A Computational Theory of
Decision Networks

by
Nevin Lianwen Zhang

Technical Report 94-8
March 1994

Department of Computer Science
University of British Columbia
Rm 201 - 2366 Main Mall
Vancouver, B.C.
CANADA V6T 174

Telephone: (604) 822-3061
Fax: (604) 822-5485

A COMPUTATIONAL THEORY OF DECISION NETWORKS
By
Nevin Lianwen Zhang
B. Sc. (Mathematics) China University of Elect. Sci. & Tech.
M. Sc., Ph. D. (Mathematics) Beijing Normal University

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DocTOR OF PHILOSOPHY

in
THE FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

..
..
..
..

..

THE UNIVERSITY OF BRITISH COLUMBIA
December 1993
© Nevin Lianwen Zhang, 1994

In presenting this thesis in partial fulfillment of the requirements for an advanced degree
at the University of British Columbia, I agree that the Library shall make it freely
available for reférence and study. I further agree that permission for extensive copying
of this thesis for scholarly purposes may be granted by the head of my department or by
his or her.representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Computer Science

The University of British Columbia
2366 Main Mall

Vancouver, Canada

V6T 174

Date;

Abstract

This thesis is about how to represent and solve decision problems in Bayesian decision the-
ory (e.g. Fishburn 1988). A general representation named decision networks is proposed
based on influence diagrams (Howard and Matheson 1984). This new representation
incorporates the idea, from Markov decision processes (e.g. Puterman 1990, Denardo
1982), that a decision may be conditionally independent of certain pieces of available
information. It also allows multiple cooperative agents and facilitates the exploitation
of separability in the utility function. Decision networks inherit the advantages of both
influence diagrams and Markov decision processes.

Both influence diagrams and finite stage Markov decision processes are stepwise-
solvable, in the sense that they can be evaluated by considering one decision at a time.
However, the evaluation of a decision network requires, in general, simultaneous consider-
ation of all the decisions. The theme of this thesis is to seek the weakest graph-theoretic
condition under which decision networks are guaranteed to be stepwise-solvable, and to
seek the best algorithms for evaluating stepwise-solvable decision networks.

A concept of decomposability is introduced for decision networks and it is shown that
when a decision network is decomposable, a divide and conquer strategy can be utilized
to aid its evaluation. In particular, when a decision network is stepwise-decomposable it
can be evaluated not only by considering one decision at a time, but also by considering
one portion of the network at a time. It is also shown that stepwise-decomposability is
the weakest graphical condition that guarantees stepwise-solvability.

Given a decision network, there are often nodes and arcs that can harmlessly removed.

An algorithm is presented that is able to find and prune all graphically identifiable

11

removable nodes and arcs.

Finally, the relationship between stepwise-decomposable decision networks (SDDN’s)
and Markov decision process is investigated, which results in a two-stage approach for
evaluating SDDN’s. This approach enables one to make use of the asymmetric nature
of decision problems, facilitates parallel computation, and gives rises to an incremental

way of computing the value of perfect information.

il

Table of Contents

Abstract

List of Figures

List of symbols

Acknowledgement

1 Introduction

1.1
1.2
1.3

1.4
1.5

1.6

SYnOpsiE 3. 54 s S RW R NG FESEHHE T 6 BRE N NG EAET A
Bayesian decision theory,
Decision analysis 0 i v i e e e e e e e e e e
1.3.1 Decisionfrees o i i it i e e e
1.3.2 Influencediagrams
1.3.3 Representing independencies for random nodes
Constraints on influence diagrams
Lifting constraints: Reasons pertaining to decision analysis
1.5.1 Lifting the no-forgetting constraint
1.5.2 Lifting the single value node constraint
1.5.3 Lifting the regularity constraint
Lifting constraints: Reasons pertaining to MDP’s
1:6:1 Finfestage MDP% s sswewmoneo ey o665 @& 85 % &
1.6.2 Representing finite stage MDP’s

v

il

ix

x11

xiv

co - o o =

1.¥ Computational merile « c s cpa vnmowbs ssWames a5 ¥ 6 &

1.8 Whynotliftedearier « v « o s sisovianii sa@wieai 64 vaE ¥ s
1.9 Subclasses of decision networkso
1.10 Who would be interested and why

Decision networks: the concept

2.1 Decision networks intuitively L0, .

21,1 Amoteo e e e e e e e e e e
22 Bayemsttolvorll « cw vamem i @mumn s Eamams 55 8§ &8 e s §
23 Decision BetWorks « wov s v am s o vn s ae va vaw e s e 64w e RS

2.3.1 A general setup of Bayesian decision theory
2.3.2 Multiple-decision problems
2.3.3 Technical preparations : . v s v o v s 5 s % v s 4 65 v 0 5 o ¢ w o s
2.3.4 Deriving the concept of decision networks
280 DANEREPIE o s v e PR RIS T EEAER I ERE TR HA

2.4 Fundamental constraints i e e e e

Decision networks: formal definitions

3.1 Formal definition of Bayesian networks
3.2 Variables irrelevant toaquery
3.3 Formal definitions of decision networks
34 Anaivealgorithm e e e
3.5 Stepwise-solvability
3.6 Semi-decisionnetworks

Divide and conquer in decision networks

4.1 Separation and independence

30
30
33
34
36
36
37
38
39
41
42

45
45
48
50
83
57
39

62

4.2 Decomposability of decision networks, 65

4.2.1 Properties of upstream and downstream components 66
4.3 Dhvide anidi@maier « a o5 o ow oo % om s ve Hw Row o s G R E G R R W H K 69
Stepwise-decomposable decision networks 71
gk DBBAIIOR: o v wvwvs s vamsmen w7 95 @ F SR 65 & 0@ G0 % NG5 72
5.1.1 Anotherwayofrecursion. v oonn T4
5.2 Stepwise-decomposability and stepwise-solvability 75
5.3 Testing stepwise-decomposability 76
5.4 Recursive tail cutting 78
5.4.1 Simple semi-decision networks 79
542 Proofs e e e e e 80
5.5 Evaluating simple semi-decision networks i 82
5.6 The procedure EVALUATE, 85
Non-Smooth SDDN’s 87
6.1 Smoothing non-smooth SDDN’s 87
6.1.1 Equivalence between decision networks 88
612 Arcreversdl - s vss vis s wa e ns sRGER B IS ESEE By 88
6.1.3 Disturbance nodes, disturbance arcs, and disturbance recipients . 90
6.1.4 Tail-smoothing skeletons 92
6.1.5 Tail smoothing decision networks 94
6.1.6 Smoothing non-smooth SDDN’s 95
BLT Piool 5 cumin 65 AR RS sk Sammom o e s s amna &m s 97
6.2 Tailland body i i e e 99
6.2.1 Tail and body at the level of skeleton 100
6.2.2 Tail of decisionnetworks 101

Vi

623 -Body of decision fnetworks . v i v s g ws Sem i@ 40w ew o
63 Theproceduie EVALUATEL . & v s s cow sz saewnwsw s gan o 5w
64 Correctiess of EVALUATEL : . 5 v v o o6 6w v 6 w5 5 6@ o ae s
6.5 Comparison to other approaches« v v v v i i
6.5.1 Desirable properties of evaluation algorithms

652 Otherappronches s 5 s 5 ci5 e M HES ¥ md ©6@ 34 & 6mws

Removable arcs and independence for decision nodes

7.1 Removable arcs and conditional independencies for decision nodes
1.2 Longly 8068 & wuw sowamesmamecwmk BHESE 85 29 LTSS &5
7.3 Pruning lonely arcs and stepwise-solvability
7.4 Potential lonely arcs and barrennodes

TH Ao BlEOBIEIE o w0 vovooow o wom e o me w w7 5w 8 0 K dis B8 B KT g ow e

Stepwise-solvability and stepwise-decomposability
8.1 Normal decision network skeletons
B2 Shott-Bultiig o on v5 s 956 55 @ 93 @30 8% 58 e ¥ & e b
83 Rootbrandom nodevemoval . i v s v wsis i nw v o 8@ B s & W @R
Bd ATEIEVEERl s s 535 45 MRS I G A AT e e AL @S m P p e a0 s
8.5 Induction on the number of randomnodes
8.6 Induction on the number of decisionnodes
8.6.1 Anextensionandacorollary.
8.7 Lonely arcs and removablearcso i vt e,

8.8 Stepwise-solvability and stepwise-decomposability

SDDN'’s and Markov decision processes

9.1 Sections in smooth tlar SDING o o v v oy mp@ms 5w s wgp we

vil

118
119
121
123
124
125

127
128
130
135
138
142
145
147
148
150

157

9.1.1 An abstract view of a regular smooth SDDN 160

9.1.2 Conditional probabilities in a section 161

9.1.3 The local value function of a section 161

9.1.4 Comparison with decision windows 162

9.2 Condensing smooth regular SDDN’s o v v v v v v v s v 163
921 Parallel cotpltationg : o+ < s w5 o v i 0 b & %9 2@% & ¥ 9% &S 165

9.3 Equivalence between SDDN’s and their condensations 166
9.4 Condensing SDDNsin getietal s v s s w s s s w s m o 05 5956 59 8 % 168
G4l Seeliolis :: v s s REE IV E RS SE IF L6 E 6 8 adha 168

942 'Condensdfiol s x 9% s el msm st d iR e aGamah s o854 170

923 TrouddarSDDNS . ssdw o M e s Bas s o0 o0 % S84 525 172

9.5 Asymmetries and unreachable states g o dilel e Ay 172
9.5.1 Asymmetries in decision problems 172

9.5.2 Eliminating unreachable states in condensations 173

9.6 A two-stage algorithm for evaluating SDDN’s 175
9.6.1 Comparison with other approaches 176

10 Conclusion 179
10 BUATHEIY & & 5 b @ @ & B0 50w 65 08T S e 179
103 PR WOEE < i v oo a6 @999 8 W65 998 wEaral e ¥ & s sk 181
10.2.1 Application to planning and control under uncertainty 181
10.2.2 Implementation and experimentation 183
10.2.3 Extension to the continuouscase . i . ¢ o5 v v e v s o550 184
10:2.4 Multiple agenle: v ov 66 56 24 A 958 P s P T ERTH & R R 6 04 184
Bibliography 186

viil

1.1
1.2
1.3
1.4
1.5
1.6

1.7

1.8
1.9
1.10

2.11
212
2.13

3.14
3.15

4.16
4.17

List of Figures

Dependericies. amongt the chaplets.c <o « o 45 a8 5 d b A o a2 0 o9 3
A decision tree for the oil wildcatter problem.
An influence diagram for the oil wildcatter problem.
An influence diagram for the extended oil wildcatter problem.
A decision network for the extended oil wildcatter problem..
A decision network for the extended oil wildcatter problem with multiple
VAINE DOdER: o v it nE @y R AR PTG PR AEHEE P KL @S
The decision network obtained from the one in Figure 1.6 by deleting some
FOIOOVRDIE BI0E: i i EF I PR FERLFPEREPER M EH 5 A
A decision network for the further extended oil wildcatter problem.

A three period finitestage MDP. ¢ ¢ v v v v v v v e v an o

Subclasses of decision DEtWOTKS. » . & v 4 v v v b e e e e e e e e e e e

A decision network for the extended oil wildcatter problem..
Two Bayesian networks for a joint probability.

Two decision networks for the rain-and-umbrella problem.

Bayesian network and irrelevant variables.
A decision network whose evaluation may require simultaneous consider-

ation of all the decision nodes. i v i i

The relationships among the sets Y, Y, Yrr, Xy, Xy, and g

Downstream and upstream components.

