
E�cient and E�ective Clustering Methods for

Spatial Data Mining

Raymond T. Ng�

Department of Computer Science

University of British Columbia

Vancouver, B.C., V6T 1Z4,

Canada.

Jiawei Hany

School of Computing Sciences

Simon Fraser University

Burnaby, B.C., V5A 1S6,

Canada.

Abstract

Spatial data mining is the discovery of interesting relationships and characteristics

that may exist implicitly in spatial databases. In this paper, we explore whether clus-

tering methods have a role to play in spatial data mining. To this end, we develop a

new clustering method called CLARANS which is based on randomized search. We

also develop two spatial data mining algorithms that use CLARANS. Our analysis and

experiments show that with the assistance of CLARANS, these two algorithms are very

e�ective and can lead to discoveries that are di�cult to �nd with current spatial data

mining algorithms. Furthermore, experiments conducted to compare the performance

of CLARANS with that of existing clustering methods show that CLARANS is the

most e�cient.

keywords: spatial data mining, clustering algorithms, randomized search

1 Introduction

Data mining in general is the search for hidden patterns that may exist in large databases.

Spatial data mining in particular is the discovery of interesting relationships and character-

istics that may exist implicitly in spatial databases. Because of the huge amounts (usually,

tera-bytes) of spatial data that may be obtained from satellite images, medical equipments,

video cameras, etc., it is costly and often unrealistic for users to examine spatial data in

detail. Spatial data mining aims to automate such a knowledge discovery process. Thus, it

plays an important role in a) extracting interesting spatial patterns and features; b) captur-

ing intrinsic relationships between spatial and non-spatial data; c) presenting data regularity

concisely and at higher conceptual levels; and d) helping to reorganize spatial databases to

accommodate data semantics, as well as to achieve better performance.

�Research partially sponsored by NSERC Grants OGP0138055 and STR0134419.
yResearch partially supported by NSERC Grant OGP03723 and the Centre for Systems Science of Simon

Fraser University.

1



Many excellent studies on data mining have been conducted, such as those reported

in [1, 2, 4, 7, 11, 13, 15]. [1] considers the problem of inferring classi�cation functions from

samples; [2] studies the problem of mining association rules between sets of data items; [7]

proposes an attribute-oriented approach to knowledge discovery; [11] develops a visual feed-

back querying system to support data mining; and [15] includes many interesting studies

on various issues in knowledge discovery such as �nding functional dependencies between

attributes. However, most of these studies are concerned with knowledge discovery on non-

spatial data, and the study most relevant to our focus here is [13] which studies spatial

data mining. More speci�cally, [13] proposes a spatial data-dominant knowledge-extraction

algorithm and a non-spatial data-dominant one, both of which aim to extract high-level re-

lationships between spatial and non-spatial data. However, both algorithms su�er from the

following problems. First, the user or an expert must provide the algorithms with spatial

concept hierarchies, which may not be available in many applications. Second, both algo-

rithms conduct their spatial exploration primarily by merging regions at a certain level of

the hierarchy to a larger region at a higher level. Thus, the quality of the results produced

by both algorithms relies quite crucially on the appropriateness of the hierarchy to the given

data. The problem for most applications is that it is very di�cult to know a priori which

hierarchy will be the most appropriate. Discovering this hierarchy may itself be one of the

reasons to apply spatial data mining.

To deal with these problems, we explore whether cluster analysis techniques are appli-

cable. Cluster Analysis is a branch of statistics that in the past three decades has been

intensely studied and successfully applied to many applications. To the spatial data mining

task at hand, the attractiveness of cluster analysis is its ability to �nd structures or clusters

directly from the given data, without relying on any hierarchies. However, cluster analy-

sis has been applied rather unsuccessfully in the past to general data mining and machine

learning. The complaints are that cluster analysis algorithms are ine�ective and ine�cient.

Indeed, for cluster analysis algorithms to work e�ectively, there need to be a natural notion of

similarities among the \objects" to be clustered. And traditional cluster analysis algorithms

are not designed for large data sets, say more than 2000 objects.

For spatial data mining, our approach here is to apply cluster analysis only on the spatial

attributes, for which natural notions of similarities exist (e.g. Euclidean or Manhattan

distances). As will be shown in this paper, in this way, cluster analysis techniques are

e�ective for spatial data mining. As for the e�ciency concern, we develop our own cluster

analysis algorithm, called CLARANS, which is designed for large data sets. More speci�cally,

we will report in this paper:

� the development of CLARANS, which is based on randomized search and is partly

motivated by two existing algorithms well-known in cluster analysis, called PAM and

CLARA; and

� the development of two spatial mining algorithms SD(CLARANS) and NSD(CLARANS).

Given the nature of spatial data mining, and the fact that CLARANS is based on random-

ized search, the methodology we have adopted here is one based on experimentation. In

particular, we will present:

2



� experimental results showing that CLARANS is more e�cient than the existing algo-

rithms PAM and CLARA; and

� experimental evidence and analysis demonstrating the e�ectiveness of SD(CLARANS)

and NSD(CLARANS) for spatial data mining.

The paper is organized as follows. Section 2 introduces PAM and CLARA. Section

3 presents our clustering algorithm CLARANS, as well as experimental results comparing

the performance of CLARANS, PAM and CLARA. Section 4 studies spatial data mining

and presents two spatial data mining algorithms, SD(CLARANS) and NSD(CLARANS).

Section 5 gives an experimental evaluation on the e�ectiveness of SD(CLARANS) and

NSD(CLARANS) for spatial data mining. Section 6 discusses how SD(CLARANS) and

NSD(CLARANS) can assist in further spatial discoveries, and how they can contribute to-

wards the building of a general-purpose and powerful spatial data mining package in the

future.

2 Clustering Algorithms based on Partitioning

2.1 Overview

In the past 30 years, cluster analysis has been widely applied to many areas such as medicine

(classi�cation of diseases), chemistry (grouping of compounds), social studies (classi�cation

of statistical �ndings), and so on. Its main goal is to identify structures or clusters present

in the data. While there is no general de�nition of a cluster, algorithms have been developed

to �nd several kinds of clusters: spherical, linear, drawn-out, etc. Motivated by di�erent

kinds of applications, techniques have also been developed to deal with data of various types:

binary, nominal and other kinds of discrete variables, continuous variables, similarities, and

dissimilarities. See [10, 17] for more detailed discussions and analyses of these issues.

Existing clustering algorithms can be classi�ed into two main categories: hierarchical

methods and partitioning methods. Hierarchical methods are either agglomerative or divi-

sive. Given n objects to be clustered, agglomerative methods begin with n clusters (i.e. all

objects are apart). In each step, two clusters are chosen and merged. This process continues

until all objects are clustered into one group. On the other hand, divisive methods begin

by putting all objects in one cluster. In each step, a cluster is chosen and split up into two.

This process continues until n clusters are produced. While hierarchical methods have been

successfully applied to many biological applications (e.g. for producing taxonomies of ani-

mals and plants [10]), they are well known to su�er from the weakness that they can never

undo what was done previously. Once an agglomerative method merges two objects, these

objects will always be in one cluster. And once a divisive method separates two objects,

these objects will never be re-grouped into the same cluster.

