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Abstract 

This thesis is about how to represent and solve decision problems in Bayesian decision the

ory ( e.g. Fishburn 1988). A general representation named decision networks is proposed 

based on influence diagrams (Howard and Matheson 1984). This new representation 

incorporates the idea, from Markov decision processes (e.g. Puterman 1990, Denardo 

1982), that a decision may be conditionally independent of certain pieces of available 

information. It also allows multiple cooperative agents and facilitates the exploitation 

of separability in the utility function. Decision networks inherit the advantages of both 

influence diagrams and Markov decision processes. 

Both influence diagrams and finite stage Markov decision processes are stepwise

solvable, in the sense that they can be evaluated by considering one decision at a time. 

However, the evaluation of a decision network requires, in general, simultaneous consider

ation of all the decisions. The theme of this thesis is to seek the weakest graph-theoretic 

condition under which decision networks are guaranteed to be stepwise-solvable, and to 

seek the best algorithms for evaluating stepwise-solvable decision networks. 

,A concept of decomposability is introduced for decision networks and it is shown that 

when a decision network is decomposable, a divide and conquer strategy can be utilized 

to aid its evaluation. In particular, when a decision network is stepwise-decomposable it 

can be evaluated not only by considering one decision at a time, but also by considering 

one portion of the network at a time. It is also shown that stepwise-decomposability is 

the weakest graphical condition that guarantees stepwise-solvability. 

Given a decision network, there are often riodes and arcs that can harmlessly removed. 

An algorithm is presented that is able to find and prune all graphically identifiable 
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removable nodes and arcs. 

Finally, the relationship between stepwise-decomposable decision networks (SDDN's) 

and Markov decision process is investigated, which results in a two-stage approach for 

evaluating SDDN's. This approach enables one to make use of the asymmetric nature 

of decision problems, facilitates parallel computation, and gives rises to an incremental 

way of computing the value of perfect information. 
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Chapter 1 

Introduction 

This thesis is about how to represent and solve decision problems in Bayesian deci

sion theory ( e.g. Fishburn 1988). A general representation named decision networks is 

proposed based on influence diagrams (Howard and Matheson 1984). This new represen

tation incorporates the idea, from Markov decision processes ( e.g. Denardo 1982), that a 

decision may be conditionally independent of certain pieces of avail~ble information. It 

also allows multiple cooperative agents and facilitates the exploitation of separability in 

the utility function. 

Influence diagrams are stepwise-solvable, that is they can be evaluated by considering 

one decision at a time (Shachter 1986). However, the evaluation of a decision network re

quires, in general, simultaneous consideration of all the decisions. The theme of this thesis 

is to seek the weakest condition under which d.ecision networks are stepwise-solvable, and 

to search for the best algorithms for evaluating stepwise-solvable decision networks. 

This introductory chapter provides a synopsis of our theory, and describes how and 

why it differs from its two mother theories: the theory of influence diagrams and the 

theory of Markov decision processes. 

The synopsis in Section 1.1 below describes salient features of the following chapters. 

Section 1.2 reviews Bayesian decision theory, and Section 1.3 reviews two methodologies 

for decision analysis, namely decision trees and influence diagrams. 

An influence diagram is a representation of a single agent's view of the world as 

relevant to a decision problem; it spells out information availability for each decision. 

1 



Chapter 1. Introduction 2 

Several constraints follow from its semantics (Section 1.4). A decision network, on the 

other hand, is a representation of a group of cooperative agents' view of the world; it 

indicates both information availability and dependency for each decision node. Some 

constraints of influence diagrams do not apply to decision networks. 

Syntactically decision networks are arrived at by lifting some of those constraints 

(Section 1.4). Reasons for lifting the constraints originate from the demand of a more 

general representation framework in decision analysis (Section 1.5), and from the effort to 

provide Markov decision processes with a graph-theoretic language (Sections 1.6). More 

importantly, the lifting of constraints also allows us to apply more techniques in solving 

a problem and hence leads to better and more efficient algorithms (Section 1. 7). 

Section 1.9 echoes the synopsis by providing a description of all the subclasses of 

decision networks we will encounter later. Finally, Section 1.10 suggests who might be 

interested in this thesis, and why. 

1.1 Synopsis 

Our goal is to enable computers to help decision makers solve complex decision problems. 

The first step in achieving this goal is to design a language or some kind of representa

tion framework so that decision makers and computers can communicate about decision 

problems. Two frameworks exist previously, namely influence diagrams (Howard and 

Matheson 1984, Shachter 1986) and Markov decision processes (MDP) (see, for example, 

Denardo 1982). 

MDP's are a model of sequential decision making for the sake of controlling dy

namic systems; it is special-purpose. Influence diagrams are a general framework for 

decision analysis; however they are always required to satisfy the so-called no-forgetting 

constraint, which requires a decision node and its parents be parents to all subsequent 
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decision nodes. 

There are at least three reasons that a decision maker would be interested in lifting 

the no-forgetting constraint ( details coming up in later in this chapter): 

1. The decision maker may be able to qualitatively determine that a decision does not 

depend on certain pieces of available information. As a matter of fact, one result 

of MDP theory is that given the current state of the dynamic system, the optimal 

current decision is independent of previous states and decisions, even though they 

are known. Such conditional independence for decisions can-not be represented 

in influence diagrams. The no-forgetting constraint is supposed to capture the 

rationale that information available earlier should also be available later. In the 

mean time, unfortunately, it also excludes the possibility of earlier information 

being irrelevant later. 

2. There may be several cooperative decision makers, each responsible for a subset 

of decisions. When communication is not feasible or is too expensive, information 

available earlier to one decision maker may not be available later to a different 

decision maker. Furthermore, there may not be a predetermined ordering among 

the decisions. This defeats not only the no-forgetting constraint, but also another 

constraint - the so-called regularity constraint, which requires a total ordering 

among the decisio~s. 

3. It has been noticed that given an influence diagram, a decision node may turn out 

to be independent of some of its parents. In such a case, the arcs from those parents 

to the decision node can be harmlessly removed. It is a good idea to remove such 

arcs at a preprocessing stage, since it yields a simpler diagram. However, removing 

arcs from an influence diagram leads to the violation of the no-forgetting constraint. 
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In this thesis, we lift the no-forgetting constraint, together with two other constraints 

previously imposed on influence diagrams, and make due semantic modifications to arrive 

at decision networks (DN), a framework for representing decision problems that is more 

general then both influence diagrams and finite stage MDP's. 

In both influence diagrams and finite stage MDP's, a decision problem can be solved 

by considering one decision at a time, while solving a decision problem in the framework 

of general DN's requires simultaneous consideration of all the decision nodes, even when 

the structure of the problem is simple (Chapter 3). One of the themes of this thesis is to 

investigate when a decision network can be solved by considering one decision node at a 

time. We give a graph-theoretic criterion called stepwise-decomposability (Chapter 5); 

and we prove that this criterion is the weakest graph-theoretic criterion that guarantees 

stepwise-sol vability ( Chapter 8). 

Another theme of this thesis is to develop algorithms for evaluating stepwise-decomposable 

decision networks (SDDN's). As a first step, we find a way to prune all the removable 

arcs that are graph-theoretically identifiable (Chapters 7, 8). It is shown that pruning 

removable arcs from SDDN's does not destroy the stepwise-decomposability (Section 7.3). 

A divide-and-conquer procedure named EVALUATE! for evaluating SDDN's is de

veloped (Chapters 4, 5, and 6). This procedure has several other advantages in addition 

to embracing the divide and conquer strategy. It clearly identifies all the Bayesian net

work (BN) inferences involved in evaluating a SDDN. Consequently, it can be readily 

implemented on top of any BN inference systems. The procedure does not require arc 

reversals and induces little numerical divisions. Finally, the procedure explicitly exploits 

independencies allowed by multiple value nodes (Section 6.5). 

A two stage procedure named EVALUATE2 is also developed on the basis of EVAL

UATE! (Chapter 9) as a result of our investigation on the relationship between MDP's 

and SDDN's. EVALUATE2 inherits all the advantages of EVALUATE!. Furthermore, 
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it enables one to exploit the asymmetric nature of decision problems1 and opens up the 

possibility of parallel processing (Section 9.2.1). It also le~ds to an incremental way of 

computing the value ?f information (Zhang et al 1993b ). 

There have been a number of previous algorithms for evaluating influence diagrams. 

Since influence diagrams are special SDDN's, there can also' be evaluated by the algo

rithms developed in this thesis for evaluating SDDN's. Our algorithms are shown to be 

advantageous over the previous algorithms in a number of aspects (Sections 6.5, 9.6.1). 

The dependency relationships among the nine chapters of this thesis are shown in 

Figure 1.1. 

The remainder of this chapter relates the background of this thesis, and gives a more 

detailed account to the points put forward by the story. Let us begin with Bayesian 

decision theory. 

1This was first pointed out by Qi (1993) . 
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1.2 Bayesian decision theory 

We make numerous decisions every day. Many of our decisions are made in the presence 

of uncertainty. A simple example is to decide whether or not to bring the umbrella in 

light of the weather forecast: If the weather man were an oracle such that his prediction 

is always correct, then the decision would be easy. Bring the umbrella if the weather 

man predicts rain and leave the umbrella home if he predicts no rain. However real life 

forecasts are not as predictive as we wish. Instead of saying that it will rain, the weather 

man says, for instance, that there is a sixty percent chance of precipitation. 

We would be happy if we bring the umbrella and it rains, or if we leave the umbrella 

at home and it does not rain. But we would regret carrying the umbrella around if it 

does not rain, and we would regret even more not having the umbrella with us when 

it rains. We have all made this decision many times in bur lives, and did not find it 

hard because we thought this particular decision is not significant. However, there are 

decisions, such as buying a house or making a major investment in the stock market, 

that are of significance to us. In such cases, we want to make rational decisions. 

Understanding how to make rational decisions is also important for building intelligent 

systems. 

Bayesian decision theory provides a framework for rational decision making in the 

face of uncertainty. One setup for Bayesian theory consists of a set S of possible states.of 

the world, a set O of possible observations, and a set nd of decision alternatives. There 

is a conditional probability distribution P( ojs) describing how likely it is to observe o 

when the world is in state s, and there is a prior probability distribution P( s) describing 

how likely the world is to be in state s. There is also a utility function µ( d, s ), which 

represents the reward to the decision maker if he chooses the decision alternative d E nd 

and the world is in state s E S. The problem is to decide on a policy , i.e a mapping 
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from O to nd, which dictates the action to take for each observation. 

In our example, the possible states of worlds are rain and no-rain. The observa

tions are all the possible forecasts, that is the set {"there is an x percent chance 

of precipitation" I x E {0, ... , 100} }. There are two possible decision alternatives: 

take-umbrella or not-take-umbrella. The conditional probability of the forecast that 

"there is an x percent chance of precipitation" given rain and the prior proba

bility of rain are to be assessed from our experience. Our utilities could be as shown in 

the following table: 

rain no-rain 

take-umbrella 0 -10 

not-take-umbrella -100 0 

The problem is to decide whether or not to bring the umbrella in light of the weather 

forecast. 

The expected utility Es induced by the policy 8 : 0 --t nd is defined by 

Es= L P(s)P(ols)µ(8(o),s). 
sES,oEO 

The principle of maximizing the expected utility (von Neumann and Morgenstein 1944, 

Savage 1954) states that a rational decision maker choses the policy 8° that satisfies 

(1.2) 

where the maximization is over all possible policies. The quantity maxsEs is called the 

optimal expected value of the decision problem. 

1.3 Decision analysis 

In the setup of Bayesian decision theory given in the previous section, there is only one 

decision to make. Applications usually involve more than one decision ( e.g. Hosseini 
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1968). This thesis is about how to apply Bayesian decision theory to problems that 

involve multiple decisions and multiple variables. 

There exist two methodologies that deal with multiple decisions, namely decision 

analysis (e.g. Smith 1988) and Markov decision processes (e.g. Denardo 1982). Between 

them, decision analysis is more general-purpose. It emphasizes exploring the structures 

of complex problems. In a sense, it has a representation advantage. On the other 

hand, finite stage Markov decision processes deal with decisions for controlling a dynamic 

system ( e.g. Bertsekas 1976). This class of multiple-decision problems have relatively 

simple structures. Finite stage Markov decision processes emphasize problem solving by 

using the technique of dynamic programming. In a sense, they have a computational 

advantage. 

One goal of this thesis is to combine the representational.advantage of decision analysis 

and the computational advantage of finite stage Markov decision processes. 

This section gives a brief account of decision analysis. A latter section will touch on 

finite stage Markov decision processes. 

1.3.1 Decision trees 

Within decision analysis, there are two frameworks for representing the structures of de

cision problems, namely decision trees (North 1968, Raiffa 1968) and influence diagrams 

(Howard and Matheson 1984). Decision trees represent the structure of a decision prob

lem all at one level, while influence diagrams distinguish three levels of specification for 

a decision problem. 

Consider the following oil wildcatter problem taken from (Raiffa 1968). The oil wild

catter must decide either to drill or not to drill. He is uncertain whether the hole is dry, 

wet or soaking. The prior probabilities ( obtained from experts) are as follows. 
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dry wet soaking 

.500 .300 .200 

His utilities are given in the following table. 

dry wet soaking 

drill -$70,000 $50,000 $200,000 

not-drill 0 0 0 

At a cost of $10,000, our wildcatter could conduct a test on the seismic structure, which 

will disclose whether the terrain below has no structure, closed structure, or open struc

ture. The conditional probabilities of the test result given the states of the hole are given 

in the following table. 

dry wet soaking 

no structure .600 .300 .100 

open structure .300 .400 .400 

closed structure .100 .300 .500 

The problem is whether or not the wildcatter should conduct the test? And whether or 

not he should drill? 

The decision tree for this problem is shown in Figure 1.2, where rectangles stand for 

decision variables and ellipses stand for random variables. The values of the variables and 

the corresponding probabilities appear on the edges. The tree is to be read as follows. 

If our wildcatter decides not to test, he must make the drill decision based on no 

information. If he decides not to drill, that is the end of the story. He does not make 

nor lose any money. If he decides to drill, there is a 50 percent chance that the hole is 

dry, in which case he loses $70,000; there is a 30 percent chance that the hole is wet, in 
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Figur~ 1.2: A decision tree for the oil wildcatter problem. 

which case he makes $50,000; and there is a 20 percent chance that the hole is soaking, 

in which case he makes $200,000. 

If he decides to test, there is a 41 percent chance that there turns out to be no seismic 

structure. The probability .41 is calculated by using Bayes' rule from the prior and 

conditional probabilities given. If he still decides to drill, there is a 73 percent chance 

that the hole is dry, in which case he loses $80,000, for now the test has cost him $10,000 

already. Again the probability .73 is calculated by using Bayes' rule from the prior and 

conditional probabilities given. There will be a 22 percent chance that the hole is wet, 

in which case he makes $40,000; and there will be only a 5 percent chance that the hole 

is soaking, in which case he makes $190,000. And so on and so forth. 

An optimal policy and the optimal expected value of a decision tree can be found by 

the so-called folding backing strategy (Raiffa 1968, Smith 1987). 
, 
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Figure 1.3: An influence diagram for the oil wildcatter problem. 

1.3.2 Influence diagrams 

Decision trees came into being during the 1930's and 1940's (Shafer 1990). They Were the 

major framework for representing the structure of a decision problem until late seventies 

and early eighties, when researchers began to notice the shortcomings of decision trees. 

For one thing, decision trees are usually very complicated_. According to Smith (1988), 

the first thing to do in decision analysis is to find a large -piece of paper. A more important 

drawback of decision trees include that they are unable to represent independencies. 

Influence diagrams were introduced by Howard and Matheson (1984) (see also Miller 

et al 1976) to overcome the shortcomings of decision trees. They specify a decision prob

lem in three levels: relation, function, and number. The level of relation indicates that 

one variable depends in a general way on others; for example test-result probabilisti

cally depends on test and seismic-structure; and utility deterministically depends 

on test, drill and oil-underground. At the level of number, we specify numerical 

probabilities for each conditional and unconditional event; and the numerical value of a 

variable given the values of the variables it deterministically depends upon. The level 

of function describes the form of dependencies, which is useful in arriving at the level of 

number. Two examples: profit equals revenue minus cost; if a man is in his thirties, then 

the probability distribution of his income is a normal distribution with mean $45,000 and 

standard deviation 1000. 
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Figure 1.3 shows the level of relation of the influence diagram for our oil wildcatter 

problem. The diagram clearly shows that the test decision is to be made based on no 

information, and the drill decision is to be made based on the decision to test and 

the test-result. 'The random variable test-result directly depends on the decision to 

test and the seismic-structure, and it is independent of oil-underground given test 

and seismic-structure. The random variable seismic-structure directly depends on 

oil-underground. Finally, the utility deterministically depends on test, drill, and 

oil-underground. 

At the level of number, we need to specify the prior probability of oil-underground, 

the conditional probability of seismic-structure given oil-underground, and the con

ditional probability oftest-result given test and seismic-structure. We need also 

to specify the value of utili tyfor each array of values of test, drill and oil-underground. 

In Howard and Matheson (1984), an influence diagram is transformed into a decision 

tree in order to be evaluated to find an optimal policy and the optimal expected value. 

Shachter (1986) shows that influence diagrams can be directly evaluated. 

Before moving on, let us note that variables will be also called nodes when they are 

viewed as members of an influence diagram. With that in mind, we can now say that 

influence diagrams consists of three types of nodes: decision nodes , random node and a 

single value node , where the value node represent utilities. 

1.3.3 Representing independencies for random nodes 

A quick comparison of the influence diagram in Figure 1.3 with the decision tree in Fig

ure 1.2 should convince the reader that influence diagrams are intuitive, as well as more 

compact. They make numerical assessments easier (Howard and Matheson 1984). Fur

thermore, they serve better than decision trees to address the issue of value of information 

(Matheson 1990). 
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Figure 1.4: An influence diagram for the extended oil wildcatter problem. 

The most important advantage of influence diagrams over decision trees, however, lies 

their ability to represent independencies for random nodes at the level of relation. 

This point could be illustrated by using the oil wildcatter problem. For later conve

nience, consider extending the oil wildcatter problem by considering one more decision -

the decision of determining a oil-sale-policy based on oil quality and market-information. 

The influence diagram for this extended oil wildcatter problem is shown in Figure 1.4. By 

using the so-called cl-separation criterion (Pearl 1988), one can read from the network that 

market-information is marginally independent of test, test-result, seismic-structure, 

oil-underground, drill, and oil-produced. Also, as mentioned in section 1.3.2, 

test-result is independent of oil-underground given test and seism_ic-structure. 

Those marginal and conditional independencies can not be represented in decision trees. 

1.4 Constraints on influence diagrams 

There are five constraints that one can impose on influence diagrams: namely the acyclic

ity constraint, the regularity constraint, the no-forgetting constraint, the single value 

node constraint, and the no-children-to-value-node constraint. Before this thesis, only 

influence diagrams that satisfy all those constraints have been studied 2 . In this sense, 

2With the exception of Tatman and Shacter (1990), who deal with one super value node. A super 
value node may consist of many value nodes. See sections 1.5.2 and 1.6.2 for details . 
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we say that the five constraints have always been imposed on influence diagrams. From 

now ori, we always mean an influence diagram that satisfies all those five constraints by 

the term "influence diagram". 

The acyclicity constraint requires that an influence diagram does not contain any 

directed cycles. The regularity constraint requires that there exists a directed path that 

contains all the decision nodes. The no-forgetting constraint requires that each decision 

node and its parents be parents to all subsequent decision nodes. The single value node 

constraint requires that there be only one value node, and the no-children-to-value-node 

constraint requires that the value node have no children. 

The regularity constraint is due to the fact that an influence diagram is a repre

sentation of a single agent's view of the world as relevant to a decision problem. The 

no-forgetting constrairit is due to the fact that in an influen_ce diagram, arcs into decision 

nodes are interpreted as indications solely of information availability. The constraint 

follows if the agent does not forget information (Howard and Matheson 1984). 

This thesis is about decision networks , a representation framework for multi-decision 

problems that is more general than influence diagrams. Syntactically, decision networks 

are arrived at by lifting the regularity, no-forgetting, and single value node constraints 

from influence diagrams. Semantically, a decision network is a representation of the 

view of the world of a group of cooperative agents with a common utility; and in decision 

networks, arcs into a decision node indicate both information availability and dependency. 

The idea of a representation framework for decision problems free of the regularity 

and no-forgetting constraints is not new. Howard and Matheson (1984) have suggested 

the possibility of such a framework. The next three sections conduct a close examination 

on the reasons for lifting the regularity, no-forgetting, and single value node constraints 

from influence diagrams. The reasons arise from decision analysis, from Markov decision 

processes. 
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1.5 Lifting constraints: Reasons pertaining to decision analysis 

1.5.1 Lifting the no-forgetting constraint 

As mentioned in the synopsis, there are three major reasons for lifting the no-forgetting 

constraints. The first reason is explained in detail in this subsection. The second and 

third reasons will be addressed in the next two subsections. 

Semantics for arcs into decision nodes and independencies for decision nodes 

The no-forgetting constraint originates from the interpretation of arcs into decision nodes 

as indications of only information availability (Howard and Matheson 1984). More specif

ically, there is an arc from a random node r to a decision node d if and only if the value 

of r is observed at the time the decision d is to be made. The no-forgetting constraint 

is to capture the rationale that people do not destroy information on purpose; thus in

formation available earlier should also be available later (Howard and Matheson 1984, 

Shachter 1986). 

The primary reason for lifting the no-forgetting constraint is that it does not allow the 

representation of conditional independencies for decision nodes. However, there do exist 

cases where the decision maker, from her/his knowledge about the decision problem, 

is able to tell that a certain decision does not depend on certain pieces of available 

information. In our extended oil wildcatter problem, for instance, it is reasonable to 

assume that the decision oil-sale-policy is independent of test, test-result, and 

drill given oil-produced. 

Sometimes independence assumptions for decision nodes are made for the sake of 

computational efficiency or even feasibility. In the domain of medical diagnosis and 

treatment, for instance, one usually needs to consider a number, say ten, of time points. 

To compute the diagnosis and treatment for the last time slice, one needs to consider all 
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the previous nine time points. In the acute abdomen pain example studied by Provan 

and Clarke (1993), there are, for each decision node, 6 parent nodes that lie in the same 

time slice as the decision node. This means that the decision node at the last time slice 

has a total of 69 parents. In the simplest case of all variables being binary, we need to 

compute a decision table of 269 entries; an impossible task. The same difficulty exists 

for planning under uncertainty (Dean and Wellman 1992). One way to overcome this 

difficulty is to approximate the decision problem by assuming that the decision in a time 

slice depends only on the previous, say one time slice, and is conditionally independent 

of all earlier time points. In this case, the decision table sizes are limited to 213 = 8192; 

still large but manageable. 

Independence for decision nodes cannot be represented in influence diagrams. Going 

back to our extended oil wildcatter problem, even thougl;i we have made the assump

tion that oil-sale-policy is independent of test, test-result, and drill given 

oil-produced. But in Figure 1.4 there are still arcs from test, test-result, and 

drill to oil-sale-policy. 

Following Smith (1988), this thesis reinterprets arcs into decision nodes as indication 

of both information availability and (potential) dependency. This new interpretation 

enables us to explicitly represent conditional independencies for decision nodes. To be 

more specific, the judgement that d is conditionally independent of r can be represented 

by simply not drawing an arc from r to d, even when the value of a random node r is 

observed at the time the decision d is to be made. 

In our example, if we explicitly represent the assumption that oil-sale-policy is 

independent of test, test-result, and drill given oil-produced, then the decision 

network for the extend oil wildcatter problem becomes the one shown in Figure 1.5. We 

notice that there are no arcs from test, test-result, and drill to oil-sale-policy; 

the network is simpler than the one in Figure 1.4. 
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Figure 1.5: A decision network for the extended oil wildcatter problem, with indepen
dencies for the decision node oil-sale-policy explicitly represented. 

Note that a user may be wrong in assuming that a decision is independent of a certain 

piece of information. To prevent such a case from happening, one can run the algorithm 

in Chapter 7 to graph-theoretically verify the user's independence judgements. If the 

algorithm is not able to verify, the user should be informed, and the user should abandon 

the independence assumption by adding an arc. 

Another advantage of the new interpretation of arcs into decision nodes is that it 

provides uniform semantics to both arcs into decision nodes and arcs into random nodes; 

namely they both indicate dependence. This was first mentioned by Smith (1988). 

It is evident that the no-forgetting constraint is not compatible with the new inter

pretation of arcs into decision nodes. It needs to be lifted. 

Limited memory 

Another reason for lifting the no-forgetting constraint is that the agent, say a robot, 

that executes decisions (actions) may have limited memory. There may be cases where 

the agent has only a few bits of memory. Even in the case when the agent has a fair 

amount of memory, it can not remember things forever. Because if so, the memory 

will run out sooner or later. Even if the agent has unlimited memory, remembering too 

much information would lead to inefficiency. We human being seem to remember only 
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Figure 1.6: A decision network for the extended oil wildcatter problem with multiple 
value nodes. The total utility is the sum of all the four value nodes. 

important things. 

1.5.2 Lifting the single value node constraint 

As pointed out by Tatman and Shachter (1990) and by Shenoy (1992), the total utility 

of a decision problem can sometimes be decomposed into several components. In our 

extended oil wildcatter problem, for instance, utility can decomposed into the sum 

of four components, namely test-cost, drill-cost, sale-cost, and oil-sales. In 

such a case, we assign one value node for each component of the total utility, with the 

understanding that the total utility is the sum of all the value nodes. Figure 1.6 shows 

the resulting decision network after splitting the value node utility in Figure 1.4. 

A major advantage of multiple value nodes over a single value node is that multiple 

value nodes may reveal independencies for decision nodes that are other.wise hidden. As 

the reader will see later in the thesis, there is a way for one to graph-theoretically tell 

that in Figure 1.6 oil-sale-policy is independent of test, test-result, and drill 

given oil-produced. The same can not be done for the network in Figure 1.4. 

In the last subsection, we said that from her /his knowledge about the extended oil 

wildcatter problem, the decision maker may be able to say that oil-sale-policy is 

independent of test, test-result, and drill given oil-produced. Here we see that 
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when multiple value nodes are introduced, those independencies can actually be read 

from the network itself, even if the decision maker fails to explicitly recognize them. 

Independence for decision nodes and removable arcs 

The next two paragraphs briefly revisit the third reason for lifting the no-forgetting 

constraint as listed in the synopsis. In Section 7.1, we shall formally define the concept 

of a decision node being independent of a certain parent and prove that when it is the 

case, the arc from that parent to the decision node is removable , in the sense that its 

removal does not affect the optimal expected value of the decision problem. It is a 

good idea to remove such arcs at a preprocessing stage, since it yields simpler diagrams. 

However, removing arcs from an influence diagram leads to the violation of the no

forgetting constraint. 

Consider the no-forgetting decision network in Figure 1.6. Since from the network 

itself it can be determined that oil-sale-policy is independent of test, test-result, 

and drill given oil-produced, the arcs from test, test-result, and drill to oil-sale-policy 

are removable. Removing those arcs results in the network in Figure 1. 7, which is no 

longer no-forgetting. This shows that in order to prune removable arcs from influence 

diagrams, we need to consider decision networks that do not satisfy the no-forgetting 

constraint. 

1.5.3 Lifting the regularity constraint 

The regularity constraint requires that there be a total ordering among the decision 

nodes. It is also called the single decision maker condition (Howard and Matheson 1984). 

When there are more than one decision maker who cooperate to achieve a common goal, 

the regularity constraint is no longer appropriate. 
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Figure 1.7: The decision network obtained from the one in Figure 1.6 by deleting some 
removable arcs. This network is no longer no-forgetting. 

Consider further extending our oil wildcatter problem so that that there is not only 

oil but also natural gas. In this case, a gas-sale-policy also needs to be set. Suppose 

the company headquarter makes the test and drill decisions, while the oil department 

sets the oil-sale-policy and the gas department sets the gas-sale-policy. Then it 

is inappropriate to impose an order between oil-sale-policy and gas-sale-policy, 

since there is no reason why the gas department ( or the oil department) should reach its 

decision earlier than the other department. A decision network for the further extended 

oil wildcatter problem is shown in Figure 1.8. We notice that there is no ordering between 

oil-sale-policy and gas-sale-policy. 

Even in the case of one decision maker, the regularity constraint may be over

restrictive. From her/his knowledge and experience, the decision maker may be able 

to conclude that the ordering between two decision nodes is irrelevant; one has the same 

optimal expected value either way. In our further extended oil wildcatter problem, it 

may be reasonable to assume that it makes no difference whether gas-sale-policy or 

oil-sale-policy is set first. 

Even when the ordering between two decision matters, the decision maker may not 

know the ordering beforehand. Suppose our oil wildcatter determine, on the first day a 

every month, the gas-sale-policy and oil-sale-policy for the coming month, based 
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Figure 1.8: A decision network for the further extended oil wildcatter problem. It is not 
regular, "forgetting" and has more than one value node. 

on the policies for the last month and market information. In this case, we are uncertain 

as to which one of those two decisions should be made first. 

Let us now briefly revisit the second reason for lifting the no-forgetting constraint 

as listed in the synopsis. Together with the regularity constraint, the no-forgetting con

straint says that information available when making an earlier decision should also be 

available when making a later decision. In the further extended oil wildcatter problem, 

we do not know before hand whether oil-sale-policy comes first or gas-sale-policy 

comes first. In such a case, the no-forgetting constraint can not be enforced. This is why 

we said in the synopsis that the existence of unordered decisions not only defeats the 

regularity constraint, but also the no-forgetting constraint. 

1.6 Lifting constraints: Reasons pertaining to MDP's 

Like decision analysis, finite stage Markov decision processes (MDP) are also a model for 

applying Bayesian decision theory to solve multiple-decision problems. Recent research 

has shown application promise for a combination of MDP's and influence diagrams in the 
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form of temporal influence diagrams in planning under uncertainty (Dean and Wellman 

1991) and in diagnosis and treatment/repair (Provan and Clarke 1993). One goal of this 

thesis is to provide a common framework for both of finite stage MDP's and influence 

diagrams. Doing so necessitates the lifting of the no-forgetting and the single value node 

constraint. 

1.6.1 Finite stage MDP's 

This subsection briefly reviews finite stage MDP's; and the next subsection will explain 

why it is necessary to lift the two constraints. 

Finite stage MDP 's are a model for sequential decision making (Puterman 1990, 

Denardo 1982, Bertsekas 1976). The model has to do with controlling a dynamic system 

over a finite number of time periods. There is a finite set . T of time points. At time t, 

if the decision maker observes the system in state St E St, s/he must choose an action, 

dt, from a set of allowable actions at time t, Od1 
3

• This choice may also depend all the 

previous states of the system. There are two consequences of choosing the action dt when 
' 

the system is in state St; the decision maker receives an immediate reward Vt (St, dt) and 

the probability distribution P( st+1 1st, dt) for the state of the system at the next stage 

is determined. The collection (T,St,dt,{P(st+1lst,dt)},vt(st,dt)) is called a finite stage 

Markov decision process (Puterman 1990). The problem is how to make the choice dt 

at each time point t so as to maximize the decision maker's total expected reward. The 

function which makes this choice is called decision rule and a sequence of decision rules 

is called a policy. 

A classic example of finite stage MDP is the problem of inventory control. Consider 

a ski retailer (Denardo 1982). From September to February, he makes an order from 

the wholesaler at the first day of the month. The amount of the order depends on his 

3In general, nd, can vary according to St. Here we assume it does not . 
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current stock. His stock at the beginning of next month depends probabilistically on 

his current stock and how large the order is. This conditional (transition) p~obability 

can be estimated since the number of customers who arrive at a service facility during a 

period has, typically, a Poisson distribution. The profits our retailer makes during each 

month is computed from the number of pairs of skis sold and the difference between the 

wholesale and retail prices. 

The standard way to find optimal decisions in a finite stage Markov decision process 

is by means of dynamic programming. In this approach, one begins with the last period 

and works backward to the first period. An optimal policy for the last period is found 

by maximizing the reward for that period. Then the whole last period is replaced by one 

value node, which is counted as reward in the next last period. This results in a finite 

stage MDP with one less period. One keeps repeating the procedure on the new process, 

till all the periods have been accounted for. This is very similar to the folding-back 

strategy for evaluating decision trees. 

For the above model, one can show that an optimal decision rule depends only on the 

state St of the dynamic system at time t and is independent of the previous states and 

decisions. 