X

32
35
42

46

5.18 Step by step decomposition of the decision network in Figure 2.11. 73

6.19 Theconcepbof arcreversal . . . v » v v B 458 s 4 & 84 82854 o8 88
6.20 A non-smooth decision network skeleton. 91
6.21 The application of TAIL-SMOOTHING-K. 93
6.22 The effects of applying SMOOTHING to the SDDN in Figure 1.7. 96

6.23 Tail and body for the non-smooth decision network skeleton in Figure 6.20.100

7.24 Removable arcs and removablenodes. 121
8.25 An abnormal decision network skeleton. 128
820 SHOrE-Catling: = v 3 2 v S n S F S A B IN EEEFHIE IFB LI ET LT 373 130
9.27 A regular SDDN and itsgections. . . v v v iv v v oo mwe o mm v 159
9.28 An abstract view of a smooth regular SDDN.. 160
9.29 The skeleton of the condensation of the SDDN in Figure 9.27. 164
9.30 Sections in a non-smooth regular SDDN. 169
10:31Manile target loealzabion.. o o« o s vw v 50m o 0 v & w605 W 5w s 182

List of symbols

a, B, v: value of a variable or of a set of variables (nodes)

B, By, By: sets of nodes (variables)

C': the set of random nodes in a decision network

d, d;: a decision node (variable)

8: a policy for a decision network, i.e a vector of decision functions
A: policy space, the set of all policies

A;, Ay: decision function space of d;, d

d;, 84: a decision function for a decision node d;, d

6°: optimal policy of a decision network

8?2, 63: optimal decision function for a decision node d;, d

D: the set of decision nodes in a decision network

~e(d, mg): the evaluation functional of a simple semi-decision network
E[N]: the optimal expected value of a decision network A

E[N|S]: the optimal conditional expected value of a decision network A given S
Es[N): the expected value of a decision network A under policy §
E5|N'|S]: the conditional expected value under policy §

K: a decision network skeleton.

K1(d,K), K1: body of a decision network skeleton.

K11(d,K), K11 : tail of a decision network skeleton.

p: utility or value function

N: a Bayesian network or a decision network.

Ni(d,N'), N: body of a decision network.

X1

Nir(d,N'), Nip : tail of a decision network.

N¢: condensation of a decision network.

N (d;,d;41): section of a decision network.

Nj: the Bayesian network induced from a decision network A by a policy 6.
Q: the frame of a variable or the Cartesian product of the frames of variables
P: a set of probabilities

P(c|m.): the conditional probability of random variable c given its parents =,
Ps, Ps(X): the joint probability induced by a policy 6

Py: the multiplication of all the conditional probabilities in a simple semi-decision network
7. the set of parents of node z in a network

S: a set of variables, usually related to separator

V: the set of value nodes in a decision network

X: the set of random and decision nodes in a decision network

Xr: the set of random and decision nodes in upstream set

Xir: the set of random and decision nodes in downstream set

Y: the set of all the nodes in a decision network

Y1, Yi(d,N), Yi(d,K): upstream set

Yir, Yir(d, N), Yi1(d,K): downstream set

xil

Acknowledgement

First, I would like to thank my thesis supervisor David Poole for his guidance, encour-
agement, support, and friendship. David, it has been great fun being your student.

[am grateful to Runping Qi for stimulating discussions, his friendship, and his poem.

Members of the UBC reasoning group have been always the first to hear about and to
criticize my ideas. Besides David and Runping, other members of the group include Brent
Boerlage, Craig Boutillier, Mike Horsch, Keiji Kanazawa, Ying Zhang. Folks, thank you
all for bearing with me and for all your valuable comments and suggestions.

Thanks also go to Bruce D’Ambrosio, David Kirkpatrick, David Lowe, Alan Mack-
worth, Raymond Ng, Nicholos Pippenger, Martin Putermz;n, and Jim Zidek for serving
on my supervisory comimittee af}d/or my examination committee.

I thank the department staffs: Deborah, Everlyn, Gale, Grace, Jean, Joyce, Monica,
and Sunnie for their help and friendliness.

I thank my friends, office mates, lab-mates for sharing wonderful times, and for es-
sential support during some not-so-wonderful times.

Finally, I would like to thank all my teachers from the past: Xinfu Zhang, Duangcai
Wang, Quanglin Hou, Peizhuang Wang, Sijian Yan, Glenn Shafer, Prakash Shenoy, and
David Poole, to name a few. Together, they have made an academice career possible for

a shabby boy from a remote and poor Sichuan village.

xiil

Chapter 1

Introduction

This thesis is about how to represent and solve decision problems in Bayesian deci-
sion theory (e.g. Fishburn 1988). A general representation named decision networks is
proposed based on influence diagrams (Howard and Matheson 1984). This new represen-
tation incorporates the idea, from Markov decision processes (e.g. Denardo 1982), that a
decision may be conditionally independent of certain pieces of available information. It
also allows multiple cooperative agents and facilitates the exploitation of separability in
the utility function.

Influence diagrams are stepwise-solvable, that is they can be evaluated by considering
one decision at a time (Shachter 1986). However, the evaluation of a decision network re-
quires, in general, simultaneous consideration of all the decisions. The theme of this thesis
1s to seek the weakest condition under which decision networks are stepwise-solvable, and
to search for the best algorithms for evaluating stepwise-solvable decision networks.

This introductory chapter provides a synopsis of our theory, and describes how and
why it differs from its two mother theories: the theory of influence diagrams and the
theory of Markov decision processes.

The synopsis in Section 1.1 below describes salient features of the following chapters.
Section 1.2 reviews Bayesian decision theory, and Section 1.3 reviews two methodologies
for decision analysis, namely decision trees and influence diagrams.

An influence diagram is a representation of a single agent’s view of the world as

relevant to a decision problem; it spells out information availability for each decision.

Chapter 1. Introduction 2

Several constraints follow from its semantics (Section 1.4). A decision network, on the
other hand, is a representation of a group of cooperative agents’ view of the world; it
indicates both information availability and dependency for each decision node. Some
constraints of influence diagrams do not apply to decision networks.

Syntactically decision networks are arrived at by lifting some of those constraints
(Section 1.4). Reasons for lifting the constraints originate from the demand of a more
general representation framework in decision analysis (Section 1.5), and from the effort to
provide Markov decision processes with a graph-theoretic language (Sections 1.6). More
importantly, the lift.ing of constraints also allows us to apply more techniques in solving
a problem and hence leads to better and more efficient algorithms (Section 1.7).

Section 1.9 echoes the synopsis by providing a description of all the subclasses of
decision networks we will encounter later. Finally, Section 1.10 suggests who might be

interested in this thesis, and why.

1.1 Synopsis

Our goal is to enable computers to help decision makers solve complex decision problems.
The first step in achieving this goal is to design a language or some kind of representa-
tion framework so that decision makers and computers can communicate about decision
problems. Two frameworks exist previously, namely influence diagrams (Howard and
Matheson 1984, Shachter 1986) and Markov decision processes (MDP) (see, for example,
Denardo 1982).

MDP’s are a model of sequential decision making for the sake of controlling dy-
namic systems; it is special-purpose. Influence diagrams are a general framework for
decision analysis; however they are always required to satisfy the so-called no-forgetting

constraint, which requires a decision node and its parents be parents to all subsequent

Chapter 1. Introduction 3

decision nodes.

There are at least three reasons that a decision maker would be interested in lifting

the no-forgetting constraint (details coming up in later in this chapter):

1. The decision maker may be able to qualitatively determine that a decision does not
depend on certain pieces of available information. As a matter of fact, one result
of MDP theory is that given the current state of the dynamic system, the optimal
current decision is independent of previous states and decisions, even though they
are known. Such conditional independence for decisions can-not be represented
in influence diagrams. The no-forgetting constraint is supposed to capture the
rationale that information available earlier should also be available later. In the
mean time, unfortunately, it also excludes the possibility of earlier information

being irrelevant later.

2. There may be several cooperative decision makers, each responsible fqr a subset
of decisions. When communication is not feasible or is too expensive, information
available earlier to one decision maker may not be available later to a different
decision maker. Furthermore, there may not be a predetermined ordering among
the decisions. This defeats not only the no-forgetting constraint, but also another
constraint — the so-called regularity constraint, which requires a total ordering

among the decisions.

3. It has been noticed that given an influence diagram, a decision node may turn out
to be independent of some of its parents. In such a case, the arcs from those parents
to the decision node can be harmlessly removed. It is a good idea to remove such
arcs at a preprocessing stage, since it yields a simpler diagram. However, removing

arcs from an influence diagram leads to the violation of the no-forgetting constraint.

Chapter 1. Introduction 4

In this thesis, we lift the no-forgetting constraint, together with two other constraints
previously imposed on influence diagrams, and make due semantic modifications to arrive
at decision networks (DN), a framework for representing decision problems that is more
general then both influence diagrams and finite stage MDP’s.

In both influence diagrams and finite stage MDP’s, a decision problem can be solved
by considering one decision at a time, while solving a decision problem in the framework
of general DN's requires simultaneous consideration of all the decision nodes, even when
the structure of the problem is simple (Chapter 3). One of the themes of this thesis is to
investigate when a decision network can be solved by considering one decision node at a
time. We give a graph-theoretic criterion called stepwise-decomposability (Chapter 5);
and we prove that this criterion is the weakest graph-theoretic criterion that guarantees
stepwise-solvability (Chapter 8).

Another theme of this thesis is to develop algorithms for evaluating stepwise-decomposable
decision networks (SDDN’s). As a first step, we find a way to prune all the removable
arcs that are graph-theoretically identifiable (Chapters 7, 8). It is shown that pruning
removable arcs from SDDN’s does not destroy the stepwise-decomposability (Section 7.3).

A divide-and-conquer procedure named EVALUATEI] for evaluating SDDN’s is de-
veloped (Chapters 4, 5, and 6). This procedure has several other advantages in addition
to embracing the divide and conquer strategy. It clearly identifies all the Bayesian net-
work (BN) inferences involved in evaluating a SDDN. Consequently, it can be readily
implemented on top of any BN inference systems. The procedure does not require arc
reversals and induces little numerical divisions. Finally, the procedure explicitly exploits
independencies allowed by multiple value nodes (Section 6.5).

A two stage procedure named EVALUATE2 is also developed on the basis of EVAL-
UATE]1 (Chapter 9) as a result of our investigation on the relationship between MDP’s
and SDDN’s. EVALUATE2 inherits all the advantages of EVALUATEL. Furthermore,

Chapter 1. Introduction 5

background
& concepts
Chaptexs 1, 2

formal
definitions
Chapter 3

evaluation:
divide and conguer
Chapters 4, 5, 6

preprocessing: goodness evaluation:
removable arcs theorams two-stage approach
Chapter 7 Chapter 8 Chapter 9

Figure 1.1: Dependencies among the chapters.

it enables one to exploit the asymmetric nature of decision problems' and opens up the
possibility of parallel processing (Section 9.2.1). It also leads to an incremental way of
computing the value of information (Zhang et al 1993b). ‘

There have been a number of previous algorithms for evaluating influence diagrams.
Since influence diagrams are special SDDN’s, there can also be evaluated by the algo-
rithms developed in this thesis for evaluating SDDN’s. Our algorithms are shown to be
advantageous over the previous algorithms in a number of aspects (Sections 6.5, 9.6.1).

The dependency relationships among the nine chapters of this thesis are shown in
Figure 1.1.

The remainder of this chapter relates the background of this thesis, and gives a more
detailed account to the points put forward by the story. Let us begin with Bayesian

decision theory.

IThis was first pointed out by Qi (1993).

Chapter 1. Introduction 6

1.2 Bayesian decision theory

We make numerous decisions every day. Many of our decisions are made in the presence
of uncertainty. A simple example is to decide whether or not to bring the umbrella in
light of the weather forecast. If the weather man were an oracle such that his prediction
is always correct, then the decision would be easy. Bring the umbrella if the weather
man predicts rain and leave the umbrella home if he predicts no rain. However real life
forecasts are not as predictive as we wish. Instead of saying that it will rain, the weather
man says, for instance, that there is a sixty percent chance of precipitation.

We would be happy if we bring the umbrella and it rains, or if we leave the umbrella
at home and it does not rain. But we would regret carrying the umbrella around if it
does not rain, and we would regret even more not having the umbrella with us when
it rains. We have all made this decision many times in our lives, and did not find it
hard because we thought this particular decision is not significant. However, there are
decisions, such as buying a house or making a major investment in the stock market,
that are of significance to us. In such cases, we want to make rational decisions.

Understanding how to make rational decisions is also important for building intelligent
systems.

Bayesian decision theory provides a framework for rational decision making in the
face of uncertainty. One setup for Bayesian theory consists of a set .S of possible states,of
the world, a set O of possible observations, and a set {}; of decision alternatives. There
is a conditional probability distribution P(o|s) describing how likely it is to observe o
when the world is in state s, and there is a prior probability distribution P(s) describing
how likely the world is to be in state s. There is also a utility function u(d,s), which
represents the reward to the decision maker if he chooses the decision alternative d €

and the world is in state s € S. The problem is to decide on a policy , i.e a mapping

Chapter 1. Introduction 7

from O to Qg4, which dictates the action to take for each observation.

