
Computing Common Tangents Without a Separating Line �

David Kirkpatrick Jack Snoeyink

Department of Computer Science

University of British Columbia

Abstract

Given two disjoint convex polygons in standard representations, one can compute outer
common tangents in logarithmic time without �rst obtaining a separating line. If the polygons
are not disjoint, there is an additional factor of the logarithm of the intersection or union size,
whichever is smaller.

1 Introduction

In this paper, we revisit an old problem: computing a tangent line common to two disjoint polygons,

P and Q, that are represented by ordered lists of n vertices stored in arrays or balanced binary

trees.

Because a tangent to a polygon P through a given point q can be found in �(logn) time by

binary search, there is an easy O(log2 n) time algorithm for �nding a tangent common to P and

Q that uses nested binary search. Overmars and van Leeuwen [7], as part of a data structure

for dynamic convex hulls, gave a logarithmic-time algorithm for the special case in which P and

Q have a known vertical separating line. Because one can compute a separating line for disjoint

polygons in logarithmic time|by �nding the shortest segment joining them [3] or using hierarchical

representations [2, 6]|the Overmars/van Leeuwen algorithm gives a complete solution.

For three reasons, however, it is still interesting to ask whether a common tangent can be

computed without the knowledge of the separator. First, there are common tangent problems (and

intersection problems, which are their duals) that cannot be solved by one level of binary search.

Guibas et al. [5] have shown that to compute an outer common tangent to intersecting polygons

P and Q requires
(log2 n) time, even if points in P �Q and Q� P are given. Second, Overmars

and van Leeuwen's data structure has been adapted for other purposes that do not have a vertical

bias|including implicit storage of arrangements [4, 5], ray shooting [1], etc.|so that an a�rmative

answer simpli�es and speeds up these applications by a constant factor. Third, it is natural to look

for common tangents in situations where no separating line exists.

In the next section, we show that tangents for disjoint convex polygons can be computed

in logarithmic time by using a tentative prune-and-search technique [6]. C code is given in an

appendix. The approach is much like Overmars and van Leeuwen's [7]|starting with lists of

vertices for P and for Q that are known to contain the tangent vertices, attempt to discard half

of some list by doing a constant-time local test. Without a separating line, however, some tests

do not give su�cient information. One can proceed by making tentative discards that are later

�Both authors supported in part by NSERC Research Grants. The second was also supported by a fellowship

from the B.C. Advanced Systems Institute.

1

certi�ed or revoked; the analysis uses a potential function to show that the amount of work done

is still logarithmic. We also extend our approach to the case of intersecting polygons.

2 The algorithm

Our algorithm Tang(P;Q) takes as input two disjoint convex polygons whose vertices are stored in

arrays in counter-clockwise (ccw) order. It �nds vertices pi 2 P and qj 2 Q such that no vertex of

P or Q lies to the right of the oriented line �*piqj . In case of degeneracy, pi is chosen as the furthest

such cw and qj as the furthest ccw. Thus, Tang(P;Q) produces an outer common tangent that

leaves P ccw and goes to Q. The call Tang(Q;P) produces the other outer common tangent.

We describe state variables and the invariants that the algorithm maintains. Then we initialize

the variables and show how the Refine() procedure preserves the invariants while re�ning intervals

that contain the common tangent vertices.

2.1 State information and invariants

The algorithm maintains several pieces of state information for each polygon. For P , we store the

vertices p0 to pn�1 in ccw order, and their number P:n = n so that all access can be performed

modulo P:n. For each vertex pk 2 P , we choose a canonical tangent �k to be the oriented tangent

line at pk that is furthest ccw: �k =
����*pkpk+1. (We can use the orientation to speak about the right

and left sides of �k and to order points along �k .) We also store three indices, 0 � P.st � P.tent <

P.end � 2P:n, that satisfy two invariants below. Finally, we store a boolean variable P.wrap that

is de�ned in section 2.3.

For Q, the vertices are also stored in ccw order, but the tangent �k is chosen furthest cw:

�k =
����*qk�1qk. The indices for Q have their order reversed, 0 � Q.end < Q.tent � Q.st � 2Q:n.

We would like to break P 's circular list of vertices into a linear list on which we can perform

binary search. No assumptions are made about the location of p0; if one knew that p0 would be

inside the convex hull of P [Q, then this would be trivial.