In contrast, given the number k of partitions to be found, a partitioning method tries to

�nd the best k partitions 1 of the n objects. It is very often the case that the k clusters found

by a partitioning method are of higher quality (i.e. more similar) than the k clusters produced

by a hierarchicalmethod. Because of this property, developing partitioning methods has been

1Partitions here are de�ned in the usual way: each object is assigned to exactly one group.

3



one of the main focuses of cluster analysis research. Indeed, many partitioning methods have

been developed, some based on k-means, some on k-medoid, some on fuzzy analysis, etc.

Among them, we have chosen the k-medoid methods as the basis of our algorithm for the

following reasons. First, unlike many other partitioning methods, the k-medoid methods are

very robust to the existence of outliers (i.e. data points that are very far away from the

rest of the data points). Second, clusters found by k-medoid methods do not depend on the

order in which the objects are examined. Furthermore, they are invariant with respect to

translations and orthogonal transformations of data points. Last but not least, experiments

have shown that the k-medoid methods described below can handle very large data sets

quite e�ciently. See [10] for a more detailed comparison of k-medoid methods with other

partitioning methods. In the remainder of this section, we present the two best-known

k-medoid methods on which our algorithm is based.

2.2 PAM

PAM (Partitioning Around Medoids) was developed by Kaufman and Rousseeuw [10]. To

�nd k clusters, PAM's approach is to determine a representative object for each cluster.

This representative object, called a medoid, is meant to be the most centrally located object

within the cluster. Once the medoids have been selected, each non-selected object is grouped

with the medoid to which it is the most similar. More precisely, if Oj is a non-selected

object, and Oi is a (selected) medoid, we say that Oj belongs to the cluster represented by

Oi, if d(Oj ; Oi) = minOe
d(Oj ; Oe), where the notation minOe

denotes the minimum over all

medoids Oe, and the notation d(Oa; Ob) denotes the dissimilarity or distance between objects

Oa and Ob. All the dissimilarity values are given as inputs to PAM. Finally, the quality of

a clustering (i.e. the combined quality of the chosen medoids) is measured by the average

dissimilarity between an object and the medoid of its cluster.

To �nd the k medoids, PAM begins with an arbitrary selection of k objects. Then in each

step, a swap between a selected object Oi and a non-selected object Oh is made, as long as

such a swap would result in an improvement of the quality of the clustering. In particular,

to calculate the e�ect of such a swap between Oi and Oh, PAM computes costs Cjih for all

non-selected objects Oj. Depending on which of the following cases Oj is in, Cjih is de�ned

by one of the equations below.

First Case: suppose Oj currently belongs to the cluster represented by Oi. Furthermore,

let Oj be more similar to Oj;2 than Oh, i.e. d(Oj ; Oh) � d(Oj ; Oj;2), where Oj;2 is the second

most similar medoid to Oj . Thus, if Oi is replaced by Oh as a medoid, Oj would belong to

the cluster represented by Oj;2. Hence, the cost of the swap as far as Oj is concerned is:

Cjih = d(Oj ; Oj;2)� d(Oj ; Oi): (1)

This equation always gives a non-negative Cjih, indicating that there is a non-negative cost

incurred in replacing Oi with Oh.

Second Case: Oj currently belongs to the cluster represented by Oi. But this time, Oj is

less similar to Oj;2 than Oh, i.e. d(Oj ; Oh) < d(Oj ; Oj;2). Then, if Oi is replaced by Oh, Oj

would belong to the cluster represented by Oh. Thus, the cost for Oj is given by:

Cjih = d(Oj ; Oh)� d(Oj ; Oi): (2)

4



Unlike in Equation (1), Cjih here can be positive or negative, depending on whether Oj is

more similar to Oi or to Oh.

Third Case: suppose that Oj currently belongs to a cluster other than the one represented

by Oi. Let Oj;2 be the representative object of that cluster. Furthermore, let Oj be more

similar to Oj;2 than Oh. Then even if Oi is replaced by Oh, Oj would stay in the cluster

represented by Oj;2. Thus, the cost is:

Cjih = 0: (3)

Fourth Case: Oj currently belongs to the cluster represented by Oj;2. But Oj is less

similar to Oj;2 than Oh. Then replacing Oi with Oh would cause Oj to jump to the cluster

of Oh from that of Oj;2. Thus, the cost is:

Cjih = d(Oj ; Oh)� d(Oj ; Oj;2); (4)

and is always negative. Combining the four cases above, the total cost of replacing Oi with

Oh is given by:

TCih =
X

j

Cjih (5)

We now present Algorithm PAM.

Algorithm PAM

1. Select k representative objects arbitrarily.

2. Compute TCih for all pairs of objects Oi; Oh where Oi is currently selected, and Oh is

not.

3. Select the pair Oi; Oh which corresponds to minOi;Oh
TCih. If the minimum TCih is

negative, replace Oi with Oh, and go back to Step (2).

4. Otherwise, for each non-selected object, �nd the most similar representative object.

Halt. 2

Experimental results show that PAM works satisfactorily for small data sets (e.g. 100 objects

in 5 clusters [10]). But it is not e�cient in dealing with medium and large data sets. This is

not too surprising if we perform a complexity analysis on PAM. In Steps (2) and (3), there are

altogether k(n� k) pairs of Oi; Oh. For each pair, computing TCih requires the examination

of (n � k) non-selected objects. Thus, Steps (2) and (3) combined is of O(k(n � k)2). And

this is the complexity of only one iteration. Thus, it is obvious that PAM becomes too costly

for large values of n and k. This analysis motivates the development of CLARA.

2.3 CLARA

Designed by Kaufman and Rousseeuw to handle large data sets, CLARA (Clustering LARge

Applications) relies on sampling [10]. Instead of �nding representative objects for the entire

data set, CLARA draws a sample of the data set, applies PAM on the sample, and �nds the

5



medoids of the sample. The point is that if the sample is drawn in a su�ciently random

way, the medoids of the sample would approximate the medoids of the entire data set. To

come up with better approximations, CLARA draws multiple samples and gives the best

clustering as the output. Here, for accuracy, the quality of a clustering is measured based on

the average dissimilarity of all objects in the entire data set, and not only of those objects

in the samples. Experiments reported in [10] indicate that 5 samples of size 40 + 2k give

satisfactory results.

Algorithm CLARA

1. For i = 1 to 5, repeat the following steps:

2. Draw a sample of 40+2k objects randomly from the entire data set 2, and call Algorithm

PAM to �nd k medoids of the sample.

3. For each object Oj in the entire data set, determine which of the k medoids is the most

similar to Oj.

4. Calculate the average dissimilarity of the clustering obtained in the previous step. If

this value is less than the current minimum, use this value as the current minimum,

and retain the k medoids found in Step (2) as the best set of medoids obtained so far.

5. Return to Step (1) to start the next iteration. 2

Complementary to PAM, CLARA performs satisfactorily for large data sets (e.g. 1000

objects in 10 clusters). Recall from Section 2.2 that each iteration of PAM is of O(k(n�k)2).

