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CANADA

Abstract: We establish a number of new results (and rederive some old results) concern-

ing regular languages, using essentially topological methods. Our development is based

on the duality (established by Stone) between Boolean algebras and certain topological

spaces (which are now called \Stone spaces"). (This duality does not seem to have been

recognized in the literature on regular languages, even though it is well known that the

regular languages over a �xed alphabet form a Boolean algebra and that the \implicit op-

erations" with a �xed number of operands form a Stone space!) By exploiting this duality,

we are able to obtain a much more accessible account of the Galois correspondence between

varieties of regular languages (in the sense of Eilenberg) and certain sets of \implicit iden-

tities". The new results include an analogous Galois correspondence for a generalization

of varieties, and an explicit characterization by means of closure conditions of the sets of

implicit identities involved in these correspondences.

* This research was partially supported by an NSERC Operating Grant.



1. Introduction

A watershed in the development of the theory of regular languages was the de�nition

and characterization of \varieties" of regular languages by Eilenberg (announced in [E73]

and presented fully in [E76]). Eilenberg's work put scattered results on diverse classes

of languages into a general setting, and the greater part of subsequent work on regular

languages can be properly viewed as taking place within this setting. A variety is a set

of languages closed under Boolean operations, taking inverse homomorphic images, and

taking (left and right) quotients by words. Though these operations might at �rst seem

to be chosen arbitrarily, they in fact correspond to natural operations on �nite automata:

Boolean operations to parallel connections with Boolean post-processing, taking inverse

homomorphic images to pre-processing by homomorphisms, and taking quotients to certain

operations on initial and �nal states.

Eilenberg's main result is that varieties of regular languages are characterized by their

\syntactic semigroups", and that the corresponding sets of �nite semigroups are those that

are closed under taking sub-semigroups, taking quotient semigroups, and taking �nite

products of semigroups. Eilenberg called these sets \varieties" of �nite semigroups. This

correspondence is a \direct" one: larger varieties of languages correspond to larger varieties

of semigroups.

Eilenberg's de�nition of a variety of �nite semigroups is similar to, but subtly di�erent

from, the de�nition of a \family" of algebraic structures given by Birkho� [B35]. (What

Birkho� called a \family" of structures is now usually called a \variety" in the literature

on universal algebra. In this paper we revert to Birkho�'s original terminology to avoid

con
ict with Eilenberg's. This is not put forward as a principled choice, but merely as

an expedient one: it preserves the usage with which computer scientists are familiar.) A

family of structures is de�ned as being closed under taking sub-structures, taking quotient

structures, and taking arbitrary (not necessarily �nite) products of structures. (In the

de�nition of a variety of �nite semigroups, one can take the elements of the semigroups

to be natural numbers without any loss of generality. The de�nitionof a family, with its

reference to \arbitrary" products, probes the limitations of the underlying set theory in

which it is developed. We shall not discuss these set-theoretic complications in this paper,

since families appear only in a motivating role, and we shall not need any speci�c results

of their theory.)

Birkho� proved two main results. First, he showed that families of structures are

characterized by the sets of \identities" that they satisfy. (For example, semigroups

are characterized among structures with one binary operation by the associative identity

1



(xy)z = x(yz) and its consequences; commutative semigroups are characterized among

semigroups by the further identity xy = yx and its consequences.) Second, he gave a set of

closure conditions (the \deductive closure" conditions of equational logic) that character-

ize those sets of identities that correspond to families of structures. This correspondence

is a \Galois" correspondence: larger families of structures correspond to smaller sets of

identities. (Galois correspondences get their name from the archetypal situation in Galois

theory, in which larger �eld extensions correspond to smaller groups of automorphisms.

The modern use of the term includes any reciprocal correspondence between dual lattices

de�ned by closure conditions; see Ward [W42], Ore [O44] and Everett [E44].)

Families of structures play a central role in universal algebra, and it was thus natural

to seek an analogous connection between varieties of �nite semigroups and identities. The

weaker closure conditions for varieties (only �nite products rather than arbitrary products)

lead, however, to much richer possibilities for varieties than for families, and it soon became

apparent that identities are too crude an instrument to distinguish them all. Eilenberg

recognized, however, that varieties could be characterized by in�nite sequences of identities,

with each semigroup satisfying all but �nitely many identities in each sequence. (Thus for

example the aperiodic �nite semigroups (see Sch�utzenberger [S65] and McNaughton and

Papert [M71]) are those that satisfy the identity xk = x
k+1 for all su�ciently large k.)

Decisive progress was made by Reiterman [R82], who showed that varieties are charac-

terized by the \implicit identities" that they satisfy, that is, by identities between \implicit

terms", which can be viewed as limits of sequences of the ordinary terms that appear in or-

dinary identities. (For example, the aperiodic �nite semigroups are charactererized among

�nite semigroups by the implicit identity x
! = x

!
x, where the implicit term x

! is the

limit of the sequence x
1
; x

2
; x

6
; : : : ; x

k!
; : : : of ordinary terms, and can be thought of as

representing the unique idempotent element in the cyclic �nite semigroup generated by x.)

