
Semantics, Consistency and Query Processing of

Empirical Deductive Databases

Raymond T. Ng�

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada V6T 1Z4

Abstract

In recent years, there has been growing interest in reasoning with uncertainty in logic

programming and deductive databases. However, most frameworks proposed thus far

are either non-probabilistic in nature or based on subjective probabilities. In this paper,

we address the problem of incorporating empirical probabilities { that is, probabilities

obtained from statistical �ndings { in deductive databases. To this end, we develop

a formal model-theoretic basis for such databases. We also present a sound and com-

plete algorithm for checking the consistency of such databases. Moreover, we develop

consistency-preserving ways to optimize the algorithm for practical usage. Finally, we

show how query answering for empirical deductive databases can be carried out.

Keywords: deductive databases, empirical probabilities, model semantics, constraint

satisfaction, optimizations, query answering

1 Introduction

Uncertainty management plays a central role in everyday human decision making in general,

and in many next-generation DBMSs in particular (e.g. one managing a scienti�c or image

database). Of all scienti�c investigations into reasoning with uncertainty and chance, prob-

ability theory is one of the best understood paradigms. However, most of the probabilistic

frameworks studied in deductive databases and arti�cial intelligence are based on subjective

probabilities [18, 19, 21]. As argued by Bacchus [1], the subjective interpretation of probabil-

ities \view probabilities as degrees of belief, held by a particular agent at a particular time."

This leads to the following di�culties in terms of usability: i) this view does not suggest how

an agent can acquire the probabilities, and ii) this view does not provide a mechanism for

the agent to revise the probabilities. In contrast, empirical probabilities represent statistical

truths about the world. They are objective in nature and are independent of the belief of

an agent. They can be obtained and updated by statistical samples. Thus, the aim of this

paper is to study how empirical probabilities can be incorporated in deductive databases.

�Research partially sponsored by NSERC Grants OGP0138055 and STR0134419.

1

To motivate our approach and framework, it is best to review how statistical inferencing

is usually carried out. Suppose we wish to �nd out whether voters are satis�ed with the

performance of the head of a government. What we do then is to �nd a (su�ciently large)

sample of voters, and to ask each of them whether he or she is satis�ed. At the end of the

sampling, we know exactly how each of the voters in the sample feels. However, a far more

important purpose of the sample is to allow us to infer inductively how a typical voter in the

population feels, who is more likely not having been included in the sample. More speci�cally,

if there are n voters in the sample, k of whom are satis�ed, we induce the probability that a

typical voter is satis�ed is (k=n), with certain margins of error.

To appropriately capture the kind of statistical inferencing outlined above, we study deduc-

tive databases which consist of the following two parts. The �rst component, called a context,

stores two-valued true/false knowledge about the sample. The second component consists of

conditional probability statements that are derived from the sample, and that can be used

to induce information about individuals or objects not in the sample but in the population.

As we shall see later, one of the advantages of this structure is that essentially the con-

text is a normal deductive database. In other words, our empirical deductive databases are

\downward" compatible with existing deductive databases without probabilities.

The framework presented here generalizes the preliminary framework reported in [20]. While

the latter only supports unary predicates, the framework here provides for predicates of

arbitrary arities. To deal with this generality and gain in expressive power, as we shall see

later, we need to introduce a sophisticated notion of partitions and subpartitions, and to

handle the possible existence of combinations of variable symbols. Moreover, we present here

various ways to optimize our consistency checking algorithm for practical usage, and develop

a query answering procedure that can handle non-ground queries and rank multiple answers

to the queries. The following list summarizes the principal contributions of this paper.

1. The �rst contribution is the development of a formal model-theoretic basis for our

empirical deductive databases. This model theory deals with the complication that

Herbrand interpretations are not adequate to capture the essence of empirical reasoning.

2. The second contribution is the development of a sound and complete algorithm for

checking the consistency (and J�consistency) of our databases. This algorithm is

based on constraint satisfaction and can be readily implemented by mixed integer pro-

gramming techniques.

3. The third contribution is the development of various consistency-preserving ways to

optimize the above algorithm for practical usage.

4. The �nal contribution is the development of sound query processing procedures that

can support inductive reasoning, and rank multiple answers to the queries.

2

The organization of the paper is as follows. Sections 2 and 3 introduce the syntax and

develop a model semantics for empirical deductive databases. Sections 4, 5 and 6 study

how the consistency of such databases can be veri�ed, and how consistency checking can be

optimized. Section 7 develops query answering procedures. Section 8 compares our proposed

framework with related works.

2 Empirical Deductive Databases

Let L be a language generated by �nitely many predicate symbols and constant symbols, but

no function symbols. An empirical deductive database, or an empirical program, consists of

two parts: a context and a set of empirical clauses.

De�nition 1 A context C is a �nite set of clauses of the form: L0 L1 ^ : : :^ Ln, where:

i) for all 0 � i � n, Li is a literal in L; and

ii) any variable appearing in L0 must appear in any one of L1; : : : ; Ln. 2

A non-ground clause in a context is implicitly universally quanti�ed at the front of the clause.

All negations in empirical programs are interpreted classically { not non-monotonically.

De�nition 2 An empirical clause is of the form:

[c1; c2] L0 L1 ^ : : :^ Ln

where:

i) c1; c2 are real numbers in [0,1] such that c1 � c2, [c1; c2] 6= [0; 0] and [c1; c2] 6= [1; 1];

ii) for all 0 � i � n, Li is a literal in L; and

iii) any variable appearing in L0 must appear in any one of L1; : : : ; Ln.

L0 and L1 ^ : : : ^ Ln are called the head and the body of the empirical clause respectively.

2

Example 1 The following empirical clauses represent two aspects of the voting behavior in

an election:

[0:65; 0:7]male(X) voted(X; Y)

[0:7; 0:8] voted(Z; Y) voted(X; Y) ^ spouse(X;Z)

The intended meaning of the �rst clause is that: \given an arbitrary individual X who voted

(for someone Y), the conditional probability that X is male is within the range [0.65, 0.7]."

From an empirical point of view, this clause states that: \amongst all those who voted,

between 65% and 70% of them are male." Similarly, the second clause indicates that among

all those who voted and who have spouses, 70% to 80% of them voted for the same candidate

as their spouses. 2

3

Note that an empirical clause is notmeant to include universal quanti�ers on variables appear-

ing in the clause. For instance, the �rst clause in the above example is not a statement about

a universally quanti�ed variable X ; rather, it is a statement about a \generic" individual X

in the domain of discourse.

Example 2 In recent years, there has been growing interest in data mining or knowledge

discovery in databases. Many proposed frameworks attempt to learn quantitative rules from

data [23]. For example, the attribute-oriented approach proposed in [10] learns probabilistic

rules of the form: learning class(X) condition(X). For instance, the empirical clause

[0:63; 0:63]graduate(X) canadian(X)^GPA(X; excellent)^major(X; arts)

represents the rule saying that amongst all Canadian students majoring in arts with excellent

GPAs, 63% of them are graduate students. 2

De�nition 3 An empirical program (deductive database) P = hC;Ei consists of a context

C and a �nite set E of empirical clauses. 2

Example 3 Consider the empirical program:

C : male(duke)

voted(duke; bush)

male(Y) voted(X; Y)

E : [0:65; 0:7]male(X) voted(X; Y)

[0:2; 0:3] :male(X) voted(X; bush)

[0:3; 0:4] voted(X; Y) young(X)^ :young(Y) ^ candidate(Y)

The clauses in the context C indicate that duke is male and voted for bush, and that all

those who were voted for are male. The second empirical clause indicates that amongst all

those voted for bush, between 20% to 30% are not male. The third clause in E states that

amongst all pairs hX; Y i where X is young and Y is a non-young candidate, between 30%

and 40% of them satisfy the relationship that X voted for Y . 2

3 Model Theoretic Semantics

In this section, we �rst discuss why Herbrand interpretations may not always be appropriate

for empirical programs. We then present a model theory that suitably handles this complica-

tion, and that satis�es many requirements of probability theory. In later sections, we present

algorithms that determine the consistency of empirical programs.

3.1 Insu�ciency of Herbrand Interpretations

In conventional logic programming, it su�ces to use the Herbrand universe as the domain

of an interpretation. This is also the case in our previous works on supporting subjective

4

probabilities [18, 19]. However, the following example shows that when dealing with empirical

probabilities, using the Herbrand universe may not always be appropriate.

Example 4 Consider the following empirical program:

C : voted(duke; duke)

E : [0:65; 0:7]male(X) voted(X; Y)

The empirical clause states that of all those who voted, between 65% to 70% of them are

male. However, the Herbrand universe is the singleton fdukeg. If we restrict ourselves to

the Herbrand universe only, since there is only one member in the universe, what then is the

meaning of \between 65% to 70% of all those who voted are male"? More speci�cally, there

are two Herbrand interpretations that can possibly satisfy the empirical program, namely

fvoted(duke; duke); male(duke)g and fvoted(duke; duke)g. In both cases, male(duke) is ei-

ther true or false. With only these two interpretations, it is unclear how they can \satisfy"

the empirical program. 2

3.2 Interpretations and Models

As the above example shows, restricting our attention to Herbrand interpretations alone may

fail to capture the nature of empirical reasoning. Thus, in our model theory, we also allow

non-Herbrand interpretations.

De�nition 4 An interpretation I for our language L consists of the following:

i) a non-empty, �nite set D called the domain of I ;

ii) for each constant symbol in L, the assignment of an element in D; and

iii) for each predicate symbol q of arity n in L, the assignment of a mapping �q that maps

D
n to ftrue; falseg.

Furthermore, we make the assumption that di�erent constant symbols in L are mapped to

distinct elements in the domain 1. 2

Note that for our language L, the notion of an interpretation is almost identical to the usual

one for �rst-order languages [15]. A key di�erence is that the domain D is assumed to be

�nite. There are two reasons for this assumption. The �rst one is that empirical programs

are intended to reect �ndings from statistical samples which are always �nite. The other

reason, which is more technical, will be apparent in a later de�nition on satisfaction (cf.

De�nition 9).

Suppose q is a predicate symbol of arity n. To suitably capture the essence of empirical

probabilities, we need to count the number of n-tuples in Dn such that the tuples are assigned

true by �q. However, this counting process is complicated by the following issues:

1This is similar to enforcing an equality axiom that says that distinct constants in L are not equal [15].

5

� the variables X1; : : : ; Xn appearing in an atom q(X1; : : : ; Xn) may not be all distinct

(e.g. voted(X;X));

� an atom may be partially or fully ground (e.g. voted(X; bush)); and

� predicate symbols may be of varying arities.

To deal with these complications, we de�ne the following notions.