De�ne interval IP to be the indices of vertices of P that

P
q0

Q

IP
m

m′ pk

τk τk−1

Figure 1: De�ning, but not

computing, IP

lie on the convex hull of P [fq0g. As in �gure 1, if no point

of P is right of the oriented line ��*q0pm for 0 < m � P:n and

no point of P is right of ���*pm0q0 for m � m0 < m + P:n, then

IP = [m;m0]. Notice that as index l runs over the interval

[m;m0], we may encounter tangents �l that intersect Q before

pl, then tangents �l that do not intersect Q, and then tangents

�l that intersect Q (equivalently, that intersect q0qj) after pl.

(The �nal tangent �m0 should be limited so that q0 does not

appear to its right.) De�ne the interval IQ similarly to contain

indices of Q's vertices on the convex hull of Q[fp0g. We never

explicitly compute IP or IQ but we use them in the invariants.

Let �*piqj be the common tangent that Tang(P;Q) seeks|that is, no point of P or Q is right of
�*piqj . The invariants for P are:

1. The desired tangent index i is in the interval (P.st;P.end] \ IP .

2. If P.tent 6= P.st then P.tent 2 (P.st;P.end] \ IP and points qQ.tent and qQ.end are left of

tangent �P.tent.

The invariants for Q are essentially the same:

2

1. The desired tangent index j is in the interval (Q.st;Q.end]\ IQ.

2. If Q.tent 6= Q.st then Q.tent 2 (Q.st;Q.end] \ IQ and points pP.tent and pP.end are left of

tangent �Q.tent.

2.2 Tentative prune and search

Using the invariants of the previous section we can outline the tentative prune-and-search method

to compute the common tangent and prove it correct.

If tent 6= st for a polygon, then we say that that polygon

P

q0

pi

q

qj

τP.tent
Q.tent

pP.tent

Figure 2: At most one

mistaken tent. discard

is tentatively re�ned or simply re�ned. We say that indices in

(tent; end] are remaining and those in (st; tent], if any, have been

tentatively discarded. If both polygons are tentatively re�ned and

the invariants hold, then the index of the common tangent on at

least one of the polygons is among those remaining. In other

words, at most one tentative discard can be mistaken.

Lemma 1 Suppose that the invariants hold for disjoint polygons

P and Q. If �*piqj is the desired common tangent, then either

i 2 (P.tent;P.end] or j 2 (Q.tent;Q.end].

Proof: If one of the polygons is not re�ned, then tent = st and the lemma follows from

invariant 1. Therefore, suppose that both polygons are re�ned. Further suppose, for the sake of

deriving a contradiction, that both tentative discards are mistaken: that is, i 62 (P.tent;P.end]

and j 62 (Q.tent;Q.end]. We make three observations.

First, pP.tent is in the triangle 4piqjq0: Since P.tent 2 [i;P.end] \ IP , the point pP.tent lies

on a convex curve from pi to q0. This curve cannot cross the segment qjq0 because P and Q

are disjoint, neither can it cross the common tangent piqj .

Second, pP.tent is in the triangle 4piqjqQ.tent: By invariant 2, q0 and qQ.tent are both left of

the tangent �P.tent. By disjointness, pP.tent is not in 4qjq0qQ.tent. By the �rst observation, and

the fact that qQ.tent is left of the common tangent, we know that pP.tent is in 4piqjqQ.tent.

Third, qQ.tent is not in triangle 4piqjpP.tent: This is immediate from the second observation.

The situations of P and Q are completely symmetric, however. We can derive observa-

tions that assert that qP.tent is in 4piqjpP.tent by interchanging the roles of P and Q. This

contradiction establishes the theorem.

As a corollary, when only one candidate is remaining on each polygon, then we have found the

common tangent.

Corollary 2 If the invariants hold and intervals (Q.tent;Q.end] and (P.tent;P.end] contain one

candidate each, then qQ.end and pP.end are the points of tangency desired.

Proof: By lemma 1, we know that one of the intervals is correct: Say that qQ.end is one point

of tangency. If P is not re�ned, then invariant 1 says that pP.end is the other. If P is re�ned,

then invariant 2 says that qQ.end is left of �P.tent, so the point of tangency must be after (ccw

of) pP.tent. Invariant 1 says that pP.end is the only candidate.

Our algorithm discards indices from initial lists containing O(n) indices using re�nement oper-

ations A{C. We shall see in section 2.4 that Refine(P;Q) implements these re�nement operations.

A. The interval (P.tent;P.end] is halved by setting P.tent or P.end or both P.tent and P.st to

be the midpoint of (P.tent;P.end].

