
Topology Building
and Random Polygon Generation

Chong Zhu

Technical Report 94-12
April 1994

Department of Computer Science
The University of British Columbia

Vancouver, B. C. V6T 1Z4
Canada

Abstract

In the island adoption problem from geographical information system we are asked

to identify which islands are located in which lakes. This problem translates directly to

polygon nesting in computational geometry: given a set of polygons, find their nesting

structure. We present our research into a broader nesting problem, namely connected

component nesting, beginning with the underlying concept of topology-building and a

related issue of random polygon generation.

Topology building is a process of structuring data. We develop a plane sweep al­

gorithm for building a quad-edge data structure that captures the topological structure

of connected components of a set of line segments. The algorithm starts with a data

structure representing a single edge then adds edges into the data structure at each

step while sweeping across the connected components The algorithm's time complexity

is determined by the time to sort the vertices of the line segments.

We develop two approaches for obtaining the nesting structure of polygons. The

first adopts a basic idea of Bajaj and Dey [1], but introduces a new notch definition to

simplify their algorithm. The second generalizes the nesting problem to a broader class

including the nesting of connected components. We present a sweep algorithm, based on

a union-find data structure, that computes the nesting of the connected components.

In order to test and verify the time complexity of our polygon nesting algorithm, we

present an algorithm that generates x-monotone polygons uniformly at random over a

vertex set of n points. This algorithm scans the point set to calculate the total number

of monotone polygons that can be created, then reverses the scan to generate a random

monotone polygon. This process generates a random polygon over then vertices in O(K)

time, where n :::; K :::; n2 is the number edges of the visibility graph of the x-monotone

chain whose vertices are the given n points. The space complexity of our algorithm is

O(n).

11

Table of Contents

Abstract

List of Tables

List of Figures

Acknowledgment

1 Introduction

1.1 Topology Building

1.2 Nesting Structures

1.3 Random Polygon Generation .

1.4 Organization

2 Polygon Nesting

2.1 The Background of the Polygon Nesting

2.2 Extracting Polygon Nesting Structure .

2.2.1 Definitions

2.2.2 The Plane Sweep Algorithm

111

..
11

vii

...
Vlll

X

I

1

3

4

5

7

7

9

9

11

3 Topology Building

3.1 Introduction . .

3.2 Edge Functions

Basic Edge Functions .

Duality

3.2.1

3.2.2

3.2.3 Properties of Edge Functions

3.3 Quad Edge Data Structure and Topological Operators

3.3.1

3.3.2

Quad Edge Data Structure .

Basic Topological Operators

3.4 Topology Building by a One Pass Sweep

3.4.1 Constructing the Org Ring of an Edge

3.4.2 Algorithm

3.5 Conclusion

4 Connected Component Nesting

4.1 Introduction

4.2 Disjoint Sets and Notches

4.3

4.2.1

4.2.2

Disjoint Sets .

Notches

Plane sweep . .

IV

16

16

19

20

21

23

25

25

28

31

32

34

37

39

39

42

42

44

47

4.3.1

4.3.2

4.3.3

Update at the Begin Point Vi of Edge e .

Update at the End Point Vi of Edge e .

Getting Nesting Structure

4.4 Algorithm .

4.5 Conclusion .

5 Generating Random Monotone Polygons

5.1 Introduction

5.2

5.3

5.1.1

5.1.2

Motivation .

Problem

Preliminaries .

Generating Monotone Polygons at Random .

5.3.1

5.3.2

Counting Monotone Polygons .

Generating Monotone Polygons

5.4 The Analysis of Polygon_Generator

5.5 Computing Visibility

5.6

5.7

5.5.1

5.5.2

Computing Visibility Forward

Computing Visibility backward

Time and Space Complexity Analysis

Conclusion

V

47

51

53

59

62

64

64

64

65

66

68

69

73

75

79

79

83

86

88

6 Conclusions 89

Bibliography 92

Vl

List of Tables

5.1 The Procedure for calculating TN and BN. . ..

5.2 The Procedure for generating monotone polygons.

5.3 The Procedure of generating top chains. . .

5.4 The Procedure of generating bottom chains.

5.5 The Procedure of computing top_tree(k) from top_tree(k + 1).

5.6 The Procedure of Graham-Scan-Top

Vll

73

74

76

77

83

84

List of Figures

2.1 The input and the answer of the polygon nesting problem.

2.2 The comparison of two notch definitions.

2.3 The above relation of the edges.

2.4 Update ordering O at a left endpoint ..

3.1 A set of nested connected components and faces ..

3.2 The ring of edges out of a vertex.

3.3 The edge functions

3.4 Edge record showing Next links . .

3.5 The subdivision and its quad edge data structure.

3.6 The result of MakeEdge. .

3.7 The effect of Splice: Trading a vertex for a face.

3.8 The Org ring and its quad edge data structure ..

3.9 The result of Splice[e, b] .

3.10 The connection cases. . . .

Vlll

.

8

10

11

13

17

21

24

26

28

29

30

33

34

34

36

4.1 The connected components and the nesting structure.

4.2 The left-edge e1 and right-edge e2 • • • • . . • • •••.

4.3

4.4

4.5

4.6

4.7

The idea of using disjoint sets to extract the nesting structure.

Vertex v is a notch

v1 , •.. , v9 are notches and s1 , ... , s12 are simple lines.

Vertex v is a begin point of edge e.

The nesting cases

4.8 The cases of a notch v as the end point of edge e.

4.9 The parent of Ci can not be detected directly. . .

4.10 The direct edge chain in the tree of nesting sets.

4.11 Path compression during the operation find parent. ..

5.1 A monotone polygon generated from S12

5.2 The top and bottom monotone chains . .

5.3 The above-visible and below-visible points from point {12} .

5.4

5.5

The original set and its equivalent set .

The generating process.

5.6 A point set S5 and the data of top_tree(5) .

5.7 A point set S5 and the data of boLtree(5) .

5.8 top_tree(k) is generated from top_tree(k + 1).

ix

. .

..

40

41

43

45

46

48

49

51

57

58

61

66

68

69

72

75

81

82

85

Acknowledgment

I sincerely thank my supervisor Dr. Jack Snoeyink. I am very grateful for the super­

vision Dr. Snoeyink gave me over the whole period of my Msc. program including taking

courses, solving the proposed problem theoretically, doing experiments and proofreading

this thesis. I thank him for being a exemplary researcher and a considerate mentor. I

also thank him for the constant encouragement I received from him.

I thank Mr. Dan Lemkow of Essential Planning Systems for introducing the polygon

nesting topic and supplying the real data to me.

I thank my wife, Dr. Ying Li, for her love and support.

X

Chapter 1

Introduction

In this thesis, we address three parts of our research work. In the first part, we survey

the quad-edge data structure and propose an algorithm to build this data structure for

capturing the topological structure of the connected components. In the second part,

we study the nesting structure of both simple polygons and connected components, and

developed algorithms to solve the nesting problems of both types of objects. In the final

part, we give an algorithm to generate x-monotone polygon uniformly at random. In

the rest of this chapter the motivation of the research work and the background of these

problems are detailed.

1.1 Topology Building

Geometric algorithms involve the manipulation of objects that are not handled at the

machine language level. We must therefore organize these complex objects by means

of simpler data types directly representable by the computer. These organizations are

universally referred to as data structures. The most important property of data structures

is that they capture structural relationships between the data elements. When the data

elements are organized in a data structure, we then have structured data. To retrieve

structural information from structured data becomes much easier than from unstructured

data. In the simplest form, a set of one-dimensional points, unstructured data is simply

1

Chapter 1. Introduction 2

an amorphous mass of numerical values. By assigning an ordering structure on the point

set, we are able to answer such questions as: which element is the smallest one? which is

the largest one? which elements precede and follow a given one? etc. in an efficient way.

In more complicated situations, the data might be two-dimensional or higher. In order

to capture the structural information of the data, the data elements should be organized

appropriately, such as nesting structure among the simple polygons. Many applications

require new algorithms to efficiently represent and manipulate the structural information

presented within data. One such example, drawn from the geographical information

system (GIS) domain, is to retrieve a collection of areas with a common property from a

larger and more complex set with many properties.

Two-dimension structuring of data is called topology building in GIS. After struc­

turing the input data, the traditional topological structures such as connected compo­

nents, polygons, rings, and chains, can be retrieved through pointer lists. Topology build­

ing is an important technique in GIS, computational geometry, and computer graphics.

By knowing the topological structure of the data one can perform various operations ef­

ficiently on the data, such as area intersection, union, difference, clipping, and parentage

tracking in overlay process in GIS [16].

To capture the topological structure of connected components, we develop a sweep­

based algorithm that builds a quad edge data structure of the components. Because the

quad edge data structure [7] captures all the topological properties of vertices, edges,

and faces of two-dimension graphs, this data structure is the ideal candidate for an

intermediate data structure in topology building. The quad edge data structure of a set

of line segments can be built by two simple operations from the local relations of the line

segments: using only two primitives avoids subtle bugs due to pointer errors. A single

topological operator, called Splice, and one primitive for the creation of isolated edges,

called Makeedge, is sufficient to construct and modify this data structure.

Chapter 1. Introduction 3

The plane sweep method [14] is a widely used computational geometry paradigm

that has been applied to solve many different problems involving spatial data [10, 16].

We have adopted this method in our algorithms for building quad edge data structure,

extracting the nesting structure among simple polygons and connected·components.

1.2 Nesting Structures

Typical GIS problems include: How can one retrieve a single area within a certain con­

nected component? Here a connected component is a undirected planar graph, embedded

in the Euclidean plane, in which there is a path that joins any two vertices. What is the

parentage relation among these connected components? The parentage relation problem

is to find the nesting structure among the connected components. The nesting structure

problem is called the topological relation problem. Work by Egenhofer and Sharma [3]

on topological relation problems is based upon knowing the topology structure of the

data. Before we can extract the topological relation it is important to know the topo­

logical structure of the objects. But in many GIS applications the topological structure

of the given data may not be known. Without knowing the topological structure of con­

nected components, to extract the nesting structure of them will be a more practical and

challenging problem.

A region of a connected component is the area enclosed by a set of edges of the

component. For two nonintersecting connected components Ml and M2, we say that Ml

is nested in M2 if there exists a region R of M2 where every region of Ml is contained

in R. If the connected components are simple nonintersecting polygons, the problem

of finding the nesting structure of a set of connected components becomes the lake and

islands problem in GIS. In this simplified case, M2 has only one region, that is, R = M2

and Ml~ R.

l ..

Chapter 1. Introduction 4

Bajaj and Dey (1) extracted the nesting structure from a set of simple nonintersecting

polygons. They did not discuss how to find the nesting structures from a set of connected

components. Applications in GIS, graphics, and medical applications use the nesting

structure from more complicated objects. Thus, an algorithm that extracts the nesting

structure from a set of connected components becomes more practical than extracting

nesting structure from simple polygons.

We develop an algorithm to extract the nesting structure from a set of connected com­

ponents by a one pass sweep. We sweep a line L in the plane through all the connected

components, while maintaining the ordering of edges that induced by L. Meanwhile dis­

joint region and subregion sets and nesting sets are created or united together according

to the sets connection information discovered during the sweep. The final nesting sets

capture the nesting structure of the connected components.

1.3 Random Polygon Generation

Interest in generating random geometric objects has increased recently, both in theory [8]

and in applications [4, 13). The generation of random geometric objects has applications

which include testing and verifying the time complexity of computational geometry al­

gorithms.

There are two ways to test computational geometry algorithms. The first involves

the construction of geometric objects that the implementer considers difficult cases for

the algorithm. For example, our polygon-nesting algorithm, based on a plane sweep,

may require special case code for some polygons. It is important to make those polygons

candidates for exposing errors of the algorithm. The second approach to testing involves

executing the algorithm on a large set of geometric objects generated at random. We

expect errors to be exposed if enough different valid inputs are applied to the algorithm.

Chapter 1. Introduction 5

To verify that an implementation of an algorithm achieves the stated algorithm time

complexity is the problem we often have in implementation-oriented computational ge­

ometry research. This is done by timing the execution of the algorithm for various inputs

of different sizes. There are many possible inputs of any given size, and the choice is im­

portant, since an algorithm may take more time on some inputs than others of the same

size. If an average execution time is computed over a set of randomly generated objects

of a given size, the relationship between time and problem size will typically follow a

curve corresponding to its complexity. We can then check this complexity against the

stated algorithm's complexity.

Some research has been done on generating geometric objects at random, such as

Epstein [4]. In order to test and verify the time complexity of our polygon nesting

algorithm we give an algorithm to generate monotone polygons uniformly at random.

1.4 Organization

This thesis proceeds as follows:

Chapter 2 describes the polygon nesting problem and the basic idea of the plane

sweep process. An algorithm is proposed for extracting the nesting structure from a set

of simple nonintersecting polygons.

Chapter 3 describes the basic concepts, the edge functions, and the topological oper­

ators of the quad edge data structure. Then an algorithm to build the quad edge data

structure of connected components by a one pass sweep is proposed.

Chapter 4 adapts the plane sweep process and also gives an algorithm to extract the

nesting structure from a set of connected components.

Chapter 5 describes how to generate random x-monotone polygons. Both a theoretical

Chapter 1. Introduction 6

analysis and an algorithm are given in detail.

The conclusions and directions of future work follow in Chapter 6.

Chapter 2

Polygon Nesting

In this chapter we describe the polygon nesting problem, also known as the island adop­

tion problem, and a plane sweep algorithm to extract the nesting structure of simple

nonintersecting polygons.

2.1 The Background of the Polygon Nesting

To determine the area of a body of water, one must subtract the area of its islands from

the body of water. For this, one must know which island belong to which body of water.

Moreover, islands may contain lakes with islands; we would like to know the entire nesting

structure of the shoreline polygons that separate water and land. The polygon nesting

problem is to determine, for each polygon P in a set of disjoint polygons, which polygon

directly contains P.

We have adapted a plane sweep algorithm (see Preparata and Shamos [14]) to compute

polygon nesting. A sweep algorithm turns a static two dimension problem into a dynamic

one dimension problem, in this case a dynamic interval containment problem. When the

sweep encounters a polygon vertex, the intervals in which the sweep line intersects the

polygon can be created or destroyed and can be split or merged. Keeping track of which

polygons own which intervals allows us to compute nesting information with one pass

through the data. In fact, if the data is clean we can compute topology within the same

7

Chapter 2. Polygon Nesting 8

pass at the cost of additional bookkeeping.

The Problem. Let P be a set of m non-intersecting simple polygons Pi, i = 1, 2, ... , m.

For each polygon I'i,, we define ancestor(f'i) as the set of polygons containing Pi. The

polygon Pk in ancestor(Pi) is called the parent of Pi if ancestor(Pk) = ancestor(Pi)-Pk,

If ancestor(Pi) is empty we say that the parent of f'i is null. Any polygon whose parent

is Pk is called a child of Pk; see Figure 2.1. The nesting structure G of P is an acyclic

directed graph (a forest) in which there is a node ni, corresponding to each polygon Pi

in P, and there is a directed edge from a node ni to nj if and only if Pj is the parent of

Pi. The polygon nesting problem is to compute the nesting structure of a set of simple

non-intersecting polygons.