Almeida [A90] made further progress by characterizing the sets of implicit identities that

correspond to varieties (though he did not succeed in giving these in the form of closure

conditions like those of Birkho�).

With this background, we can now explain the contributions of the present paper. One

contribution is to give explicit closure conditions for implicit identities, thereby completing

the description of the Galois correspondence between varieties and sets of implicit iden-

tities. These closure conditions take the form of Birkho�'s deductive closure conditions,

supplemented by some new in�nitary closure conditions of a topological character. In the

course of doing this, we obtain a parallel theory for a generalization of varieties of regu-

lar languages that we call \strains", for which the requirement of being closed under left
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and right quotients by words is dropped. This again corresponds to a natural distinction

for �nite automata: Boolean operations and inverse homomorphic images correspond to

interconnections of automata with pre- or post-processing, whereas quotients correspond

to tampering with the internal structure of the automata (their initial and �nal states).

A greater contribution than these, however, is our redevelopment of the theory in

a new way, based on exploiting the duality established by Stone [S36] between Boolean

algebras and certain topological spaces (which are now called \Stone spaces"). This de-

velopment makes the derivation of the Galois correspondence simpler and more elegant,

and reveals the true mathematical underpinnings of the theory. Central to this develop-

ment is a completely topological characterization of the regular languages that should be

of independent interest. (This characterization is a simpli�cation of one due to Almeida

[A88].)

In the following sections we shall describe these contributions in logical order, starting

with the topological characterization of regular languages and culminating in the Galois

correspondence for varieties. We assume familiarity with basic terminology and results

from algebra (mainly semigroups) and topology (mainly metric spaces). We omit all proofs

in this abstract; in all cases the proofs use standard methods from algebra and topology,

whose use in traditional areas of mathematics would be regarded as routine.

2. Topological Characterization of Regular Languages

For now, let us work with a �xed �nite alphabet, say Bn = f0; 1; : : : ; n � 1g. We

shall denote by En = B+
n the set of all non-empty �nite words over Bn, which has the

structure of a semigroup under concatenation. (We have chosen to restrict attention to

non-empty words, since the resulting theory of varieties is capable of making more delicate

distinctions. There is, however, a parallel theory that includes the empty word and is based

on monoids rather than semigroups.) An equivalence relation � on En is a congruence if,

for all w; x; y; z 2 En, w � y and x � z imply wx � yz. If � is a congruence on En, the

�-classes themselves form a semigroup, which we denote En= �. A congruence � will be

called �nite if there are �nitely many �-classes, so that En= � is a �nite semigroup.

A language over the alphabet Bn is a a set of words L � En. Associated with any

language L overBn is a congruence�=L on En, called the syntactic congruence of L, de�ned

as follows: x �=L y if and only if, for all w; z 2 En we have (1) x 2 L if and only if y 2 L,

(2) wx 2 L if and only if wy 2 L, (3) xz 2 L if and only if yz 2 L, and (4) wxz 2 L if and

only if wyz 2 L. (These conditions, which would be much simpler if the empty word were
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allowed, say that x and y behave the same way in all possible syntactic contexts insofar as

determining whether a word belongs to L is concerned.) The semigroup En=
�=L, called

the syntactic semigroup of L, will be denoted Syn(L). The following well known algebraic

characterization of regular languages is due to J. R. Myhill (see Rabin and Scott [R59],

Theorem 1).

Proposition 2.1: For every L � En, the following three conditions are equivalent.

(i) L is regular.

(ii) L is a union of �-classes for some �nite congruence � on En.

(iii) Syn(L) is a �nite semigroup.

Our goal in this section is to derive an alternative topological characterization of the

regular languages. The �rst step is to form an appropriate topological space by taking the

completion of En with respect to a certain metric.

We shall say that a congruence � separates two words x and y if x 6� y. If x and y are

distinct, they are separated by a �nite congruence, for example the syntactic congruence

of the regular language fxg. We shall de�ne the distance d(x; y) between x and y to be

0 if x = y, and to be 1=k, where k is the smallest number of �-classes of a congruence �

separating x and y, if x 6= y. The distance d(x; y) forms a metric on the space En. In fact,

it forms an \ultrametric", since the triangle inequality d(x; z) � d(x; y) + d(x; z) holds in

the stronger form d(x; z) � maxfd(x; y); d(y; z)g (if a congruence separates x and z, then it

must also separate y from either x or z). Since a congruence that separates wx and yz must

also separate either w and y or x and z, it follows that d(wx; yz) � maxfd(w; y); d(x; z)g,

and thus that the operation of multiplication (viewed as a map from En � En to En) is

continuous.