De�nition 5 Let L1^: : :^Ln (n � 1) be a conjunction of literals which may include constant

symbols.

i) We use the notation Cfree(L1 ^ : : :^ Ln) to denote the \generalization" of L1 ^ : : :^ Ln

where each constant occurring in the conjunction is replaced by a new variable.

ii) Correspondingly, we use the notation CV ar(L1 ^ : : : ^ Ln) to denote the set of all pairs

hmw; iwi where the constant cmw
is replaced by variable Xiw

in Cfree(L1 ^ : : :^ Ln). 2

De�nition 6 Let I be an interpretation with domain D, and L1 ^ : : : ^ Ln (n � 1) be a

conjunction of literals which may include constant symbols. Let the list of distinct variables

in Cfree(L1 ^ : : :^ Ln) be X1; : : : ; Xk. Let � = fhXi; diij di 2 D; 1 � i � kg.

i) (Base case 1: n = 1) If L1^ : : :^Ln � A and Cfree(A) � q(t1; : : : ; tj), de�ne Cond(A) to

be �q(ht1; : : : ; tji�) = true, where ht1; : : : ; tji� denotes the tuple where all occurrences of Xi

in ht1; : : : ; tji are replaced by di for all hXi; dii in �.

ii) (Base case 2: n = 1) If L1 ^ : : : ^ Ln � :A and Cfree(:A) � :q(t1; : : : ; tj), de�ne

Cond(:A) to be �q(ht1; : : : ; tji�) = false.

iii) (Inductive case: n > 1) De�ne Cond(L1 ^ : : :^ Ln) to be
V
i=1;:::;n Cond(Li). 2

For instance, Cond(voted(X1; X2)^young(X1)^:young(X2)) is the condition �voted(hd1; d2i) =

true^ �young(hd1i) = true^ �young(hd2i) = false. While the above notations deal with the

complications that variables appearing in a conjunctions of literals may not be distinct and

that constants may occur as well, the following notation handles the complication that dif-

ferent predicate symbols may have di�erent arities.

De�nition 7 Let P be an empirical program and Cl be an empirical clause.

i) Given Cl � [c1; c2]L0 L1 ^ : : :^ Ln, de�ne sa(Cl) to be the total number of constants

and distinct variables appearing in the head and the body of Cl (i.e. the total number of

distinct variables in Cfree(L0 ^ : : :^ Ln)).

ii) De�ne ma(P) to be the maximum (value) in fsa(Cl) j Cl an empirical clause in program

Pg. 2

We can now de�ne how to count the number of tuples satisfying a conjunction of literals.

De�nition 8 Let I be an interpretation with domain D, P be an empirical program, and

L1 ^ : : :^Ln be a conjunction of literals. De�ne kL1 ^ : : :^LnkI to be the cardinality of the

set fhd1; : : : ; dma(P)i 2 D
ma(P)

j Cond(L1 ^ : : :^ Ln) and diw = cmw
for all pairs hmw; iwi in

CV ar(L1 ^ : : :^ Ln)g. 2

6

In the above de�nition, and hereafter whenever no confusion arises, we abuse notation by

using diw = cmw
to denote the fact that under interpretation I , constant symbol cmw

is

assigned to the element diw in D.

Example 5 For the empirical program P discussed in Example 3,ma(P) is 2. Let I be an in-

terpretation with domain D. Then kvoted(X1; bush)kI is the cardinality of the set fhd1; d2i 2

D
2
j �voted(hd1; d2i) = true and d2 = bushg. Similarly, kvoted(X1; bush) ^ :male(X1)kI is

the cardinality of fhd1; bushi 2 D
2
j �voted(hd1; bushi) = true and �male(hd1i) = falseg: 2

Before we proceed to de�ne the notion of satisfaction for empirical programs, recall that such

a program consists of a context C and a set E of empirical clauses. Given the nature of C,

we say that an interpretation I satis�es C i� I satis�es every clause in C in the usual sense

for �rst-order languages. Thus, we only need to de�ne the condition for I to satisfy the set

E of empirical clauses.

De�nition 9 Let hC;Ei be an empirical program and I be an interpretation.

1) We say that I satis�es the empirical clause [c1; c2] L0 L1 ^ : : :^ Ln i�:

i) kL1 ^ : : : ^ LnkI = 0 or

ii) whenever kL1 ^ : : :^ LnkI > 0,

c1 �
kL0 ^ L1 ^ : : :^ LnkI

kL1 ^ : : :^ LnkI

� c2:

2) We say that I satis�es E i� I satis�es every empirical clause in E. Finally, I satis�es the

empirical program hC;Ei i� I satis�es both C and E. 2

Example 6 For the empirical program discussed in Example 4, consider the following inter-

pretation:

� The domain of I is the set D = fd1; : : : ; d20g.

� I assigns duke to d1.

� I assigns to voted the mapping f1 such that f1(hdi; dji) = true i� 1 � i � 10 and

dj = d1.

� I assigns to male the mapping f2 such that f2(hdii) = true i� 1 � i � 7.

Obviously, I satis�es the context C of the program. By de�nition, kvoted(X1; X2)kI is the

cardinality of the set fhe1; e2i 2 D
2
j f1(he1; e2i) = trueg. This value is 10. Similarly,

kvoted(X1; X2) ^male(X1)kI is the cardinality of the set fhe1; e2i 2 D
2
j f1(he1; e2i) = true

and f2(he1i) = trueg. This value is 7. Thus, I satis�es the empirical clause and the program.

2

7

Recall that an empirical clause intuitively represents a conditional probability statement.

More speci�cally, if S1 denotes the set (event) that satis�es L1 ^ : : : ^ Ln, S2 the set that

satis�es L0, and S3 the set that satis�es L0 ^ L1 ^ : : : ^ Ln
2, then the empirical clause

[c1; c2]L0 L1 ^ : : : ^ Ln corresponds to the statement: c1 � Prob(S2jS1) =
Prob(S3)

Prob(S1)
� c2,

assuming that Prob(S1) > 0. Furthermore, when probabilities are interpreted empirically

over statistical samples, we have:
Prob(S3)

Prob(S1)
=

Num(S3)

Num(S1)
, where Num(S) denotes the cardinality

of set S. This is the intuition behind De�nition 9 for an interpretation to satisfy an empirical

clause. Moreover, in the same de�nition, it is crucial that whenever kL1 ^ : : :^ LnkI > 0,

the ratio
kL0^L1^:::^LnkI

kL1^:::^LnkI
must be well-de�ned and between 0 and 1. This is guaranteed

by the restriction that all interpretations of L have �nite domains (cf. De�nition 4) and

that variables occurring in the head of an empirical clause must appear in the body (cf.

De�nition 2).

The lemma below, which is very easy to be proved, shows a few elementary properties of

an interpretation I . The �rst three properties correspond to the requirements proposed by

Fenstad for de�ning a probability function on a �rst-order language [6].

Lemma 1 (Properties related to Probability Theory) Let I be an interpretation and

P be an empirical program. Then the following conditions hold:

i) kL1kI = kL2kI , if L1 and L2 are logically equivalent;

ii) kL1kI = n
ma(P)

� k:L1kI , where n is the cardinality of the domain of I ;

iii) kL1 _ L2kI + kL1 ^ L2kI = kL1kI + kL2kI ;

iv) kL1 ^ : : : ^ LnkI � kL0kI , if L0 L1 ^ : : :^ Ln is true in I ; and

v) kL0 ^ L1 ^ : : :^ LnkI = kL1 ^ : : :^ LnkI , i� L0 L1 ^ : : :^ Ln is true in I . 2

4 Consistency of Sets of Empirical Clauses

In the previous section, we have presented a model theory for empirical programs. We say

that an empirical program is consistent i� a model exists for that program. In the remainder

of this paper, we discuss how to determine the consistency of empirical programs. Our

approach is based on constraint satisfaction, which may be implemented by (mixed integer)

linear programming techniques. For the ease of understanding, in this section we �rst present

a method for determining the consistency of sets of empirical clauses (i.e. empirical programs

with empty contexts), and show its soundness and completeness. In the next section, we will

discuss how this method can be optimized in practice, and in Section 6, we will show how to

extend this method to general empirical programs that may have non-empty contexts.

2S2 may or may not be equal to S1 \ S3, depending on the variables occurring in L0.

8

4.1 Enumeration of Partitions

Recall that the satisfaction of an empirical clause involves counting tuples of the right kinds.

This counting process can be facilitated by dividing the set of all tuples into partitions, as

illustrated below.

Example 7 Consider the following set E of empirical clauses:

[0:5; 0:6]voted(X; bush) male(X)

[0:7; 0:8]voted(X; perot) male(X)

To determine whether E is consistent or not, we begin by partitioning all pairs hd1; d2i 2 D
2

where D is the domain of an interpretation to be tested. First of all, there is the set S1

of pairs hd1; d2i such that voted(X; bush) is \satis�ed" (i.e. bush is assigned to d2 and

�voted(hd1; d2i) = true). S1 can be further decomposed into two partitions: one including all

those hd1; d2i such that d1 satis�es male(X), and the other one including all the remaining

pairs in S1. Thus, the cardinality of the former partition, say v1, gives the number of

pairs that satisfy voted(X; bush) ^male(X). Similarly, the set S1 can be divided into two

partitions: one including all the pairs that satisfy male(X), and the other one including all

the rest in S1. If v2 is the cardinality of the former partition, then the total number of pairs

satisfying male(X) is given by v1 + v2. Hence, to check whether the interpretation satis�es

the �rst empirical clause amounts to checking whether v1

v1+v2
is within the range [0.5,0.6] (cf.

De�nition 9). 2

This example outlines how partitioning can help to translate the consistency checking prob-

lem into a constraint satisfaction problem. However, this example is simplistic in that the

partitions are set up to accommodate one clause only. In general, the partitions must be set

up in such a way that all the empirical clauses in a set can be accommodated. Moreover,

partitioning is further complicated by the possible appearance of constants and common

variables in literals. The partitioning scheme below deals with these complications.

Given a literal L, we use pos(L) to denote :L if L is negative, and to denote L if L is

positive. Let Q be the set fpos(L) jL appears in program Pg
3. Furthermore, let all possible

subsets of Q be enumerated in an arbitrary but �xed way: P1; : : : ;Pt. For all 1 � i � t,

let vi denote the number of tuples that satisfy
V
A2Pi

A
V
A62Pi

:A. It is easy to see that

the Pi's divide the set of all tuples into t partitions. Thus, if L1 ^ : : :^ Ln does not contain

any constant symbols, then the number of tuples that satisfy the conjunction of literals can

be determined using the vi's. This amounts to checking for all partitions Pi, whether the

conjunction is true in Pi in the classical sense or not. Hereafter, we abuse notation by writing

Pi j= L1 ^ : : : ^ Ln, whenever L1 ^ : : : ^ Ln is true in Pi. Thus, the number of tuples that

satisfy L1^ : : :^Ln is given by the summation of the tuples in each Pi satisfying the literals,

3Here we assume that whenever necessary, variables in an empirical clause in program P are renamed to

X1; : : :Xma(P); : : : .

9

i.e.
P

Pij=L1^:::^Ln;i=1;:::;t
vi. Throughout this paper, we often write the above summation as

simply
P

Pij=L1^:::^Ln
vi.