G:
Tl : T3 : 119 111

P11D .J P1

T4: n12

p n3

ng

l'.'.)

n 1 •n0 P1 2
IS

n10 n1s

(a) A set of simple polygons (b) The answer trees of the polygons

Figure 2.1: The input and the answer of the polygon nesting problem.

In [1] Bajaj and Dey give an algorithm that computes the polygon nesting structure.

We adapted their algorithm and introduced our notch definition (see definition 4.1) so

that the number of notches is the same as the number of subchains. It reduces the

number of subchains induced by Bajaj and Dey's notch definition.

Chapter 2. Polygon Nesting 9

2.2 Extracting Polygon Nesting Structure

2.2.1 Definitions

Let P be a simple polygon with vertices v1 , 112 , ... , Vn in clockwise order. A vertex Vi

is defined as a notch if the two edges that connect with vertex Vi are either both at

the left side of or both at the right side of the vertex Vi. These left side and right side

ordering relations can be defined with respect to the projection on any line, L, but the

x coordinate is selected as the axis of projection and the precise definition of notch is

given as follows.

Definition 2.1 Let vi-+x be the x-coordinate of vertex vi, A vertex Vi is a notch of P

if lli-1-+X S lli-+X and lli+i-+X S lJi-+X or vi_1-+x 2:-: lJi-+X and Vi+i-+X 2:-: lJi-+X.

Between any two consecutive notches vi and llj in the clockwise order, the sequence of

vertices (lli, Vi+l, ... , llj) is called a x-monotone polygonal line, or subchain, of P. Figure 2.2

(a) shows the notches and the monotone polygonal lines in a simple polygon.

Our notch definition is different from that of Bajaj and Dey's. They defined a vertex

1/i to be a notch of P if the inner angle between the edge (Vi-i, Vi) and (vi, lli+i) is larger

than 180°. From this definition the polygonal line between any two consecutive notches

is a convex polygonal line. Then they partitioned the convex polygonal line into convex

chains and further partitioned the convex chains into the x-monotone polygonal lines. But

from our definition we can directly partition a polygon into x-monotone polygonal lines

that make the definition clearer and reduce the total number of subchains. Figure 2.2 (a)

shows that there are only µ1 and µ2 two notches, and 0 1 and 0 2 two subchains induced

by our notch definition. But for the same polygon there are (n/2 - 1) notches induced

by Bajaj and Dey's notch definition, and all the edges become subchains, which is shown

in Figure 2.2 (b).

Chapter 2. Polygon Nesting 10

v 1, v 2: notches (n/2 - 1) notches

(a) Two notches by our notch definition (b) Bajaj and Dey's notch definition

Figure 2.2: The comparison of two notch definitions.

From our notch definition, we get the following lemma.

Lemma 2.1 Let P be a simple polygon with Np notches. The number of subchains Sp

in Pis Np.

Proof. From Definition 2.1 we know that between any two consecutive notches vi and

llj in the clockwise order, there is a subchain. So the number of subchains of Pis Np. □

A vertex or an edge is said to lie inside a polygon if it lies completely inside the

polygonal region enclosed by the boundary of the polygon. A vertex or an edge is said

to be contained in a polygon if it lies on the boundary of the polygon.

Let L be any line drawn through a set of polygons. Let E be the set of edges that

intersect L. The direction of an edge is always from left to right. If an edge ek is parallel

to L, the direction of ek points up or down, whichever is consistent with edges connecting

to ek,

A vertex Vi is said to be above llj if Vi lies geometrically above llj. An edge e1 is said

to be above the edge e2 in E if the point of intersection of L and e1 lies above the point of

intersection of L and e2 • If e1 and e2 have a common vertex through which L passes, e1

Chapter 2. Polygon Nesting 11

L L

Figure 2.3: The above relation of the edges.

is "above" e2 if e1 is at the left of e2 (see edges e5 with e6 and e7 with e8 in Figure 2.3).

L induces a partial order R on the edges in E with respect to the "above" relation.

If L passes through a vertex lli, we define above(vi) as the set of edges whose point of

intersection with L is above Vi, The lowest edge in above(lli) is called the neighbor of

lli. Order R extends naturally to another order O of subchains associated with the edges

in R. If edges e 1 and e 2 of subchains 0 1 and 0 2 intersect L, then C1 is above 0 2 if e 1 is

above e2 •

2.2.2 The Plane Sweep Algorithm

A polygon P consists of subchains Ci, C2 , .. , Ck, We sweep a vertical line L in the plane

through all the polygons, while maintaining the ordering O of the subchains C induced

by L. To maintain this order we stop only at the endpoints of the subchains, while

sweeping from left to right.

First, we break the boundaries of all the polygons into subchains in O(n) time where

n is the total number of vertices of all polygons. Let N be the number of subchains.

Clearly we have 2m :::; N ~ n where m is the number of polygons. We sort only the

Chapter 2. Polygon Nesting 12

endpoints of all the N subchains according to their x coordinates. At each end point we

update the ordering O and detect the parent of the polygon if required. The algorithm

is as follows.

Algorithm

Input: A set of m simple, non-intersecting polygons.

Output: A directed acyclic graph G, called the nesting structure.

Step 1: Detect the endpoints of subchains in all polygons.

Step 2: Sort the x-coordinates of these endpoints in increasing order. If two points

have the same x-coordinates, the one with lower y-coordinate is sorted before the

other. Let this sorted sequence W be v1 , v2, •.• , Vw.

Step 3: Create a node in G for each polygon. Insert the two subchains connected

with the leftmost vertex v1 E W by inserting to the ordering O the two polygon

edges connected to vertex v1 . Then we sweep from left to right, taking steps at

each vertex Va of Was follows.

Step 4: If vertex Va associated with polygon Pi is a left endpoint of a subchain C1.

We can find another subchain C2 connected to Va .

(a) Insert the subchains C1 and C2 into ordering O on L by inserting the two

polygon edges connected to Va in C1 and C2 by a simple binary search. The

search is based on a procedure for determining the position of Va with respect

to the edge inserted by L on a subchain Ci, already present in ordering 0.

Figure 2.4 shows the changes of the ordering 0.

For the later purpose, we keep the last visited edge associated with each sub­

chain Ci in O. This can be accomplished by the following simple bookkeeping.

Chapter 2. Polygon Nesting 13

c1 C1

c2 c2

c3,e1 C3, e4

C4 c6, eal

C5 C7, e a2

C4

C5

L

Figure 2.4: Update ordering O at a left endpoint.

Let the edge associated with Ci initially be e1 , the first edge of the subchain

Ci. We visit the sequence of edges e1 , e2, •.. , ek of Ci, stopping at the first edge

ek that intersects L. We determine the position of Va with respect to ek and

associate edge ek with Ci. Later, when we need to classify any other vertex

with respect to Ci we start from edge ek; Figure 2.4 shows the edge changes

of C3 • Obviously the edges of Ci are visited only once without updating the

ordering O throughout a sweep.

(b) Detect the parent of the polygon associated with Va•

Let e be the neighbor edge of Va found while inserting C1 and_ C2 • Let Pj be

the polygon containing e on the boundary. We determine k, the number of

edges (or equivalently the number of subchains) of the polygon Pj that are in

above(va). Maintaining the ordering of subchains of each polygon separately,

this number can be obtained in O(log Si) time where Si is the number of

subchains in the polygon Pi. If k is odd and Pj =/ Pi, we set Pj to be the parent

of Pi. Otherwise, we set the parent of Pi to be the parent of Pi. Certainly,

parent determination at each update adds up to at most O(log S), where S is

the total number of subchains. From our notch and subchain definitions we

Chapter 2. Polygon Nesting 14

know that S = N, where N is the total number of notches. Thus, the total

time for parent determination is O(log N).

Step 5: If vertex Va associated with polygon ~ is a right endpoint of subchains

C1 and C2 • We delete the subchains C1 and C2 from ordering O on L by a simple

binary search.

Now we prove the correctness of detecting the parent of a polygon.

Lemma 2.2 Let L be any line passing through vertex Va of a polygon Pi. Let the edge

e be the neighbor of Va• The parent of Pi is either the polygon Pj containing e or P/s

parent (possible null).

Proof. If the neighbor edge e of Va is an edge of Pj, which is a parent of Pi, the lemma

holds trivially. Suppose Pj is not the parent of Pi. We claim that Va lies inside polygon

P1 if and only if e lies inside it. Suppose e lies inside Pi and Va does not. Then the vertical

segment between Va and eon L contains a part that is outside of Pi. This is impossible

since e is the neighbor edge of Va- Similarly, we can argue that if Va lies inside polygon

Pi, so does e. Hence e lies inside the same set of polygons, within which Va lies. Hence,

if Pk is the parent of Pi it is a parent of Pj and vice versa. D

Lemma 2.3 Let L be any line passing through vertex Va of a polygon Pi, Vertex Va is

contained in the polygon Pk, k #- i if and only if the number of edges of Pk that are in

above(va) is odd.

Proof. Since any edge demarks the region that 1s "inside polygon P" and "outside

polygon P" on L the lemma is obvious. D

Chapter 2. Polygon Nesting 15

Theorem 2.4 Let L be any line passing through Ila. of Pi. Let edge e of polygon Pk be

the neighbor of Ila. on L. If the number of edges of Pk in above(va.) is odd and k /:- i, then

Pk is the parent of Pi. Otherwise, Pk's parent is the parent of Pi.

Proof. Combine lemmas 2.2 and 2.3. D

Theorem 2.5 The problem of polygon nesting form polygons can be solved in O(n +
N log N) time where n is the total number of vertices in the polygons and N is the total

number of notches of all polygons.

Proof. Detecting the endpoints of the subchains takes O(n) time. Sorting these end­

points requires O(SlogS) time. Updating and determining parent takes O(n + SlogS)

time. By Lemma 2.1, S, the total number of subchains, is N where N is the total number

of notches. Hence, total time spent is O(n + N log N). □

Chapter 3

Topology Building

3.1 Introduction

The topology building technique is especially useful in GIS, graphics, and computational

geometry. GIS, CAD/CAM, and medical applications contain large amounts of spatial

data which users want to analyze and from which they want to extract spatial information.

An important criterion, fundamental to most spatial analysis, is the information about

the relative spatial location among the objects. For instance, earth scientists monitoring

global change want to retrieve all water area in a particular region; airplane designers are

interested in all devices within reaching distance from the cockpit; or doctors, analyzing

X-rays or tomographies, want to determine which organs are affected by a tumor.

We will focus topology building on vector-based geographical information systems.

In GIS, maps are generally represented by separating areas having different properties

by boundary arcs, which are made of line segments, e.g. forest, lakes, roads, agricultural

areas, and some boundaries are joined together geographically. Joined boundaries form

connected components. Retrieving the areas enclosed by the line segments is the basic

step for retrieving the geographical information of the areas with the same property.

One may ask the questions as follows: how can one retrieve a single area within a

certain connected component? What is the relative spatial location of the given line

segments? We solve this problem by constructing the topological structure and building

16

Chapter 3. Topology Building 17

a pointer list for retrieving individual areas.

We assume that no topological information is given in the input data, because most

data are supplied as sets of line segments, called edges. The only way for us to know

the topological structure of the edges is to display them on a computer screen or draw

them on a piece of paper, such as maps. For example, Figure 3.1 shows us the topological

structure clearly. But without the help of this visual drawing we could not know anything

about the topological structure except a set of edges { ei, e2 , ••• , en}.

Figure 3.1: A set of nested connected components and faces .

Before we describe the problem we give the precise definitions of a connected compo­

nent and faces of the connected component.

Definitions. Let G denote an arbitrary planar graph with vertex set V = {v1 , 112 , ••• , vn}

and edge set E. A (planar) embedding of G is a drawing of G in the plane which each

vertex is represented as a point and each edge is represented as a simple curve joining

its endpoints in such a way that no pair of edges intersect except (possibly) at their

end points. An embedding G of G induces a partition of the plane into regions or faces

bounded by the edges of G. We call this the planar subdivision associated with G. If

Chapter 3. Topology Building 18

each of the edges of G is straight line segment (respectively, a sequence of straight line

segments) then G is said to be a straight-edge embedding and the associated subdivision

is a straight-edge subdivision. It is well known that all planar graphs have straight-edge

embeddings; in fact every planar embedding has a topologically equivalent straight-edge

embedding [9] . Hereafter we will restrict our attention to linear embedding.

A path of length k from a vertexµ to a vertexµ' in a graph G = {V,E) is a sequence

(v0, v1, ... , vk) of vertices such that µ = v0, µ' = llk, and (vi-l, lli) E E for i = 1, 2, ... , k.

The path contains the vertices vo, v1 , ... , vk and the edges (v0, v1), (v1, v2), ... , (vk-l, vk)- If

there is a path p from µ to v, we say that v is reachable from µ via p. The connected

components of a graph are the equivalence classes of the vertices under the "is reachable

from" relation.

The graph in Figure 3.1 has five connected components: C1 , C2 , C3 , C4 , C5 and the

connected component C1 has six faces: fu, f12, f13, f14, f1s, f16.

The Problem. Let { e1 , e2 , ••• , en} be a set of n edges. Our topology building problem

is to compute a quad-edge data structure [7] for the input edges as an intermediate data

structure that contains the topological structure of the set of edges, meanwhile setting

up pointer lists for retrieving the connected components and faces of the connected

components.

We build the quad-edge data structure of the input data with a plane sweep method.

The quad-edge data structure may be seen as a variant of the "winged edge" represen­

tation for polyhedral surfaces [2]. In the next section we will give the details of the quad

edge data structure. A good property of the quad edge data structure is that the global

topological structure can be built by simple operations from the local relations of the

edges. This property ensures us that we can construct the data structure correctly by

using the plane sweep method. To construct and modify this data structure a single

topological operator, called Splice, together with a single primitive for the creation of

Chapter 3. Topology Building 19

isolated edges, called MakeEdge, is sufficient. This data structure is general enough to

allow the representation of undirected graphs embedded in arbitrary two-dimensional

manifolds. The definition of the data structure is supplied by Guibas and Stolfi (7].

In Section 3.2 and Section 3.3 we give the brief review of the quad edge data structure.

If you are familiar with the data structure you may skip these two sections and continue

reading from Section 3.4 because we use the same notations that are used by Guibas and

Stolfi (7].

3.2 Edge Functions

In this section we give a precise definition for the informal concept of an embedding of an

undirected graph on a surface. Special instances of this concept are sometimes referred

to as a subdivision of the plane, a generalized polyhedron, a two-dimensional diagram,

or other similar names. They have been extensively discussed in the solid modeling

literature of computer graphics [2, 11]. We want a definition that accurately reflects the

topological properties one would intuitively expect. (For instance, that every edge is on

the boundary of two faces, every face is bounded by a closed chain of edges and vertices,

every vertex is surrounded by a cyclic sequence of faces and edges, etc.). Our intuition

leads the following definition.

Definition 3.1 A subdivision of a manifold Mis a subset S of M partitioned into three

finite collections of disjoint parts: the vertices, the edges, and faces (denoted, respectively,

by V, £, and F), with the following properties:

SL Every vertex is a point of M.

S2. Every edge is a line segment of M.

S3. Every face is homotopic to (deformable to) an open disk of M.