Let S be a �nite semigroup. We endow the set SS
n

of maps from S
n to S with the

structure of a semigroup by de�ning

(fg)(x1; : : : ; xn) = f(x1; : : : ; xn) g(x1; : : : ; xn)

for f; g 2 S
Sn and x1; : : : ; xn 2 S. De�ne the map HS : Bn ! S

Sn by

�
HS(a)

�
(x1; : : : ; xn) = xa

for a 2 Bn. Since En is the free semigroup generated by Bn, this map extends to a unique

homomorphism HS : En ! S
Sn .
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If x 6= y are distinct words in En, then there exists a �nite semigroup S such that

HS(x) 6= HS(y). To see this, let S = Syn(fxg), and let h : En ! S be the canonical

homomorphism, so that h(x) 6= h(y). Then we have

�
HS(x)

��
h(0); : : : h(n� 1)

�
= h(x) 6= h(y) =

�
HS (y)

��
h(0); : : : h(n� 1)

�
:

We shall now introduce another metric on En. We shall say that a semigroup S such

that HS(x) 6= HS(y) separates x and y. If x 6= y are distinct words in En, we de�ne

the distance d
0(x; y) to be 1=k, where k is the smallest possible cardinality #S of a �nite

semigroup S that separates x and y. If x = y, we de�ne d0(x; y) to be 0. The distance d0

is a metric on En.

In fact, these two metrics coincide: d = d
0. For if h : En ! S is a homomorphism,

there is a unique homomorphism h
0 : SS

n

! S such that h = h
0 �HS . If h(x) 6= h(y), then

we must have HS (x) 6= HS(y). Conversely, if HS(x) 6= HS(y), these two functions must

di�er for some argument values, say

HS (x)(z0; : : : ; zn�1) 6= HS (y)(z0; : : : ; zn�1):

Letting h be the unique homomorphism such that h(a) = za for each a 2 Bn, we conclude

that h(x) 6= h(y). In what follows, we shall write d for this metric, and follow whichever

de�nition is more convenient in a given situation.

We shall denote by In = Ên the \completion" of En with respect to the metric d.

(This may be viewed as follows: we consider \Cauchy sequences" of elements of En; we

call two such sequences \equivalent" if their interleaving is also a Cauchy sequence; and

we take In to be the set of equivalence classes of Cauchy sequences. In this respect, the

process of passing from En to In is the same as that of passing from the rational numbers

Q to the real numbers R.)

In general, the completion X̂ of a metric space X is a complete metric space having X

as a dense subspace. The completion is essentially unique, in the sense that any two com-

plete metric spaces having a common dense subspace are homeomorphic. The completion

has the universal property that any continuous map between metric spaces has a unique

extension to a continuous map between their completions. In particular, the continuous

operation of multiplication on En extends to a unique continuous operation on In. This

operation is associative, and thus endows In with the structure of a continuous semigroup.

If fxigi2N is a Cauchy sequence in En and S is a �nite semigroup, then the sequence

fHS(xi)gi2N be constant for all su�ciently large i. Furthermore, if fxigi2N and fyigi2N
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are equivalent Cauchy sequences, then this constant must be the same for both sequences.

Thus we may extend HS to a map HS : In ! S
Sn . This map is continuous (when S

Sn

is given the discrete topology), since if H�1
S (u) is empty, it is open, and if it contains any

point x 2 In, then it also contains the open ball about x with radius 1=#S, and thus is

again open. Furthermore, HS : In ! S
Sn is a homomorphism, since HS : En ! S

Sn is

a homomorphism and all of the multiplications involved are continuous. Finally, if x 6= y

are distinct elements of In, there exists a �nite semigroup separating x and y. To see this,

let v and w be words of En such that d(v; x) � d(x; y)=4 and d(w; y) � d(x; y)=4, so that

d(v;w) � d(x; y)=2. Then v and w can be separated by a semigroup of cardinality at most

2=d(x; y). This semigroup must also separate x and y, since it is too small to separate v

from x or w from y.

A metric space is compact if every in�nite sequence has a convergent subsequence.

We say that a set in a topological space is crisp if it is both open and closed. A pair x 6= y

of distinct points are separated by a set K if K contains one, but not both, of x and y.

A topological space is totally disconnected if every pair of distinct points is separated by a

crisp set.

In the following lemma, the assertion that In is compact was proved by Reiterman

[R82], and the assertion that In is totally disconnected was proved by Almeida [A88]. Our

proof is simpler than either of theirs.

Lemma 2.2: The space In is compact and totally disconnected.