But for CLARA, by applying PAM just to the samples, each iteration is of O(k(40 + k)2 +

k(n� k)). This explains why CLARA is more e�cient than PAM for large values of n.

3 A Clustering Algorithm based on Randomized Search

In this section, we will present our clustering algorithm { CLARANS (Clustering Large

Applications based on RANdomized Search). We will �rst introduce CLARANS by giving

a graph abstraction of it. Then after describing the details of the algorithm, we will present

experimental results showing that CLARANS outperforms CLARA and PAM in terms of

both e�ciency and e�ectiveness. In the next section, we will show how CLARANS can be

used to provide e�ective spatial data mining.

3.1 Motivation of CLARANS: a Graph Abstraction

Given n objects, the process described above of �nding k medoids can be viewed abstractly as

searching through a certain graph. In this graph, denoted by Gn;k, a node is represented by

a set of k objects fOm1
; : : : ; Om

k
g, intuitively indicating that Om1

; : : : ; Om
k
are the selected

medoids. The set of nodes in the graph is the set f fOm1
; : : : ; Om

k
g j Om1

; : : : ; Om
k
are

objects in the data setg.

2[10] reports a useful heuristic to draw samples. Apart from the �rst sample, subsequent samples include

the best set of medoids found so far. In other words, apart from the �rst iteration, subsequent iterations

draw 40+ k objects to add on to the best k medoids.

6



Two nodes are neighbors (i.e. connected by an arc) if their sets di�er by only one object.

More formally, two nodes S1 = fOm1
; : : : ; Om

k
g and S2 = fOw1

; : : : ; Ow
k
g are neighbors if

and only if the cardinality of the intersection of S1; S2 is k � 1, i.e. jS1 \ S2j = k � 1. It is

easy to see that each node has k(n� k) neighbors. Since a node represents a collection of k

medoids, each node corresponds to a clustering. Thus, each node can be assigned a cost that

is de�ned to be the total dissimilarity between every object and the medoid of its cluster.

It is not di�cult to see that if objects Oi; Oh are the di�erences between neighbors S1 and

S2 (i.e. Oi; Oh 62 S1 \ S2, but Oi 2 S1 and Oh 2 S2), the cost di�erential between the two

neighbors is exactly given by Tih de�ned in Equation (5).

By now, it is obvious that PAM can be viewed as a search for a minimum on the graph

Gn;k. At each step, all the neighbors of the current node are examined. The current node is

then replaced by the neighbor with the deepest descent in costs. And the search continues

until a minimum is obtained. For large values of n and k (like n = 1000 and k = 10), exam-

ining all k(n� k) neighbors of a node is time consuming. This accounts for the ine�ciency

of PAM for large data sets.

On the other hand, CLARA tries to examine fewer neighbors and restricts the search on

subgraphs that are much smaller in size than the original graph Gn;k. However, the problem

is that the subgraphs examined are de�ned entirely by the objects in the samples. Let Sa be

the set of objects in a sample. The subgraph GSa;k consists of all the nodes that are subsets

(of cardinalities k) of Sa. Even though CLARA thoroughly examines GSa;k via PAM, the

trouble is that the search is fully con�ned within GSa;k. If M is the minimum node in the

original graph Gn;k , and if M is not included in GSa;k, M will never be found in the search

of GSa;k, regardless of how thorough the search is. To atone for this de�ciency, many, many

samples would need to be collected and processed.

Like CLARA, our algorithm CLARANS does not check every neighbor of a node. But

unlike CLARA, it does not restrict its search to a particular subgraph. In fact, it searches

the original graph Gn;k. One key di�erence between CLARANS and PAM is that the former

only checks a sample of the neighbors of a node. But unlike CLARA, each sample is drawn

dynamically in the sense that no nodes corresponding to particular objects are eliminated

outright. In other words, while CLARA draws a sample of nodes at the beginning of a

search, CLARANS draws a sample of neighbors in each step of a search. This has the bene�t

of not con�ning a search to a localized area. As will be shown in Section 3.3, a search by

CLARANS gives higher quality clusterings than CLARA, and CLARANS requires a very

small number of searches. We now present the details of Algorithm CLARANS.

3.2 CLARANS

Algorithm CLARANS

1. Input parameters numlocal and maxneighbor. Initialize i to 1, and mincost to a large

number.

2. Set current to an arbitrary node in Gn;k.

3. Set j to 1.

7



4. Consider a random neighbor S of current, and based on Equation (5), calculate the

cost di�erential of the two nodes.

5. If S has a lower cost, set current to S, and go to Step (3).

6. Otherwise, increment j by 1. If j � maxneighbor, go to Step (4).

7. Otherwise, when j > maxneighbor, compare the cost of current with mincost. If the

former is less than mincost, set mincost to the cost of current, and set bestnode to

current.

8. Increment i by 1. If i > numlocal, output bestnode and halt. Otherwise, go to Step

(2). 2

Steps (3) to (6) above search for nodes with progressively lower costs. But if the current

node has already been compared with the maximum number of the neighbors of the node

(speci�ed by maxneighbor) and is still of the lowest cost, the current node is declared to be

a \local" minimum. Then in Step (7), the cost of this local minimum is compared with the

lowest cost obtained so far. The lower of the two costs above is stored inmincost. Algorithm

CLARANS then repeats to search for other local minima, until numlocal of them have been

found.

As shown above, CLARANS has two parameters: the maximum number of neighbors

examined (maxneighbor), and the number of local minima obtained (numlocal). The higher

the value of maxneighbor, the closer is CLARANS to PAM, and the longer is each search of a

local minima. But the quality of such a local minima is higher, and fewer local minima needs

to be obtained. Like many applications of randomized search [8, 9], we rely on experiments

to determine the appropriate values of these parameters.

3.3 Experimental Results: Tuning CLARANS

3.3.1 Details of Experiments

To observe the behavior and e�ciency of CLARANS, we ran CLARANS with generated data

sets whose clusters are known. For better generality, we used two kinds of clusters with quite

opposite characteristics. The �rst kind of clusters is rectangular, and the objects within each

cluster are randomly generated. More speci�cally, if such a data set of say 3000 objects in

20 clusters is needed, we �rst generated 20 \bounding boxes" of the same size. To make

the clusters less clear-cut, the north-east corner of the i-th box and the south-west corner of

(i+1)-th box touch. Since for our application of spatial data mining, CLARANS is used to

cluster spatial coordinates, objects in our experiments here are pairs of x�; y� coordinates.

For each bounding box, we then randomly generated 150 pairs of coordinates that fall within

the box. Similarly, we generated data sets of the same kind but of varying numbers of objects

and clusters. In the �gures below, the symbol rn-k (e.g. r3000-20) represents a data set of

this kind with n points in k clusters.

Unlike the �rst kind, the second kind of clusters we experimented with does not contain

random points. Rather, points within a cluster are ordered in a triangle. For example,

the points with coordinates (0,0), (1,0), (0,1), (2,0), (1,1), and (0,2) form such a triangular

8



cluster of size 6. To produce a cluster next to the previous one, we used a translation of the

origin (e.g. the points (10,10), (11,10), (10,11), (12,10), (11,11), and (10,12)). In the �gures

below, the symbol tn-k (e.g. t3000-20) represents a data set organized in this way with n

points in k clusters.