Example 8 Consider the following empirical clauses:

[0:65; 0:7]male(X1) voted(X1; X2)

[0; 0:1]:male(X2) voted(X1; X2)

Q is the set fvoted(X1; X2); male(X1); male(X2)g. This gives rise to the following eight

partitions:

voted(X1; X2) male(X1) male(X2) partition number

1 1 1 P1 v1

1 1 0 P2 v2

1 0 1 P3 v3

1 0 0 P4 v4

0 1 1 P5 v5

0 1 0 P6 v6

0 0 1 P7 v7

0 0 0 P8 v8

The �rst partition consists of pairs hd1; d2i such that �voted(hd1; d2i) = �male(hd1i) = �male(hd2i) =

true; the second partition is identical to the �rst one except that �male(hd2i) = false,

and so on. Since voted(X1; X2) is true in P1; : : : ;P4, the number of pairs that satisfy

voted(X1; X2) is given by
P

Pij=voted(X1 ;X2)
vi = v1 + : : : + v4. Similarly, the number of

pairs satisfying voted(X1; X2) ^ male(X1) is given by v1 + v2. Thus, according to De�ni-

tion 9, for the interpretation to satisfy the �rst empirical clause, it is necessary that the

constraint 0:65 � v1+v2
v1+:::+v4

� 0:7 is satis�ed. Similarly, for the second clause, the constraint

0 � v2+v4
v1+:::+v4

� 0:1 cannot be violated. 2

Example 9 We now rewrite the second clause in the previous example to [0; 0:1]:male(X1)

 voted(X2; X1), by interchanging the roles of X1 and X2. Then Q becomes the set

fvoted(X1; X2); male(X1); voted(X2; X1)g. This gives rise to 8 partitions di�erent from the

ones listed above. Suppose that the third column of the partition table in the previous ex-

ample is now used for voted(X2; X1), instead of for male(X2). Then the constraint for the

rewritten clause becomes 0 � v3+v7
v1+v3+v5+v7

� 0:1. On the surface, this constraint is very

di�erent from the corresponding one listed in the previous example. But a careful analysis

reveals that based on the new partitions, v1+v3+v5+v7 represents the cardinality of the set

fhd1; d2i 2 D
2
j �voted(hd2; d1i) = trueg. Similarly, v3+v7 represents the cardinality of the set

fhd1; d2i 2 D
2
j �voted(hd2; d1i) = true^ �male(hd1i) = falseg. It is obvious that the cardinal-

ity of this set is identical to the cardinality of the set fhd1; d2i 2 D
2
j �voted(hd1; d2i) = true^

�male(hd2i) = falseg. Thus, the constraint here is equivalent to the corresponding constraint

in the previous example. In other words, renaming variables in a clause will cause partitions

and constraints to change { but only to something equivalent. 2

10

4.2 Subpartitioning for Constant Symbols

In �nding out the number of tuples satisfying the conjunction L1 ^ : : :^ Ln, so far we have

only considered the case when the conjunction does not include any constant symbols. For

instance, the partitioning scheme above does not directly give the number of tuples satisfying

the atom voted(X1; bush) in Example 7. To deal with the occurrences of constant symbols,

we can subdivide a partition according to the constant symbols. In particular, for partition

Pi, we use v
h�;bushi

i
to denote the number of pairs hd1; d2i in Pi, where bush is assigned to

d2, and the hyphen � indicates that d1 can be anything in the domain. Similarly, we use

v
h�;peroti

i
to denote the number of pairs hd1; d2i where perot is assigned to d2. Note that these

two numbers are related by the constraint v
h�;bushi

i
+ v

h�;peroti

i
� vi.

While the description above outlines the idea of subpartitioning (e.g. v
h�;bushi

i
), it does not

indicate which partition (i.e. vi) needs to be used. This can be achieved by the process

described in the previous subsection. More speci�cally, to determine the (sub)partitions for

L1^ : : :^Ln (which may include constants), we �rst determine the partitions Pi based on the

generalization Cfree(L1^ : : :^Ln) introduced in De�nition 5. Then we use the subpartitions

based on the constants occurring in the conjunction in the way described here. For instance,

for the atom voted(X1; bush), we �rst determine the appropriate partitions Pi's in which

voted(X1; X2) is true. Then for all such partitions, the summation of v
h�;bushi

i
gives the

total number of tuples satisfying the atom. The following de�nition helps to formalize this

discussion.

De�nition 10 Let P be an empirical program, and L1 ^ : : : ^ Ln be a conjunction of lit-

erals which may include constant symbols. De�ne Label(L1 ^ : : : ^ Ln) to be the tuple

hu1; : : : ; uma(P)i where for all 1 � j � ma(P):

i) uj = cmw
i� there exists a pair hmw; iwi in CV ar(L1 ^ : : :^ Ln) such that j = iw;

ii) otherwise, uj = �. 2

4.3 Constraint Version of Empirical Clauses

We are now in a position to de�ne the constraint version of an empirical clause.

De�nition 11 Let Cl � [c1; c2]L0 L1 ^ : : :^ Ln be an empirical clause. The constraint

version of Cl, denoted by con(Cl), is the constraint:

c1 � (
X

Pij=Cfree(L1^:::^Ln)

v
Label(L1^:::^Ln)
i

) � (
X

Pij=Cfree(L0^L1^:::^Ln)

v
Label(L0^L1^:::^Ln)
i

)

� c2 � (
X

Pij=Cfree(L1^:::^Ln)

v
Label(L1^:::^Ln)
i

):

2

11

Example 10 Consider setting up the constraint versions of the clauses listed in Exam-

ple 7. Using the partitions listed in Example 8, the number of tuples satisfying male(X1)

is given by v1 + v2 + v5 + v6. As for voted(X1; bush) ^male(X1), Cfree(voted(X1; bush) ^

male(X1)) is given by voted(X1; X2)^male(X1), which is true in P1 and P2. Furthermore,

Label(voted(X1; bush)^male(X1)) is given by h�; bushi. Thus, the number of tuples satisfy-

ing (voted(X1; bush)^male(X1)) is v
h�;bushi

1 + v
h�;bushi

2 . Hence, the constraint version of the

clause [0:5; 0:6]voted(X1; bush) male(X1) is 0:5�(v1+v2+v5+v6) � (v
h�;bushi

1 +v
h�;bushi

2) �

0:6 � (v1 + v2 + v5 + v6). Similarly, for the second clause in Example 7, the constraint is

0:7 � (v1 + v2 + v5 + v6) � (v
h�;peroti

1 + v
h�;peroti

2) � 0:8 � (v1 + v2 + v5 + v6). 2

Strictly speaking, in the above example, (v1 + v2 + v5 + v6) should be written as (v
h�;�i

1 +

v
h�;�i

2 + v
h�;�i

3 + v
h�;�i

4). However, for notational simplicity, whenever Label(L1 ^ : : :^ Ln)

contains all �'s and no constant symbols, we simply regard it as null.

To generalize the notion of the constraint version of an empirical clause to the constraint

version of a set of such clauses, we need to deal with two issues. First, as required in

De�nition 4, the domain of an interpretation cannot be empty. This property can be enforced

by the constraint
P

t

i=1 vi � 1, where t denotes the number of partitions as before. Second,

constraints must be set up to deal with the subpartitions created for constant symbols as

described in the previous subsection.

De�nition 12 Let P be an empirical program, and vi denote the number of tuples in Pi.

De�ne subpar(vi) to be the following set of constraints:

subpar(vi) = fv
hu1;:::;uj�1;�;uj+1;:::;uma(P)i

i
�

P
c
v
hu1;:::;uj�1;c;uj+1;:::;uma(P)i

i
j for all 1 � w �

ma(P), uw can either be � or any constant symbol in our language Lg,

where the symbol
P

c
denotes the sum over all constant symbols c in our language. 2

For instance, consider the set of empirical clauses in Example 7. Among others not shown,

the following three constraints are in subpar(vi): i) vi � v
h�;�i

i
� v

h�;bushi

i
+ v

h�;peroti

i
; ii)

vi � v
hbush;�i

i
+ v

hperot;�i

i
; and iii) v

h�;bushi

i
� v

hbush;bushi

i
+ v

hperot;bushi

i
.

De�nition 13 Let E be a set of empirical clauses. The constraint version of E, denoted by

con(E), is the set: fcon(Cl)jCl 2 Eg[f
P

t

i=1 vi � 1g[
S
t

i=1 subpar(vi). 2

As stated above, con(E) contains a huge number of variables and constraints. In the next

section, we discuss how in practice the numbers of variables and constraints can be drastically

reduced.

4.4 Soundness and Completeness

The reason why we set up con(E) is that we intend to check the consistency of E based on

the constraints in con(E). The major result of this section is to prove that E is consistent i�

12

there is a solution to the constraints in con(E) (cf. Theorem 1 below). To obtain this result,

we need the following de�nitions and lemmas. To be compatible with the notation described

before, let subpartitions of Pi be denoted by P
hu1;:::;uma(P)i

i
where for all 1 � w � ma(P),

uw can either be � or any constant symbol in L. Recall that Pi can be represented by the

conjunction
V
A2Pi

A
V
A62Pi

:A.

De�nition 14 Let P
hu1;:::;uma(P)i

i
be a subpartition. De�ne Cbind(P

hu1;:::;uma(P)i

i
) to be the

version (\restriction") of
V
A2Pi

A
V
A62Pi

:A such that for all 1 � w � ma(P), whenever

uw = cw for some constant symbol cw, all occurrences of Xw in the conjunction are replaced

by cw. 2

Cbind() can be regarded as the inverse of Cfree() introduced earlier. As an example, for

the partition P1 listed in Example 8, Cbind(P
h�;bushi

1) is the conjunction voted(X1; bush) ^

male(X1) ^male(bush).

De�nition 15 Let I be an interpretation. Let SI be de�ned as follows: for all partitions Pi,

i) SI(Pi) = k
V
A2Pi

A
V
A62Pi

:AkI ; and

ii) for all subpartitions P
hu1;:::;uma(P)i

i
of Pi, SI(P

hu1;:::;uma(P)i

i
) = kCbind(P

hu1;:::;uma(P)i

i
)kI . 2

Intuitively, SI speci�es the number of tuples within each partition Pi and each subpartition

of Pi. The following lemma shows that the number of tuples satisfying L1 ^ : : :^ Ln is the

summation of the number of tuples in each (sub)partition in which the conjunction is true.

Lemma 2 Let I be an interpretation, and L1^ : : :^Ln be any conjunction of literals. Then

it is the case that kL1 ^ : : :^ LnkI =
P

Pij=Cfree(L1^:::^Ln)
SI(P

Label(L1^:::^Ln)
i

).

Proof Outline Case 1 L1 ^ : : :^ Ln does not contain any constant symbols.

For simplicity, let Conj denote the conjunction L1 ^ : : : ^ Ln. Then Cfree(Conj) is iden-

tical to Conj, and Label(Conj) is null. Given the way that the partitions P1; : : : ;Pt

are de�ned, it is easy to see that
W
t

i=1(
V
A2Pi

A
V
A 62Pi

:A) is equivalent to true. Thus,W
t

i=1(Conj
V
A2Pi

A
V
A62Pi

:A) is equivalent to Conj. Since for all i 6= j, (Conj
V
A2Pi

AV
A62Pi

:A)^ (Conj
V
A2Pj

A
V
A62Pj

:A) is false in all interpretations, then by Parts (ii) and

(iii) of Lemma 1, it is necessary that kConjkI =
P

t

i=1 kConj
V
A2Pi

A
V
A62Pi

:AkI . Now for

all partitions there are two cases.

Case 1.1: Conj
V
A2Pi

A
V
A62Pi

:A.

This can be rewritten as Pi j= Conj. Now by Part (v) of Lemma 1, it is the case that

kConj
V
A2Pi

A
V
A 62Pi

:AkI = k
V
A2Pi

A
V
A62Pi

:AkI = SI(Pi).

Case 1.2: Conj 6
V
A2Pi

A
V
A62Pi

:A.

Then whenever
V
A2Pi

A
V
A62Pi

:A is true in an interpretation, Conj is false in that inter-

pretation. In other words, Conj
V
A2Pi

A
V
A62Pi

:A is always false. Hence, it is necessary

that kConj
V
A2Pi

A
V
A 62Pi

:AkI = 0.

By combining the two cases above, kConjkI =
P

Pij=Conj
SI(Pi).

13

Case 2 L1 ^ : : :^ Ln contain constant symbols.

