
Vision Servers and Their Clients

James J. Little

Technical Report 94-19

October 1994

Laboratory for Computational Intelligence

Department of Computer Science

University of British Columbia

Vancouver, British Columbia, CANADA V6T 1Z4

email: little@cs.ubc.ca

Abstract

Robotic applications impose hard real-time demands on their vision components. To

accommodate the real-time constraints, the visual component of robotic systems are

often simpli�ed by narrowing the scope of the vision system for a particular task.

Another option is to build a generalized vision (sensor) processor and provides multiple

interfaces, of di�ering scales and content, to other modules in the robot. Both options

can be implemented in many ways, depending on computational resources.

The tradeo�s among these alternatives become clear when we study the vision

process as a server whose clients request information about the world. We model

the interface on client-server relations in user interfaces and operating systems. We

examine the relation of this model to robot and vision sensor architecture and explore

its application to a variety of vision sensor implementations. 1

1This research was supported by the Natural Sciences and Engineering Research Council

of Canada and the Networks of Centres of Excellence Institute for Robotics and Intelligent

Systems, Project A-1.

1

1 Introduction

The goal of real-time performance conicts with the computational intensity of

most vision tasks. Several constraints on architecture arise from real-time oper-

ation, including: I/O signal bandwidth, time constants, feedback loop constants

(reaction times), and dynamic environments.

Vision systems often simplify to respond to real-time constraints|if there is

little time to do something, do very little. Many robotic systems employ special-

ized sensors designed for particular tasks so that the connection between sensor

and action can be direct and fast[FB89]. Each path in the robot, connecting

the world to sensors, computation, and e�ectors �nally back to the world, is a

behavior; the enormously inuential subsumption theory[Bro87] describes how to

connect each sensor-to-actuator loop with inhibition and suppression contacts.

These loops avoid a centralized modeling and planning facility and therefore can

run in real-time.

Reactive robots built on the model of direct sensing-actuation connections

have proliferation, but their limitations have become obvious. The e�ort to re-

turn to robots that plan and react has led to the reactive/deliberative debate.

Connell[Con92], for example, has developed a three-level model of robot archi-

tecture: the lowest is a Servo loop, running in real-time; the middle is the Sub-

sumption level, and the highest is the Symbolic level. Only the lowest level forms

a sensing-actuation loop with the world, but the other two levels communicate

with the Servo level hierarchically.

Likewise the RCS model of Albus[Alb92] (widely accepted in the robotics

community) advocates a collection of loops organized in a matrix. Each loop

is a level; each level has successively coarser time sampling and a correspond-

ingly lengthier time horizon. Within each loop are sensing, planning and control

components. Communication occurs across a loop, and between levels among cor-

responding components. For example, the sensing component at the 10 ms level

talks with the the sensing component at the 100 ms level. One advantage of the

RCS formulation is the prominent role it gives to time delays, sampling intervals,

and planning horizons. The low-level layers usually operate with �xed-schedule

of computation, while the higher layers are event-driven.

These models describe logical architectures. Resource and timing constraints

shape their realization on physical architectures. Large computational tasks argue

for large monolithic machines, but the variety of tasks argues for heterogeneous

2

machines. Bandwidth requirements argues for close coupling, while real-time

distributed systems argues specialized communication channels. Many variations

of architectures have explored all these dimensions.

Increasingly vision sensors serve multiple purposes within a robotic archi-

tecture. A vision sensor provides data for a servo control loop as well as data

for recognition, manipulation and localization. The sensor is a critical element

of any control loop, even if the robot treats the world as a source of symbolic

predicates[Fir92]. The controller must sense its progress during actions. Control

raises the issue of delays: systems must consider latency as well as throughput.

The robot cannot be blind during actions. It must have an alert mode, so that

it senses during movement. Coverage by the sensor system must be broad to

monitor the environment for threats, albeit as simple as an obstacle during loco-

motion.

Matthies and Grandjean[MG93] develop a methodology for integrating sensing

and action. The systems senses (stereo ranging) a portion of the scene, su�cient

to act within its sensed region. They identify the important constraint of the

robot's reaction time in the design of the sensing component.

1.1 Vision Operating Systems

The right model for the design of a vision system can be taken from the design

of operating systems. What services must a vision operating system provide to

let processes operate continuously, cooperatively, and transparently? Early vi-

sion processing can be implemented, because its regularity, in specialized parallel

processors such as mesh and pipeline processors. Later processing stages are data

dependent and complex and must be implemented on more general processors.

On general processors, early vision forms the bulk of the computational burden.