1.6.2 Representing finite stage MDP's 

This thesis achieves a common framework for decision analysis and finite stage MDP's 

by representing the MDP's as decision networks. 

Since we have reinterpreted arcs into decision nodes as indications of both information 

availability and potential dep.endency, finite stage MDP's can be naturally represented 

as decision networks. Figure 1.9 (1) depicts a three stage MDP in the graph-theoretical 

language of decision networks. We notice that there are no arcs from s1 and d1 to d2 

even though s1 and d1 will be observed at the time the decision d2 is to be made. The 
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(1) 

Figure 1.9: A three period finite stage MDP. 

reason is that the optimal decision rule for d2 is independent of s1 and d1 given s2, 

However if we insist, as in influence diagrams, on interp_reting arcs into decision nodes 

as indications of only information availability, then it is cumbersome to represent finite 

stage MDP's. Figure 1.9 (2) depicts the influence diagram that represents the three 

stage MDP (Tatman and Shachter 1990). One can see that there is a number of extra 

no-forgetting arcs, namely arcs from s1 and d1 to d2 and d3 , and from s 2 and d2 to d3 . 

The presence of those arcs not only complicates the network, but also fails to reflect 

one important conclusion of MDP, namely that the current decision is independent of 

previous states and decisions given the current state. 

Tatman and Shachter's algorithm is able to detect that d2 does not depend on s1 

and d1 , and that d3 does not depend on s1 , di, s2 , and d2, So, the extra no-forgetting 

arcs makes no difference to the decision problem after all. They were introduced only 

because there was no concept of a decision network that does not satisfy the no-forgetting 

constraint. 

In a finite stage MDP, there 1s a reward m each period. This can be naturally 



Chapter 1. Introduction 25 

represented by assigning one value node for each period, as shown m Figure 1.9 (1). 

Note that s3 separates the last period from all the previous periods. If we insist, as in 

influence diagrams, on the single value node constraint, then we need to connect v1 , v2 , 

and v3 into a "super node" (Tatman and Shachter 1990), as shown in Figure 1.9 (2). One 

notices that no longer s3 separates the last period from all the previous periods. This is 

another reason for lifting the single value node constraint. 

1. 7 Computational merits 

The lifting of the no-forgetting, regularity, and single value node constraints allows us 

to discover stepwise-decomposable decision networks (SDDN). SDDN's are more general 

than both influence diagrams and finite stage MD P's. Moreover when evaluating SDDN's 

we can prune removable arcs, while the same cannot be done when evaluating influence 

diagrams since pruning arcs leads to the violation of the no-forgetting constraint . To put 

it more abstractly, SDDN's relax constraints imposed by influence diagrams and thus 

allow us to apply more techniques in solving a problem, and hence to solve the problem 

more efficiently. See Sections 6.5 and 9.6.1. 

1.8 Why not lifted earlier 

Howard and Matheson (1984) have hinted that in the case of multiple decision mak

ers, the regularity and no-forgetting constraints may be violated. Smith (1987) has also 

mentioned that it is possible that a decision maker may choose or be compelled to "for

get". Yet, no one before has studied decision networks that are not regular and/or are 

"forgetting". Why? 
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Howard and Matheson (1984) deal only with regular and no-forgetting decision net

works (influence diagrams), because for evaluation, decision networks are first trans

formed into decision trees, and the transformation is possible only for regular no-forgetting 

decision networks. Even though new algorithms for evaluating influence diagrams have 

been developed after Howard and Matheson (1984) (see, for example, Shachter 1986), the 

correctness of all those algorithms relies on the regularity and no-forgetting constraints. 

This is probably why those constraints have always been imposed on influence diagrams. 

In this thesis, we shall show that one can evaluate a decision network, even if it is not 

regular and no-forgetting. This opens up the possibility of working with general decision 

networks. 

1.9 Subclasses of decision networks 

The lifting of the no-forgetting, the regularity, and the single value node constraints 

from influence diagrams leaves us only with the acyclicity and no-children-to-value-node 

constraints. In Chapter 2, we shall argue that those two constraints are fundamental and 

can not be lifted. 

The acyclicity and no-children-to-value-node constraints define the concept of decision 

network. This section previews subclasses of decision networks we will encounter in this 

thesis. 

Influence diagrams and finite stage MDP's are two existing subclasses of decision net

works, which have been studied for many years. It is known that both of those subclasses 

of decision networks are stepwise-solvable, i.e they can be evaluated by considering one 

decision node at a time. 

The most important subclass of decision networks introduced in this thesis is stepwise

decomposable decision networks (SDDN). They include both influence diagrams and 
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finite stage MDP's as special cases. See Figure 1.10. SDDN's are also stepwise-solvable. 

As a matter of fact, regular SDDN's4 are the subclass of decision networks that can 

be evaluated by conventional dynamic programming (Denardo 1982, Chapter 9), and 

SDDN's in general constitute the subclass of decision networks that can be evaluated by 

non-serial dynamic programming (Bertele and Brioshi 1972, Chapter 9) . 

The decision networks that are not stepwise-decomposable can be of various degrees 

of decomposability. To evaluate them, one needs to simultaneously consider two or 

more decision nodes. The number of decisions one need to consider simultaneously is 

determined by the degree by which the network is decomposable. The divide and conquer 

strategy spelled out in Chapter 4 can be utilized to explore the decomposability of a given 

decision network. 

Smooth decision networks are introduced for technical convenience. They are con

ceptually simple and thus easy to manage. They are used extensively in this thesis to 

introduce new concepts and to prove theorems. Non-smooth decision networks can be 

4To be more precise, the term decision network should be replace by the term decision network 
skeleton in this section. 
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be transformed into equivalent smooth decision networks when necessary. 

Finally normal decision networks are introduced so that the equivalence between 

stepwise-decomposability and stepwise-solvability can be established. We conjecture that 

abnormal decision networks can be transformed into equivalent normal decision networks. 

1.10 Who would be interested and why 

Generally speaking, if you anticipate a solution to your problem by Bayesian decision 

theory, you should find this thesis interesting. Because it provides, in a sense, the most 

general framework - decision networks -'- for applying Bayesian decision theory. Prob

lems representable as MDP's can be solved in (stepwise-decomposable) decision networks 

in the same way as before. Problems representable in influence diagrams can be solved 

in (stepwise-decomposable) decision networks at least as efficiently as, and usually more 

efficiently, than in influence diagrams. The reason for this efficiency improvement is that 

working with SDDN's relaxes the constraints imposed by influence diagrams, and allows 

one to apply more operations, such as pruning removable arcs, than previously allowed. 

If you are a decision analyst, you might appreciate the ability of decision networks 

to represent independencies for decision nodes, to accommodate multiple cooperative 

decision makers, and to handle multiple value nodes. You might find it a relief that you 

do not have to completely order the decision nodes beforehand. Furthermore, you might 

appreciate the efficiency and other advantages of our algorithms. 

If your problem falls into the category of MDP's, you might find the concept of 

decision networks helpful in assessing the transition probabilities and rewards. In the 

ski retailer problem (Section 1.6), many factors may affect the transition probabilities 

and rewards, for example deterioration of stock, delivery lag, payment upon delivery by 

the retailer and by customers, refusal to enter backlog by customers (Denardo 1982). 
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Within MDP, one needs to figure out the dynamic programming functional equation 

for each combination of the factors, which may be complicated. In decision networks, 

consideration of one more factor simply corresponds to the addition of one more node. 

This allows one to consider more factors than before . . The representation advantage of 

decision networks may benefit control theory in general. 

AI researchers who are concerned with planning, and diagnosis and treatment/repair 

should also find this thesis interesting. 

Planning is a process of constructing courses of action in response to some objective. 

Since the planner might not have complete knowledge about the environment and about 

the effects of actions, planning are usually performed under uncertainty. Being a the

ory for rational choice of actions under uncertainty, Bayesian decision theory naturally 

comes into play. Preliminary research (Dean and Wellman.1992) has indicated that suc

cessful application of Bayesian decision theory in planning under uncertainty calls for a 

framework that combines characteristics of influence diagrams and and those of MDP's. 

Research on diagnosis and treatment (Provan and Clarke 1993) has pointed to the same 

direction. The concept of decision network introduced in this thesis may prove to be a 

good combination of influence diagrams and MDP's. Also, the ability of decision net

works to represent conditional independencies for decision nodes may be computationally 

essential for those areas. 



Chapter 2 

Decision networks: the concept 

This chapter introduces the concept of decision networks and addresses some of the 

foundational issues. Formal definitions will be provided in Chapter 3. 

The concept of decision networks is intuitively illustrated through an example in sec

tion 2.1. Section 2.2 exposes the way by which other authors develop the concept of 

Bayesian networks from joint probabilities by means of the chain rule of probabilities, 

and by using the concept of conditional independencies. Section 2.3 derives the concept 

of decision network, through the concept of Bayesian networks, from the Bayesian deci

sion theory setup by considering multiple decision problems. Section 2.4 discusses the 

fundamental constraints that decision networks need to satisfy and argues that decision 

networks are the most general representation framework for solving multiple-decision 

problems in Bayesian decision theory. 

2.1 Decision networks intuitively 

In this section, we illustrate the concept of decision networks through an example. 

Decision networks can be understood at two levels: relation and number. At the 

level of relation, decision networks are directed graphs consisting of three types of nodes: 

decision nodes, random nodes and value nodes; and they are used to graphically represent 

the structures of decision problems. This directed graph is called a decision network 

skeleton. Consider the further extended oil wildcatter problem: 

30 
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Figure 2.11: A decision network skeleton for the extended oil wildcatter problem. 

An oil wildcatter is deciding whether or not to drill in a new area. To aid 

his decision, he can order a seismic structure test. His decision about drill 

will depend on the test results if a test is ordered. If the oil wildcatter does 

decide to drill, crude oil and natural gas will be produced. Then, the oil 

wildcatter will decide his gas sale policy and oil sale policy on the basis of the 

quality and quantity of crude oil and natural gas produced, and on the basis 

of market information. 

31 

The structures of this decision problem can be represented by the decision network skele

ton shown in Figure 2.11 1 , where decision nodes are drawn as rectangles, random nodes 

as ovals, and value nodes as diamonds. 

Briefly, here are the semantics of a decision network. Arcs into random nodes indicate 

probabilistic dependencies. A random node depends on all its parents, and is independent 

1The figure is the same as Figure 1.8. The duplication is to save the reader from flipping back and 
forth. 
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of all its non-descendants given the values of its parents. In the extended oil wildcatter 

problem, test-result, for instance, probabilistically depends on seismic-structure 

and the decision to test, but is independent of gas-underground and oil-underground 

given seismic-structure and test. 

Arcs into decision nodes indicate both information availabilities and functional de

pendencies. In our example, the arc from oil-produced to oil-sale-policy means that 

the oil wildcatter will have learned the quantity and quality of crude oil-produced when 

he decides his oil-sale-policy, and he thinks that the quantity and quality of oil

produced should affect his oil-sale-policy. There is no arc from oil-underground to 

oil-sale-policy because information about oil-underground is not directly available. 

There is no arc from test-result to oil-sale-policy, because the oil wildcatter figures 

that the information about the test-result should not affect his oil-sale-policy since 
. . 

that he will already have learned the quality and quantity of crude oil-produced at the 

time the policy is to be made. 

Arcs into value nodes indicate functional dependencies. A value node is characterized 

by a function of its parents; the function take real number values, which represent the 

decision maker's utilities. In the extended oil wildcatter problem, oil-sales is a function 

of oil-produced, oil-market and oil-sale-policy. It depends on no other nodes. For 

each possible values of oil-produced, of oil-market, and of oil-sale-policy, the value 

of this function stands for the corresponding expected oil-sales. The total utility is the 

sum of all the value nodes; namely the sum of test-cost, drill-cost, oil-sale and 

gas-sale. 

At the level of number, a decision network specifies a frame, i.e a set of possible 

values, for each variable. For example, the frame of drill my be {YES, NO}, and the 

frame of oil-sales may be the set of real numbers. 

There is also a conditional probability for each random node given its parents and prior 
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probability of each random node that does not have any parents. In our example, we need 

to specify, for instance, P( oil -underground), P (oil -produced I oil -underground), and 

etc .... 

Further, we need to specify a utility function for each value node. In our example, 

the utility function for oil-sales is a real function of oil-produced, oil-market, and 

oil-sale-policy. 

In summary, a decision network consist of ( 1) a skeleton which is an directed graph 

with three type of nodes, (2) a frame for each node, (3) a conditional probability for each 

random node, and (4) a utility or value function for each value node. 

In a decision network, the decision about a decision node is made knowing the values 

of the parents of the node. Optimal decisions are decisions that maximize the expected 

total utility. The goals of decision analysis are to find the optimal decisions and to 

determine the optimal expected total utility. 

2.1.1 A note 

Note that the term "decision network" has been previously used in Hastings and Mello 

(1977). The meaning of the term in this thesis is different. In this thesis, the nodes in 

a decision network are variables, while nodes in a Hastings and Mello decision network 

are states, or values of variables. In a sense, one can say that we are working at a higher 

level of abstraction than Hastings and Mello. The relationship between our decision 

networks and Hastings and Mella's decision networks is the same as the relationship 

between influence diagrams and decision trees. 

As observed by Smith et al (1993), influence diagrams gain much of their advantages 

over decision trees from the fact that they graphically capture conditional independencies 

at the level of .relation ( among variables). The same can be said for our decision networks 

and Hastings and Mella's decision networks. As the reader will see, the efficiency of our 
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algorithms heavily depends on the fact that nodes in our decision networks are variables, 

instead of values of variables. 

2.2 Bayesian networks 

One way to understand decision networks is to think of them as developed from the 

standard Bayesian decision theory setup. We shall explain this in the next section. 

As a preparation, this section develops the concept of Bayesian networks from joint 

probabilities by means of the chain rule of probabilities and the concept of conditional 

independency (Howard and Matheson 1984, Pearl 1988). 

Let X be a set of random variables. Let P(X) be the joint probability of the variables 

in X. It is usually difficult, if possible at all, to assess the joint probability directly. One 

way to assess the joint probability indirectly is first to choos.e an ordering over the variable 

set X, say x1 , x2 , .•• , Xn, then to expand the joint probability by the chain rule as follows: 

(2.3) 

We shall refer to the ordering as an expansion ordering . Because of equation (2.3), 

to assess the joint probability P(X), it suffices to assess P(xilx1 , ••• , Xi-i) for each 

iE{l, ... ,n}. 

Often a decision maker is able to determine a proper subset 1r x; of { x1 , ... , Xi-d that 

are "direc~ly related" to Xi such that other variables in {xi, ... , Xi-dare only "indirectly 

related" to Xi via 1r x;. Translating into the language of the probability theory, this means 

that Xi is independent of other variables in { x1, ... , Xi-I} given 1r x;. Formally that is 

(2.4) 

This equation further reduces the assessment task. 
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(1) (2) 

Figure 2.12: Two Bayesian networks for the joint probability 
P(alarm, fire, tampering, smoke, leaving). 

Given an expansion ordering x1 , .•. , Xn and the 71":is, we construct a directed graph 

by the following rule: 

For any Xi and Xj, draw an arc from Xi to Xj if and only if XiE11"xr 

The acyclic directed graph such constructed, together with the conditional probabilities 

P(xil11"xJ, is called a Bayesian network for the joint probability P(X). 

As an example, consider the following decision scenario which is borrowed from (Poole 

and Neufeld 1991 ). The scenario involves five variables: alarm, fire, tampering, smoke, 

and leaving, denoting respectively the following propositions: the alarm is on, there 

is a fire, somebody is tampering; there is smoke and people are leaving. An expansion 

ordering for the joint probability P( alarm, fire, tampering, smoke, leaving) could be 

(fire, tampering, alarm, leaving, smoke). Suppose it is reasonable to set 7rtampering = 
0, 7l"alarm = {fire,tampering}, 7l"leaving = {alarm}, and 7l"smoke = {fire}. Then we get 

the Bayesian network shown in Figure 2.12 (1). Another expansion ordering could be 

(leaving, alarm, smoke, fire, tampering). Suppose it is reasonable to set 7l"alarm = 
{leaving}, 7l"smoke = {alarm}, 7l"fire = {alarm,smoke}, and 7rtampering= {fire,alarm}. 

Then we get the Bayesian network shown in Figure 2.12 (2). This network has more arcs 

than the one in (1). 
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How should one choose an expansion ordering? The answer provided by Howard 

and Matheson (1984) is that the ordering should be chosen such that the decision 

maker would feel natural and comfortable in assessing the 1f'x;'s and the P(xi\7rx;)'s. 

For example, it probably is easier to assess P( alarm\f ire, tampering) than to assess 

P(tampering\fire, alarm). Smith (1989) says that one should choose the ordering to 

minimize the number of arcs in the resulting directed graph. In our example, the net

work in Figure 2.12 (1) is preferred to the network in (2). Pearl (1988, pp. 50-51) claims 

that when there are cause-effect relationships among the variables, the structure of a 

Bayesian network can be directly determined from the cause-effect relationships. For 

example, tampering and fire cause alarm, fire causes smoke, alarm causes leaving. 

2.3 Decision networks 

In this section, decision networks are developed as a way to represent of the knowledge 

(beliefs) and utilities that are needed in order to solve multiple-decision problems in 

Bayesian decision theory. Let us begin with a standard setup of Bayesian decision theory. 

2.3.1 A general setup of Bayesian decision theory 

Here is a setup of Bayesian decision theory (Gardenfors et al 1988b, Fishburn 1988) that 

is more general than the one given in Section 1.2: 

1. There is a set X of (random and decision) variables, which are relevant to a decision 

problem; 

2. there is a set~ of policies and for each possible policy 8E~, there is a corresponding 

probability P0(X); 
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3. and there is a utility function µ(X), which specifies the decision maker's preferences 

about the possible states of affairs. 

The problem is to decide on a policy 8° that maximizes the expected utility, that is 

L Poo (X)µ(X) = maxo{L Po(X)µ(X) }, (2.5) 
X X 

where Ex means summation over all the possible values of X. 

The setup given in Section 1.2 can be fitted into the setup given here by letting 

X = { o, s, d}, and for each policy 8: o-nd setting 

{ 
P(s)P(ojs) 

P0(0,s,d) = 
0 

ifd=8(o) 

otherwise 
(2.6) 

In equation (2.5), summation is used instead of integra~ion because we deal only with 

discrete variables in this thesis. However, most of our results can be easily extended to 

the case of continuous variables. 

2.3.2 Multiple-decision problems 

In applications, the decision maker usually needs to set the values for a number of vari

ables d1 , ... , dk, Let OBS(di) denote the set of all the variables whose values will be 

observed by the decision maker at the time of decision di is to be made. 

Sometimes, as in MDP's, the decision maker is able to qualitatively tell that some 

of those observed variables are irrelevant to di. On other occasions, the decision maker 

may be forced, for instance by computational complexity, to approximate the world by 

by making such irrelevance assumptions. Let 7!'~; be a subset of OBS(di), such that the 

variables in OBS( di) - 7!'~ are, according to the decision maker, irrelevant to the decision . . 

d . 0 
i given 7r d;. 
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Before one can solve a problem, one needs first to clearly state the problem. The 

concept of multiple-decision problems is introduced as a way to pose a decision problem. 

A multiple-decision problem is a set V = { < di, 7r~; > 11 :S: i :S: k}, where the d/s are 

decision variables and for each i, 7r~; is the set of variables depending upon whose values 

the decision maker is to choose a value for di. 

The further extended oil wildcatter problem (Figure 2.11) is a multiple-decision prob

lem. The decision maker needs to decide on a value for each of the following vari

ables: test, drill, gas-sale-policy, and oil-sale-policy. The 1r0 's are as follows: 

7r~est = 0, 7r~rill = {test-result}, 7r~as-sale-policy = {gas-produced, gas-market}, 

and 7r~il-sale-policy = {oil-produced, oil-market}. 

Given a multiple-decision problem V, define a partial ordering among its variables as 

follows: for any two variables x and y, we say that x precedes y if xE1ri, or if there is 

another variable z such that xE1r~ and z precedes y. 

The fundamental constraint that a multi-decisi~n problem must obey is the so-called 

acyclicity constraint, which require that there do not exist two variables x and y such that 

both x precedes y and y precedes x. The reason for this constraint is that the precedence 

relationship defined above implies time precedence. More explicitly, if x precedes y, then 

the value of x is observed or determined before the value of y. 

2.3.3 Technical preparations 

Given a multiple decision problem V, let X be the set of all the variables in V and other 

variables that are relevant to the problem. For the further extended oil wildcatter prob

lem, X also contains oil-underground, gas-underground, and seismic-structure in 

addition to the variables appeared in the problem statement, namely test, drill, gas

sale-policy, oil-sale-policy, test-result, gas-produced, gas-market, oil-produced, 

and oil-market. 
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For any variable xEX, let nx be the frame of x, i.e. the set of all possible values of 

x. For any subset B ~ X, let nB = I1xeB nx, 

To determine a value for di based on the values of the variables in 7r~i is to choose a 

function 8i : n1r~ ~ nd;. Such a function is called a decision function (table) for di, Let 
' 

~i denote the set of all the decision functions for di. The policy space is the Cartesian 

product ~ = I1f=1 ~i- An element of~ is called a policy. 

2.3.4 Deriving the concept of decision networks 

One needs to have the necessary knowledge to solve a problem. This subsection develops 

decision networks as a framework for specifying the knowledge (beliefs) and utilities that 

are required in order to solve a multiple-decision problem. 

If the decision maker wants to solve a multiple-decision .problem 'Din the setup given 

in Subsection 2.3.1, then s/he needs, according to the second item of the setup, to come 

up with a probability P0(X) for each policy 8. When obtained, P0 would contain more 

information than is conveyed by 'D and 8. The portion of information conveyed by P0 

that is not conveyed by 'D and 8 should originate from the decision maker's knowledge 

and beliefs about the uncertainties involved in the decision situation. Equipped with 

Bayesian networks, we are able to explicitly spell out this portion of information, as 

demonstrated in the following. 

Assume P0(X) were somehow obtained. An expansion ordering for P0(X) conforms 

to 'D if for each di, variables in 7r~; precede di in the ordering. One can easily verify that 

such an ordering is possible since 'D must be acyclic. 

Given an expansion ordering p: x1 , ... , Xn that conforms to 'D, we could, as in the 

previous section, expand Po(X), determine the 7rx;'s, and construct a Bayesian network. 

Denoted by N0 , this Bayesian network would contain the following information: 
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1. For each decision node di, the conditional probability Ps( di l1r d;) and the fact that 

(Factl:) di is independent of all the variables that come before di in p given the 

variables in 1r d;; and 

2. for each random node c, the conditional probability Ps( c)1r c) and the fact that 

(Fact2:) c is independent of all the variables that come before c in p given the 

variables in 7r c • 

Since 7rd; and 1r~; have the same semantics, we have 7rd;=1rt Hence Factl would have 

come from the problem statement 'D; and the conditional probability Ps(di)1rd;) would 

have come from the policy 8. 

One the other hand, Fact2 and the conditional probability A( c)1r c) do not follow from 

either 1) or 8, and hence must have come from the decision maker. They represent the 

decision maker's knowledge and beliefs about the uncertainties involved in the decision 

situation and need to be elicited before the decision problem 1) can be solved in Bayesian 

decision theory. 

We now turn to utility. According to item 3 in the setup of Subsection 2.3.1, the 

decision maker needs also to express his preferences about the possible state of affairs by 

a utility function µ(X). µ(X) can sometimes be decomposed into the sum of a number 

of components, each of which depends only on a number of variables. Suppose µ(X) 

decomposes into m components µ1(Z1 ) + ... + µm(Zm), where Zi is the set of variable 

of which µi depends upon. Introduce a value variable Vi for each µi, and attach Vi to 

the Bayesian network N6 by drawing arcs from each of the variables of Zi to vi. In the 

following, we shall write zi as 71" Vj' and µi ( zi) as µv; ( 71" vJ. 

To summarize the discussions above and in Subsection 2.3.2, the decision maker needs 

to do the following in order to solve a multiple-decision problem in Bayesian decision 

theory: 
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1. specify the decision variables whose values are to be to determined, and the random 

variables and value variables that are related to those decision variables; 

2. for each decision variable di, specify the set 7r d; of observed variables whose values 

are relevant to d1, 

3. determine an ordering p among all the variables such that p conforms to the problem 

statement { < di, 7r~; > Ii}. Let p[ < x] denote the set of nodes that come before x 

in the ordering p. 

4. for each random variable c, specify a subset 7r c of p[ < c] such that c is P( cjp[ < cl) = 

P(ci1rc), and specify the conditional probability P(ci1rc); 

5. for each value variable v, specify the subset 7r v of variables in p[ < v] that v depends 

upon and specify the utility function µv; ( 7r vJ. 

We call the collection of all the information specified in items 1, 2, 4, and 5 a decision 

network . Thus, a decision network represents the decision maker's knowledge (beliefs) 

and preferences (utilities) that are needed in order to solve a multiple-decision problem in 

Bayesian decision theory. The ordering p is not included as part of the decision network 

because it can be arbitrary as long as it conforms to {<di, nJ > Ii}. 

Smith (1989) presents a way of developing the concept of influence diagrams ( decision 

networks) in terms of the so-called third part semantics. In this section, the concept of 

decision networks has been developed directly from a standard setup of Bayesian decision 

theory without using the third part semantics. 

2.3.5 An example 

As an example, consider a decision scenario where a decision maker needs to decide 

whether to bring-umbrella in light of weather forecast. An additional variable, rain, 
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bring 
umbrella 

(1) (2) 

Figure 2.13: Two decision networks for the rain-and-umbrella problem. 
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which takes the value "yes" if it does turn out to rain and "no" otherwise, is believed 

to be relevant to the decision and hence is included in our analysis. For each decision 

function {j : nforecast --+ nbring-umbrella, the decision maker needs to come up with a 

joint probability P.s(rain, forecast, bring- umbrella). The expansion ordering rain, 

forecast, bring-umbrella conforms to the decision problem. If the decision maker's 

utility - satisfaction - is a function of rain and bring-umbrella, then the decision 

network is as shown in Figure 2.13 (1). To complete the specification of this network, one 

needs to assess the prior probability of rain and the conditional probability for forecast 

given rain. One also needs to assess the utility function. 

The expansion ordering forecast, rain, bring-umbrella also conforms to the deci

sion problem. It gives rise to the decision network shown on Figure 2.13 (2). The reader 

will see later that one can go between those two networks by reversing the arc between 

forecast and rain using Bayes' theorem (see Howard and Matheson 1984 and Section 

5.5). 

2.4 Fundamental constraints 

In the introduction we have seen that among the five constraints that define influence di

agrams, the regularity, the no-forgetting, and the single value node constraints should be 

lifted. This short section considers the remaining two constraints, namely the acyclicity 
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and the no-children-to-value-node constraints. 

In the derivation of decision networks in the previous section, we first had a Bayesian 

network N6 consisting of decision and random nodes. Then each value node v was 

attached to N6 by drawing arc from those nodes in N0 that v depends upon. Thus, the 

value nodes do not have children. In other words, decision networks always satisfy the 

no-children-to-value-node constraint. 

There is one issue that needs to be addressed. In the last section, we have assumed 

the set of value nodes does not intersect with the set of random and decision nodes. This 

may not be the case sometimes; there may be nodes that are value nodes and decision 

or random nodes at the same time. For example, the amount of money x one spends 

the next month is a value variable. In the meantime, x is also a decision variable, and 

it affects how much one will be willing to spend the month after. In such a case, we 

will have two copies of x: one copy xd functions as a decision node, while'the other xv 

functions as a value node. Since xd is a decision node, one can set its value at his will 

and this value affects later decisions. On the other hand, the value node Xv depends 

on Xd and it does not affect any other nodes. By appropriately introducing copies of 

variables, we can always ensure that the set of value nodes does not intersect with the 

set of random and decision nodes. 

We now turn to consider the acyclicity constraint. Decision networks must always be 

acyclic bec~use multiple-decision problems are acyclic (subsection 2.3.2) and Bayesian 

networks acyclic. In the derivation of the last section, we began with a joint probability 

P6(X) which one must have in order to solve the multiple-decision problem T) in Bayesian 

decision theory. Because V is acyclic, we were able to have an expansion ordering p for 

P6(X) that conforms to V. '.fhe ordering p led to a Bayesian network N0• For any arc 
' 

x-+y in the Bayesian network, x comes earlier than y in the ordering p. Therefore N0 

must be acyclic. A decision network was obtained from N0 by adding value nodes. Since 
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the value nodes do not have any children, the decision network must also be acyclic. 

The acyclicity and the no-children-to-value-node constraints are the only two con

straints we impose on decision networks. We have just argued that those two constraints 

are fundamental and are indispensable to decision networks. In this sense, we say that 

decision networks are the most general representation framework for solving multiple

decision problems in Bayesian decision theory. 

). 



Chapter 3 

Decision networks: formal definitions 

The previous chapter has introdu.ced the concept of decision networks. This chapter 

gives the exact definitions. We first formally define Bayesian networks (Section 3.1) and 

give two properties of Bayesian networks that will he useful later in a number of places 

(Section 3.2). Then we present the formal definitions of decision networks and of their 

evaluation (Section 3.3). A naive algorithm for evaluating decision networks is provided 

in Section 3.4. This algorithm is very inefficient because it simultaneously considers all 

the decision nodes. A decision network is stepwise-solvable if it can be evaluated by 

considering one decision node at a time (Section 3.5). Obviously, stepwise-solvability is 

a desirable computational property. In the next three chapters, we shall discuss when 

a decision network is stepwise-solvable and how to evaluate a stepwise-solvable decision 

network. For that purpose, we need the auxiliary concept of semi-decision networks 

(Section 3.6). 

Starting from this chapter, we shall introduce various mathematical symbols. To help 

the reader to keep track of them, we have listed all the major symbols at the beginning 

of the thesis. 

3.1 Formal definition of Bayesian networks 

Before getting started, let us note that in this thesis, standard graph theory terms such 

as acyclic directed graphs, parents ( direct predecessors), children ( direct successors), 

predecessors, descendants (successors), leaves ( nodes with no children), and roots ( nodes 

45 
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Figure 3.14: Bayesian network and irrelevant variables. 

with no parents) will be used without giving the definitions. The reader is directed to 

Lauritzen et al (1990) for exact definitions. We shall use 1rx to denote the set of parents 

of a node x in a directed graph. 

A Bayesian network1 (Pearl 1988) N is a triplet N = (X, A, P), where 

1. X is a set of random nodes (variables); each xEX has a frame nx - the set of 

possible values of x; 

2. A is a set of arcs over X such that (X, A) is an acyclic directed graph; and 

3. Pis a set {P(xl1rx)lx E X} 2 of conditional probabilities of the variables given their 

respective parents3
• 

Figure 3.14 show a simple Bayesian network net1 with seven variables a, b, c, d, e, 

J, and g. The network contains the following prior and conditional probabilities: P(a), 

P(J!a), P(bla), P(clb), P(dlb), P(eic, d), and P(gjf, e). 

1 Bayesian networks are also known as belief networks, Bayesian belief networks, and probabilistic 
influence diagrams. 

2 A conditional probability P(x!1r.,) is a mapping P(xj1r.,) : n{x}u,,-., -+ (0, 1] such that 
Ew en., P(x=w.,!1r.,=,B) = 1 for each value ,B of 1r., . 

:fWhen xis a root, 1r., is empty. When it is the case, P(xj1r.,) stands for the prior probability of x. 
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The prior joint probability P,N(X) 4 of a Bayesian network N = (X, A, 'P) is defined 

by 

P.N(X) = IT P(xl1rx)· (3.7) 
xE,X 

In words, P,N(X) is the pointwise multiplication of all the conditional probabilities in N. 

For any subset B ~ X, the marginal probability P(B) is defined by 

P(B) = L P(X), (3.8) 
X-B 

where Lx-B means summation over all the possible values of the variables in the set 

X-B. 

A note about notation usage: In equation (3. 7) the range of the multiplication is spec

ified by the sign "E"; xEX means x ranges over X. In equation (3.8) there is no "E" sign. 

As a convention, we use LX-B P(X) as an abbreviation of Lwx-BEOx-B P(wB,wx-B), 

where wx-B stands for a general member of f!x-B, WB stands for a general member 

of nB, and (wB,WX-B) is thus a general member of nx. We shall always follow this 

convention about notation usage throughout this thesis. 