In our example, the possible states of worlds are rain and no-rain. The observa-
tions are all the possible forecasts, that is the set {“there is an = percent chance
of precipitation”| =z € {0,...,100}}. There are two possible decision alternatives:
take-umbrella or not-take-umbrella. The conditional probability of the forecast that
“there is an z percent chance of precipitation” given rain and the prior proba-
bility of rain are to be assessed from our experience. Qur utilities could be as shown in

the following table:

rain | no-rain

take-umbrella 0 -10

not-take-umbrella | -100 0

The problem is to decide whether or not to bring the umbrella in light of the weather

forecast.

The ezpected utility Es induced by the policy 6 : O —)y is defined by

Es= Y P(s)P(ols)u(8(0),). (L1)

s€85,0e0

The principle of mazimizing the expected utility (von Neumann and Morgenstein 1944,

Savage 1954) states that a rational decision maker choses the policy 6° that satisfies
Eso = mazsFEs, (1.2)
where the maximization is over all possible policies. The quantity mazsE;s is called the

optimal expected value of the decision problem.

1.3 Decision analysis

In the setup of Bayesian decision theory given in the previous section, there is only one

decision to make. Applications usually involve more than one decision (e.g. Hosseini

Chapter 1. Introduction 8

1968). This thesis is about how to apply Bayesian decision theory to problems that
involve multiple decisions and multiple variables.

There exist two methodologies that deal with multiple decisions, namely decision
analysis (e.g. Smith 1988) and Markov decision processes (e.g. Denardo 1982). Between
them, decision analysis is more general-purpose. It emphasizes exploring the structures
of complex problems. In a sense, it has a representation advantage. On the other
hand, finite stage Markov decision processes deal with decisions for controlling a dynamic
system (e.g. Bertsekas 1976). This class of multiple-decision problems have relatively
simple structures. Finite stage Markov decision processes emphasize problem solving by
using the technique of dynamic programming. In a sense, they have a computational
advantage.

One goal of this thesis is to combine the representational advantage of decision analysis
and the computational advantage of finite stage Markov decision processes.

This section gives a brief account of decision analysis. A latter section will touch on

finite stage Markov decision processes.

1.3.1 Decision trees

Within decision analysis, there are two frameworks for representing the structures of de-
cision problems, namely decision trees (North 1968, Raiffa 1968) and influence diagrams
(Howard and Matheson 1984). Decision trees represent the structure of a decision prob-
lem all at one level, while influence diagrams distinguish three levels of specification for
a decision problem.

Consider the following oil wildcatter problem taken from (Raiffa 1968). The oil wild-
catter must decide either to drill or not to drill. He is uncertain whether the hole is dry,

wet or soaking. The prior probabilities (obtained from experts) are as follows.

Chapter 1. Introduction 9

dry | wet | soaking
.500 | .300 .200

His utilities are given in the following table.

dry wet soaking

drill -$70,000 | $50,000 | $200,000

not-drill 0 0 0

At a cost of $10,000, our wildcatter could conduct a test on the seismic structure, which
will disclose whether the terrain below has no structure, closed structure, or open struc-
ture. The conditional probabilities of the test result given the states of the hole are given

in the following table.

dry | wet sbaking

no structure .600 | .300 .100

open structure |.300 | .400 .400

closed structure | .100 | .300 .500

The problem is whether or not the wildcatter should conduct the test? And whether or
not he should drill?

The decision tree for this problem is shown in Figure 1.2, where rectangles stand for
decision variables and ellipses stand for random variables. The values of the variables and
the corresponding probabilities appear on the edges. The tree is to be read as follows.

If our wildcatter decides not to test, he must make the drill decision based on no
information. If he decides not to drill, that is the end of the story. He does not make
nor lose any money. If he decides to drill, there is a 50 percent chance that the hole is

dry, in which case he loses $70,000; there is a 30 percent chance that the hole is wet, in

Chapter 1. Introduction 10

.048 $190

.428 -580
dry

.343
wet
gL $40

soaking
-510 .238 $190

50

Figure 1.2: A decision tree for the oil wildcatter problem.

which case he makes $50,000; and there is a 20 percent chance that the hole is soaking,
in which case he makes $200,000.

If he decides to test, there is a 41 percent chance that there turns out to be no seismic
structure. The probability .41 is calculated by using Bayes’ rule from the prior and
conditional probabilities given. If he still decides to drill, there is a 73 percent chance
that the hole is dry, in which case he loses $80,000, for now the test has cost him $10,000
already. Again the probability .73 is calculated by using Bayes’ rule from the prior and
conditional probabilities given. There will be a 22 percent chance that the hole is wet,
in which case he makes $40,000; and there will be only a 5 percent chance that the hole
is soaking, in which case he makes $190,000. And so on and so forth.

An optimal policy and the optimal expected value of a decision tree can be found by

the so-called folding backing strategy (Raiffa 1968, Smith 1987).

Chapter 1. Introduction 11

Figure 1.3: An influence diagram for the oil wildcatter problem.

1.3.2 Influence diagrams

Decision trees came into being during the 1930’s and 1940’s (Shafer 1990). They were the
major framework for representing the structure of a decision problem until late seventies
and early eighties, when researchers began to notice the shortcomings of decision trees.
For one thing, decision trees are usually very complicated. According to Smith (1988),
the first thing to do in decision analysis is to find a Iarge‘-pief:e of paper. A more important
drawback of decision trees include that they are unable to represent independencies.
Influence diagrams were introduced by Howard and Matheson (1984) (see also Miller
et al 1976) to overcome the shortcomings of decision trees. They specify a decision prob-
lem in three levels: relation, function, and number. The level of relation indicates that
one variable depends in a general way on others; for example test-result probabilisti-
cally depends on test and seismic-structure; and utility deterministically depends
on test, drill and oil-underground. At the level of number, we specify numerical
probabilities for each conditional and unconditional event; and the numerical value of a
variable given the values of the variables it deterministically depends upon. The level
of function describes the form of dependencies, which is useful in arriving at the level of
number. Two examples: profit equals revenue minus cost; if a man is in his thirties, then
the probability distribution of his income is a normal distribution with mean $45,000 and

standard deviation 1000.

Chapter 1. Introduction 12

Figure 1.3 shows the level of relation of the influence diagram for our oil wildcatter
problem. The diagram clearly shows that the test decision is to be made based on no
information, and the drill decision is to be made based on the decision to test and
the test-result. The random variable test-result directly depends on the decision to
test and the seismic-structure, and it is independent of oil-underground given test
and seismic-structure. The random variable seismic-structure directly depends on
oil-underground. Finally, the utility deterministically depends on test, drill, and
oil-underground.

At the level of number, we need to specify the prior probability of oil-underground,
the conditional probability of seismic-structure given oil-underground, and the con-
ditional probability of test-result given test and seismic-structure. We need also
to specify the value of utility for each array of values of test, drill and oil-underground.

In Howard and Matheson (1984), an influence diagram is transformed into a decision
tree in order to be evaluated to find an optimal policy and the optimal expected value.
Shachter (1986) shows that influence diagrams can be directly evaluated.

Before moving on, let us note that variables will be also called nodes when they are
viewed as members of an influence diagram. With that in mind, we can now say that
influence diagrams consists of three types of nodes: decision nodes , random node and a

single value node , where the value node represent utilities.

1.3.3 Representing independencies for random nodes

A quick comparison of the influence diagram in Figure 1.3 with the decision tree in Fig-
ure 1.2 should convince the reader that influence diagrams are intuitive, as well as more
compact. They make numerical assessments easier (Howard and Matheson 1984). Fur-

thermore, they serve better than decision trees to address the issue of value of information

(Matheson 1990).

Chapter 1. Introduction 13

Figure 1.4: An influence diagram for the extended oil wildcatter problem.

The most important advantage of influence diagrams over decision trees, however, lies
their ability to represent independencies for random nodes at the level of relation.

This point could be illustrated by using the oil wildcatter problem. For later conve-
nience, consider extending the oil wildcatter problem by considering one more decision —
the decision of determining a oil-sale-policy based on oil quality and market-information.
The influence diagram for this extended oil wildcatter problém is shown in Figure 1.4. By
using the so-called d-separation criterion (Pearl 1988), one can read from the network that
market-informationis marginally independent of test, test-result, seismic-structure,
oil-underground, drill, and oil-produced. Also, as mentioned in section 1.3.2,
test-result is independent of oil-underground given test and seismic-structure.

Those marginal and conditional independencies can not be represented in decision trees.

1.4 Constraints on influence diagrams

There are five constraints that one can impose on influence diagrams: namely the acyclic-
ity constraint, the regularity constraint, the no-forgetting constraint, the single value
node constraint, and the no-children-to-value-node constraint. Before this thesis, only

influence diagrams that satisfy all those constraints have been studied 2. In this sense,

2With the exception of Tatman and Shacter (1990), who deal with one super value node. A super
value node may consist of many value nodes. See sections 1.5.2 and 1.6.2 for details.

Chapter 1. Introduction 14

we say that the five constraints have always been imposed on influence diagrams. From
now on, we always mean an influence diagram that satisfies all those five constraints by
the term “influence diagram”.

The acyclicity constraint requires that an influence diagram does not contain any
directed cycles. The regularity constraint requires that there exists a directed path that
contains all the decision nodes. The no-forgetting constraint requires that each decision
node and its parents be parents to all subsequent decision nodes. The single value node
constraint requires that there be only one value node, and the no-children-to-value-node
constraint requires that the value node have no children.

The regularity constraint is due to the fact that an inflluence diagram is a repre-
sentation of a single agent’s view of the world as relevant to a decision problem. The
no-forgetting constraint is due to the fact that in an influence diagram, arcs into decision
nodes are interpreted as indications solely of information availability. The constraint
follows if the agent does not forget information (Howard and Matheson 1984).

This thesis is about decision networks , a representation framework for multi-decision
problems that is more general than influence diagrams. Syntactically, decision networks
are arrived at by lifting the regularity, no-forgetting, and single value node constraints
from influence diagrams. Semantically, a decision network is a representation of the
view of the world of a group of cooperative agents with a common utility; and in decision
networks, arcs into a decision node indicate both information availability and dependency.

The idea of a representation framework for decision problems free of the regularity
and no-forgetting constraints is not new. Howard and Matheson (1984) have suggested
the possibility of such a framework. The next three sections conduct a close examination
on the reasons for lifting the regularity, no-forgetting, and single value node constraints
from influence diagrams. The reasons arise from decision analysis, from Markov decision

processes.

Chapter 1. Introduction 15

1.5 Lifting constraints: Reasons pertaining to decision analysis

1.5.1 Lifting the no-forgetting constraint

As mentioned in the synopsis, there are three major reasons for lifting the no-forgetting
constraints. The first reason is explained in detail in this subsection. The second and

third reasons will be addressed in the next two subsections.

Semantics for arcs into decision nodes and independencies for decision nodes

The no-forgetting constraint originates from the interpretation of arcs into decision nodes
as indications of only information availability (Howard and Matheson 1984). More specif-
ically, there is an arc from a random node r to a decision node d if and only if the value
of r is observed at the time the decision d is to be made. The no-forgetting constraint
is to capture the rationale that people do not destroy inférmation on purpose; thus in-
formation available earlier should also be available later (Howard and Matheson 1984,
Shachter 1986).

The primary reason for lifting the no-forgetting constraint is that it does not allow the
representation of conditional independencies for decision nodes. However, there do exist
cases where the decision maker, from her/his knowledge about the decision problem,
is able to tell that a certain decision does not depend on certain pieces of available
information. In our extended oil wildcatter problem, for instance, it is reasonable to
assume that the decision oil-sale-policy is independent of test, test-result, and
drill given oil-produced.

Sometimes independence assumptions for decision nodes are made for the sake of
computational efficiency or even feasibility. In the domain of medical diagnosis and
treatment, for instance, one usually needs to consider a number, say ten, of time points.

To compute the diagnosis and treatment for the last time slice, one needs to consider all

Chapter 1. Introduction 16

the previous nine time points. In the acute abdomen pain example studied by Provan
and Clarke (1993), there are, for each decision node, 6 parent nodes that lie in the same
time slice as the decision node. This means that the decision node at the last time slice
has a total of 69 parents. In the simplest case of all variables being binary, we need to
compute a decision table of 2%° entries; an impossible task. The same difficulty exists
for planning under uncertainty (Dean and Wellman 1992). One way to overcome this
difficulty is to approximate the decision problem by assuming that the decision in a time
slice depends only on the previous, say one time slice, and is conditionally independent
of all earlier time points. In this case, the decision table sizes are limited to 2'° = 8192;
still large but manageable.