S4. The boundary of every face is a closed path of edges and vertices.

Chapter 3. Topology Building 20

The vertices, edges, and faces of a subdivision are called its elements.

In order to explain the quad edge data structure clearly, we first define the edge

functions and describe the dual of a planar graph. Then we discuss the properties of

edge functions.

3.2.1 Basic Edge Functions

The edge functions, their dual, and the properties of the functions are given by Guibas

and Stolfi [7]. Here we only give a brief description in order to understand the quad edge

data structure.

In Figure 3.2, on any disk D of a manifold there are exactly two ways of defining a

local "clockwise" sense of rotation; these are called the two possible orientations on D.

There are also exactly two consistent ways of defining a linear order among points of a

line l; each of these orderings is called a direction along l. A directed edge of a subdivision

P is an edge of P together with a direction along it. Since directions and orientations

can be chosen independently, for every edge of a subdivision there are four directed and

oriented edges. Observe that this is true even if the edge is a loop or is incident twice to

the same face of P. Because in many applications, that we are going to discuss including

ours, all manifolds to be handled are orientable. This means we can assign a specific

orientation to each edge, vertex, and face of the subdivision so that any two incident

elements have compatible orientation. Because we can pre-orient the edges we give a

simplified version of the edge functions. For the details for non-orientable manifolds,

please see Guibas and Stolfi's article [7].

For any oriented and directed edge e we can define its vertex of origin, eOrg, its

destination, eDest, its left face, eLeft, and its right face eRight. We define also the

symmetric of e, called eSym, as being the same undirected edge with the opposite direction

Chapter 3. Topology Building 21

but the same orientation as e.

Traversing the boundary of a disk D around a vertex v in the counterclockwise di­

rection establishes a cyclical ordering of the edges. We obtain what is called the ring of

edges out of v, shown in Figure 3.2. Note that if e is a loop, it will occur twice in the

ring of edges out of e. To be precise, both e and eSym will occur once each: since the

manifold around v is like a disk, e will appear only once in each circuit.

Figure 3.2: The ring of edges out of a vertex.

We can define the next edge with same origin, eOnext, as the edge immediately fol­

lowing e (counterclockwise) in this ring, such as d in Figure 3.2 is the eOnext. Similarly,

given an edge e we define the next counterclockwise edge with same left face, denoted by

eLnext, as being the first edge we encounter after e when moving along the boundary of

the face F = eLeft in the counterclockwise sense as determined by the orientation of F.

The edge eLeft is oriented and directed so that eLnextLeft = F (including orientation).

3.2.2 Duality

The dual of a planar graph G can be informally defined as a graph G* obtained from

G by interchanging vertices and faces while preserving the incidence relationships. The

Chapter 3. Topology Building 22

definition below extends the intuitive concept to arbitrary subdivision.

Definition 3.2 Two subdivisions Sand S* are said to be dual to each other if for every

directed and oriented edge e of either subdivision there is another edge eDual of the other

such that

Dl. (eDual)Dual = e.

D2. (eSym)Dual = (eDual)Sym.

D3. (eLNext)Dual = (eDual)Onext- 1•

Equation D3 states that moving counterclockwise around the left face of e in one

subdivision is the same as moving clockwise around the origin of eDual in other sub­

division. To see why, note that the edges on the boundary of the face F = eLeft, in

counterclockwise are

{ e, eLnext, eLnext2
, ••• , eLnextm = e} (3.1)

for some m ? 1. This path maps through Dual to the sequence

{eDual, (eDual)Onexr1, (eDual)Onexr2, ... , (eDual)Onexrm = eDual}:

all edges coming out of the vertex v = (eDual)Org of S*, in clockwise order around v.

We can therefore extend Dual to vertices and faces of the two subdivisions by defining

(eLeft)Dual = (eDual)Org and (eOrg)Dual = (eDual)Left. Equations D2 and D3 imply

that any two edges that differ only in direction will be mapped to two versions of the same

undirected edge. The Dual establishes a correspondence between £ and £*, between V

and V*, and between :F and :F*, such that incident elements of S correspond to incident

elements of S* and vice versa.

The edge eRot is called the rotated version of e; it is the dual of e, directed from

eRight to eLeft and oriented so that moving counterclockwise around the right face of

Chapter 3. Topology Building 23

e corresponds to moving counterclockwise around the origin of eRot. Then we have

(eRot)Rot = eSym instead of e.

3.2.3 Properties of Edge Functions

The functions Rot, and Onext satisfy the following properties:

El. eRot4 = e.

E2. eRotOnextRotOnext = e.

E3. eRot2 = eSym =/. e.

E4. e E £S iff eRot E £S*.

E5. e E £S iff eOnext E £S.

A number of useful properties can be deduced from these, as for example

eRor1
- eRot3

eOnexr1 eRotOnextRot

and so forth. For added convenience some derived functions are introduced. By analogy

with eLnext and eOnext, for a given e we define the next edge with same right face,

eRight, and with same destination, eDnext, as the first edges that we encounter when

moving counterclockwise from e around eRight and eDest, respectively. These functions

satisfy also the following equations:

eLnext

eRnext

eDnext

eRot-1OnextRot

eRotOnextRor1

eSymOnextSym.

The direction of these edges is defined so that eLnextLeft = eLeft, eRnextRight =
eRight, and eDnextDest = eDest. Note that eRnextDest = eOrg, rather than vice versa.

Chapter 3. Topology Building

eDnext:

eSym

.. --~ ·- .. . AS!.· :
eRot :

eRprev ~

eSym

t-.. .
·-........ -······~·

1 >--. -· · .
eRot :

Figure 3.3: The edge functions .

24

By moving clockwise around a fixed endpoint or face, we get the inverse functions, defined

by

eOprev - eOnexr1 = eRotOnextRot

eLprev - eLnexr1 = eOnextSym

eRprev - eRnexr1 = eSymOnext

eDprev eDnexr1 = eRor1OnextRor1

It is important to notice that every function defined so far can be expressed as the

composition of a constant number of Rot and Onext operations, independently of the size

or complexity of the subdivision. Figure 3.3 illustrates these various functions.

Chapter 3. Topology Building 25

3.3 Quad Edge Data Structure and Topological Operators

Now we may have this question: do these edge functions accurately capture all the

topological properties of a subdivision? The authors of the article [7] gave us the answer.

In order to describe the result we first give a definition.

Definition 3.3 An edge algebra is an abstract algebra (E, E*, Onext, Rot) where E and

E* are arbitrary finite sets and Onext and Rot are functions on E and E* satisfying

properties El - E5.

The result is that the topology of a subdivision is completely determined by its edge

algebra, and vice versa.

3.3.1 Quad Edge Data Structure

We represent a subdivision S (and simultaneously a dual subdivision S*) by means of

the quad edge data structure, which is a natural computer implementation of the corre­

sponding edge algebra. The edges of the algebra can be partitioned in groups of four:

each group consists of the two directed versions of of an undirected edge of S plus the

two versions of its dual edge. The group containing a particular edge e is therefore the

orbit of e under the subalgebra generated by Rot. To build the data structure we select

arbitrary canonical representative. from each edge group. Then any edge e can be writ­

ten as e0Rotr, where r E {O, 1, 2, 3} and e0 is the canonical representative of the group

containing e.

The group of edges containing e is represented in the data structure by one edge record

e, divided into four parts e[O] through e[3]. Part e[r] corresponds to the edge e0 Rotr, see

Figure 3.4.

Chapter 3. Topology Building 26

~ ' ' ' I j

I

e[2] I

' j
' • e[3] e[l]~

'
' e[O] I
I

, ' ~

Figure 3.4: Edge record showing Next links.

An edge e = e0Rotr is represented by the tuple (e0 , r), called the edge ref ere nee. We

may think of this tuple as a pointer to the "quarter-record" e[r].

Each part e[r] of an edge record contains two fields, Data and Next. The Data field

is used to hold geometric and other nontopological information about the edge e0Rotr.

This field neither affects nor is affected by the topological operation that we will describe,

so its contents and format are entirely dependent on the application.

The Next field of e[r] contains a reference to the edge e0RotrOnext. Given an arbitrary

edge reference (e, r), the two basic edge functions Rot and Onext are given by the formulas

(e,r)Rot (e, r + 1),

(e, r)Onext - e[r].Next, (3.2)

Where the r is computed modulo 4. In the first expression in 3.2, this corresponds to

rotate e 90° counterclockwise, we advance to the next part of the Next field of e[r). The

second expression says that applying the Onext function to e[r] we get the Next field of

e[r]. From these formulas it follows also that

(e, r)Sym

(e,r)Ror 1

(e, r + 2),

(e, r + 3),

(e, r)Oprev - (e[r + l].Next)Rot,

(3.3)

Chapter 3. Topology Building

and so forth.

The actual quad edge data structure we use for each e(r] is as follows.

typedef struct Qedge {

Point *data;

} Qedge;

struct Qedge *next;

int mark;

int tmp;

I* data field associated with e.Org *I

I* reference to next edge of ring *I

I* marker for transversal *I

I* reserved for future use *I

27

Where the field data is a structure Point that simply consists of the x and y coordi­

nates of the vertex; the fields mark and tmp are used by our display routines to show the

quad edge data structure.

Figure 3.5 illustrates a portion of a subdivision and its quad edge data structure. We

may think of each record as belonging to four circular lists, corresponding to the two

vertices and two faces incident to the edge.

The quad edge data structure contains no separate records for vertices or faces; a

vertex is implicitly defined as ring of edges, and the standard way to refer to it is to

specify one of its outgoing edges. This has the added advantage of specifying a reference

point on its edge ring, which is frequently necessary when the vertex is used as a param­

eter to topological operations. Similarly, the standard way of referring to a connected

component of the edge structure is by giving one of its directed edges. In this way, we are

also specifying one of the two dual subdivisions and a "starting place" and "starting di­

rection" on it. Therefore a subdivision referred to by the edge e can be "instantaneously"

transformed into its dual by referring to eRot instead.

Chapter 3. Topology Building 28

a

2 b

g
H

G C

f 4
d

e

(a) A subdivision of a plane (b) The data structure for the subdivision (a)

Figure 3.5: The subdivision and its quad edge data structure.

3.3.2 Basic Topological Operators

Two basic topological operators are sufficient to construct and modify the quad edge

data structure.

The first operator is denoted bye~ MakeEdge[org, dest]. It takes two points org and

dest as parameters, and returns an edge e of a newly created data structure representing

a subdivision of the plane (see Figure 3.6), where org and dest are the end points of a

line segment. By assigning org to the eOrg and dest to eDest, we set up the direction

of the new quad edge e. Because e is the only edge of the subdivision its left and right

faces are closed to be one face. Then the origin points of left and right faces are set to

be null. Apart from the orientation and direction, e is the only edge of the subdivision

and will not be a loop; then we only need to set up the Onext rings of e. Those are

eOnext = e, eSymOnext = eSym, eRotOnext = eRor1
, and eRor1Onext = eRot.

The second operator is denoted by Splice[a, b], takes two edges a and b as input

Chapter 3. Topology Building

,, - •' .
' ' ' ' ' .

Figure 3.6: The result of MakeEdge.

29

parameters and returns no value. This operation affects the two edge rings aOrg and

bOrg and, simultaneously, the two edge rings aLeft and bLeft. These rings are defined in

section 3.4.1. In each case,

(a) if the two rings are distinct, Splice will combine them into one;

(b) if the two are exactly the same ring, Splice will break it into two separate pieces;

The parameters a and b determine the place where the edge rings will be cut and

joined. For the rings aOrg and bOrg, the cuts will occur immediately after a and b (at

aDest and bDest); for the rings aLeft and bLeft, the cut will occur immediately before

aRot and bRot. Figure 3. 7 illustrates this process for one of the simplest cases, when a

and b have the same origin and distinct left faces. In this case Splice[a, b] splits the

common origin of a and bin two separate vertices and joins their left faces. If the origins

are distinct and the left faces are the same the effect will be precisely the opposite: the

vertices are joined and the left faces are split. Indeed, Splice is its own inverse: if we

perform Splice[a, b] twice in a row we will get back the same subdivision.

In the edge algebra, the Org and Left rings of an edge e are the orbits under Onext

Chapter 3. Topology Building 30

,---~~/
2 ~

F=G

(a) aOrg = bOrg, aLeft-::/- bLeft . (b) aOrg # bOrg,aLeft = bLeft .

Figure 3. 7: The effect of Splice: Trading a vertex for a face.

of e and eOnextRot, respectively. The effect of Splice can be described as the con­

struction of a new edge algebra A' = (E, E*, On ext', Rot) from an existing algebra

A= (E, E*, Onext, Rot), where Onext' is obtained from Onext by redefining some of its

values. The modifications needed to obtain the effect described above are quite simple. If

we let a = aOnextRot and ;3 = bOnextRot, basically all we have to do is to interchange

the values of aOnext with bOnext and o:Onext with ;30next. The apparently complex

behavior of Splice now can be recognized as the familiar effect of interchanging the next

links of two circular list nodes.

aOnext' - bOnext,

bOnext' - aOnext; (3.4)

o:Onext' - ;30next,

;30next' - o:Onext,

Note that these equations reduce to Onext' = Onext if b = a. Since aOnext' =

Chapter 3. Topology Building 31

bOnext, to satisfy axiom E5 we must have a E E iff bOnext E E, which is equivalent to

a E E iff b E E, where Eis defined in Definition 3.3. We will take this as a precondition

for validity of Splice(a, b].

The following theorem proves that these manipulations are correct (for the proof

please see article (7)).

Theorem 3.1 If A is an edge algebra, a and b are both primal or both dual, then the

algebra A' obtained by performing the operation Splice [a, b] on A is also an edge algebra.

This theorem guarantees to build a valid quad edge data structure by adding one edge

at a time. Based upon this theorem we have adapted a plane sweep algorithm (14] to

compute a quad edge data structure from a set of line segments. When the sweep-line

encounters a vertex, the edges associated with this vertex can be added or deleted from

an array in a constant time and can be spliced according to the connectivity of the edges.

Keeping track of this local connection information allows us to build up the quad edge

data structure. In the next section we will describe how to construct the quad edge data

structure by a one pass sweep.

3.4 Topology Building by a One Pass Sweep

The Org and Left rings of an edge e are the orbits of e under Onext and eOnextRot,

respectively. The process of topology building is to construct a new edge algebra A' =
(E, E*, On ext', Rot) from an existing algebra A = (E, E*, On ext, Rot), where On ext' is

obtained from Onext by applying the Splice operation on A in certain order. Since

Splice does not affect Rot we only need to construct the Org ring of e correctly. The

Left ring comes for free by duality. In another words, the Org ring of an edge e is a

Chapter 3. Topology Building 32

sequence of edges that satisfies the following equation for some m ~ 1.

{ e, eOnext, eOnext2
, ••• , eOnextm = e} (3.5)

The basic idea to build the quad edge data structure for a connected component by

a one pass sweep is to make use of the properties of the edge functions and the operators

that can modify the Org ring of an existing quad data to build up the entire structure

correctly. Splice gives us the tool to construct the quad edge data structure with only

local information.