B. Possibly Q is certi�ed|made unre�ned by setting Q.st = Q.tent.

3

C. Possibly a mistake is found on Q. Then we revoke the tentative discard by Q.end = Q.tent,

Q.tent = Q.st, and certify P by P.st = P.tent, because lemma 1 implies that the discards to

P were correct.

The call Refine(Q;P) will handle the intervals for Q in a similar manner. We can perform a re�ne

unless the (tent; end] intervals on both polygons contain only a single index. If we alternately call

Refine(P;Q) and Refine(Q;P), then we �nd the common tangent in logarithmic time.

Lemma 3 If Refine() implements the re�nement operations A{C, then Tang(P;Q) terminates

after O(log jP j+ log jQj) steps.

Proof: We can de�ne a potential for a polygon in terms of its indices st, tent, and end:

�(P) = 2 log jP.end� P.stj+ 2 log jP.end� P.tentj+ (P.tent 6= P.st):

All logarithms are base 2 and the expression (P.tent 6= P.st) equals 1 if the boolean test is true

and 0 otherwise. The total potential is � = �(P) + �(Q).

To make analysis easier, we simplify the algorithm in a way that can only make the running

time worse. We call Refine() on any unre�ned polygon until both polygons are re�ned. Thus,

an \unsuccessful" re�ne decreases � by 4; a successful one decreases � by 1. Then we call

Refine(P;Q) and Refine(Q;P) alternately and either certify all tentative discards on one

polygon and revoke those on the other or else extend the tentative discard (as if the index

changes were always P.tent). Extending the tentative discard decreases � by 2. Certifying P

after i re�ne steps decreases �(P) by 2i+ 1 and revoking Q after j steps increases �(Q) by at

most 2j � 1. Because of the alternation, j � i+ 1 so the net change in � is at most zero. Note

that certi�cation can happen only after two successful re�nes, so every three steps � decreases

by at least 2.

Since the initial potential � = O(logP:n + logQ:n) and � cannot be negative, the lemma

is established.

2.3 Initialization

To initialize P , if q0 is not left of tangent

PQ
st = 0

tent = n

end = 2n

=tent
= n

end = 0
st

σ0 τ0

P.wrap = TQ.wrap = F

Figure 3: Initializing P , with P.wrap = T, and Q,

with Q.wrap = F.

�0, then we know that the interior of p0p1 is

inside the convex hull of P [fq0g. We break

P at p0 by setting st = tent = 0, end = n,

and wrap = F. Otherwise, we start at p0

and wrap around P twice, as illustrated in

�gure 3, by setting st = 0, tent = n, end =

2n, and wrap = T.

We initialize Q in a similar manner: if p0
is not left of tangent �0, set st = tent = n,

end = 0, and wrap = F. Otherwise, we start

at q0 and wrap around Q twice by setting st = 2n, tent = n, end = 0, and wrap = T.

Lemma 4 Initially, the two invariants hold for P and Q.

Proof: We prove this for P . If P.wrap is false, then IP � (0; P:n] and invariants 1 and 2 are

trivial.

If P.wrap is true, then the base segment q0p0 intersects some edge pkpk+1 of P where q0 is

not left of �k and 0 � k < P:n. The index of the common tangent vertex pi can be chosen from

4

IP � (k; k+ P:n] to satisfy part of invariant 1. The remaining conditions of invariants 1 and 2

are trivial.

2.4 Re�ning the intervals

Finally, we show that Refine() implements the re�nement operations A{C listed in section 2.2.

Our most basic test determines whether a point (X; Y) is right or left of an oriented line �*pq by

evaluating sign of the determinant
�
�
�
�
�
�

px py 1

qx qy 1

X Y 1

�
�
�
�
�
�

= X(py � qy)� Y (px� qx) + (pxqy � qxpy):

Points to the left of �*pq make this determinant positive; those to the right make it negative. For a

detailed treatment of signed homogeneous coordinates see Stol� [8].

Suppose that there are candidates remaining on P : that (P.tent;P.end] contains more than one

index. Choose mid to be a median index in (P.tent;P.end].

We are going to consider making P.end = mid or P.tent = mid. Thus, if Q is re�ned, we test

if pmid is left of �Q.tent to preserve invariant 2 for Q. If the oriented tangent line �Q.tent intersects

p0pmid after qQ.tent, then the point of tangency cannot be ccw of qQ.tent. We can certify the tentative

discard to Q by Q.st = Q.tent. If �Q.tent intersects p0pmid before qQ.tent, then the point of tangency

cannot be cw of qQ.tent. We can revoke tentative discards on Q by the assignments Q.end = Q.tent

and Q.tent = Q.st and certify those on P by P.st = P.tent.

