of the world 

states through which an agent passes while executing the actions in the sequence. However, since 

the true state of the world is only known defeasibly, as are the outcomes of actions, this value must 

be calculated using some qualitative analog of expected utility, or perhaps using other qualitative 

decision criteria such as those suggested here. Ultimately, a qualitative form of Markov decision 

processes (2; 2; 2) may prove feasible. 
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A Proof of Completeness Theorem 

In this appendix we provide the proof of soundness and completeness of the axiomatization of QDT. 

We note that QDT consists of the axioms describing the bimodal logic CO for each of the pairs of 

connectives □ P, a p and □ N' a N' together with the interaction axiom a NA = a pA. Soundness of 

the initial axioms is proved in exactly the same manner as it is for CO (see (2) for complete details). 

We simply must show that the new axiom is sound as well. 

Lemma A.1 QDT is sound with respect to the class of QDT-models. 

Proof WesimplyshowthataNA = 6pAholdsatallworldsinallmodels. LetM = (W, 5:P, 5:N, cp) 

be a QDT-model. M Fw BNA iff M Fv A for all VE W iff M Fw 6pA. ■ 

To show completeness we adopt a technique ofHumberstone (2). We first note, following an analogous 

result for CO proved in (2), that the all instances of the following axiom schemata are derivable. Let 

HP* denote the (set of) schemata 

HP* V(□pA I\ □pB):::) B(A VB) 

where 1) is any sequence of the connectives ◊ p and ◊ p having length ~ 0, and B is any such 

sequence of D p and D p. Let HN* denote the same schemata with 1) standing for sequences of ◊ N 
+- +-

and ◊ N, and B standing for sequences of D N and D N. 

Lemma A.2 Any instance of the following Humberstone schemata HP* or HN* is derivable in QDT. 

We can now prove completeness. 

Lemma A.3 If FQDT A then 1--QDT A. 

Proof To show completeness it is sufficient to show that A is falsifiable for any non-theorem A. 

Letting r be some maximal QDT-consistent set (MCS) which contains -,A, we will construct 

a model M = (W, 5:P, 5:N, cp) which falsifies A. This technique is employed in (2). The 

model is constructed with W consisting ofMCSs and four relations 5:P, 5:P, 5:N, 5:N over W. 

Relation 5:P is intended to represent the complement of 5:P (and similarly for 5:N ). Ultimately, 

5:P, 5:p will be mutually exclusive and exhaustive on W x W, as will 5:N, 5:N, 

The construction proceeds as follows: We start at stage Oby adding r to W, so that W = {r} 

and 5:N= 5:N =5:p= 5:P = 0. At each following stage i, for each set A added to W at stage 

i - 1 we do the following: 
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(a) For each fonnula ◊pB EA add a MCS A' where {B} U {C: DpC EA} ~ A', 

and add (A', A) to $,p. 

(b) For each fonnula ◊pB EA add a MCS A' where {B} U {C: 6pC EA} ~ A', 
and add (A', A) to $,p. 

(c) For each fonnula ◊NB EA add a MCS A' where {B} U {C: □NC EA} ~ A', 
and add (A', A) to $:N, 

(d) For each fonnula ◊NB EA add a MCS A' where {B} U {C: 6NC EA} ~ A', 
and add (A', A) to $:N. 

That such MCSs exist is claimed without proof (see (2; 2)). Now let M be the totality of this 

(typically infinite) construction. Evaluating the truth conditions of 6p with respect to $,p (as 

if $,p were the complement of $,p), and those of aN with respect to $:N, we can show the 

following, assuming cp(A) = { w : A E w} for atomic A. 

Lemma A.4 M Fw B if! B E w. 

Proof We proceed by induction on the structure of B. For atomic B, this follows by the 

definition of cp. Assuming this for A and B, clearly it holds for both -,A and A :::> B by 

standard properties of MCSs. Now suppose □pB E w. By the construction of M, for 

all v ~P w, M Fv B, therefore M Fw □pB. If □pB ¢ w, then ◊p-,B E w. By the 

construction of M, there is some v $,p w such that M Fv -,B, therefore M ~w □pB. 

The same argument holds for a p B, assuming $: p to be the complement of $: p. Similar 

considerations apply to fonnulae of the fonn D NB and 6 NB. ■ 

Now we have a "structure" which falsifies A, as -,A E r and by the above, M Fr -,A. 

However, M is not a QDT-model, since $,p and $:N are neither reflexive, transitive, nor 

connected; and ~P and $:N are not the complements of these relations. We now show that $,p, 

$,p and $:N, $:N can be extended in such a way that $,p, $:N possess the desired properties and 

$,p, ~N are their complements on W, while not changing the fact that M Fw B iff BE w. 

First we show that the MCSs selected in the construction process can be chosen in such a way 

that the sets added in steps (a) and (b)-which are added to the relation $,p and $,p -can be 

added to either $:Nor $:N; and similarly, for steps (c) and (d), the choices can be added to $,p 

or ~p. Suppose at stage i, step (a), we must find a MCS A' where { B} U { C : D pC E A} ~ A', 
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and add (A', A) to $p. We wish to ensure that A' is chosen so that (A', A) can consistently be 

added to one of 5:N or 5:N. If no such A' exists, then both 

{B} U {C: DpC EA} U {D: □ND EA} and {B} U {C: DpC EA} U {D: □ND EA} 

are inconsistent. Thus, {B} U {C: □pC EA} I- -,D1 A-,D2, 

for some D1 E {D : □ND EA}, D2 E {D : □ND EA}. Thus -,□p(D1 V D2) EA. But 

clearly □N(D1 V D2) E A and □N(D1 V D2) E A, so DN(D1 V D2) E A. By axiom PN, 

cip(D1 V D2) E A; so Dp(D1 V D2) E A, contradicting the inconsistency. So some A' can 