Independence for decision nodes cannot be represented in influence diagrams. Going
back to our extended oil wildcatter problem, even though we have made the assump-
tion that oil-sale-policy is independent of test, test-result, and drill given
oil-produced. But in Figure 1.4 there are still arcs from test, test-result, and
drill to oil-sale-policy.

Following Smith (1988), this thesis reinterprets arcs into decision nodes as indication
of both information availability and (potential) dependency. This new interpretation
enables us to explicitly represent conditional independencies for decision nodes. To be
more specific, the judgement that d is conditionally independent of r can be represented
by simply not drawing an arc from r to d, even when the value of a random node r is
observed at the time the decision d is to be made.

In our example, if we explicitly represent the assumption that oil-sale-policy is
independent of test, test-result, and drill given oil-produced, then the decision
network for the extend oil wildcatter problem becomes the one shown in Figure 1.5. We
notice that there are no arcs from test, test-result, and drill to oil-sale-policy;

the network is simpler than the one in Figure 1.4.

Chapter 1. Introduction 17

Figure 1.5: A decision network for the extended oil wildcatter problem, with indepen-
dencies for the decision node oil-sale-policy explicitly represented.

Note that a user may be wrong in assuming that a decision is independent of a certain
piece of information. To prevent such a case from happening, one can run the algorithm
in Chapter 7 to graph-theoretically verify the user’s independence judgements. If the
algorithm is not able to verify, the user should be informed, and the user should abandon
the independence assumption by adding an arc.

Another advantage of the new interpretation of arcs into decision nodes is that it
provides uniform semantics to both arcs into decision nodes and arcs into random nodes;
namely they both indicate dependence. This was first mentioned by Smith (1988).

It is evident that the no-forgetting constraint is not compatible with the new inter-

pretation of arcs into decision nodes. It needs to be lifted.

Limited memory

Another reason for lifting the no-forgetting constraint is that the agent, say a robot,
that executes decisions (actions) may have limited memory. There may be cases where
the agent has only a few bits of memory. Even in the case when the agent has a fair
amount of memory, it can not remember things forever. Because if so, the memory
will run out sooner or later. Even if the agent has unlimited memory, remembering too

much information would lead to inefficiency. We human being seem to remember only

Chapter 1. Introduction 18

Figure 1.6: A decision network for the extended oil wildcatter problem with multiple
value nodes. The total utility is the sum of all the four value nodes.

important things.

1.5.2 Lifting the single value node constraint

As pointed out by Tatman and Shachter (1990) and by Shenoy (1992), the total utility
of a decision problem can sometimes be decomposed into several components. In our
extended oil wildcatter problem, for instance, utility can decomposed into the sum
of four components, namely test-cost, drill-cost, sale-cost, and oil-sales. In
such a case, we assign one value node for each component of the total utility, with the
understanding that the total utility is the sum of all the value nodes. Figure 1.6 shows
the resulting decision network after splitting the value node utility in Figure 1.4.

A major advantage of multiple value nodes over a single value node is that multiple
value nodes may reveal independencies for decision nodes that are otherwise hidden. As
the reader will see later in the thesis, there is a way for one to graph-theoretically tell
that in Figure 1.6 oil-sale-policy is independent of test, test-result, and drill
given oil-produced. The same can not be done for the network in Figure 1.4.

In the last subsection, we said that from her/his knowledge about the extended oil
wildcatter problem, the decision maker may be able to say that oil-sale-policy is

independent of test, test-result, and drill given oil-produced. Here we see that

Chapter 1. Introduction 19

when multiple value nodes are introduced, those independencies can actually be read

from the network itself, even if the decision maker fails to explicitly recognize them.

Independence for decision nodes and removable arcs

The next two paragraphs briefly revisit the third reason for lifting the no-forgetting
constraint as listed in the synopsis. In Section 7.1, we shall formally define the concept
of a decision node being independent of a certain parent and prove that when it is the
case, the arc from that parent to the decision node is removable, in the sense that its
removal does not affect the optimal expected value of the decision problem. It is a
good idea to remove such arcs at a preprocessing stage, since it yields simpler diagrams.
However, removing arcs from an influence diagram leads to the violation of the no-
forgetting constraint.

Consider the no-forgetting decision network in Figure 1.6. Since from the network
itself it can be determined that oil-sale-policy is independent of test, test-result,
and drill given oil-produced, the arcs from test, test-result,and drill to oil-sale-policy
are removable. Removing those arcs results in the network in Figure 1.7, which is no
longer no-forgetting. This shows that in order to prune removable arcs from influence
diagrams, we need to consider decision networks that do not satisfy the no-forgetting

constraint.

1.5.3 Lifting the regularity constraint

The regularity constraint requires that there be a total ordering among the decision
nodes. It is also called the single decision maker condition (Howard and Matheson 1984).
When there are more than one decision maker who cooperate to achieve a common goal,

the regularity constraint is no longer appropriate.

Chapter 1. Introduction 20

Figure 1.7: The decision network obtained from the one in Figure 1.6 by deleting some
removable arcs. This network is no longer no-forgetting.

Consider further extending our oil wildcatter problem so that that there is not only
oil but also natural gas. In this case, a gas-sale-policy also needs to be set. Suppose
the company headquarter makes the test and drill decisions, while the oil department
sets the oil-sale-policy and the gas department sets the gas-sale-policy. Then it
1s inappropriate to impose an order between oil-sale-policy and gas-sale-policy,
since there is no reason why the gas department (or the oil department) should reach its
decision earlier than the other department. A decision network for the further extended
oil wildcatter problem is shown in Figure 1.8. We notice that there is no ordering between
oil-sale-policy and gas-sale-policy.

Even in the case of one decision maker, the regularity constraint may be over-
restrictive. From her/his knowledge and experience, the decision maker may be able
to conclude that the ordering between two decision nodes is irrelevant; one has the same
optimal expected value either way. In our further extended oil wildcatter problem, it
may be reasonable to assume that it makes no difference whether gas-sale-policy or
oil-sale-policy is set first.

Even when the ordering between two decision matters, the decision maker may not
know the ordering beforehand. Suppose our oil wildcatter determine, on the first day a

every month, the gas-sale-policy and oil-sale-policy for the coming month, based

Chapter 1. Introduction 21

Figure 1.8: A decision network for the further extended oil wildcatter problem. It is not
regular, “forgetting” and has more than one value node.

on the policies for the last month and market information. In this case, we are uncertain
as to which one of those two decisions should be made first.

Let us now briefly revisit the second reason for lifting the no-forgetting constraint
as listed in the synopsis. Together with the regularity constraint, the no-forgetting con-
straint says that information available when making an earlier decision should also be
available when making a later decision. In the further extended oil wildcatter problem,
we do not know before hand whether oil-sale-policy comes first or gas-sale-policy
comes first. In such a case, the no-forgetting constraint can not be enforced. This is why
we said in the synopsis that the existence of unordered decisions not only defeats the

regularity constraint, but also the no-forgetting constraint.

1.6 Lifting constraints: Reasons pertaining to MDP’s

Like decision analysis, finite stage Markov decision processes (MDP) are also a model for
applying Bayesian decision theory to solve multiple-decision problems. Recent research

has shown application promise for a combination of MDP’s and influence diagrams in the

Chapter 1. Introduction 22

form of temporal influence diagrams in planning under uncertainty (Dean and Wellman
1991) and in diagnosis and treatment/repair (Provan and Clarke 1993). One goal of this
thesis is to provide a common framework for both of finite stage MDP’s and influence
diagrams. Doing so necessitates the lifting of the no-forgetting and the single value node

constraint.

1.6.1 Finite stage MDP’s

This subsection briefly reviews finite stage MDP’s; and the next subsection will explain
why it is necessary to lift the two constraints.

Finite stage MDP’s are a model for sequential decision making (Puterman 1990,
Denardo 1982, Bertsekas 1976). The model has to do with controlling a dynamic system
over a finite number of time periods. There is a finite set. T of time points. At time ¢,
if the decision maker observes the system in state s; € Sy, s/he must choose an action,
dy, from a set of allowable actions at time ¢, 4, . This choice may also depend all the
previous states of the system. There are two consequences of choosing the action d; when
the system is in state s;; the decision maker receives an immediate reward ve(s¢,dy) and
the probability distribution P(s;41]s¢,d:) for the state of the system at the next stage
is determined. The collection (T, S, ds, { P(s¢41]5¢, di) }, vi(5e, dy)) is called a finite stage
Markov decision process (Puterman 1990). The problem is how to make the choice d;
at each time point ¢ so as to maximize the decision maker’s total expected reward. The
function which makes this choice is called decision rule and a sequence of decision rules
is called a policy.

A classic example of finite stage MDP is the problem of inventory control. Consider
a ski retailer (Denardo 1982). From September to February, he makes an order from

the wholesaler at the first day of the month. The amount of the order depends on his

3In general, Qq4, can vary according to s;. Here we assume it does not.

Chapter 1. Introduction 23

current stock. His stock at the beginning of next month depends probabilistically on
his current stock and how large the order is. This conditional (transition) probability
can be estimated since the number of customers who arrive at a service facility during a
period has, typically, a Poisson distribution. The profits our retailer makes during each
month is computed from the number of pairs of skis sold and the difference between the
wholesale and retail prices.

The standard way to find optimal decisions in a finite stage Markov decision process
is by means of dynamic programming. In this approach, one begins with the last period
and works backward to the first period. An optimal policy for the last period is found
by maximizing the reward for that period. Then the whole last period is replaced by one
value node, which is counted as reward in the next last period. This results in a finite
stage MDP with one less period. One keeps repeating the procedure on the new process,
till all the periods have been accounted for. This is very similar to the folding-back
strategy for evaluating decision trees.

For the above model, one can show that an optimal decision rule depends only on the
state s; of the dynamic system at time ¢ and is independent of the previous states and

decisions.

1.6.2 Representing finite stage MDP’s

This thesis achieves a common framework for decision analysis and finite stage MDP’s
by representing the MDP’s as decision networks.

Since we have reinterpreted arcs into decision nodes as indications of both information
availability and potential dependency, finite stage MDP’s can be naturally represented
as decision networks. Figure 1.9 (1) depicts a three stage MDP in the graph-theoretical
language of decision networks. We notice that there are no arcs from s, and d; to d;

even though s; and d; will be observed at the time the decision d; is to be made. The

Chapter 1. Introduction 24

Figure 1.9: A three period finite stage MDP.

reason is that the optimal decision rule for d; is independent of s; and d; given s,.

However if we insist, as in influence diagrams, on interpreting arcs into decision nodes
as indications of only information availability, then it is cumbersome to represent finite
stage MDP’s. Figure 1.9 (2) depicts the influence diagram that represents the three
stage MDP (Tatman and Shachter 1990). One can see that there is a number of extra
no-forgetting arcs, namely arcs from s; and d; to d, and ds, and from s; and d, to ds.
The presence of those arcs not only complicates the network, but also fails to reflect
one important conclusion of MDP, namely that the current decision is independent of
previous states and decisions given the current state.

Tatman and Shachter’s algorithm is able to detect that d; does not depend on s;
and d;, and that d3 does not depend on sy, di, sz, and d;. So, the extra no-forgetting
arcs makes no difference to the decision problem after all. They were introduced only
because there was no concept of a decision network that does not satisfy the no-forgetting
constraint.

In a finite stage MDP, there is a reward in each period. This can be naturally

Chapter 1. Introduction 25

represented by assigning one value node for each period, as shown in Figure 1.9 (1).
Note that s; separates the last period from all the previous periods. If we insist, as in
influence diagrams, on the single value node constraint, then we need to connect v;, vy,
and v3 into a “super node” (Tatman and Shachter 1990), as shown in Figure 1.9 (2). One
notices that no longer sz separates the last period from all the previous periods. This is

another reason for lifting the single value node constraint.

1.7 Computational merits

The lifting of the no-forgetting, regularity, and single value node constraints allows us
to discover stepwise-decomposable decision networks (SDDN). SDDN’s are more general
than both influence diagrams and finite stage MDP’s. Moreover when evaluating SDDN’s
we can prune removable arcs, while the same cannot be done when evaluating influence
diagrams since pruning arcs leads to the violation of the no-forgetting constraint. To put
it more abstractly, SDDN’s relax constraints imposed by influence diagrams and thus
allow us to apply more techniques in solving a problem, and hence to solve the problem

more efficiently. See Sections 6.5 and 9.6.1.

1.8 Why not lifted earlier

Howard and Matheson (1984) have hinted that in the case of multiple decision mak-
ers, the regularity and no-forgetting constraints may be violated. Smith (1987) has also
mentioned that it is possible that a decision maker may choose or be compelled to “for-
get”. Yet, no one before has studied decision networks that are not regular and/or are

“forgetting”. Why?