For any two subsets B1 , B 2 ~ Y of variables, the conditional probability P(B1 \B2 ) is 

a function that satisfies 

For technical convenience, we also introduce the auxiliary concept of semi-Bayesian 

networks. A semi-Bayesian network is a Bayesian network except that the prior prob

abilities of some of the root nodes are missing. More precisely, a semi-Bayesian net

work is a quadruplet N = (X, A, 'P\S), where (X, A) is a acydic directed graph, 'P = 
{P(xl1rx)\xEX-S} is set of conditional probabilities, and Sis the set ofroot nodes whose 

prior probabilities are missing. 

4 A function from Ox to (0, 1]. 
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It follows from the definition that Bayesian networks are semi-Bayesian networks. 

As in Bayesian networks, we can define PN(X) as follows, 

48 

PN(X) = IT P(xl1r3J (3.10) 
xE(X-S) 

Unlike in Bayesian networks, here PN(X) usually is not a probability; it may not sum 

to one. Thus, it is called the prior joint potential instead of the prior joint probability. 

Marginal and conditional potentials can be defined from the joint potential in the same 

way as marginal probabilities are defined from joint probabilities. 

Note that since there are no arcs from X-S to S, the prior joint potential PN(X) is 

nothing but the conditional probability of the variables in X --'-S given variables in S. For 

example, net3 in Figure 3.14 is a not Bayesian network if we have only P( cib), P(dlb), and 

P(eic, d) but not P(b). In this case, net3 is a semi-Bayesian network. The multiplication 

of all the conditional probabilities yields the conditional probability P( c, d, eib ). 

3.2 Variables irrelevant to a query 

Given a (semi-)Bayesian network .Al, one can pose a query ? PN(B1 IB2 ). It is often pos

sible to graphically identify certain variables being irrelevant to the query ? PN(B1 IB2). 

This issue is addressed in Geiger et al (1990), Lauritzen et al (1990), and Baker and Bault 

(1990). The. materials in the reminder of this section are extracted from those papers. 

To remove a node x from a semi-Bayesian network N = (X, A, PIS) is to: (1) remove 

x frorri X, (2) remove from A all the arcs that contain x, (3) remove from Pall the items 

that involve x, and ( 4) those nodes that were not roots and become roots because of the 

removal are added to 8. 

We notice that removing a node from a Bayesian network may create root nodes 

which do not have prior probabilities. This is why we need the concept of semi-Bayesian 

network. 
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A leaf node is barren w.r.t a query ?P.N(B1JB2), if it is not in B 1UB2. In net! (Figure 

3.14), g is barren w .r. t ? Pnet1 ( e J b). The following proposition says that if a leaf node 

is barren w.r.t a query, then it is irrelevant to the query, and hence can be harmlessly 

removed. 

Lemma 3.1 Suppose N is a semi-Bayesian network} and x is a leaf node. Let N' be 

the semi-Bayesian network obtained from N by removing x. If x is barren w.r.t to the 

query ?PN(B1IB2)} then 

(3.11) 

Consider computing Pnen(eJb). The node g is barren w.r.t the query and hence 

irrelevant. According to Lemma 3.1, g can be harmlessly removed. This creates a new 

barren node f. After the removal of g and f, net! becomes net2. Thus the query 

? Pnetl ( eJb) is reduced to the query ? Pnet2( eJb = bo). 

Let An(B1UB2) be the ancestral set of B 1UB2, i.e the set of nodes in B 1UB2 and the 

ancestors of those nodes. By repeatedly applying Lemma 3.1, we get 

Proposition 3.1 All the nodes outside An(B1UB2) are irrelevant to the query? P(B1 JB2). 

Let G = (X, A) be a directed graph. An arc from x toy is written as an ordered pair 

(x,y). The moral graph m(G) of G is an undirected graph m(G) = (X,E) whose edge 

set E is given by 

E = {{x,y}J(x,y) or (y,x) EA, or :lz such that (x,z) and (y,z) EA}. 

In words, { x, y} is an edge in the moral graph if either there is an arc between the two 

vertices or they share a common child. The term moral graph was chosen because two 

nodes with a common child are "married" into an edge (Lauritzen and Spiegehalter 1988). 
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In an undirected graph, two nodes x and y are separated by a set of nodes S if every 

path connecting them contains at least one node in S . In a directed graph G, x and y 

are m-separated by S if they are separated by S in the moral graph m( G) 5
• Note that 

any node set separates itself from any other set. 

Proposition 3.2 Suppose N is a semi-Bayesian network. Let N' be the semi-Bayesian 

network obtained from N by removing all the nodes that are not in B2 and are m-separated 

from B 1 by B 2 • Then 

(3.12) 

In our example, since a ism-separated from e by bin net2, the query can be further 

reduced to Pnet3 ( e I b). Note that a is not m-separated from e by b in net 1. 

It can be proved (Lauritzen et al 1990 and Geiger et al 1990) that all the nodes 

irrelevant to a query? PN(B1 )B2 ) can be recognized and removed by applying Proposition 

3.1 and Proposition 3.2. 

3.3 Formal definitions of decision networks 

A decision network skeleton is an acyclic directed graph K, = (Y, A), which consists of 

three types of nodes: random nodes, decision nodes, and values nodes; and where the 

value nodes have no children. 

A decision network skeleton describes a decision problem at the level of relation. It 

contains the set of parents 1r d for each decision node d, the set of parents 1r c for each 

random nodes, and the set of parents 7r v for each value nodes. See Subsection 2.3.4. 

A decision network N is a quadruplet N =(Y, A, P, :F) where 

5To relate m-separation to cl-separation (Pearl 1988), Lauritzen et al (1990) have shown that S 
cl-separates B 1 and B2 if and only if S m-separates B1 and B2 in the ancestral set An(B1 USUB2). 
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l. (Y, A) is a decision network skeleton. Let us use C to denote the set of random 

nodes, D to denote the set of decision nodes, and V to denote the set of value 

nodes. 

2. Each yEY has a frame Oy - the set of possible values of y. 

3. Pis a set {P(cJ1rc)JcEC} of conditional probabilities of the random nodes given 

their respective parents. 

4. F is a set {µv : n1rv--+R1 JvEV} of value (utility) functions for the value nodes, 

where R1 stands for the real line. 

A decision network is obtained from a decision network skeleton by providing nu

merical information, i.e by specifying a frame for each variable, providing a conditional 

probability of each random node, and a value function for each value node. We say that 

(Y, A, P, F) is a decision network over the skeleton (Y, A) , and that (Y, A) is the skeleton 

of the decision network (Y, A, P, F). 

A decision function (table) for a decision node di is a mapping 8i : n1r d --+ nd;. 
I 

The decision function space .6.i for di is the set of all the decision functions for di. Let 

D = { d1 , ... , dk} be the set of all the decision nodes. The Cartesian product .6. = TI7=1 .6.i 

is called the policy space for N, and a member 8=( 81 , ... , dk) E .6. is called a policy. 

Note that while a decision function 8i is a function, a policy 8 is a vector of decision 

functions. 

The relationship between a decision node di and its parents 1r d; as indicated by a 

decision function 8i : n1rd --+ nd; is equivalent to the relationship as represented by the 
I 

conditional probability P,d di J1r d;) given by 

(3.13) 
0 otherwise, 
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Since 8=( 81 , ... , bk), we sometimes write Ps( di l1r i) for Pa;( dil1r dJ· Because of equation 

(3.13), we will abuse the symbol 8 by letting it also denote the set {Ps(dil1rd;)ldiED} of 

conditional probabilities of the decision nodes. 

In a decision network N =(Y, A, P, F), let X =CUD. Let Ax be the set of all the 

arcs of A that lie completely in X. Then the triplet (X, Ax, Pub) is a Bayesian network, 

where 8 denotes a set of conditional probabilities of the decision nodes. We shall refer to 

this Bayesian network the Bayesian network induced from N by the policy 8, and write 

it as N's. The prior joint probability P0(X) of N's is given by 

Ps(X) = IT P(xl1rx) IT Ps(xl1rx) . (3.14) 
xEC xED 

We shall refer to Ps(X) as the joint probability over X ind.uced by 8 . 

Because the value nodes do not have children, for any value node v, 1r v contains no 

value nodes. Hence 7r v~X. The expectation Es[v] of the value function µv( 1r v) of v under 

Ps is given by 

Es[v] LPs(X)µv(1rv) 
X 

L Ps(1rv)µv(1rv)• 

The expected value Es [NJ of N under the policy 8 is defined by 

Es[N] - L Es[v] 
vEV 

L Ps(X) L µv(7rv). 
X vEV 

(3.15) 

(3.16) 

(3.17) 

Let us point it out again that I::'ll'v and I::x mean summation over all the possible values 

of 1rv and X respectively, while EvEV means summation over the set V. See Section 3.1 

for a note about notation usage. 
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The optimal expected value E[N] of N is defined by 

E[N] = maxse~Es[N]. (3.18) 

The optimal value of a decision network that does not have any value nodes is zero. An 

optimal policy 8°=:=(8f, ... , 8k) is one that satisfies 

Eso[N] = E[N] . (3.19) 

We call 8f an optimal decision Junction (table} of di. For a decision network that does 

not have any value nodes, all policies are optimal. 

In this thesis, we shall only consider variab_les with finite frames. Hence there are only 

finitely many possible policies. Consequently, there always exists at least one optimal 

policy. 

To evaluate a decision network is to 

1. find an optimal policy, and 

2. find the optimal expected value. 

3.4 A naive algorithm 

A straightforward approach to the evaluation of decision networks is to simply follow 

the definitions of optimal policy and of optimal expected value, and exhaustively search 

through the policy space Li. This idea is made explicit by the following algorithm. 

Procedure NAIVE-EVALUATE: 

• Input: N - a decision network. 

• Output: An optimal policy and the optimal expected value of N. 
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Let 6. be the policy space of N. 

1. Pick one policy from 6. and denoted it by 8°. Set 6. = 6.-{8°}. 

2. Compute E5a[N]. 

3. While 6. =/- 0, do 

• Pick one policy from 6. and denoted if by 8. Set 6. = 6.-{8}. 

• Compute E5[N]. 

• If E5[N] > E6o[N], set 8° = 8. 

end-while 

4. Output 8° and E0o[N]. 

Though simple, this naive algorithm is very inefficient. The main reason is that it 

simultaneously considers all the decision nodes. This results in an exhaustive search 

through the policy space 6., which can be computationally prohibitive. Suppose there 

are k decision nodes, each has l parents, and suppose all the variables are binary. Then 

for each decision node d, the cardinality of n71"a is 21; hence there are 2(21
) possible decision 

functions for d. Consequently there are (2(2')l policies in 6.. The procedure NAIVE

EVALUATE computes the expected value of N for each of the (2(21
))k policies! 

There are decision networks whose evaluation necessitates simultaneous considera

tion of all the decision nodes. As an example, consider the decision network (skeleton) 

in Figure 3.15. Enemy movements may be observed by both agentl and agent2. An 

agent decides whether or not to report enemy movements according to the instructions 

established beforehand by the intelligence office. If an agent reports, there is a chance 

that s/he may be exposed. 
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Figure 3.15: A decision network whose evaluation may require simultaneous consideration 
of all the decision nodes. 

For the sake of illustration, assume all the variables either take the value YES or 

NO, except for the variable value, which takes real numbers. To complete the speci

fication, we need to give the following ( conditional) probabilities: P( enemy-movement), 

P(observed-by-agent1lenemy-movement),P(observed-by-agent2lenemy-movement), 

P(agent1-exposedlagent1-reports), and P(agent2-exposedlagent2-reports). We 

need also to give value function µvalue( enemy-movement, agent 1-exposed, agent2-exposed) . 

There are four possible instructions ( decision functions) for agentl: 

1. If observed-by-agenti=YES, then agent1-reports=YES; 

If observed-by-agent1=N0, then agent1-reports=YES. 

2. If observed-by-agent1=YES, then agent1-reports=YES; 

If observed-by-agent1=N0, then agent1-reports=N0. 

3. If observed-by-agent1=YES, then agent1-reports=N0; 

If observed-by-agent1=N0, then agent1-reports=YES. 
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4. If observed-by-agent1=YES, then agent1-reports=N0; 

If observed-by-agent1=N0, then agent1-reports=N0. 

56 

Similarly, there are four possible instructions for agent2. The policies (instructions 

for both agents) for the problem are given as follows: 

1. If observed-by-agent1=YES, then agent1-reports=YES; 

If observed-by-agent1=N0, then agent1-reports=YES. 

and 

If observed::-by-agent2= YES, then agent2-reports= YES; 

If observed-by-agent2=N0, then agent2-reports= YES. 

2. If observed-by-agent1=YES, then agent1-reports=YES; 

If observed-by-agent1=N0, then agent1-reports·~NO. 

and 

If observed-by-agent2= YES, then agent2-reports= YES; 

If observed-by-agent2=N0, then agent2-reports= YES. 

3. and so on ... 

One can easily see that the policy space consist of (2(21 ))2 = 4 * 4 = 16 possible policies. 

In assessing his utilities, the intelligence office needs to keep both agents irt mind. For 

example, it may be the case that information about an particular enemy movement is 

important enought to risk one agent but not both. The instructions for such a situation 

should allow one and only one agent to report. The instructions can require, for instance, 

agentl to report when the information is deemed important enough to risk one agent, 

and require agent2 to report only when the information is deemed important enough to 

risk both agents. Such instructions can be arrived at only by considering the two agents 

I 

l. 
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simultaneously. In Chapter 8, we shall formally prove that with appropriate probabilities 

and value functions, optimal policies for the decision network in Figure 3.15 can be found 

or.i.ly by considering the two decisions at the same time. 

On the other hand, however, there are decision networks which allow more efficient 

algorithms than NAIVE-EVALUATE. The best case is when a decision network can 

be evaluated by considering one decision node at a time. This leads to the concept of 

stepwise-sol vabili ty. 

3.5 Stepwise-solvability 

Let N be a decision network. Let d1 , d2 , ••• , dk be all the decision nodes in N, and let 

8=(81 ,82 , ... ,8k) be a policy of N, where Dj is a decision function of dj, The expected 

value Es[N] = E(o1 ,02 , ... h)[N] is a function of 81, 82 ... , and 8k, 

For any iE{l, 2, ... , k }, if we fix the value of Dj for all jE{l, 2, ... , k} such that j#i, 

then E(s1 , ... ,c5;_ 1 ,o;,c5;+i, ... h)[N] becomes a function of Di, Rank all the possible values of 8i, 

i.e all the possible decision functions of di, according to the value E(o1 , ... ,c5;_ 1 ,o;,c5;+ 1 , •.• ,ok)[N]. 

If the decision function (for di) that is ranked the highest remains the same regardless of 

the values of the 6/s (j#i), then we say that di is a stepwise-solvability candidate node, 

or simply an SS candidate node of N. 

A deterministic node is a random node whose conditional probability takes the value 

either O or 1. To replace a decision node dj by a deterministic node characterized by a 

function Dj : n11'd . ~ nd (Shachter 1988) is to replace dj by a deterministic node with the 
J 

same frame, and to set P( dj 17!' d;) to be the conditional probability that represents Dj in 

the sense of equation (3.13). 

If di is an SS candidate node, then an optimal decision function 8f can be found 

as follows. For all jE{l,2, ... ,k} such that j#i, replace the decision node dj by a 
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deterministic random node characterized by an arbitrary decision function Oj, resulting 

in a decision network with only one decision node di. Then find a policy 8f of di that 

satisfies 

(3.20) 

Proposition 3.3 If di is an SS candidate node of a decision network N, then an decision 

function 8f that satisfies equation (3.20) is an optimal decision function of di. 

Proof: Let ( 8;, . .. , 87_1, 87, 87+1, ... , 8Z) be an optimal policy of N. Since di 1s an SS 

candidate node and 8f satisfies (3.20), we have 

Therefore, ( 8;, . .. , 87_1, 8f, 87+1, ... , 8jJ must also be an 6ptimal policy of N. Conse

quently, 8f must be an optimal decision function of di. The proposition is proved. D 

A decision network is stepwise-solvable if it contains no decision nodes, or if 

1. there exists an SS candidate node di such that 

2. if di is replaced by a deterministic node characterized by an optimal decision func

tion of d, the resulting decision network (with one less decision node) is stepwise

solvable. 

A decision network skeleton is stepwise-solvable if all the decision networks over the 

skeleton are stepwise-solvable. 

If a decision network N is stepwise-solvable, then it can be evaluated as follows. Find 

an SS candidate node di and find an optimal decision function 8f of di in the way as 

specified in equation (3.20). Replace di by a deterministic node characterized by 8f, 

resulting in another stepwise-solvable decision network N' with one less decision node. 
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Then recursively apply the procedure to N', an so on so forth. We see here that N is 

evaluated by considering one decision node at a time. 

Suppose N is a stepwise-solvable decision network with k decision nodes. Suppose 

each decision node has l parents, and suppose all the variables are binary. Then to 

evaluate N, we need to compute the expected values of N for (2(2
')) * k policies, instead 

of (2(2'll policies as in the case of NAIVE-EVALUATE. 

Note that the· aforementioned evaluation method is not the best. The term 2(2') can 

easily be prohibitively large. We shall show tha.t when a decision network is stepwise

solvable, it can be solved not only by considering one decision node at a time, by also 

by considering one, usually small, part of the network at a time. The complexity can be 

reduced to that of computing no more than 2k + m marginal probabilities of no more 

than l + l variables or computing no more than (2k + m )i+1 numbers, where m stands 

for the number of value nodes. 

So, stepwise-solvability is a very desirable property for a decision network to possess. 

In the next three chapters, we shall investigate when a decision network is stepwise

solvable and what is the best way to evaluate a stepwise-solvable decision network. For 

this purpose, we need the technical concept of semi-decision network. 

3.6 Semi-decision networks 

The reader has seen that removing nodes from a Bayesian network may create root nodes 

which do not have prior probabilities. This is why we need the concept of semi-Bayesian 

network. We shall also be discussing removing nodes from decision networks, which 

necessitates the concept of semi-decision networks. 

A semi-decision network is a decision network except that the prior probabilities of 

some of the ropt random nodes are missing. We use N = (Y, A, 'P, :Fl S) to denotes a 
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semi-decision network, where S is the set of root random nodes whose prior probabilities 

are m1ssmg. 

As before, let X = C U D be the set of random and decision nodes. Sim_ilarly to the 

case of decision networks, a policy 8 induces a semi-Bayesian network (X, Ax, PU8IS), 

which will be referred to as the semi-Bayesian network induced from N by the policy 8 , 

and which will be written as Nr,. Let Pr,(X) be the prior joint potential of Nr,. 

For any value node vEV, 'll'v~X. The expected value Er,[N] of N under the joint 

potential Pr,(X) is defined by 

Er,[N] = LPr,(X) L µv('ll'v), (3.21) 
X vEV 

The optimal expected value E[N] of N is defined by 

An optimal policy 8° is one that satisfies 

E6o[N] = E[N]. 

Unlike in the case of decision networks, we also define the concept of conditional 

expected value for semi-decision networks. Th conditional expected value Er,[NIS] of N 

given S is defined by 

Er,[NIS] = L Pr,(X) L µv('ll'v), (3.22) 
X-S vEV 

Obviously Er,[NIS] is a function of S. 

We chose the term "conditional expected value" because that the prior joint potential 

PN(X) is nothing but the conditional probability of the variables in X-S given S (see 

the note at the end of Section 3.1) . 

The optimal conditional expected value E[NIS] of N given Sis defined by 
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E[.N'IS] = maxse~Es[.N'IS] . 

An optimal conditional policy S0 is one that satisfies 

Eso[.N'jS] = E[.N'jS], 

for all possible values of S. 

Proposition 3.4 A conditionally optimal policy of a semi-decision network, if exits, zs 

always an optimal policy. 

Proof: From equations (3.21) and (3.22), we have 

Es[.N'J = L Es[.N'IS]. 
s 

Let S0 be a conditional optimal policy and let S be an arbitrary policy of .N'. Then 

Es0 [.N'] = L Es0 [.N'IS] 2: L Es[.N'IS] = Es[.N']. 
s s 

Therefore 

In words, S0 is an optimal policy of .N'. D 

For a semi-decision network, there always exists at least one optimal policy. But there 

may not necessarily exist any conditional optimal policies. 

r Given a semi-decision network .N', if every optimal policy of .N' is also a conditionally 

optimal policy, then we say that .N' is uniform . 

We shall investigate when a semi-decision network is uniform later. 



Chapter 4 

Divide and conquer in decision networks 

This chapter and the next two chapters constitute the heart of this thesis; they introduce 

and study one subclass of decision networks, namely stepwise-decomposable decision 

networks (SDDN's). SDDN's are important because they are stepwise-solvable, and as 

we shall show in Chapter 8 stepwise-decomposability is the weakest graph-theoretical 

criterion that guarantees stepwise-solvability. 

This chapter investigates when and how a decision network can be decomposed into 

two subnetworks such that the optimal expected value and an optimal policy of the 

decision network can be computed by evaluating the two subnetworks. The next two 

chapters are concerned with how to evaluate decision networks that can be decomposed 

into n - the number of decision nodes - subnetworks such that the optimal expected 

values and optimal policies of the decision networks can be computed by evaluating the 

n subnetworks. 

The organization of this chapter is as follows. Section 4.1 discusses the relationship 

between independence in a decision network and separation in the underlying decision 
' 

network skeleton. Section 4.2 defines a concept of decomposability for decision networks, 

and Section 4.3 shows that this concept of decomposability implies a divide and conquer 

evaluation strategy. 

Since manipulation of decision networks gives rise to semi-decision networks and deci

sion networks are special semi-decision networks, exposition in this chapter will be carried 

out in terms of semi-decision networks. 

62 
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Figure 4.16: The relationships among the sets Y, Vi, Yn, X1, Xu, and 7rd. The three 
sets Y1, Yn and 1r d constitute a partition of Y - the set of all the nodes; while X1, Xn 
and 1r d constitute a partion of CUD - the set of all the random and decision nodes. 
When the network is smooth at d, there are no arcs going from Xu to 1r d· 

4.1 Separation and independence 

The main goal of this chapter is to prove Theorem 4.1, one of the most important theo

rems in this thesis. In preparation, this section exposes the relationship between graph

theoretic separation and probabilistic independence in the context of decision networks. 

Suppose K, = (Y, A) is decision network skeleton and dis a decision node in K. Let 

Y1(d, K), or simply Y1 be the set of all the nodes that are m-separated from d by 7rd, with 

the nodes in 1r d itself excluded. Let Yn ( d, K), or simply Yn be the set of all the nodes 

that are not m-separated from d by 7r d· We observe that Y1, 1r d, and Yn forms a partition 

of Y. Let X1(d,K) = Y1(d,K)n(CUD) and Xn(d,K) = Yn(d,K)n(CUD). 

The relationships among the sets are illustrated in Figure 4.16. In the following, we 

shall refer to Y1 as the upstream set of 1r d, Yn as the downstream set of 1r d· We shall also 

refer to X1 as the set of random and decision nodes in the upstream of 1r d, and Xn as 

the set of random and decision nodes in the downstream of 1r d· 

Consider a semi-decision network N = (Y, A, P, Fl S). Let b be a policy of N. As 

pointed out by Lauritzen et al (1990), m-separation in the skeleton (Y, A) implies con

ditional independence for Ps(X) - the joint potential over X induced by b. Since 7rd 



Chapter 4. Divide and conquer in decision networks 64 

m-separates X1 and Xu, we have that P0(Xu\X1,1rd) = Po(Xu\1rd)- Therefore 

( 4.23) 

The rest of this section seeks an explicit representation of P0(X1, 1rd) and Po(Xu\1rd) 

in terms of conditional probabilities. 

A decision network is smooth at the decision node d, if there are no arcs going from 

the downstream set Yu of 7r d to nodes in 7r d· In other words, arcs between 7r d and Yu 

only go from 7r d to Y1 I. 

As an example, consider the decision network skeleton for the further extended oil 

wildcatter problem (Figure 2.11). The downstream set of 7roil-sale-policy consists of 

oil-sale-policy and oil-sales. There are no arcs from oil-sales to nodes in 

7roil-sale-policy• So, the skeleton is smooth at oil-sale-policy. One the other hand, 

the downstream set of 7rdrill contains all the nodes except test-cost and the nodes 

in 7rdrill• In particular, the downstream set contains the node seismic-structure. 

Because of the arc from seismic-structure to test-result ( E 7rdrin), the decision 

network skeleton is not smooth at drill. 

Let d1, ... , dj be all the decision nodes in X1U1r d and dj+l, ... , dk be all the decision 

nodes in Xn, Note that d E {dj+t, ... , dk}. For a policy 8 = (81 , ... , 8k), let 81 = 

( 81 , ... , 8j) and 8u = (8j+i, ... , 8k)-

Suppose the semi-decision network N is smooth at d. It follows from Proposition 3.1 

that 
j 

P(x\1rx) IT Pc5;(di\1rdJ ( 4.24) 
xeCn(X1U7rd) i=l 

And it follows from Proposition 3.2 that 

k 

Po(Xn\1rd) = IT P(x\1rx) IT P,5;(di\1rd;)). (4.25) 
.ceCnX11 i=j+l 
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Those two equations give us the following lemma. 

Lemma 4.1 If N is smooth at d, then P0 (X1, 7rd) only depends on 81, and Ps(Xul7rd) 

only depends on 8u. From now on) we shall write Ps(X1, 7rd) as Ps1 (X1, 1rdL and Ps(Xul7rd) 

as Psn(Xul1rd), 

4.2 Decomposability of decision networks 

Also in preparation for Theorem 4.1, this section introduces a concept of decomposability 

for decision networks and shows how to divide a decomposable decision network into two 

subnetworks. 

A decision network skeleton JC=(Y, A) is decomposable at a decision node d if the 

number of decision node in Yu(d, JC) is less than the number of decision nodes in JC. A 

semi-decision network is decomposable at a decision node d if the underlying skeleton is. 

When a decision network skeleton JC is decomposable and smooth at d, we define 

the downstream component of JC w.r.t d, denoted by JCu(d, JC) or simply JCu, to be the 

decision network skeleton obtained by restricting JC to 1r dUYu and then removing those 

arcs that connect two nodes in 7r d. 

Also, we define the upstream component of JC w.r.t d, denoted by JC1(d,JC) or simply 

I{ 1, to be the decision network skeleton obtained by restricting JC to Y1U1r d and then 

adding a node u and drawing an arc from each node in 1r d to u. The node u is to be used 

to store the value of the downstream component, and is thus called the downstream-value 

node. 

Figure 4.17 shows the downstream and upstream components, w.r.t oil-sale-policy, 

of the decision network skeleton in Figure 2.11. 

Note that while Vi and Yu are sets of nodes, JC1 and JCu are decision network skele

tons. JC1 and JCu contain the nodes in 7rd, while Vi and Yu do not. 
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Let N be a decision network over K, and suppose N (or K,) is decomposable and 

smooth at d. The downstream component of N w.r.t d, denoted by Nu(d,N) or simply 

by Nu, is a semi-decision network over Ku. The value functions for all the value nodes of 

Nu remain the same at in N. The conditional probabilities of the random nodes of Nu 

that lie outside 1r d also remain the same as in N. The nodes in 7r d, random or decision, 

are viewed in Nu as random nodes whose prior probabilities are missing. 

The upstream component of N w.r.t d, denoted by N1(d,N) or simply by N1, 1s a 

semi-decision network over K1. The conditional probabilities of all the random nodes 

remain the same as in N. The values functions of the value nodes other than u also 

remain the same as in N. The value function µ( 1r d) of the downstream-value node u is 

the optimal conditional expected value E[Nui1rd] of the downstream component Nu. 

Since the decision node dis not in the upstream component N1, the number of decision 

nodes in N1 is less than the number of decision nodes in N. Since the decision nodes 

in 1r d, if any, are treated as random nodes in Nu and since the N decomposes at d, the 

number of decision nodes in Nu is also less than the number of decision nodes in N. 

Furthermore the number of decision nodes in N1 plus the number of decision nodes in 

Nu equals the number of decision nodes in N. 

We shall later define the concepts of downstrea~ and upstream components for the 

case when K, and N are not smooth at d. 

4.2.1 Properties of upstream and downstream components 

This subsection gives several properties of upstream and downstream components of 

decomposable decision networks. Those properties will be useful in the proof of Theorem 

4.1. 

Given a policy 8u = (8j+i, ... , 8k), the downstream component Nu is a semi-Bayesian 

network. Let P1vn,6n(1rd,Xu) denote the prior joint potential of this semi-Bayesian 
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Figure 4.17: Downstream and upstream components: The downstream component is a 
semi-decision network, where the prior probabilities for oil-produced and oil-market 
are missing. In the upstream component, u is the downstream-value node, whose value 
function is the optimal conditional expected value of the downstream component. 

network. From the definition of the downstream component, one can see that if N is 

smooth at d, then 

k 

PNn,s11 (7rd, Xu)= II P(xl1rx) II P,ddil1rdJ), 
xeCnX11 i=j+l 

which is the same as the right hand side of equation ( 4.25). Therefore we have 

Lemma 4.2 Suppose a semi-decision network N is decomposable and smooth at decision 

node d. Let Ps11 (Xul1rd) be as in Lemma 4-1. Then 

( 4.26) 

Similarly, given a policy 81 = (81 , ... , 8j), the upstream N1 is a Bayesian network. Let 

PN1 ,s1 (X1, S) denote the joint probability of this Bayesian network. From the definition 

of the upstream component, one can see that if N is smooth at d, then 
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j 

IT P(xl'll"x) IT P,5;(dd7rdJ, 

which is equal to the right hand side of equation (4.24). Therefore we have 

Lemma 4.3 Suppose a semi-decision network N is decomposable and smooth at decision 

node d. Let Ps1 (X1,7rd) be as in Lemma 4,1. Then 

(4.27) 

The following proposition is especially important to the proof of Theorem 4.1. 

Proposition 4.1 Suppose a semi-decision network N is decomposable and smooth at 

decision node d. Let Psn(Xul7rd) and Ps1 (X1,7rd) be as in Lemma 4.1. Let Vi and Vu 

be the set of value nodes in N1 an Nu respectively. Then ·the conditional expected value 

of Nu under policy 8 II satisfies 

( 4.28) 
Xn vEVn 

and the expected value of N1 under policy 81 satisfies 

( 4.29) 

Proof: By definition, we have 

Esn[Nul7rd] = LP.Nn,8n(7rd,XII) L µv('ll"v). 
Xu vEVu 

Thus equation (4.28) follows from equation (4.26). 

Again by definition, we have 

Thus equation ( 4.29) follows from equation ( 4.27). D 
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4.3 Divide and conquer 

This section shows how decomposability of (semi-)decision networks leads to a divide 

and conquer evaluation strategy. 

Theorem 4.1 Suppose a (semi-}decision network N is decomposable and smooth at deci

sion node d. Let Nu be the downstream component of N w.r.t d, and N1 be the upstream 

component. If Nn is uniform, then 

1. If 8'h is an optimal policy for Nu and 81 is an optimal policy for N1, then 8° =def 

( 81,811 ) is an optimal policy for N. 

2. The optimal expected value E[N1] of the body J!1 is the same as the optimal expected 

value E[N] of N. 

The theorem divides the task of evaluating a (semi-)decision network N into two sub

tasks: the task of evaluating the downstream component Nu and the task of evaluating 

the upstream component N1. 

Applying the theorem to the decision network in Figure 4.17, we get that optimal 

decision functions for oil-sale-policy can be found in the downstream component, 

which is much smaller than the original network. The optimal decision functions for all 

the other decision nodes can be found in the upstream component, which is also smaller 

than the original network. Furthermore, we can repeatedly apply the theorem to the 

upstream component. 

The following mathematical proof may test the reader's patience, but it is the key to 

understanding the correctness of our later algorithms. 

Proof: For any policy 8 of N, we have 

Es[N] = (By definition) 
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L P51(X1, 7rd)Pou(Xu/7rd) L µv(1rv) (By equations 4.23 and Lemma 4.1) 
X1,1rd,Xu vEV 

L Po1(X1,1rd){ L µv(1rv) LPou(Xu/1rd) + LP6u(Xu/1rd) L µv(1rv)} 
X1,1rd vEV1 Xu Xu vEVu 

Since 811 is an optimal policy for Nu and Nu is uniform, 

( 4.31) 

Noticing that Po1(X1, 1rd) is non-negative, we have 

Eo[N] L Po1(X1, 7rd){ L µv(1rv) + Eou[Nu/1rd]} (By equation 4.30) 
X J,'lr d vEV1 

< L Po1(X1, 7rd){ L µv(1rv) + Eo'J)Nu/1rd]} (By equation 4.31) 
X1,1rd vEV1 

L Po1(X1,1rd){ L µv(1rv) + E[Nu/1rd]} (By equation 4.31) 
X1,1rd vEV1 
Eo1[N1] (By equation 4.29) 

< Eo'J[N1] ( Optimality of 81) 

- L Po'}(X1,1rd){ L µv(1rv) + E[Nu/1rd]} (By equation 4.29) 
X1,1rd vEV1 

L Po'J(X1, 7rd){ L µv(1rv) + Eo'J1[Nu/1rd]} 
X1,1rd vEV1 . 