Let Conj denote the conjunction L1 ^ : : :^ Ln. To �nd the number tuples satisfying Conj,

based on the same argument in Case 1, it su�ces to add up tuples in each partition in

which Conj is true, i.e. Pi j= Cfree(Conj). Within each such partition, it amounts to

�nding the number of tuples in the right subpartition P
Label(Conj)
i

. This number is given

by kCbind(P
Label(Conj)
i

)kI . Thus, based on the argument in Case 1, and by De�nition 15,

kConjkI =
P

Pij=Cfree(Conj)
SI(P

Label(Conj)
i

). 2

Lemma 3 I is a model of an empirical clause Cl i� SI is a solution of con(Cl) (i.e. by

assigning all vi to SI(Pi) and all v
hu1;:::;uma(P)i

i
to SI(P

hu1;:::;uma(P)i

i
), the constraint in con(Cl)

is satis�ed).

Proof Outline Let Cl be [c1; c2]L0 L1 ^ : : :^ Ln.

Case 1 I is a model of Cl.

There are two cases.

Case 1.1 kL1 ^ : : :^ LnkI = 0.

By Lemma 2, it is necessary that
P

Pij=Cfree(L1^:::̂ Ln) SI(P
Label(L1^:::^Ln)
i

) = 0. Further-

more, since L0 ^ L1 ^ : : : ^ Ln ! L1 ^ : : :^ Ln is true in I , then by Part (iv) of Lemma 1,

kL0 ^ L1 ^ : : :^ LnkI � kL1 ^ : : :^ LnkI = 0. Thus, by Lemma 2 again, it is necessary thatP
Pij=Cfree(L0^L1^:::^Ln)

SI(P
Label(L0^L1^:::^Ln)
i

) = 0. Hence, the constraint con(Cl) becomes

c1 � 0 � 0 � c2 � 0 which is trivially satis�ed.

Case 1.2 kL1 ^ : : :^ LnkI > 0.

Since I is a model of Cl, by De�nition 9, it is true that c1 � kL1 ^ : : :^ LnkI � kL0 ^ L1 ^

: : :^ LnkI � c2 � kL1 ^ : : :^ LnkI . By Lemma 2, it follows immediately that SI is a solution

of con(Cl).

Case 2 SI is a solution of con(Cl).

Similar to the argument used in Case 1 above, I satis�es Cl. 2

Theorem 1 Let I be an interpretation and E be a set of empirical clauses. I is a model of

E i� SI is a solution of con(E).

Proof Outline By the previous lemma, for every clause Cl in E, I satis�es Cl i� SI

is a solution of con(Cl). Now by De�nition 4, I has a non-empty domain. Thus, the

constraint
P

t

i=i vi � 1 must be satis�ed. Finally, since I satis�es the properties listed

in Lemma 1, for all constraints in subpar(vi), it is easy to see that it is the case that

SI(P
hu1;:::;uj�1;�;uj+1 ;:::;uma(P)i

i
) �

P
c
SI(P

hu1;:::;uj�1;c;uj+1;:::;uma(P)i

i
). Thus, SI satis�es the

constraints in subpar(vi). 2

Example 11 Consider the clauses in Example 7. As shown in Example 10, the constraints

of the clauses are:

0:5 � (v1 + v2 + v5 + v6) � (v
h�;bushi

1 + v
h�;bushi

2) � 0:6 � (v1 + v2 + v5 + v6) (1)

0:7 � (v1 + v2 + v5 + v6) � (v
h�;peroti

1 + v
h�;peroti

2) � 0:8 � (v1 + v2 + v5 + v6) (2)

14

Furthermore, relevant to these two clauses are the following constraints from subpar(v1) and

subpar(v2):

v1 � v
h�;bushi

1 + v
h�;peroti

1 (3)

v2 � v
h�;bushi

2 + v
h�;peroti

2 (4)

Now adding Constraints (3) and (4) gives:

v1 + v2 � v
h�;bushi

1 + v
h�;bushi

2 + v
h�;peroti

1 + v
h�;peroti

2 (5)

However, by Constraints (1) and (2), it is the case that v
h�;bushi

1 + v
h�;bushi

2 + v
h�;peroti

1 +

v
h�;peroti

2 � (0:5+0:7)�(v1+v2+v5+v6). Combining this with Constraint (5), it is necessary

that (v1 + v2) � 1:2 � (v1 + v2 + v5 + v6). This is only possible if v1 = v2 = v5 = v6 = 0.

Intuitively, this implies that the two clauses in Example 7 are only consistent i� there is no

tuple satisfying male(X1). If these clauses are combined with any context that can deduce

male(c) for some constant c, inconsistency results. 2

Corollary 1 A set E of empirical clauses is consistent i� con(E) has a solution. 2

The corollary above follows directly from Theorem 1. Another corollary from the theorem

is the one below which states that the approach of constraint satisfaction can also apply to

determine J � consistency of an empirical program. That is, given a pre-interpretation J

(cf. [15]) and thus a �xed domain D, the question is whether there exists an interpretation I

based on J such that I is a model of the program.

Corollary 2 Let J be a pre-interpretation with domain D. A set E of empirical clauses is

J�consistent i� (con(E)[f
P

t

i=1 vi = kDk
ma(E)

g) has a solution. 2

Example 12 Consider the empirical clause in Example 4: [0:65; 0:7]male(X1) voted(X1; X2).

Let J be an Herbrand pre-interpretation with a domain of size 1 (e.g. D = fdukeg in Exam-

ple 4). Then following the partitions listed in Example 8, the constraints below need to be

satis�ed:

0:65 � (v1 + : : :+ v4) � (v1 + v2) � 0:7 � (v1 + : : :+ v4)

v1 + : : :+ v8 = 1

Since all vi's must be non-negative integers, it is easy to check that the only solution to

the constraints is to have v1 = : : : = v4 = 0. In other words, for E to be J�consistent,

voted(d1; d1) cannot be true, where d1 is the sole element in the domain. This explains why

the program listed in Example 4 has no Herbrand model. 2

15

5 Optimization for Practical Usage

In the previous section, we present a way of translating a set E of empirical clauses to a

set con(E) of constraints. The major result there is that E is consistent i� con(E) has a

solution. This suggests that checking the consistency (and similarly the J�consistency) of

E reduces to checking whether con(E) has an integer solution. Since all the constraints

are linear, the latter process can be carried out by mixed integer programming algorithms

such as the cutting plane method [16]. Thus, one advantage of the framework set up in the

previous section is that implementations of such algorithms are widely available in many

systems including for example IBM/PC (i.e. the LINDO package). However, as stated in

the previous section, con(E) may contain too huge a number of variables vi's and constraints

for integer linear programming algorithms to tackle. The major results of this section are

consistency-preserving ways:

� to eliminate (irrelevant) variables 4 and constraints, and

� to reduce the integer programming problem to a (real-valued) linear programming prob-

lem which is computationally much cheaper to solve.

With these optimizations, we believe that it is now feasible to check program consistency by

constraint satisfaction.

5.1 Eliminating Irrelevant Constraints and Variables

Recall from De�nition 13 that con(E) is the set: fcon(Cl)jCl 2 Eg[f
P

t

i=1 vi � 1g[S
t

i=1 subpar(vi). It is easy to see that the cardinality of the set SP �
S
t

i=1 subpar(vi) is

exponential and huge in value. Fortunately, as shown below, most of the variables and con-

straints in SP can be eliminated. We call a variable v
hu1;:::;uma(P)i

i
irrelevant if it does not

appear in the set con(E)� SP .

De�nition 16 Let con(E) be a set of constraints as de�ned in De�nition 13. Let the set

con
elim(E) be constructed as follows:

i) for all constraints in con(E) of the form: : : :� : : :, set all ocurrences of irrelevant variables

at the right-hand-side of the constraint to 0;

ii) then discard all constraints of the form v
hu1;:::;uma(P)i

i
� 0. 2

For instance, if E is the set of clauses considered in Example 11, then Constraints (3) and

(4) shown in that example are the only two constraints from
S8
i=1 subpar(vi) that remain in

con
elim(E).

Lemma 4 Let E be a set of empirical clauses. con(E) has a solution i� con
elim(E) has a

solution.
4Throughout this section, the word \variables" refers to variables appearing in constraints, not variables

in L.

16

Proof Outline If conelim(E) has a solution S, then S can be augmented to be a solution of

con(E) by setting all irrelevant variables to 0. Thus, it su�ces to prove that if con(E) has a

solution S, then S is also a solution of conelim(E).

Case 1 all irrelevant variables are 0 in S.

Then trivially S is a solution of conelim(E).

Case 2 there exists some irrelevant variable v
hu1 ;:::;uma(P)i

i
= c > 0 in S.

Case 2.1 v
hu1;:::;uma(P)i

i
appears in a constraint in con(E) involving some non-irrelevant vari-

able.

Let the non-irrelevant variable be v
hw1;:::;wma(P)i

i
.

Case 2.1.1 Suppose the constraint is of the form v
hw1;:::;wma(P)i

i
� V + v

hu1;:::;uma(P)i

i
, where V

denotes a summation of some variables.

Then since S is a solution to this constraint, and since c > 0, S must also satisfy the constraint

v
hw1;:::;wma(P)i

i
� V . So as this latter constraint is in con

elim(E), S satis�es this constraint in

con
elim(E).

Case 2.1.2 Suppose the constraint is of the form v
hu1;:::;uma(P)i

i
� V + v

hw1;:::;wma(P)i

i
, where V

denotes a summation of some variables.

Then the constraint is in con
elim(E). Since solution S satis�es this constraint in con(E), it

still satis�es this constraint in con
elim(E).

Case 2.2 v
hu1;:::;uma(P)i

i
does not appear in any constraint in con(E) involving non-irrelevant

variables.

Then all constraints in which v
hu1;:::;uma(P)i

i
occur are not included in conelim(E). Thus, since

S is a solution of con(E), S is a solution of conelim(E). 2

The number of variables appearing in conelim(E) can be further reduced by merging variables

that always appear together. For instance, consider the set E of clauses discussed in Exam-

ple 11. Then con
elim(E) consists of Constraints (1) to (4) and v1 + : : :+ v8 � 1. There are a

total of 12 variables. Then, it is easy to see that the consistency of conelim(E) is not a�ected

by merging v5 and v6 together, and merging v3; v4; v7 and v8, reducing the total number of

variables to 8.

5.2 Dropping Integrality Constraints

Apart from the number of constraints and variables in con(E) (and similarly in con
elim(E)),

whether the variables are integer-valued or real-valued also a�ects the performance of checking

whether con(E) has a solution. If the variables are all integer-valued, the checking process

will take a long time. Indeed as de�ned in the previous section, our variables in con(E) are

all integer variables as they serve to count tuples. Fortunately, for all empirical programs we

have in mind, the integrality constraints on variables can be dropped, i.e. all variables can be

real-valued. The following lemma shows that for empirical programs that only use rational

numbers in their empirical clauses, the simplex method 5 for linear programming can be used

5While numerous algorithms can be used in the place of the simplex method, the reason why we only show
the proof of the lemma for the simplex method is that the method, given its availability, is the algorithm we

17

directly to check whether con(E) has a solution.

Lemma 5 Let E be a set of empirical clauses using rational numbers in their ranges. Let

con
real(E) be the variant of con(E) such that all integrality constraints on the variables of

con(E) are dropped, i.e. all variables in con
real(E) are real-valued. Then: con(E) has a

solution i� the simplex method �nds a solution for conreal(E).