Chapter 1. Introduction 26

Howard and Matheson (1984) deal only with regular and no-forgetting decision net-
works (influence diagrams), because for evaluation, decision networks are first trans-
formed into decision trees, and the transformation is possible only for regular no-forgetting
decision networks. Even though new algorithms for evaluating influence diagrams have
been developed after Howard and Matheson (1984) (see, for example, Shachter 1986), the
correctness of all those algorithms relies on the regularity and no-forgetting constraints.
This is probably why those constraints have always been imposed on influence diagrams.
In this thesis, we shall show that one can evaluate a decision network, even if it is not
regular and no-forgetting. This opens up the possibility of working with general decision

networks.

1.9 Subclasses of decision networks

The lifting of the no-forgetting, the regularity, and the single value node constraints
from influence diagrams leaves us only with the acyclicity and no-children-to-value-node
constraints. In Chapter 2, we shall argue that those two constraints are fundamental and
can not be lifted.

The acyclicity and no-children-to-value-node constraints define the concept of decision
network. This section previews subclasses of decision networks we will encounter in this
thesis.

Influence diagrams and finite stage MDP’s are two existing subclasses of decision net-
works, which have been studied for many years. It is known that both of those subclasses
of decision networks are stepwise-solvable, 1.e they can be evaluated by considering one
decision node at a time.

The most important subclass of decision networks introduced in this thesis is stepwise-

decomposable decision networks (SDDN). They include both influence diagrams and

Chapter 1. Introduction 27

| regular
decision 8DDN'm SDDN‘m

bn 1

decision
networks

1

[l

dacimion
x L]

L]

]

finite atage
MDF's
-

influence diagrams

smooth
decision
networks

non-smooth
decision
networks

Figure 1.10: Subclasses of decision networks.

finite stage MDP’s as special cases. See Figure 1.10. SDDN’s are also stepwise-solvable.
As a matter of fact, regular SDDN’s* are the subclass of decision networks that can
be evaluated by conventional dynamic programming (Dénardo 1982, Chapter 9), and
SDDN’s in general constitute the subclass of decision networks that can be evaluated by
non-serial dynamic programming (Bertele and Brioshi 1972, Chapter 9).

The decision networks that are not stepwise-decomposable can be of various degrees
of decomposability. To evaluate them, one needs to simultaneously consider two or
more decision nodes. The number of decisions one need to consider simultaneously is
determined by the degree by which the network is decomposable. The divide and conquer
strategy spelled out in Chapter 4 can be utilized to explore the decomposability of a given
decision network.

Smooth decision networks are introduced for technical convenience. They are con-
ceptually simple and thus easy to manage. They are used extensively in this thesis to

introduce new concepts and to prove theorems. Non-smooth decision networks can be

4To be more precise, the term decision network should be replace by the term decision network
skeleton in this section.

Chapter 1. Introduction 28

be transformed into equivalent smooth decision networks when necessary.
Finally normal decision networks are introduced so that the equivalence between
stepwise-decomposability and stepwise-solvability can be established. We conjecture that

abnormal decision networks can be transformed into equivalent normal decision networks.

1.10 Who would be interested and why

Generally speaking, if you anticipate a solution to your problem by Bayesian decision
theory, you should find this thesis interesting. Because it provides, in a sense, the most
general framework — decision networks — for applying Bayesian decision theory. Prob-
lems representable as MDP’s can be solved in (stepwise-decomposable) decision networks
in the same way as before. Problems representable in influence diagrams can be solved
in (stepwise-decomposable) decision networks at least as efficiently as, and usually more
efficiently, than in influence diagrams. The reason for this efficiency improvement is that
working with SDDN'’s relaxes the constraints imposed by influence diagrams, and allows
one to apply more operations, such as pruning removable arcs, than previously allowed.

If you are a decision analyst, you might appreciate the ability of decision networks
to represent independencies for decision nodes, to accommodate multiple cooperative
decision makers, and to handle multiple value nodes. You might find it a relief that you
do not have to completely order the decision nodes beforehand. Furthermore, you might
appreciate the efficiency and other advantages of our algorithms.

If your problem falls into the category of MDP’s, you might find the concept of
decision networks helpful in assessing the transition probabilities and rewards. In the
ski retailer problem (Section 1.6), many factors may affect the transition probabilities
and rewards, for example deterioration of stock, delivery lag, payment upon delivery by

the retailer and by customers, refusal to enter backlog by customers (Denardo 1982).

Chapter 1. Introduction 29

Within MDP, one needs to figure out the dynamic programming functional equation
for each combination of the factors, which may be complicated. In decision networks,
consideration of one more factor simply corresponds to the addition of one more node.
This allows one to consider more factors than before. The representation advantage of
decision networks may benefit control theory in general.

Al researchers who are concerned with planning, and diagnosis and treatment /repair
should also find this thesis interesting.

Planning is a process of constructing courses of action in response to some objective.
Since the planner might not have complete knowledge about the environment and about
the effects of actions, planning are usually performed under uncertainty. Being a the-
ory for rational choice of actions under uncertainty, Bayesian decision theory naturally
comes into play. Preliminary research (Dean and Wellrna.n,‘1992) has indicated that suc-
cessful application of Bayesian decision theory in planning under uncertainty calls for a
framework that combines characteristics of influence diagrams and and those of MDP’s.
Research on diagnosis and treatment (Provan and Clarke 1993) has pointed to the same
direction. The concept of decision network introduced in this thesis may prove to be a
good combination of influence diagrams and MDP’s. Also, the ability of decision net-
works to represent conditional independencies for decision nodes may be computationally

essential for those areas.

Chapter 2

Decision networks: the concept

This chapter introduces the concept of decision networks and addresses some of the
foundational issues. Formal definitions will be provided in Chapter 3.

The concept of decision networks is intuitively illustrated through an example in sec-
tion 2.1. Section 2.2 exposes the way by which other authors develop the concept of
Bayesian networks from joint probabilities by means of the chain rule of probabilities,
and by using the concept of conditional independencies. Section 2.3 derives the concept
of decision network, through the concept of Bayesian networks, from the Bayesian deci-
sion theory setup by considering multiple decision problems. Section 2.4 discusses the
fundamental constraints that decision networks need to satisfy and argues that decision
networks are the most general representation framework for solving multiple-decision

problems in Bayesian decision theory.

2.1 Decision networks intuitively

In this section, we illustrate the concept of decision networks through an example.
Decision networks can be understood at two levels: relation and number. At the
level of relation, decision networks are directed graphs consisting of three types of nodes:
decision nodes, random nodes and value nodes; and they are used to graphically represent
the structures of decision problems. This directed graph is called a decision network

skeleton. Consider the further extended oil wildcatter problem:

30

Chapter 2.

Decision networks: the concept

gas gas
undarground produced
tast
cost
seismic
tructur test
test
rasul
oil oil
undergr producs

gan
marke

gas sale|
policy

drill

drill
cost

oil male
policy

oil

31

van
sales

oil
alen

Figure 2.11: A decision network skeleton for the extended oil wildcatter problem.

An oil wildcatter is deciding whether or not to drill in a new area. To aid

his decision, he can order a seismic structure test. His decision about drill

will depend on the test results if a test is ordered. If the oil wildcatter does

decide to drill, crude oil and natural gas will be produced. Then, the oil

wildcatter will decide his gas sale policy and oil sale policy on the basis of the

quality and quantity of crude oil and natural gas produced, and on the basis

of market information.

The structures of this decision problem can be represented by the decision network skele-

ton shown in Figure 2.11', where decision nodes are drawn as rectangles, random nodes

as ovals, and value nodes as diamonds.

Briefly, here are the semantics of a decision network. Arcs into random nodes indicate

probabilistic dependencies. A random node depends on all its parents, and is independent

1The figure is the same as Figure 1.8. The duplication is to save the reader from flipping back and

forth.

Chapter 2. Decision networks: the concept 32

of all its non-descendants given the values of its parents. In the extended oil wildcatter
problem, test-result, for instance, probabilistically depends on seismic-structure
and the decision to test, but is independent of gas-underground and oil-underground
given seismic-structure and test.

Arcs into decision nodes indicate both information availabilities and functional de-
pendencies. In our example, the arc from oil-produced to oil-sale-policy means that
the oil wildcatter will have learned the quantity and quality of crude oil-produced when
he decides his oil-sale-policy, and he thinks that the quantity and quality of oil-
produced should affect his oil-sale-policy. There is no arc from oil-underground to
oil-sale-policy because information about oil-underground is not directly available.
There is no arc from test-result to oil-sale-policy, because the oil wildcatter figures
that the information about the test-result should not affect his oil-sale-policy since
that he will already have learned the quality and quantity of crude oil-produced at the
time the policy is to be made.

Arcs into value nodes indicate functional dependencies. A value node is characterized
by a function of its parents; the function take real number values, which represent the
decision maker’s utilities. In the extended oil wildcatter problem, cil-sales is a function
of oil-produced, oil-market and oil-sale-policy. It depends on no other nodes. For
each possible values of oil-produced, of oil-market, and of oil-sale-policy, the value
of this function stands for the corresponding expected oil-sales. The total utility is the
sum of all the value nodes; namely the sum of test-cost, drill-cost, oil-sale and
gas-sale.

At the level of number, a decision network specifies a frame, i.e a set of possible
values, for each variable. For example, the frame of drill my be {YES, NO}, and the
frame of oil-sales may be the set of real numbers.

There is also a conditional probability for each random node given its parents and prior

Chapter 2. Decision networks: the concept 33

probability of each random node that does not have any parents. In our example, we need
to specify, for instance, P(oil-underground), P(oil-produced |oil-underground), and
U o

Further, we need to specify a utility function for each value node. In our example,
the utility function for oil-sales is a real function of oil-produced, oil-market, and
oil-sale-policy.

In summary, a decision network consist of (1) a skeleton which is an directed graph
with three type of nodes, (2) a frame for each node, (3) a conditional probability for each
random node, and (4) a utility or value function for each value node.

In a decision network, the decision about a decision node is made knowing the values
of the parents of the node. Optimal decisions are decisions that maximize the expected
total utility. The goals of decision analysis are to find the optimal decisions and to

determine the optimal expected total utility.

2.1.1 A note

Note that the term “decision network” has been previously used in Hastings and Mello
(1977). The meaning of the term in this thesis is different. In this thesis, the nodes in
a decision network are variables, while nodes in a Hastings and Mello decision network
are states, or values of variables. In a sense, one can say that we are working at a higher
level of abstraction than Hastings and Mello. The relationship between our decision
networks and Hastings and Mello’s decision networks is the same as the relationship
between influence diagrams and decision trees.

As observed by Smith et al (1993), influence diagrams gain much of their advantages
over decision trees from the fact that they graphically capture conditional independencies
at the level of relation (among variables). The same can be said for our decision networks

and Hastings and Mello’s decision networks. As the reader will see, the efficiency of our

Chapter 2. Decision networks: the concept 34

algorithms heavily depends on the fact that nodes in our decision networks are variables,

instead of values of variables.

2.2 Bayesian networks

One way to understand decision networks is to think of them as developed from the
standard Bayesian decision theory setup. We shall explain this in the next section.
As a preparation, this section develops the concept of Bayesian networks from joint
probabilities by means of the chain rule of probabilities and the concept of conditional
independency (Howard and Matheson 1984, Pearl 1988).

Let X be a set of random variables. Let P(X) be the joint probability of the variables
in X. It is usually difficult, if possible at all, to assess the joint probability directly. One
way to assess the joint probability indirectly is first to choose an ordering over the variable

set X, say z1, Z3, ..., Tn, then to expand the joint probability by the chain rule as follows:
P(:El., Loyeeny .',Iln) = P(:Bl)P(.T,g}(B]) cae P(:rﬂ|:r1, A ,.’L'ﬂ_l). (23)

We shall refer to the ordering as an expansion ordering . Because of equation (2.3),
to assess the joint probability P(X), it suffices to assess P(z:|z1,...,2i—1) for each
$e{liuntih

Often a decision maker is able to determine a proper subset 7., of {z1,...,2;-;} that
are “directly related” to z; such that other variables in {z,...,z;-;} are only “indirectly
related” to z; via 7;,. Translating into the language of the probability theory, this means

that z; is independent of other variables in {zi,...,z;_1} given 7. Formally that is
Pledeis s ®aq] = Pleilte) (2.4)

This equation further reduces the assessment task.