(Optimality of 811 ) 

E0o[N]. (By equation 4.30) 

Therefore, 8° is indeed an optimal policy for N. The first statement of the theorem is 

proved. 

The foregoing derivation has also shown that 

Letting 8 be 8°, we get 

Therefore E[N] = E[N1]. The proof is completed. D 

( 4.30) 



Chapter 5 

Stepwise-decomposable decision networks 

This chapter introduces and studies the most important concept of this thesis, namely 

stepwise-decomposable decision network$ (SDDN). Roughly speaking, a SDDN is a deci

sion network that can be decomposed into n - the number of decision nodes - subnet

works such that each subnetwork contains only one decision node and that the original 

network can be evaluated through the evaluation of those subnetworks (Section 5.4). A 

first reason why SDDN's are computationally desirable is that the subnetworks may be 

substantially smaller than the original network. 

A second reason why SDDN's are computationally desirable is that each of the sub

networks is a semi-decision network with only one de~ision node. Single-decision-node 

semi-decision networks can be evaluated by enumerating the values of the parents of the 

decision node instead of enumerating all the possible policies or decision functions ( see 

Section 5.5). Suppose that the decision node has n parents and that all the variables are 

binary. Then, the parents can assume 2n possible values, while there are 2(2") decision 

functions! 

The organization of this chapter is as follows. The definition of SDDN's is given in 

Section 5.1, and Section 5.2 shows that smooth SDDN's are stepwise-solvable. The issue 

of testing stepwise-decomposability is addressed in Section 5.3. In Section 5.4, we discuss 

how to evaluate a smooth SDDN by using the divide and conquer strategy outlined in 

the previous chapter. An algorithm is presented in Section 5.6, which makes use of the 

subroutine given in Section 5.5 for evaluating simple semi-decision networks. 

71 
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Non-smooth SDDN's are treated in the next chapter. 

5.1 Definition 

This section defines stepwise-decomposable decision networks. 

In a decision network skeleton K, a decision node d is a stepwise-decomposability 

candidate node or simply an SD candidate node if 1r d m-separates d from all other 

decision nodes and their parents. A decision node is an SD candidate node in a decision 

network N if it is an SD candidate node in the skeleton of N. 

As an example, consider the decision network skeleton in Figure 2.11). Both oil-sale-policy · 

and gas-sale-policy are SD candidate nodes, while drill and test are not. The de-

cision nodes oil-sale-policy and gas-sale-policy are not m-separated from drill 

(test) by 7rdrill (7rtest). 

Lemma 5.1 Supposed is an SD candidate in a decision network skeleton K. Then the 

downstream set Yu( d, K) contains only one decision node, which is d itself. So, if K, 

contains more than one decision node, then it is decomposable at d. □ 

When dis an SD candidate node in decision network N and N is smooth at d, the 

upstream component N1 of N w.r.t dis called the body of N w.r.t d, and the downstream 

component Nu of N w.r.t dis called the tail of N w;r.t d. Moreover, the downstream

value node in N1 will be referred to as the tail-value node . 

A decision network skeleton K is stepwise-decomposable if either it contains zero or 

one decision node, or 

1. There exists an SD candidate decision node d, and 

2. The body K1 of K w.r.t dis stepwise-decomposable. 
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(1) 

(3) (4) 

Figure 5.18: Step by step decomposition of the decision network in Figure 2.11. 

A ( semi- )decision network is stepwise-decomposable if its underlying skeleton is. The 

term "stepwise-decomposable decision network" will be abbreviated to SDDN. 

Suppose a decision network N is stepwise-decomposable. If N contains more than 

one decision node, then it has at least one candidate node d. According to Lemma 5.1, N 

is decomposable at d and it decomposes into a body N1 and a tail. N1 is again stepwise

decomposable. If N1 contains more than one decision node, we can again decompose N1 

into a body and a tail, an so and so forth, till there is only one decision node left in the 

body. In other words, we can decompose an SDDN into a series of subnetworks (tails) in 

a step-by-step fashion. This is why the term "stepwise-decomposable" was chosen. 

As an example, let N be the decision network in Figure 2.11. N is stepwise

decomposable. The node oil-sale-policy is an SD candidate node in N, and N 

decomposes at oil-sale-policy into a body N1 and at tail, as shown in Figure 4.17. 
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The node gas-sale-policy is an SD candidate node in N1, and N1 decomposes at 

gas-sale-policy into a tail and a body. The body is shown in Figure 5.18 (1), and the 

tail Figure 5.18(2). In Figure 5.18 (1), drill is an SD candidate node, and the network 

decomposes at drill into a body as shown in Figure 5.18 (3) and a tail as shown in 

Figure 5.18 ( 4). 

The decision network skeleton in Figure 3.15 contains two decision nodes, but no SD 

candidate nodes. So, it is not stepwise-decomposable. 

5.1.1 Another way of recursion 

In the definition of decomposability, the number of decision nodes is recursively reduced 

by cutting tails that contain a single decision node. Another way to recursively reduce 

the number of decision nodes is to replace them one by one with deterministic random 

nodes. Let us first prove a lemma. 

Lemma 5.2 Let d be an SD candidate node in a decision network skeleton K. Let K1 

be the body of K w. r.t d, and let K' be the decision network skeleton obtained from K by 

replacing d by a deterministic node. Then K1 is stepwise-decomposable if and only if K' 

is. 

Proof: We prove this lemma by induction on the number of decision nodes in K. When 

d is the only decision node in K, both K 1 and K' contain zero decision nodes, and hence 

both are stepwise-decomposable. 

Suppose the lemma is true for the case of k - 1 decision nodes. Consider the case of 

k decision nodes. One can easily verify that a decision node is an SD candidate node in 

K, 1 if and only if it is an SD candidate node in K,'. 

Suppose a decision node d' (=,= d) is a SD candidate node in K1 (hence in K'). There 

are two cases depending on whether or not d is in the downstream set of ,rd' in K,. When 
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d is in the downstream set of 7r d', the body of K, 1 w .r. t d' is the same as that of K,'; hence 

K, 1 is stepwise-decomposable if and only if K,' is. When d is not in the downstream set 

of 1r d', let K,j be the body of K, 1 w .r. t d', and K,'* be that of K,'. Then K,'* is the body of 

K,j w.r.t d. By the induction hypothesis, K,'* is stepwise-decomposable if and only if K,j 

1s. Therefore, K,' is stepwise-decomposable if and only if Kr is. The lemma is proved. D 

This lemma leads directly to the following proposition. 

Proposition 5.1 A decision network skeleton is stepwise-decomposable if and only if 

either it contains no decision nodes or 

1. There exists an SD candidate decision node d} and 

2. If d is replaced by a deterministic node} the resulting decision network skeleton (with 

one less decision node) is stepwise-decomposable. 

One can view Propositiori 5.1 as an alternative definition of stepwise-decomposability. 

The original definition is based an recursive construct that will be used directly in the 

algorithms, while the recursive construct of this alternative definition is the same as 

that of the definition of stepwise-solvability, which makes it convenient to study the 

relationship between stepwise-decomposability and stepwise-solvability, as the reader will 

see in the next section. 

5.2 Stepwise-decomposability and stepwise-solvability 

A decision network is smooth if it is smooth at every decision node. 

Theorem 5.1 A smooth decision network is stepwise-solvable if it is stepwise-decomposable. 

Proof: Let N be a smooth decision network and d be a decision node. Because of 

Proposition 5.1, it suffices to show that if dis an SD candidate node, then it is also an 

SS candidate node. 
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Suppose dis an SD candidate node. Let X1 be the set of random and decision nodes 

in the upstream of 7rdj let N1 and Nu be respectively the body and tail of N w.r.t d; let 

Vi be the set of value nodes N1; let 81 be a policy of N1; and and let 8n be a policy of 

Nu, i.e a decision function of d. By equation (4.30) we have that 

E(o1 ,ou)[N] = L Ps1 (X1, 7rd){ L µv(1rv) + Esu[Nu/1rd]} . 
X1,7rd vEV1 

Fixing 81, we can rank all the possible policies 8u of Nu according to the value E(oi,ou)[N]. 

Since P01 (X1 , 7rd) is non-negative, this ranking does not depend on the value of 81. There

fore d is an SS candidate node. The theorem is proved. D 

We shall show later that the theorem is true also for non-smooth decision networks, 

and that under "normal" conditions stepwise-solvability implies stepwise-decomposability 

as well (Chapter 8). 

The remainder of this chapter is devoted to the following two questions: How can one 

test stepwise-decomposability? How can one evaluate a smooth SDDN? 

5.3 Testing stepwise-decomposability 

In a decision network, we say that a decision node d precedes another decision node d' 

if there is a directed path from d to d'. Decision nodes that precede no other decision 

nodes are called leaf decision nodes . 

We say d weakly precedes another d' if d' is in the downstream set of 7rd, Decision 

nodes that weakly precede no other decision nodes are called weak leaf decision nodes . 

The following lemma follows from the definition of SD candidate node and the definition 

of downstream sets. 

Lemma 5.3 In a decision network, if node is an SD candidate decision node, then it is 

a weak leaf decision node. 
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Proof: Straightforward. D 

Lemma 5.4 Let d and d' be two decision nodes in a decision network. If d precedes d', 

then d weakly precedes d'. 

Proof: Since d precedes d', there is a directed path from d to d'. No nodes in this path 

can be in 7rd, because otherwise there would be a cycle in the network. Hence, d' is not 

m-separated from d by 1r d· Consequently, d' is in the downstream set of d. The lemma is 

therefore proved. D 

Combining the forgoing two lemmas, we get 

Proposition 5.2 In a decision network, an SD candidate decision node must be a leaf 

decision node. In other words, if a node is not a leaf decision node, then it cannot be a 

candidate node. 

Proof: Suppose d is a decision node but not a leaf decision node. Then there exists 

another decision node d' such that d precedes d'. By Lemma 5.4, d weakly precedes d', 

hence d is not a weak leaf decision node. By Lemma 5.3, d cannot be a candidate node. 

D 

This proposition leads to the following algorithm for testing if a decision network 

skeleton is stepwise-decomposable. 

Procedure TEST-STEPWISE-DECOMPOSABILITY(K): 

• Input: K, - a decision network skeleton. 

• Output: "YES" or "NO" depending on whether K, is stepwise-decomposable. 

If there are no decision nodes in K, return "YES". 

Else 
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1. Find a leaf decision node d of K. 

2. Check if d is an SD candidate decision node. 

• If dis not, find another leaf decision node d' and go to 2 with d'. If 

there are no more leaf decision nodes, return "NO". 

• If dis an SD candidate decision node, compute the body K1 of K 

78 

w.r.t d, and recursively call TEST-STEPWISE-DECOMPOSABILITY(K1 ). 

What is the running time of TEST-STEPWISE-DECOMPOSABILITY? Let n be 

the total number of nodes in K, k be the number of decision nodes, a be the number of 

arcs, e be the number of edges in the moral graph of K. Finding a leaf decision node 

takes at most 0( a) time. Testing if a decision node is an SD candidate node and the 

computation of a body are of the same order complexity as testing the connectivity of 

the moral graph of K, which is O(n + e) by either breadth-first search or depth-first 

search. In worst case, all the decision nodes are leaf nodes and there is only one SD 

candidate node. If the only candidate node is always tested the last, then the complexity 

of TEST-STEPWISE-DECOMPOSABILITY is O(k2(n+e+a)) = O(k2(n+e)). On the 

other hand, if every leaf decision node tested is an SD candidate node, the complexity is 

O(k(n + e)). 

5.4 Recursive tail cutting 

In Section 5.6, we shall give an algorithm for evaluating smooth SDDN's. In preparation, 

this section shows that an optimal policy for a smooth SDDN can be computed by 

recursively evaluating tail semi-decision networks, and the next section studies how to 

evaluate a tail semi-decision network. 

Theorem 5.2 Let N be a SDDN and d be an SD candidate node. Let Nu be the tail 

of N w.r.t d, and N1 be the body. Let 811 be an optimal policy for Nu, i.e an optimal 
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decision function of d, and let and 81 be an optimal policy for N1. If N is smooth at d, 

then 

1. 8° =def ( 81, 811 ) is an optimal policy for N. 

2. The optimal expected value E[N1] of the body N1 is the same as the optimal expected 

value E[N] of N. 

The proof is postponed to the end of this section. The theorem implies the following 

strategy of evaluating a smooth SDDN N: first compute and evaluate a tail Nu of N, 

then compute and evaluate a tail of N1, and so on so forth. We shall refer to this strategy 

as recursive tail cutting . 

5.4.1 Simple semi-decision networks 

This subsection introduces the concept of simple semi-decision networks. The concept is 

important to the proof of Theorem 5.2, as well as to our later algorithms. 

A semi-decision network N = (Y, A, P, FIS) is simple if it contains only one decision 

node d and 1r d=S. 

Proposition 5.3 Suppose N is a smooth SDDN and d is an SD candidate. Then 

1. The tail Nu of N w.r.t d is a simple semi-decision network, and 

2. The body N1 of N w.r.t ·d is again a smooth SDDN. 

Proof: The proof is straightforward. □ 

· Suppose N = (Y, A, P, FIS) is a simple semi-decision network. Let 8d be a decision 

function of the only decision node d of N. 

The conditional expected value E 0JNIS] depend on S and 8d. Since 8d is a function 

from Os to nd, E.,d[NIS=,B] may depends possible on 8d(,B) for all ,BE!15. 
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Lemma 5.5 For any value /3E0s, E0d[NIS=f3] depends only on the value 8d(/3) of the 

decision function 8d at /3, in the sense that fixing 8d(/3) fixes Esd [NI S=/3], no matter what 

the 8d(/3') 's (/3'E0s, /3'-//3) are. 

The proof is postponed till the end of this section. The implication of this lemma is 

that E8d [NIS=,8] is really a function of /3 and the value 8d(/3) of 8d at /3. To make this 

more explicit, let 8d(/3)=a, then E0.[NIS=,8] is a function of /3 and a. To signify this 

fact, we shall sometimes write Esd[NIS:=/3] as Esd:od(.i3)=o,[NIS=f3]. 

The following proposition will also be proved at the end of this section. 

Proposition 5.4 Simple semi-decision networks are uniform. 

The corollary below follows from Theorem 5.2 and Lemma 5.5 

Corollary 5.1 Let N = (Y,A, P,FIS) be a simple semi-decision network and let d be 

the only decision node. Then an optimal decision function 8d for d is given by 

(5.32) 

D 

5.4.2 Proofs 

Proof of Theorem 5.2: Because of Theorem 4.1, it suffices to show that Nu is uni

form. By Proposition 5.3, the tail Nu is a simple semi-decision network. According to 

Proposition 5.4, Nu must be uniform. The theorem is therefore proved. □. 

Proof of Lemma 5.5: Since 7rd=S, we can write Psd(dlS) for AAdl1rd)- Let C and V 

be the set of random and value nodes respectively. The joint potential P0d(C, d) is given 

by 

PsAC,d) = Psd(dlS=/3) IT P(cl1rc)-
cEC 
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Therefore 

EsJNIS=,B] = L Psd(dlS=,B) IT P(cl1rc) L µv(1rv), (5.33) 
Cu{d}-S cEC vEV 

The only term that contains od is PsAdlS=,B), which only depends on the value of od at 

,B according to equation (3.13). Thus, the lemma is proved. D 

Proof of Proposition 5.4: Suppose N = (Y, A, P, FIS) is a simple semi-decision 

network. Let d be the only decision node. We need to show that for any decision 

function 8d of d, if 

(5.34) 

then for any value ,BEns 

( 5.35) 

For the sake of contradiction, assume there were a decision function 8d that satisfies 

(5.34) which did not satisfy (5.35). Then, there must exist another decision function 8d 

and a value ,B E D,5 such that 

Construct a new decision function 8-:J which is the same as 8d at ,B and which is the 

same as od at all other values ,B' of S. By Lemma 5.5, Es:;[NIS=,B] = E8~[NIS=,B], and 

Es:;[NIS=,B'] = Esd[NIS=,B'] for any ,B'Ens such that ,B'-=/,B. Hence, we have 

L Es:;[NIS=,B']. 
/3'Efls 

Es~[NIS=,B] + L Esd[NIS=,B'] 
/3'Efls,/3'-::/:-/3 

> Esd[NIS=,B] + L Esd[NIS=,B'] 
/3' Efl s ,{3'-::j:.{3 

L Esd[NIS=,B'] 
/3'Efls 

Esd[N]. 
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A contradiction. Therefore, it must be the case that (5.34) implies (5.35). The proposi

tion is proved. D 

5.5 Evaluating simple semi-decision networks 

This section presents an algorithm for evaluating simple semi-decision networks. 

Let N == (Y, A, 'P, FIS) be a simple semi-decision network, and let d be the only 

decision node. 

Let No be the semi-Bayesian network obtained from N by removing all the value 

nodes, and by deleting all the arcs into d and treating d as a root random node without 

prior probability. Let Po be the joint potential of No, i.e the product of all the conditional 

probabilities in N. 

For any value node v of N, all its parents-all the nodes in 7rv-are in N0 . Thus, 

we can compute the marginal potential P0 (1rv, S, d). We define the evaluation functional 

e(d, S) of N by 

e(d,S) == L L Po(1rv,S,d)µv(1rv)- (5.36) 
vEV 1r~-Su{d} 

Theorem 5.3 Let N == (Y, A, 'P, FIS) be a simple semi-decision network; let d be the 

only decision node; and let e( d, S) be the evaluation functional of N. Then 

1. An optimal decision function 8d can be found by 

(5.37) 

2. The conditional optimal expected value E[NIS] is given 

(5.38) 

The proof is postponed to the end of this section. 
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The theorem suggests the following procedure for evaluating simple semi-decision 

networks. 

Procedure S-EVALUATE(N): 

-. Input: N - A simple semi-decision network. 

• Output: An optimal decision function for the only decision node d, and 

the optimal conditional expected value of N. 

1. Construct the semi-Bayesian network N0 • 

2. Compute the marginal potential P0 (1rv, S, d) for each the value nodes v. 

3. Obtain the evaluation functional e(d, S) by equation (5.36). 

4. Compute the optimal conditional expected value by equation (5.38) and 

an optimal policy by equation (5.37). 

Note 1). For those who are familiar with Bayesian network inferences, the clique tree 

propagation approach (Jensen et al 1990, Lauritzen and Spiegehalter 1988, and Shafer 

and Shenoy 1988) can be used to compute all marginal potentials P0 (1rv,S,d)'s. All the 

marginal potentials can be computed by traversing the clique tree twice. When there is 

only one value node, there is only one marginal potential to compute, which can be done 

by traversing the clique tree only once. 

Note 2). Relating back to the point made in the introduction of the chapter about the 

evaluation of single-decision-node semi-decision networks, we see from Equation (5.37) 

that S-EVALUATE does indeed evaluate a simple semi-decision network by enumerating 

the values of the parents of the only decision node, rather than enumerating all the 

decision functions, as the procedure NAIVE would do. 
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An interesting question is: Can we do the same for (semi-) decision networks with 

more than one decision node? The answer is no, unless all the decision nodes have the 

same parents. Essentially, what goes on in S-EVALUATE is that for any /3E01rd, we 

instantiate the parents 7r d of the only decision node d to (3 and figure out the value for 

d that maximizes the expected value of the simple decision network. When there are at 

least two decision nodes, say d1 and d2, with different parents, we can not do the same 

because instantiating the parents of d1 , for instance, would mean that all the parents of 

d1 are observed at the time the decision d2 is to be made. This may not be true at all. 

Proof of Theorem 5.3: Let 8d be a decision function of d. Let P0d(X) be the potential 

over the set X of all the random and decision nodes of N under policy 8d, We have 

(5.39) 

Therefore, we have 

L Psd(X) L µv(1rv) (By definition) 
X-S vEV 

L Psd(d)S)Po(X) L µv(1rv) (By equation (5.39) ) 
X-S vEV 

- LL PsAd)S) L Po(X)µv(1rv) 
vEV d X-(Su{d}) 

= LL Psd(d)S) L L Po(X)µv(1rv) 

vEV d 'Irv 

From equation (3.13), we see that given S, PsAd)S) is the characteristic function 

X{dld=od(s)}(d) of the set {did= 8d(S)}. Therefore 

Esd[N)S] = LL Po(7rv, S, 8d(S))µv(1rv), (5.40) 
vEV 'lru 
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Hence, 

(5.41) 

The first item of the theorem follows from Corollary 5.1 and equation (5.41). The 

second item follows from the first item. The theorem is proved. D 

5.6 The procedure EVALUATE 

We are now ready to present our algorithm for evaluating smooth SDDN's. The correct

ness of the algorithm is guaranteed by Theorem 5.2 and Proposition 5.3. 

Procedure EVALUATE(#): 

• Input: N - a smooth SDDN. 

• Output: An optimal policy for and the optimal expected value of N. 

If there are no decision nodes, Call N-EVALUATE(Af) to compute the ex

pected value, and stop. 

Else 

1. Find an SD candidate decision node d, 

2. Compute the tail Nu of N w.r.t d, 

3. Call S-EVALUATE(Afu) to compute an optimal policy for and the op

timal conditional expected value E[Aful1rd] of Nu, 

4. Compute the body N1 of N w.r.t d (E[Aful1rd] is used here), and 

5. Recursively call EVALUATE(N1). 

In EVALUATE, the subroutine N-EVALUATE is a procedure for evaluating decision 

networks that contain no decision nodes, which is given below. 
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Procedure N-EVALUATE(N): 

• Input: N - a decision network with no decision nodes. 

• Output: the optimal expected value of N. 

If there are no value nodes in N, return 0. 

Else 

1. Let v1 , ... , Vm be all the value nodes. Compute P( 7r vJ for all the vi's. 

2. Return 
m 

I: I: P(7rv;)µv; (7rv;) , 
i=l 7rv; 
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Note that in EVALUATE, there is the subtask of finding an SD candidate node, which 

is also in the TEST-STEPWISE-DECOMPOSABILITY. In implementation, one should 

avoid doing this twice. 

Also note that in N-EVALUATE one can, as in S-EVALUATE, compute the marginal 

probabilities P( 7r vJ by using the clique tree approach. All those marginal probabilities 

can be computed by traversing the clique tree only twice. When there is only one value 

node, one pass through the clique tree is enough. 

Finally, no complexity analysis of EVALUATE is carried out here because a more 

general version of EVALUATE will be given in the next chapter. 



Chapter 6 

Non-Smooth SDDN's 

The previous chapter has discussed how to evaluate a smooth SDDN. This chapter deals 

with non-smooth SDDN's. We extend the concepts of tail and body to the non-smooth 

case in such a way that, as in the smooth case, optimal policies of the tail and optimal 

policies of the body together form optimal policies of the original network (Section 6.2), 

and thereby obtain a procedure called EVALUATE! that is very similar to EVALUATE 

(Section 6.3). The correctness of EVALUATE! is proved in Section 6.4. Both the pre

sentation and the proof of EVALUATE! rely upon the preparatory Section 6.1, which 

discusses how to transform a non-smooth SDDN into an equivalent smooth SDDN by a 

series of arc reversals. 

Several algorithms have been previously developed for evaluating influence diagrams. 

Being special SDDN's, influence diagrams can also be evaluated by EVALUATE!. Sec

tion 6.5 compares EVAL U ATEl with the previous algorithms for evaluating influence 

diagrams. 

6.1 Smoothing non-smooth SDDN's 

An algorithm for evaluating non-smooth SDDN's will be given in Section 6.3. In prepara

tion, this section shows how to transform a non-smooth SDDN into an equivalent smooth 

SDDN by a series of arc reversals. 

87 
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(1) Before arc rever■al (2) After arc rever■al 

Figure 6.19: The concept of arc reversal: At the beginning the parent set of c1 is BUB1 

and the parent set of c2 is BUB2U{ ci}. After reversing the arc c1---+c2, the parent set of 
c1 becomes BUB1 UB2U{ c2} and the parent set of c2 becomes BUB2UB1. There are no 
graphical changes otherwise. 

6. 1. 1 Equivalence between decision networks 

Two decision networks are equivalent if 

1. They have the same decision nodes, the same policy space, and 

2. For each policy, they have the same expected value. 

Lemma 6.1 If two decision networks are equivalent1 then they have the same optimal 

policies and the same optimal expected value. □ 

Note that a decision node can have the same decision function space in two different 

decision networks even when its parents vary from one network to the other. For example, 

consider the case where a decision node d has only one parent x in one decision network, 

while two parents y1 and y2 in the other. If the frame of x is the same as the Cartesian 

product of the frames of y1 and of y2 , then d has the same decision function space in 

the two networks. This is why, in the foregoing definition of equivalence between two 

decision networks, we do not require that a decision node have the same parents in both 

networks. This note will be useful in Chapter 9. 

6.1.2 Arc reversal 
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Arc reversal is an operation that transforms one decision network into another differ

ent but equivalent decision network (Howard and Matheson 1984, Shachter 1986). We 

introduce arc reversals at two levels: first the level of skeleton, and then the level of 

number. 

Let c1 and c2 be two random nodes in a decision network skeleton K. Suppose there 

is an arc from c1 to c2. When there is no other directed path from c1 to c2, we say that 

the arc c1 ---+c2 is reversible .. 

Let B=1rc1 n1rc2 , B1=1rc1 -1rc21 and B2=1rc2 -(1rc1 U{ci}). In a decision network skele

ton, to reverse a reversible arc c1 ---+c2 is to delete that arc, draw an arc from c2 to c1 , 

an arc from each node in B 2 to c1 , and an arc from each node in B1 to c2 . Figure 6.19 

illustrates this concept. 

Let K' be the decision network skeleton resulting from _ reversing c1 ---+c2 in K. Let 1r: 

denote the set of parents of a node x in K'. Then 1r~
1 
=BUB1 UB2U{ c2} and 1r~

2 
=BUB2UB1 . 

Let N be a decision network and K be the underlying skeleton. To reverse a reversible 

arc c1 ---+c2 in N is to reverse that arc in the underlying skeleton K, and to set the 

conditional probabilities P( c1 l1r~
1

) and P( c2 l1r~
2

) to be as follows: 

P( c1, c2IB, B1, B2) 

P(c2 JB, B1 B2) ' 

(6.42) 

(6.43) 

where P( C1, C2 IE, B1, B2)=P( C1 l1r c1 )P( Cz J1r c2 ), and P( C1 l1r ci) and P( C2 J1r c2 ) are in turn the 

conditional probabilities of c1 and c2 in N respectively. In (6.43), P(c2 JB,B1 ,B2 ) may 

be zero. When it is the case, P(ciJB, B1 , B2, c2 ) is defined to be constant 1. 

Note that arc reversals at the level of skeleton do not involve numerical computations, 

while arc reversals in decision networks do. The following lemma reveals some properties 

of arc reversals in decision networks, which will be useful later. 
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Lemma 6.2 Suppose an arc c1 --► c2 in a decision network N is reversible. Let N' be the 

decision network resulting from reversing c1 --► c2 in N. Let 1r: denote the set of parents 

of a node x in N', and let P'(cl1r~) denote the conditional probability of a random node 

c in N'. Then 

1. For any node x that is not a random node, 1r: = 1r x; 

2. For any random node c other than c1 and c2, 

3. And 

Proof: The lemma follows directly from the definition of arc reversal. D 

Proposition 6.1 Let N be a decision network. Let N' be the decision network obtained 

from N by reversing a reversible arc. Then N' and N are equivalent. 

Proof: According to Lemma 6.2 (1), N and N' have the same decision nodes, and that 

each decision node has the same parents. So, N and N' have the same policy space. By 

Lemma 6.2 (2) and (3), we have that E0 [N] = E0[N'] for any policy 8. The proposition 

is thus proved. D 

6.1.3 Disturbance nodes, disturbance arcs, and disturbance recipients 

Consider a decision network skeleton K,. Suppose dis a decision node in K,. If K, is not 

smooth at d, then there are arcs from the downstream set Yu( d, K,) to nodes in 1r d· A 

disturbance node of d is a node in Y11 from which there is a directed path to at least one 

node in 7r d· The arcs on such a path are called disturbance arcs of d, because they go 
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Figure 6.20: A non-smooth decision network skeleton. 

against the "stream". The nodes in 1r d that are pointed to by disturbance arcs are called 

disturbance recipients of d. 

As an example, let K, be the decision network skeleton in Figure 6.20. The downstream 

set Yu(d2 , K) consists of d2 , c6 and v2 • The node c6 is a disturbance node of d2 , the arcs 

C5--tC4 and c 6 --tc5 are disturbance arcs of d2 , and c 4 and c 5 are disturbance recipients of 

d2. 

Lemma 6.3 Let K be a decision network skeleton and d be an SD candidate decision 

node. Let Xu be the set of random and decision nodes in the downstream set Yu( d, K). 

1. For any cEXu 1 1f'c ~ XuU1rd, 

2. For any c2EXu and any c1 E1r d, if K contains the arc c 2--tc1i then c 2 and c 1 are 

both random nodes. So are the ancestors of c2 in Xu. 

Proof: The first part follows immediately from the definition of downstream set. 

We now prove the second part. First of all, c1 cannot be a value node since value 

nodes have no children and c1 has the child d. Also since 1r d does not separate d from c2 

and c2 is a parent of c1 , c1 can not be decision node either, for this would contradict the 

fact that dis an SD candidate node of K. Therefore c1 must be a random node. 

Following a similar line of reasoning, one can show that c2 and its ancestors in Xu 

are all random nodes. D 
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Corollary 6.1 Suppose d is an SD candidate decision node of a decision network skele

ton. Then all the disturbance nodes and disturbance recipients of d are random nodes. 

D 

6.1.4 Tail-smoothing skeletons 

Let d be an SD candidate node in a decision network skeleton K,. Suppose K, 1s not 

smooth at d. This subsection presents a procedure for smoothing K, at d. 

A leaf disturbance node of d is a disturbance node of d such that none of its children 

are disturbance nodes of d. 

Let c be a leaf disturbance node of d. Let c~c1, c~c2 , ••• , c~cm be all the distur

bance arcs emitting from c. An disturbance arc c~ci is the most senior if there is no 

other disturbance arc c~cj such that Cj is an ancestor of ~i-

Since K, is acyclic, if there are disturbance arcs emitting from c, then one of them must 

be the most senior. Since c is a leaf disturbance node of d, the most senior disturbance 

arc C~Ci is reversible. 

Procedure TAIL-SMOOTHING-K(K, d) 

• Input: K, - an SDDN skeleton, 

d - an SD candidate of K. 

• Output: An SDDN skeleton that is smooth at d. 

Whilel there are disturbance nodes of d, find a leaf disturbance node c, break 

ties arbitrarily. 

while2 there are disturbance arcs of d emitting from c, pick and 

reverse a most senior one, break ties arbitrarily. end-while2 
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(a) (b) 

Figure 6.21: The application of TAIL-SMOOTHING-K to the decision network skeleton 
in Figure 6.20 with the input candidate node being d2 : (a) after reversing c6 --tc4 , (b) 
after reversing c6 --tcs. 

end-while 1. 

As an example, let K, be the decision network skeleton in Figure 6.20. Figure 6.21 

shows the working of TAIL-SMOOTHING-K(K,, d2). The node c6 is a leaf disturbance 

node of d2 . There are two disturbance arcs emitting frorri ~: ~--tc4 and c6 --tc5 , among 

which c6 --tc4 is the most senior. So, the arc ~--tc4 is first reversed, resulting in the deci

sion network skeleton in Figure 6.21 (a). The arc c6--tc5 is reversed thereafter, resulting 

in the decision network skeleton in Figure 6.21 (b), which is smooth at d2 • 

Proposition 6.2 The procedure TAIL-SMOOTHING-I< terminates and is correct. 

A proof can be found at the end of this section. 