Proof

i) (the \only-if" part) If con(E) has a solution S, then S is integer-valued. Clearly, S is a

solution of conreal(E). Thus, the simplex method will �nd a solution for conreal(E).

ii) Claim:- (the \if" part) If the simplex method �nds a solution for conreal(E), then con(E)

has a solution.

Consider the real-valued solution S obtained by the simplex method for conreal(E). This

solution is computed based on a sequence of simplex steps. Within each step, a pivot element

ypq in the simplex tableau is chosen. (For our purpose here, a simplex tableau can simply be

regarded as a two dimensional array.) Then every element yij in the tableau is updated to

y
0
ij
according to the following formula [16]:

y
0

ij
=

(
yij �

ypj

ypq
yiq i 6= p

ypj

ypq
otherwise

If yij ; ypj; ypq and yiq are all rational numbers, so is y0
ij
. Given the fact that clauses in E

only use rational numbers, and the form of the constraints in con(E) and con
real(E), all

elements in the initial simplex tableau are rational. Thus, it is an easy induction to show

that all elements in the �nal simplex tableau are rational. In other words, the real-valued

solution S obtained by the simplex method for conreal(E) is rational. By multiplying S with

a su�ciently large integer, an integer-valued solution S
0 can be obtained for conreal(E) and

hence for con(E). 2

Though the above lemma applies only to empirical clauses using rational numbers, and though

as de�ned in De�nition 2, irrational numbers can be used in empirical clauses, all practical

empirical programs we have in mind really fall into the category of using rational numbers

only. This is because we intend to obtain all the probability ranges [c1; c2] from statistical

samples. Furthermore, the lemma applies equally to constraint sets whose irrelevant variables

have been eliminated, i.e. conelim(E).

6 Consistency of Empirical Programs

In Section 4, we have presented a method, based on constraint satisfaction, that can determine

the consistency of sets of empirical clauses. In the previous section, we have developed

will use in our prototype system.

18

consistency-preserving ways to optimize this method for practical usage. In this section, we

show how to extend this method to determine the consistency of empirical programs which

may have non-empty contexts.

6.1 An Algorithm for Consistency Checking

Given an empirical program hC;Ei, recall from De�nition 4 that an interpretation I is a

model of the program i� I satis�es both C and E. In Section 4, we have developed a method

for checking the E part of the program. Moreover, there are certainly many ways to check

the consistency of the C part, like using the systems described in [3, 17]. Obviously, as

shown in Example 11, the problem is that the consistency of C and E, when considered

separately, does not guarantee the joint consistency of hC;Ei. One straightforward solution

to this problem is to �nd a model for the C part and then test for satisfaction of the E part

using Theorem 1. However, if hC;Ei is jointly inconsistent, this strategy may not terminate,

as C may have in�nitely many models. In the following, we present a consistency checking

algorithm that always terminates.

Algorithm 1 Let the input be an empirical program P = hC;Ei.

1. Partition the clauses in C into two sets C1; C2 such that C1 consists of all non-ground

clauses in C, and C2 = C � C1.

2. Initialize S to ;. For each clause Cl � L0 L1 ^ : : : ^ Ln in C1, add the constraint:

(
P

Pij=Cfree(L0^L1^:::^Ln)
v
Label(L0^L1^:::^Ln)
i

=
P

Pij=Cfree(L1^:::^Ln)
v
Label(L1^:::^Ln)
i

) to

S.

3. Find an Herbrand model of C2, using techniques such as the one described in [3].

4. If no such Herbrand model can be found, declare that the program is inconsistent and

halt.

5. Otherwise, initialize the set T to con(E) [S.

6. Let M be the model computed. Then for all tuples of the form hci1 ; : : : ; cima(P)
i where

for all 1 � j � ma(P), cij is a constant symbol in L, do the following:

(a) Find the partition Pi such that Cbind(P
hci1;:::;cima(P)

i

i
) is true in M .

(b) Add the constraint v
hci1 ;:::;cima(P)

i

i
� 1 to T .

7. Determine whether the constraints in T have a solution. If they do, declare that the

program is consistent and halt.

8. Otherwise, �nd a new Herbrand model of C2, and go back to Step (4). 2

Example 13 Consider the following empirical program:

19

C: male(bush)

E: [0:5; 0:6]voted(X; bush) male(X)

[0:7; 0:8]voted(X; perot) male(X)

Consider the Herbrand model M = fmale(bush)g of C2 � C. Now there are 4 pairs to

be considered in Step (6): hbush; bushi, hbush; peroti, hperot; bushi, hperot; peroti. For the

�rst pair, since :voted(bush; bush)^male(bush) ^male(bush) is true in M , P5 is the right

partition (cf. Example 8). Thus, the following constraint is added to T :

v
hbush;bushi

5 � 1 (1)

Similarly, for the other 3 pairs, the following constraints are added:

v
hbush;peroti

6 � 1 (2)

v
hperot;bushi

7 � 1 (3)

v
hperot;peroti

8 � 1 (4)

From De�nition 13 and Step (5) of the algorithm above, the constraints: v5 � v
hbush;bushi

5 and

v6 � v
hbush;peroti

6 are satis�ed. Now coupled with Constraints (1) and (2), it is necessary that

v5 � 1 and v6 � 1. However, based on the analysis shown in Example 11, the constraints in

T corresponding to the E part can only be satis�ed i� v1 = v2 = v5 = v6 = 0. Hence, with

respect to M , no solution can be found. Note that M is the least Herbrand model of C2,

and thus male(bush) must be true in every other Herbrand model M 0 of C2. By an analysis

similar to the one above, it is easy to see that the constraints added in Step (6b) with respect

to M 0 require that v1, v2, v5 and v6 cannot be equal to 0 simultaneously, contradicting the

constraints for E. Hence, this program is inconsistent. 2

Example 14 Consider the following empirical program:

C : voted(duke; duke)

:male(duke)

E : [0:65; 0:7]male(X) voted(X; Y)

Consider the Herbrand model M = fvoted(duke; duke)g of C2 � C. For the pair hduke; dukei

considered in Step (6), the constraint:

v
hduke;dukei

4 � 1

is added to T , which also contains the following (relevant) constraints from con(E) (cf.

Example 12):

0:65 � (v1 + : : :+ v4) � (v1 + v2) � 0:7 � (v1 + : : :+ v4)

v1 + : : :+ v8 � 1

v4 � v
hduke;dukei

4

20

All these constraints are satis�able. For instance, a solution is: v4 = v
hduke;dukei

4 = 1,

v1 + v2 = 7 and v3 = 2. Thus, the program is consistent.

This example highlights one of the major di�erences between the work presented here and our

earlier framework based on subjective probabilities [18, 19]. There, a clause corresponding

in appearance to the empirical clause in E applies to every element in the Herbrand domain.

Thus, the subjective probability of male(duke) is simultaneously 0 due to :male(duke),

and between 0.65 and 0.7 due to the clause in E. Within our subjective framework, this

discrepancy would render the program inconsistent. 2

In Step (1) of the above algorithm, the context C is partitioned into two sets: C1 consisting

of all non-ground clauses in C, and C2 consisting of all ground clauses. An Herbrand model

M of C2 is computed. Then for each tuple hci1 ; : : : ; cima(P)
i of constant symbols, the partition

such that Cbind(P
hci1;:::;cima(P)

i

i
) is true in M is found 6 (cf. De�nition 14). An appropriate

constraint is then added in Step (6b) to guarantee that subsequently an interpretation that

corresponds to a solution of the constraints in T will be able to make ground literals L true

i� L is true in M . This property is crucial in proving the soundness and completeness of

Algorithm 1 (cf. Theorem 2 below).

After the appropriate constraints have been added to T , any standard (mixed integer) linear

programming algorithm can be used in Step (7) to determine whether the constraints in T

have a solution. This decision process is guaranteed to halt. If there is a solution, then

Algorithm 1 also halts. Otherwise, a new Herbrand model of C2 is considered. Since the

number of Herbrand models of C2 is �nite, Algorithm 1 always terminates. Note that this

termination property does not depend on the order the Herbrand models are considered.

However, we believe that it is a good heuristic to begin with the minimal models. Techniques

described in [3, 17] use this heuristic.

6.2 Soundness and Completeness of Algorithm 1

The following theorem shows that Algorithm 1 is a sound and complete procedure for de-

termining consistency of empirical programs. The proof of the theorem makes use of the

following de�nition and the assumption that distinct constant symbols in L are mapped to

distinct elements in the domain of an interpretation (cf. De�nition 4).

De�nition 17 Let M be an Herbrand interpretation and I be any interpretation. We say

that I extends M if the following conditions hold:

i) the domain of M is a subset of the domain of I , i.e. every constant in L is also in the

domain of I and

6Given the way the partitions Pi are set up, and the fact that M is a (2-valued) Herbrand model, there

can only be one partition that satis�es the condition that Cbind(P
hci1

;:::;ci
ma(P)

i

i
) is true in M .

21

ii) for each constant symbol c in L, I assigns c to c in the domain of I and

iii) for all literals L, I makes L true i� M makes L true. 2

Theorem 2 Algorithm 1 is sound and complete in determining consistency of empirical

programs, i.e. hC;Ei is consistent i� Algorithm 1 declares that it is consistent.

Proof

i) Claim:- hC;Ei is consistent if Algorithm 1 declares that it is consistent.

Since Algorithm 1 can only declare the consistency of the program in Step (7), the constraints

in T , corresponding to some Herbrand model M of C2, must have a solution S. In particular,

since the constraints added in Step (6b) are also satis�ed, there exists an interpretation I

such that I extends M , and SI = S is a solution to the constraints in T . Now consider all

the clauses in hC;Ei.

Case 1: Clauses in C2 obtained in Step (1)

Let Cl � L0 L1 ^ : : :^ Ln be any ground clause in C2. Suppose I satis�es L1 ^ : : :^ Ln.

Since for all literals L, I makes L true i� M makes L true, M satis�es L1 ^ : : :^ Ln. Since

M is a model of C2, M satis�es L0. Again by virtue of the fact that I extends M , I satis�es

L0. Thus, I is a model of Cl.

Case 2: Clauses in C1 obtained in Step (1)

Let Cl � L0 L1 ^ : : : ^ Ln be any non-ground clause in C1. Since SI is a solution

of the constraints in T , it satis�es the constraints added in Step (2). Thus, it follows thatP
Pij=Cfree(L0^L1^:::^Ln)

SI(P
Label(L0^L1^:::^Ln)
i

) =
P

Pij=Cfree(L1^:::^Ln)
SI(P

Label(L1^:::^Ln)
i

).

Now by Lemma 2, it follows that kL0 ^ L1 ^ : : :^ LnkI = kL1 ^ : : :^ LnkI . Hence, by Part

(v) of Lemma 1, I satis�es the clause Cl.

Case 3: Empirical clauses in E

The constraints in con(E) are added to T in Step (5). Since SI is a solution of the constraints

in T , it is a solution of con(E). Hence, by Theorem 1, I satis�es all the clauses in E.

By combining all three cases above, I is a model of hC;Ei.

ii) Claim:- If hC;Ei is consistent, Algorithm 1 declares that it is consistent.

Let I be a model of hC;Ei. Now consider all the constraints in T .

Case 1: Constraints in con(E)

Since I is a model of E, then by Theorem 1, SI is a solution of con(E).