We structure real-time vision systems as processes that operate on data

streams. Each process typically operates on an image, then optionally subdivides

an image into smaller subimages and sends the image(s) on to later processing

stages. The later stages can collect several image streams, representing subimages

of an original image, to form aggregates.

The vision process that produced the visual data is the server. Later stages

that use the data are its clients. A client can play several roles: it can just pass

the data on, either unchanged or processed; more generally it consumes the data

and produces other data.

3

Coordinating servers and clients can be problematic when they operate at

di�erent speeds. To solve the problems of implementing non-trivial vision pro-

cessing on realistic machines, a designer must confront the realities of multi-rate

processing: due to technology mismatch between early processing engines and

more limited intermediate and high level processing capability, as well as limited

communication bandwidth, the rate at which components in the system produce

and consume data vary enormously.

One example of a service implemented in a vision OS is A smart bu�er[LK93]

that performs intermediate processing on arriving data to connect two processes

at di�erent speeds, providing current data without burdening the receptor process

with details of how it is bu�ered. Synchronization is an important issue, especially

when the system serves control loops. Interrupts and exception-handling are

already part of robotic systems, including those based on vision.[de93]

In many respects, the \whiteboard" concept supported by CODGER (COm-

munications Database with GEometric Reasoning) in CMU NAVLAB [SST86]

provides an abstraction for vision services and clients. CODGER supports data

ow between parallel modules using a central blackboard database. Unlike

CODGER, a smart bu�er operates essentially to collect data. Like CODGER, the

bu�er handles synchronization between the producer and consumer. Information

sources are servers, and information consumers are clients. Unlike the black-

board, because of the high cost of delays, we want instead to connect services

with clients via direct paths, as in the dataow model.

A system that serves multiple purposes will likely have several sensing modal-

ities that can be fused. Integrating multiple modalities leads to robustness; in-

dependent sources can fuse data for veri�cation. Data ows must nevertheless

remain accessible as data sources to other tasks, much like a multi-ported mem-

ory. Data sources connect both with clients and constraints. A centralized imple-

mentation, moreover, can support a decentralized model by synthesizing logical

sensors[de93] from existing inputs. For example, binocular stereo data can serve

to synthesize a spot range sensor and vice versa.

2 Examples

The following examples demonstrate some possible con�gurations of sensory sys-

tems and control systems in robotic architectures. The systems have been de-

signed with regard to several architectural constraints on real-time operation in-

4

cluding I/O signal bandwidth, feedback loop constants, and response to dynamic

environments.

The three systems include various vision services. The tracker system uses a

motion/stereo data source for a target selection and tracking client. The Dynamo

soccer-playing testbed has a real-time color tracker to supply positions of several

soccer players to a distributed implementation of soccer playing controllers. Fi-

nally, the real-time localization system uses on-board video with o�-board com-

putation to determine position and orientation at 10 Hz.

2.1 A Multi-rate Motion Tracker

The motion tracker[LK93] demonstrates how to build a tracker that has several

processes running at di�erent rates in near real-time. The tracker follows a moving

object, with no knowledge of its target, based on dense optical ow input.

A simpli�ed tracker can observe the world only when its head is static. The

\stop-and-look" mechanism excludes imaging while moving. Such a tracker sys-

tem cannot detect change while analyzing data or moving its head. Given a

su�ciently high-speed eye-head platform, such as Yorick [SMV+93], one can op-

erate on pairs of frames, in a \stop-and-look" fashion.

The UBC Vision Engine[LBKL91] exempli�es distributed, heterogeneous sys-

tems that have multi-rate processes. The Engine is general-purpose and supports

all levels of vision. The system consists of multiple architectures: pipelined (a

Datacube MaxVideo200) image processor and a MIMD multicomputer (20 T800

2MB Transputers, connected via a crossbar), connected by a bidirectional video-

rate interface. The Transputer system controls an eye/head platform for vergence,

pan and tilt.

Our tracker continuously monitors its environment, overlapping interpretation

and sensing. It identi�es the largest moving object as the target. Since the tracker

gathers visual data during head movements and identi�es the target solely on

motion and stereo cues, it must compensate for the apparent motion caused by

head movement. It estimates the image motion caused by camera motion and

cancels the apparent motion in the accumulated optical ow. It is then simple to

�nd the target since the moving object \pops out" relative to a static background.

The tracker has multiple stages: correlation motion on the Datacube, optical

ow accumulation, target selection and eye-head control. The �rst two stages

comprise the Perception component, distributed over two di�erent machines. The

5

next stage is the Reasoning component, which analyses the Perception output to

determine the target. The �nal stage translates the target location in image

coordinates into controls for the eye-head. Figure 1 depicts the data ow in the

system.

requesting
accumulated
optical flow

requesting
accumulated
optical flow

requesting
accumulated
optical flow

head’s

motion

parameters

encoder

commandsignal

DAT

displacement

data

accumulated
optical flow,

stereo
disparity

accumulated
optical flow,

stereo
disparity

accumulated
optical flow,

stereo
disparity

completion

signal

G.R.S.
Server

O.F.A. O.F.A.O.F.A.