Let ,C' be the output decision network skeleton of TAIL-SMOOTHING-K(K, d). For 

any disturbance recipient r of d (in K), the set of parents 1r; of r in K,' is different from 

the set of parents 'Irr of r in K. In our example, 11'~
5 

= { d1, c4}, while 7rc5 = { c4, c6}. The 

following lemma gives us some idea about what nodes 1r; consists of. The lemma is useful 

in presenting EVALUATEl. 

Lemma 6.4 Let 1r; and 1r r be as in the previous paragraph and let 1r d be the set of parents 

of d in K,. Then 1rrn1rd~1r;~1rd, and each xE1r~-1rr is not a descendent of r in K,. 
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A proof can be found at the end of this section. 

6.1.5 Tail smoothing decision networks 

The arc reversals in TAIL-SMOOTHING-K are at the level of skeleton. There are no 

numerical computations whatsoever. The following algorithm for smooth a decision net

work at a decision node is the same as TAIL-SMOOTHING-K, except now numerical 

computations are involved. 

Procedure TAIL-SMOOTHING(N, d) 

• Input: N - an SDDN , 

d - an SD candidate of N. 

• Output: An equivalent SDDN that is smooth &t d. 

Whilel there are disturbance nodes of d, find a leaf disturbance node c, break 

ties arbitrarily. 

while2 there are disturbance arcs of d emitting from c, pick and 

reverse a most senior one, break ties arbitrarily. end-while2 

end-while 1. 

As an example, let N be a decision network over the skeleton in Figure 6.20. Consider 

the working of TAIL-SMOOTHING(N, d2). As in the case of TAIL-SMOOTHING-K, 

the arc c6-+c4 is first reversed, resulting in a decision network with underlying skeleton 

as in Figure 6.21 ( a). The conditional probabilities of c4 and C(3 in the resulting network 

are as follows: 

(6.44) 
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(6.45) 

Then the arc c6 -----+c5 is reversed, resulting in a decision network with underlying skeleton 

as in Figure 6.21 (b ). The conditional probability of c5 in the resulting network is as 

follows: 

(6.46) 

Note that no complexity analysis of TAIL-SMOOTHING is carried out because it 

will be used only in proofs, never in evaluation algorithm. 

6.1.6 Smoothing non-smooth SDDN's 

This subsection is for the benefit of Chapter 9; it gives an algorithm that smooths non

smooth SDDN's. 

Procedure SMOOTHING(N) 

• Input: N ~ an SDDN. 

• Output: A smooth SDDN that is equivalent to N. 

If N contains no decision node, return N. 

Else 

1. Find an SD candidate decision node d of N. 

2. Call TAIL-SMOOTHING(N, d). Let Let N' denote the resulting deci

sion network. 

3. In N', treat d as a random node1 . (Thus N' contains one less decision 

nodes than N.) Recursively call SMOOTHING(N'). 
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(a) 

(b) 

Figure 6.22: The effects of applying SMOOTHING to the SDDN in Figure 1.7: (a) after 
the arc from seismic-structure to test-result is reversed, (b) the final SDDN, which 
is smooth. 

As al). example, consider the SDDN in Figure 1.7. The network is smooth at oil-sale-policy, 

so SMOOTHING does nothing in the first recursion. In the second recursion, oil-sale-policy 

is treated as a random node, rendering drill an SD candidate node. The SDDN is not 

smooth at drill. So TAIL-SMOOTHING will enter its while loops. There is only 

one leaf disturbance node of drill, namely seismic-structure. Thus the arc from 

seismic-structure to test-result is reversed, introducing an arc from oil-underground 

to test-result and an arc from test to seismic-structure. See Figure 6.22 (a). Now, 

oil-underground becomes a leaf disturbance node of drill. The arc from oil-underground 

to test-result is reversed, introducing an arc from test to oil-underground. The final 

SDDN is shown in Figure 6.22 (b ), which is smooth. 

Note that no complexity analysis of SMOOTHING is carried out because it will be 

used only in proofs, never in evaluation algorithm. 

1The decision node dis treated as a random node only within the scope of SMOOTHING. It is treated 
again as a decision after· the termination of SMOOTHING . 
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Theorem 6.1 The procedure SMOOTH terminates and is correct. 

A proof will be provided in the next subsection. 

6.1. 7 Proofs 

Proof of Proposition 6.2: To prove that the procedure TAIL-SMOOTHING-K termi

nates, we need to show that the procedure does not get trapped in the while-loops. The 

procedure will eventually exit the inner while-loop, because the number of disturbance 

arcs emitting from the leaf disturbance node c is reduced by one during each execution 

of the loop. 

The procedure will also exit the outer while-loop since reversing all the disturbance 

arcs emitting from a leaf disturbance node c does not produce any new disturbance nodes, 

and c is no longer a disturbance node thereafter. Therefore the number of disturbance 

nodes is reduced by one during each execution of the outer while-loop. Since there are 

only a finite number of disturbance nodes, the procedure will eventually leave the outer 

while-loop. 

TAIL-SMOOTHING-K changes neither the downstream set nor the upstream set of 

1r d· So, the resulting decision network is also stepwise-decomposable. 

Since the procedure exits the outer while-loop only when there are no more distur

bance nodes of d, the resulting network produced by the procedure is smooth at d. The 

proposition is proved. D 

Proof of Lemma 6.4: Let 7rr(t) be the set of parents of rat time step t during the ex

ecution of TAIL-SMOOTHING(K, d). We show by induction on t that (1) 1rrn1rd~1rr(t), 

(2) 1rr(t)nYJ(K, d) = 0, and (3) each xE(1rr(t)n1rd)-1rr is not a descendant of r in K. 

At the beginning, 7rr(O) = 7rr, So (1) and (3) are trivially true. (2) is true because at 
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least one node in 7rr is in Yu(K, d), since r is a disturbance recipient of d. Hence none ·of 

the nodes in 7rr can be in the upstream set Y1. 

Suppose (1-3) are true at time step t. Consider time step t+l. Suppose at this time 

step, the disturbance arc reversed is c---tr'. If r'=Jr, then 7rr(t + 1) = 7rr(t), hence (1-3) 

are true. When r' = r, let x be a node in 7rr(t + l)-1rr(t). Then x must be parent of c 

that is not a parent of r. Since the arc c---tr is reversible, x cannot be a descendant of r. 

So x does not lead to the violation of ( 3). Since c is in the downstream set Yu of 7r d, x 

can only be either in 7r d or in Yn, In both case, x does not lead to the violation of any 

of (2). By the definition of arc reversal, 7rr(t) - 1rr(t + 1) = {c}. Again because c is in 

Yn, ( 1) remains true. In other words, ( 1-3) are true for the case of t + 1. Consequently, 

(1-3) are true for all t's. 

At the end of the execution of TAIL-SMOOTHING(K, d), 1rr(t) . = 1r;. Since K' is 

smooth at d, none of the nodes of 1r; are in the downstream set Yu, hence 1r;n1rd = 1r;. 

Consequently, it follows from (1-3) that 1rrn1rd~1r;~71'd, and each xE1r; - 11'r is ancestor 

of r in K. □ 

We prove the correctness of SMOOTHING by induction on the number of decision 

nodes. When there are no decision nodes, SMOOTHING is trivially correct. Suppose 

SMOOTHING is correct in the case of k-1 decision nodes. Now consider the case of k 

decision nodes. 

Let d be an SD candidate node of N. Let N' be the output network of TAIL

SMOOTHING(N, d). According to Proposition 6.2, d remains an SD candidate node in 

N' and N' is smooth at d and equivalent to N. 

Treating d as a random node in N', we let d' be an SD candidate node of N'. Let 

N* be the output network of SMOOTHING(N'). Then N* is equivalent to N' with d 

regarded as a random node. Consequently, N* is also equivalent to N' when dis treated 

... 
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as a decision node. 

By the induction hypothesis, N* is a smooth and stepwise-decomposable when d is 

regarded as a random node. By proposition 5.1, what remains to be proved is that when 

treated as a decision node, dis an SD candidate node of N* and N* is smooth at d. 

Let N" be the output network of TAIL-SMOOTHING(N', d'). Since N' is smooth 

at d, the tail of N' w.r.t d is not touched in the execution of TAIL-SMOOTHING(N', 

d'). Thus, dis an SD candidate node in N" and N" is smooth at d. 

Suppose d" becomes an SD candidate node of N" if both d and d' are treated as ran

dom nodes. Let N"' be the output network of TAIL-SMOOTHING(N", d"). Repeating 

the argument in previous paragraph, we can show that d is an SD candidate node in N"' 

and N'" is smooth at d. Continuing the argument, we can eventually show that d is an 

SD candidate node in N* and N* is smooth at d. The theorem is proved. □ 

6.2 Tail and body 

The procedure TAIL-SMOOTHING suggests the following approach for evaluating a non

smooth SDDN N: Find an SD candidate node d, use TAIL-SMOOTHING to smooth 

N at d, decompose N at d into a tail and a body, find an optimal decision function for 

d in the tail, and repeat the process for the body. An disadvantage of this approach 

is that TAIL-SMOOTHING demands a series of arc reversals, which may be inefficient 

(Shenoy 1992, Ndilikilikesha 1991). The motivation behind EVALUATE! is to avoid arc 

reversals. This section paves the way to EVAL U ATEl. 

Let N be a decision network and d an SD candidate node in N. In Sections 5.1 

and 4.1, we have defined the concepts of tail ( or downstream component) and body ( or 

upstream component) for the case when N is smooth at d. In this section, we extend 

the concepts of tail and body to the case when N is not smooth at d. 
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(a) (b) 

Figure 6.23: Tail and body for the non-smooth decision network skeleton in Figure 6.20 
[FINAL CHECK]: (a) shows its body w.r.t d2 and (b) shows its tail w.r.t d2. 

6.2.1 Tail and body at the level of skeleton 

When K, is smooth at d, there are no disturbance recipients of d. When K, is not 

smooth at d, some of the nodes in 1r d are disturbance recipients. Disturbance recipients 

require special attention when extending the definition of t<3:il and body to the non-smooth 

case. 

Supposed is an SD candidate node of K. The tail of K, w.r.t d, denoted by Ku( d, K) 

or simply by K, 11, is the decision network skeleton obtained from K by restricting K, onto 

YuU1r d and removing all those arcs among nodes in 1r d that do not point at disturbance 

recipients of d. 

As an example, let K be the decision network skeleton in Figure 6.20. Figure 6.23 

(b) shows the tail of K, w.r.t d2. The restriction of K onto Yu(d2 ,K)U1rd2 contains the 

which is removed because c3 is not a disturbance recipient of d2 • On the other hand, the 

arcs d1 --+c4 and d4 --+c5 are retained because both c4 and c5 are disturbance recipients of 

In the definition of tail, why do we need to handle disturbance recipients of a decision 

node d in a different manner from other parents of d? Consider, for instance, the dis

turbance recipient c4 of d2 in Figure 6.20. The conditional probability P(c4 ld1 , ct,) of c4 
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involves the node Ct,. Since c6 is in the downstream set Yu(d,K), P(c4ld1,c6) is placed in 

the tail (Subsection 6.2.2). Consequently, the arc d1 --+c4 has to be retained. On the other 

hand, c3 is not a disturbance recipient of d2 • Its conditional probability P(c3ld1) does 

not involve nodes in the downstream set Yu, is hence placed in the body ( see Subsection 

6.2.2). So, we delete the arc d1--+c3 from the tail. 

To extend the concept of body to the non-smooth case, let K' be the output decision 

network skeleton of TAIL-SMOOTHING-K(K, d). Since K' is smooth a~ d, its body K1 
w.r.t dis defined (Sections 4.1 and 5.1). We define the body of K w.r.t d to simply be 

the body K,1 of K' w.r.t d, and we denote it by K1(d, K) or simply by K1. 

As an example, let K, be the decision network skeleton in Figure 6.20. Figure 6.21 

(b) shows the output decision network skel~ton of TAIL-SMOOTHING-K(K:, d2), frorn 

which we obtain the body K1 of K w.r.t d2 • K1 is as shown in Figure 6.23 (a). 

The reader is encouraged to verify that the general definitions of tail and body (at the 

level of skeleton) given in this subsection are consistent with the corresponding definitions 

for the smooth case given Sections 4.1 and 5.1. In doing so, s/he needs to keep in mind 

that in the smooth case there are no disturbance recipients. 

6.2.2 Tail of decision networks 

Having defined tail at the level of skeleton, we can now define tail for decision networks 

by providing the necessary numerical information. Suppose d is an SD candidate node 

in a decision network N. Let K be the underlying skeleton. The tail of N w.r.t d, 

denoted by Nu(d,N) or simply by Nu, is a semi-decision network over Ku(d,K). The 

value functions of all the value nodes in Nu remain the same as in N. The conditional 

probabilities of random nodes outside 1r d also remain the same as in N. Since d is an 

SD candidate node, Corollary 6.1 assures us that the disturbance recipients of d are all 

raI)dom nodes. The conditional probabilities of the disturbance recipients of d again 
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remain the same as in N. The nodes in S =def { x E7r d \ x is not disturbance recipient of 

d} are all viewed as root random nodes without prior probabilities. 

As an example, let N be a decision network over the skeleton shown in Figure 6.20. 

Then the tail N11(d2, N) is a semi-decision network over the skeleton shown in Figure 6.23 

(b). Nu contains conditional probabilities P(c4 \d1,c6), P(c5 \c4 ,c6 ), and P(c6) of random 

nodes c4 , c5 , and c6 , which are respectively the same as the conditional probabilities of 

c 4 , c5 , and CB in N. -Nu also contains a value function µv 2 ( d2 , c6) of v2 , which is the 

same as the value function of v2 in N. The root random node c3 does not have prior 

probability. The node d1 is treated as a root random node without prior probability. 

Let Xu be the set of random and decision nodes in the downstream set Yu(d,N). Let 

P0 (Xu, 71' d) be the product of all the conditional probabilities in Nu. For any subset B of 

XuU'll'd, Po(B) is obtained from Po(Xu, 'll'd) by summing out the variables in XuU'll'd-B, 

Define the evaluation functional e( d, 71' d) of Nu as follows: 

( 6.4 7) 

where Vu stands for the set of value nodes in Nu. 

To continue our example, Yu(d2,N) = {d2, ~, v2}. So Xn = {d2, CB}, P0 (Xu, 'll'dJ is 

given by 

So, the evaluation functional e of Nu is given by 

A note about consistency in the definition of evaluation functional. According to the 

note at the end of Section 3.1, when N is smooth at d, P0 (Xu,7rd) is the conditional 
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probability P(Xn-{d}j7rd,d). Thus Po(7rd,d) = Lxu-{d} P(Xn-{d}l7rd,d) = l. Conse

quently, when .Al is smooth at d, the definition of evaluation functional given here is the 

same as the definition given in Section 5.5. 

Theorem 6.2 Suppose d is an SD candidate node in a decision network .Al. Let e( d, 7l' d) 

be the evaluation functional of the tail .Alu( d, .Al). The optimal decision functions 8d of 

d can be found through 

(6.48) 

A proof will be provided in Section 6.4. 

6.2.3 Body of decision networks 

As in the case of tail, the body of a decision network .Al w.r.t to an SD candidate node 

dis obtained from the body of its underlying skeleton w.r.t d by providing .the necessary 

numerical information. Let K, be the skeleton underlying .Al. The body of .Al w.r.t d, 

denoted by .Af1(d,.Af) or simply by .A/1, is a semi-decision network over K1(d,K). The 

value functions of all the value nodes other than u remain the same as in .Al. The value 

function µu of the tail-value node u is defined by 

(6.49) 

The conditional probabilities of random nodes that are not disturbance recipients of 

d also remain the same as in .A/. 

What remain to be provided are the conditional probabilities of the disturbance re

cipients of d. Let us first note that a disturbance recipient of d has different parents in 

the body K1 from in the original skeleton K. For example, the parents of c5 in Figure 

6.20 are c4 and Ctl, while in Figure 6.23 (a) the parents of c5 are d1 and c4 . For any 
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disturbance recipient r of d, let 1r; be the set of the parents of r in K1. In Figure 6.23 

(a), for instance, 1r[
5 
= {d1,c4}, while 7rc5 = {c4,c6}. 

Let}\/' be the output decision network of TAIL-SMOOTHING(}\/, d), and let r be a 

disturbance recipient of d. We want to define the conditional probability P(rl1r;) of r in 

N1 to be the conditional probability of r in }\/', but the sake of computational efficiency 

we do not wish to explicitly compute}\/'. The following definition resolves our dilemma. 

The conditional probability P(rl1r;) of r in N1 is defined by 

( I 1) Po(1r;,r) 
P T' 7rr =def Po( 1r!) , (6.50) 

where P0 is as in the previous subsection. 

We shall show in Section 6.4 that P(rl1r;) as defined by equation (6.50) is indeed 

the conditional probability of r in }\/'. Here is an example. Recall that c4 and cs are 

the only two disturbance recipients of d2 in Figure 6.20. Let us compute the conditional 

probabilities of c4 and c5 in Figure 6.23 (a). 

Po( c4, d1) 
Po(d1) 

I:~:6 P(c,dd1,c6)P(c6) = I:P(~4ld1,c6)P(Cti), (6.51) 
I:c6 ,c4 P(c4ld1, c6)P(C£) c6 

P( I 
J) _ P( Id ) _ Po( ·s di, C4) _ I:c6 P(c4ld1, es).P(cs jc4, Cti)P(co) Cs 7r s - Cs 1 , C4 - -

Po(di, c4) I:c6 P(c., Jd1 Cci)P(c6) 
(6.52) 

A comparison between equations (6.51) and (6.52) with equations (6.44) and (6.46) 

reveals that the conditional probabilities of c4 and cs obtained through equation (6.50) 

are indeed the same as the conditional probabilities of c4 and cs in J\f'. 

According to Lemma 6.4, 1r; ~ 1r d for any disturbance recipient r of d. This observa

tion about 1r; leads to the following formula for computing P(rl1r;): 

(6.53) 
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In words, in order compute P(rln-;), we can c_ompute Po( 1r d) from Po(Xu, 1r d) by summing 

out the nodes in XuU1rd-7rd and obtain P(rl1r;) through equation (6.53). 

Theorem 6.3 Suppose d is an SD candidate node in a decision network A(. Then the 

optimal decision functions for decision nodes other than d are the same in N as in the 

A proof will be provided in Section 6.4. 

6.3 The procedure EVALUATE! 

Theorems 6.2 and 6.3 lead to the following procedure for evaluating SDDN's, smooth or 

non-smooth. 

Procedure EVALUATEl(N): 

• Input: N - an SDDN, smooth or non-smooth. 

• Output: An optimal policy and the optimal expected value of N. 

If there are no decision nodes, call N-EVALUATE(N) to compute the ex

pected value, and stop. 

Else 

1. Find an SD candidate node d, 

2. Compute the tail Nu of N w.r.t d. Let Po denote the product of all the 

conditional probabilities in Nn 

(a) Compute the marginal potentials Po ( 1r d) and Po ( 1r d, d), and the 

marginal potential Po( 1r d, d, 1r v) for each value node v in Nu. 
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(b) Compute the evaluation functional e( d, 1r d) by 

where Viz is the set of value nodes in Nn 

( c) Compute an optimal decision function 8d of d by 

(6.55) 

(d) Compute the body N1 of N w.r.t d (equation (6.53) is used here). 

3. Recursively call EVALUATEl(Nz). 

What is the running time of EVALUATEl? Let n be the total number of nodes in 

N, k be the number of decision nodes, a be the number of arcs, e be the number of edges 

in the moral graph of N. According to the complexity analysis of TEST-STEPWISE

DECOMPOSABILITY, the time EVALUATEl spends on finding candidate nodes and 

computing tails and bodies is O(k2(n + e)). 

If we use the clique tree propagation approach to compute the marginal potentials 

in step (a), we need only to traverse the clique tree twice. If there are l cliques and the 

maximum number of nodes in a clique is q, the runing time is O(l>..9), where>. stands for 

the maximum riumber of values -a variable can assume. So, EVALUATEl spends O(kl>.q) 

time computing marginal potentials. 

The time for computing the evaluation functional and optimal decision functions from 

the evaluation functional is dominated by the time for computing marginal potentials, 

except for the numerical divisions. For each (candidate) node d, the factor P0 (1rd, d) is 

divided from an expression to arrive at the evaluation functional e(1rd, d). Numerical 

divisions also happen once for each disturbance recipient in the computation of body2 • 

2This can be avoided via a subtle technical trick. 
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6.4 Correctness of EVAL U ATEl 

To prove the correctness of the procedure EVALUATEl, it suffices to show that Theorems 

6.2 and 6.3 are true. 

Proof of Theorem 6.2: Let N' be output network of TAIL-SMOOTHING(N, d). 

Then d is also an SD candidate node of N' and N' is smooth at d. 

Let P~ be the product of the conditional probabilities in the tail N}1 ( d, N'). According 

the Theorem 5.3, optimal decision functions 8d for d can be found through 

(6.56) 

where the evaluation functional e'(d,1rd) of N}1 is given by 

e(a, /3) = L (6.57) 

where Vu stands for the set of value node in N}1. 

Let Po be the product of all the conditional probabilities in the tail Nu( d, N). By 

Lemma 6.2, we conclude that arc reversals do not change joint probabilities. Hence they 

do not change conditional probabilities either. Consequently, for each value node v in 

N11 ( or in N}1) we have 

Since N' is smooth at d, we have 

Therefore 

(6.58) 
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Consequently, 

(6.59) 

where e( d, 1r d) is the evaluation functional of Nu. This proves Theorem 6.2. D 

Proof of Theorem 6.3: Let N' be the output network of TAIL-SMOOTHING(N, d). 

Then d is also an SD candidate node of N' and N' is smooth at d. Let 1r~ be the set 

of parents of a node x in N' and let P'(c\1r~) be the conditional probability of a random 

node c in N'. 

Let K be the skeleton underlying N. Recall that in the definition of N1, we executed 

TAIL-SMOOTHING-K(K, d). Suppose the ties were broken in the same way in both the 

execution of TAIL-SMOOTHING-K(K, d) and the execution TAIL-SMOOTHING(N, 

d). Then for any node x in N1 other than the tail-value node, 1r; = 1r~. In particular, for 

any disturbance recipient r of din N, 1r; = 1r~. 

Because of Theorem 5.3, it suffices to show that the body N1( d, N) of N is the same 

as the body NJ( d, N') of N'. 

First of all, because of equation (6.59) the value function of the tail-value node in N} 

is the same as the value function of the tail-value node in N1 . 

What remains to be proved is that for any disturbance recipient d of d, 

(6.60) 

Let R be the set of all the disturbance recipients of d in N. Let Cu be the set 

of random nodes in the downstream set Yu(d,N). Consider the product of all the 

conditional probabilities of nodes in Cu UR. According to Lemma 6.2, this product is 
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not changed by the arc reversals in TAIL-SMOOTHING( d, N). Thus 

cECuUR 

Summing out all the nodes in Cu from both sides of the equation, we get 

Po(1rd) = IT P'(cl1r~)-
cER 

Thus for any rER, we have 

Theorem 6.3 is therefore proved. D 

6.5 Comparison to other approaches 

Influence diagrams are special SDDN's and hence can be evaluated by EVALUATE!. 

This section compares EVALUATE! with previous approaches for evaluating influence 

diagrams. We identify a list of desirable properties and examine EVALUATE! and each 

of the previous approaches with regard to those properties. 

6.5.1 Desirable properties of evaluation algorithms 

A list of desirable properties of algorithms for evaluating influence diagrams is given in 

the first row of Table 6.1. Due explanations follow. 
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Table 6.1 Comparisons among approachs for evaluating influence diagrams. 

facilitating divide separating multiple reversing 

arc and BN value arcs 

removal conquer inference nodes 

EVALUATE! yes yes yes yes no 

Shachter 86 no no no no yes 

N dilikilikesha 92 no no no no no 

Tatman and no no no yes yes 

Shachter 90 

Sha_chter 88 no no yes no no 

Shenoy 90 n/a no no no no 

Shenoy 92 n/a no no yes no 

Facilitating the pruning of removable arcs 

In a decision network, an arc into a decision node is removable if its removal does not 

affect the optimal expected value of the network. In Chapter 7, we shall present an 

algorithm that prunes from an influence diagram all the removable arcs that can be 

graphically identified. 

There are a couple of advantages to pruning removable arcs: it results in a simpler 

network, and it reduces the sizes of the decision tables. Thus a desirable property for an 

evaluation algorithm to possess is to be able to facilitate the pruning of removable arcs. 

It will be shown in Chapter 7 that pruning graphically identifiable removable arcs 

from influence diagrams results in SDDN's. Since EVALUATE! is designed for evaluating 

SDDN's, it facilitates the pruning of removable arcs from influence diagrams. 
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Divide and conquer 

It is desirable to decompose, prior to evaluation, an influence diagram into ( overlapping) 

portions such that each portion corresponds to a decision node and optimal decision 

functions of a decision node can be computed in its corresponding portion. This is an 

application of the standard divide and conquer idea. 

Suppose the influence diagram to be evaluated has been put through a preprocessing 

stage such that removable arcs have been pruned. Let N be the resulting SDDN. The 

procedure EVALUATE! evaluates N recursively. At the first step of the recursion, 

EVALUATE! finds an SD candidate node d and cuts N into two portions: the tail Nu 

and the body N1 . EVALUATE! computes an optimal decision function of din Nu, and 

then repeats the process for the body N1. In this sense, we say that EVALUATE! works 

in a divide and conquer fashion. 

Separating Bayesian network inference 

When evaluating an influence diagram, it is desirable to separate Bayesian network (BN) 

inference from other computations. There have been intensive research on BN inference, 

and systems have been built. If an influence diagram evaluation approach can clearly 

separate BN inference from other computations, then it can be implemented on top of 

any system for BN inference. This is an application of the principle of separation of 

concern and the modularity principle. 

EVALUATE! clearly separates BN inference from other computations; all the BN 

inference tasks - the tasks of computing the marginal potentials Po( 1r d), Po( 1r d, d), and 

P0 (1rd,d,1rv) - are collected in step (a). We have been suggesting to use the clique tree 

propagation method to compute the marginal potentials. However, other methods can 

be used as well. 
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Arc reversals and numerical divisions 

Numerical divisions are slower than additions and multiplications; they should be avoided 

when possible. Arc reversal implies numerical divisions; they should also be avoided if 

possible. 

The procedure EVALUATE! does not require arc reversals. Furthermore, the only 

times EVALUATE! does numerical divisions are when computing the evaluating func

tional e(d, 7rd) and the conditional probability P(rj11}) of a disturbance recipient r of 

some decision node. 

Multiple value nodes 

When the decision maker's utility function can be separated into several components 

(Tatman and Shachter 1990), it is important to take advantage of the separability by 

having multiple value nodes. This may imply substantial speed up of computation. 

EVALUATE! is designed for dealing with multiple value nodes. 

6.5.2 Other approaches 

This subsections examines the approaches by Shachter (1986), Ndilikilikesha (1992), Tat

man and Shachter (1990), Shachter (1988), Shenoy (1990), Shachter and Peot (1992), and 

Shenoy (1992). The approaches by Howard and Matheson (1984), and Cooper (1989) 

will be discussed in Chapter 9. 

Things that can be said for all 

Until now, influence diagrams have always been assumed to be no-forgetting; there have 

been no methods for dealing with influence diagrams that violate the no-forgetting con

straint. Even though several authors (Shachter 1988, Tatman and Shachter 1990, and 
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Shenoy 1992) have noticed and to some extent made use of the fact that some decision 

nodes may be independent of some of their parents, no one has proposed to prune remov

able arcs at the preprocessing stage. The reason is that pruning arcs from an influence 

results leads to the violation of the no-forgetting constraint. 

Shenoy (1990) and (1992) proposes a new representation for decision problems, namely 

valuation-based systems. In this representation, the issue of removable arcs does not 

occur. We will come back to this point later. 

Probably because they do not prune removable arcs by preprocessing, none of the 

previous approaches work in a divide and conquer fashion. The method by Shenoy 

(1990, 1992) does not work in a divide and conquer fashion either. The adoption of a 

divide and conquer strategy is the most important advantage of EVALUATE! has over 

the previous approaches. 

The rest of this subsection examines the previous approaches with regard to the three 

remaining properties: separating BN inference, multiple value nodes, and arcs reversals. 

Shachter (1986), Ndilikilikesha (1992), and Tatman and Shachter (1990) 

Before Shachter (1986), influence diagrams are evaluated in two stages-first transform 

them into decision trees, and then evaluate the decision trees (Howard and Matheson 

1984). Shachter (1986) shows that influence diagrams can be evaluated without the 

transformation into decision trees, and presents an approach that evaluates an influence 

diagram by properly applying four operations: barren node removal, arc reversal, random 

node removal, and decision node removal. 

As shown in the third row of Table 6.1, the approach by Shachter (1986) does not 

separate BN inference, does not deal with multiple value nodes, and requires arcs rever

sals. 

By generalizing influence diagram into potential influence diagrams, the approach 
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by Ndilikilikesha (1992) is able to evaluate an influence diagram by using only three 

operations: barren node removal, random node removal, and decision node removal. The 

operation of arc reversal is avoided. However, this approach still does not separate BN 

inference and does not deal with multiple value nodes (see the fourth row of Table 6.1). 

Tatman and Shachter (1990) generalizes influence diagrams in another direction for 

the sake of dealing with multiple value nodes. The evaluation approach is very much like 

Shachter (1986), except that it has one more operation, namely the operation of merging 

value nodes. This approach does not separate BN inference, and it requires arc reversals 

( see the fifth row of Table 6.1). 

Shachter (1988) 

Let d be an SD candidate node in an influence diagram N, and let v be the only value 

node in N. Shachter (1988) and (1990) has noticed that optimal decision functions 

0° : n7rd -+ nd of d can be obtained through 

(6.61) 

for each (J E n7!" d. 

Further in this direction, Shachter and Peot (1992) (first half) proposes a way to scale 

the value function µv and change v into a observed random node, denoted by u ( see also 

Cooper 1989). Formula (6.61) is transformed into 

(6.62) 

Thus, this approach separates BN inference. 

Even though Shachter (1990) points out the possibility that the conditional expec

tation E[vl1rd = (J, d = a] can be computed in one portion of the original network, the 

algorithm proposed by this paper does not work in a divide and conquer fashion. After 
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the optimal decision function for d is computed, the decision node d is replace by a de

terministic random node characterized by the optimal decision function. The resulting 

influence diagram contains one less decision nodes, but has the same number of nodes as 

the original network. 

Finally, this approach deals with only one single value node. See the sixth row of 

Table 6.1. 

Shenoy (1990), (1992), and Shachter and Peot (1992) 

Shenoy (1990), (1992) propose a new representation for Bayesian decision problems, 

namely valuation-based systems. While a decision network consists of an acyclic directed 

graph, a set of conditional probabilities, and a set of value functions, a valuation-based 

system consists of an (undirected) hypergraph graph with _a precedence relation, a set of 

potentials, and a set of valuations. The no-forgetting constraint is enforced by requiring 

the precedence relation to be transitive. 

Influence diagrams can be readily represented as valuation-based systems. 

Shenoy (1990) develops an approach for evaluating a valuation-based system by mod

ifying the clique tree propagation algorithm for BN inference. No arc reversals are re

quires in this approach. The approach was developed for the case of multiple value nodes. 

However, there is an error. The paper concludes that the combination operation is com

mutative, but it is not. Consequently, the approach works only for the case of one single 

value node. Also, the approach does not separate BN inference (see the seventh row of 

Table 6.1). 

Shachter and Peot (1992) (second half) present an algorithm for evaluating influence 

diagrams that is very similar to Shenoy (1990). 

Shenoy (1992) proposes a node removal approach for valuation-based systems. This 
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approach deals with multiple value nodes. It requires no arc reversals. However, numer

ical divisions become necessary when removing a random node that appears in at least 

one valuation, but not in all valuations. Thus the approach requires more numerical 

divisions than EVALUATE!, when there are at least two value nodes. When .a random 

node to be removed appears in all the valuations, the valuations are combined into one 

single valuation. Thus, the approach makes less use of separability in the utility function 

than EVALUATE!. 

This approach does not separate BN inference (see the eighth row of Table 6.1). 

In a decision network, a decision is presumably to be made based on the values of 

the parents of the decision node. When a decision d is independent of a certain parent d, 

then the arc c-+d is removable (Chapter 7). Thus arises the issue of removable arcs. In 

a valuation-based system, on the other hand, the set of variables that a decision depends 

upon is not explicitly specified. It is up to the evaluation algorithm to find it out. Thus, 

there is no issue of removable arcs here. This is why in Table 6.1 we state the issue of 

removable arcs does not apply to Shenoy (1990) and Shenoy (1992). 