All the experiments reported here were carried out in a time-sharing SPARC-LX work-

station. Because of the random nature of CLARANS, all the �gures concerning CLARANS

are average �gures obtained by running the same experiment 10 times (with di�erent seeds

of the random number generator).

3.3.2 Determining the Maximum Number of Neighbors

In the �rst series of experiments, we applied CLARANS with the parametermaxneighbor =

250, 500, 750, 1000, and 10000 on the data sets rn-k and tn-k, where n varies from 100 to

3000 and k varies from 5 to 20. To save space, we only summarize the two major �ndings

that lead to further experiments:

� When the maximum number of neighbors maxneighbor is set to 10000, the quality

of the clustering produced by CLARANS is e�ectively the same as the quality of the

clustering produced by PAM (i.e. maxneighbor = k(n�k)). While we will explain this

phenomenon very shortly, we use the results for maxneighbor = 10000 as a yardstick

for evaluating other (smaller) values of maxneighbor. More speci�cally, the runtime

values of the �rst graph and the average distance values (i.e. quality of a clustering)

of the second graph in Figure 1 below are normalized by those produced by setting

maxneighbor = 10000. This explains the two horizontal lines at y� value = 1 in both

graphs.

� As expected, a lower value of maxneighbor produces a lower quality clustering. A

question we ask is then how small can the value of maxneighbor be before the quality

of the clustering becomes unacceptable. From the �rst series of experiments, we �nd

out that these critical values seem to be proportional to the value k(n � k). This

motivates us to conduct another series of experiments with the following enhanced

formula for determining the value of maxneighbor:

if k(n�k) � minmaxneighbor thenmaxneighbor = k(n�k); otherwise,maxneighbor

equals the the larger value between p% of k(n� k) and minmaxneighbor.

The above formula allows CLARANS to examine all the neighbors as long as the total number

of neighbors is below the threshold minmaxneighbor. Beyond the threshold, the percentage

of neighbors examined gradually drops from 100% to a minimum of p%. The two graphs in

Figure 1 show the relative runtime and quality of CLARANS with minmaxneighbor = 250

and p varying from 1% to 2%. While the graphs only show the results of the rectangular

data sets with 2000 and 3000 points in 20 clusters, these graphs are representative, as the

appearances of the graphs for small and medium data sets, and for the triangular data sets

are very similar.

Figure 1(a) shows that the lower the value of p, the smaller the amount of runtime

CLARANS requires. And as expected, Figure 1(b) shows that a lower value of p produces

a lower quality clustering (i.e. higher (relative) average distance). But the very amazing

9



(a) relative e�ciency (b) relative quality

Figure 1: Determining the Maximum Number of Neighbors

feature shown in Figure 1(b) is that the quality is still within 5% from that produced by

setting maxneighbor = 10000 (or by PAM). As an example, if a maximum of p = 1:5% of

neighbors are examined, the quality is within 3%, while the runtime is only 40%. What that

means is that examining 98.5% more neighbors, while taking much longer, only produces

marginally better results. This is consistent with our earlier statement that CLARANS with

maxneigh = 10000 gives the same quality as PAM, which is e�ectively the same as setting

maxneighbor = k(n� k) = 20(3000-20) = 59600.

The reason why so few neighbors need to be examined to get good quality clusterings can

be best illustrated by the graph abstraction presented in Section 3.1. Recall that each node

has k(n � k) neighbors, making the graph very highly connected. Consider two neighbors

S1; S2 of the current node, and assume that S1 constitutes a path leading to a certain

minimum node S. Even if S1 is missed by not being examined, and S2 becomes the current

node, there are still numerous paths that connect S2 to S. Of course, if all such paths are

not strictly downward (in cost) paths, and may include \hills" along the way, S will never

be reached from S2. But our experiments seem to indicate that the chance that a hill exists

on every path is very small.

To keep a good balance between runtime and quality, we believe that a p value between

1.25% and 1.5% is very reasonable. For all our later experiments with CLARANS, we chose

the value p = 1:25%.

3.3.3 Determining the Number of Local Minima

Recall that Algorithm CLARANS has two parameters: maxneighbor and numlocal. Having

dealt with the former, here we focus on determining the value of numlocal. In this series

10



Figure 2: E�ciency: CLARANS vs PAM

of experiments, we ran CLARANS with numlocal = 1; : : : ; 5 on data sets rn-k and tn-k for

small, medium and large values of n and k. For each run, we recorded the runtime and the

quality of the clustering. The following table (which is typical of all data sets) shows the

relative runtime and quality for the data set r2000-20. Here all the values are normalized by

those with numlocal = 5.

numlocal 1 2 3 4 5

relative runtime 0.19 0.38 0.6 0.78 1

relative average distance 1.029 1.009 1 1 1

As expected, the runtimes are proportional to the number of local minima obtained. As

for the relative quality, there is an improvement from numlocal = 1 to numlocal = 2.

Performing a second search for a local minimum seems to reduce the impact of \unlucky"

randomness that may occur in just one search. However, setting numlocal larger than 2 is

not cost-e�ective, as there is little increase in quality. This is an indication that a typical

local minimum is of very high quality. We believe that this phenomenon is largely due to, as

discussed previously, the peculiar nature of the abstract graph representing the operations

of CLARANS. For all our later experiments with CLARANS, we used the version that �nds

two local minima.

3.4 Experimental Results: CLARANS vs PAM

In this series of experiments, we compared CLARANS with PAM. As discussed in Sec-

tion 3.3.2, for large and medium data sets, it is obvious that CLARANS, while producing

clusterings of very comparable quality, is much more e�cient than PAM. Thus, our focus

here was to compare the two algorithms on small data sets. We applied both algorithms to

11



Figure 3: Relative Quality: Same Time for CLARANS and CLARA

data sets with 40, 60, 80 and 100 points in 5 clusters. Figure 2 shows the runtime taken by

both algorithms. Note that for all those data sets, the clusterings produced by both algo-

rithms are of the same quality (i.e. same average distance). Thus, the di�erence between

the two algorithms is determined by their e�ciency. It is evident from Figure 2 that even for

small data sets, CLARANS outperforms PAM signi�cantly. As expected, the performance

gap between the two algorithms grows, as the data set increases in size.

3.5 Experimental Results: CLARANS vs CLARA

In this series of experiments, we compared CLARANS with CLARA. As discussed in Sec-

tion 2.3, CLARA is not designed for small data sets. Thus, we ran this set of experiments on

data sets whose number of objects exceeds 100. And the objects were organized in di�erent

number of clusters, as well as in the two types of clusters described in Section 3.3.1.

When we conducted this series of experiments running CLARA and CLARANS as pre-

sented earlier, CLARANS is always able to �nd clusterings of better quality than those found

by CLARA. However, in some cases, CLARA may take much less time than CLARANS.

Thus, we wondered whether CLARA would produce clusterings of the same quality, if it was

given the same amount of time. This leads to the next series of experiments in which we

gave both CLARANS and CLARA the same amount of time. Figure 3 shows the quality of

the clusterings produced by CLARA, normalized by the corresponding value produced by

CLARANS.