Case 2: Constraints added in Step (2)

Corresponding to each constraint is the clause L0 L1 ^ : : : ^ Ln in C1. Since I satis�es

this clause, then by Part (v) of Lemma 1, it follows that kL0 ^L1 ^ : : :^LnkI = kL1 ^ : : :^

LnkI . Now by Lemma 2, it follows that
P

Pij=Cfree(L0^L1^:::^Ln)
SI(P

Label(L0^L1^:::^Ln)
i

) =P
Pij=Cfree(L1^:::^Ln)

SI(P
Label(L1^:::^Ln)
i

). Hence, SI satis�es these constraints.

Case 3: Constraints of the form v
hc1;:::;cma(P)i

i
� 1 added in Step (6b)

Let M be an Herbrand interpretation such that for all literals L, M makes L true i� I makes

L true. Since I is a model of hC;Ei, and hence a model of C2, M is an Herbrand model

of C2 as well, and is considered in an iteration of Algorithm 1. Now for hc1; : : : ; cma(P)i, let

22

Conj denote the ground literal Cbind(P
hc1;:::;cma(P)i

i
). Since Conj is true in M , I also makes

Conj true. Therefore, it is the case that hd1; : : : ; dma(P)i is in the subpartition P
hc1;:::;cma(P)i

i
,

where for all 1 � j � ma(P), cj is mapped to dj in I . Under the assumption that distinct

constant symbols are mapped to distinct elements in the domain of I , it is necessary that

SI(P
hc1;:::;cma(P)i

i
) � 1. Hence, I satis�es these constraints.

By combining all the cases above, SI is a solution of T . Hence, in Step (7), Algorithm 1

declares that hC;Ei is consistent. This completes the proof of the theorem. 2

The corollary below states that, given a pre-interpretation J , Algorithm 1 can be extended

to check for the J�consistency of empirical programs.

Corollary 3 Let J be a pre-interpretation with domainD. When applied with the additional

constraint
P

t

i=1 vi = kDk
ma(P) in T , Algorithm 1 is sound and complete in determining the

J�consistency of empirical program P . 2

Note that Algorithm 1 can be optimized for practical usage using the same techniques de-

scribed in Section 5. With those optimizations, Algorithm 1 provides a feasible, as well as

sound and complete, way of verifying consistency of empirical programs.

7 Query Processing for Consistent Empirical Programs

7.1 Outline for Query Answering

In most logic programming frameworks, including the ones we proposed in [18, 19], queries

are existential in nature. Here, queries to an empirical program hC;Ei are di�erent. A query

is of the form: Q � L which intuitively asks for the conditional probability of L, given that

the program is true. As a preview, we �rst outline a two-step procedure that can be used to

answer this query; the procedure will be formalized in Section 7.3.

In the �rst step, the query answering procedure poses the query against the context C.

If the context can deduce the truth or falsity7 of the query, then the procedure returns the

answer 1 or 0 respectively, and the processing for the query is completed. Otherwise, when no

de�nite answer to the query can be deduced, the procedure then tries to induce the conditional

probability by consulting the empirical clauses in E as illustrated below.

Example 15 Consider writing an empirical program for the University of British Columbia

Department of Computer Science Hyperbrochure, which is a system for the automatic delivery

of video information. More speci�cally, the system manages a one-hour video disk containing

overview material intended for faculty members, students, sta� and visitors. When a user

�rst logs onto the system, the system asks the user for his/her pro�le, based on which the

7As we are only interested in answering queries to consistent empirical programs, an atom cannot be both

true and false in the context.

23

system determines and delivers the parts of the video most interesting to the user. 8 To do

so, the following empirical program P may be used by the system:

C : student(X) gradStudent(X)

adult(X) gradStudent(X)

E : [0:6; 0:7] interest(X; Y) student(X) ^ aboutFacilities(Y)

[0:8; 1] interest(X; Y) gradStudent(X)^ aboutFunding(Y)

[0:5; 0:7] interest(X; Y) adult(X)^ aboutHistory(Y)

[0:9; 1] interest(X; Y) :adult(X)^ presentation(Y; colorAnimation)

Consider posing the query Q1 � interest(paul; Y) to P [fstudent(paul)g. Then by the �rst

empirical clause, the system determines it is quite likely that all items Y about facilities

may be of interest to paul. On the other hand, suppose that paul has used the system

before, and has explicitly stated that he is interested in all color animation items. Then in

the context of P , the system may contain the (non-empirical) clause: interest(paul; Y)

presentation(Y; colorAnimation). In this case, query Q1 can be answered directly from the

context, without induction from the empirical part, and the system shows paul all color

animation items.

Now consider posing the query Q2 � interest(mary; Y) to P [fgradStudent(mary)g. Since

the context cannot be used to answer the query, the system uses the empirical clauses. By

the second empirical clause, the system determines it is very likely that mary would like

to view all items Y about funding. Moreover, because all graduate students are students,

as speci�ed by the �rst clause in the context, the �rst empirical clause is also applicable to

mary. Thus, the system may also show mary the items about facilities. Similarly, since all

graduate students are adults, the system may choose to show mary items about the history

of the department and the university. 2

Query Q2 above highlights a major issue involved in the kind of inductive answering we wish

to support { the choice of answers when more than one empirical clause (i.e. inductive answer)

is applicable. In the above example, the system needs to choose from items about facilities,

funding or history. The approach we take to resolve such conicts is the one customarily

used in statistical inferences { choose the one with the most speci�c reference class. In our

example, since gradStudent(X) implies student(X) and adult(X), gradStudent is the most

speci�c reference class. Thus, the system will show items about funding. For more discussion

on reference classes, see [14]. As many researchers have observed [1, 22], changing reference

classes can lead to non-monotonic modes of reasoning. For instance, if student(mary) is

the only fact about mary, then the system will show items about facilities. However, if the

additional fact gradStudent(mary) is included, the items of interest may change immediately.

8The full system allows the user to give feedback to it which can then adjust, if necessary, what to show
the user next. Such feedback provides a basis for updating the probabilities used by the system.

24

7.2 Compilation of Empirical Programs

The following algorithm uses empirical clauses and clauses in the context to generate other

empirical clauses so that query processing can be simpli�ed. As the generation process is

query-independent, this algorithm should be carried out at compile-time.

Algorithm 2 Let P = hC;Ei be an empirical program.

1. Set T0 to E and i to 1.

2. Construct the set S1 = f [1� c2; 1�c1] :L0 L1^ : : :^Ln j [c1; c2] L0 L1^ : : :^Ln

is a clause in Ti�1g.

3. Construct the set S2 = f[0; 0]L1 L0 j [0; 0]L0 L1 is a clause in Ti�1g.

4. Construct the set S3 = f [c1; 1] L
0
 L1 ^ : : :^ Ln j [c1; c2] L0 L1 ^ : : : ^ Ln is a

clause in Ti�1 and L
0
 L0 is a logical consequence of Cg.

5. Set Ti = Ti�1 [S1[S2[S3. If Ti is the same as Ti�1, then set comp(P) = hC; Tii and

halt. Otherwise, increment i and go to Step 2. 2

Example 16 Apply Algorithm 2 to the program listed in Example 15. It is not di�cult to

see that in the �rst iteration, S1 consists of 4 clauses, such as [0:3; 0:4]:interest(X; Y)

student(X) ^ aboutFacilities(Y). S2 and S3 are empty. In the second iteration, nothing

else is generated, and the compilation ends. Note that given student(X) gradStudent(X)

and [0:6; 0:7]interest(X; Y) student(X) ^ aboutFacilities(Y), one may wonder whether

there is a non-trivial empirical clause of the form: [c1; c2]interest(X; Y) gradStudent(X)^

aboutFacilities(Y). The answer is no, because in general it is possible to have c1 = 0 and

c2 = 1 simultaneously. 2

Checking whether Ti is the same as Ti�1 in Step 5 of Algorithm 2 ensures that the algorithm

starts the next iteration only if at least one new empirical clause is added in the current

iteration. Since L is a �nite language, there can only be a �nite number of empirical clauses of

the forms generated above. Thus, Algorithm 2 terminates after a �nite number of iterations,

producing a �nite compiled program comp(P). The lemma below shows that the generated

clauses do not change the original meaning of P .

Lemma 6 Let P = hC;Ei be an empirical program. Then P and comp(P) are logically

equivalent.

Proof Outline Since all clauses in P are in comp(P), it is su�cient to show that all models

of P are models of comp(P). Let I be a model of P . Now proceed by induction on i to show

that I is a model of clauses in Ti. The base case is trivial (cf. Step 1 of Algorithm 2). Now

for i > 0, by the induction hypothesis, I is a model of Ti�1. It su�ces to consider clauses

25

contained in S1; S2 and S3. As the proofs for clauses in S1 and S2 are quite trivial, below we

only show the proof for clauses in S3.

Consider a clause Cl � [c1; 1]L
0
 L1 ^ : : : ^ Ln in S3. It is generated from the clauses

Cl1 � [c1; c2]L0 L1 ^ : : :^Ln in Ti�1 and Cl2 � L
0
 L0 which is a logical consequence of

context C. I is a model of both Cl1 and Cl2. There are two cases. First, if kL1^: : :^LnkI = 0,

then by De�nition 9, I is trivially a model of Cl. On the other hand, if kL1^ : : :^LnkI > 0, it

follows from De�nition 9 that c1�kL1^: : :^LnkI � kL0^L1^: : :^LnkI � c2�kL1^: : :^LnkI .

Given Cl2, by Lemma 1, it is the case that kL0 ^ L1 ^ : : : ^ LnkI � kL
0
^ L1 ^ : : : ^ LnkI .

Thus, it is necessary that c1 � kL1 ^ : : :^ LnkI � kL
0
^ L1 ^ : : :^ LnkI . Hence, I is a model

of Cl. This completes the proof of the induction and the lemma. 2

7.3 A Basic Algorithm for Query Answering

Thus far, we have discussed how an empirical program can be compiled to facilitate query

answering. Next we will give a declarative speci�cation of correct answers to queries, and

will then present a procedure that formalizes the approach for query answering outlined in

Section 7.1. Recall that inductive answering involves choosing the most speci�c reference

class. However, in general, as reference class may only follow a partial order in speci�city,

there may not be a unique most speci�c reference class. The notion of maximally preferred

class introduced below deals with the situation when there are several maximally speci�c

reference classes.

De�nition 18 Let C be the context of an empirical program. Let S be fBody1; : : : ; Bodyng,

where Bodyi � L
i

1 ^ : : :^ L
i

mi
.

i) Bodyi is more preferred than Bodyj i� either Bodyi is an instance of Bodyj or Bodyj

Bodyi is a logical consequence of C.

ii) Bodyi is a maximally preferred class in S if there is no element Bodyj in S such that

Bodyj is more preferred than Bodyi. 2

We are now in a position to specify declaratively the set of correct answers for a given query.

In the following, we will �rst focus on ground queries Q � L. In Section 7.6, we will discuss

how to handle non-ground queries.

De�nition 19 Let P = hC;Ei be an empirical program, and L be a ground query. Let

consq(P; L) be de�ned as follows:

1) If either L or :L is a logical consequence of C, then consq(P; L) = f[1; 1]g or consq(P; L) =

f[0; 0]g respectively.

2) Otherwise, consq(P; L) is the set of ranges [c1; c2] such that:

i) there exists a maximally preferred class Bodyi in the set fBodyj L0
 Body is an

empirical clause in P , and there exists a uni�er � that uni�es L and L0, and that Body�

is a logical consequence of Cg; and

26

ii) [c1; c2] is the tightest range so that c1 � kBodyikI � kBodyi ^ L
0
kI � c2 � kBodyikI is

satis�ed for all models I of P . 2

The following algorithm computes the set of correct answers for queries. Lemma 7 will show

that the algorithm is sound with respect to consq(P; L) de�ned above.