Proof: Suppose that fxigi2N is an arbitrary in�nite sequence in In. Let S0; S1; : : : be an

in�nite sequence of �nite semigroups that contains just one member isomorphic to any

�nite semigroup. We de�ne a doubly indexed sequence fxi;jgi;j2N by induction on j. Let

fxi;0gi2N = fxigi2N. Then, if fxi;jgi2N has been de�ned, we take fxi;j+1gi2N to be an

in�nite subsequence of fxi;jgi2N such that HSj (xi;j+1) is constant for i 2 N (which we can

do because HSj (xi;j ) assumes only �nitely many distinct values). The diagonal sequence

fxi;igi2N is Cauchy (since to ensure d(xi;i; xj;j ) � 1=k it su�ces to take j and j larger

than the index in the sequence S0; S1; : : : of any �nite semigroup with at most k elements).

Thus the sequence fxi;igi2N converges to a limit y in In. Since the sequence fxi;igi2N is

a convergent subsequence of the original sequence fxigi2N, In is compact.

To see that In is totally disconnected, suppose that x 6= y are distinct elements of In,

and let S be a �nite semigroup separating x and y. Since HS : In ! S
Sn is continuous,

and since every subset of the discrete space SS
n

is crisp, the set H�1
S

�
HS(x) is crisp, and

contains x but not y. Thus In is totally disconnected. 4
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The following lemma is due to Hunter [H88]. We note that the de�nition of a syntactic

congruence makes sense for a subset in any semigroup, and thus may be used for subsets

of In as well as those of En.

Lemma 2.3: A set L � In is crisp if and only if every �=L-class is open.

Proof: (if) Suppose that every �=L-class is open. Since they form a disjoint cover of the

compact space In, they must be �nite in number. Since the complement of each is a �nite

union of open sets, and is therefore open, they are also closed, and thus crisp. Since L is

a �nite union of these crisp �=L-classes, it is also crisp.

(only if) Suppose that L is crisp, but that M is a �=L-class that is not open. Then

there exists a point x 2M and a sequence y0; y1; : : : 62M converging to x. Since x 6�=L yi,

we can �nd wi; zi 2 In such that either (1) wixzi 2 L and wiyizi 62 L, or (2) wixzi 62 L

and wiyizi 2 L. Furthermore, one of these two possibilities must occur for in�nitely many

i. By transfering attention from L to its complement in In (which is also crisp and has

the same syntactic congruence) if necessary, we may assume without loss of generality that

(1) occurs for in�nitely many i, and by restricting attention to an in�nite subsequence, we

may assume that (1) occurs for all i. Since In is compact, by further restricting attention

to in�nite subsequences, we may assume that wi and zi each converge to elements of In,

say u and v, respectively. Since multiplication is continuous, the sequences wixzi and

wiyizi each converge to uxv. Since uxv is the limit of wixzi 2 L and L is closed, we have

uxv 2 L. Since uxv is the limit of wiyizi 62 L and the complement of L is closed, we have

uxv 62 L. This contradiction completes the proof. 4

In the following lemma, cl(X) denotes the topological closure of the set X in In.

Lemma 2.4: If X � In is crisp, then

cl(X \ En) = X:

Proof: Since X is closed and X \ En � X, we have cl(X \ En) � X. Thus it remains

to show that cl(X \ En) � X. Suppose x 2 X. Since En is dense in In, there exists a

sequence w0; w1; : : : 2 En converging to x. Since X is open, all but �nitely many elements

of this sequence belong to X, and by restricting attention to an in�nite subsequence we

may assume that all elements belong to X. Thus the sequence w0; w1; : : : lies in X \En,

and its limit x lies in cl(X \En). 4

The main result of this section is the following, which is a simpli�cation of a criterion

due to Almeida [A88]. In it, cl(X) denotes the topological closure of the set X in In.

Theorem 2.5: A language L � En is regular if and only if cl(L) is open.
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Proof: (if) Suppose that cl(L) is open. Then cl(L) is crisp and, by Lemma 2.3, each �=cl(L)-

class is open. Since they form a disjoint cover of the compact set In, they must be �nite in

number. Thus S = Syn
�
cl(L)

�
is �nite, and if h : In ! S is the canonical homomorphism,

then cl(L) = h
�1(K) for some K � S. Since L = cl(L) \En, we have L = h

�1
0 (K), where

the homomorphism h0 : En ! S is the restriction of h to En. If we de�ne the congruence

� on En by x � y if and only if h0(x) = h0(y), then � is �nite and L is the union of

�-classes, so L is regular by Proposition 2.1.

(only if) Suppose the L is regular. Then S = Syn(L) is �nite by Proposition 2.1. Let

h : En ! S be the canonical homomorphism, and take K � S such that L = h
�1(K). We

can factor h through S
Sn by writing h = h

0 �HS , where h
0 : SS

n

! S is the evaluation

map de�ned by

h
0(f) = f

�
h(0); : : : ; h(n � 1)

�
for f 2 S

Sn (so that f : Sn ! S). The map h
0 is continuous, since SS

n

has the discrete

topology, and is a homomorphism. Since HS is also a continuous homomorphism, their

composition h is a continuous homomorphism. Since En is dense in In, h has a unique

extension to a continuous homomorphism h1 : In ! S. Since K is crisp in S, h�1
1 (K)

is crisp in In. By Lemma 2.4, cl
�
h
�1
1 (K) \ En

�
= h

�1
1 (K), and thus cl

�
h
�1
1 (K) \ En

�
is

crisp. But h�1
1 (K) \En = h

�1(K) = L, and thus cl(L) is crisp. 4

3. Stone Duality

In 1936, Stone [S36] established a duality between Boolean algebras and totally dis-

connected compact Hausdor� spaces (which are thus now usually called \Stone spaces").