3.4.1 Constructing the Org Ring of an Edge

We start building an Org ring in the quad edge data structure by calling MakeEdge[] for

e, the first edge we encounter. Now the Org ring of edge e consists of only itself, that is,

eOnext = e, see Figure 3.6. From the edge functions (see Figure 3.3) we know that the

edges in the Org ring of edge e are the edges that have the same origin vertex as edge

e and different left faces, see Figure 3.8 (a). These edges are connected to be a cycle in

their quad edge data structure; see Figure 3.8 (b).

Let the current Org ring of edge e be {eOnext, eOnext2, ••• , eOnexti = e}, for i ~ 1.

Let aj = eOnexti for j = 1,2, ... ,i, then the Org ring of e is {a1 ,a2 , •• ,,ai = e} with

the same origin vertex eOrg. For a newly created edge b, if eOrg = bOrg, which means

edges e and bare connected, we get the new Org ring of edge e by doing the operation

Splice[e, b], see Figure 3.9. Since Splice does not affect the Rot function, we get the

correct Left ring of edge e after we construct the Org ring of edge e.

In order to construct the Org rings of the edges consistently we assign the direction

of the edges as follows. Let a and b be the two end points of an edge e. Let (a.x, a.y) and

(b.x, b.y) be the x- and y- coordinates of the endpoints a and b. The direction of edge e

Chapter 3. Topology Building 33

(a) The Org ring of edge e. (b) The quad edge data structure of (a).

Figure 3.8: The Org ring and its quad edge data structure.

is from a to b if a.x < b.x or a.y < b.y if the a.x = b.x. If the direction of edge e is from

a to b, we say that endpoint a of edge e is the origin of edge e and endpoint b of edge e

is the destination of edge e. According to this direction assignment there are three cases

that need to be handled to build up Org rings; see Figure 3.10.

(a) The edge e and b have the same origin vertex, that is, bOrg = eOrg. By doing the

operation Splice[e, b] we get the new Org ring of edge e, see Figure 3.10 (a).

(b) The destination vertex eDest of edge e is connected with bOrg of edge b, see

Figure 3.10 (b). We know that the edge b is on the Org ring of edge eSym.

We simply do the operation Splice[eSym, b] and the Org ring of edge eSym is

constructed correctly. By duality, the Org ring of edge e is constructed correctly.

(c) The edge b and edge e have the same destination vertex eDest of edge e, see

Figure 3.10 (c). In this case we find that both edge e and edge bare on the Org

ring of edge eSym. By doing the Splice operation on eSym and bSym, that is,

Chapter 3. Topology Building 34

Figure 3.9: The result of Splice[e, b].

(a) (b) (c)

Figure 3.10: The connection cases.

Splice[eSym, bSym], we get the Org ring of edge eSym at this vertex.

By constructing the Org ring of the edges step by step we get the entire quad edge

data structure of the connected components. The following section will give the detailed

description of the algorithm.

3.4.2 Algorithm

Any face of a connected component is enclosed by a chain of edges. In the quad edge

data structure this chain of edges satisfies Equation 3.1. In another words, the edges of

Chapter 3. Topology Building 35

the chain are within the same Left ring. If we get an edge eon the chain we can retrieve

the face by following the Left ring of edge e in the quad edge data structure. So we define

a handle of a face of a connected component to be a pointer pointing to the quad edge

data structure of an edge e that is on the face.

Note that there may be more than one handle for a face of a connected component

because of the way we create the handles in Step 3 (a)-(2). But this will not affect the

correctness. We get the same face by retrieving the Left ring of these handles.

Input: A set of embedded line segments forms a connected component that has n

vertices.

Output: A list of handles of faces of the connected component.

Stepl: Sort the vertices of all edges and create an event list for sweeping, breaking ties

according to the following rules.

(a) sort the x-coordinates of the vertices of edges

(b) If two vertices have the same x-coordinate, the one with higher y-coordinate is

sorted before the other.

(c) If two vertices are the same, the one that is the destination vertex of an edge is

sorted before the origin of another edge.

(d) If the two vertices are the same and have the same type, such as they are the origin

points or the destination points of two edges, the vertex of the edge that is on the

left side of another edge is sorted before the other.

Figure 3.11 shows us the order of the vertices associated with the edges. Copies of v are

vertices of edge e1, e2, e3, e4 and b1, b2, b3, b4. Their order after sorting is (e1, e2, e3, e4, b1,

Chapter 3. Topology Building 36

y

b2 , b3 , b4). Let this sorted list W be v1 , v2 , ••• , lln, where n is the total number of the

vertices.

The time of this sorting process is O (n log n).

Step 2: Create the first quad edge data structure f e by applying MakeEdge to the edge

e associated with vertex v1 • Create the first handle of the face associated with edge e by

setting a pointer pointing to f e and mark edge e to be added. Store f e and edge e in

the record SA VE.

Step3: Sweep a line from left to right, taking steps at each vertex Vi of W.

(a) If Iii is the origin of edge b: We create the quad edge data structure bq of edge b by

MakeEdge[b]. Mark edge b as added. Check if edge b is connected with edge e that

is stored in the record SA VE.

(1) If edge bis connected with edge e.

If the origin of e is connected to Vi, the origin of edge b, then we perform the

operation Splice(e, b].

Chapter 3. Topology Building 37

If the destination of e is connected with Vi, the origin of edge b, we do operation

Splice[eSym, b].

(2) Else edge b is not connected with edge e. We create a handle of the quad

edge data structure record of b and insert this handle into the handle list.

Substitute e and fe with band bq.

(b) If vi is the destination of edge b: We get the quad edge record bq of b that is created

when sweeping at the origin of b. Check if edge b is connected with edge e that is

stored in record SA VE.

If edge b is connected with edge e then by our sorting procedure Step 1, the

destination of e is connected with vi, the destination of edge b. We do operation

Splice[eSym, bSym] to construct the Org ring of the edges.

After the Splice operation or if edge bis not connected with edge e that is stored

in record SAVE, we substitute e and fe with b and bq in the record SAVE and

mark the edge bas removed.

The time of this algorithm is mainly spending on sorting the vertices in O (n log n).

Because we do not need to maintain the vertical relations of the edges, the whole sweeping

process is linear O(n). So the time complexity of this algorithm is O(nlogn).

3.5 Conclusion

In this chapter we gave a brief review on the basic concepts, the edge functions, and the

topological operators of the quad edge data structure. Based upon the edge functions and

the topological operators we propose a plane sweep algorithm to construct the quad edge

data structure for connected components of a set of line segments. The basic concept of

the algorithm is to construct the quad edge data structure by adding an edge each step

Chapter 3. Topology Building 38

when sweeping across the connected components and applying the appropriate Splice

operation on the connected edges. The time of the algorithm is O(nlogn) .

Chapter 4

Connected Component Nesting

As we mentioned in section 3.1, many objects in GIS are connected components instead

of simple polygons and there are many other applications that need the nesting structure

among connected components. In Chapter 2 we have studied the polygon nesting prob­

lem. In this chapter we describe the connected component nesting problem, and propose

an algorithm to extract the nesting structure of connected components.

4.1 Introduction

Unlike the polygon nesting problem for which the topological structure of the input

data is given, we assume that no topological structure is given in the input data in the

connected component nesting problem.

Because of our application background we restrict our attention to straight-line em­

beddings of planar graphs. Each connected component is called a region and each face

that is bounded by a closed chain of edges and vertices, is called a subregion of the region.

Problem. Let C be a set of m connected components Ci in a straight-line planar graph,

for i = 1, 2, ... , m; Let SCi be the set of ki subregions SCii, for j = 1, 2, ... , ki; We define

ancestor(Ci) to be the set of connected components that have a subregion SCij containing

Ci. The component Ck is called the parent of Ci if ancestor(Ck) = ancestor(Ci) - Ck. If

39

Chapter 4. Connected Component Nesting 40

G:
Tl : II 1'2:

sn11 sn13

sn31

Cl

(a) The connected components (b) The nesting structure of the components

Figure 4.1: The connected components and the nesting structure.

ancestor(Ci) = 0 we say that the parent of Ci is null. Any connected component whose

parent is Ck is called the child of Ck; see Figure 4.1. As in the polygon nesting problem,

the nesting structure G of C is an acyclic directed graph (a forest of trees) in which there

is a node ni, corresponding to each connected component Ci in C, and there is a node

snij, corresponding to each subregion SCij in the connected component Ci. There is

a directed edge from a node ni to a node snkj if and only if a subregion sckj of ck

contains the region Ci and Ck is the parent of Ci. The undirected edges of Figure 4.1 (b)

represent the regions with their subregions. The connected components nesting problem

is to compute the nesting structure of a set of connected components. Figure 4.1 (b)

shows the nesting structure forest of the connected components.

A region is represented by a region number and the leftmost point of the connected

component. The subregion is represented by a subregion number and the leftmost point

of the subregion. The region data structure is

typedef struct region {

Chapter 4. Connected Component Nesting 41

V V
V

V

(a) (b) (c) (d)

Figure 4.2: The left-edge e1 and right-edge e2•

int *mun; I* the region number assigned *I
Point *leftmost; I* the leftmost point of this region *I

} Region;

The subregion data structures is

typedef struct subregion {

int *num; I* the subregion number assigned *I
Point *leftmost; I* the leftmost point of this subregion *I

} SubRegion;

Definitions Let 111 and 112 be the two vertices of an edge e. We say that 111 is the begin

point of e if the x-coordinate of 111 is less than the x-coordinate of 112 ; or if 111 and 112 have

the same x-coordinate but 111 has smaller y-coordinate. Then the other vertex 112 is called

the end point of e. We say that an edge e is on the region R of a connected component

Ci if e is an edge of which Ci consists. Each edge e is on the boundary of two regions or

two subregions. We call these two regions or subregions the left-region and right-region

of e according to the direction of e that is from begin point to end point. The edge data

Chapter 4. Connected Component Nesting

structure consists of two fields as follows.

typedef struct edge {

Point *begin;

Point *end;

} EDGE;

I* the begin point of this edge *I

I* the end point of this edge *I

42

Let 11 be a begin point of edge e. We say that edge e is a left-edge if no edge that

takes 11 as a begin point lies to the left of e. And edge e is a right-edge if no edge that

takes 11 as a begin point lies to the right of e. The edge e in Figure 4.2 (a) is both a

left-edge and right-edge. The edge e1 is left-edge and e2 is a right-edge in Figure 4.2 (b).

This definition is the same when the vertex 11 is an end point of edge e, see Figure 4.2

(c) and (d).

4.2 Disjoint Sets and Notches

4.2.1 Disjoint Sets

Because the sweep algorithm transforms a static two dimension problem into a dynamic

one dimension problem, we create disjoint sets of regions, subregions and, later, nest­

ing sets before we know their connection information. When connection information is

discovered during the sweep, these disjoint sets are united together to represent the con­

nected components. In Figure 4.3 (a) we do not know any connection information of the

regions and subregions, such as regions R2 and R7 and subregions sr21 and sr71, before

the sweep line reaches the vertex r. Before reaching vertex r we create a set to represent

each possible region R or subregion srii· Depending on the information that we have

at this stage, we also create a list of nesting sets, such as nest3 ~ nest1 which indicates

Chapter 4. Connected Component Nesting 43

that R3 is nested within R1 and nests ~ nest2 which indicates that R2 nests Rs, etc.

After the sweep line reaches vertex T, we know that R1 is connected with R3 and R2 is

·connected with R7 • According to the connection information R1 is united with R3 to be

one region and R2 is united with R7 to be one region. The associated subregions and the

nesting sets of the united regions are united accordingly. After the union operation, the

regions, subregions, and nesting sets are shown in Figure 4.3 (b).

--+-- -···········......... ·····.:
······-

·· -· ···-··

.· •-... .•·
··· ·············:···-···· ·--..

·····- ···--- -

.......... __
•-..... --··

········- ············

L
sweeping direction

(a) The region and subregion sets at point v

..... ... i ... __
· · · ·······•-■•••••••• --------
···· ··-... ·······

sweeping direction L

··-..
·········· ·····

········

... --·······---------·

(b) The region and subregion sets at point T

Figure 4.3: The idea of using disjoint sets to extract the nesting structure.

The nesting sets created with the region and subregion sets are not shown in Figure 4.3

because the nesting sets are described in detail following. The nesting set is represented

by a tree with pointers from child to parent, and each nesting set consists of the region

and subregion information of the connected component and has a pointer parent pointing

to its parent nesting set, and a flag indicating the type of this set because the union

operation of the nesting set may change the set's type. If the region or the subregion

that the set represents is truly a parent of its children sets, the flag is set to be 0, which

Chapter 4. Connected Component Nesting 44

means this set is the region representative set, or to 2, which means this set is a subregion

representative set. Otherwise is set to be 1, indicating that this set is united with other

set and the parent of this set will be the parent of this set's children. The nest data

structure is

typedef struct nest {

int *flag; I* the set property flag= 0, 1, or 2 *I
struct nest *parent; I* the parent of this set *I
Region *region; I* the region on which this set is *I
SubRegion *subregion; I* the subregion on which this set is *I

} Nest;

Two disjoint-set operations are used. Make...set creates the disjoint region, subregion,

and nesting sets. Union unites two region set, or subregion sets, or nesting sets and make

them consistent with the connection information among these sets.

How to extract the nesting structure from connected components by the two disjoint­

set operations will be discussed in detail in Section 4.3.3.

4.2.2 Notches

Because connected components have more complicated structure than simple polygons,

a new notch definition is needed.

Definition 4.1 A vertex Iii is a notch of C

(a) if vertex Iii is taken as a begin point by all the edges that intersect at vertex lli;

(b) if vertex Iii is taken as an end point by all the edges that intersect at vertex llij

Chapter 4. Connected Component Nesting 45

(a) (b) (c)

Figure 4.4: Vertex v is a notch.

(c) if there are at least three edges are connected through Vi.

In all these parts of Figure 4.4, v is a notch. Notice that in cases (a) and (b) the

number of edges may be only one. We can see that between any two neighboring notches

(vi, vj), the sequence of vertices (vi, lli+i, ... , llj) is a x-monotone chain, we call these

x-monotone chains simple lines; see Figure 4.5.

The simple line is represented by a list of edges. The data structure is

typedef struct line {

EDGE *edge;

struct line *next;

} LINE;

I* one edge of this simple line *I

I* the pointer to the next edge *I

We do not stop only at the notches such as in Section 2.2.2 in our sweep algorithm.

Because we have assumed that the input data does not give us any connection information

of the edges, we get nesting information simultaneously with the connection information.

If by having the edge connection information we can spend less than 0(N log N) time

to get the notches and simple lines, where N is the number of notches of connected

Chapter 4. Connected Component Nesting 46

y

X

Figure 4.5: vi, ... , v9 are notches and s1 , ... , s12 are simple lines.

components, it maybe is worthwhile to preprocess the input data and use notches instead

of all vertices in the plane sweeping algorithm.

Because all the edges of a simple line have the same region, subregion, and nesting

set, one can make simple modifications to our algorithm to substitute vertices and edges

with notches and simple lines while sweeping to increase the efficiency of the algorithm

because the all the edges of a simple line have the same region, subregion, and nesting set.

For example, after we build the quad-edge data structure for the connected components,

we can separate each face and reduce the connected component nesting problem to the

polygon nesting problem. But we have more efficient way to extract the nesting structure

from the connected components. We can get the nesting structure of the connected

components while we build the quad edge data structure from them. Because no edge

connection information is available at this moment, our algorithm can work with only

vertices and edges.