Given the same amount of time, CLARANS clearly outperforms CLARA in all cases. The

gap between CLARANS and CLARA increases from 4% when k, the number of clusters, is

5 to 20% when k is 20. This widening of the gap as k increases can be best explained by

12



looking at the complexity analyses of CLARA and CLARANS. Recall from Section 2.3 that

each iteration of CLARA is of O(k3+nk). On the other hand, recall from Section 3.3.2 that

the cost of CLARANS is basically linearly proportional to the number of objects 3. Thus,

an increase in k imposes a much larger cost on CLARA than on CLARANS.

The above complexity comparison also explains why for a �xed number of clusters, the

higher the number of objects, the narrower the gap between CLARANS and CLARA is. For

example, when the number of objects is 1000, the gap is as high as 30%. The gap drops to

around 20% as the number of object increases to 2000. Since each iteration of CLARA is

of O(k3 + nk), the �rst term k
3 dominates the second term. Thus, for a �xed k, CLARA is

relatively less sensitive to an increase in n. On the other hand, since the cost of CLARANS

is roughly linearly proportional to n, an increase in n imposes a larger cost on CLARANS

than on CLARA. This explains why for a �xed k, the gap narrows as the number of objects

increases. Nonetheless, the bottom-line shown in Figure 3 is that CLARANS beats CLARA

in all cases.

In sum, we have presented experimental evidence showing that CLARANS is more ef-

�cient than PAM and CLARA for small and large data sets. Our experimental results for

medium data sets (not included here) lead to the same conclusion.

4 Spatial Data Mining based on Clustering Algorithms

In this section, we will present two spatial data mining algorithms that use clustering meth-

ods. In the next section, we will show experimental results on the e�ectiveness of these

algorithms.

4.1 Spatial Dominant Approach: SD(CLARANS)

There are di�erent approaches to spatial data mining. The kind of spatial data mining

considered in this paper assumes that a spatial database consists of both spatial and non-

spatial attributes, and that non-spatial attributes are stored in relations [3, 12, 16]. The

general approach here is to use clustering algorithms to deal with the spatial attributes, and

use other learning tools to take care of the non-spatial counterparts.

DBLEARN is the tool we have chosen for mining non-spatial attributes [7]. It takes

as inputs relational data, generalization hierarchies for attributes, and a learning query

specifying the focus of the mining task to be carried out. From a learning request, DBLEARN

�rst extracts a set of relevant tuples via SQL queries. Then based on the generalization

hierarchies of attributes, it iteratively generalizes the tuples. For example, suppose the tuples

relevant to a certain learning query have attributes hmajor; ethnicgroupi. Further assume

3There is a random aspect and a non-random aspect to the execution of CLARANS. The non-random

aspect corresponds to the part that �nds the cost di�erential between the current node and its neighbor.

This part, as de�ned in Equation (5) is linearly proportional to the number of objects in the data set. On the

other hand, the random aspect corresponds to the part that searches for a local minimum. As the values to

plot the graphs are average values of 10 runs, which have the e�ect of reducing the in
uence of the random

aspect, the runtimes of CLARANS used in our graphs are largely dominated by the non-random aspect of

CLARANS.

13



that the generalization hierarchy for ethnicgroup has Indian and Chinese generalized to

Asians. Then a generalization operation on the attribute ethnicgroup causes all tuples of the

form hm; Indiani and hm;Chinesei to be merged to the tuple hm;Asiansi. This merging has

the e�ect of reducing the number of remaining (generalized) tuples. As described in [7], each

tuple has a system-de�ned attribute called count which keeps track of the number of original

tuples (as stored in the relational database) that are represented by the current (generalized)

tuple. This attribute enables DBLEARN to output such statistical statements as 8% of all

students majoring in Sociology are Asians. In general, a generalization hierarchy may have

multiple levels (e.g. Asians further generalized to non-Canadians), and a learning query may

require more than one generalization operation before the �nal number of generalized tuples

drops below a certain threshold 4. At the end, statements such as 90% of all Arts students

are Canadians may be returned as the �ndings of the learning query.

Having outlined what DBLEARN does, the speci�c issue we address here is how to extend

DBLEARN to deal with spatial attributes. In particular, we will present two ways to combine

clustering algorithms with DBLEARN. The algorithm below, called SD(CLARANS), com-

bines CLARANS and DBLEARN in a spatial dominant fashion. That is, spatial clustering

is performed �rst, followed by non-spatial generalization of every cluster.

Algorithm SD(CLARANS)

1. Given a learning request, �nd the initial set of relevant tuples by the appropriate SQL

queries.

2. Apply CLARANS to the spatial attributes and �nd the most natural number knat of

clusters.

3. For each of the knat clusters obtained above,

(a) collect the non-spatial components of the tuples included in the current cluster.

(b) Apply DBLEARN to this collection of the non-spatial components. 2

Similarly, Algorithms SD(PAM) and SD(CLARA) can be obtained. But as shown in the

last section that CLARANS is more e�cient than PAM and CLARA, the experimental

evaluation to be reported in Section 5 only considers SD(CLARANS).

4.2 Determining knat for CLARANS

Step (2) of Algorithm SD(CLARANS) tries to �nd knat clusters, where knat is the most

natural number of clusters for the given data set. However, recall that CLARANS and all

partitioning algorithms require the number k of clusters to be given as input. Thus, an

immediate question to ask is whether SD(CLARANS) knows beforehand what knat is and

can then simply pass the value of knat to CLARANS. The unfortunate answer is no. In fact,

determining knat is one of the most di�cult problems in cluster analysis, for which no unique

solution exists. For SD(CLARANS), we adopt the heuristics of computing the silhouette

4Apart from generalization operations (also known as hierarchy ascension operations), DBLEARN, in

its full form, may sometimes choose to drop an attribute, if generalizing such an attribute would produce

uninteresting results (e.g. generalizing names of students).

14



coe�cients, �rst developed by Kaufman and Rousseeuw [10]. (For a survey of alternative

criteria, see [14].) For space considerations, we do not include the formulas for computing

silhouettes, and will only concentrate on how we use silhouettes in our algorithms.

Intuitively, the silhouette of an object Oj , a dimensionless quantity varying between �1

and 1, indicates how much Oj truly belongs to the cluster to which Oj is classi�ed. The

closer the value is to 1, the higher the degree Oj belongs to its cluster. The silhouette

width of a cluster is the average silhouette of all objects in the cluster. Based on extensive

experimentation, [10] proposes the following interpretation of the silhouette width of a

cluster:

silhouette width interpretation

0.71 { 1 the cluster is strong

0.51 { 0.7 the cluster is reasonable

0.26 { 0.5 the cluster is weak and could be arti�cial

� 0:25 no cluster can be found

For a given number k � 2 of clusters, the silhouette coe�cient for k is the average silhouette

widths of the k clusters. Notice that the silhouette coe�cient does not necessarily decrease

monotonically as k increases 5. If the value k is too small, some distinct clusters are in-

correctly grouped together, leading to a small silhouette width. On the other hand, if k

is too large, some natural clusters may be arti�cially split, again leading to a small silhou-

ette width. Thus, the most natural k is the one whose silhouette coe�cient is the highest.