be chosen such that (A', A) can consistently be added to one of 5:N or $ N. An analogous 

argument holds for steps (b), (c) and (d). As a result, every MCS added to Wis "connected" to 

the original MCS r by some number of steps through $p U$p and by some number of steps 

through 5:N U5:N-

We now show that $p can be made the complement of $p, and that $p can be made reflexive, 

transitive and connected. Similar arguments holds for 5:N and 5:N-

Suppose that (v, w) (/.$p and (v, w) ¢ $p, and that it cannot be "consistently" added to either 

of $p or $p. Then there must be some □pB E w, B ¢ v and some □pC E w, C ¢ v. Both 

wand v must be some finite "distance" away from out starting point r, say m and n "steps", 

respectively, through $p U$p. Following the "path" which lead to the addition of w to W, we 

have M Fr 'D1(DpB A DpC) where 'D1 is a string of m ◊p's and ◊p's (depending on how 

w was added). Similarly, M Fr 'D2(-,B A -,C) where 'D2 is the string of n ◊p's and ◊p's 

corresponding to how v was added. But this sentence is equivalent to -,82(B V C), where 8 2 
is formed by replacing ◊p and ◊p with Op and Dp (respectively) in 'D2. This means both 

'D1 (□pB A DpC) E rand -,B2(B v C) Er, contradicting the Humberstone schema. Since r 

is consistent, (v, w) can be added to either $p or $p without affecting the truth of formulae at 

any world in W, and hence $p and $p can be extended to complement one another, making 
<- -

valuation of □ p with respect to $p the same as valuation with respect to the standard truth 

conditions. 

We can ensure that $pis reflexive, as well. Adding w $p w affects the truth of some sentence 

only if there is some B such that □pB E wand B ¢ w; but this contradicts the axiom T and 

the fact that w is a MCS. 

For transitivity, suppose v $p w and t $p v. Adding t $p w can only affect truth if there 

is some □pB E wand B ¢ t. Since □pB E w, by axiom 4, □p□pB E w. This means 
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□pB Ev and BE t, contradicting the assumption. 

For completeness, suppose v5,pw. Adding w $,p v can affect truth only if there is SOf!le 

□pB Ev and B ¢ w. If B ¢ w, then -.BE wand by axiom S, Dp◊p-.B E w. Now since 

v$pw, ◊ p-iB E v, and □pB ¢ v, contradicting the original assumption. 

It is clear that there may be some interaction during these "steps" whereby certain pairs of 

worlds are moved from the set $,p to $,p; but, clearly nothing in principle stops one from 

constructing a suitable model with the appropriate constraints being fulfilled by the relations. 

In fact, if we insist that $,p be completed maximally before we complete $,p, there need not be 

any interaction. For instance, at the step where we decide to add each pair of worlds to $,p or 

$,p, we can consider the union of the family of all possible relations $,p on W x W that respect 

on restrictions on the ordering; we take this set to be $,p and let $,p then be W x W- $,p. 

Since similar considerations apply to 5:N, we can construct a QDT-model which falsifies the 

non-theorem A. ■ 

Theorem 3.1 The system QDT is characterized by the class of QDT-models. 

Proof This follows immediately from Lemmas A.1 and A.3. ■ 

B SystemZ 

In the following, a copnditional can be taken to be either !(BIA) or A =} B, and the constraints 

are imposed on the appropriate ordering. We use =} generally in the description of System Z. Pearl 

(2) describes a natural ordering on default rules named the Z-ordering, and uses this to define a 

nonmonotonic entailment relation, I-entailment, put forth as an extension of £-semantics (2). Pearl's 

default rules r have the form A - B, where A and B are propositional. As shown in (2), Pearl's 

system of £-semantics and our conditional logic agree precisely on their conditional fragments, so 

we may apply his definitions directly to conditionals in CO. We say a valuation (possible world) w 

verifies the rule A =} B iff w F A I\ B, falsifies the rule iff w F A I\ -.B, and satisfies the rule iff 

w F A :J B. For any ruler = A =} B, we definer• to be its material counterpart A :J B. We 

assume that T is a finite set of such rules. 

Definition 2.1 (2) T tolerates A =} B iff there is some world that verifies A =} B, and falsifies no 

rule in T; that is, { A I\ B} U { C :J D : C =} D E T} is satisfiable. 
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Toleration can be used to define a natural ordering on conditionals by partitioning T: 

Definition 2.2 (2) For any i ~ 0 we define Ti = { r : r is tolerated by T - To - T1 - • • • Ti-I}, 

Assuming Tis consistent, this results in an ordered partition T = To U T 1 U • • • Tn, Now to each 

ruler E T we assign a rank (the Z-ranking): Z(r) = i whenever r E Ti, Roughly, the idea is that 

lower ranked rules are more general, or have lower priority. Given this ranking, we can rank possible 

worlds according to the highest ranked rule they falsify: 

Z(w) = min{n: w satisfies r, for all r ET, Z(r) ~ n}. 

Lower ranked worlds are to be considered more normal ( or more ideal); thus Z-ranking determines 

a unique preferred structure. Now any proposition A can be ranked according to the lowest ranked 

world that satisfies it; that is 

Z(A) = min{Z(w): w I= A}. 

Given that lower ranked worlds are considered more normal, we can say that a conditional A => B 

should hold iff the rank of A I\ B is lower than that of A I\ -.B. Hence we have: 

Definition 2.3 (2) Formula B is ] -entailed by A with respectto T ( written A h B) iff Z ( A I\ B) < 
Z(A I\ -.B) (where Z is determined by T). 

For details regarding the types of conclusions sanctioned by I-entailment, see (2). 
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