Chapter 4. Connected Component Nesting 47

4.3 Plane sweep

As in Section 2.2.2, we sweep a line L through all the connected components, while

maintaining the ordering O of the edges induced by L. The difference is that we also

create and maintain a list of disjoint dynamic sets of regions, subregions, and nesting

sets, for extracting the nesting structure of the connected components. To maintain

this ordering and the disjoint sets we stop at endpoints of each edge of the connected

components, while sweeping from left to right.

When sweeping from left to right, the sweepline L encounters each vertex in the input

data once. Depending on whether the vertex is a begin point or an end point of an edge,

new region, subregion, and nesting sets may be created or existing region, subregion,

and nesting sets may be united. For a begin point of an edge we update the ordering 0,

region, subregion, and nesting sets in the following ways.

4.3.1 Update at the Begin Point vi of Edge e

There are six cases to be handled when the sweep algorithm encounters the begin point

Iii of edge e.

Case (a): Iii is a vertex such that no edge connected to e through Iii has been encountered.

A new region Re is created for e. If more than one edge takes Iii as the begin point

and e is not a right-edge, (which means that there is at least one edge that takes Iii as a

begin point and lies at the right of edge e), a subregion SRe is created for e. We insert

e into ordering O on L by a simple binary search. Simultaneously, we get the above and

below neighbor edges of e, say a and b. (The "above neighbor" of e is the lowest edge

that is above e in above(vi) and the "below neighbor" of e is the highest edge that is

below e in above(Vi), see Figure 4.6 (a).) A new nesting set neste is created by assigning

Chapter 4. Connected Component Nesting

L

(a)

L

(d)

V <t;
L

(b)

L

(e)

·.
L

(c)

•... . .. ":::.:::.::···

L d \:.::·· .•

L
(f)

..

Figure 4.6: Vertex 11 is a begin point of edge e.

48

If a's region= b's region then we know that a's right-region must equal b's left-region.

We take the nesting set nesta, representing the subregion SRa, to be the parent of Re

by creating a pointer from neste to nesta. We also assign SRe or null to the subregion

field of neste, and set the flag of neste to be 0. The left-region of edge e is set to be the

right-region of edge a and the right-region of edge e is set to be the left-region of edge b.

Now we store neste, Re, along with the edge e in the ordering 0.

If a 's region =/- b's region, we detect the parent nesting set of neste in the following

way. Let Xa be the x-coordinate of the leftmost point of Ra and Xb be the x-coordinate

of the leftmost point of Rb. We assume that Xa ~ Xb. We take the parent nesting set of

the nestb as the parent of neste. Because there are no other edges between a and e and

Chapter 4. Connected Component Nesting

(a)

',
.. \··•

•)
.. -····· (
. ·····1

..
··- '•···· --....... •·· ··•,...... ..

• ••u ••••••••o•••••••• •• • • ••

(b)

Figure 4.7: The nesting cases.

49

(c)

b and e there are only three situations under this condition. The first one is that nesta.

and nestb have the same parent. The second one is that nesta. nests nestb. The third one

is that nestb nests nesta.. Figure 4. 7 shows these three situations.

After detecting the parent nesting set we assign the appropriate region and subregion

data to the edge and nesting set of e. Then we continue sweeping forward.

Case (b): Vi is a vertex such that edge e is connected with its above neighbor edge f

that takes vi as a begin point, see Figure 4.6 (b).

(1) If e is not a right-edge. Then e inherits the region and the parent information

from f. Because edge e is on the boundary of a new subregion we create a new

subregion S Re for e and set S Re to be the right region of e. According to their

region, subregion, and nesting set information we create a new nesting set neste for

e and the set flag is set to be 2.

(2) If e is a right-edge then e inherits the region and the parent information from f.

Chapter 4. Connected Component Nesting 50

Because e is on the boundary of left region of left-edge g we set e's right-region =
g's left-region. With these region, subregion, and nesting set data we create a new

nesting set neste for e but no new subregion set is created.

Case (c): Vi is a vertex such that edge e is connected to only one edge f and f takes Vi

as its end point; see Figure 4.6 (c). This is the simplest case. The edge e simply inherits

all the region, subregions, and nesting set from f. There is no new set created.

Case (d): Vi is a vertex such that edge e is connected with an edge f that takes Vi as

its end point; edge e is a left edge, and edge f is the only edge that takes v as its end

point, see Figure 4.6 (d). Edge e inherits the region and the nesting set information from

edge f. Now edge e and edge f have the same left-region, but different right-regions

because e is on a new subregion boundary. Then we create a new subregion fore and set

the left-region of e to be the new subregion. From the region, subregion, and the nesting

set we create a new nesting set neste for e and set the flag of neste to be 2.

Case (e): 1/i is a vertex such that edge e is connected with an edge f that takes Vi

as its end point; edge f is a right edge, and edge e is the only edge that takes 11 as its

begin point, see Figure 4.6 (e). Edge e inherits the region and the nesting set from f.

But e and f have different left-regions because e has the same left-region as that g has.

Because no new region and subregion are encountered we simply let edge e carry region,

left-region, right-region, and nesting set data.

Case (f): Vi is a vertex such that edge e is connected with a edge f that takes Iii as its

end point; edge f is a right-edge, and edge e is a left-edge, see Figure 4.6 (f). In this

case, edge e inherits only the region and nesting set from f because the e's left-region

and right-region are different from those of f's. Edge e's left-region is the left-region of

g, and right-region is a new subregion. So we create a new subregion fore and with these

data we make a new nesting set neste for edge e.

Chapter 4. Connected Component Nesting 51

.............. ·
····_·.:::.::? \:

V

. .\ ··
•

(a) (b) (c)

Figure 4.8: The cases of a notch 11 as the end point of edge e.

In order to get the four left-edges and right-edges at vertex vi, which is currently

encountered while sweeping, we simply keep four extra records for vertex 1Ji and update

these records while sweeping.

4.3.2 Update at the End Point vi of Edge e

When the sweep encounters the end point Vi of an edge e, there are two major situations.

In the first one, there are edges that take Vi as begin point; see Figure 4.8 (a) and (b).

In the second one, no edge takes 1/i as its begin point, see Figure 4.8 (c). In these two

situations we have three cases that we handle differently. But in common we delete edge

e from the ordering O on L by a simple binary search.

Case (a): Vi is a vertex such that no edge connected toe through Vi has been encountered.

Because e is a left-edge we get e's region, subregion, and nesting set data; then delete e

from ordering O on L by a simple binary search.

Case (b): vi is a vertex such that edge e is connected with its above neighbor edge f

that takes Vi as a end point, see Figure 4.8 (b).

Chapter 4. Connected Component Nesting 52

Now we know edge e and fare connected and they should have a consistent region,

subregion, and nesting set. If the data of edge e is not consistent with the data of edge

f, we unite these sets and make them consistent, such that e and f have the same region

data and consistent left-region off and right-region of e.

The union policies are as follows.

(1) Suppose edge e and edge fare in the same region but the right-region of edge f

and the left-region of edge e are different. Let Le be the left-region of e and R1 be

the right-region of edge f. Let Xe be the x-coordinate of the leftmost point of Le

and x t be the x-coordinate of the leftmost point of Rt. Without losing generality

we assume that Xf ~ Xe• Then we substitute Le with R1. Meanwhile all the nesting

sets that have taken the nesting set of Le as their parent are changed to the nesting

set of Rt as their parent. We implement this by simply changing the data in the

records that the pointer points to.

(2) Otherwise edge e and f have different region data. We unite the regions of e and

f to be one region. Let Re be the region of e and Rt be the region off. Let Xe

and x t be the x-coordinate of the leftmost point of Re and R1 respectively, and

Xf ~ Xe• Then we substitute Re with R1. Meanwhile all the nesting sets that take

the nesting set of region Re as their parent are changed to the nesting set of R1 as

their parent. Then we do a union operation on the left-region of e and right-region

off with the same policy as that in (1), if the left-region of e and right-region of

f are different.

Case (c): Vi is a vertex such that edge e is connected with its above neighbor edge f

that takes lli as a end point, and there is no edge that takes vi as a begin point. see

Figure 4.8 (c).

In this case, we not only need to make the region, nesting sets, and subregions of

Chapter 4. Connected Component Nesting 53

the edges e and f consistent, but also need to ensure that the right-region of e must be

consistent with the left-region of the left-edge g, You may notice that g may equal f if

there is no other edge between g and e. After we unite f and e as in Case (b), we unite

the left-region of g with the right-region of e by the same policy used in Case (b). Then

the nesting sets are united according to the region and the subregion data.

4.3.3 Getting Nesting Structure

The correct number of regions, subregions, and the nesting structure of the connected

components are determined by the topological structure of the input data. For instance,

the region number should be equal to the number of connected components. In this

section, we prove that our algorithm. determines these quantities correctly.

Lemma 4.1 The two disjoint-set operations, Make..set and V nion preserve the number

of connected components of the input data.

Proof: The Make_set operation creates at least one region set for each connected

component. Let C be a connected component. Let lp be the left-most point of C.

Suppose that k (k ~ 1) edges take lp as a begin point. When sweepline L encounters lp,

it is the case (a) in Section 4.3.1 to be handled. Then a region set is created.

Let R1 , R2 , ... , Rt, (t ~ 1), be the region sets created by Make..set for connected

component C, while sweeping crossing C. For t = l, no Union operation is applied to

the region set R1 from the analysis in Section 4.3.1 and Section 4.3.2. Then the lemma

holds.

For t > l, there is at least one path from Ri to Ri, i =/- j. On the path there is one

vertex v that the two region sets ~ and Ri meet. The vertex v must be in the case (b)

and (c) in Section 4.3.2. While sweepline encounters vertex v the region sets, ~ and Rj,

Chapter 4. Connected Component Nesting 54

are united to be one region set according the union policies in Section 4.3.2. Finally, all

the region sets, R1 , R2 , ... , Rt, are united to be one region set.

Because no path connects the region sets of different connected components, no

Union operation is applied to them. So the region sets of different connected com­

ponents will not be changed. Hence, there is only one region set for each connected

component to represent the connected component. Then the lemma holds. □

Lemma 4.2 The two disjoint-set operations1 Make_set and Union preserve the correct

number of the faces of connected components of the input data.

Proof: Let Ji, ... , fk, (k ~ 1), be the faces of connected component C. The same as

the proof of lemma 4.1, Make_set creates at least one subregion set for each face in a

connected component.

Let S1 , ... , St, (t ~ k), be the subregion sets created for connected component C.

These subregions may belong to different region sets created by Make_set for connected

component C. Each face is enclosed by a chain of edges and vertices. If more than one

subregion sets are created for a face, there is a path that connects them. Suppose that

two subregions Si and Sj meet at vertex v. The vertex v must be in the case (b) and (c)

in Section 4.3.2. If Si and Sj are in the same region set, then Si and Sj are united to be

one subregion set, say Si, directly. If Si and Sj are in different region sets, the region sets

are united first, then Si and Sj are united to be one subregion set. Hence the subregion

sets on the same face are united to be one subregion set. For the subregion sets of the

different faces, no Union operation is applied on them because the Union consistent

policies. For the subregion sets of different connected components, no Union operation

is applied to them because no path connects these subregion sets. Finally, we have one

subregion set for each face of connected components. □

Chapter 4. Connected Component Nesting 55

Lemma 4.3 The two disjoint-set operations, Make....set and Union, preserve the correct

structure of each connected component and its faces.

Proof: From the analysis in Section 4.3.1 and Section 4.3.2, a nesting set with flag 0

is created when a region set is created and a nesting set with flag 2 is created when a

subregion set is created. By combining lemma 4.1 and lemma 4.2, the nesting sets with

flag O are united to be one nesting set when the region sets are united to be one set.

Like the subregion sets, the nesting sets with flag 2, which represent the faces of the

connected component, are united to be the nesting sets that each set represents a face

of the connected component. Finally, we have one nesting set with flag O to represent

the connected component and exactly the same number of nesting sets with flag 2 to

represent the faces of the connected component. □

From the analysis in Section 4.3.2, the union of two nesting sets ni and nj to be one

nesting set ni is accomplished by marking the flag of nesting set nj to be 1 and setting

the parent to nesting set ni. We call a parent pointer of ni that points to ni a direct edge

from nj to ni. Then between a parent nesting set and a child nesting set is a sequence

of direct edges. We call this sequence of direct edges is an edge chain. The edge chain

may have one direct edge. We call the nesting set between two consecutive direct edges

intermediate node. The flag of a nesting set between two consecutive direct edges is 1

because intermediate nodes have been united. The flags of the two end nesting sets of

the sequence of direct edges are marked either O or 2.

Lemma 4.4 Let Ebe an edge chain that connects two nesting sets Si and Sj. Let sn1,

... , snt, (t ~ 1) be the intermediate nodes. Let f be the face associated with Si- Let Ci,

... , Ct and Cj be the connected components associated with nesting sets sn1 , ••• , snt, and

Sj. Then the connected components C1 , ... , Ct and Ci are nested in the face f.

Chapter 4. Connected Component Nesting 56

Proof: Suppose this lemma is not true. Now let us check the relation between Si and

sn1 • From the assumption we have that C1 is outside of J but the parent nesting set of

sn1 is Si. According to the region and subregion consistency policy in Section 4.3.1, the

region or subregion associated with Si is outside off. Then the subregion associated with

f is united with its subregion representative and similarly Si is united with the nesting

set of its subregion representative. Thus, the flag of Si is set to be 2 which contradicts

the given condition 1. This contradiction proves that C1 is nested in f.

Let Ci, ... , Ck-l be the connected components nested in f and Ck be the first con­

nected component not nested in f in the edge chain. Clearly, the edges of J separate

Ck from C1 , ... , Ck-l· Let µ be the left most point of Ck. When sweepline encounters

vertex µ, it is not possible to detect any of the connected components C1 , ... , Ck-I as

the parent of Ck because the parent detecting is based on the neighbor edges ofµ as in

Section 4.3.1. Similarly, it is impossible to detect any faces of the connected components

Ci, ... , Ck-l as the parent of the subregions in Ck. So it is impossible to set a direct

edge from snk to snk-l · Hence, the connected component Ck must be nested by the face

f. The same kind of analysis can be applied to the connected component Cj associated

with nesting set Sj- Then all the connected components associated with sn1 , ••• , snt, and

Sj are nested in the face f. □

Theorem 4.5 The tree of nesting sets records the nesting structure of the connected

components correctly.

Proof: Let C1 , C2 , ••• , Cm, form~ 2, be a set of nested connected components. Accord­

ing to lemma 4.3, there are m nesting sets to represent the m connected components.

Let n1, n2 , ••• , nm be the nesting sets that represent the connected components in the

nesting tree. Let snii, sni2 , ••• , snit;, for i = 1, ... , m, be the nesting sets that represent

the faces of the connected components.

Chapter 4. Connected Component Nesting 57

Figure 4.9: The parent of Cj can not be detected directly.

First, we prove that if Ci is the parent of Ci, i =J. j, then there is a nesting set snik

and an edge chain from nj to snik in the nesting tree, where snik represents the face that

subregion set Sik represents in the connected component Ci.