Chapter 2. Decision networks: the concept 35

(1) (2)

Figure 2.12: Two Bayesian networks for the joint probability
P(alarm, fire,tampering, smoke, leaving).
Given an expansion ordering zj,...,z, and the 7, s, we construct a directed graph

by the following rule:
For any z; and z;, draw an arc from ; to z; if and only if z;€7,,.

The acyclic directed graph such constructed, together with the conditional probabilities
P(zi|nz,), is called a Bayesian network for the joint probability P(X).

As an example, consider the following decision scenario which is borrowed from (Poole
and Neufeld 1991). The scenario involves five variables: alarm, fire, tampering, smoke,
and leaving, denoting respectively the following propositions: the alarm is on, there
is a fire, somebody is tampering; there is smoke and people are leaving. An expansion
ordering for the joint probability P(alarm, fire, tampering, smoke, leaving) could be
(fire, tampering, alarm, leaving, smoke). Suppose it is reasonable to set Ttampering =
0, Talarm = {fire,tampering}, Ticaving = {alarm}, and 7epoxe = {fire}. Then we get
the Bayesian network shown in Figure 2.12 (1). Another expansion ordering could be
(leaving, alarm, smoke, fire, tampering). Suppose it is reasonable to set Ta1arm =
{leaving}, Temoxe = {alarm}, m¢ire = {alarm, smoke}, and Ttampering = {fire,alarm}.
Then we get the Bayesian network shown in Figure 2.12 (2). This network has more arcs

than the one in (1).

Chapter 2. Decision networks: the concept 36

How should one choose an expansion ordering? The answer provided by Howard
and Matheson (1984) is that the ordering should be chosen such that the decision
maker would feel natural and comfortable in assessing the 7.’s and the P(z;|7s,)’s.
For example, it probably is easier to assess P(alarm|fire,tampering) than to assess
P(tampering|fire,alarm). Smith (1989) says that one should choose the ordering to
minimize the number of arcs in the resulting directed graph. In our example, the net-
work in Figure 2.12 (1) is preferred to the network in (2). Pearl (1988, pp. 50-51) claims
that when there are cause-effect relationships among the variables, the structure of a
Bayesian network can be directly determined from the cause-effect relationships. For

example, tampering and fire cause alarm, fire causes smoke, alarm causes leaving.

2.3 Decision networks

In this section, decision networks are developed as a way to represent of the knowledge
(beliefs) and utilities that are needed in order to solve multiple-decision problems in

Bayesian decision theory. Let us begin with a standard setup of Bayesian decision theory.

2.3.1 A general setup of Bayesian decision theory

Here is a setup of Bayesian decision theory (Gardenfors et al 1988b, Fishburn 1988) that

is more general than the one given in Section 1.2:

1. There is a set X of (random and decision) variables, which are relevant to a decision

problem:;

2. thereis a set A of policies and for each possible policy €A, there is a corresponding

probability Ps(X);

Chapter 2. Decision networks: the concept 37

3. and there is a utility function p(X), which specifies the decision maker’s preferences

about the possible states of affairs.

The problem is to decide on a policy §° that maximizes the expected utility, that is

;Pso(X)#(X) = mams{; Ps(X)u(X)}, (2.5)

where Y~y means summation over all the possible values of X.
The setup given in Section 1.2 can be fitted into the setup given here by letting

X = {o,s,d}, and for each policy § : O—§; setting

Pi(o,s,d) = P(s)P(o|s) ifd=6(o) (26)

0 otherwise

In equation (2.5), summation is used instead of integration because we deal only with
discrete variables in this thesis. However, most of our results can be easily extended to

the case of continuous variables.

2.3.2 Multiple-decision problems

In applications, the decision maker usually needs to set the values for a number of vari-
ables dy, ..., di. Let OBS(d;) denote the set of all the variables whose values will be
observed by the decision maker at the time of decision d; is to be made.

Sometimes, as in MDP’s, the decision maker is able to qualitatively tell that some
of those observed variables are irrelevant to d;. On other occasions, the decision maker
may be forced, for instance by computational complexity, to approximate the world by
by making such irrelevance assumptions. Let 7. be a subset of OBS(d;), such that the
variables in OBS(d;) — g, are, according to the decision maker, irrelevant to the decision

d; given 73 .

Chapter 2. Decision networks: the concept 38

Before one can solve a problem, one needs first to clearly state the problem. The
concept of multiple-decision problems is introduced as a way to pose a decision problem.
A multiple-decision problem is a set D = {< d;,7g. > |1 < ¢ < k}, where the d;’s are
decision variables and for each 7, ?rgi. is the set of variables depending upon whose values
the decision maker is to choose a value for d;.

The further extended oil wildcatter problem (Figure 2.11) is a multiple-decision prob-
lem. The decision maker needs to decide on a value for each of the following vari-
ables: test, drill, gas-sale-policy, and oil-sale-policy. The 7%’s are as follows:
Toest = 0, T3ri11 = {test-result}, Wgaahsale-policy = {gas-produced, gas-market},
and 79;1_gare—policy = {0il-produced, oil-market}.

Given a multiple-decision problem D, define a partial ordering among its variables as
follows: for any two variables z and y, we say that = precedes y if z€n, or if there is
another variable z such that z€n? and z precedes y.

The fundamental constraint that a multi-decision problem must obey is the so-called
acyclicity constraint , which require that there do not exist two variables 2 and y such that
both z precedes y and y precedes z. The reason for this constraint is that the precedence
relationship defined above implies time precedence. More explicitly, if = precedes y, then

the value of z is observed or determined before the value of y.

2.3.3 Technical preparations

Given a multiple decision problem D, let X be the set of all the variables in D and other
variables that are relevant to the problem. For the further extended oil wildcatter prob-
lem, X also contains oil-underground, gas-underground, and seismic-structure in
addition to the variables appeared in the problem statement, namely test, drill, gas-
sale-policy,oil-sale-policy,test-result, gas-produced, gas-market, oil-produced,

and oil-market.

Chapter 2. Decision networks: the concept 39

For any variable z€ X, let), be the frame of z, i.e. the set of all possible values of
z. For any subset B C X, let Qg = [I;ep Q.

To determine a value for d; based on the values of the variables in 7, is to choose a
function é; : Q,,g'_ — §4,. Such a function is called a decision function (table) for d;. Let
A; denote the set of all the decision functions for d;. The policy space is the Cartesian

product A = [T%; A;. An element of A is called a policy .

2.3.4 Deriving the concept of decision networks

One needs to have the necessary knowledge to solve a problem. This subsection develops
decision networks as a framework for specifying the knowledge (beliefs) and utilities that
are required in order to solve a multiple-decision problem.

If the decision maker wants to solve a multiple-decision problem D in the setup given
in Subsection 2.3.1, then s/he needs, according to the second item of the setup, to come
up with a probability Ps(X) for each policy 6. When obtained, Ps would contain more
information than is conveyed by D and é. The portion of information conveyed by Ps
that is not conveyed by D and é should originate from the decision maker’s knowledge
and beliefs about the uncertainties involved in the decision situation. Equipped with
Bayesian networks, we are able to explicitly spell out this portion of information, as
demonstrated in the following.

Assume Ps(X) were somehow obtained. An expansion ordering for Ps(X) conforms
to D if for each d;, variables in 7 precede d; in the ordering. One can easily verify that
such an ordering is possible since D must be acyclic.

Given an expansion ordering p: i, ..., T, that conforms to D, we could, as in the
previous section, expand Ps(X), determine the 7,,’s, and construct a Bayesian network.

Denoted by N, this Bayesian network would contain the following information:

Chapter 2. Decision networks: the concept 40

1. For each decision node d;, the conditional probability Ps(di|7y,) and the fact that
(Factl:) d; is independent of all the variables that come before d; in p given the

variables in 74;; and

2. for each random node ¢, the conditional probability Ps(c|r.) and the fact that
(Fact2:) c is independent of all the variables that come before ¢ in p given the

variables in ..

Since 74, and 73, have the same semantics, we have 74, =79 . Hence Factl would have
come from the problem statement D; and the conditional probability Ps(d;|my,) would
have come from the policy é.

One the other hand, Fact2 and the conditional probability Ps(c|7.) do not follow from
either D or 4, and hence must have come from the decision maker. They represent the
decision maker’s knowledge and beliefs about the uncertainties involved in the decision
situation and need to be elicited before the decision problem D can be solved in Bayesian
decision theory.

We now turn to utility. According to item 3 in the setup of Subsection 2.3.1, the
decision maker needs also to express his preferences about the possible state of affairs by
a utility function p(X). p(X) can sometimes be decomposed into the sum of a number
of components, each of which depends only on a number of variables. Suppose p(X)
decomposes into m components p1(Z1) + ... + pm(Zm), where Z; is the set of variable
of which y; depends upon. Introduce a value variable v; for each u;, and attach v; to
the Bayesian network A by drawing arcs from each of the variables of Z; to v;. In the
following, we shall write Z; as 7, and p;(Z;) as py; (7).

To summarize the discussions above and in Subsection 2.3.2, the decision maker needs
to do the following in order to solve a multiple-decision problem in Bayesian decision

theory:

Chapter 2. Decision networks: the concept 41

1. specify the decision variables whose values are to be to determined, and the random

variables and value variables that are related to those decision variables;

2. for each decision variable d;, specify the set 74 of observed variables whose values

are relevant to d;,

3. determine an ordering p among all the variables such that p conforms to the problem
statement {< d;, 73 > |i}. Let p[< z] denote the set of nodes that come before «

in the ordering p.

4. for each random variable ¢, specify a subset 7. of p[< ¢] such that cis P(c|p[<]) =

P(c|r.), and specify the conditional probability P(c|r.);

5. for each value variable v, specify the subset 7, of variables in p[< v] that v depends

upon and specify the utility function u,, (m,,).

We call the collection of all the information specified in items 1, 2, 4, and 5 a decision
network . Thus, a decision network represents the decision maker’s knowledge (beliefs)
and preferences (utilities) that are needed in order to solve a multiple-decision problem in
Bayesian decision theory. The ordering p is not included as part of the decision network
because it can be arbitrary as long as it conforms to {< d;, 7. > |i}.

Smith (1989) presents a way of developing the concept of influence diagrams (decision
networks) in terms of the so-called third part semantics. In this section, the concept of
decision networks has been developed directly from a standard setup of Bayesian decision

theory without using the third part semantics.

2.3.5 An example

As an example, consider a decision scenario where a decision maker needs to decide

whether to bring-umbrellain light of weather forecast. An additional variable, rain,

Chapter 2. Decision networks: the concept 42

(1) (2)

Figure 2.13: Two decision networks for the rain-and-umbrella problem.

which takes the value “yes” if it does turn out to rain and “no” otherwise, is believed
to be relevant to the decision and hence is included in our analysis. For each decision
function & : Qforecast = bring-umbrella, the decision maker needs to come up with a
joint probability Ps(rain,forecast,bring— umbrella). The expansion ordering rain,
forecast, bring-umbrella conforms to the decision problem. If the decision maker’s
utility — satisfaction — is a function of rain and bring-umbrella, then the decision
network is as shown in Figure 2.13 (1). To complete the specification of this network, one
needs to assess the prior probability of rain and the conditional probability for forecast
given rain. One also needs to assess the utility function.

The expansion ordering forecast, rain, bring-umbrella also conforms to the deci-
sion problem. It gives rise to the decision network shown on Figure 2.13 (2). The reader
will see later that one can go between those two networks by reversing the arc between
forecast and rain using Bayes’ theorem (see Howard and Matheson 1984 and Section

5.5).

2.4 Fundamental constraints

In the introduction we have seen that among the five constraints that define influence di-
agrams, the regularity, the no-forgetting, and the single value node constraints should be

lifted. This short section considers the remaining two constraints, namely the acyclicity

Chapter 2. Decision networks: the concept 43

and the no-children-to-value-node constraints.

In the derivation of decision networks in the previous section, we first had a Bayesian
network N consisting of decision and random nodes. Then each value node v was
attached to N by drawing arc from those nodes in N that v depends upon. Thus, the
value nodes do not have children. In other words, decision networks always satisfy the
no-children-to-value-node constraint.

There is one issue that needs to be addressed. In the last section, we have assumed
the set of value nodes does not intersect with the set of random and decision nodes. This
may not be the case sometimes; there may be nodes that are value nodes and decision
or random nodes at the same time. For example, the amount of money z one spends
the next month is a value variable. In the meantime, z is also a decision variable, and
it affects how much one will be willing to spend the month after. In such a case, we
will have two copies of z: one copy z; functions as a decision node, while the other z,
functions as a value node. Since z4 is a decision node, one can set its value at his will
and this value affects later decisions. On the other hand, the value node z, depends
on z,; and it does not affect any other nodes. By appropriately introducing copies of
variables, we can always ensure that the set of value nodes does not intersect with the
set of random and decision nodes.