An overhead of our approach 

Our approach has an overhead. Before doing any numerical computation, we need to 

identify removable arcs, and figure out the tail and the body. On the other hand, most 

previous approaches go directly to numerical computations after little graphical prepro-

cessmg. 

According to the complexity analysis at the end of Section 6.3, the overhead takes 

O(k2 (n + e)) time. Our believe is that in many case, this overhead may help us cut 

down the time O(lAq) for numerical computations, which is usually of higher order than 

O(k2(n + e)). 

As a final note, let us point out the previous algorithms for evaluating influence 
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diagrams can possibly be modified to evaluate SDDN's. 



Chapter 7 

Removable arcs and independence for decision nodes 

Given a decision network, there are often nodes and arcs that can be harmlessly removed, 

in the sense that their removal does not affect the optimal expected value of the network. 

It is_ a good idea to prune such nodes and arcs at the preprocessing stage because doing 

so simplifies the network. It is well known that barren (random and decision) nodes are 

removable (Shachter 1986). This chapter addresses the issue of removable arcs in the 

setting of SDDN's. 

We begin by establishing the equivalence between removable arcs and independencies 

for decision nodes (Section 7.1), which is of fundamental importance to this chapter. 

Section 7.2 introduces lonely arcs - a class of removable arcs that can be graphically 

identified. In Section 7.3, we show that deleting lonely arcs from an SDDN does not 

destroy its stepwise-decomposability. Section 7.4 introduces the concepts of potential 

lonely arcs and of potential barren nodes to deal with the interaction between lonely 

arcs and barren nodes. Finally, a pruning algorithm is given in Section 7.5. In the 

next chapter, we shall show that this algorithm prunes all the removable arcs that are 

graphically identifiable. 

Before starting the exposition, let us point out that the issue of removable arcs cannot 

be addressed in influence diagrams, since deleting arcs from an influence diagram may 

lead to the violation of the no-forgetting constraint. 

118 
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7 .1 Removable arcs and conditional independencies for decision nodes 

In a decision network, an arc into a decision node is removable if its removal does not 

affect the optimal expected value of the network. In a decision network skeleton JC, an 

arc into a decision node is removable if it is removable in every decision network over K. 

A decision table is a decision function represented in the form of a table. In a decision 

table of a decision node d, there is one dimension in correspondence to each parent of 

d. One particular dimension b is irrelevant to d if fixing the values of all the other 

dimensions, no matter which value b takes, the value for d remain the same. 

In a decision network, a decision node d is independent of one particular parent b 

given all the other parents of d if there exists an optimal decision table of d in which the 

b-dimension is irrelevant. When it is the case, we shall write Id(d, bJ1rd), where 1rd stands 

for 7r d-{ b}. In a decision network skeleton K, a decision node d is independent of one 

particular parent b given all the other parents of d if it is so in every decision network 

over K. 

The following proposition reveals the relationship between removable arcs and condi

tional independencies for decision nodes, which is the corner stone of this chapter. 

Proposition 7.1 Let N be a decision network, d be a decision node and b a parent of 

d. Then the arc b~d is removable if and only if d is independent of b given all the other 

parents of d. 

Proof: Let d1 , d2 , ••• , dk be all the decision nodes in N. Supposed is di. We shall write 

1rd; for 7r d; -{ b}. 

We first show that if b~di is removable, then Id(di, bJ1rO. Let N' be the decision 

network obtained from N by removing the arc b~di. Since b~di is removable, E[N] = 

E[N']. 
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Let 8' = ( 8~, ... , 8~) be a policy for N'. Let 8: be the decision function of di in 8'. Then 

8; is a mapping 8: : D1r~ ----+Ddj. Construct a policy 8 for N from 8' by extending 8: to be 
I 

the mapping 8i : n11"d ----+Ddj such that 
I 

Then we have 

Now letting 8' be an optimal policy of N', we get 

Es[N] = Es,[N'] = E[N'] = E[N]. 

Therefore 8 is an optimal policy for N. Noticing that 8i is independent of b, we get 

Id(di, bJ1r:,). 
We now show that if Id(di, bJ1r~J, then b----+di is removable. Since Id(di, bJ1r:J, there 

exists an optimal policy 8 for N such that the decision function 8i of di is independent of 

b. Construct a policy 8' for N' as follows: let the decision functions of all decision nodes 

other than di be the same as in 8; and let the decision function 8; : n1r~ ----+Dd of di · be 
' 

such that 

This definition is valid because bi( 7r di) is independent of b. It follows from the definition 

of 8' that £ 0,[N'] = E0[N]. Consequently, 

E[N'] 2:: Eo,[N'] = Eti[N] = E[N]. 

On the other hand, we have shown in the first part of the proof that for any policy 8' 

for N', there is a policy 8 for N such that E0 [N] = Eti,[N']. Hence E[N'] S E[N]. 

Therefore E[N'] = E[N]. Consequently, the arc b----+di is removable. □ 
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(1) (2) 

(3) (4) 

Figure 7.24: Removable arcs and removable nodes. 

7.2 Lonely arcs 

This section introduces lonely arcs - a class of removable arcs that can be graphically 

identified. 

Suppose K, is a decision network skeleton. Let d be a decision node in K, and let b 

be a parent of d. The arc b---+d is said to be accompanied if there exist at least one edge 

in the moral graph m(K) of K, that connects b and some nodes in the downstream set 

Yu(d, K). When it is the case, we say that such edges accompany the arc b---+d. The 

arc b---+d is lonely if it is not accompanied. In a decision network N, an arc b---+d into a 

decision d is lonely if it is lonely in the underlying skeleton. 

For example, in the decision network skeleton shown in Figure 7.24 (1), the down

stream set Yu(d3 ,K) is the singleton {v2}. Since the arc c2---+V2 is in K, there is the edge 

( c2, v2) in m(K), which accompanies the arc c2---+d3. However, the arc C3---+d3 is lonely. 

The following two lemmas exhibit some basic properties of lonely arcs. 

Lemma 7.1 Suppose K, is a decision network skeleton, and d is an SD candidate node 

in K,. An arc b---+d is accompanied if and only if b is 
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• a parent to a random node in the downstream set Yu( d, K), or 

• a parent to a value node in the downstream set Yu( d, K), or 

• a disturbance recipient in 1r d, or 

• a parent to a disturbance recipient in 1r d. □ 

Lemma 7.2 Suppose K is a decision network skeleton. Let d and d' be two different 

decision nodes in K. Suppose d' is an SD candidate node. Then an arc b---+d is a lonely 

arc in K if and only if it is a lonely arc in the body K 1( d', K). □ 

Theorem 7.1 Suppose K is an SDDN skeleton. If an arc b---+d into a decision node d 

is lonely, then d is independent of b. Consequently, the arc b---+d is removable. 

Proof: Let N be a decision network over K. We need to _show that dis independent of 

bin N. 

By Lemma 7.2, we can assume, without losing generality, that dis an SD candidate 

node. Let Nu be the tail of N w .r. t d. Let P0 denote the joint potential over the 

random and decision nodes in Nu, i.e the product of the conditional probabilities of all 

the random .nodes in the downstream set Yu(d,N) and of the disturbance recipients in 

7r d· 

Since the arc b---+d is lonely, by Lemma 7.1 b can be neither a disturbance recipient, 

nor a parent to a disturbance recipient in 7rd, nor a parent to random node in Yu(d,N). 

Thus, P0 is independent of b. 

Again because b---+d is lonely, by Lemma 7.1 b cannot be a parent to any value nodes 

in Yu(d,N). Hence, all the value functions in Nu are independent of b. 

Putting those two points together, we get that the evaluation functional e(d,1rd) (see 

equation ( 6.4 7)) is independent of b. According to equation ( 6.55), the optimal decision 

function of d is independent of b. The theorem is proved. □ 
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In Figure 7 .24 (1 ), the arc c3-+d3 is lonely, hence removable. The removal of C3---+d3 

gives us the decision network skeleton in Figure 7.24 (2). 

The following corollary is obtained from the proof of Theorem 7 .1. 

Corollary 7.1 Suppose b-+d is a lonely arc in an SDDN N. Let N' be the decision 

network obtained from N by removing the arc b---+d. Then, N' and N have the same 

optimal decision tables for all the decision nodes other than d. Furthermore, the optimal 

decision tables for d in N' can be obtained from the optimal decision tables for d in N 

by shrinking the irrelevant b-dimension. □ 

7 .3 Pruning lonely arcs and stepwise-solvability 

In order to repeatedly apply Theorem 7 .1, we need the following theorem. 

Theorem 7.2 The decision network skeleton resulted from pruning a lonely arc from an 

SDDN skeleton is again stepwise-decomposable. 

Proof: Let JC be an SDDN skeleton and b-+d be a lonely arc. Let JC' be the resulting 

skeleton after removing b-+d from JC. We prove that JC' is stepwise-decomposable by 

induction on the number k of decision nodes in K,. When k=l, K,' also contains only one 

decision node; hence is stepwise-decomposable. 

Suppose JC' is stepwise-decomposable if k=m-l. Now consider the case of k=m. Let 

d' be a candidate node of K. There are two cases depending on whether d'=d. Let us 

first consider the case when d'=j:.d. According to Lemma 7.2, b-+d is also a lonely arc 

in the body K, 1( d', JC). Let K,1 be the resulting decision network skeleton after removing 

b-+d from JC1. By the induction hypothesis, K1 is stepwise-decomposable. It is easy to 

see that JC1 is the body of JC1(d', JC'). By Lemma 5.2, JC' is also stepwise-decomposable. 
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Now consider the case when d'=d. Since there are no edges in m(JC) that connect b 

and nodes in the downstream set Yn(d,JC), the set Yu(d,JC') is the same as Yn(d,JC). 

So, d is also a candidate decision node of JC'. 

The body JC1( d, JC') is different from the body JC1( d, JC) only in that in JC1 there 

is no arc from b to the tail-value node u, while there is in K, 1. Since K 1 is stepwise

decomposable, so must be JC1. By Lemma 5.2, K' is also stepwise-decomposable. D 

7.4 Potential lonely arcs and barren nodes 

In a decision network skeleton, a barren node is a random or decision node that does 

not have any children. In the following, we shall distinguish decision barren nodes and 

random barren nodes. The node .c3 in Figure 7.24 (2) is ii, random barren node. 

Proposition 7. 2 (Shachter 1986) A barren node may be simply removed from a decision 

network. If it is a decision node, then any decision function is optimal. 

Now we recursively define potential lonely arcs and potential barren nodes. A potential 

lonely arc is a lonely arc or an arc that becomes lonely after the removal of some barren 

and potential barren nodes, and the removal of some lonely and potential lonely arcs. A 

potential barren node is a barren node or a node that becomes barren after the removal 

of some lonely and potential lonely arcs, and the removal of some barren and potential 

barren nodes. 

Going back to our example, after the removal of c3 ~d3 , the the node c3 becomes 

barren, and hence can be removed. After the removal of c3 , c1 ~d2 becomes lonely. After 

the removal of c1 ~a2 , c1 ~d1 becomes lonely. 

Here is a corollary of Theorem 7 .1. 
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Corollary 7.2 Suppose JC is an SDDN skeleton. If an arc b-----+d into a decision node 

d is a potential lonely arc, then d is independent of b. Consequently, the arc b-----+d is 

removable. 

7.5 An algorithm 

This section presents the algorithm PRUNE-REMOVABLES, which prunes all the po

tential lonely arcs and potential barren nodes in an SDDN skeleton. 

Procedure PRUNE-REMOVABLES(JC) 

• Input: JC - an SDDN skeleton. 

• Outputs: An SDDN skeleton that does not contain potential arcs and 

potential barren nodes. 

1. If there is no decision node in JC, output JC and stop. 

2. Else 

• Find and remove all the barren nodes; 

• Find a candidate node d of JC, and compute the downstream set 

Yu( d, K) of 1r d• 

• Find and remove all the lonely arcs among the arcs from 7r d to d. 

Let JC' be the resulting skeleton. 

• In JC', treat d as a random node1 
( thus JC' contains one less decision 

node than JC) and recursively call PRUNE-REMOVABLES(K'). 

As an example, consider the SDDN skeleton in Figure 7.24 (1). There are no barren 

nodes at the beginning; and d3 is the only candidate node. The downstream set JCu(d3 , JC) 

1The node dis treated as a random node only within the scope of PRUNE-REMOVABLES. 
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is the singleton { v2 }. One can see that c3-+d3 is the only lonely arc. After the removal 

of c3 -+d3 , the skeleton becomes as shown in Figure 7.24 (2), where c3 is a barren node. 

After the removal of c3 , we get the skeleton in Figure 7.24 (3). Since d3 is now treated 

as a random node, d2 becomes a candidate node. The arc c1 -+d2 is lonely, and hence is 

removed. Thereafter, d2 is also treated as a random node, rendering d1 a candidate node. 

The arc c1-+d1 is lonely and hence removed. The final skeleton is shown in Figure 7.24 

( 4). 

Let K,' be the output decision network skeleton of of PRUNE-REMOVABLES(K,). 

How is K,' related to K, in terms of decision tables? Let N and N' be decision networks 

over K, and K,' respectively such that in both N and N' each variable has the same frame, 

each random variable has the same conditional probability, and each value node has the 

same value functions. By repeatedly applying Corollary 7.1, we can conclude that the 

optimal decision tables for N' can be obtained from those for N by deleting irrelevant 

dimensions. 

Finally, let us consider the complexity of PRUNE-REMOVABLES. Let n be the total 

number of nodes in K, k be the number of decision nodes, a be the number of arcs, e 

be the number of edges in the moral graph of K,, and p be the maximum number of 

parents of a decision node. Finding all the barren nodes takes 0( a) time. According 

to the complexity analysis of TEST-STEPWISE-DECOMPOSABILITY, finding an SD 

candidate node and computing its downstream set takes 0( k( n + e)) time. To find lonely 

arcs, we need to check, for each node x in 1r d, if x is connected to at least one node in the 

downstream set Yn(d,K), which can be done in 0(pn) time. So, the total complexity of 

PRUNE-REMOVABLE is 0(k(k(e + n) + pn)) = O(k2e + k2n + kpn). 



Chapter 8 

Stepwise-solvability and stepwise-decomposability 

We have shown in Section 5.2 that if a smooth decision network is stepwise-decomposable, 

then it stepwise-solvable. In this chapter, we go further to prove that if a decision net

work skeleton, smooth or non-smooth, is stepwise-decomposable, then if it is stepwise

solvable. More importantly, we show that under "normal" circumstances if a decision net

work skeleton is stepwise-solvable, then it is stepwise-decomposable (Section 8.8). Thus, 

stepwise-decomposability is the weakest graphical criterion that guarantees stepwise

sol vabili ty. 

According to Corollary 7 .2, potential lonely arcs are removable. In this chapter, we 

also show that potential lonely arcs are all the removable arcs that can be graphically 

identified ( Section 8. 7). 

The proof technique is induction on the number of random nodes and on the number 

of decision nodes. In order to do induction on the number of random nodes, we need 

three operations on decision network skeletons, namely short-cutting (Section 8.2), root 

random node removal (Section 8.3), and arc reversal (Section 8.4). Section 8.5 shows how 

those three operations fit together. An induction apparatus on the number of decision 

node is given in Section 8.6. Let us begin with the concept of normal decision network 

skeletons. 

127 
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(1) 

Figure 8.25: An abnormal decision network skeleton (1), and an normal equivalent skele
ton (2). 

8.1 Normal decision network skeletons 

A decision network skeleton K, is normal if for any decision node d, there is a directed 

path from d to each value node in the downstream set Yu( d, K,) of 1r d· A decision network 

is normal if its underlying skeleton is. 

As an example, let K, be the decision network skeleton in Figure 8.25 (1). Yu(d1 ,K) 

contains all the nodes except c1 . In particular, v2 EYu. But there is no directed path 

from d1 to v2 • So K, is abnormal. On the other hand, the decision network skeleton in 

Figure 8.25 (2) is normal. 

What is the intuition behind this concept of normality? Consider a decision node d 

and a value node v in a decision network N. Given any policy 8 of N, let P5 be the joint 

probability 8 induces over all the random and decision nodes of N. The expected value 

E5[v] of v is given by 

1\"v 

where µv stands for the value function of v. According Proposition 3.1, if there is no 

directed path from d to v, then d is irrelevant to A ( 7r v) and hence to E6 [ v]. In other 

words, d can influence v only when there exists a directed path from d to v. 
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Intuitively a normal decision network is one where each decision node d can influence 

all the value nodes that are not m-separated from d by the parents of d. In other words, 

all those value nodes that d can not influence are m-separated from d by 7r d· 

An abnormal decision network skeleton can be stepwise-solvable even when it is not 

stepwise-decomposable. For example, the decision network skeleton in Figure 8.25 (1) 

is not stepwise-decomposable. However it is stepwise-solvable. To see this, let N be an 

arbitrary decision network over the skeleton. Construct a decision network N' over the 

skeleton in Figure 8.25 (2) such that c; has the same frame and conditional probability 

as c2 • For any policy 8, let Ps be the joint probability 8 induces over all the random and 

decision nodes in N, and Pi be the joint probability 8 induces over all the random and 

decision nodes in N'. By Proposition 3.1, we have that 

Thus the expected value of v1 under 8 in N is the same as that in N'. By the same 

line of reasoning, we can show that the expected value of v2 under 8 in N is the same as 

that in N' . Therefore N and N' are equivalent. Since N' is stepwise-decomposable, it 

is stepwise-solvable. Therefore N is also stepwise-solvable. 

The main goal of this chapter is to show that a normal decision skeleton with no 

barren nodes and no lonely arcs is stepwise-solvable only if it is stepwise-decomposable. 

We also show that a normal SDDN skeleton with no barren nodes contains removable 

arcs only if it contains potential lonely arcs. 

The reader may ask: what about abnormal de~ision network skeletons? We conjecture 

that abnormal decision network skeletons can always to transformed into "equivalent" 

normal skeletons. For example, the decision network skeleton in Figure 8.25 (1) can be 

'transformed into the one in Figure 8.25 (2). However, we have not been able to precisely 

formulate and prove the conjecture. 



Chapter 8. Stepwise-solvability and stepwise-decomposability 130 

(1) (2) 

Figure 8.26: Short-cutting. The random node c m (1) 1s short-cut, resulting in the 
decision network skeleton in (2). 

8.2 Short-cutting 

This sections introduces the operation of shorting cutting random nodes from a decision 

network skeleton. The properties of the operation with regard to induction are explored. 

Short-cutting is the first of the three operations that are · needed to facilitate induction 

on the number of random nodes. 

Before getting started, however, let us make a note about notation usage in this 

chapter. Applying the operation of short-cutting, or any other operation, on a decision 

network skeleton IC results in another decision network skeleton IC'. We shall let 7r x and 

1r: to denote the set of parents of x in IC and in IC' respectively. Let N and N' be decision 

networks over IC and IC'. We shall denote the conditional probability in N of a random 

node c by P(cJ1rc) and the value function in N of a value node v by µv(1rv)- Similarly, we 

use P'(cj1r~) and µ~(1r~) to denote the conditional probability of c and the value function 

of v in N' respectively. 

Let IC be a decision network skeleton. Let c be random node in IC such that c has 

at least one parent. To short-cut c is to delete c from IC, and draw an arc from every 

parent of c to each child of c. Figure 8.26 illustrates this concept. We see that after the 

short-cuting, every child of c inherit all the parents of c. 
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The main task of this section is to prove Propositions 8.1 and 8.2, which are con

structing blocks of our induction mechanism. We first present two lemmas. 

Lemma 8.1 Let K, be a decision network skeleton and c be a random node in K, that 

has at least one parent. Let K,' be the decision network skeleton obtained from K, by 

short-cutting c. If c is not a barren node, then for any two nodes x and y in K,', 

1. There is a directed path PATH1 from x to y in K,' if and only if there is a directed 

path from x to y in K, that consists of the same nodes as PATH1 with the possible 

addition of the node c. 

2. There is a path PATH2 between x and y in the moral graph m(K') if and only if 

there is a path between x and y in the moral graph m(K) that consists of the same 

nodes as PATH2 with the possible addition of the node c. 

Proof: The lemma follows directly from the definition of short-cutting. □ 

Lemma 8.2 Let K, be a decision network skeleton and c be a random node in K, that 

has at least one parent. Let K,' be the decision network skeleton obtained from K, by 

short-cutting c. Let d be a decision node in K, ( or equivalently in K,'). 

1. If c is in the upstream set Y1(d,K), then 1rd = 7rd, and Yu(d,K') = Yu(d,K). 

2. If c is in the downstream set Yu( d, K), then 1rd = 1r d, and Yu( d, K') = Yu( d, K)-{ c}. 

3. IfcE1rd, then 1rd = (1rd-{c})U1rc. Furthermore if none of the parents ofc are 

Yu(d,K), then Yu(d,K') = Yu(d,K). 

Proof: The lemma follows directly from Lemma 8.1 and the fact the the downstream 

set Yu( d, K) consists of all the nodes in K, that are not m-separated from d by 1r d· □ 
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Proposition 8.1 Let K, be a decision network skeleton, and let c be a random node 

which has at least one parent. Let JC' be the decision network skeleton obtained from JC 

by short-cutting c. 

1. If K, does not contain any barren nodes, neither does IC'. 

2. If K, normal, so is JC'. 

3. If JC stepwise-decomposable, so is JC'. 

4. Suppose K, is stepwise-decomposable and contains no barren nodes, and suppose 

that if cE'll' d for some decision node d, then none of the parents of c are in the 

downstream set Yu( d, JC). Then when K, does not contain any lonely arcs, neither 

does JC'. 

Proof: To show item 1, suppose a decision or random node x is not barren in JC. Then 

it has at least one child y. If y = c, then the children of c in JC become the parents of x. 

Otherwise, y remains a child of x in JC'. In either case, x has at least one child; hence IC' 

contains no barren nodes. 

By Lemma 8.2, we have that for any decision node d, 

Yu(d,K') ~ Yu(d,JC). (8.63) 

Together with Lemma 8.1, this proves item 2. 

To show item 3, we notice that because of equation (8.63), if a decision node d is an 

SD candidate decision node of IC, then it is also an SD candidate decision node of JC'. 

First consider the case when cEYu(d,IC). In this case the body K1(d,K') of JC' w.r.t 

dis the same as the body K1(d,K) of JC w.r.t d. If JC is stepwise-decomposable, then so 

is K1, and hence K,1. By Lemma 5.2, JC' is also stepwise-decomposable. 

On the other hand, when c(/:.Yu(d, JC), then K1 is the same as the resulting decision 

network skeleton after short-cutting c from JC 1. If JC is stepwise-decomposable, so is 
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K 1 . Consequently we can assume, as an induction hypothesis, that K~ is stepwise

decomposable. By Lemma 5.2, K' is also stepwise-decomposable. Item 3 is therefore 

proved. 

To show item 4, let d be an arbitrary decision node. We need to show that the arcs 

from nodes in 1rd to d are accompanied in K'. There are three cases: 

Case 1). If cEVi(d, K), by Lemma 8.2 we have 7rd = 7rd and Yu(d, K') = Yu(d, K). 

Thus, the arcs from nodes in 7rd to dare accompanied in K' by the same edges as in K. 

Case 2). If cEYu(d, K), by Lemma8.2 we have 7rd = 7rd and Yu(d, K') = Yu(d, K)-{ c}. 

Since the arcs from nodes in 1rd to d are accompanied in K, and since K contains no barren 

nodes, by Lemma 8.1 the arcs from 1rd to d remain accompanied in K'. 

Case 3). If cE1rd, 1rd = (1rd - {c})U1rc. The arcs from node in 7rd-{c} to dare 

accompanied in K and remain accompanied in K'. We need only show that an arc from 

a node y E1r c to d are not lonely in K'. 

Since K contains no lonely arcs and none of the parents of c are in the downstream set 

Yu(d,K), either there is an arc c--+x to a node x in Yu(d,K), or there exists a random 

node bE1rd and a node xEYu(d,K) such that the arcs c--+b and x--+b appear in K. 

In the first case, the arc y--+x appears in K'. Hence the edge (y, x) appears in m( K') 

which accompanies the arc y--+d. In the second case, y--+b appears in K', and hence 

the edge (y, x) appears in m(K'), which accompanies the arc y--+d. This proves that K' 

contains no lonely arcs. The proof is complete. D 

Proposition 8.2 Let K be a decision network skeleton, let c be a random node which 

has ·at least one parent. Let K' be the decision net'ljJork skeleton obtained from K by 

short-cutting c.· Then for any decision network N' over K, there is a decision network 

N over K that is equivalent to N'. 

Proof: Given N', construct N as follows. Let all the nodes in N, excluding c, have the 
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same frame as the corresponding nodes in N''. Let c be a compound variable consisting 

of a copy of each node in 7rc· We set the conditional probability P(cl1rc) of c to be 

if C = 7r C 

otherwise 

For any child of y of c, 1r~ = (1ry-{c})U1rc. Noticing fl1ry = n1r~, we set 

(8.64) 

The conditional probabilities of all other random nodes in N' are the same as in N''. 

For any value node v, there are two cases depending on whether cE1rv. When c{/:.1rv, 

we have 1r v = 1r~. In this case, we set 

On the other hand, when cE1rv, we can assume that 1rvn1rc = 0, i.e v has no parents in 7rc· 

Because if v has parents in 7rc, we can always set the value function of v to be independent 

of those nodes. Consequently we have 1r~=(1rv-{c})U1rc. Noticing n1rv = n1r~, we set 

To show that N and N'' are equivalent, we first notice that they do have the same 

policy space. Let 8 be a policy, and let P0 be the joint probability 8 induces over all the 

random and decision nodes of N, and let Pi be the joint probability 8 induces over all 

the random and decision nodes of N''. 

Let B be a set of random and decision nodes of N. It follows from the definition of 

the conditional probabilities of N' that 

{ 
P'(B) 

Ps(B) = 6 

PJ(B-{ C }, 7rc) 

if c{/:.B 

if cEB and Bn1rc = 0 
(8.65) 



Chapter 8. Stepwise-solvability and stepwise-decomposability 

For any value node v such that c(/.1r v, we have 

On the other hand, for any value node v such that cE1r v we have 

1rv 

Therefore 

That is N and N' are equivalent. □ 

1r' V 

8.3 Root random node removal 

135 

This section investigates the operation of removing root random nodes from decision net

work skeletons. The properties of the operation with regard to induction are of particular 

interest. Root random node removal is the second of the three operations that are needed 

to facilitate induction on the number of random nodes. 

Proposition 8.3 Let IC be decision network skeleton, and let c be a root random node, 

i.e a random node without parents. Let IC' be the decision network skeleton obtained from 

IC by removing c and the arcs originating from c. 

1. If IC contains no barren nodes, neither does IC'. 

2. If IC is normal, then so is IC'. 

3. If IC is stepwise-decomposable, then so is IC'. 
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4. Suppose K, is normal and stepwise-decomposable} and contains no barren nodes. 

Suppose that for any decision node d such that cEYu( d, K)} none of the children of 

c are in 1r d • Then when K, does not contain any lonely arcs} neither does K,'. 

Proof: The first item is straightforward. 

To prove second item, we notice that for any decision node d, 

(8.66) 

Together with the fact that c is a root random node, this equation entails item 2. 

Because of equation (8.66), an SD candidate decision node d of K, is also an SD 

candidate decision node for K,'. Moreover, when c is not in the downstream set Yu(d, K), 

then the body K,~(d, K,') of K,' w.r.t d can be obtained from the body K1(d, K,) of K, w.r.t 

d by removing c. Hence item 3 can be proved in the same way as the third item of 

Proposition 8.1. 

To show item 4, let d be an arbitrary decision node. We need to show that the arcs 

from nodes in 1rd to dare accompanied in K,'. There are three cases: 

Case 1). If cEYJ(d,K), then 1rd = 7rd and Yu(d,K') = Yn(d,K). In this case, the arcs 

from nodes in 1rd to dare accompanied in K,' by the same edges as in K,. 

Case 2). If cEYu(d,K), then 1rd = 7rd and Yu(d,K') = Yn(d,K)-{c}. For any xE1rd, 

the arc x-+d is accompanied in K, by, say, the edge (x, y) in m(K). There are two subcases 

depending on whether or not y=c. 

Case 2.1) y=c. Since c is a root, there must exist another node z such that the arcs 

x-+z and c-+z appear in K. Since none of the children of care in 7rd, zEYn(d, K). There 

are three subsubcases depending on whether z is a random node, a decision node, or a 

value node. 

Case 2.1.1). z is a random node. Since K, contain no barren nodes, there exists a 

value node v such that there is directed path from z to v. Since K, is normal, there must 



Chapter 8. Stepwise-solvability and stepwise-decomposability 137 

be a directed path from d to v. Hence zEYu(d, JC'). Therefore in JC' the arc x----+d is 

accompanied by the edge (x, z) of m(JC'). 

Case 2.1.2). z is a a value node. Since JC is normal, there exists a directed path from 

d to v. Hence, z must be in the downstream set Yu( d, JC'). Therefore in JC' the arc x----+d 

is accompanied by the edge (x, z). 

Case 2.1.3). z is a decision node. In this case, there must be at least one value node 

in the downstream set Y11(z, JC), because JC contains no barren nodes. Since JC is normal, 

there exists a direct path, say PATH, from d to v. Since JC is stepwise-decomposable, 

1r2 m-separated v from d. Therefore z must be in PATH. Consequently zEY11( d, JC'). 

Therefore in K,' the arc x----+d is accompanied by the edge ( x, z). 

Case 2.2) y=Jc. There are again three subsubcases depending on whether y is a random 

node, a decision node, or a value node. The proof for this_ subcase can be carried out in 

the same way as in case 2.1), except with z replaced by y. 

Case 3). If cE1rd, then 7r~ = 7rd-{c}. For any node xE1r~, the arc x----+d is accompanied 

in JC. Hence either there is an arc connecting x and a node z in the downstream set 

Y11(d,JC), or there exists another node yE1rd and a node zEY11(d,K) such that the arcs 

x----+y and z----+y appear in JC. 

In the first case, z cannot be c. Hence the arc that connects x and z in JC is also in 

JC', hence x----+d is accompanied in JC'. In the second case, y cannot be c because c is a 

root random node; and z cannot be c either because cE1r d· Hence the arcs x----+y and z----+y 

also appear in JC'. Consequently, the arc x----+d are also accompanied in JC'. The proof is 

complete. D 

Proposition 8.4 Let JC be decision network skeleton, and let c be a root random node. 

Let JC' be the decision network skeleton obtained from JC by removing c and the arcs 

originating from c. For any decision network N' over JC', there is a decision network N 
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over K, that is equivalent to N' . 

Proof: Given N', construct N as follows. Let all the nodes in N, excluding c, have 

the same frames as in N'. Let c take only one value, say 1. For a random node r such 

that Ctt-7rr , set the co~ditional probability of r the same as in N'. If a random node r is 

such that cE1rr, then 'Irr= 1r;u{c}. In this case, set its conditional probability P(rl1rd) 

as follows: 

where P'(rl1r;) stands for the conditional probability of r in N'. This definition is valid 

because c takes only one value. 

For any value node v such that Ctt-7r v, set the value function of v to be the same as in 

N'. If a value node vis such that cE1rv, then 'Irv= 1r~U{c}. In this case, set 

µV ( 7r V) = µ: ( 7r~) l 

where µ'(vl1r~) stands for the value function of v in N'. This definition is valid because 

c takes only one value. 

We now show that N is equivalent to N'. For any decision node d such that Ctt-7r d, 

then 1r~ = 7rdj d has the same decision function space in both N and N'. If a decision 

node is such that cE1rd, then 7r~ = 7rd-{c}. Since c only take one value, d still has the 

same decision function space in both N and N'. So, N has the same policy space as N'. 

It is evident that given a policy 8, Es[N] = Es[N']. Therefore, N and N' are 

equivalent. The proposition is proved. □ 

8 .4 Arc reversal 

This section revisits the operation of reversing arcs in decision network skeleton, with an 

eye on its induction properties. Arc reversal is the third of the three operations that are 
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needed to facilitate induction on the number of random nodes. 

Proposition 8.5 Suppose K is a decision network skeleton. Let b and c be two random 

nodes such that the arc c-+b appears in K and is reversible. Let K' be the decision network 

skeleton obtained from K by reversing the arc c-+b. 

1. Suppose c has at least two children. Then if K does not contains any barren nodes1 

neither does K'. 