Because Cj is nested in Ci, there is a face f of Ci that nests Ci. Let the subregion

set of f be Sik and the nesting set of f be snik• Let lpj be the left most point of Ci.

When sweepline L encounters lpj, the nesting set ni is created. According to the parent

detecting policies in Section 4.3.1, if we detect the parent of Ci directly, then the parent

pointer is set from ni to snik·

Otherwise, the parent of Ci detected at vertex lpi is not the subregion Sik of Ci,

but another connected component, say a subregion Si of a region R1. Let sni and n1

be the nesting sets associated with Si and R1. Because Rz and Si are not the parent of

Cj, the subregion set Si, and the nesting sets sni will be united with another subregion

set and nesting set when sweepline encounters a certain vertex, say r. For example, in

Chapter 4. Connected Component Nesting 58

sn2 sns

Figure 4.10: The direct edge chain in the tree of nesting sets.

Figure 4.9, the subregion set Si is S5 , the region set R, is R3 • For the region set R, may

be united with another region set or may not, depending on the connecting structure of

the connected component. In Figure 4.9, there is no region-set union operation at vertex

r but the region set R2 will be united to region set R1 at vertex r 1 . Subregion sets that

are detected nesting Ci at vertex lpi will be united with another subregion set according

to the region and subregion consistency policies in Section 4.3.2.

Let Sk and Rk be the subregion set and region set that Si and R, are united with.

After the Union operation on Sk and Si and Rk and R,, the nesting sets are united

accordingly. After nesting set sni is united with snk, nesting set sni has flag set to be 1

and the parent pointer is set pointing to nesting set snk associated with subregion Sk, If

the region set R1 is united with region set Rk, the nesting set n1 is united with nesting

set nk. After the Union operation, nesting set n1 has flag set to be 1 and the parent

pointer pointing nesting set nk. If the parent set of snk and nk is the true parent of Ci,

we are done. Otherwise, we can use the same analysis as above to find the direct edge

chain that connects Cj with Ci in the tree of nesting sets. The final edge chain found in

the tree of nesting sets shows in Figure 4.10.

Now we prove that if an edge chain in the tree of the nesting sets that connects nesting

sets from ni to snik, then the subregion Sik that snik is associated with nests with the

region Rj that ni is associated with. By the lemma 4.4 it is clear. D

Chapter 4. Connected Component Nesting 59

The edge chain of the Figure 4.9 is given in Figure 4.10, where the square boxes are

intermediate nodes, the circles are end nodes of the edge chain, and the triangles are the

subtrees under the nodes. For example, the subtrees under the intermediate nodes take

the face f as their parent; the subtree under the end nodes take the end nodes as their

parents.

Corollary 4.6 The forest of the nesting sets records the nesting structure of the con­

nected components correctly.

4.4 Algorithm

In section 4.2 we need the vertex type to indicate whether a vertex is a begin or an end

point of an edge, the edge that associated with the vertex, and the number of edges that

take the vertex as begin point and the number of edges that take the vertex as an end

point when we sweep crossing the data. In order to have these data, we create an event

data structure to store these data and linked through a list. The vertex type is indicated

by O or 1 if the vertex is a begin point or an end point. The structure is

typedef struct element {

int vertype;

EDGE *edge;

int left;

int right;

} ELEMENT;

I* the vertex type *I

I* the simple line associated with the notch *I

I* the number of edges that take the notch

as a begin point *I

I* the number of edges that take the notch

as a end point *I

Chapter 4. Connected Component Nesting 60

These elements are linked by a list. In the following algorithm one can substitute

the vertices and edges with notches and simple lines if the time of getting the notches

and simple lines is less than O(Nlog N), where N is the total notches in the connected

components.

Algorithm

Input: A set of embedded line segments that form a set of connected components

that have total n vertices.

Output: A directed acyclic graph G, called the nesting structure.

Stepl: Sort all the vertex of the edges and create the event list for sweeping as

described in section 3.4.2 Stepl.

Edge order in the event list are (e1 , e2 , e3 , e4 , bi, b2 , b3 , b4), (see Figure 3.11). Let this

sorted element list SW be s1 , s2, ••• , sn, where n is the total number of the vertices.

Step2: Create the first region, subregion, and nesting set with parent equal to

null for the leftmost vertex s1 of SW, and insert the edge e associated with s1 into

ordering 0. Notice O is initially empty.

Step3: Sweep a line from left to right, taking steps at each event element Si of

SW.

(a) If Si is a begin point of edge e. We update the region, subregion, and nesting

set according to the policies in section 4.3.1.

If using notches and simple lines we need to detect the position of Si with

respect t~ the simple lines intersected by sweep line. For this, carry out a

binary search in the ordering O of these simple lines. To detect the position

of Si with respect to a simple line Si during binary search, find the edge e1 of

this simple line kept in O and then follow the linked list of edges e1 , e2 , ••• , ek

Chapter 4. Connected Component Nesting 61

(b)

Figure 4.11: Path compression during the operation find parent.

until the edge ek is found which intersects L. Insert the simple line associated

with Si in 0.

(b) If Si is a end point of the last edge e associated with the simple line that Si

is on. We do the union operation on the region, subregion, and nesting sets

according to the policies in section 4.3.2. Then we delete the edge (or simple

line associated with Si) from ordering O by a simple binary search.

Step4: Retrieve the nesting structure from the nesting sets. To retrieve the nesting

structure is to find the parent of each nesting set. Notice this may repeatedly report

one nesting relation among some nesting sets. But this will not affect the correct

results. We represent the nesting sets by a linked-list. During find parent operation

we use path compression, that is, make each nesting set pointing directly to its

parent nesting set on the way of finding a set's parent.

This operation is shown in Figure 4.11. Figure 4.11 (a) shows a tree representing

Chapter 4. Connected Component Nesting 62

a set prior to find parent. Triangles represent subtrees whose parents are the node

shown. Each node represents a nesting set that has a pointer to its parent. The

nodes b, c, d, e are united sets and their set flag is 1. Figure 4.11 (b) shows the

same sets after the operation find parent. Each node on the find path now points

directly to the root. From the results of Tarjan [15], the total time of n find parent

operations on the nesting sets is 0(no:(n, n)), where a:(n, n) is a very slowly growing

inverse of Ackermann 's function.

Theorem 4. 7 The problem of connected components nesting for m connected compo­

nents can be solved in 0(n log n) time where n is the total number of vertices in m

connected components.

Proof. We sorting then vertices is 0(nlogn) time. Updating at then vertices takes

maximum 0(n log n) time. Retrieving the nesting structure from the nesting sets needs

0(na:(n,n)) :5 0(nlogn). Hence, total time spent is 0(nlogn). □

Corollary 4.8 If the notches and simple lines of the connected components can be

obtained in 0(n) time, the problem of connected components nesting for m connected

components can be solved in 0(N log N + N a:(N, N) + n) = 0(N log N + n) time, where

N is the total number of notches of the m connected components.

4.5 Conclusion

In this chapter we discussed the connected components nesting problem, and proposed

one algorithm to solve it. Clearly our algorithm for the connected components nesting

problem can solve the simple polygon nesting problem with the time of 0(Nlog N + n).

Chapter 4. Connected Component Nesting 63

The simple polygon nesting problem is only a simplified case in the problem we solved.

We have generalized the nesting problem to a broader class inducing the nesting of

connected components.

Chapter 5

Generating Random Monotone Polygons

5.1 Introduction

This chapter details some results that we have obtained in our study of generating random

polygons. In particular, we describe an algorithm for generating x-monotone polygons

uniformly at random. The remainder of this section provides motivation for this research

and a detailed description of this problem. In Section 5.2, we give the general notation and

definitions of our algorithm. In Section 5.3, we present our monotone polygon generating

algorithm with the counting procedure and generating procedures. In Section 5.4 we

prove that our algorithm can generate monotone polygons uniformly at random. In

Section 5.5, we give the visibility computing procedures with the correctness proofs. In

Section 5.6 we analyze the time and space complexity of our algorithm. A summary of

our results and related open problems are presented in Section 5.7.

5.1.1 Motivation

As well as being of theoretical interest, the generation of random geometric objects has

applications that include the testing and verifying the time complexity for computational

geometry algorithms.

Algorithm Testing: The most direct use for a stream of geometric objects generated

64

Chapter 5. Generating Random Monotone Polygons 65

at random is for testing computational geometry algorithms. We can test such algorithms

in two ways. The first involves the construction of geometric objects that the implementer

considers difficult cases for the algorithm. For example, our polygon-nesting algorithm,

based on a plane sweep, may require special case code for some polygons. It is important

to make those polygons candidates for exposing errors of the algorithm. The second

approach to testing involves executing the algorithm on a large set of geometric objects

generated at random. Intuitively, we expect errors to be exposed if enough different valid

inputs are applied to the algorithm.

Verification of Average Time Complexity: In implementation-oriented compu­

tational geometry research, we are often given the problem of verifying that an imple­

mentation of an algorithm achieves the stated algorithm time complexity. This is done

by timing the execution of the algorithm for various inputs of different sizes. There are

many possible inputs of any given size, and the choice is important, since an algorithm

may take more time on some inputs than others of the same size. If an average exe­

cution time is computed over a set of randomly generated objects of a given size, the

relationship between time and problem size will typically follow a curve corresponding

to its average time complexity. We can then check this complexity against the stated

algorithm's complexity.

Research, such as Epstein [4], has been done on generating geometric objects at

random. In this thesis we give an algorithm that generates random monotone polygons

uniformly at random.

5.1.2 Problem

Let Sn= {s 1 ,s2 , ••• ,sn} be a set of n arbitrary points. In this chapter, we assume that

the x-coordinates of the points in the point set Sn are distinct. We want to generate a

Chapter 5. Generating Random Monotone Polygons 66

simple polygon with vertex set Sn at random. At this beginning stage we only consider

generating a monotone polygon from Sn. Figure 5.1 shows a monotone polygon generated

from a set of 12 points.

Figure 5.1: A monotone polygon generated from S12

In [4] Epstein gives an O(n4
) algorithm to generate triangulations of a given simple

polygon at random. His algorithm, although it does not generate simple polygons at

random, inspires us in constructing our algorithms for generating monotone polygons at

random.

In Section 5.3, we will give an algorithm that generates a monotone polygon randomly

on a set of n points in O(K) time and in O(n) space, where n ::; K ~ n2 is the total

number of above-visible and below-visible point-pairs (see Section 5.2 for definitions) in

the point set.

In related work, Meijer and Rappaport [12] study monotone traveling salesmen tours

and show that the number of x-monotone polygons on n vertices is between (2+J5)(n-3)/2

and (y5)<n-2). Mitchell and Sundaram [13] have independently developed a routine to

generate random monotone polygons in O(n) space and O(n2
) time.

5.2 Preliminaries

Notation. We refer to a probability space as (n, E, Pr), where n is the sample space, E

Chapter 5. Generating Random Monotone Polygons 67

is the event space, and Pr is the probability function. The sample space n is the set of all

elementary events that are the possible outcomes of the experiment being described. The

event space E is the set of all subsets of n that are assigned a probability. The function

Pr : E ---+ ~t defines the probability of events.

A geometric object generator is an algorithm that produces a stream of geometric

objects of a given type. We say that a generator is complete if it can produce every

object in a given sample space n.

The Uniform Probability Distributions. Probability theory defines both discrete

and continuous uniform probability distributions. We are interested only in the discrete

case: the discrete uniform probability space for a finite sample space n is defined as

(nu, Eu, Pru), where Eu is the set of all subsets of nu, and Pru (A) = 1 / j nu I for all

A E nu. In other words, in a finite sample space, a uniform distribution is one in which

each elementary event is equally likely.

Since the sample space we deal with is finite, we use the discrete uniform probability

distribution.

A monotone polygon generator is called uniform if each of the monotone polygons

has the same probability of being generated.

Definitions. Let Sn = { s1 , s2, ... , sn} be a set of n arbitrary points and if i < j then

Si,X < Sj.X, Hereafter Sn is referred to as {1, 2, ... , n }. Let Si= {1, 2, ... , i} for 1 :Si :Sn.

The total number of monotone polygons that can be generated with vertex set Si is

denoted as N(i).

Any monotone polygon constructed from Si can be divided into two monotone chains

of which the leftmost vertex is 1 and rightmost vertex is i. In Figure 5.2 the top monotone

chain is {1, 2, 3, 6, 7, 11, 12} and bottom monotone chain is {1, 4, 5, 8, 10, 12}. Any point

in Si is either on the top or bottom chain, except 1 and i are on both chains because

Chapter 5. Generating Random Monotone Polygons 68

they are the beginning and ending points of the chains.

Figure 5.2: The top and bottom monotone chains

Let T(i) be the set of monotone p9lygons that are generated from Si with the edge

(i-1, i) on their top chains. Let B(i) be the set of monotone polygons that are generated

from Si with the edge (i-1,i) on their bottom chains. We define TN(i) = IT(i)I to be

the total number of monotone polygons included in T(i) and BN(i) = IB(i)I to be the

total number of monotone polygons included in B(i).

Let l(j, i) be the line determined by j and i. Now we define above-visible or below­

visible for a point. We say that a point k is above-visible from i if k is above all l(j, i),

for j = i - l, ... , k - l. And a point k is below-visible from i if k is below all l(j, i), for

j = i -1, ... , k- l. For example, in Figure 5.3, 10 is above-visible from 12, and {9, 7} are

below-visible from 12.

Let ½(i) be the set of all the points that are above-visible from point i. Let ½(i) be

the set of all the points that are below-visible from point i. For example, in Figure 5.3,

the ½(12) = {10} and ½(12) = {9, 7}.

5.3 Generating Monotone Polygons at Random

We have two steps to generate monotone polygons randomly from Sn, The first one is

to calculate the number of monotone polygons that can be generated from Sn. Then we

Chapter 5. Genera.ting Random Monotone Polygons 69

7

Figure 5.3: The above-visible and below-visible points from point { 12}

scan Sn backward to generate monotone polygons.

5.3.1 Counting Monotone Polygons

Before we give the procedure to count monotone polygons we prove several theorems to

build up the theoretical background.

Lemma 5.1 The set of monotone polygons that are generated from Sk with edge (k-1, k)

on their top chains is disjoint from the set of monotone polygons that are generated from

Sk with edge (k - 1, k) on their bottom chains. That is

T(k) n B(k) = 0.

Proof. Clearly, there is no polygon in T(k) that could include edge (k-1, k) in its

bottom chain. And there is no polygon in B(k) that could include edge (k - 1, k) in its

top chain. So T(k)nB(k) = 0. □

From this lemma we get the following result.

Chapter 5. Generating Random Monotone Polygons 70

Theorem 5.2 For any vertex set Sk, with k > 2, the number of monotone polygons

generated with vertex set Sk is

N(k) = TN(k) + BN(k) (5.1)

Proof. Let P be any monotone polygon that is generated from Sk. Then we know

that the edge (k - 1, k) is either on the top chain of P, which means P E T(k), or on

the bottom chain of P which means PE B(k). Thus, Pis counted by either TN(k) or

BN(k). According to Lemma 5.1, we have N(k) = T N(k) + BN(k). □

For any simple monotone polygon generated from Sk, its top chain and bottom chain

are paths from 1 to k. The edge (k - 1, k) is either on the top chain or on the bottom

chain of the monotone polygon. For the chain that does not contain edge (k - 1, k), there

exists a point j, for j < k - 1, that connects to k. For the point j we have the following

results.