The gist of this duality is as follows. If we start with a Boolean algebra A, the set of all

homomorphisms from A to B2 (regarded as the two-element Boolean algebra), endowed

with the topology induced by the product topology on the set of all functions from A to

B2, forms a Stone space that will be denoted A�. Conversely, if we start with a Stone

space S, the collection of all crisp sets in S, with Boolean operations de�ned in the usual

way, forms a Boolean algebra that will be denoted S�. Furthermore, these processes are

reciprocal, so that A�� = A and S�� = S. (An expository account of the theory is given

by Halmos [H63].)

After the development in the preceding section, the following theorem should come as

no surprise.

Theorem 3.1: The Boolean algebra Ln of regular languages over Bn is dual to the Stone

space In (that is, L�n is isomorphic to In, and I
�

n is homeomorphic to Ln).
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Proof: It will su�ce (see Halmos [H63], pp. 79{80) to construct a pairing � : Ln�In ! B2

satisfying the following four conditions. (1) For every L 2 Ln, the map g : In ! B2

de�ned by g(t) = �(L; t) is continuous. (2) Every continuous map g : In ! B2 is of the

form g(t) = �(L; t) for some L 2 Ln. (2) For every t 2 In, the map f : Ln ! B2 de�ned

by f(L) = �(L; t) is a homomorphism. (4) Every homomorphism f : Ln ! B2 is of the

form f(L) = �(L; t) for some t 2 In.

We begin by constructing the pairing �. De�ne

�(L; t) =

8<
:
1; if t 2 cl(L);

0; otherwise.

We now proceed to verfy conditions (1) through (4).

(1) Suppose that L 2 Ln and de�ne g by g(t) = �(L; t). We must show that g is

continuous. Since L is regular, cl(L) is crisp in In by Theorem 2.5. Thus cl(L) and its

complement are both open in In. It follows that all sets of the form g
�1(B) for B � B2

are open in In, and thus that g is continuous. This completes the veri�cation of (1).

(2) Suppose that g : In ! B2 is continuous. We must show that g is of the form

g(t) = �(L; t) for some regular langauge L 2 Ln. Since g is continuous, the set g
�1(1) and

its complement g�1(0) are both open, whence g�1(1) is crisp in In. Take L = g
�1(1)\En.

By Lemma 2.4, cl(L) = g
�1(1), and thus cl(L) is crisp in In. Thus by Theorem 2.5 L is

regular. This completes the veri�cation of (2).

(3) Suppose that t 2 In and de�ne f by f(L) = �(L; t). We must show that f is

a homomorphism. To do this, it will su�ce to show that f(L [M) = f(L) _ f(M) and

f(En n L) = :f(L) for regular languages L and M , since all Boolean operations can be

expressed in terms of join and complement. Since cl(L [M) = cl(L) [ cl(M), we have

f(L [M) = f(L) _ f(M) by the de�nitions of f and �. Since L is regular, cl(L) is crisp

in In by Lemma 2.4. Thus we have In n cl(L) = cl(En nL), and f(En nL) = :f(L) follows

from the de�nitions of f and �. This completes the veri�cation of (3).

(4) Suppose that f : Ln ! B2 is a homomorphism. We must show that f is of the

form f(L) = �(L; t) for some t 2 In. Set K = f
�1(1). Then K is a maximal �lter in

Ln. That is, (1) if L 2 K and M 2 Ln, then L [M 2 K; (2) if L 2 K and M 2 K,

then L \M 2 K; and (3) for every L 2 Ln, either L or or its complement (but not both)

belongs to K. These conditions imply that the collection

H = fcl(L) : L 2 Kg
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is an ultra�lter basis in In. Since In is a compact Hausdor� space, the intersection of

theultra�lter basis H comprises a single point, say t. It remains to verify that f(L) =

�(L; t) for all regular languages L 2 En. If f(L) = 1, then L 2 K and cl(L) 2 H. Thus

�(L; t) = 1 by the de�nition of �. On the other hand, if f(L) = 0, then applying the same

argument to the complement of L yields the conclusion that �(L; t) = 0. This completes

the veri�cation of (4), and thus the proof of Theorem 3.1. 4

The duality between the Boolean algebra Ln of regular languages over Bn and the

Stone space In in fact extends to a one-to-one correspondence between subalgebras of

Ln (that is, sets of regular languages over Bn that are closed under Boolean operations,

including the empty language and the full language), and quotients of the Stone space In

(that is, quotient spaces of In that are totally disconnected). Since we shall be interested

in Boolean algebras of regular languages, we are led to investigate the quotients of In.