Tag Tag Tag

Front

Back

DAT208
Eye-Head
Encoder

21 30

15

8

4 5 6

11 12 13

31

Datacube
Program

check for new data

frame

(with optical flow and stereo disparity)

Perception

Reasoning

Action

displacement

data

displacement

data

connected
connected

requesting

connected
requesting

connected

components
components

components components

Figure 1: Software Components and Data Flow

A smart bu�er process[LK93] is responsible solely for receiving the motion

data stream. The smart bu�er contains an active monitor that waits for data

to arrive, and keeps track of the data until it has been properly stored for later

retrieval by the reasoning system. The monitor is \active" since it asynchronously

accepts motion data whenever it is available.

The active monitor plays an important role in synchronizing communication

and uniting the di�erent modules. Optical ow and stereo disparity images are

pumped out continuously regardless of whether the reasoning system is prepared

6

to process the data. The monitor must execute at a rate no slower than the

rate the displacement measures are being pumped out; otherwise, the loss of

any data frame contributes to the inaccuracies of the overall system. This is

especially critical since the system accumulates displacements over several frames.

Figure 2 shows the structural relation between the active monitor and other vision

processes.

Correlation

Process

Active Optical Flow

Accumulation

Processes

Optical Flow

constantly monitoring

 for new data from

 the correlation

 process

Optical Flow

and Stereo

Disparity

Monitor

Figure 2: Perception System

The Reasoning stage �nds connected components in 300 to 500ms; this is

the principal delay in the system, necessitating the multi-rate interface. The

Reasoning stage sees the smart bu�er as a data object that contains the optical

ow. The active monitor sees the smart bu�er as its client. The full cycle, optical

ow computation and accumulation, ow cancellation and target �nding requires

800ms, mostly due to component labeling.

An important constraint required for cancellation is that the eye-head com-

plete its commanded movement before the reasoning system requests optical ow

data from the smart bu�er. Incorrect cancellation occurs when the motion is

not complete. Thus, the stage synchronize using message-passing, when the head

controller completes the motion. Currently the system is able to track a person

moving at a normal walking pace 2 meters from the cameras.

The system has two clients: the target process needs accumulated motion

data, and a �ltering process needs current depth data from stereo. Filtering

7

Figure 3: Dynamites

DataCubeRGB Camera
(Single CCD)

Available
Transputers

Vision Engine

Transputer Network

1 2 n

User Nodes: Reasoning & Control

Radio
TransmitterSoccer Field

User

UNIX
Workstation

Figure 4: Dynamo Architecture

selects a target in a speci�c range of depths. To connect a third client, for

example, one to use stereo data cues or motion cues to detect looming, the system

need only arrange that the stereo and motion bu�ers provide read-only access to

a daemon that detects looming.

2.2 Color Tracking for Localization

The Dynamo testbed is a collection of independently controlled mobile robot

vehicles that play soccer [BKL+93]. The system demonstrates o�board vision

processing and distributed processing. The vision component was originally pro-

totyped on the Datacube MaxVideo200. Currently the system is realized as a

8

simple custom hardware to process RGB signals, followed by run-length encod-

ing and centroid calculation on Transputers. A single o�-board camera sensor

communicates its signals to the centralized sensor processor. The sensor proces-

sor provides positional information to the control processes for each competing

soccer player at 60Hz (once per image �eld) with a lag of at most 5 ms after the

end of �eld. The structure of the full system is shown in Fig. 4.

The Dynamo system has been used to explore novel reactive strategies for

control[Sah94] as well as the testbed for ideas on control, speci�cation, and rea-

soning about real-time systems[ZM92].

2.3 Real-time Localization

ROLL (Real-time Onboard Localization with Landmarks) identi�es its position

in real-time, using passive visual localization of a single landmark[Bre94]. ROLL

is implemented on a Real-World Interface platform (see Fig. 5), named Spinoza,

with o�board video processing sent via FM narrowcast (antenna at left). Real-

time processing occurs on a TI C40 system. The landmark (Fig. 6) contains a

visual bar code as well as a structure that contains disks whose centroids can

be rapidly and accurately computed. Their relative positions plus the known

dimensions of the target allow ROLL to compute its own position and orientation

at 10Hz. ROLL controls the RWI base via a spread-spectrum modem (at right

in Fig. 5(a)).