We now turn to consider the acyclicity constraint. Decision networks must always be
acyclic because multiple-decision problems are acyclic (subsection 2.3.2) and Bayesian
networks acyclic. In the derivation of the last section, we began with a joint probability
Ps(X') which one must have in order to solve the multiple-decision problem D in Bayesian
decision theory. Because D is acyclic, we were able to have an expansion ordering p for
Ps(X) that co‘nforms to D. The ordering p led to a Bayesian network Nj. For any arc
z—y in the Bayesian network, z comes earlier than y in the ordering p. Therefore N

must be acyclic. A decision network was obtained from N by adding value nodes. Since

Chapter 2. Decision networks: the concept 44

the value nodes do not have any children, the decision network must also be acyclic.
The acyclicity and the no-children-to-value-node constraints are the only two con-
straints we impose on decision networks. We have just argued that those two constraints
are fundamental and are indispensable to decision networks. In this sense, we say that
decision networks are the most general representation framework for solving multiple-

decision problems in Bayesian decision theory.

Chapter 3

Decision networks: formal definitions

The previous chapter has introduced the concept of decision networks. This chapter
gives the exact definitions. We first formally define Bayesian networks (Section 3.1) and
give two properties of Bayesian networks that will be useful later in a number of places
(Section 3.2). Then we present the formal definitions of decision networks and of their
evaluation (Section 3.3). A naive algorithm for evaluating decision networks is provided
in Section 3.4. This algorithm is very inefficient because it simultaneously considers all
the decision nodes. A decision network is stepwise-solvable if it can be evaluated by
considering one decision node at a time (Section 3.5). Obviously, stepwise-solvability is
a desirable computational property. In the next three chapters, we shall discuss when
a decision network is stepwise-solvable and how to evaluate a stepwise-solvable decision
network. For that purpose, we need the auxiliary concept of semi-decision networks
(Section 3.6).

Starting from this chapter, we shall introduce various mathematical symbols. To help
the reader to keep track of them, we have listed all the major symbols at the beginning

of the thesis.

3.1 Formal definition of Bayesian networks

Before getting started, let us note that in this thesis, standard graph theory terms such
as acyclic directed graphs, parents (direct predecessors), children (direct successors),

predecessors, descendants (successors), leaves (nodes with no children), and roots (nodes

45

Chapter 3. Decision networks: formal definitions 46

Figure 3.14: Bayesian network and irrelevant variables.

with no parents) will be used without giving the definitions. The reader is directed to
Lauritzen et al (1990) for exact definitions. We shall use 7, to denote the set of parents

of a node z in a directed graph.

A Bayesian network' (Pearl 1988) A is a triplet N = (X, A, P), where

1. X is a set of random nodes (variables); each z€X has a frame Q, — the set of

possible values of z;
2. Ais a set of arcs over X such that (X, A) is an acyclic directed graph; and

3. Pis aset {P(z|r,)|z € X}? of conditional probabilities of the variables given their

respective parents®.

Figure 3.14 show a simple Bayesian network net1 with seven variables a, b, ¢, d, ¢,

f, and g. The network contains the following prior and conditional probabilities: P(a),
P(fla), P(bla), P(clb), P(d|b), P(e|c,d), and P(g|f,e).

1Bayesian networks are also known as belief networks, Bayesian belief networks, and probabilistic
influence diagrams.

2A conditional probability P(z|r;) is a mapping P(z|rz) : Qjur. — [0,1] such that
>ow,eq, Pl@=ws|m:=p) = 1 for each value 3 of 7.

STWhen z is a root, m, is empty. When it is the case, P(z|m;) stands for the prior probability of z.

Chapter 3. Decision networks: formal definitions 47

The prior joint probability Py(X)? of a Bayesian network N = (X, A, P) is defined
by

Py(X) = I[P(air.). (3.7)
zeX

In words, Py(X) is the pointwise multiplication of all the conditional probabilities in AV.

For any subset B C X, the marginal probability P(B) is defined by
P(B)= ¥ P(X), (3.:8)
X-B

where Y y_p means summation over all the possible values of the variables in the set
X-B.

A note about notation usage: In equation (3.7) the range of the multiplication is spec-
ified by the sign “€”; € X means z ranges over X. In equation (3.8) there is no “€” sign.
As a convention, we use }_x_p P(X) as an abbreviation of °,, _ca,_, P(wp,wx-B),
where wy_p stands for a general member of Qx_p, wy stands for a general member
of Qp, and (wp,wx_p) is thus a general member of Qx. We shall always follow this
convention about notation usage throughout this thesis.

For any two subsets By, B, C Y of variables, the conditional probability P(B;|B;) is

a function that satisfies
P(By=p, By=[2) = P(By=[2)P(B1=ph|B2=P82) V/:1€0p,,VF260p,. (3.9)

For technical convenience, we also introduce the auxiliary concept of semi-Bayesian
networks. A semi-Bayesian network is a Bayesian network except that the prior prob-
abilities of some of the root nodes are missing. More precisely, a semi-Bayesian net-
work is a quadruplet V' = (X, A, P|S), where (X, A) is a acyclic directed graph, P =
{P(z|r;)|z€X—S} is set of conditional probabilities, and S is the set of root nodes whose

prior probabilities are missing.

4A function from Qx to [0,1].

Chapter 3. Decision networks: formal definitions 48

It follows from the definition that Bayesian networks are semi-Bayesian networks.
‘As in Bayesian networks, we can define Py (X) as follows,

Py(X)= TI Plel). (3.10)
z€(X-5)

Unlike in Bayesian networks, here Py (X) usually is not a probability; it may not sum
to one. Thus, it is called the prior joint potential instead of the prior joint probability.
Marginal and conditional potentials can be defined from the joint potential in the same
way as marginal probabilities are defined from joint probabilities.

Note that since there are no arcs from X—S to S, the prior joint potential Py (X) is
nothing but the conditional probability of the variables in X —S given variables in S. For
example, net3in Figure 3.14 is a not Bayesian network if we have only P(c|b), P(d|b), and
P(ele,d) but not P(b). In this case, net3 is a semi-Bayesian network. The multiplication

of all the conditional probabilities yields the conditional pfoba.bility P(c,d,e|b).

3.2 Variables irrelevant to a query

Given a (semi-)Bayesian network N/, one can pose a query ? Py(B;|B;). It is often pos-
sible to graphically identify certain variables being irrelevant to the query 7Py (B;|B,).
This issue is addressed in Geiger et al (1990), Lauritzen et ol (1990), and Baker and Boult
(1990). The materials in the reminder of this section are extracted from those papers.
To remove a node z from a semi-Bayesian network V' = (X, 4, P|S) is to: (1) remove
z from X, (2) remove from A all the arcs that contain z, (3) remove from P all the items
that involve z, and (4) those nodes that were not roots and become roots because of the
removal are added to S.
We notice that removing a node from a Bayesian network may create root nodes

which do not have prior probabilities. This is why we need the concept of semi-Bayesian

network.

Chapter 3. Decision networks: formal definitions 49

A leaf node is barren w.r.t a query ?Py(B|Bz), if it is not in ByUB;. In net1 (Figure
3.14), g is barren w.r.t ?P,.1(e|b). The following proposition says that if a leaf node
is barren w.r.t a query, then it is irrelevant to the query, and hence can be harmlessly

removed.

Lemma 3.1 Suppose N is a semi-Bayesian network, and z is a leaf node. Let N' be
the semi-Bayesian network obtained from N by removing x. If = is barren w.r.t to the

query ? Py (B;|B2), then

Py (B1|B,) = Pyi(By|By). (3.11)

Consider computing Ppe(e|b). The node g is barren w.r.t the query and hence
irrelevant. According to Lemma 3.1, g can be harmlessly removed. This creates a new
barren node f. After the removal of ¢ and f, neti becomes net2. Thus the query
?P,c11(e]b) is reduced to the query ?P,.2(elb = bo).

Let An(B1UB;) be the ancestral set of B;UB,, i.e the set of nodes in B;UB; and the

ancestors of those nodes. By repeatedly applying Lemma 3.1, we get
Proposition 3.1 All the nodes outside An(By1UBy) are irrelevant to the query ?P(B;|B;).

Let G = (X, A) be a directed graph. An arc from z to y is written as an ordered pair
(z,y). The moral graph m(G) of G is an undirected graph m(G) = (X, E) whose edge

set E is given by

E = {{z,y}|(z,y) or (y,z) € A, or 3z such that (z,2) and (y,z) € A}.

In words, {z,y} is an edge in the moral graph if either there is an arc between the two
vertices or they share a common child. The term moral graph was chosen because two

nodes with a common child are “married” into an edge (Lauritzen and Spiegehalter 1988).

Chapter 3. Decision networks: formal definitions 50

In an undirected graph, two nodes z and y are separated by a set of nodes § if every
path connecting them contains at least one node in S. In a directed graph G, = and y
are m-separated by S if they are separated by S in the moral graph m(G)°. Note that

any node set separates itself from any other set.

Proposition 3.2 Suppose N is a semi-Bayesian network. Let N be the semi-Bayesian

network obtained from N by removing all the nodes that are not in By and are m-separated

from By by By. Then
Py(B1|B;) = Py(Bi|By). (3.12)

In our éxa.mple, since a is m-separated from e by b in net2, the query can be further
reduced to Phe3(e|b). Note that a is not m-separated from e by b in net1.

It can be proved (Lauritzen et al 1990 and Geiger et al 1990) that all the nodes
irrelevant to a query ? Py (B;|B;) can be recognized and removed by applying Proposition

3.1 and Proposition 3.2.

3.3 Formal definitions of decision networks

A decision network skeleton is an acyclic directed graph K = (Y, A), which consists of
three types of nodes: random nodes, decision nodes, and values nodes; and where the
value nodes have no children.

A decision network skeleton describes a decision problem at the level of relation. It
contains the set of parents w4 for each decision node d, the set of parents 7. for each

random nodes, and the set of parents 7, for each value nodes. See Subsection 2.3.4.

A decision network N is a quadruplet N'=(Y, A, P, F) where

5To relate m-separation to d-separation (Pearl 1988), Lauritzen et al (1990) have shown that S
d-separates By and Bj if and only if S m-separates B; and Bj in the ancestral set An(B,USUB:).

Chapter 3. Decision networks: formal definitions 51

1. (Y, A) is a decision network skeleton. Let us use C to denote the set of random

nodes, D to denote the set of decision nodes, and V to denote the set of value

nodes.
2. Each y€Y has a frame (), — the set of possible values of y.

3. P is a set {P(c|r.)|cEC} of conditional probabilities of the random nodes given

their respective parents.

4. F is a set {p, : Qr,—R'|veV} of value (utility) functions for the value nodes,

where R! stands for the real line.

A decision network is obtained from a decision network skeleton by providing nu-
merical information, i.e by specifying a frame for each variable, providing a conditional
probability of each random node, and a value function for each value node. We say that
(Y,A,P,F)is a decision network over the skeleton (Y, A) , and that (Y, A) is the skeleton
of the decision network (Y, A,P,F).

A decision function (table) for a decision node d; is a mapping & : Qr, — Qg
The decision function space A; for d; is the set of all the decision functions for d;. Let
D = {d,,...,d;} be the set of all the decision nodes. The Cartesian product A = [J5, A;
is called the policy space for N, and a member é=(6,...,d;) € A is called a policy .

Note that while a decision function §; is a function, a policy 6 is a vector of decision
functions.

The relationship between a decision node d; and its parents mq, as indicated by a
decision function &; : y, — (4 is equivalent to the relationship as represented by the

conditional probability Ps,(d;|7y;) given by

P, (di=a|myg,=B) = { i i (3.13)

0 otherwise,

Chapter 3. Decision networks: formal definitions 52

for all a€f)y, and ﬁEdei.

Since 6=(61,. .., dk), we sometimes write Ps(d;|r4,) for Ps,(di|74,). Because of equation
(3.13), we will abuse the symbol § by letting it also denote the set {Ps(d;|r4,)|d;i€D} of
conditional probabilities of the decision nodes.