Next we check if mid 2 IP as follows: If �mid intersects q0p0 after pmid or if P.wrap andmid > P:n

and pmid is not right of the base line q0p0, then nothing ccw of pmid is in IP . We can set P.end = mid.

If �mid intersects q0p0 before pmid or if P.wrap and mid < P:n and pmid is right of the base line q0p0,

then nothing cw of pmid is in IP . We can set P.st = mid and P.tent = mid.

In a similar way, if �mid intersects q0qQ.end or q0qQ.tent

Q.end

P
q0

pmid

p0

τmidq

Figure 4: A situation causing

P.end = mid

after pmid then the point of tangency cannot be ccw of

pmid. We set P.end = mid. If �mid intersects q0qQ.end
or q0qQ.tent before pmid then we set P.st = mid and

P.tent = mid. Finally, if none of these actions occur,

we set P.tent = mid. This preserves the invariants

for P .

Therefore, Refine() implements the re�nement op-

erations needed for lemma 3. Since we can also initialize

by lemma 4, we conclude with theorem 5.

Theorem 5 The algorithm Tang(P;Q) computes a common tangent to disjoint convex polygons P

and Q in O(log jP j+ log jQj) time.

3 Intersecting polygons

One can extend this analysis to intersecting polygons and obtain a theorem that covers the gap

between the logarithmic-time algorithm for disjoint polygons and the
(log2 n) worst-case bound

for intersecting polygons. We consider the case where polygons P and Q have at most two common

tangents and where helper points in their di�erences are given: p0 2 P nQ and q0 2 Q n P . Notice

that these helper points certify that there is a common tangent; without them it would take
(n)

time to determine if one polygon contained the other.

5

Theorem 6 Let P and Q be two convex polygons whose boundaries intersect at most twice and let

p0 2 P n Q and q0 2 Q n P . One can compute the common tangent from P to Q in O(log(jP j +

jQj) logK) time, where K = minfjP \ Qj; jP [Qjg.

Proof: We sketch the proof for O(log(jP j + jQj) log jP \ Qj) and leave many details to the

reader. Begin by using the helper points to de�ne the intervals IP and IQ as before and, in

addition, compute these intervals in logarithmic time. One can check whether the tangents to

p0 and q0 that de�ne these intervals are the desired common tangent. We assume that they are

not.

Even if P and Q intersect, if some point of Q is found to the right of tangent �mid, the

tangent to P at pmid, then by tests similar to that in �gure 4, we can discard a portion of P so

as to preserve the common tangent. Only when the inspected points of Q are left of �mid and

the inspected points of P are left of �mid0 does local information fail to eliminate half of one of

the polygons. Then there are the two cases, depicted in �gure 5a and 5b, to consider: either

the segments p0pmid and q0qmid0 are disjoint, or they intersect.

q0 p0

midq

midp

q0

p

p0

q

q0

pm1

p0

q

pm2

a. b. c.

′ mid ′ mid ′mid

Figure 5: Two tentative discard cases and their combination

If they are disjoint, then lemma 1 implies that we can tentatively discard the indicated

\outer" portions of P and Q. If they intersect, then we can prove that tentatively discarding the

\inner" portions leads to at most one mistake. In either case, we can continue the computation

in tentative mode until both \inner" and \outer" discards have been applied, as in �gure 5c.

In the illustrated case P is re�ned twice, at pm1
and pm2

, and all of Q has been tentatively

discarded. There is a symmetric case in which Q is re�ned twice and all of P is discarded.

We can determine whether qmid0 is inside or outside of P by searching between pm1
and pm2

for the edge of P that intersects the ray ����*q0qmid0 . Finding qmid0 outside P allows the deletion of

the portions of P and Q that are left of ����*q0qmid0 , because P is inside Q to the left of this ray.

Finding qmid0 inside P allows the deletion of the portions of P and Q that are right of ����*q0qmid0 ,

because cutting both polygons along ����*q0qmid0 leaves a tangent from P to Q that is to the left of

this ray. We can use similar analyses on the ray ���*p0pm1
.

If edge pjpj+1 is the edge of P that intersects ����*q0qmid0 with j 2 [m1; m2), then we can �nd

this edge in O(log(m2�j)) steps by using an increasing-increment search from pm2
|testing the

1st, 2nd, 4th, etc. vertex from pm2
until a vertex passes the ray ����*q0qmid0 , then applying binary

search. We can use a simultaneous increasing-increment searches from an end of IQ clockwise

towards qmid0 for the edge of Q that intersects ���*p0pm1
. When one of these searches succeeds, we

delete portions of P and Q and escape this mode.