However, our experiments on spatial data mining show that just using the highest silhou-

ette coe�cient may not lead to intuitive results. For example, some clusters may not have

reasonable structures, i.e. widths � 0:5. Thus, we use the following heuristics to determine

the value knat for SD(CLARANS).

Heuristics for Determining knat

1. Find the value k with the highest silhouette coe�cient.

2. If all the k clusters have silhouette widths � 0:51, knat = k, and halt.

3. Otherwise, remove the objects in those clusters whose silhouette widths are below 0.5,

provided that the total number of objects removed so far is less than a threshold (e.g.

25% of the total number of objects). The objects removed are considered to be outliers

or noises. Go back to Step (1) for the new data set without the outliers.

4. If in Step (3), the number of outliers to be removed exceeds the threshold, simply set

knat = 1, indicating in e�ect that no clustering is reasonable. 2

In Section 5, we will see the usefulness of the heuristics.

As we have completed the description of SD(CLARANS), it is a good time to com-

pare SD(CLARANS) with an earlier approach reported in [13] whose goal is to enhance

5However, this is not the case for the average dissimilarity of an object from its medoid. The larger the

value of k, the smaller the average dissimilarity is. This explains why average dissimilarity is only suitable

as a measurement criterion for �xed k, but is otherwise not suitable to be used to compare the quality of

clusterings produced by di�erent k values.

15



DBLEARN with spatial learning capabilities. One of the two proposed approaches there is

to �rst perform spatial generalizations, and then to use DBLEARN to conduct non-spatial

generalizations. The fundamental di�erence between SD(CLARANS) and that algorithm

in [13] is that a user of the latter must give a priori as input generalization hierarchies for

spatial attributes. The problem is that without prior analysis, it is almost impossible to

guarantee that the given hierarchies are suitable for the given data set. (This may in fact be

one of the discoveries to be found out by the spatial data mining task!) For example, sup-

pose a spatial data mining request is to be performed on all the expensive houses in Greater

Vancouver. A default spatial hierarchy to use may be the one that generalizes streets to

communities and then to cities. However, if some of the expensive houses are spatially lo-

cated along something (such as a river, the bottom of a range of mountains, etc.) that

runs through many communities and cities, then the default spatial hierarchy would be very

ine�ective, generating such general statements as that the expensive houses are more or less

scattered in all the cities in Greater Vancouver.

Far extending the capability of the algorithm in [13], SD(CLARANS) �nds the clusters

directly from the given data. To a certain extent, the clustering algorithm, CLARANS in

this case, can be viewed as computing the spatial generalization hierarchy dynamically. The

result of such computation, combined with the above heuristics to �nd knat, precisely �nds

the clusters (if indeed exist in the data set) in terms of the x� and y� coordinates of the

points, and not con�ned by any hierarchies speci�ed a priori. For the expensive houses

example discussed above, SD(CLARANS) could directly identify clusters along the river or

the bottom of the mountain range, and could lead to such statements as 80% of all mansions

have either a mountain or a river view. In Section 5, we will see how well our spatial data

mining algorithms can handle a data set arguably more complex than the example discussed

here.

4.3 Non-Spatial Dominant Approach: NSD(CLARANS)

To a large extent, spatial dominant algorithms, such as SD(CLARANS), can be viewed

as focusing asymmetrically on discovering non-spatial characterizations of spatial clusters.

Non-spatial dominant algorithms, on the other hand, focus on discovering spatial clusters

existing in groups of non-spatial data items. For example, these algorithms may �nd inter-

esting discoveries based on the spatial clustering or distribution of a certain type of houses.

More speci�cally, unlike spatial dominant algorithms, non-spatial dominant algorithms �rst

apply non-spatial generalizations, followed by spatial clustering. The following algorithm,

NSD(CLARANS), uses DBLEARN and CLARANS to perform data mining on non-spatial

and spatial attributes respectively.

Algorithm NSD(CLARANS)

1. Given a learning request, �nd the initial set of relevant tuples by the appropriate SQL

queries.

2. Apply DBLEARN to the non-spatial attributes, until the �nal number of generalized

tuples fall below a certain threshold (cf. Section 4.1).

3. For each generalized tuple obtained above,

16



(a) collect the spatial components of the tuples represented by the current generalized

tuple.

(b) Apply CLARANS and the heuristics presented above to �nd the most natural

number knat of clusters.

4. For all the clusters obtained above, check if there are clusters that intersect or overlap.

If exist, such clusters can be merged. This in turn causes the corresponding generalized

tuples to be combined. 2

Recall from the previous section on clustering algorithms that for a given data set, clusters

do not overlap or intersect. This is why SD(CLARANS) does not include a step analogous to

Step (4) above. However, for NSD(CLARANS) (and other non-spatial dominant algorithms

such as NSD(PAM)), clusters obtained for di�erent generalized tuples can overlap or inter-

sect. In that case, opportunities arise for further generalization of spatial and non-spatial

data. This is the purpose of Step (4) above. In the following, we present experimental results

evaluating the e�ectiveness of NSD(CLARANS), as well as SD(CLARANS).

5 Evaluation of SD(CLARANS) and NSD(CLARANS)

5.1 A Real Estate Data Set

One way to evaluate the e�ectiveness of a data mining algorithm is to apply it to a real

data set and see what it �nds. But sometimes it may be di�cult to judge the quality of

the �ndings, without knowing a priori what the algorithm is supposed to �nd. Thus, to

evaluate our algorithms, we generated a data set that honors several rules applicable to the

2500 expensive housing units in Vancouver. These rules, very close to reality to the best of

our knowledge, are as follows:

A. house type, price and size:

1. If the house type is mansion, the price falls within the range [1500K,3500K], and

the size within the range [6000,10000] square feet.

2. If the house type is single-house, the price and size ranges are [800K,1500K] and

[3000,7000].

3. If the house type is condo, the price and size ranges are [300K,800K] and [1000,2500].

For simplicity, we assumed uniform distributions within all the ranges.

B. distribution:

1. There are 1200 condos uniformly distributed in the Vancouver downtown area {

the rectangular region at the top of Figure 4. From now on, this region will be

referred to as Area B1.

2. Along Marine Drive, there are about 320 mansions and about 80 single-houses {

the stripe at the bottom left-hand corner of Figure 4. This area will be referred

to as Area B2.

17



Figure 4: Spatial Distribution of the 2500 Housing Units

3. Around Queen Elizabeth Park, there are 800 single-houses { the polygonal area

at the bottom right-hand corner of Figure 4. This area will be referred to as Area

B3.

4. Finally, to complicate the situation, there are 100 single-houses uniformly dis-

tributed in the rest of Vancouver.