Our goal in this section is to characterize the equivalence relations � on In for which the

quotient In= � is a totally disconnected compact metric space. We shall do this by giving

closure conditions on the graph of �.

For � to be an equivalence relation on In, it is necessary and su�cient that its graph

be re
exive, symmetric and transitive. Thus we have the following closure conditions.

I. For all x 2 In, x � x.

II. For all x; y 2 In, x � y implies y � x.

III. For all x; y; z 2 In, x � y and y � z imply x � z.

For the �-classes to form a metric space, it is necessary and su�cient that they

be topologically closed. We shall not pause to cast this requirement in terms of closure

conditions, however, since it will follow automatically from a requirement that we shall

impose later.

When In= � forms a metric space, the projection � : In ! In= � is continuous, so

that In= � (being a continuous image of a compact space) is compact. Thus it remains

to consider the requirement that In= � be totally disconnected. This requirement can be

expressed by saying that the crisp unions of �-classes must separate the �-classes. This

expression includes the requirement that the �-classes be closed, for they are then the

intersections of all the crisp unions of �-classes containing them. It also implies that the

graph of � is closed in the product topology on In�In, for this graph is intersection of the

closed relations (X �X) [
�
(In nX) � (In nX)

�
over all crisp sets X � In. We shall say

that an equivalence � on In is clean if the crisp unions of �-classes separate the �-classes.

10



To cast this requirement in terms of closure conditions, we shall need a few de�nitions.

Let F denote the set of all continuous maps from In to B2 (regarded as the two-element

space with the discrete topology). (These are just the maps f such that f�1(0) and f�1(1)

are both crisp. Thus these maps are �nite objects, and the set F is countable, since the

crisp sets in In are just the closures of the regular languages.) We shall say that sequences

fxfgf2F and fyfgf2F are good for x and y if, for each f 2 F , f(xf ) = f(yf ) implies

f(x) = f(y). We can now formulate the relevant closure condition.

IV. For all sequences fxfgf2F and fyfgf2F that are good for x and y, the conditions

xf � yf for all f 2 F imply x � y.

The main result of this section is the following.

Theorem 3.2: Let � be an equivalence relation on In (that is, let � satisfy I, II and III).

Then � is clean if and only if � satis�es IV.

Proof: (if) Suppose that � satis�es IV. Suppose further, for the sake of contradiction, that

� is not clean. Let x; y 2 In be such that that x 6� y, but no crisp union of �-classes

separates x and y. Then for every continuous f : In ! B2 with f(x) 6= f(y), there exists

some �-class that meets both f
�1(0) and f

�1(1), say at points xf and yf , respectively.

Then, if we de�ne xf = yf arbitrarily for continuous f : In ! B2 with f(x) = f(y), the

sequences fxfgf2F and fyfgf2F are good for x and y. Furthermore, we have xf � yf for

all f 2 F . Thus by IV we conclude x � y. This contradiction completes the proof of the

\if" part. 4

(only if) Suppose that � is clean. Suppose further, for the sake of contradiction, that

fxfgf2F and fyfgf2F are good for x and y, and that xf � yf for all f 2 F , but that

x 6� y. Let X be a crisp union of �-classes that separates the �-classes containing x and

y. Then the function f : In ! B2 de�ned by

f(x) =

(
1; if x 2 X,

0; if x 62 X,

is continuous. Since f(x) 6= f(y), we must have f(xf ) 6= f(yf ). Since f
�1(0) and f

�1(1)

are unions of �-classes, we conclude that xf 6� yf . This contradiction completes the proof

of the \only if" part. 4
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4. Strains and Varieties of Languages

Often we wish to deal, not just with the regular languages over a �xed alphabet (which

form a Boolean algebra), but simultaneously with languages over various �nite alphabets

(which do not form a Boolean algebra, since the notion of complement is not well de�ned).

One way of dealing with this problem is to shift attention to \locally regular" languages

over an in�nite alphabet (which form a Boolean algebra; this is approach is described by

Almeida [A90]. A somewhat simpler alternative, which we shall employ, is to consider

\strains" of regular languages. A strain K of regular languages is a sequence K1;K2; : : : ,

where eachKn is a Boolean subalgebra of Ln, and where the sequence satis�es the following

condition.

Str. For every homomorphism h : Em ! En, L 2 Kn implies h�1(L) 2 Km.

(Thus the set of languages in a strain is closed under taking inverse homomorphic images.

The homomorphisms in question are �nite objects, since they are determined by their

values for words of length 1.)

Each of the Boolean algebras Kn of the strain K corresponds to a Stone quotient

In= �n (where we have put the subscript n on the equivalence, since there is a separate

equivalence for each value of n). We shall call such a sequence of equivalences �1;�2; : : :

(each satisfying conditions I, II, III and IV of the preceding section) a \global equivalence"

if they satisfy the following additional closure condition.