2. Suppose c is a root. Then if K is normal1 so is K' . 

3. Suppose c is a root . Then if K is stepwise-decomposable1 then so is K'. 

4. Suppose c is a root. Then if K does not contains any lonely arcs1 neither does K'. 

Proof: Item 1 is straightforward. 

When c is a root, the moral graph m(K') of K' is the same as the moral graph m(K) 

of K. Hence, i terns 3 and 4 follow. 

To show item 2, let d be an arbitrary decision node. It follows from m(K') = m(K) 

that Yn(d, K') = Yn(d, K). Let v be a value node in the downstream set Yu(d, K,') = 

Yn( d, K). Since K is normal, there must be a directed path, say PATHl, in K, from d to 

v. Since c is a root, the arc c-+b cannot be in PATHl. Thus PATHl is also a path in K,'. 

Therefore K' is also normal. The proposition is proved. □ 

Proposition 8.6 Let K, be a decision network skeleton1 let b and c be two random nodes 

such that the arc c-+b appears in K and is reversible. Let K' be the decision network 

skeleton obtained from K by reversing the arc c-+b. If c is a root1 then 

Furthermore for any decision network N' over K' such that 
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1. c is a compound variable consisting a copy of each node in 1r~, 

2. the conditional probability P'(cl1r~) is given by 

if C = 71'~ 

otherwise 

3. and if a value node is a descendent of c, then it is also a descendent of b, 

there exists an decision network N over K, that is equivalent to N'. 

140 

(8.67) 

Proof: Given N', construct N as follows. Let all the variables have the same frames as 

in N'. Noticing that c is the compound variable consisting a copy of each node in 1r~, we 

set 

• the conditional probability P(bl1rb) = P(blc, 1r~) of b to be 

{ 

P'(bl1r') 
P(blc,1r~) = 0 b 

if c=1r' 
C 

otherwise 

• and the prior probability of c to be the the uniform distributions, i.e P(c) 

where lei stands for the number of possible values of c. 

(8.68) 

The conditional probabilities of all other random nodes are set to be the same as in N'. 

For any value node v, 1rv.:....1r~. If vis not a descendent of c, we set 

and if v is a descendent of c, we set 
i. 
I 
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To show that N and N' are equivalent, we first notice that for any decision node d, 

7r d = 7rd; hence K and K' have the same policy space. Let 8 be a policy, and let Po be the 

joint probability 8 induces over all the random and decision nodes of N, and let P6 be 

the joint probability 8 induces over all the random and decision nodes of N'. It suffices 

to show that for any value node v, 

L Po( 71" v)µv( 71" v) = LP;( 71" v)µ~( 71" v), (8.69) 
1'v 

If v is not a descendent of c, then it cannot be a descendent of b. By Proposition 

3.1, both c and bare irrelevant to Ps(7rv),_ as well as to P6(7rd), Hence Ps(7rd) = P;{7rd), 

Consequently equation 8.69 is true. 

Now if v is a descendent of c, then it is also a descendent of b. Consider Ps(b, ci7r~) 

and P6(b, ci7r~). Noticing that 7r~={b}U7r~, we have 

and 

Hence we get 

P( c)P( bjc, 7rD 

{ ..Lp'(bl7r') icl b 

0 

if C = (b, 7rD 

otherwise 

P'(bl7rDP'(clb, 7r~) 

{ O

P'(bl7r~) if C = (b, 7rD 

otherwise 

Since v is a descendent of both b and c, we have 
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Therefore 

(8.70) 

The proof is completed. D 

8.5 Induction on the number of random nodes 

is a decision node 

This section shows how the three operations discussed in the last three sections fit 

together to form an induction strategy on the mimber of random nodes. This induction 

strategy allows us to, in a certain sense, get rid of all the random nodes in the downstream 

set Yu( d, K) for any d, as shown by the following proposition. 

Proposition 8. 7 Let K be a normal SDDN skeleton without barren nodes and without 

lonely arcs. Let dr be a decision node in K. Then there exists another decision network 

skeleton K' such that 

• CONDl: K' is normal and stepwise-decomposable, and contains no barren nodes 

and no lonely arcs; 

• COND2(K): The upstream component I<1(dr, K') of K' w.r.t dr is the same as 

I<1(dr, K); 

• COND3: In K', there are no random nodes in the downstream set Yu(dr, K') of 

7r dr; and 

• COND4(K): For any decision network N' over K', there exits a decision network 

N over K that is equivalent to N'. 
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Proof: We prove this lemma by induction on the number k of random nodes in the 

downstream set Yu(dr, JC) of 7rdr· When k = 0, the lemma is trivially true. Suppose the 

lemma is true for the case of k = m-1. Now consider the case of k = m. 

Let d be a decision node in .YJ1(dr,JC) such that there are random nodes in Yu(d,JC), 

and that either there are no decision nodes in Yu( d, JC) or for any decision node d' EYu( d, JC) 

there are no random nodes in Yu ( d', JC). 

Since JC contains no barren nodes, there can only be three cases: 

1. There exists a random node c in the Yu( d, JC) that has at least one parent; or else 

2. There exists a root random node c in Yu( d, JC) whose children are either value 

nodes or decision nodes in Yu( d, JC); or else 

3. Every a random node in Yu( d, JC) is a root and has at least one child in 1r d· 

Case 1): In this case, we short-cut c from JC, resulting in JC*. According to Propo

sitions 8.1, JC* is also a normal SDDN without barren nodes and lonely arcs. 

Since there are only m-1 random node in Yu(d, JC*), there exits, by the induction 

hypothesis, a decision network skeleton JC' that satisfies CONDl, COND2(JC*), COND3, 

and COND4(JC*). 

It is easy to see that JC* satisfies COND2(JC). By transitivity, JC' also satisfies 

COND2(JC). 

To see that JC' satisfies COND4(JC), let N'' be a decision network over JC'. Since 

JC' satisfies COND4(JC*), there exist an decision ne.twork N'* over JC* that is equivalent 

to N''. Because of Proposition 8.2, there must be a decision network N over JC that 

is equivalent to N'*. By transitivity, N' is also equivalent N''. So, JC' also satisfies 

COND4(JC). Therefore, the lemma is correct in this case. 
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Case 2): In this case, we simply remove c from K, resulting in K*. One can show 

that the lemma is also true in this case by using Propositions 8.3 and 8.4 and by following 

the same line of reasoning as in Case 1. 

Case 3): In this case, let c be a random node in the downstream set Yn(d, K). 

Then c is a root and has at least one child in 7r d · Let bE1r d be a child of c such that 

(COND5:) there is no other b'E1rd that is a child of c and a parent of b. Since K, is 

stepwise-decomposable, b has to be a random node. Because of COND5, the arc c-+b is 

reversible. Reverse the arc c-+b in K, resulting in K*. By Propositions 8.5, K,* is normal 

and stepwise-decomposable, and it contains no barren nodes and no lonely arcs. 

There are also m random nodes in Yn(d,K*). However in Yn(d,K*) there is a ran

dom node, namely c, that has at least one parent b. According to Case 1), there must 

be a decision network skeleton K,' that satisfies CONDl_, COND2(K*), COND3, and 

COND4(K*). 

Since K* satisfies COND2(K), so does K,'. 

To see that K' satisfies COND4(K), let N' be a decision network over K'. Since K,' 

satisfies COND4(K*), there exist an decision network N* over K,* that is equivalent to 

N'. 

From the proof of Proposition 8.2, we can have N* such that 

1. c is a compound variable consisting of a copy of each node in 1r;, where 1r; is the 

set of parents of c in K*. Since c is a root in K, 1r; = {b}U(1rb-{c}) = {b}u1r;. 

2. The conditional probability P*(cj1r;) = P*(cjb, 1r;) is given by 

if C = 1r; = (b,1r;) 

otherwise 
(8.71) 
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Moreover since cEYu( d, K) and K is normal, if a value node is a descendent of c, then it 

must be a descendent of d, and hence b. So Proposition 8.6 applies and gives us that there 

is a decision network N over K that is equivalent to N*, and hence to N'. Therefore K' 

also COND4(K,). Thus the lemma is true in this case also. The proof is complete. □ 

8.6 Induction on the number of decision nodes 

This section shows how to carry out induction on the number of decision nodes. First, 

let us define two properties of value functions that we will do induction with. 

Let N be a decision network whose random and decision variables (nodes) are all 

binary. Let A be a subset of nodes of N. For any value node v of N, its value function 

µv(1rv) is said to have property Q(A) if 

• µv(1rv) is independent of nodes in 1rvnA, and . 

• µv ( 1r v) = qv ( some real number) when all the nodes in 7r v-A take the same value, 

regardless what this value is. When the nodes in 1r v-A do not all take the same 

value, µv(1rv) is strictly smailer than qv. 

The value function is said to have property Q1 (A) 

• µv ( 1r v) is independent of nodes in 7r vnA, and 

• µv(1rv) = qv (some real number) when all the nodes in 1l"v-A take the value 1. 

When there is at least one node in 1l"v-A that does not take the value 1, µv(1rv) is 

strictly smaller than qv. 

Proposition 8.8 Suppose N is a normal SDDN with no barren nodes and no lonely 

arcs. Suppose all the random and decision variables (nodes) of N are binary. Let d be 

an SD candidate decision node of N, and let A be a set of nodes in N. Suppose there are 
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no random nodes in the downstream set Yn( d, N) of 1r d • Then if all the value functions 

in N have property Q(A) (or Q1(A))! so do all the value functions of the body N1(d,N). 

Proof: Let u be the tail-value node in N1. It suffices to show that µu(1rd) has property 

Q(A) (or Q1(A)). 

First of all, since there are no barren nodes, there must be at least one value node in 

Yn(d,N). Let v1 , ... , Vm be all the value nodes in Yn(d,N). 

Let Nn be the tail of N w.r.t d. Since there are no random nodes in Yn(d,N), 

Yn( d, N) consists of only value nodes. So we have 

m 

- max/~=µvJ1rvJ· 
i=l 

(8. 72) 

(8. 73) 

Since all the µv; ( 7r v;)' s are independent of nodes in An·1r d, so must be µu ( 1r d). 

Suppose all the value functions in N have property Q(A). Since N is normal, d is 

a parent of every Vi. Thus when all the nodes in 7rd-A take the same value, say o:, the 

value of µu( 1r d) is I::~1 qv;, which is achieved when d = o:. 

Now consider the case when there are two nodes x and y in 1r d - A such that x take 

the value O and y takes 1. Since N contains no lonely arcs, and there are no random 

nodes in Yn(d,N), there must be at least one value node, say Vi, which is a child of x and 

another value node, say Vj (may be the same as Vi), which is a child of y. Because the 

value functions µv; and µvi have property Q( A), we have that if d = 0, µv
1 

( 7r v;) < qvi, and 

if d = I, µv; ( 7r vJ < qv;. Therefore, µu ( 7r d) < I::~1 qv;. This shows that µu has property 

Q(A). 

To prove the proposition for Q1 (A), suppose all the value functions in N has property 

Q1(A). When all the nodes in 7rd-A take the value 1, µu(1rd) = I::~1 qv;, which is achieved 

when d = 1. 
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Now consider the case when there is one node xE1r d, whose value is O instead of 1. 

There is a value node Vj in Yu(d,N) that is a child of x. Because µv; has property Q1(A), 

µj(7rvJ < qvi' Hence, µu(7rd) < Li=l qv;• This shows that µu has property Q1(A). The 

proposition is proved. □ 

8.6.1 An extension and a corollary 

Let d be a decision node in an SDDN N. We can extend the concept of a downstream 

component from the case when N is smooth at d to the case when N is not smooth at 

d in the same way as we did for the concept of as tail in Section 6.2. Let Nu( d, N) 

stand for the downstream component of N w.r.t d. As in Section 3.6, we can define the 

conditional expected value E [N11 ( dr, N) \ 1r dr]. 

Proposition 8.9 Suppose N is a normal SDDN with rio barren nodes and no lonely 

arcs. Suppose all the random and decision variables (nodes) of N are binary. Let dr be a 

decision node N, and let A be a set of nodes in N. Suppose there are no random nodes 

in the downstream set Yu(dr,N). Then if all the value functions in N have property 

Q(A) (or Q1(A)), so does the conditional expected value E[Nu(dr,N)\1rdr]. 

Proof: This proposition can proved by repeatedly use Proposition 8.8. □ 

Combining Proposition 8.9 and Proposition 8.7, we get the following corollary. 

Corollary 8.1 Let K, be a normal SDDN skeleton without barren nodes and lonely arcs. 

Let dr be a decision node in K,. For any subset A~1rdri there exists a decision network 

N over K, such that E[Nu(dr,N)\1rdr] has property Q(A) (or Q1(A)). 

Proof: Let K,' be an SDDN skeleton as in Proposition 8.7. There are no random nodes 

in Yu(dr, K,'). Construct a decision network N' over K,' as follows. Let all the random 
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and decision variables be binary. For any value node v, set 

if all the variable in ?rv-A take the same value 

otherwise 
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(8.74) 

Then all the value function in N' have property Q(A). By Proposition 8.9, E[Nu(dr,N')l1r~J 

also has property Q(A). According to Proposition 8.7, there is a decision network N over 

K, that is equivalent to N'. Since the upstream Component Kr(dr, K,) of K, is the same as 

Kr(dr,K'), 7rdr = 7r~r· Thus we have E[Nu(dr,N)j1rdr] = E[Nu(drN')j1r~J Therefore 

E[Nu(dr,N)j1rdr] has property Q(A). 

The Q 1 (A) part can be proved in the same way. D 

8. 7 Lonely arcs and removable arcs 

We are now ready to prove a theorem about the relationship between removable arcs and 

lonely arcs. 

Theorem 8.1 Let K, be a normal SDDN skeleton without barren nodes. If K, contains 

no lonely arcs, then it contains no removable arcs. 

Before proving this theorem, let us point out an important implication. 

Corollary 8.2 In a normal SDDN skeleton, an arc into a decision node is removable if 

and only if it is a potential lonely arc. □ 

To put the corollary in another way, in a normal SDDN, potential lonely arcs are 

all the removable arcs that can be graphically identified without resorting to numerical 

computations. 
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Proof of Theorem 8.1: Let dr be a decision node of IC. Let c be an arbitrary node in 

7r dr. We need to show that the arc c-+dr is not removable. 

Because of Proposition 8.7, we can assume that there are no random nodes in the 

downstream set Yu(dr, K). 

Let N be an SDDN over K. Assume all the random and decision nodes are binary. 

Let A= 7r dr-{ c }. For any value node v in N, set µv to be 

when all the variables in 7r v-A take the same value 

otherwise 

Then the value functions have property Q(A). 

(8.75) 

We find an SD candidate decision node d, computes its body N1(d,N) w.r.t d. It is 

easy to verify that N1( d, N) is also stepwise-decomposable and normal, and it contains 

no barren nodes and no lonely arcs. According to the Proposition 8.8, all the value 

functions N1 have property Q(A) . 

We then find an SD candidate decision node of N1(d,N) , computes its body, and so 

on so forth. Eventually, we will obtain a normal SDDN, denoted by Nr, in which dr is 

an SD candidate, and which contains no barren nodes and no lonely arcs. Furthermore, 

all the the value functions in Nr have property Q(A). 

Since Nr contains no lonely arcs, and there are no random nodes in the downstream 

set Yu(dr,N) , there must be at least one value node vEYu(dr,N) that is a child of c. In 

the mean time, Nr is also normal, so this value node v is also a child of dr. All the value 

functions of Nr have the Q(A) property. Since A= 7rdr-{c} , all the value functions in 

the tail Nu(dr,Nr) depend only on dr or v or both. Therefore when c=O, the optimal 

decision for dr is 0, and when c=l, the optimal decisio·n for dr is 1. Thus dr depends on 

c and hence the arc c-+dr is not removable. The theorem is proved. □ 
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8.8 Stepwise-solvability and stepwise-decomposability 

This section proves the following theorem about the relationship between stepwise

decomposability and stepwise-solvability. 

Theorem 8.2 Suppose K is a normal decision network skeleton with no barren nodes 

and no lonely arcs. Then K is stepwise-solvable if and only if it is stepwise-decomposable. 

A decision network skeleton in Figure 3.15 is not stepwise-decomposable, hence it is 

not stepwise-solvable. Consequently, as we predicted in Section 3.4, with appropriate 

probabilities and value functions, optimal policies can be found only by considering the . 

two decisions simultaneously. 

The remainder of this section is to prove Theorem 8.2. In a decision network, a 

decision root node is a root node that is also a decision node. 

Lemma 8.3 Suppose K is a normal decision network without barren nodes. Suppose d 

is a decision node in K. If there are decision root nodes in the downstream set Yu(d,K), 

then d cannot be an SS candidate node. 

Proof: Let K' be the decision network skeleton obtained from K by replacing with 

deterministic nodes those decision nodes that are different from d and have at least one 

parent. It suffices to show that (Statement!:) dis not an SS candidate node in K'. 

Let 71': be the set of parents of a node x in K'. We show Statement! by induction on 

the number k of random nodes, including deterministic nodes, in Yu( d, K'). When k = 0, 

all the nodes in Yu( d, K') are either decision root nodes or value nodes; and there exists 

at least one decision root node. By the definition of Yu( d, K'), there must be one decision 

root node d'EYu(d, K') such that d' has a value node child v. Since K, is normal, so is 

K'. Hence, there exits a directed path from d to v. Because all the nodes in Yu( d, K') 

are either decision nodes or value nodes, d must be a parent of v. 
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Construct a decision network N' over K,' as follows. Let all the random and decision 

variables be binary; let the value functions of the value nodes other than v all be zero; 

and set 

if d=d' 
(8. 76) 

otherwise 

We see that if d' = 1, the optimal decision for d is d = 1; and if d' = 0, the optimal 

decision for d is d = 0. Therefore the optimal policy for d depends on the policy for d' 1
. 

Consequently dis not an SS candidate node. So, Statementl is true in the case ~ = 0. 

Assume Statement! is true for the case of k = m-1. Consider the case of k = m. 

There are three subcases. 

Subcase 1 ). There is a random node cEYu( d, IC') that has at least one parent. In this 

case, we can short-cut c from K,', resulting in K,*. According to Proposition 8.1, K,* is 

also normal and contains no barren nodes. Since there are only m-1 random nodes in 

Yu( d, K*), by the induction hypothesis, dis not an SS candidate node in K* . Through 

Proposition 8.2, this implies that d is not an SS candidate node in K,'. 

Subcase 2). There is random node cEYu(d, K') whose children all are value nodes. 

In this case, we can simply remove c from K', resulting in K*. Using Propositions 8.3 

and 8.4 and following the same line of reasoning as in Subcase 1), we can show that 

Statement! is true in this subcase. 

Subcase 3). Every random node cEYu(d,K') is a root, and it has at least one child 

in 7rd. Let bE1rd a a child of c such that there is no other b'E1rd that is a child of c and a 

parent of b. By the definition of K', bis a random (maybe deterministic) node. By the 

choice of b, the arc c~b is reversible. We reverse the arc c~b in K,' to get K". 

1 For later convenience, let us remark that this conclusion follows for any value function µv of v that 
has property Q( { d, d'}) . 
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By Proposition 8.5, K," is also normal and contains no barren nodes. There are m 

random nodes in Yn(d, K,"), one of which, namely c, has parents. As in Subcase 1), 

we short-cut c from K,", resulting K,*. By the induction hypothesis , there is a decision 

network Af'* over K,* in which the optimal decision function of d depends on the decision 

policy of some other decision node d'. 

By Proposition 8.2, there exists a decision network N'" over K," that is equivalent to 

Af'*; and by the proof of Proposition 8.2, we conclude that N'" can be such that 

1. c is a compound variable consisting of a copy of each node in 7r~, where 1r~' is the 

set of parents of C in K,". Since C is a root in K,', 7r~ = {b}U(1rb-{c}) = {b}u1rr 

2. The conditional probability P"(ci1r~) = P"(clb, 1rn is given by 

if c = 7r~ = ( b, 1rn 

otherwise 
(8.77) 

Moreover, since cEYn(d, K,') and K,' is normal, if a value node is a descendent of c, then 

it must be a descendent of d, and hence b. So, Proposition 8.6 applies, and gives us 

that there is a decision network N'' over K, that is equivalent to N'", and hence to A(*. 

Therefore in N'', the optimal decision function of d depends on the decision function of 

some other decision node. Consequently, d is not an SS candidate node in K,'. The proof 

is complete. D 

Lemma 8.4 Let K, be a normal decision network skeleton with no barren nodes. Suppose 

d is a decision node in K,, and suppose there are no decision root nodes in the downstream 

set Yi 1( d, K,). If there exists at least one decision node, other than d, in Yn( d, K,), then 

d is not an SS candidate node. 
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Proof: Let d' =/- d be a decision node in Yu( d, K). Let K,' be the decision network 

skeleton obtained from K, be replacing all the decision nodes other than d and d' by 

deterministic nodes. It suffices to show that (Statement!:') dis not an SS candidate node 

in K'. 

We prove Statement! by induction on the number k of random nodes, including 

deterministic nodes, in Yu( d, K,'). When k = 0, Yu( d, K) consists of d, d', and value 

nodes. By the definition of Yu( d, K), there must exist a value node v that is a child of 

d' .. Since K, is normal, so is K,'. Hence, d there is a directed path from d to v. There are 

two cases: either d is a parent of v, or d is a parent of d'. 

It has been shown in the proof of Lemma 8.3 that when both d and d' are parents 

to v, d is not an SS candidate node. Now consider the case when d is a parent of d'. 

Construct a decision network N'' over K,' as follows. Let all the random and decision 

variables be binary; let the value functions of all the value nodes other than v be zero; 

and let 

if d'=l 

otherwise 
(8.78) 

Noticing dE1rd', we have that when the decision function 8' of d' is such that 8'( 1r~,) = d, 

the optimal decision for d is d = 1; and when the decision function 8' of d' is such that 

8'( 1rd') = 1-d, the optimal decision for d is d = 0. Therefore, the optimal decision 

function for d depends on the decision function of d' 2
• Thus, d is not an SS candidate 

node, and Statement! is true for the case of k = 0. 

Assume Statement! is true for the case of k = m - 1. We can prove that Statement! 

is true for the case of k = m by following the same line of reasoning as in the proof of 

Lemma 8.3. There is only one issue that demands special attention. In Subcase 3), we 

2 For later convenience, let us remark that this conclusion follows for any value function µv of v that 
has property Q1 ( { d'} ). 
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need to reverse the arc c-+b. This can only be done when c is a random node and not 

a deterministic node. Since there are no root decision nodes in Yu(d, K), there are no 

deterministic root nodes in Yu(d, K'). Thus, c can not be a deterministic node. The 

lemma is proved. D 

Lemma 8.5 Suppose K, is a normal decision network skeleton with no barren nodes. Let 

d be a decision node in K,. Suppose there are no decision nodes in the downstream set 

Yu( d, K). If there is a decision node d' E7r d such that at least one of the parents of d' are 

in Yu( d, K), then d is not an SS candidate node. 

Proof: Let K' be the decision network skeleton obtained from K be replacing all the 

decision nodes other than d and d' by deterministic nodes. It suffices to show that 

(Statement 1:) d is not an SS candidate node in K'. 

We prove Statementl by induction on the number k of random nodes, including 

deterministic nodes, in Yu( d, K') - 71'd'· When k=O, Yu( d, K') consists of the parents of 

d', and value nodes. By the definition of Yu( d, K'), there must be at least one parent c 

of d' that has a value node child v. Since K, is normal, so is K'. Thus, d must also be a 

parent of v. 

Construct a decision network N' over K' as follows. Let all the random and decision 

variables be binary; let the value functions of the value nodes other than v all be zero; 

and set 

if d=c 

otherwise 
(8.79) 

Noticing cE7rd, and d' E7rd, we have that if the decision function 8' for d' is such that 

8'( 71'd,) = c, then the optimal decision function 8° of d is such that 8°( 7rd) = d'; and if the 

decision function 8' for d' is such that 8' ( 71'd,) = 1-c, then the optimal decision function 
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8° of d is such that 8°( 1r~) = l-d'. That is, the optimal decision function of d depends 

on the decision function of d' 3
. Consequently d is not an SS candidate node in JC'; 

Statement! is true for the case of k = 0. 

Assume Statement! is true in the case of k = m-1. We can prove that Statementl 

is true in the case of k = m in the same way as in the proof of Lemma 8.3. The lemma 

is thus proved. D 

Proposition 8.10 Suppose JC is a normal decision network skeleton with no barren 

nodes. Let d be a decision node in JC. If d is an SS candidate node) then it is also 

an SD candidate node. 

Proof: Since dis an SS candidate node, by Lemmas 8.3 and 8.4, there cannot be decision 

nodes in the downstream set Yu(d, JC). By Lemma 8.5, t~ere cannot be decision nodes 

which have parents in Yu(d, JC). Therefore, 7rd m-separates d from all other decision 

nodes and their parents; i.e d is an SD candidate node. D 

Corollary 8.3 Let JC be a normal decision network skeleton with no barren nodes. Let 

d be a decision node in JC. Suppose the downstream component JC u( d, JC) is stepwise

decomposable and contains no lonely arcs. Then in the upstream component IC1(d, JC)) a 

decision node is an SD candidate node if it is an SS candidate node. 

Proof: One can prove this corollary in the same way as we prove Proposition 8.10. The 

only issue that demands special attention is that in IC1, there is a downstream-value node 

u. We may not be able to arbitrarily set the value function µv of u; it has to be the 

optimal conditional expected value µv=E[NuJ1rd] of a decision network Nu over !Cu. As 

we mentioned in Footnotes 1, 2, and 3, we need only to be able to set µv such that it has 

3 For later convenience, let us remark that this conclusion follows for any value function µ., of v that 
has property Q( { d', c} ). 
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property Q( { x, y}) for some x, y E 7r d, or has property Q1 ( { x}) for some x E 1r d· Since 

K.u is normal and stepwise-decomposable, and contains no barren nodes and lonely arcs, 

this is possible according to Corollary 8.1. D 

In a decision network skeleton K., a decision node d is a potential SD candidate node 

if either it is an SD candidate node, or there exists an SD candidate node d' (-=/ d) such 

that dis a potential SD candidate node in the body K.1(d',K.). It is easy to see that a 

decision network skeleton is stepwise-decomposable if and only if every decision node is 

a potential SD candidate node. 

A potential SD candidate node d is the oldest, if there is no other potential SD can

didate node that is an ancestor of d. 

Proof of Theorem 8.2: Let us first show stepwise-decomposability implies stepwise

solvability. Suppose K. is stepwise-decomposable. Let N be an arbitrary decision network 

over K.. We need to show that 'N is stepwise-solvable. Let N'' be the output network 

of SMOOTHING(N'). Then, N'' is a smooth SDDN. According to Theorem 5.1, N'' is 

stepwise-solvable. Since N'' and N' is equivalent, N is also stepwise-solvable. 

To prove that stepwise-solvability also implies stepwise-decomposability, it suffices to 

show that if there exist decision nodes in K. that are not potential SD candidate nodes, 

then K. is not stepwise-solvable. 

For simplicity, let us assume that there is only one oldest potential candidate node d0
• 

Then none of the decision nodes in the upstream component K. 1( d0
, K.) are SD candidate 

nodes. By Corollary 8.3, none decision nodes in K. 1 can be SS candidate nodes. Therefore 

K. is not stepwise-solvable. The theorem is proved. □ 



Chapter 9 

SDDN's and Markov decision processes 

In the introduction, we have shown how finite stage Markov decision processes (MD P's )1 

can be represented as SDDN's. This chapter shows that an SDDN can be condensed into 

an equivalent MDP. 

This practice is interesting for two reasons. Conceptually, it reveals the close rela

tionships between SDDN's and MDP's: MDP's are special SDDN's and SDDN's can be 

condensed into MDP's. 

Computationally, the concept of condensation opens· up the possibility of parallel 

computation in evaluating SDDN's (Section 9.2); it enables us to exploit the asymmetric 

nature of decision problems (Section 9.5); and it also leads to an incremental approach 

for computing the values of information (Zhang et al 1993b ). 

The organization of this chapter is as follows. The concept of sections in smooth 

regular SDDN's is introduced in Section 9.1. Section 9.2 gives the definition of conden

sation of smooth regular SDDN's, and points out the possibility of parallel computation. 

Section 9.3 shows that a smooth regular SDDN is equivalent to its condensation. Non

smooth regular and irregular SDDN's are treated in Section 9.4. Section 9.5 exploits the 

asymmetric nature of decision problems to minimize the number of states of the vari

ables in condensations. On the basis of condensation, Section 9.6 proposes a two stage 

approach for evaluating SDDN's, which is compared to the approaches by Howard and 

Matheson (1984) and Cooper (1989) in Section 9.6.1. 

1 In this chapter, when talking about Markov decision processes we always mean finite stage Markov 
decision processes. 

157 
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9.1 Sections in smooth regular SDDN's 

The first step toward the concept of condensation is to introduce the concept of sections 

for smooth regular SDDN's. Let N be a smooth regular SDDN. Let d1, d2, ... , dk be 

all the decision nodes. Since N is regular, there is a total ordering among the decision 

nodes. Let the total ordering be as indicated by the subscriptions. More explicitly, let us 

assume that di directly precedes di+l in the sense that there is no other decision node dj 

such that di precedes dj and dj precedes di+l. In this case, we also say that di+1 directly 

succeeds di. 

For any iE{l, 2, ... , k-1}, the section of N from 7rd; to 7rdi ➔ 1' denoted by N(di,di+1), 

is the subnetwork of N that consists of the following nodes: 

1. the nodes in 1r d; U 1r d;+i, 

2. the nodes that are in both the downstream set Yu(di,N) of 7rd; and the upstream 

set Y1( di+1, N) of 1r d;+ 1 • 

The graphical connections among the nodes remain the same as in the N except that 

all the arcs among the nodes in 7rd;U{di} are removed. The nodes outside 7rd;U{di} are 

either random nodes or value nodes;· their conditional probabilities or value functions 

remain the same as in N. The nodes in 7r d; U { di} are either decision nodes or random 

nodes. There are no conditional probabilities associated with random nodes in 7rd;U{di}. 

The initial section N ( - , d1) consists of the nodes in 1r di and the nodes in the upstream 

set Vi( d1 , N) of 1r di. It consists of only random and value nodes, whose conditional 

probabilities or value functions remain the same as in N. 

Value nodes in the initial section do not affect the optimal policies, even though they 

do contribute to the optimal expected value. From now on, we shall assume there are 

no value nodes in the initial section, with the understanding that they, if any, are taken 
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l 

.9,{(t, d) _ ... . 
············ ·····'"·, .. _____ _ _ 

..... -
······ 

'J{_(a, - ) 

9-l1d, a) 

(b) 

Figure 9.27: A regular SDDN and its sections: t stands for test, ·d stands for drill, 
and s stands for oil-sale-police. 

care of by some preprocessing measure. 

The terminal section N ( dk, - ) consists of the nodes in the 7r dk and the nodes in the 

downstream set Yn( dk, .Iv) of 7r dk. The graphical connections, the conditional probabili

ties, and the value functions in the terminal section are specified in the same way as in 

the case of ordinary sections. 

As an example, consider the decision network in Figure 9.27 (a), which is a repro

duction of Figure 6.22 (b ). The network is smooth, regular and stepwise-decomposable. 
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upstream of 1td, i 
<-- -- ---·········· - - -, 

[ downstream of 7td, 

:--- ---- -- --· ---- -- ---- -------···· -♦ 

~ ... 

Figure 9.28: An abstract view of a smooth regular SDDN. Smoothness is indicated by 
the fact that all the arrows from the 1rd, s are pointing downstream. 

Let us denote this SDDN by N. Let us also denote the variable test by t, drill by d, 

oil-sale-policy by s, drill-cost by de, test-result by tr, oil-produced by op, 

and market-information by mi. 

There are four sections in·N: N(-, t), N(t, d), N(d, s), and N(s, -). The initial 

section N(-,t) contains no nodes. All the other sections are shown in Figure 9.27 (b). 

At this point, we wish to emphasize that in each sectiqn N(di, di+i), all the decision 

nodes are in 'lrd;U{di}. Since N is smooth, in N(di,di+i) there are no arcs pointing 

toward those decision nodes. Thus, they can be regarded random nodes with no prior 

probabilities. Consequently, N(di, di+i) can be viewed as a semi-Bayesian network with 

value nodes. 