5.2 E�ectiveness of SD(CLARANS)

Based on the heuristics presented in Section 4.2, Step (2) of SD(CLARANS) appropriately

sets the value of knat to 3. The silhouette coe�cient for knat = 3 is 0.7, indicating that

all 3 clusters are quite strong. Thus, Steps (3) and (4) of the heuristics are not needed

in this case. After computing knat, it takes CLARANS about 25 seconds to identify the 3

clusters (in a time-sharing SPARC-LX workstation environment). The �rst cluster contains

832 units all single-houses, 800 of which are those in Area B3 de�ned in Section 5.1. For this

cluster, DBLEARN in Step (3) of SD(CLARANS) correctly �nds the price and size ranges

to be [800K,1500K] and [3000,7000]. It also reveals that the prices and sizes are more or less

uniformly distributed.

The second cluster contains 1235 units, 1200 of which are condos, and the remainders

single-houses. It contains all the units in Area B1 introduced in Section 5.1. For this

cluster, DBLEARN �nds the condo prices and sizes uniformly distributed within the ranges

[300K,800K] and [1000,2500] respectively. It also discovers that the single-house prices and

sizes fall within [800K,1500K] and [3000,7000].

The third cluster contains 431 units, 320 of which are mansions, and the remainders

18



single-houses. This cluster includes all the units along the stripe Area B2. For this clus-

ter, DBLEARN �nds the mansion prices and sizes uniformly distributed within the ranges

[1500K,3500K] and [6000,10000]. As for the single-houses in the cluster, DBLEARN again

�nds the right ranges.

In sum, SD(CLARANS) is very e�ective. This is due primarily to the clusters found by

CLARANS, even in the presence of outliers (cf. B.4 of Section 5.1). Once the appropriate

clusters are found, DBLEARN easily identi�es the non-spatial patterns. Thus, CLARANS

and DBLEARN together enable SD(CLARANS) to successfully discover all the rules de-

scribed in Section 5.1 that it is supposed to �nd.

5.3 E�ectiveness of NSD(CLARANS)

In Step (2) of NSD(CLARANS), DBLEARN �nds 12 generalized tuples, 4 for each type

of housing units. Let us �rst consider the 4 generalized tuples for mansions. The 4 tuples

represent respectively mansions in the following categories: a) price in [1500K,2600K], size in

[6000,8500]; b) price in [1500K,2600K], size in [8500,10000]; c) price in [2600K,3500K], size

in [6000,8500]; and d) price in [2600K,3500K], size in [8500,10000]. The 4 graphs in Figure 5

show the spatial distributions of the mansions in the four categories. When CLARANS is

applied to the points shown in each of the 4 graphs, 2 clusters are found in each case. The

silhouette coe�cients for knat = 2 vary from 0.62 to 0.65. In each graph, points in the two

clusters are represented by either dots or +. As shown quite obviously in Figure 5, when

Step (4) of NSD(CLARANS) is executed, all 4 clusters represented by dots overlap. These

clusters are merged into one larger region. Similarly, all 4 clusters represented by + are

merged into another region. Furthermore, these two regions intersect, and are merged into

an even bigger region, which is now identical to the stripe Area B2 in Figure 4. Last but

not least, these merges of clusters and regions cause the 4 generalized tuples to be combined

as well. As a result, NSD(CLARANS) �nds out that all mansions are located in the stripe

area, and have prices and sizes in the ranges [1500K,3500K] and [6000,10000].

The 4 tuples for condos correspond respectively to the following categories: a) price

in [300K,600K], size in [1000,1800]; b) price in [300K,600K], size in [1800,2500]; c) price

in [600K,800K], size in [1000,1800]; and d) price in [600K,800K], size in [1800,2500]. The

processing of these tuples is very similar to the processing of those for mansions above.

The only di�erence is that for all 4 tuples, no cluster is found 6, i.e. knat set to 1 in

Step (4) of the heuristics in Section 4.2. Thus, in the �nal step of NSD(CLARANS), all 4

regions/clusters, which overlap, are merged into an area that coincides precisely with Area B1

Figure 4. Consequently, NSD(CLARANS) discovers that all (expensive) condos are located

in the Vancouver downtown area, and have prices and sizes in the ranges [300K,800K] and

[1000,2500].

The processing of single-houses is the most complicated. The 4 tuples correspond to the

categories: a) price in [1200K,1500K], size in [3000,5500]; b) price in [1200K,1500K], size

in [5500,7000]; c) price in [800K,1200K], size in [3000,5500]; and d) price in [800K,1200K],

size in [5500,7000]. When CLARANS is applied to the houses in the category a) (as shown

in Figure 6(a)), the highest silhouette coe�cient is found when the number of clusters is 4.

625% is the threshold used in Step (3) of the heuristics in Section 4.2.

19



(a) tuple 1 (b) tuple 2

(c) tuple 3 (d) tuple 4

Figure 5: Clusters for the 4 Generalized tuples for Mansions

20



(a) before removing outliers (b) after removing outliers

Figure 6: Spatial Distributions for Category a) of Single-houses

However, even though the silhouette coe�cient is above 0.5, the silhouette widths of two

of the clusters are below 0.5. Thus, Step (3) of the heuristics in Section 4.2 is invoked.

As a result, 15 out of the original 253 points are removed. Figure 6(b) shows the spatial

distribution of this new collection of points after the outliers are removed. For this new

collection, two clusters are identi�ed: i) along the stripe Area B2 in Figure 4, and ii) around

Area B3 in Figure 4.

The clustering for category d) of single-houses is very similar to the one described above.

Again, outliers need to be removed. At the end, 2 clusters are found, which are identical to

the ones listed i) and ii) above.

As for categories b) and c) of single-houses, the result is slightly di�erent. In both cases,

because single-houses are quite sparsely located along the stripe area (i.e. the cluster listed i)

above), so as to obtain acceptable knat values, some of the houses along that area are removed

as outliers. Consequently, for both categories, 2 clusters are identi�ed: again along Area B2

and around Area B3. The only di�erence between here and the situation for categories a)

and d) is that the clusters along the stripe area are smaller in sizes than expected, because

of outliers removal.

After applying CLARANS to all four categories/tuples of single-houses, NSD(CLARANS)

in Step (4) merges overlapping or intersecting clusters. As a result, NSD(CLARANS) dis-

covers 2 clusters of single-houses, identical to the ones listed i) and ii) above. While the

total number of units in cluster ii) is as expected, the total number of units in cluster i) is

less. Again, this is due to the removal of outliers. Furthermore, NSD(CLARANS) correctly

identi�es the price and size ranges for single-houses to be [800K,1500K] and [3000,7000].

21



5.4 Summary

With respect to the rules listed in Section 5.1, both SD(CLARANS) and NSD(CLARANS)

�nd most of what they are supposed to �nd. In terms of performance and e�ectiveness,

SD(CLARANS) has the edge. As discussed earlier, this is due to CLARANS' success in

identifying the clusters right away. On the other hand, in NSD(CLARANS), performing

non-spatial generalizations divides the entire set of points into di�erent groups/tuples. This

may have the e�ect of breaking down the tightness of some clusters. Outliers removal may

then be needed to extract reasonable clusters from each group. This procedure, as we have

seen, may weaken the eventual �ndings and takes more time. Finally, merging overlapping

and intersecting clusters can also be costly.