Algorithm 3 Let L be a ground query and comp(P) = hC;Ei be the compiled version of

an empirical program.

1. If L is a logical consequence of C, return [1,1] as the probability range, and halt.

2. If :L is a logical consequence of C, return [0,0] as the probability range, and halt.

3. (Inductive answering begins) Construct the set S = fClj Cl � [c1; c2]L
0
 Body is

an empirical clause in E, and there exists a uni�er � that uni�es L and L
0 and that

Body� is a logical consequence of Cg. Intuitively S consists of all the empirical clauses

applicable to query L. If S is empty, halt 9.

4. Otherwise, based on C, compute all the maximally preferred classes in fBodyj [c1; c2]L
0

Body is in Sg. (For empirical clauses of the form [c1; c2]L
0
 , Body � true.)

5. For each maximally preferred class Bodyi, return [c1;i; c2;i] as the probability range

based on Bodyi, where the clause [c1;i; c2;i]L
0
 Bodyi is in S. 2

Example 17 Consider posing the query Q � interest(mary; clip1) to the following empirical

program:

C : gradStudent(mary)

student(X) gradStudent(X)

E : [0:6; 0:7] interest(X; clip1) student(X)

[0:8; 1] interest(X; clip1) gradStudent(X)

Obviously, Steps 1 and 2 of Algorithm 3 do not give any de�nite answer to the query. In

Step 3, S consists of both empirical clauses. In Step 4, the computed maximally preferred

class in fstudent(X); gradStudent(X)g is gradStudent(X). Thus, Step 5 returns the range

[0.8,1] (not the range [0.6,0.7]) as the answer. Further suppose that having seen clip1, mary's

feedback is that she is not interested in clip1. Thus, the fact :interest(mary; clip1) may be

added to the context. Then next time when the query interest(mary; clip1) is posed, Step 2

of Algorithm 3 returns the range [0,0] as the answer. 2

Note that Algorithm 3 requires a procedure for checking logical consequences. Such checking

can be implemented by a standard unsatis�ability checker, such as one based on resolution,

or a mixed integer programming algorithm such as the one described in [3].

9This is equivalent to returning [0,1] (i.e. \unknown") as the answer. However, for the ease of presentation

of the algorithm and the soundness proof later on, we would rather the algorithm halts without returning any

range.

27

7.4 Soundness of Algorithm 3

Given a compiled empirical program comp(P) and a ground query L, we use the notation

proof(P; L) to denote the set of ranges obtained by applying Algorithm 3 to comp(P) and

L.

Lemma 7 Let comp(P) = hC;Ei be an empirical program and L be a ground query. Then

for any range [c1; c2] 2 proof(P; L), there exists a range [d1; d2] 2 consq(P; L) such that

[d1; d2] � [c1; c2].

Proof Outline Case 1: L is a logical consequence of C

By Step 1 of Algorithm 3, it is necessary that proof(P; L) = f[1; 1]g. Furthermore, by

De�nition 19, it is the case that consq(P; L) = f[1; 1]g= proof(P; L).

Case 2: :L is a logical consequence of C

Similar to Case 1 above, it is obvious that consq(P; L) = f[0; 0]g= proof(P; L).

Case 3: Otherwise

Consider any range [c1; c2] 2 proof(P; L).
10 According to Step 5 of Algorithm 3, there exists

a maximally preferred class Bodyi such that the clause [c1; c2]L
0
 Bodyi is in the set S

constructed in Step 3. Now for all models I of P , by De�nition 9, it must be the case that

c1 � kBodyikI � kL
0
^BodyikI � c2 � kBodyikI . Thus, by De�nition 19, there exists a range

[d1; d2] 2 consq(P; L) such that [d1; d2] � [c1; c2]. 2

The lemma above shows that Algorithm 3 is sound. However, the example below shows that

Algorithm 3 may not be complete. By De�nition 19, we say that Algorithm 3 is complete

i� the algorithms �nds all the tightest ranges contained in consq(P; L), i.e. consq(P; L) �

proof(P; L).

Example 18 Consider the following empirical program P :

C : D(X) A(X)^B(X)

A(X) D(X)

B(X) D(X)

F (X) :A(X)^B(X)

:A(X) F (X)

B(X) F (X)

E: [c1; c2]D(X) C(X)

[d1; d2]F (X) C(X)

For any model I of the program P , it is necessary that c1 � kC(X)kI � kD(X)^ C(X)kI �

c2 � kC(X)kI. But according to the �rst three clauses in the context, it is the case that

D(X)$ A(X)^ B(X). In other words, it must be the case that c1 � kC(X)kI � kA(X) ^

10If proof(P;L) is empty, this corresponds to the situation when the \returned answer" is [0,1]. In this

case, the theorem is trivially true.

28

B(X)^C(X)kI � c2 � kC(X)kI. Similarly, based on the second empirical clause and the last

three clauses in the context, it is necessary that d1 �kC(X)kI � k:A(X)^B(X)^C(X)kI �

d2�kC(X)kI. However, since kB(X)^C(X)kI = kA(X)^B(X)^C(X)kI+ k:A(X)^B(X)^

C(X)kI, it must be the case that (c1+d1)�kC(X)kI � kB(X)^C(X)kI � (c2+d2)�kC(X)kI.

In other words, I satis�es the clause [(c1+d1); (c2+d2)]B(X) C(X). However, it is obvious

that this clause cannot be generated by the compilation carried out by Algorithm 2. Hence,

if the query is L � B(d) for some constant symbol d, then proof(P [fC(d)g; L) as computed

by Algorithm 3 does not contain the range [(c1+ d1); (c2+ d2)] which is, however, contained

in consq(P [fC(d)g; L). 2

The above example highlights one of the major reasons why Algorithm 3 is not complete. That

is, in order to get the tightest ranges, query answering may require very intricate reasoning

involving both empirical clauses and clauses in the context. Moreover, this process may in

general involve multiple clauses. The compilation carried out by Algorithm 2 is certainly not

powerful enough. However, for a procedure to get all the tightest ranges, it may need to

reason with all possible combinations of clauses. This is a process we believe is too expensive

even to be conducted at compile-time. Hence, the current compilation procedure, as speci�ed

in Algorithm 2, tries to strike a balance between e�ciency and completeness by generating

clauses that do not appear in the original program and that are easy to be produced. In fact,

our query answering algorithm is sound but incomplete for both P and comp(P). The only

di�erence is that the \degree" of incompleteness for the latter is less than that of the former,

as P � comp(P).

Guntzer et al [9] develops a probabilistic calculus that can handle non-monotonic uncertainty

reasoning. While they do not provide a model semantics for their framework, they prove

the soundness of their calculus. However, for reasons similar to the ones cited above, their

calculus may not be complete.

7.5 An Enhanced Algorithm for Query Answering: Ranking Maximally

Preferred Classes

Example 19 Consider the following empirical program which generalizes the program dis-

cussed in Example 17.

C : gradStudent(mary)

student(X) gradStudent(X)

aboutFacilities(clip1)

aboutFunding(clip1)

E : [0:6; 0:7] interest(X; Y) student(X) ^ aboutFacilities(Y)

[0:8; 1] interest(X; Y) gradStudent(X)^ aboutFunding(Y)

When Algorithm 3 is applied to answer the query interest(mary; clip1), the set S con-

structed in Step 3 now becomes fBody1 � student(X) ^ aboutFacilities(Y), Body2 �

gradStudent(X) ^ aboutFunding(Y)g. Even though it is still true that gradStudent(X)

29

implies student(X), the implication Body1 Body2 is no longer a logical consequence of

the context. Thus, neither Body1 nor Body2 is more preferred than the other, and there are

now two maximally preferred classes. 2

The above example demonstrates that the notion of Bodyi being more preferred than Bodyj

may be too strong for many situations, thus permitting too many maximally preferred classes.

In the above example, even though Body1 and Body2 are two maximally preferred classes, it

is reasonable to argue that Body2 is more applicable than Body1. This is due to the fact that

gradStudent(X) implies student(X) and that aboutFacilities(Y) and aboutFunding(Y) do

not entail one another. In the following, we de�ne a way to rank maximally preferred classes.

We begin with the de�nition below.

De�nition 20 Let C be the context of an empirical program. Given Bodyi � fL
i

1; : : : ; L
i

mi
g

and Bodyj � fL
j

1; : : : ; L
j

mj
g, Bodyi is more applicable than Bodyj if there exist a subset

B � Bodyi and a literal L 2 Bodyj such that L
V
Lu2B

Lu is a logical consequence of C.

2

Example 20 Suppose the context C1 consists of fL1 L2g. If Body1 � L1 ^ L3 and

Body2 � L2 ^ L4, then Body2 is more applicable than Body1. On the other hand, suppose

the context C2 is fL1 L2; L3 L4g, and Body1 � L1 ^ L4 and Body2 � L2 ^ L3. Then

because of L3 L4, Body1 is more applicable than Body2. However, because of L1 L2,

Body1 is also more applicable than Body2. In other words, it is possible to have Bodyi and

Bodyj more applicable than one another simultaneously. Furthermore, given the context C2,

consider Body1 � L4, Body2 � L2 ^ L3, and Body3 � L1. It is the case that Body1 is more

applicable than Body2, which in turn is more applicable than Body3. However, it is not true

that Body1 is more applicable than Body3. In other words, the relationship of being more

applicable is not transitive. 2

The above example shows that the notion of Bodyi being more applicable than Bodyj is

weaker than the notion of Bodyi being more preferred than Bodyj . In particular, for a set

fBody1; : : : ; Bodyng, the notion of applicability does not constitute a partial ordering on the

elements of the set. Thus, this notion alone is not powerful enough to rank maximally pre-

ferred classes. However, the following de�nition proposes a heuristic way to rank maximally

preferred classes.

De�nition 21 Let fBody1; : : : ; Bodyng be a collection of maximally preferred classes.

i) For all 1 � i � n, de�ne more(Bodyi) to be the cardinality of the set fBodyj j Bodyi is

more applicable than Bodyjg.

ii) For all 1 � i � n, de�ne less(Bodyi) to be the cardinality of the set fBodyj j Bodyj is

more applicable than Bodyig.

iii) For all 1 � i � n, de�ne rank(Bodyi) =more(Bodyi)� less(Bodyi). 2

30

If there are n maximally preferred classes, rank(Bodyi) ranges from n�1 to �(n�1). A more

careful analysis indicates that rank(Bodyi) = n � 1 and rank(Bodyi) = �(n � 1) are two

special cases. In the former case, this is only possible if for all j 6= i, Bodyi is more applicable

to Bodyj , but not vice versa. Thus, it is arguable that Bodyi is the \most applicable."

Conversely, rank(Bodyi) = �(n� 1) is only possible if for all j 6= i, Bodyj is more applicable

than Bodyi, but not vice versa. In this case, Bodyi is the \least applicable," and can therefore

be ignored. These observations lead to the following algorithm which enhances Algorithm 3

by providing a heuristic ranking on the maximally preferred classes.

Algorithm 4 Same as Algorithm 3, except that Step 5 of Algorithm 3 is modi�ed to:

5. Suppose Body1; : : : ; Bodyn are the maximally preferred classes.

(a) Compute rank(Bi) for all 1 � i � n.

(b) If there exists Bodyi such that rank(Bodyi) = n � 1, return [c1;i; c2;i] as the

probability range based on Bodyi, where the clause [c1;i; c2;i]L
0
 Bodyi is in S

(constructed in Step 3). Halt.