V. For every homomorphism h : Im ! In and every x; y 2 Im, x �m y implies h(x) �n

h(y).

Our �rst goal in this section is to establish a one-to-one correspondence between

strains and global equivalences.

Theorem 4.1: A sequence Kn of subalgebras of Ln forms a strain if and only if their duals

In= �n are obtained from a global equivalence.

We shall need the following lemma.

Lemma 4.2: If g : Em ! En is continuous, f : Im ! In is the the extension of g,

f(Em) � En, and L � En is regular, then

cl
�
g
�1(L)

�
= f

�1
�
cl(L)

�
:

Proof: First we show that

cl(L) \ En = L: (1)

12



If x 2 L, then x 2 cl(L) and x 2 En, so we have L � cl(L) \ En. On the other hand, if

x 62 L, but x 2 En, then x belongs to the open set cl(En nL) = In n cl(L). Since this open

set is disjoint from L, we have x 62 cl(L), so we also have cl(L) \En � L. This establishes

(1).

Next we show that

f
�1
�
cl(L)

�
\ Em = g

�1(L): (2)

Indeed, we have

f
�1
�
cl(L)

�
\Em = f

�1
�
cl(L)

�
\ f

�1(En) \Em

= f
�1
�
cl(L) \En

�
\Em

= f
�1(L) \Em

= g
�1(L):

This establishes (2).

Finally, we show that

cl
�
g
�1(L)

�
= f

�1
�
cl(L)

�
:

Since cl(L) is crisp, f�1
�
cl(L)

�
is also crisp. Thus f�1

�
cl(L)

�
is a closed set containing

g
�1(L), and therefore also containing cl

�
g
�1(L)

�
. It remains to show that f�1

�
cl(L)

�
�

cl
�
g
�1(L)

�
. Suppose that x 2 f

�1
�
cl(L)

�
, and letX be any open set containing x. We shall

show that X meets g�1(L), and thus that x 2 cl
�
g
�1(L)

�
. Since X is open and f�1

�
cl(L)

�
is open, X\f�1

�
cl(L)

�
is open. Since Em is dense in Im, we haveX\f

�1
�
cl(L)

�
\Em 6= ;.

But by (2), this implies X \ g
�1(L) 6= ;, which completes the proof. 4

Proof of Theorem 4.1: (if) Suppose that f�ngn2N is a global equivalence. Suppose further

that L 2 Kn and that g : Em ! En is a homomorphism. We �rst observe that if a

congruence � separates g(x) and g(y), then the congruence �0 (de�ned by v �0
w if and

only g(v) � g(w)) is a congruence that has no more classes than � and separates x and y.

We conclude that d
�
g(x); g(y)

�
� d(x; y), and therefore that g is continuous.

Let f : Im ! In be the continuous extension of g. Since L is regular, cl(L) is crisp

by Theorem 2.5. Since f is continuous, f�1
�
cl(L)

�
is crisp. If f�1

�
cl(L)

�
is not a union

of �m-classes, then there exist x �m y separated by f
�1
�
cl(L)

�
. Since f�ngn2N is a

global equivalence, we have f(x) �n f(y). Furthermore, f(x) and f(y) are separated by

cl(L). Thus cl(L) is not a union of �n-classes, contradicting the assumption that L 2 Kn.

This contradiction shows that f�1
�
cl(L)

�
is a crisp union of �m-classes. By Lemma 4.2,

f
�1
�
cl(L)

�
= cl

�
g
�1(L)

�
, so cl

�
g
�1(L)

�
is a crisp union of �m-classes. Thus g

�1(L) 2 Km.

This concludes the proof of the \if" part.
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(only if) Suppose that fKngn2N is a strain of regular languages. Suppose further that

x �m y and that h : Im ! In is a homomorphism. For each i 2 N, choose w0; : : : ; wm�1 2

En such that d
�
wa; h(a)

�
� 1=(i+1) for each a 2 Bm, then de�ne gi : Em ! En to be the

unique homomorphism such that gi(a) = wa for each a 2 Bm. By virtue of the inequality

d(wx; yz) � maxfd(w; y); d(x; z)g, we have d
�
gi(v); h(v)

�
� 1=(i+1) for all v 2 Em. Each

homomorphism gi is continuous (as in the proof of the \if" part), and thus has a unique

extension to a continuous map fi : Im ! In. Since d and fi are continuous, Im is compact

and Em is dense in Im, we have d
�
fi(v); h(v)

�
� 1=(i + 1) for all v 2 Im.