However, to be fair with NSD(CLARANS), the rules described in Section 5.1 are more

favorable to SD(CLARANS). There is a strong emphasis on �nding out non-spatial charac-

terizations of spatial clusters, which is the focus of spatial dominant algorithms. In contrast,

a non-spatial dominant algorithm focuses more on �nding spatial clusters within groups

of data items that have been generalized non-spatially. For example, if the spatial dis-

tribution of single-houses is primarily determined by their price and size categories, then

NSD(CLARANS) could be more e�ective than SD(CLARANS).

6 Discussions

6.1 Exploring Spatial Relationships

Thus far, we have shown that clustering algorithms, such as CLARANS, are very promising

and e�ective for spatial data mining. But we believe that there is an extra dimension

a clustering algorithm can provide. As discussed in Section 4.2, a clustering algorithm

does not require any spatial generalization hierarchy to be given, and directly discovers the

groups/clusters that are the most appropriate to the given data. In other words, clustering

can provide very tight spatial characterizations of the groups. The tightness and speci�city

of the characterizations provide opportunities for exploring spatial relationships that may

exist between the clusters and other interesting objects.

For example, as shown in Section 5.2, SD(CLARANS) �nds 3 clusters of expensive hous-

ing units (cf. Figure 4). Those 3 clusters can then be overlaid with Vancouver maps of

various kinds (e.g. parks, highways, lakes, etc.) The following �ndings can be obtained:

� About 96% of the houses in the �rst cluster (as described in Section 5.2) are within

0.6km from Queen Elizabeth Park.

� About 97% of the housing units in the second cluster are located in the Vancouver

downtown area which is adjacent to Stanley Park 7.

� About 92% of houses in the third cluster are within 0.4km from the western coast line

of Vancouver.

7During the summit meeting between Russia and the US in 1993, Clinton dined in Queen Elizabeth Park

and jogged in Stanley Park!

22



The point here is that while SD(CLARANS) or NSD(CLARANS) do not directly �nd the

above features (which is the job of another package that can provide such spatial operations

as map overlays), they do produce structures or clusters that can lead to further discoveries.

6.2 Towards Building a More General and E�cient Spatial Data

Mining Framework

A natural extension to SD(CLARANS) and NSD(CLARANS) will be the integration of the

two algorithms by performing neither spatial dominant nor non-spatial dominant general-

izations, but interleaved or balanced generalizations between spatial and non-spatial compo-

nents. At each step, the data mining algorithm may select either a spatial or a non-spatial

component to generalize. For example, if a clustering method can detect some high quality

clusters, clustering may be performed �rst. These clusters may trigger generalization on

non-spatial components in the next step if such a generalization may group objects into

interesting groups. It is an interesting research issue to study how to compare the quality of

spatial and non-spatial generalizations.

A spatial database may be associated with several thematic maps, each of which may

represent one kind of spatial data. For example, in a city geographic database, one thematic

map may represent the layout of streets and highways, another may outline the emergency

service network, and the third one may describe the distribution of educational and recre-

ational services. To many applications, it will be very useful if data mining on multiple

thematic maps can be conducted simultaneously. This would involve not only clustering,

but also other spatial operations such as spatial region growing, overlays and spatial joins.

Thus, it is an interesting research issue to study how to provide an e�ective framework that

integrates all these operations together for simultaneous mining of multiple maps.

There are many kinds of spatial data types, such as regions, points and lines, in spatial

databases. Clustering methods, as presented here, are most suitable for points or small

regions scattered in a relatively large background. However, it remains an open question

as to how they can be e�ectively applied to deal with line-typed spatial data, such as to

examine how highways are located in cities.

Furthermore, due to the nature of spatial data, noise or irrelevant information is prevalent

in spatial databases. The development of a general framework for removing noises and

�ltering out irrelevant data is important to the e�ectiveness of spatial data mining. It is also

interesting to �nd out what roles approximation and aggregation can play in the framework.

7 Conclusions

In this paper, we have presented a clustering algorithm called CLARANS which is based on

randomized search. We have also developed two spatial data mining algorithms SD(CLARANS)

and NSD(CLARANS). Experimental results and analysis indicate that both algorithms are

e�ective, and can lead to discoveries that are di�cult to obtain with existing spatial data

mining algorithms. Finally, we have presented experimental results showing that CLARANS

itself is more e�cient than existing clustering methods. Hence, CLARANS has established

itself as a very promising tool for e�cient and e�ective spatial data mining.

23



References

[1] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. (1992) An Interval Clas-

si�er for Database Mining Applications, Proc. 18th VLDB, pp 560{573.

[2] R. Agrawal, T. Imielinski, and A. Swami. (1993) Mining Association Rules between

Sets of Items in Large Databases, Proc. 1993 SIGMOD, pp 207{216.

[3] W. G. Aref and H. Samet. (1991) Optimization Strategies for Spatial Query Processing,

Proc. 17th VLDB, pp. 81-90.

[4] A. Borgida and R. J. Brachman. (1993) Loading Data into Description Reasoners,

Proc. 1993 SIGMOD, pp 217{226.

[5] T. Brinkho� and H.-P. Kriegel and B. Seeger. (1993) E�cient Processing of Spatial

Joins Using R-trees, Proc. 1993 SIGMOD, pp 237-246.

[6] O. G�unther. (1993) E�cient Computation of Spatial Joins, Proc. 9th Data Engineering,

pp 50-60.

[7] J. Han, Y. Cai and N. Cercone. (1992) Knowledge Discovery in Databases: an

Attribute-Oriented Approach, Proc. 18th VLDB, pp. 547{559.

[8] Y. Ioannidis and Y. Kang. (1990) Randomized Algorithms for Optimizing Large Join

Queries, Proc. 1990 SIGMOD, pp. 312{321.

[9] Y. Ioannidis and E. Wong. (1987) Query Optimization by Simulated Annealing, Proc.

1987 SIGMOD, pp. 9{22.

[10] L. Kaufman and P.J. Rousseeuw. (1990) Finding Groups in Data: an Introduction to

Cluster Analysis, John Wiley & Sons.

[11] D. Keim and H. Kriegel and T. Seidl. (1994) Supporting Data Mining of Large

Databases by Visual Feedback Queries, to appear in Proc. 10th Data Engineering,

Houston, TX.

[12] R. Laurini and D. Thompson. (1992) Fundamentals of Spatial Information Systems,

Academic Press.

[13] W. Lu, J. Han and B. Ooi. (1993) Discovery of General Knowledge in Large Spatial

Databases, Proc. Far East Workshop on Geographic Information Systems, Singapore,

pp. 275-289.

[14] G. Milligan and M. Cooper. (1985) An Examination of Procedures for Determining the

Number of Clusters in a Data Set, Psychometrika, 50, pp. 159{179.

[15] G. Piatetsky-Shapiro and W. J. Frawley. (1991) Knowledge Discovery in Databases,

AAAI/MIT Press.

[16] H. Samet. (1990) The Design and Analysis of Spatial Data Structures, Addison-Wesley.

24



[17] H. Spath. (1985) Cluster Dissection and Analysis: Theory, FORTRAN programs, Ex-

amples, Ellis Horwood Ltd.

25