If pm1
is found to be outside of Q or if qmid0 is found outside of P , then the searches on Q or

on P , respectively, walked only on portions on the boundary of P \Q. On the other hand, if the

search on Q found that pm1
was inside Q, then the unsuccessful search on P walked on P \Q.

6

Similarly, if the search on P found qmid0 inside P , then the search on Q walked on P \Q. Thus,

one of the two searches succeeds in O(log jP \ Qj) steps. (For the lemma, we simultaneously

search from pm1
and q0; one of these succeeds in O(log jP [Qj) steps.)

A potential function analysis similar to that of lemma 3 shows that we perform O(log(jP j+

jQj)) steps, each costing O(logminfjP \Qj; jP [Qjg). This completes our sketch of the proof.

References

[1] Bernard Chazelle and Leonidas J. Guibas. Visibility and intersection problems in plane geometry.Discrete
& Computational Geometry, 4:551{581, 1989.

[2] David P. Dobkin and David G. Kirkpatrick. Determining the separation of preprocessed polyhedra: A
uni�ed approach. In Seventeenth International Colloquium on Automata, Languages and Programming,
number 443 in Lecture Notes in Computer Science, pages 400{413. Springer-Verlag, 1990.

[3] H. Edelsbrunner. Computing the extreme distances between two convex polygons. Journal of Algorithms,
6:213{224, 1985.

[4] Herbert Edelsbrunner, Leonidas Guibas, John Hershberger, Raimund Seidel, Micha Sharir, Jack

Snoeyink, and Emo Welzl. Implicitly representing arrangements of lines or segments. Discrete & Com-

putational Geometry, 4:433{466, 1989.

[5] Leo Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data structure for convex
hulls. International Journal of Computational Geometry & Applications, 1(1):1{22, 1991.

[6] David Kirkpatrick and Jack Snoeyink. Tentative prune-and-search for computing Voronoi vertices. In
Proceedings of the Ninth Annual ACM Symposium on Computational Geometry, pages 133{142, 1993.

[7] M. Overmars and J. van Leeuwen. Maintenance of con�gurations in the plane. Journal of Computer and

System Sciences, 23:166{204, 1981.

[8] Jorge Stol�. Oriented projective geometry: A framework for geometric computations. Academic Press,
1991.

7

Appendix A: C code for computing a common tangent to disjoint polygons

This code implements the common tangent algorithm described above.
/* main.h Jack Snoeyink March 94

* tangent without a separating line

*/

#pragma once

#include <stdio.h>

#include <math.h>

#define MAXPTS 2000 =� Maximum number of points per polyline �=

#define EPSILON 1.0e-14 =� Approximation of zero �=

typedef double COORD;

typedef COORD POINT[2]; =� Most data is Cartesian points �=

typedef COORD HOMOG[3]; =� Some partial calculations are homogeneous �=

#define XX 0

#define YY 1

#define WW 2

typedef struct Polygon {

int n, =� Number of vertices in polygon �=

ccw, =� 1 = ccw -1 = cw �=

st, end, =� Tangent is in (st; end] �=

tent, =� Index of tentative re�nement if tent 6= st �=

wrap; =� Boolean indicates wraparound �=

HOMOG tang; =� Tangent �tent when re�ned (tent 6= st) �=

POINT v[MAXPTS];

} Polygon;

#define DET2(p, q) DET2x2(p,q, XX,YY) =� Determinants �=

#define DET2x2(p, q, i, j) ((p)[i]*(q)[j] - (p)[j]*(q)[i])

#define DET3C(p, q, r) DET2(q,r) - DET2(p,r) + DET2(p,q)

#define DOTPROD_2CH(p, q) =� 2-d Cartesian to Homogeneous dot product �=

((q)[WW] + (p)[XX]*(q)[XX] + (p)[YY]*(q)[YY])

#define CROSSPROD_2SCCH(s, p, q, r) =� 2-d Cart to Homog cross prod w/ sign �=

(r)[XX] = s * (- (q)[YY] + (p)[YY]);n

(r)[YY] = s * ((q)[XX] - (p)[XX]);

(r)[WW] = s * ((p)[XX] * (q)[YY] - (p)[YY] * (q)[XX]);n

#define ASSIGN_H(p, op, q) =� Homogeneous assignment �=

(p)[WW] op (q)[WW]; (p)[XX] op (q)[XX]; (p)[YY] op (q)[YY];