Suppose, for the sake of contradiction, that fi(x) 6�n fi(y). Let X be a crisp union

of �n-classes separating fi(x) and fi(y). Take L = X \ En. Then cl(L) = X is crisp by

Lemma 2.4, so L 2 Kn. Since fKngn2N is a strain, we have g�1
i (L) 2 Km. It follows that

cl
�
g
�1
i (L)

�
is a crisp union of �m-classes separating x and y, and thus that x 6�m y. This

contradiction shows that fi(x) �n fi(y). Since the sequences ffi(x)gi2N and ffi(y)gi2N

converge to h(x) and h(y), respectively, and since the graph of the relation �n is closed in

In � In with the product topology, we conclude that h(x) �n h(y). 4

A \variety" of regular languages (in the sense of Eilenberg [E73]) is a strain of regular

languages that is closed under taking left and right \quotients" by words. If L � En is

a regular language and w 2 En is a word, then the left quotient of L by w is the regular

language

w
�1
L = fx 2 En : wx 2 Lg;

and the right quotient is the regular language

Lw
�1 = fx 2 En : xw 2 Lg:

Thus a variety of regular languages is a strain K of regular languages that satis�es the

following condition.

Var. For every L 2 Kn and w 2 En, L 2 Qn implies w�1
L 2 Kn and Lw

�1 2 Kn.

Our �nal goal is to characterize varieties of regular languages among global subalgebras

by additional closure conditions for their global equivalences. The following condition

requires that each �n be a congruence.

VI. For every w; x; y; z 2 In, w �n y and x �n z imply wx �n yz.

We then have the following.

Theorem 4.3: A strain K is a variety if and only if the corresponding global equivalence

consists of congruences.
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Proof: (if) Suppose that �n is a congruence. Suppose further that L 2 Kn and that

w 2 En. We shall show that w�1
L 2 Kn; the proof that Lw

�1 2 Kn is similar. De�ne

g : En ! En by g(x) = wx. We observe that if a congruence � separates g(x) and g(y),

then it also separates x and y. Thus we have d
�
g(x); g(y)

�
� d(x; y), so g is continuous.

Let f : In ! In be the continuous extension of g. Since multiplication is continuous, we

have f(x) = wx.

Since L 2 Kn, cl(L) is a crisp union of �n-classes. Since f is continuous, f�1
�
cl(L)

�
is crisp. Suppose, for the sake of contradiction, that it is not a union of �n-classes. Then

there exist x �n y such that f�1
�
cl(L)

�
separates x and y. Since �n is a congruence and

x �n y, we have wx �n wy. But since f�1
�
cl(L)

�
separates x and y, we have that cl(L)

separates f(x) = wx and f(y) = wy. Since cl(L) is a union of �n-classes, this implies

that wx 6�n wy. This contradiction establishes that the crisp set f�1
�
cl(L)

�
is a union

of �n-classes. By Lemma 4.2, f�1
�
cl(L)

�
= cl

�
g
�1(L)

�
, so cl

�
g
�1(L)

�
is a crisp union of

�n-classes. Thus g�1(L) 2 Kn. Since w�1
L = g

�1(L), this completes the proof of the

\if" part.

(only if) Suppose that Kn is closed under left quotients by words. We shall show that

x �n y implies wx �n wy. A similar argument based on closure under right quotients

shows that x �n y implies xz �n yz. These conditions together establish that �n is a

congruence, since then w �n y and x �n z imply wx �n yx �n yz, so that wx � yz.

Suppose, for the sake of contradiction, that x �n y but wx 6�n wy. Let X be a crisp

union of �n-classes that separates wx and wy Take L = X \ En. Then cl(L) = X is

crisp, by Lemma 2.4. Thus L 2 Kn. Since Kn is closed under left quotients by words,

w
�1
L 2 Kn. Taking g and f as in the \if" part, we have g�1(L) = w

�1
L, so g�1(L) 2 Kn.

Thus cl
�
g
�1(L)

�
is a crisp union of �n-classes. By Lemma 4.2, f�1

�
cl(L)

�
= cl

�
g
�1(L)

�
,

so f�1
�
cl(L)

�
is a crisp union of �n-classes. Furthermore, is must separate x and y, since

cl(L) separates f(x) = wx and f(y) = wy. This contradicts that assumption that x �n y,

and completes the proof of the \only if" part. 4

5. Conclusion

Several directions for further work present themselves. Perhaps the most inviting is to

try to obtain for strains an analog of Eilenberg's characterization of varieties. Presumably

some enrichment of the notion of \�nite semigroup" (to keep track of the allowable sets

of initial and �nal states) would be involved. Another problem, which at present appears

hard to even formulate in precise mathematical terms, is the following. A large number of
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varieties of regular languages have been characterized in terms of implicit identities in the

literature (a sampling is given by Almeida [A88]). In almost all cases, the identities involve

only ordinary terms and the one implicit term x
! (introduced in Section 2). Why should

this one implicit term (among uncountably many) play such an important role? (The

situation is reminiscent of the completion of the rational numbers to the real numbers: of

the uncountably many real numbers, a few (such as � and e) play much more important

roles than most.)
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