Lemma 5.3 Let P be any simple monotone polygon that is generated from Sk,

(1) If the edge (k - 1, k) is on the top chain of P and j, for j < k - 1, is the point that

connects to k, then j is below-visible from k.

(2) If the edge (k - 1, k) is on the bottom chain of P and j, for j < k - 1, is the point

of the top chain that connects to k, then j is above-visible from k.

Proof. We prove (1). If j is below-visible from k then the lemma holds. If j

is not below-visible from k, there exists a line l(i, k) such that j is above l(i, k), where

j < i < k - 1. Because P is a monotone polygon, i is on the top chain of P. But i is

below l(j, k). Hence P can not be a simple monotone polygon. This contradiction proves

that (1) is true. □

The proof for (2) is the same as that for (1).

Chapter 5. Generating Random Monotone Polygons 71

Let P(j, k) be a subset of the polygon set T(k) in which the edge (j, k) is on the

bottom chain, for j E ½,(k). That is, P(j, k) = T(k) n{edge (j, k) is on the bottom

chain} for j E ½,(k). Now we have lemma as follows.

Lemma 5.4 The number of monotone polygons in the set P(j, k) is BN(j + 1) .

Proof. For the monotone polygons in P(j, k), we know that points j and k are on

the bottom chains, and j + 1, ... , k are on the top chains. So the path of j, k, k-1, ""-'"► j + 1

is fixed. We can treat the path j, k, k - 1, ... ,j + 1 as an edge (j,j + 1) that is on the

bottom chain. Figure 5.4 shows an example. Now we know that the number of monotone

polygons in the set of P(j, k) equals the number of monotone polygons generated from

Sj+l with the edge (j, j + 1) on the bottom chains. Hence the lemma is true. We call

the set of B(j + 1) the equivalent set for P(j, k). □

Using a similar proof we have the following result.

Lemma 5.5 The number of polygons in B(k)n{edge (j,k) is on the top chain} for

j E ½(k) is TN(j + 1).

Theorem 5.6 For any point set Sk, we have

TN(k) = E BN(j + 1) (5.2)
jEVb(k)

BN(k) = I: TN(j + 1) (5.3)
jEVt(k)

Proof. We prove formula (5.2). According to lemma 5.3, for any P E T(k),

its bottom chain must use one of the points of ½,(k). Let j be the point. Obviously

Chapter 5. Generating Random Monotone Polygons 72

j

(a) The original monotone polygon in P(k)

(b) The equivalent set of monotone polygons B(j + 1)

Figure 5.4: The original set and its equivalent set.

PE P(j, k). From lemma 5.4, we know that the number of monotone polygons in P(j, k)

is BN(j+l). Then the total number of different monotone polygons is I:jeVb(k) BN(j+l).

So (5.2) holds. □

The proof for formula (5.3) is the same as that for formula (5.2).

According to this theorem we can calculate TN and B N if we know ½, (k) and ¾ (k).

Now we assume that we have ½(k) and ½(k) then we can have the procedure that

calculates TN and BN. The procedure is shown in Table 5.1.

Chapter 5. Generating Random Monotone Polygons

getTNandBN(n)

TN(2) = 1;

BN(2) = 1;

FOR i = 3, TO n

TN(i) = O;

BN(i) = O;

FOR ALL j E ¾(i)

TN(i) = TN(i) + BN(j + l);

FOR ALL j E ½(i)

BN(i) = BN(i) + TN(j + l);

N(n) = TN(n) + BN(n);

Table 5.1: The Procedure for calculating TN and BN.

73

After we get TN(i) and BN(i) for i = 2, ... , n, we start to generate a monotone

polygon on S(n) at random, under the uniform distribution. The following section gives

the details.

5.3.2 Generating Monotone Polygons

For the general case, we give an algorithm to generate monotone polygons from Sn at

random. Again we assume that we have ½(k) and ½(k), the below-visible and above­

visible vertices. The algorithm scans the point set Sn backward from the right to the left

to generate monotone polygons. Table 5.2 shows the procedure for generating monotone

polygons.

Generate_Top, shown in Table 5.3, and Generate-Bottom, shown in Table 5.4,

deal with two cases. Generate_Top deals with the case in which k - 1 is on the bottom

Chapter 5. Generating Random Monotone Polygons

Generate

PICK AN x WITHIN [1,N(n)] UNIFORMLY AT RANDOM;

ADD n TO top_chain; ADD n TO bottom_chain;

IF x ~ TN(n)

ELSE

ADD n - 1 TO top_chain;

Generate-'Top(n, x);

ADD 1 TO bottom_chain;

x = x -TN(n);

ADD n - 1 TO bottom_chain;

Generate-13ottom(n, x);

ADD 1 TO top-chain;

END IF

Table 5.2: The Procedure for generating monotone polygons.

74

chain and k is on the top chain of the monotone polygon. In this case the undetermined

points are { 1, ... , k - 2}. Then the set of all monotone polygons that can be generated

from the original set is equivalent to that from the subset S(k) with edge (k-1, k) on the

bottom chains; that is B(k). Generate-Bottom deals with the case in which k is on the

bottom chain and k - l is on the top chain. In this case the set of all monotone polygons

that can be generated is equivalent to T(k). These two cases are shown in Figure 5.5.

Our generating algorithm combines get TN andBN and Generate together.

Polygon_Generator

getTNandBN(n)

Generate

Chapter 5. Generating Random Monotone Polygons 75

(a) k is on the top chain and its equivalent set B(k)

(b) k is on the bottom chain and its equivalent set T(k)

Figure 5.5: The generating process.

The following section will show us that our Polygon_Generator can generate mono­

tone polygons uniformly at random.

5.4 The Analysis of Polygon_Generator

Let !1(n) = {Pi, P2 , ••• , PN(n)} be the sample space of all monotone polygons with vertex

set Sn, Then O(n) is a sample space. Each event in f2(n) is an unique monotone polygon

Pi that can be generated from Sn. We map n(n) to an integer set of [1, N(n)]. Each

x E [1, N(n)] corresponds to an unique monotone polygon P:c E f2(n). Now we have the

following results.

Chapter 5. Generating Random Monotone Polygons 76

Generate_Top(k, x)

1. IF k :; 2 RETURN;

2. FIND THE SMALLEST i SUCH THAT i SATISFIES:

x:; LjeVb(k)Ai$i BN(j + 1);

3. ADD POINT i TO bottom..chain;

4. ADD ALL THE POINTS k - 2, k - 3, ... , i + 1 TO top_chain;

5. k = i + 1;

6. x = x - LjEVb(k)Aj<i BN(j + 1);

7. Generate--13ottom(k, x)

Table 5.3: The Procedure of generating top chains.

Lemma 5.7 For n 2: 2 and Vx E [1,TN(n)], Generate_Top generates an unique

monotone polygon Px E T(n) ~ O(n); For n 2: 2 and Vx' E [1,BN(n)], Gener­

ate....Bottom generates an unique monotone polygon Px, E B(n) ~ 0(n).

Proof We use induction on n (the size of the point set). Our base case is n = 2.

Because of T N(2) = 1 and BN(2) = 1, we know that x is 1. From the procedure

Generate the input of Generate_Top is that 1 and 2 are on the top chain and x = 1,

and the input of Generate....Bottom is that 1 and 2 are on the bottom chain and x = 1.

For this trivial base case Generate_Top and Generate..Bottom generate the correct

trivial monotone polygon by simply returning to Generate.

Now for all k < n, we assume that Vx E [1, T N(n)] Generate_Top generates an

unique monotone polygon Px E T(k) and Vx' E [1, BN(n)], Generate..Bottom gener­

ates an unique monotone polygon Px' E B(k).

Chapter 5. Generating Random Monotone Polygons

Generate...Bottom(k, x)

1. IF k ~ 2 RETURN;

2. FIND THE SMALLEST i SUCH THAT i SATISFIES:

x ~ LjeVt(k)Ai9 T N(j + 1);

3. ADD POINT i TO top_chain;

4. ADD ALL THE POINTS k - 2, k - 3, ... , i + 1 TO bottom-chain;

5. k = i + 1;

6. x = x - LjeVb(k)Ai<i T N(j + 1);

END IF

7. Generate_Top(k, x);

Table 5.4: The Procedure of generating bottom chains.

77

For k = n, let x1 , x 2 E [l, TN (n)] and Px1 , Px2 E T (n) be the monotone polygons that

are generated by Generate_Top according to x1 and x 2 • Now we prove that if x1 =/ x 2 ,

then Px1 =J. Px2 •

From Generate we know that n - 1 and n are on the top chains of both Px1 and

Px
2

• Let i1 ~ 1 and i2 ~ 1 be the below_visible points found in Generate_Top. There

are two cases in this situation.

Case 1: i1 =J. i 2 • Without loss of generality, let i 1 < i 2 • From Generate_Top we

know that for Px
1

, point i1 is on the bottom chain and point i2 is on the top chain. For

Px2 , point i2 is on the bottom chain. This proves Px1 #- Px2 •

Case 2: i1 = i2 . From Generate_Top we know that k~

x1 $ TN(n) and x2 $ TN(n), we have

x~ = x1 - L BN(j + 1) $ BN(i1 + 1)
iEVb(k)Aj<i1

k~ - i1 + 1, Since

Chapter 5. Generating Random Monotone Polygons

and

x; = x2 - I: BN(j + 1) ~ BN(i2 + 1).
jEVb(k)Aj<i2

78

Because of X1 > EiEVb(k)Aj<ii BN(j + 1) and X2 > EiEVb(k)Ai<ii BN(j + 1), we have

Xi ~ 1. Then we have Xi =J x;, and Xi E [1, BN(kD] and x; E [1, BN(k~)]. From our

assumption, Generate...Bottom generates two different monotone polygons Pc' and Px'
l 2

with edge (i1 , i1 + 1) on the bottom chains. From lemma 5.4 and lemma 5.5, we know

that Pxf, Px~ E B(kD and that B(kD is the equivalent set of P(kL k). Then we know

that the part of polygons of Pxi and Px; without edge (i1 , i1 + 1) are on the monotone

polygons of Px1 and Px2 • Hence Px1 =/ Px2 • □

Using the similar proof, we can prove that for \/x' E [1, BN(n)], Generate...Bottom

generates an unique monotone polygon Px, E B(k).

From this lemma we immediately get the following result.

Theorem 5.8 For n ~ 2 Generate generates monotone polygons from O(n) uniformly

at random.

Proof Generate picks an x E (1, N (n)] uniformly at random. If x ~ TN (n)

Generate calls Generate_top. If x > TN (n) Generate calls Generate_bottom.

From lemma 5.7 Generate generates an unique monotone polygon Px E O(n). Thus,

Generate is an uniform monotone polygon generator. □

Corollary 5.9 Generate is complete.

Chapter 5. Genera.ting Random Monotone Polygons 79

5.5 Computing Visibility

The algorithms of the previous section assumed that the above-visible and below-visible

sets, ¾(i) and ½(i) for i = l, ... ,n, were available. A closer look, however, shows that

these sets are only needed for one index i at a time: algorithm getTNandBN needs the

sets in increasing order and algorithms Generate_top and Generate_top need them

in decreasing order.

In this section, we show how to calculate each of the sets ¾(i) incrementally as i

increases (In Section 5.5.1) and as i decreases (In Section 5.5.2), using time proportional

to l¾(i)I and O(n) space to compute ¾(i) from ¾(i - 1) or ¾(i + 1).

The idea is the following. Let Sk denote the monotone chain with vertices s1 , s2 , ••• ,

sk. If we think of Sk as a fence and compute the shortest paths in the plane above Sk

from Sk to each Si with i ~ k, then we obtain a tree that is known as the shortest path

tree rooted at Sk [5, 6]. The above-visible set ¾(i) is exactly the set of children of Sk in

the shortest path tree rooted at Sk. Thus, we will incrementally compute shortest path

trees rooted at s1 , s2, ... , sk to get the above-visible sets.

We represent shortest path trees (in which a node may have many children) by binary

trees in which each node has pointers to its uppermost child and next sibling. Section 5.5.1

gives the details for computing these trees in the forward direction: computing ¾(i)

from ¾(i - 1). Section 5.5.2 gives the details for the reverse direction: computing ¾(i)

from ¾(i + 1).

5.5.1 Computing Visibility Forward

We use a tree data structure to calculate ¾(k) and ½(k) recursively. Assuming ¾(k-1)

and ½(k-1) have been calculated, we calculate ¾(k) and ½(k) according to the results

Chapter 5. Generating Random Monotone Polygons 80

of ½(k - 1) and ¾(k - 1). The data structure that we use in the calculation is the tree

of the shortest paths rooted at vertex k.

We store top_tree(i) and boLtree(i) using child and sibling pointers. For each vertex

j E [1, n], we have a record for top_tree

J : ptr ptr stores the coordinates of vertex j

upc upc is a pointer pointing the upper child of j in top_tree(k)

sib sib is a pointer pointing the sibling of j in top_tree(k)

and a record for boLtree

J: ptr ptr stores the coordinates of vertex j

lwc lwc is a pointer pointing the lower child of j in boLtree(k)

sib sib is a pointer pointing the sibling of j in boLtree(k)

The initial value of top_tree for the recursive calculation is l.ptr = l, l.upc = nil and

l.sib = nil. We assume that top_tree(i -1) has been completed. Then we call Make_Vt

to calculate the above-visible set, Vt, In order to get Vt, the procedure Make_Vt calls

the procedure Make_top to calculate the top_tree(i).

Make_Vt(i)

t = tmp;

Make_top(i - 1, i, Var: t);

i.upc = tmp.sib;

Chapter 5. Generating Random Monotone Polygons 81

Procedure Make_top(i -1, i, lastsib) makes the tree edge from k to j in top_tree(k),

and puts it as the sibling of lastsib and updates lastsib. Then it recursively builds the

top_tree(k). One example is shown in Figure 5.6.

Make_top(j, k, Var: lastsib)

WHILE j.upc =/- nil and k is above l(j.upc,j)

Make_top(j.upc, k, Var: lastsib);

/* make subtree for this child of j, which can be seen by k. * /
j.upc = j.upc.sib; /* consider next child of j * /

END WHILE

lastsib.sib = j; /* make the connection to j, one of the children of k * /

lastsib = j;

5

3 2

nil

nil

4

nil

nil

Figure 5.6: A point set S5 and the data of top_tree(5).

To compute the boLtree is similar to computing the top_tree. We need only change

upc and 'above' in procedure Make_Vt(i) and Make_top into lwc and 'below' to get

the procedures Make_Vb(i) and Make_bot. We use Make_Vb(i) and Make_bot to

compute boLtree(i) from boLtree(i - 1). One example is shown in Figure 5.7.

Chapter 5. Generating Random Monotone Polygons

5

3 2

nil

nil

4

nil

nil

Figure 5. 7: A point set S5 and the data of boLtree(5).

82

Knowing top_tree(k) and boLtree(k), we know the above-visible and below-visible point

sets, ½(k) and ½(k) of vertex k. Now we give the theorem to show us how to get ½(k)

and ½(k) from top_tree(k) and boLtree(k).