(c) Otherwise, for all 1 � i � n such that rank(Bodyi) > �(n�1), return in descend-

ing order of ranks, the range [c1;i; c2;i] as the probability range based on Bodyi,

where the clause [c1;i; c2;i]L
0
 Bodyi is in S. Halt. 2

Example 21 Consider the following empirical program which is very similar to the programs

discussed in Examples 15 and 19.

C : gradStudent(mary)

student(X) gradStudent(X)

adult(X) gradStudent(X)

aboutFacilities(clip1)

aboutFunding(clip1)

aboutHistory(clip1)

E : [0:6; 0:7] interest(X; Y) student(X) ^ aboutFacilities(Y)

[0:8; 1] interest(X; Y) gradStudent(X)^ aboutFunding(Y)

[0:5; 0:7] interest(X; Y) adult(X)^ aboutHistory(Y)

Following the discussion in Example 19, it is not di�cult to see that there are three maximally

preferred classes: Body1 � student(X) ^ aboutFacilities(Y), Body2 � gradStudent(X) ^

aboutFunding(Y), and Body3 � adult(X)^aboutHistory(Y). But now according to Step 5a

of Algorithm 4, it is the case that rank(Body2) = 2 because of the second and third clauses

in the context. Thus in Step 5b, the algorithm only returns the range [0.8,1] and halts. 2

As a �nal note, computing the ranks of maximally preferred classes may be a time-consuming

task to be carried out at run-time. One optimization would be to compute at compile-time a

table A whose entry Ai;j indicates whether Bodyi is more applicable than Bodyj , for all bodies

Bodyi; Bodyj of clauses in comp(P). Then at run-time, the computation of rank(Bodyi)

would amount to simple table look-ups.

31

7.6 Query Answering for Non-ground Queries

Thus far, we have only considered answering ground queries. The following algorithmmodi�es

Algorithm 4 to handle non-ground queries.

Algorithm 5 Let L be a query, not necessarily ground, and comp(P) = hC;Ei be the

compiled version of an empirical program.

1. For all most general uni�ers �, if L� (or :L�) is a logical consequence of C, return �

and [1,1] (or [0,0] respectively), and halt.

2. Same as Steps 3 and 4 of Algorithm 4 (and Algorithm 3).

3. Same as Step 5 of Algorithm 4 except that the uni�ers � are returned with the corre-

sponding probability ranges. 2

Example 22 Suppose the context of the program discussed in Example 21 is modi�ed to:

C : gradStudent(mary)

student(X) gradStudent(X)

adult(X) gradStudent(X)

aboutFacilities(clip1)

aboutFunding(clip2)

aboutHistory(clip3)

Suppose the query is Q � interest(mary; Y). Following the discussion in Example 21, there

are the same three maximally preferred classes: Body1 � student(X) ^ aboutFacilities(Y),

Body2 � gradStudent(X) ^ aboutFunding(Y), and Body3 � adult(X) ^ aboutHistory(Y).

And again, because rank(Body2) = 2, Algorithm 5 returns the range [0.8,1] with Y = clip2,

and halts. 2

Note that in Algorithm 5, ranking maximally preferred classes is not conducted on a per

uni�er basis. If that was the case, the algorithm would return the three answers for the

above example: range = [0.6,0.7], Y = clip1; range = [0.8,1], Y = clip2; and range =

[0.5,0.7], Y = clip3. However, we believe that conducting the ranking across the maximally

preferred classes of all uni�ers corresponds more closely to the kind of query answering based

on the most speci�c reference classes outlined in Section 7.1. This is because the notion of a

class being more speci�c than another is a concept that is based on the classes themselves,

but not on individual elements in the classes.

8 Related Work

There have been many proposals on multivalued logic programming. These include the works

by Baldwin [2], Blair and Subrahmanian [4], Dubois, Prade and Lang [5], Fitting [7, 8], Kifer

32

et al [11, 12, 13], Shapiro [25] and van Emden [26]. However, all of these proposals are non-

probabilistic, as they are based either on fuzzy set theory, possibilistic logic or Dempster-

Shafer theory. As we believe that a probabilistic approach to quantitative deduction in

logic programming is important, we have proposed a framework for probabilistic deductive

databases [18, 19]. This framework is based on a subjectivistic view of probabilities, that

is viewing probabilities as degrees of belief held by a particular agent. More speci�cally, in

technical terms, the framework is based on regarding Herbrand interpretations as possible

worlds and attaching probabilities to closed formulas in the language. However, it is incapable

of expressing statistical generalizations.

In contrast, the framework presented here is intended to express empirical probabilities that

represent statistical truths about the world, or at least about statistical samples drawn from

the world. In other words, these probabilities are objective in nature, independent of the

beliefs of an agent. More technically speaking, while in the framework studied in [18, 19],

probability distributions are de�ned over the sentences of logical languages, here probability

distributions are de�ned over the domain of discourse. Example 14 highlights the major di�er-

ence between these two approaches. Within our subjective framework, a clause corresponding

in appearance to the empirical clause in E applies to every element in the Herbrand domain.

Thus, the subjective probability of male(duke) is simultaneously 0 due to :male(duke),

and between 0.65 and 0.7 due to the clause in E. Within our subjective framework, this

discrepancy would render the program inconsistent.

The framework presented here generalizes our framework reported in [20] which only sup-

ports unary predicate symbols. Thus, our language here allows us to express and reason

with relationships among groups of elements in the domain of discourse. To deal with this

generality and gain in expressive power, we need to adopt a more sophisticated notion of

partitions, introduce the notion of subpartitions, and handle the existence of combinations

of variable symbols (cf. the material covered in Section 4 here). Furthermore, we present

in this paper various ways to optimize our consistency checking framework for practical us-

age, and develop a query answering procedure that can handle non-ground queries and rank

maximally preferred classes.

The integration of logic and probability theory has been the subject of numerous stud-

ies [1, 21, 22]. More relevant to our work here is Bacchus' framework that extends full

�rst order logic with empirical probability statements [1]. He develops a sound and complete

proof procedure for consistent theories. We provide explicit mechanisms for determining the

consistency of empirical programs. These mechanisms are based upon (mixed integer) lin-

ear programming techniques, and may be implemented on top of standard (integer) linear

programming packages.

33

9 Conclusions

In this paper, we investigate how to incorporate empirical probabilities in deductive databases.

We propose a framework whereby an empirical deductive database consists of a context and

a collection of empirical clauses. For such databases, we develop a model-theoretic semantics,

and a sound and complete algorithm for checking consistency. Combined with the optimiza-

tion techniques proposed in this paper, this algorithm can be readily implemented by linear

programming methods. Last but not least, we develop query processing procedures which can

support inductive answering, and can rank multiple answers to queries heuristically. In ongo-

ing work, we are developing a prototype implementation of the query answering procedures,

and will integrate the prototype with the Hyperbrochure discussed in Example 15.

References

[1] F. Bacchus. (1988) Representing and Reasoning with Probabilistic Knowledge, Research

Report CS-88-31, University of Waterloo.

[2] J.F. Baldwin. (1987) Evidential Support Logic Programming, Journal of Fuzzy Sets and

Systems, 24, pps 1-26.

[3] C. Bell, A. Nerode, R.T. Ng and V.S. Subrahmanian. (1992) Implementing Deductive

Databases by Mixed Integer Programming, to appear in: ACMTransactions of Database

Systems. Preliminary version appeared in: Proc. 11th Symposium on Principles of

Database Systems, pp 283{292.

[4] H. A. Blair and V.S. Subrahmanian. (1987) Paraconsistent Logic Programming, Theo-

retical Computer Science, 68, pp 35-54.

[5] D. Dubois, H. Prade and J. Lang. (1991) Towards Possibilistic Logic Programming,

Proc. 1991 Intl. Conf. on Logic Programming, ed. K. Furukawa, pps 581{595, MIT

Press.

[6] J. E. Fenstad (1980) The Structure of Probabilities De�ned on First-Order Languages,

in: Studies in Inductive Logic and Probabilities Volume 2, ed. R. C. Je�rey, pp 251{262,

University of California Press.

[7] M. C. Fitting. (1988) Logic Programming on a Topological Bilattice, Fundamenta In-

formaticae, 11, pps 209{218.

[8] M. C. Fitting. (1991) Bilattices and the Semantics of Logic Programming, Journal of

Logic Programming, 11, 2, pp 91{116.

[9] U. Guntzer, W. Kiesling and H. Thone. (1991) New Directions For Uncertainty Rea-

soning in Deductive Databases, Proc. ACM SIGMOD, pp. 178{187.

34

[10] J. Han, Y. Cai and N. Cercone. (1992) Knowledge Discovery in Databases: An

Attribute-Oriented Approach, Proc. 18th VLDB Conference, pp 547{559.

[11] M. Kifer and A. Li. (1988) On the Semantics of Rule-Based Expert Systems with Un-

certainty, 2-nd Intl. Conf. on Database Theory, Springer Verlag LNCS 326, pp 102{117.

[12] M. Kifer and E. Lozinskii. (1989) RI: A Logic for Reasoning with Inconsistency, 4-th

Symposium on Logic in Computer Science, Asilomar, CA, pp. 253-262.

[13] M. Kifer and V. S. Subrahmanian. (1992) Theory of Generalized Annotated Logic Pro-

gramming and its Applications, Journal of Logic Programming, 12, 4, pp 335{367.

[14] H. E. Kyburg, Jr. (1983) The Reference Class, Philosophy of Science, 50, 3, pp 374{397.

[15] J.W. Lloyd. (1987) Foundations of Logic Programming, Springer.

[16] D. Luenberger. (1984) Linear and Nonlinear Programming, Addison-Wesley.

[17] A. Nerode, R.T. Ng and V.S. Subrahmanian. (1992) Computing Circumscriptive

Databases, Part I: Theory and Algorithms, to appear in: Information and Compu-

tation.

[18] R.T. Ng and V.S. Subrahmanian. (1989) Probabilistic Logic Programming, Information

and Computation, 101, 2, pp 150{201. Preliminary version in: Proc. 5th International

Symposium on Methodologies for Intelligent Systems, pp 9-16.

[19] R.T. Ng and V.S. Subrahmanian. (1990) A Semantical Framework for Supporting Sub-

jective and Conditional Probabilities in Deductive Databases, to appear in: Journal of

Automated Reasoning. Preliminary version in: Proc. 1991 Intl. Conf. on Logic Pro-

gramming, ed. K. Furukawa, pps 565{580, MIT Press.

[20] R.T. Ng and V.S. Subrahmanian. (1992) Empirical Probabilities in Monadic Deductive

Databases, Proc. 8th Conf. on Uncertainty in Arti�cial Intelligence, pp 215{222.

[21] N. Nilsson. (1986) Probabilistic Logic, AI Journal 28, pp 71{87.

[22] J. Pearl. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, Morgan Kaufmann.

[23] G. Piatetsky-Shapiro and W. Frawley. (1991) Knowledge Discovery in Databases, MIT

Press.

[24] Hans Reichenbach. Theory of Probability, University of California Press.

[25] E. Shapiro. (1983) Logic Programs with Uncertainties: A Tool for Implementing Expert

Systems, Proc. IJCAI '83, pps 529{532, William Kau�man.

[26] M.H. van Emden. (1986) Quantitative Deduction and its Fixpoint Theory, Journal of

Logic Programming, 4, 1, pp 37-53.

35