The system is distributed over the C40s and a Sparcstation, which commu-

nicates with the RWI. Robust localization can use the platform's odometry, but

there is signi�cant latency between the odometry and the vision server on the

C40s. Prediction by Kalman �ltering must compensate for the varying temporal

shift between the measurements.

3 Discussion

Vision systems need tasks to keep them honest and nothing is more honest than

real-time deadlines, aptly named. Recently robot systems have used vision to

sense the world at many scales, including within real-time control loops.

We have examined a collection of architectures that implement a variety of

vision processes, from simple to complex. Such systems must permit overlapping

sensing and action, with interfaces that allow transparent access to data at many

9

Figure 5: Spinoza

stages of processing.

Vision servers and clients can be implemented in a variety of con�gura-

tions. Nevertheless, synchronization, communication and other issues from op-

erating systems become critical in real-time operation. Centralized information

sources/providers allow integrated processing/fusion and should nevertheless be

implemented to permit simple access to separate elements of the data and at

di�erent stages.

One type of vision server, a smart bu�er, exempli�es an interface between

components of a vision system where substantial early vision computation oc-

curs at high rates and later stages operate at slower cycles. The bu�er serves

to synthesize a virtual data source that can be interrogated at any time by mid-

10

Figure 6: Landmark

dle and high-level vision processes, independent of the processing cycle of the

interpretation process or the data production cycle of the early vision process.

References

[Alb92] James S. Albus. RCS: A reference model architecture for intelligent

control. IEEE Journal on Computer Architectures for Intelligent Ma-

chines, pages 56{59, May 1992.

[BKL+93] R. Barman, S. Kingdon, J.J. Little, A.K. Mackworth, D.K. Pai, M. Sa-

11

hota, H. Wilkinson, and Y. Zhang. DYNAMO: real-time experi-

ments with multiplemobile robots. In Intelligent Vehicles Symposium,

Tokyo, July 1993.

[Bre94] J. Brewster. Real-time onboard localization with landmarks. Master's

thesis, The University of British Columbia, Vancouver, BC, 1994.

[Bro87] R. A. Brooks. A robust layered control system for a mobile robot.

IEEE Transactions on Robotics and Automation, 2:14{23, 1987.

[Con92] Jonathan H. Connell. SSS:a hybrid architecture applied to robot navi-

gation. In Proc. IEEE Conf. on Robotics and Automation, 1992, pages

2719{2724, May 1992.

[de93] G.A. den Boer and etal. An exception handling model applied to

autonomous mobile robots. In Proc. Intelligent Autonomous Systems

3, pages 297{306, 1993.

[FB89] Anita Flynn and Rodney Brooks. Building robots: Expectations and

experiences. In Proceedings of the IEEE Intl. Rob. and Sys. Conf.,

Tsukuba, Japan, September 1989.

[Fir92] R. James Firby. Building symbolic primitives with continuous control

routines. In 1st Int. Conf. on AI Planning Systems, pages 61{69, 1992.

[LBKL91] J. J. Little, R. A. Barman, S. J. Kingdon, and J. Lu. Computational

architectures for responsive vision: the vision engine. In Proceedings

of CAMP-91, Computer Architectures for Machine Perception, pages

233{240, December 1991.

[LK93] James J. Little and Johnny Kam. A smart bu�er for tracking us-

ing motion data. In Proc. Workshop on Computer Architectures for

Machine Perception, pages 257{266, December 1993.

[MG93] Larry Matthies and Pierrick Grandjean. Stochastic performance mod-

eling and evaluationf of obstacle detectability with imaging range sen-

sors. Technical Report 93{11, NASA-JPL, March 1993.

[Sah94] Michael K. Sahota. Reactive deliberation: An architecture for real-

time intelligent control in dynamic environments. In Proc. 12th Na-

tional Conference on Arti�cial Intelligence, pages 1303{1308, 1994.

12

[SMV+93] P.M. Sharkey, D.W. Murray, S. Vandevelde, I.D. Reid, and P.F.

McLauchlan. A modular head/eye platform for real-time reactive vi-

sion. Mechatronics Journal, March 1993.

[SST86] Steven A. Shafer, Anthony Stentz, and Charles E. Thorpe. An archi-

tecture for sensor fusion in a mobile robot. In Proceedings of IEEE

Conference on Robotics and Automation, pages 2002{2011, April 1986.

[ZM92] Y. Zhang and A. K. Mackworth. Modeling behavioral dynamics in dis-

crete robotic systems with logical concurrent objects. In S. G. Tzafes-

tas and J. C. Gentina, editors, Robotics and Flexible Manufacturing

Systems, pages 187{196. Elsevier Science Publishers B.V., 1992.

13