Let r be a record in the top_tree or boLtree. We define r.sibi = r.sibi-1.sib, for any

integer i > 0, and r.sib0 = r. Now we claim that the upper child of k and its siblings are

the vertices visible from k, and any vertex that is visible from k is either the upper child

of k or its sibling. This is proved in the next theorem.

Theorem 5.10

Let CT(k) = {k.upc.(sib)i I Vi ~ O}. Let CB(k) = {k.lwc.(sib)i I Vi ~ O}. We have

½(k) = CT(k) - {k - 1} and ½(k) = CB(k) - {k - l}.

Proof First we prove ½(k) = CT(k) - {k - l}. If ½(k) = 0, there is no point

that is above line l(k - 1, k). This means that there is no l(i, k - 1) that is below k.

From Make_top, we know that CT(k) = {k - l}. Hence ½(k) = CT(k) - {k -1}. If

CT(k) = {k - 1} there is no l(i, k - l) that is below k for i = 1, ... , k - 2. So there

exists no point that is above l(k - l, k). Hence ½(k) = 0 = CT(k) - {k - l}.

For the general situation, Vj E ½(k), we havej is above all l(i, k) for i = j+l, ... , k-1

Chapter 5. Generating Random Monotone Polygons

Back_top(k + 1, k)

1. FIND i, SUCH THAT (k + 1).upc.sibi = k;

2. FOR j = O TO i

3. ai-j = (k + 1).upc.sibi;

4. IF i = 0 RETURN;

ELSE IF i ~ 1

5. Granham-Scan-Top(i, a0 , ••• , ai);

END IF

Table 5.5: The Procedure of computing top_tree(k) from top_tree(k + 1).

83

that implies that k is above all l(j, i) for i = j + 1, ... , k - l. Now we prove j -

k.upc.(sib)i, i 2::: 0. If there is no j' E ½(k) and j' < j such that k is above l(j',j) then

j = k.upc. Otherwise, j = j'.sib. Similarly this induction can be applied to j', that is,

j' = k.upc.(sib)i'. Then we have j = k.upc.(sib)i'+1 • So ¼(k) ~ CT(k) - {k-1}.

Vj E CT(k) - {k - 1}, we know j = k.upc.(sib)i. Then j is above all l(i, k), for

i = j + 1, ... , k - l. Otherwise, there exists a point, say j', such that j' > j and j is

below l(j', k). Then l(j, k) is below l(j', k) that means k is below l(j,j'). From Make_top

we know that j can not be the format of k.upc.(sib)i, i 2::: 0. This contradiction proves

that j is above all l(i, k), for i = j + 1, ... , k - l. Then we have that j E ½(k) that

implies ½(k) 2 CT(k) - {k - l}. Now we have ½(k) = CT(k) - {k - l}. o

The proof for ½(k) = CB(k) - {k - 1} is similar to the proof above.

5.5.2 Computing Visibility backward

In procedure Generate_Top and Generate....Bottom, we need to find the smallest i

satisfying the expression in line 2. Here we assume that top_tree(k + l) and boLtree(k +

Chapter 5. Generating Random Monotone Polygons

Granham-Scan-Top(i, ao, .. . , ai)

1. Push(a0 ,S); /* S is a stack * /

2. a1 = a0 .upc;

3 ao,upc = a1;

4. Push(a1,S);

5. FOR j = 2 TO i

6. WHILE the angle formed by points NEXT-TO-Top(S), Top(S),

7.

and aj makes nonleft turn

Pop(S);

END WHILE

8. aj = Top(S).upc;

9. Push(S,aj);

Table 5.6: The Procedure of Graham-Scan-Top.

84

1) have been completed, and define procedures Back_top and Back_bot to generate

top_tree(k) and boLtree(k). Let ai-j = (k+ 1).upc.sibi, for j = 0,1, ... ,i. Then ai =
(k+ 1).upc and a0 = k. Let Q = {aj,j = O, ... ,i}. From theorem 5.10, we know

Q = ½(k + 1) - {k}. If we take ao as the origin of of coordinates, according to the

above-visible definition, the points in Q are sorted lexicographically by polar angle and

distance from a0 • Then from Graham-Scan we can get the correct top_tree(k). This is

similar for calculating boLtree(k). Table 5.5 and Table 5.6 show the procedures.

One example to calculate top_tree(k) from top_tree(k + 1) is shown in Figure 5.8.

Similarly we have the procedure to compute boLtree(k) from boLtree(k+l). They are

called Back_bot and Graham-Scan-Bot(i, Q). We get them simply by changing upc

and 'nonleft turn' of Back_top and Graham-Scan-Top(i, Q) into lwc and 'nonright

turn'.

Chapter 5. Generating Random Monotone Polygons 85

k-1

Figure 5.8: top_tree(k) is generated from top_tree(k + 1).

Now we prove that these procedures compute correct results.

Theorem 5.11 Back_top and Graham-Scan-Top(i, Q) correctly compute

top_tree(k) from top_tree(k + 1). Back_bot and Graham-Scan-Bot{i, Q) correctly

compute boLtree(k) from boLtree(k + 1).

Proof We prove that Back_top and Graham-Scan-Top(i, Q) correctly compute

top_tree(k) from top_tree(k + 1). In Back_bot we first find the upper child of k + 1 and

its siblings. In order to get top_tree(k) from top_tree(k + 1) we must cut the edges of

these vertices with k + 1 and reconnect them with appropriate vertices. These points are

the only points that need to be reconnected.

In Graham-Scan-Top(i, Q), point k is always kept in the bottom of the stack S.

For any vertex visible from k + 1, there two cases. Case 1 is that it is visible from k.

Case 2 is that it is not visible.

Case 1: if point j is visible from k then all the points in the stack S are popped out

but k. Now we output edge (j,k) and point j is pushed into S. Now there are at least

two points in the stack S.

Case 2: otherwise point j is not visible from k. We know that j must be visible from

Chapter 5. Generating Random Monotone Polygons 86

a vertex in S, say j'. Then all the points on top of j' are popped out, and we output the

edge (j, j') and j is pushed into S.

After we checked all the points visible from k + l, we reconnect the points correctly.

D

Similarly we can that prove Back_bot and Graham-Scan-Bot(i, Q) correctly com­

pute boLtree(k) from boLtree(k + l).

Now we have all the procedures to build up our algorithm. Next we give its time and

space complexity.

5.6 Time and Space Complexity Analysis

Lemma 5.12 The runtime of Make_top(k -1, k, Var: t) is O(l¼(k)j). And the run­

time oJMake_bot(k - l, k, Var: t) is O(l½(k)I).

Proof Because of the similarity, we only prove the runtime of Make_top(k -

l, k, Var: t) is O(l¼(k)j).

Let us assign the following amortized costs:

WHILE checking 1

updating j.upc l

updating lastsib l

and each time we encounter the upper child, k.upc or its sibling k.upc.sibi, but excluding

k - I, we get 3 credits. Clearly from theorem 5.10, we know that the total number of

Chapter 5. Generating Random Monotone Polygons 87

k.upc and k.upc.(sib)i, excluding k - 1, is l½(k)I-

We shall now show that we can pay any operation costs by charging the amortized

costs. We start from Make_top(k-1, k, Var: t) and we have 3 credits. Clearly if j is vis­

ible from k, WHILE checking succeeds. From this we get 3 more credits to pass to the next

call to Make_top(j, k, Var : lastsib). Then this call receives 3 credits to pay for its own

checking and updating costs. If j is not visible from k, WHILE checking fails. Then the

current call to Make_top saves 1 credit for upper level Make_top to pay another WHILE

checking. We know that Make_top(j, k, Var: lastsib) with 3 credits can pay their

own costs and the number of total recursive calling for Make_top(j, k, Var: lastsib)

is l½(k)/. Then 3 * /½(k)/ will pay all the costs. So the runtime of Make_top(k -

1, k, Var: t) is O(/½(k)I)- D

Theorem 5.13 Polygon_Generator has time complexity of O(K) and space in O(n),

where K is the total number of above-visible and below-visible points of the points in the

point set.

Proof From lemma 5.12 the runtime of getTNandBN is, for some constant c,
n

L c * (/½(k)I + /¼(k)I) 5 cK = O(K).
k=3

Clearly the runtime of Back_top is O(l½(k)I) and the runtime of Back_bot is O(l¼(k)/).

The time complexity of Generate depends on the time complexity of Generate_Top

and Generate....Bottom. Because they have a similar structure the time complexity

of Generate_Top and Generate..Bottom is the same. Let tk be the run time of

Generate_Top(k, x) From line 2 to 6, the time depends on the number of above-visible

and below-visible points of k. Then we have, for some constant c

k

tk = L C * (l½(k)/ + l½(k)/ + k - i) + ti+I·
j=i+l

Chapter 5. Generating Random Monotone Polygons 88

So
n

tn ~ L c * (l½(k)I + l¼(k)I) + n ~ c * (K + n).
k=l

Hence the run time of Generate is O(n + K). Obviously, n ~ K < n2
• The time

complexity of our Polygon_Generator is O(n + K) + O(K) = O(K).

In the process of generating we need only to store the point set Sn, top_tree(n),

boLtree(n), and TN(i) with BN(i), for i = 2, ... ,n. Since each of the data struc­

tures use no more than 0(n) memory space, we have that the memory space of Poly­

gon_Generator is O(n). D

5.7 Conclusion

We have presented an algorithm to generate monotone polygons uniformly at random.

The time complexity of our algorithm is O(K), where n ~ K ~ n2 is the number edges

of the visibility graph of the x-monotone chain whose vertices are the given n points.

The space complexity of our algorithm is O(n). We have given the detail analysis of the

algorithm and the proof of its correctness. A random monotone polygon generator is

useful for testing the many algorithms that accept a simple polygon or a group of simple

polygons as input.

We are also interested in finding a polynomial algorithm to generate general simple

polygons randomly from an arbitrary set of points. There is, to our knowledge, no

efficient enumeration of the simple polygons on a given vertex set.

Chapter 6

Conclusions

Summary

In this thesis, we have briefly reviewed the basic concepts, the edge functions, and the

topological operators of the quad edge data structure. Based upon the edge functions and

the topological operators, we presented a plane sweep algorithm that extracts connected

components of a set of line segments and captures the topology in a quad edge data

structure. We have described that to construct the quad edge data structure correctly

is to construct the Org rings of the edges correctly. The validity and feasibility of our

sweep algorithm method are proved mathematically and tested by implementation. The

time of the sweep process is linear in the total number of vertices n. The sorting time

dominates the algorithm's complexity, so its time complexity is O(nlogn).

For the polygon nesting problem, we reported results along two fronts. First, we

redefined the idea of a notch in Bajaj and Dey's polygon nesting algorithm to provide

a direct correspondence between notches and subchains. Second, we presented a plane

sweep algorithm to solve the nesting problem on a set of connected components. In

the connected components nesting problem the objects are more general than Bajaj and

Dey's restriction to simple polygons. The correctness of our sweep algorithm is proved

mathematically. The time complexity of our sweep algorithm is O (n log n), where n is

the total number of vertices of the connected components. If the notches and simple

89

Chapter 6. Conclusions 90

lines of connected components can be obtained in O(N log N) time, we find the nesting

structure of the connected components in 0(Nlog N +n) time, where N is the number of

notches and n is the total number of vertices. The nesting structure for simple polygons

is an instance of the connected components problem, so our sweep algorithm can identify

the structure in 0(Nlog N + n) time.

The algorithms for constructing quad edge data structure, polygon nesting, and con­

nected components nesting are implemented in Con Sun-workstation and Silicon Graph­

ics machines.

We examined methods for generating random polygons and presented an algorithm

to generate monotone polygons uniformly at random. We are able to generate a random

monotone polygon in 0(K) and 0(n) space, where n is the total number of vertices in the

point set and n :::; K :::; n2 is the number edges of the visibility graph of the x-monotone

chain whose vertices are the given n points. A detail analysis of the algorithm and a

proof of its correctness are also given. A random monotone polygon generator is useful

for testing many of the algorithms that accept a simple polygon or a group of simple

polygons as input, such as the polygon nesting algorithm.

Future Directions

It is interesting to apply the algorithms to large GIS data set. Although we have not

done this testing yet, we think that it is an important step in exploring more practical

problems in the GIS application area.

A second interesting direction is to combine, the quad edge data structure building

algorithm, the polygon nesting algorithm, and the connected component nesting algo­

rithm, with a GIS database system to increase the tool power and the efficiency of the

GIS. There is a great potential for many interesting problems to arise in this combining

Chapter 6. Conclusions 91

process.

Finally, because there is no efficient enumeration of the simple polygons on a given

vertex set, we are interested in finding a polynomial algorithm to generate general simple

polygons randomly from an arbitrary set of points.

Bibliography 92

Bibliography

[1) C. L. Bajaj and T. Dey. Polygon nesting and robustness. Information Processing
Letters, 35(1):23-32, June 1990.

[2) B. G. Baumgart. A polyhedron representation for computer vision. In 1975 National
Computer Conference, volume 41 of AFIPS Conference Proceedings, pages 589-569.
AFIPS Press, Arlington, Va., 1975.

[3) M. J. Egenhofer and J. Sharma. Topological consistency. In 5th International Sym­
posium on Spatial Data Handling, pages 335- 343. IGU Commission on GIS, August
1992.

[4] P. Epstein and J. Sack. Generating triangulation at random. In Proceedings of the
Fourth Canadian Conference on Computational Geometry, pages 305 - 310, 1992.

[5] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algo­
rithms for visibility a.nd shortest path problems inside triangulated simple polygons.
Algorithmica, 2:209-233, 1987.

[6) L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and System Sciences, 39(2):126-152, October 1989.

[7] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation ofVoronoi diagrams. ACM Transactions on Graphics, 4(2):74-
123, April 1985.

[8] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of com­
binatorial structures from a uniform distribution. Theoretical Computer Science,
43:169-188, 1986.

[9] D. G. Kirkpatrick. Establishing order in planar subdivisions. Discrete Comput.
Geom., 3:267-280, 1988.

[10] H.-P. Kriegel, T. Brinkhoffj and R. Schneider. The combination of spatial access
methods and computational geometry in geographic database systems. In Data
structures and efficient algorithms, number 594 in Lecture Notes in Computer Sci­
ence, pages 70-86. Springer-Verlag, 1992.

Bibliography 93

[11] M. J. Mantyla and R. Sulonen. GWB: A solid modeler with Euler operators. IEEE
Computer Graphics and Applications, 2(5):17-31, Sept. 1982.

[12] H. Meijer and D. Rappaport. Upper and lower bounds for the number of monotone
crossing free Hamiltonian cycles from a set of points. ARS Combinatoria, 30:203-
208, 1990.

[13] J. S. B. Mitchell and G. Sundaram. Generating random geometric objects. Unpub­
lished manuscript, 1993.

[14] F. P. Preparata and M. Ian Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

[15) R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the Association for Computing Machinery, 22(2):215-225, 1975.

[16] J. W. van Roessel. A new approach to plane-sweep overlay: Topological structuring
and line-segment classification. Cartography and Geographic Information Systems,
18(1):49-67, January 1991.