#define LEFT(x) (x > EPSILON) =� Sidedness tests �=

#define RIGHT(x) (x < -EPSILON)

#define LEFT_PL(p, l) LEFT(DOTPROD_2CH(p, l))

#define RIGHT_PL(p, l) RIGHT(DOTPROD_2CH(p, l))

#define LEFT_PPP(p, q, r) LEFT(DET3C(p, q, r))

#define RIGHT_PPP(p, q, r) RIGHT(DET3C(p, q, r))

8

/* nosep.c Jack Snoeyink March 94 Common tangent without a separating line

*/

#include "main.h"

#define Pv(m) P->v[(m) % P->n] =� Indexing into polygon vertices mod n �=

#define Qv(m) Q->v[(m) % Q->n]

#define CCW(x) (x->ccw == 1) =� Is x oriented counterclockwise? �=

#define DONE(x) ((x->end - x->tent) == x->ccw) =� Any candidates left? �=

#define REFINED(x) (x->st != x->tent) =� Is x re�ned? �=

#define DISC_START 0 =� Actions in Refine() �=

#define DISC_END 1

#define NO_DISC 2

void Refine(P, Q)

Polygon *P, *Q; =� We re�ne polygon P checking against Q. We
can assume that more than one candidate exists in

(P.tent;P.end] and the invariants hold. �=
{

HOMOG q0pm, mtang;

register int mid, left_base, action = NO_DISC;

register COORD *pm, *pm1, *qend, *qt;

mid = P->tent + (P->end - P->tent) / 2; =� Check mid point. Round towards P.tent �=

pm = Pv(mid); pm1 = Pv(mid + P->ccw);

CROSSPROD_2SCCH(P->ccw, pm, pm1, mtang); =� Generate �mid �=

CROSSPROD_2SCCH(1, Qv(0), pm, q0pm);

left_base = RIGHT_PL(Pv(0), q0pm);

if (REFINED(Q) && !LEFT_PL(pm, Q->tang)) {

qt = Qv(Q->tent);

if (CCW(Q) ^ LEFT_PPP(Pv(0), qt, pm)) =� Check �Q.tent �=

Q->st = Q->tent; =� Certify tentative to Q �=

else {

Q->end = Q->tent;

Q->tent = Q->st; =� Revoke tentative to Q �=

P->st = P->tent; =� Certify tentatve on P (if re�ned) �=

}

}

qend = Qv(Q->end); qt = Qv(Q->tent);

if (P->wrap && (left_base ^ (mid > P->n))) =� Is P wrapped around? �=

action = !left_base;

else if (!LEFT_PL(Qv(0), mtang)) =� Can we be tangent w.r.t q0? �=

action = left_base;

else if (!LEFT_PL(qend, mtang)) =� Can we be tangent w.r.t qQ.end? �=

action = LEFT_PL(qend, q0pm);

else if (REFINED(Q) && !LEFT_PL(qt, mtang)) =� Can we be tangent w.r.t qQ.tent? �=

action = LEFT_PL(qt, q0pm);

if (action == NO_DISC) =� We tentatively re�ne at mid �=

{ P->tent = mid; ASSIGN_H(P->tang, =, mtang) }

else if (CCW(P) ^ action) P->st = P->tent = mid; =� A discard at P.st occurred �=

else P->end = mid; =� A discard at P.end occurred �=

}

9

void Tang(P, Q)

Polygon *P, *Q;

{ =� Compute a tangent from P to Q �=

register int n1 = Q->n - 1;

P->ccw = 1; P->st = P->tent = 0; P->end = P->n; =� Initialize P �=

CROSSPROD_2SCCH(1, Pv(0), Pv(1), P->tang);

if (P->wrap = LEFT_PL(Qv(0), P->tang)) =� Wrap P initially �=

{ P->tent = P->n; P->end += P->n; }

Q->ccw = -1; Q->st = Q->tent = Q->n; Q->end = 0; =� Initialize Q �=

CROSSPROD_2SCCH(1, Qv(n1), Qv(0), Q->tang);

if (Q->wrap = LEFT_PL(Pv(0), Q->tang)) =� Wrap Q initially �=

Q->st += Q->n;

while (!DONE(P) || !DONE(Q)) {

if (!DONE(P)) Refine(P, Q);

if (!DONE(Q)) Refine(Q, P);

} =� Finished. Q.end and P.end indicate tangent �=

}

10