9.1.1 An abstract view of a regular smooth SDDN 

The concept of sections provides us with a proper perspective for viewing smooth regular 

SDDN's. A regular smooth SDDN N can be thought of as consisting of a chain sections 

Two neighboring sections N(di-i,di) and N(di,di+i) share the nodes in 'lrd;, which m

separate the other nodes in N(di-1, di) from all the other nodes N(di, di+1 ). Figure 9.28 

shows this abstract view of a regular SDDN. 



Chapter 9. SDDN's and Markov decision processes 161 

9.1.2 Conditional probabilities in a section 

In each section N(di,di+i), one can compute PN(di,d;+i)(1rd;+ 1 17rd;,di) - the conditional 

probability of the 7rd;+i given 7rdi and di in N(di,di+1). In the initial section N(-,d1), 

one can compute PN(-,di)( 1r di) - the marginal probability 1r1 in N(-, d1) . 

Lemma 9.1 Let N be a smooth regular SDDN and di and di+l be two consecutive deci

sion nodes. For any policy 8 for N, let P0 denote the joint probability determined by 8 

over all the decision and random nodes. Then we have 

(9.80) 

and 

(9.81) 

Proof: According to Proposition 3.1, all the nodes in the downstream set of 7rdi+l are 

irrelevant to P0 ( 1r di+i j1r d;, di). Hence, they can be harmlessly pruned from N. Accord

ing to Proposition 3.2, all the nodes in the upstream set of 7r di are also irrelevant to 

Po( 1r di+l j1r di, di)- Hence, they can also be harmlessly pruned from N. After pruning the 

nodes in the downstream set of 7r d;+i an<l those in the upstream set of 7r d;, what is left of 

N is exactly N(di,di+1). The lemma is therefore proved. D 

In words, this lemma says that the ~onditional of probability of 1r d;+i given 1r d; and 

di is independent of the policy 8 and can be computed locally in the section N(di, di+1 ). 

9.1.3 The local value function of a section 

We now turn to value functions. For a value node Vij in N(di, di+i) , one can compute 

the conditional probability PN(d;,di+i)(1rv;jl1rdi,di), 
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Lemma 9.2 Let N be a smooth regular SDDN and di and di+l be two consecutive deci

sion nodes. For any policy 8 for N, let Po denote the joint probability determined by 8 

over all the decision and random nodes. For any value node Vij in the section N(di, di+t), 

we have 

Proof: The same as the proof of Lemma 9.1. D 

Define a function !~ : n,r d X ndi --t R1 by 
IJ I 

f~ij (1rdi1 di)= L p.Af(di,di+i)(1rv;3 /1rd;, di)fv;3 (1rvJ 
,r"iJ -(,rdi U{di}) 

where fvi
3 

is the value function of Vij in N. 

(9.82) 

(9.83) 

Let Vi1, ... , Vimi be all the value nodes in the section N(di, di+1 ). The local value 

function Ji: n7Td X ndi --t R1 of the section N(di,di+1) is defined by 
I 

m; 

Ji ( 7r di ' di) = L !~;/ 7r di ' di). (9.84) 
j=l 

Note that if there are no value node in the section, then Ji is the constant 0. In 

particular, the local value function of the initial section is zero since it is assumed to 

contain no value nodes. 

9.1.4 Comparison with decision windows 

The concept of decision windows is introduced by Shachter (1990) as a way to understand 

information arcs-arcs into decision nodes2
• The window Wi consists of those random 

nodes that are observed for the first time between the decision maker's choice for di-l 

and her/his choice for di, 

2Recall that in influence diagrams arcs into decision nodes are interpreted indication of information 
availability. 
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. The major difference between sections and windows is that sections correspond to 

graphical separation, while windows do not. A section N( d;_ 1 , di) can be compared to 

an interval on the real line: the "left end point" is 1r d;_ 1 , and the "right end point" is 1r d; · 

Two neighboring sections are separated by their common "end point"; two sections that 

are not neighbors are separated by the sections in between. 

On the other hand, a node in a window W; can be connected to a node in any other 

window Wj; and there is no concept of "end points". Consequently, with windows we do 

not have the the two lemmas given in the previous two subsections. 

9.2 Condensing smooth regular SDDN's 

Intuitively, condensing a smooth regular SDDN N means doing the following in each 

section N ( d;, d;+ 1 ) of N: ( 1) delete aU the random nodes .that are neither in the 1r d; nor 

in 1r d;+i, (2) combine all the value nodes into one single value node vf, and (3) group the 

nodes in 7r d; into one compound variable Xi. What results is a Markov decision process 

(MDP). Now the formal definition. 

The condensation of N, denoted by Ne, is an MDP given as follows: 

1. It consists of the following nodes: 

• Random nodes Xi ( 1 :S i :S k), where Xi is the compound variable consists of 

all the nodes in 7rdi when 7rdi=/-0. When 7rdi=0, x; is a variable that has only 

one possible value; 

• The same decision nodes di ( 1 :S i :S k) as in N; and 

• Value nodes vf (1 :Si :S k). 

2. The graphical connections among the nodes are as follows: 
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Figure 9.29: The skeleton of the condensation of the SDDN in Figure 9.27 (a) . 

• For any i E {1, 2, ... , k }; there is an arc from Xi to di, an arc from Xi to vf, 

and an arc from di to vf. 

• For any i E {1, 2, ... , k - 1}, there is an arc from Xi to Xi+l and an arc from 

3. The conditional probabilities and value functions are as follows: 

• The conditional probability pc(xi+1 \xi, di) (i E {1, ... , k-1}) is defined to be 

PN(di+1,d;)(1rd;+1 \1rd;, di). 

• The value function f vc for vf ( i E { 1, ... , k}) is defined to be the local value 
I 

function Ji. 

Since the condensation Nc is an MDP, we shall sometimes refer to pc(xi+l \xi, d) as 

the transition probability from Xi to Xi+i. 

Figure 9.29 depicts the skeleton of the condensation of the SDDN in 9.27 (a). Since 

test has no parent, x1 is a degenerate variable with only one value. The variable x2 

stands for the compound variable consisting of test and test-result, and x3 stands 

for the compound variable consisting of oil-produced and oil-market. 

The prior probability of x1 is trivially defined, the transition probability pc( x2 \x1 , t) 
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is set to be PN(t,d)(t, trlt), and the transition probability pc(x3 lx2,d) is set to be 

PN(d,s)(op, milt, tr, d). 

The value function fvc for the value node v1c is a representation of test-cost, fvc is a 
l 2 

representation of drill-co st, and fvg is a representation of the summation oil-produced 

and sale-cost. 

The SDDN in Figure 9.27 (a) is not in the form of an MDP. However, its condensation, 

as shown in Figure 9.29, is a Markov decision process. In particular, each random node 

separates the network into two parts. 

The condensation of a smooth regular SDDN is usually not a homogeneous MDP 

(Denardo 1982). The frames of the xi's are different from one another. 

9.2.1 Parallel computations 

In the process of condensation, the following numerical computations are carried out in 

each section N (di, di+ 1) : 

• The calculation of the conditional probabilities PN(d;,d;+i)(1rd;+i j1rd;, di), and 

PN(d;,d;+i)(1rv;1 j1rd;,di) (for each value node V ij), and 

• The summations as indicated by equations (9.83, 9.84). 

Those conditional probabilities can be obtained from the marginals PN(d; ,d;+i)( 1r d;, di), 

PN(d;,d;+ 1 )(1rd;+u 7rd;, di), and PN(d;,d;+i)(1rv;1 , 7rd;, di) (for each value node Vij); and the 

marginals can in turn be computed by using clique tree propagation, so that all the 

marginals can be computed by visiting each clique at most twice. 

An important observation is that the numerical computations in different sections 

can be carried out in parallel. 
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9.3 Equivalence between SDDN's and their condensations 

This section shows the following theorem. 

Theorem 9.1 A smooth regular SDDN is equivalent to its condensation. 

Proof: Let .N be a smooth regular SDDN and _Ne be its condensation. Let 7r d; denote 

the set of parents of di in .N. Let 7rd; denote the set of parents of di in _Ne_ We know 

that 7rd; = {Xi}. Since 

(9.85) 

we will sometimes abuse symbols to use 7r d;, 7r d;, and Xi interchangeably. 

Because of equation (9.85), a policy for .N is also a policy for .Ne, and vice versa. In 

other words, .N and _Ne have the same policy space. 

So, what remains to be proved is that for any policy b 

(9.86) 

Let P0 and Pf denote the joint probability induced by b over the set of random and 

decision nodes of .N and Af e respectively. This following lemma will be proved shortly. 

Lemma 9.3 For any decision node di, 

Suppose di, ... , dk are all the decision nodes in .N. For each i, let Vii, ... , Vim; be 

all the decision nodes in the section .N (di, di+l). We have 

(By definition) 

L L Ps( 7r d;, di)Ps( '1rv,; j1r d;, di)Jv;; ( '1rv;,) 
1rviJ 1r d\ ,di 
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LL Pt(1rd;,di)PN(d;,d;+1 )(1fv,JTrd;,di)Jv;JTrvJ (By Lemmas 9.3 and 9.1) 
1rv;1 11"d; ,d; 

- L PI(7rd;,di) L PN(d;,d;+1)(~v,jl7rd;,di)Jv;l7rv;J 
11"d; ,d; 1rv;1 

(9.87) 

Consequently, we have 

Eo[N] 
i=l j=l 

k m; 

LL L Pt( 7r d;, di) L PN(d;,d;+i)( 1r v;i l1r d;, di)fv;i ( 7f v;J (By equation (9.87)) 

k m; 

L L Pt( 7r d; l di) LL PN(d;,d;+1) ( 7r Vjj l1r d; l di)JVjj ( 7f Vj3) 

k 

L L Pt ( 7f d;' di) Ji ( 7r d;' di) 
i=l 1rd, ,d; 

k 

LL Pt(xi, di)fi(xi, di) 

(By equations (9.83) and (9.84)) 

( Xi and 1r d; are interchangeable.) 

(By definition) 

The theorem is therefore proved. □ 

Proof of Lemma 9.3: 

We now prove this lemma by induction on i. By Lemma 9.1, this lemma is true for 

the case when i=l. Suppose the lemma is true for the case of i. Consider the case of 

i + 1: 

L Pt( 1r d;, di)PN(d;,d;+i)( 1r d,+ 1 l1r d;, di) (Lemma 9.1) 
1rd;U{d;}-1rdi+l 

L Pt ( 7r d; l di)Pt ( 7r d;+1 l1r d; l di) 
11"d;U{d;}-7rdi+l 

Pt(1rd;+J· 
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Moreover, since P0(dil1rd;) and Pt(dil1rd;) are completely determined by 8, they are 

equal. Consequently, we have 

The lemma is therefore proved. D 

9.4 Condensing SDDN's in general 

A( 1r d;+ 1 )Ps( di+1 i1r d;+1) 

Pt( 7r di+! )Pf ( di+l i1r d;+1) 

Pf ( 7r d;+1 l di+l) • 

This section extends the concept of condensation to cover all SDDN's. Let us first 

consider regular SDDN's in general. Irregular SDDN will be dealt with in Subsection 

9.4.3. 

9.4.1 Sections 

Let N be a regular SDDN, smooth or non-smooth. Let d1 , d2 , ••• , dk be all the decision 

nodes in N. For any i E {1, 2, ... , k - 1}, the section of N from 1rd; to 1rd;+i , denoted 

by N(di, di+i), is the subnetwork of N that consists of the following nodes: 

1. the nodes in 7r di U1r d;+ 1 , 

2. the nodes that are in the downstream set Yu(di,N) of 7rd; and in the upstream set 

Vi( di+1, N) of 1r d;+ 1 , and 

3. the disturbance nodes of di+l, (which are in the downstream set Yu(di+i,N) of 

7r d;+1 ). 

The graphical connections among the nodes in the section N (di, di+l), remain the same 

as in N, except that all the arcs pointing to nodes in 7rdiU{di} that are not disturbance 

recipients of di are removed. 

1. 
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5\[{t, d) 

9{.(d, B) 

Figure 9.30: Sections in a non-smooth regular SDDN. 

The nodes outside 71' d;U{ di} are either random nodes or value nodes. The value 

functions of all the value nodes remain the same as in N. 

The conditional probabilities of the random nodes outside 71' d; U { di} remain the same 

as in N. If a random node cE7rd;U{ di} is a disturbance recipients of di, then its conditional 

probability is the same as in N. The decision nodes in 7l'd;U{di} and the random nodes 

in 71' d; U{ di} that are not disturbance recipient of di are viewed as root random nodes 

without prior probabilities. Compare this definiti'on with the definition of tail for the 

non-smooth case (Section 6.2). 

The initial section N ( - , d1 ) consists of the nodes in 71' di, the nodes in the upstream 

set of 71' di, and the disturbance nodes of d1 ( which are in the downstream set of 71' di). 

This section consists of only random and value nodes, whose conditional probabilities or 

value functions of those nodes remain the same as in N. 

The terminal section N(dk, -) is defined in the same way as in the smooth case. 
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Figure 9.30 shows the sections of the non-smooth regular SDDN in Figure 1.7. Un

like the case of smooth regular SDDN's (Figure 9.27), the sections N(t, d) and N(d, s) 

not only share the node in 7rdrill, but also two other nodes - oil-underground and 

seismic-structure. 

The reader is encouraged to verify that if a regular SDDN is smooth, then its sections 

as defined here are the same as those defined in Section 9.1. To do so, one only need to 

keeps in mind that in a smooth SDDN, there are no disturbance recipients. 

9.4.2 Condensation 

As in the smooth case, in each section N( 71" d;, 71" d;+J we can compute the conditional 

probability .PN(11'a;,11'a;+il(7rd;+il1rd;,di), We can also compute PN(11'a;,11'a;+il(7rv;1 /7rd;,di) for 

each value node Vij in N( 1r d;, 7r d;+i), and hence the local Vi;l,lue function fi• 

Thecondensation of N is defined from the PN(11'a;,11'a;+il(7rd;+i /1rd;, di)'s and the fi's in 

the same way as in Section 9.2. 

Theorem 9.2 A regular SDDN, smooth or non-smooth, is equivalent to its condensation. 

Proof: Let N be a regular SDDN, let N• be the output network of SMOOTHING(N). 

Then N* is smooth and equivalent to N. According to Proposition 9.1, which comes up 

next, the condensation of N is the same as the condensation of N•. Thus N• is equivalent 

to the condensation Ne of N or equivalently of N*. Consequently, N is equivalent to 

Ne. □ 

Proposition 9.1 Let N be a non-smooth regular SDDN, and let N• be the output net

work of SMOOTHING(N). Let di and di+1 be two consecutive decision nodes. Then 

(9.88) 
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and 

(9.89) 

Furthermore, for any value node Vij in N(di, di+i), 

PN•(d;,d;+d ( 7r 1Jjj l1r d; ! di) = PN'(d;,d;+1) ( 7r Vjj l1r d; ! di)• (9.90) 

Proof: Given any policy 8 of N, let P0 be the joint probability 8 induces over all the 

random and decision nodes of N. Then 8 is also a policy of N•. Let P8 be the joint 

probability 8 induces over all the random and decision nodes of N*. Since arc reversals 

do not change the joint probability, we have 

In particular, we have 

Consequently, we have 

and 

P;(1rd1) = Po(1rdi), 

P;( 1r d;+1 l1r d;, di) = Po( 1r d;+ 1 l?r d;, di), 

P5(1rv;jl7T'd;,di) = Po(?rv;jl7rd;,di), 

p; ( 7r d;+ l I 7r d, ' di) 

- Ps( 1r d;+ 1 l1r d., di) 

- PN'(d,,d;+i)(7rd;+1 l1rd,, di), 

PN·(d,,d,+1) ( 7T' Vj3 l1r d, ! di) P;( 7r Vij l1r d, ! di) 

- Ps(1rv,jl1rd,,di) 

- PN(d;,d,+1)(1rv;j 17!' d;, di), 

(9.91) 
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The proposition is therefore proved. D 

9.4.3 Irregular SDDN's 

The generalization of concept of condensation to irregular SDDN's is straightforward. 

The only issue that demands special attention is that there may be more than one 

decision node that directly succeeds a given decision node. Thus, one will not be able to 

speak of the section from di to di+l; one can only speak of the section starting at di. 

The condensation of an irregular SDDN is not a (linear) MDP since the decision nodes 

are not totally ordered. It is an MDP over a rooted tree. 

9.5 Asymmetries and unreachable states 

This section investigates how to make use of the asymmetr.ic nature of decision problems 

to cut down the number of states for nodes in condensations. The basic idea is due to 

Qi (1993). 

9.5.1 Asymmetries in decision problems 

In the oil wildcatter examples, if the test is not performed, there is no test-result. 

The meaningfulness of the variable test-result, depends on the decision made about 

test. This phenomenon is called asymmetry. 

Asymmetries are readily represented in decision trees. In Figure 1.2, we see that the 

decision to test leads the decision maker to the upper branch of the tree, where s/he 

will observe the test-result upon which to make the drill decision. One the other 

hand, the decision not to test leads the decision maker to the lower branch of the tree, 

where there is no test-result. S/he has to make the drill decision without knowing 

anything about the seismic-structure. The lower branch is much smaller than the 
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upper branch because of asymmetries. 

. Influence diagrams ( and decision networks) are appreciated for compactness, intu

itiveness and the ability to reveal independencies. However they cannot represent asym

metries. Artificial states have to be introduced to render the decision problems "sym

metric". The oil wildcatter problems are made "symmetric" by introducing the artificial 

value no-result for the variable test-result. 

Artificial states may bring about unnecessary computations. In the oil wildcatter 

example, both test and test-result are parents of drill. Thus, a decision for drill 

has to be computed for all possible combinations of values of test and test-result, even 

though some of those combinations, for instance test=no and test-resul t=open-structure, 

are impossible. Such unnecessary computations lead some to doubt the efficiency of in

fluence diagrams (Lawrence 1990, Shafer 1993). 

Fung and Shachter (1990), Covaliu and Oliver (1992), Smith et al (1993) , and Shenoy 

(1993) deal with the asymmetric nature of decision problems by generalize influence di

agrams to explicitly represent asymmetries. This section shows that in SDDN's, asym

metries can uncovered even when they are not explicitly represented. We still need to 

introduce artificial states; but we are able to eliminate the unnecessary computations 

brought about by those artificial states. 

9.5.2 Eliminating unreachable states in condensations 

In the condensation shown in Figure 9.29, x2 is a compound variable consisting of test 

and test-result, which are respectively shorthanded as t and tr. The variable t has two 

possible values - yes or no, while tr has four - no-structure (ns ), open-structure 

( os ), closed-structure (cs) and no-result (nr ). Thus, x2 has eight possible values. 

Since x2 is a variable in a condensation, which is a MDP, we shall refer to its possible 

values as states. 
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Due to the asymmetric nature of the oil wildcatter problem, four of the eight states 

of x2 , namely (t=no, tr=ns), (t=no, tr=os), (t=no, tr=cs), and (t=yes, tr=nr), are 

unreachable, in the sense that their probabilities are zero. By pruning those states of 

x2 , we avoid the unnecessary computation due to the introduction of the artificial state 

no-result. 

We now define the concept of unreachable state more rigorously. Suppose N is a 

regular SDDN and Nc is its condensation. Let di be a decision node and let Xi be its 

unique parent in Nc. As before, we shall use Xi, 7r d;, and 7rd; interchangeably. 

Any policy 8 of Nc induces a joint probability P5 over all the random and decision 

nodes of Nc. A state (3 of Xi is unreachable under o if Pt( Xi=/3) = 0. A state of Xi is 

unreachable if it is unreachable under all the policies of Nc. 

One interesting question is: How can one identify unreachable states? 

For any state (3 of x1 , Pt(x 1=(3) is independent of 8 and equals PAf(-,di)(1r1=/3). So, 

it is unreachable if and only if 

When i > 1, the state { Xi=/3} is unreachable if and only if the following is true: for 

any policy 8 and for any aEndi-1 and any ,Enxi-1' either 

By Lemma 9.1, we have: 

Therefore, we have 
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Theorem 9.3 Suppose N is a regular SDDN. 

1. A state { x 1 = ,8} is unreachable if and only if 

2. J!Vhen i > l, the state { Xi=,8} is unreachable if and only if for any a E Dd;_1 and 

any I E n11"d ' either ,-1 

( a) { 1r d;_ 1 =,} is unreachable, or 

This theorem suggests an obvious top-down procedure of constructing the condensa

tion of regular SDDN's that eliminates unreachable states along the way. One begins 

by computing PN(-,di)(1rd1 =,8) for each state ,8 of x1 , and :deletes those states with zero 

probability. One then computes PN(d1 ,d2 )(1rd2 =,8\1rd1 =,, d1=a) for each state ,8 of x2 given 

each reachable state , of x 1 and each value a of d1 , and deletes all the states ,8 whose 

conditional probabilities are always zero. And so on and so forth. 

So far in this section, our exposition has been in terms only regular SDDN's. However, 

the idea can be extended to irregular SDDN's in a straightforward way. 

This approach constructs condensations that do not contain any unreachable states. 

However, it also excludes the possibility of the parallel computations we mentioned in 

Subsection 9.2.1. 

9.6 A two-stage algorithm for evaluating SDDN's 

The concept of condensation leads to the following two-stage approa~h for evaluating 

regular SDDN's. 

Procedure EVALUATE2(N) 
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• Input: N - an SDDN. 

• Output: The optimal policy and the optimal expected value of N. 

1. Compute the condensation N c of N. 

2. Evaluate Nc by the folding back strategy. 

The procedure EVALUATE2 can be viewed as a modification of EVALUATE!, where 

all the Bayesian network inferences (BNI's) are grouped into one stage, i.e the stage of 

condensation. EVALUATE2 is better than EVALUATEl in terms of modularity. As a 

matter of fact, EVALUATE2 can be implemented in three modules: one for managing 

sections of SDDN's, one for doing BNI's, and one for evaluating MDP's. MDP's have 

been studied in Dynamic programming for a long time, BNI's have also been under 

extensive investigation during the last decade. Good algorithms exist for both MDP's 

and BNI's. This leaves us with only the module for managing sections of SDDN's. 

Besides modularity, a more important of advantage of EVALUATE2 over EVALU

ATE! is, as pointed out in Section 9.5, that EVALUATE2 enables us to exploit the 

asymmetric nature of decision problems. Also EVALUATE2 facilitates parallel process

ing (Section 9.2.1). As we pointed out Section 9.5, one can only have one of those two 

advantages; they do not co-exist. 

Zhang et al (1993b) presents yet another advantage of EVALUATE2, namely EVAL

U ATE2 also leads an incremental method of computing the value of perfect information. 

9.6.1 Comparison with other approaches 

Two two-stage algorithms for evaluating influence diagrams have been proposed by 

Howard and Matheson (1984) and Cooper (1989). 

To evaluate an influence diagram, Howard and Matheson (1984) first transforms the 

' 
I. 



Chapter 9. SDDN's and Markov decision processes 177 

diagram into a decision tree, and then evaluate the decision tree. Our approach transform 

an SDDN into an MDP, instead of a decision tree. In Howard and Matheson's trans

formation, every random node in the influence diagram corresponds to one level in the 

decision tree, while in our approach all the random nodes, except for those that are ob

served at some point, are summed out in the condensation process. Also, condensing an 

SDDN into an MDP does not lose independencies for decision nodes, while transforming 

an SDDN into a decision tree would. 

To understand the approach by Cooper (1989), consider an influence diagram N. Let 

v be the only one value node and let the decision nodes be d1 , d2 , ... , dk, Given a policy 

8, let A be the joint probability 8 induces over all the random and decision nodes. It is 

implicit in Cooper (1989) that Ps(7rd;+i J7rd,, di) does not depend on 8; and hence can be 

written as P(7rd,~1 17rcf,, di)-

Recursi vely define a series of functions 9i ( 1 :Si :S k) by 

(9.92) 

fv is the value function for v; and for any i<k 

9i(7rd;) =def maxdi L 9i+1(7rd,+ 1 )P(7rd,+ 1 171'd,,di), (9.93) 
7r d;+1 -71" d; 

The following proposition is given by Cooper (1989). 

Proposition 9.2 For any iE{l, 2, ... , k}, the optimal policy 8° for di is given by 

8°(7rd;) = argmaxd, L gi+1(7rd,+1 )P(7rd,+1 17rd;,di), 
11"a;+1 -1rc1i 

The optimal expected value E[N] is given by 
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Proof: Consider the condensation Ne of N. The probability P( 1r d;+i J1r d;, di) is the same 

as pc( 1r d;+i J7r d;, di), The function 9k is the value function of v%, and the value functions 

of all the other value node in A(c are zero. The proposition thus follows from the fact 

that A(c is an MDP. D 

To make a comparison, it has been pointed out in this thesis that the conditional 

probability P( 11' d;+i 171' d;, di) can be computed locally in the section N( di, di+I ). More 

importantly, we have generalized Proposition 9.2 from influence diagrams to SDDN's 

(Theorems 9.1 and 9.2). 
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Conclusion 

10.1 Summary 

This thesis has been about how to use Bayesian decision theory to solve decision prob

lems that involve multiple decisions and multiple variables. Here is a summary of our 

contributions. 

First of all, the concept of a decision network has been developed from a general way 

for stating decision problems and a standard Bayesian decision theory setup. A decision 

network is a representation of a decision problem together with knowledge (belief) and 

utilities necessary for its solution. We have argued that decision networks are the most 

general representation framework for the purpose of solving what we call multiple-decision 

problems in Bayesian decision theory. In particular, decision networks are more general 

than influence diagrams. 

The evaluation of a decision network requires, in general, an exhaustive search through 

the whole policy space. A concept of decomposability has been introduced for decision 

networks and it has been shown that this decomposability leads to a divide and conquer 

strategy. 

From a computational point of view, it is most desirable if a decision network is 

stepwise-solvable, i.e if it can be evaluated by considering one decision node at a time. 

We have introduced stepwise-decomposable decision networks (SDDN's) and have shown 

they can be evaluated not only by considering one decision node at a time, but also by 

179 
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considering only one portion, usually a small portion, of the network at time. 

We h~ve also shown that stepwise-decomposability is the weakest graphical criterion 

that guarantees stepwise-solvability. 

The problem of evaluating SDDN's has been studied in detail. A number of important 

concepts, such as simple semi-decision networks, body, tail, and smoothness have been 

identified. A procedure named EVALUATE! has been proposed. The advantages of this 

procedure include the adoption of the divide and conquer strategy, a clear separation of 

Bayesian network inferences, and minimal numerical divisions. 

We have introduced the concept of decision nodes being conditionally independent of 

part of available information, and have shown its equivalence to the concept of removable 

arcs. An algorithm has been designed that is able to find and prune all the removable 

arcs in an SDDN that can be identified graphically without resorting to numerical com

putations. 

Finally, we have investigated the relationship between SDDN's and Markov decision 

processes. Finite stage Markov decision processes are special SDDN's, and SDDN's can 

be condensed into Markov decision processes. This relationship leads to a two-stage 

approach for evaluating SDDN's. Besides providing an even cleaner interface between 

decision .network evaluation and Bayesian network inferences than EVALUATE!, this 

approach is able to make use of the asymmetric nature of decision problems, facilitates 

parallel computation, and gives rise to an incremental way of computing the value of 

perfect information. 
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10.2 Future work 

10.2.1 Application to planning and control under uncertainty 

High on our list of future research is to apply the theory of decision networks to the area 

of planning and control under uncertainty, and thereby further develop the theory. 

The history of influence diagrams is short (Matheson and Howard 1984, Miller et 

al 1976); and using influence diagrams to represent dynamic systems for the purpose 

of planning and control is a development over the last three or four years (Dean and 

Wellman 1991). Many issues remains to be addressed. 

To get a feeling about some of the issues, let us consider the mobile target localization 

problem taken from Dean et al (1990) with some minor changes. As shown in Figure 

10.31, there is a mobile target, and there is a robot that tracks the target. The target 

location as observed by the robot may be different from the actual target location. At 

each time point, the robot makes a decision as to what location to report based on the 

observed target location. There is a payoff depending on how accurate the report is; the 

overall payoff is the sum of the payoffs of all the time points. The robot also makes a 

tracking decision according to its own location and the observed target location. The 

location of the robot at the next time point depends on its location and the tracking 

decision made at the current time point. 

In this example, the decisions at time point t2, for instance, depend on the observed 

target location at time point tl, because it helps the robot to better estimate the actual 

target location at time point t2. The decisions at time point t20 depend on the observed 

target locations at all the previous time points, as indicated by the dotted arcs. So, 

the decision nodes at time point t20 have 21 parents, and their decision table have n 21 

entries, where n stands for the number of possible locations. A decision table of such a 

size can neither be computed nor be stored. 
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Figure 10.31: Mobile target localization. 

As we mentioned in the introduction, a reasonable thing to do here is to assume de

cision at any time point depends on only, for instance, two previous time points, while 

being independent of all the other time points. This kind of independence assumptions 

for decision node can be make in decision networks because they are able to represent 

independencies for decision nodes. One important issue in applying the theory of deci

sion network to planning and control is how can one guarantee that those independence 

assumptions yield decisions with acceptable bounds from the optimal? 

When evaluating decision alternatives at a certain time point, one looks into the 

future to see what states of affairs each of the alternative may result in and with what 

certainties. Another issue in applying the theory of decision network to planning and 

control is how many time points should one looks into the future? How should one 

discount the importance of future time points that are far from the present? 

The above two issues are about reducing the complexities of planning and control 

problems in the time dimension. Another dimension in which one can explore the op

portunities for reducing complexities is the dimension of problem structure. The graph

theoretical language of decision networks allows us to capture, at the level of relation, the 
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dependence and independence relationships among nodes. A step further is to explore 

the so-called inter-causal indepedencies ( e.g. Heckerman 1993), which basically says that 

several caused independently contribute to an effect. Inter-causal independence is at the 

numerical level. 

Let k be the number of parents of a random node c. Suppose all variables are binary. 

Then, the conditional probability of c requires 2k+I -1 numbers to specify. Assessing 

those numbers and using them in inferences is hard when k is large. However, if the 

conditional probability of c satisfies the so-called noisy OR-gate model~ an inter-causal 

independence model - then we need only k numbers to specify the conditional prob

ability (Pearl 1988). There is a growing research interest in making use of inter-causal 

models to reduce the complexities of knowledge acquisition and inference in Bayesian 

networks and Influence diagrams (e.g. Heckerman 1993). Much work remain to be done 

in this direction. 

One specific idea we have is to treat the noisy OR-gate model in Dempster-Shafer 

theory. Dempster-Shafer theory is a theory about combining evidence from independence 

sources, and is thus closely related to the concept of inter-causal independence. 

10.2.2 Impleme.ntation and experimentation 

Another thing to do in the future is implementation. The procedure EVALUATEl can 

probably be implemented on top of IDEAL, a software package for analysis of influence 

diagrams developed by_ Srinivas and Breese (1990). For the sake of TEST-STEPWISE

DECOMPOSABILITY and PRUNE-REMOVABLES, it is a good idea to keep the skele

ton of a decision network separate from its numerical components, namely its condi

tional probabilities and value functions. The implementation of EVALUATE2 may be 

more involved if the functionalities of parallel processing, exploitation of asymmetries 

and incremental computation of value of information are all to be materialized. 
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In the thesis, we have argued the that EVALUATE! and EVALUATE2 are advan

tageous over all the previous algorithms for evaluating influence diagrams. Experiments 

need to be performed to substantiate this claim. 

10.2.3 Extension to the continuous case 

This thesis has only dealt with discrete variables. It would be interesting to extend our 

theory so that it can also handle continuous variables. To achieve this extension, the 

following three issues need to be addressed. 

The first issue is the existence of an optimal policy. This is not an issue in the 

discrete case. Since there are only finitely many possible policies, one of them must be 

optimal. In the continuous case, however, there may be infinitely many possible policies; 

the existence of an optimal policy is not obvious. 

The second issue is integration. In the discrete case, we sum out variables. In the 

continuous case, we need to integrate out variables. While summation is provided in 

most programming languages, integration is not. 

The third issue is the operation of finding the maxima of a function. This can be done 

by exhaustive enumeration in the discrete case. In the continuous case, more advanced 

techniques need to be used. 

10.2.4 Multiple agents 

We have said that decision network is able to represent multiple cooperative agents 

with a common goal. We have also given two examples in this regard. However, much 

foundational work remains to be done to ensure that the optimal decision policies as 

defined in this thesis is indeed optimal in particular applications. 

One can also consider game theory situations where agents are adversaries of each 

other. One may come out with some kind of game network based on game trees in a way 
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similar to how decision networks grew out of decision trees. 
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