In a decision network N'=(Y, A, P, F), let X=CUD. Let Ax be the set of all the
arcs of A that lie completely in X. Then the triplet (X, Ax,PU¢) is a Bayesian network,
where é§ denotes a set of conditional probabilities of the decision nodes. We shall refer to
this Bayesian network the Bayesian network induced from N by the policy &, and write
it as As. The prior joint probability Ps(X) of A is given by

Py(X) = I1 P(elm.) T Pilalr.). (3.14)
zeC z€D
We shall refer to Ps(X) as the joint probability over X induced by & .

Because the value nodes do not have children, for any value node v, 7, contains no

value nodes. Hence 7,CX. The expectation Es[v] of the value function p,(r,) of v under

Ps is given by

Eslv] = ?PE(X)#U(%)

= ZPS(Wv)#v(Wv)' (3.15)

The ezpected value Es[N] of N under the policy § is defined by

BN = ¥ Esl] (3.16)

veV

= LAX) X mlr) (3.17)

veV
Let us point it out again that 3, and }_x mean summation over all the possible values
of m, and X respectively, while }° .y means summation over the set V. See Section 3.1

for a note about notation usage.

Chapter 3. Decision networks: formal definitions 53

The optimal expected value E[N] of N is defined by
E[JV] = mawgeaEg[.N-J. (318)

The optimal value of a decision network that does not have any value nodes is zero. An

optimal policy §°=(6¢,...,87) is one that satisfies

Es[N] = E[N]. (3.19)

We call 67 an optimal decision function (table) of d;. For a decision network that does
not have any value nodes, all policies are optimal.

In this thesis, we shall only consider variables with finite frames. Hence there are only
finitely many possible policies. Consequently, there always exists at least one optimal
policy.

To evaluate a decision network is to

1. find an optimal policy, and

2. find the optimal expected value.

3.4 A naive algorithm

A straightforward approach to the evaluation of decision networks is to simply follow
the definitions of optimal policy and of optimal expected value, and exhaustively search

through the policy space A. This idea is made explicit by the following algorithm.

Procedure NAIVE-EVALUATE:

e Input: N/ — a decision network.

e Output: An optimal policy and the optimal expected value of N.

Chapter 3. Decision networks: formal definitions 54

Let A be the policy space of N.

1. Pick one policy from A and denoted it by é°. Set A = A—{6°}.
2. Compute Eso[N].
3. While A # 0, do

e Pick one policy from A and denoted if by 8. Set A = A—{§}.
e Compute Es[N].
o If Es[N] > Es[N], set 6° = 6.

end-while

4. Qutput 6° and Es[N].

Though simple, this naive algorithm is very inefficient. The main reason is that it
simultaneously considers all the decision nodes. This results in an exhaustive search
through the policy space A, which can be computationally prohibitive. Suppose there
are k decision nodes, each has [parents, and suppose all the variables are binary. Then
for each decision node d, the cardinality of Q,, is 2'; hence there are 2(2)) possible decision
functions for d. Consequently there are (22))k policies in A. The procedure NAIVE-
EVALUATE computes the expected value of N for each of the (2{21))" policies!

There are decision networks whose evaluation necessitates simultaneous considera-
tion of all the decision nodes. As an example, consider the decision network (skeleton)
in Figure 3.15. Enemy movements may be observed by both agentl and agent2. An
agent decides whether or not to report enemy movements according to the instructions
established beforehand by the intelligence office. If an agent reports, there is a chance

that s/he may be exposed.

Chapter 3. Decision networks: formal definitions 55

Figure 3.15: A decision network whose evaluation may require simultaneous consideration
of all the decision nodes.

For the sake of illustration, assume all the variables either take the value YES or
NO, except for the variable value, which takes real numbers. To complete the speci-
fication, we need to give the following (conditional) probabilities: P(enemy-movement),
P(observed-by-agent1|enemy-movement), P(observed-by-agent2|enemy-movement),
P(agenti-exposed|agenti-reports), and P(agent2-exposed|agent2-reports). We
need also to give value function fiyaue(enemy-movement, agenti-exposed, agent2-exposed).

There are four possible instructions (decision functions) for agentl:

1. If observed-by-agent1i=YES, then agenti-reports=YES;

If observed-by-agent1=NO, then agent1-reports=YES.

2. If observed-by-agent1=YES, then agenti-reports=YES;

If observed-by-agenti=NO, then agent1-reports=NO.

3. If observed-by-agent1=YES, then agenti-reports=NO;

If observed-by-agent1=NO, then agenti-reports=YES.

Chapter 3. Decision networks: formal definitions 56

4. If observed-by-agent1=YES, then agent1-reports=NO;

If observed-by-agent1=NQO, then agenti-reports=NO.

Similarly, there are four possible instructions for agent2. The policies (instructions

for both agents) for the problem are given as follows:

1. If observed-by-agent1=YES, then agenti-reports=YES;
If observed-by-agent1=NO, then agenti-reports=YES.
and
If observed-by-agent2=YES, then agent2-reports=YES;

If observed-by-agent2=NO, then agent2-reports=YES.

2. If observed-by-agent1=YES, then agenti-reports=YES;
If observed-by~-agent1=NO, then agenti-reports=NO.
and
If observed-by-agent2=YES, then agent2-reports=YES;

If observed-by-agent2=NO, then agent2-reports=YES.

3. andsoon...

One can easily see that the policy space consist of (2(2'))2 = 4 x4 = 16 possible policies.

In assessing his utilities, the intelligence office needs to keep both agents in mind. For
example, it may be the case that information about an particular enemy movement is
important enought to risk one agent but not both. The instructions for such a situation
should allow one and only one agent to report. The instructions can require, for instance,
agentl to report when the information is deemed important enough to risk one agent,
and require agent2 to report only when the information is deemed important enough to

risk both agents. Such instructions can be arrived at only by considering the two agents

Chapter 3. Decision networks: formal definitions | 57

simultaneously. In Chapter 8, we shall formally prove that with appropriate probabilities
and value functions, optimal policies for the decision network in Figure 3.15 can be found
only by considering the two decisions at the same time.

On the other hand, however, there are decision networks which allow more efficient
algorithms than NAIVE-EVALUATE. The best case is when a decision network can
be evaluated by considering one decision node at a time. This leads to the concept of

stepwise-solvability.

3.5 Stepwise-solvability

Let N be a decision network. Let dy, ds, ..., dr be all the decision nodes in A, and let
6=(61,82,...,6;) be a policy of N, where é; is a decision function of d;. The expected
value Es[N] = Es, 4,,..59[N] is a function of é;, 6; ..., and é.

For any 1€{1,2,...,k}, if we fix the value of §; for all j€{1,2,...,k} such that j#i,
then Es, ..5i_1.61.6i41,..6x) [N] becomes a function of ;. Rank all the possible values of é;,
i.e all the possible decision functions of d;, according to the value E(s,,...5:_, 6:.6:51,.6¢) [NV]-
If the decision function (for d;) that is ranked the highest remains the same regardless of
the values of the §;’s (7#12), then we say that d; is a stepwise-solvability candidate node ,
or simply an SS candidate node of N.

A deterministic node is a random node whose conditional probability takes the value
either 0 or 1. To replace a decision node d; by a deterministic node characterized by a
function 6; : s, — Qa (Shachter 1988) is to replace d; by a deterministic node with the
same frame, and to set P(d;|rq;) to be the conditional probability that represents §; in
the sense of equation (3.13).

If d; is an SS candidate node, then an optimal decision function 67 can be found

as follows. For all je{1,2,...,k} such that j#i, replace the decision node d; by a

Chapter 3. Decision networks: formal definitions 58

deterministic random node characterized by an arbitrary decision function §;, resulting
in a decision network with only one decision node d;. Then find a policy 67 of d; that

satisfies

By s b0 bis1vt) V] = miazsea, Bisy vobicybibipsiti) IV T+ (3.20)

Proposition 3.3 Ifd; is an SS candidate node of a decision network N, then an decision

function 69 that satisfies equation (3.20) is an optimal decision function of d;.

Proof: Let (65,...,67_,6],65,...,6;) be an optimal policy of N. Since d; is an SS

candidate node and §? satisfies (3.20), we have

Est..5t_8060)N 2 Ess, 50, 50,52, 8) V]

Therefore, (65,...,6;_4,67,67,,...,6;) must also be an optimal policy of . Conse-
quently, ¢ must be an optimal decision function of d;. The proposition is proved. O

A decision network is stepwise-solvable if it contains no decision nodes, or if

1. there exists an SS candidate node d; such that

2. if d; is replaced by a deterministic node characterized by an optimal decision func-
tion of d, the resulting decision network (with one less decision node) is stepwise-

solvable.

A decision network skeleton is stepwise-solvable if all the decision networks over the
skeleton are stepwise-solvable.

If a decision network N is stepwise-solvable, then it can be evaluated as follows. Find
an SS candidate node d; and find an optimal decision function é¢ of d; in the way as
specified in equation (3.20). Replace d; by a deterministic node characterized by 62,

resulting in another stepwise-solvable decision network A with one less decision node.

Chapter 3. Decision networks: formal definitions 59

Then recursively apply the procedure to N, an so on so forth. We see here that A is
evaluated by considering one decision node at a time.

Suppose N is a stepwise-solvable decision network with k decision nodes. Suppose
each decision node has [parents, and suppose all the variables are binary. Then to
evaluate N, we need to compute the expected values of N for (2(21)) k policies, instead
of (229)* policies as in the case of NAIVE-EVALUATE.

Note that the aforementioned evaluation method is not the best. The term 22) can
easily be prohibitively large. We shall show that when a decision network is stepwise-
solvable, it can be solved not only by considering one decision node at a time, by also
by considering one, usually small, part of the network at a time. The complexity can be
reduced to that of computing no more than 2k 4+ m marginal probabilities of no more
than [+ 1 variables or computing no more than (2k 4+ m)2'*! numbers, where m stands
for the number of value nodes.

So, stepwise-solvability is a very desirable property for a decision network to possess.
In the next three chapters, we shall investigate when a decision network is stepwise-
solvable and what is the best way to evaluate a stepwise-solvable decision network. For

this purpose, we need the technical concept of semi-decision network.

3.6 Semi-decision networks

The reader has seen that removing nodes from a Bayesian network may create root nodes
which do not have prior probabilities. This is why we need the concept of semi-Bayesian
network. We shall also be discussing removing nodes from decision networks, which
necessitates the concept of semi-decision networks.

A semi-decision network is a decision network except that the prior probabilities of

some of the root random nodes are missing. We use N' = (Y, A, P, F|S) to denotes a

Chapter 3. Decision networks: formal definitions 60

semi-decision network, where S is the set of root random nodes whose prior probabilities
are missing.

As before, let X = C U D be the set of random and decision nodes. Similarly to the
case of decision networks, a policy § induces a semi-Bayesian network (X, Ax,PUS|S),
which will be referred to as the semi-Bayesian network induced from N by the policy 6 ,
and which will be written as Ns. Let Ps(X) be the prior joint potential of Nj.

For any value node veV, n,CX. The expected value Es[N] of N under the joint
potential Ps(X) is defined by

Es[N] = ;Pa(X) > po(m). (3.21)

veV

The optimal expected value E[N] of N is defined by

E[N] = mazgeaEg[N].

An optimal policy 6° is one that satisfies
Es[N]= E[N].

Unlike in the case of decision networks, we also define the concept of conditional
expected value for semi-decision networks. Th conditional ezpected value Es[N'|S] of N
given S is defined by

Es[N|S] = XX_:S Ps(X) 3 po(my). (3.22)

veV
Obviously Es[NV|S] is a function of S.
We chose the term “conditional expected value” because that the prior joint potential
Py(X) is nothing but the conditional probability of the variables in X—S given S (see
the note at the end of Section 3.1) .

The optimal conditional expected value E[N|S] of N given S is defined by

Chapter 3. Decision networks: formal definitions 61

E[N|S] = mazsea Es|N|S).
An optimal conditional policy 6° is one that satisfies
Es[N|S] = E[N]S],
for all possible values of S.

Proposition 3.4 A conditionally optimal policy of a semi-decision network, if exits, s

always an optimal policy.

Proof: From equations (3.21) and (3.22), we have

Es[N] = %ES[NW]-
Let 6° be a conditional optimal policy and let § be an arbitrary policy of . Then
Ese[N]= ZS:ES‘*[MS] > ES:EEW|51 = Es[N].
Therefore
Eso[N] > mazsea Es[N].

In words, §° is an optimal policy of V. O
For a semi-decision network, there always exists at least one optimal policy. But there
may not necessarily exist any conditional optimal policies.
. Given a semi-decision network N, if every optimal policy of N is also a conditionally
optimal policy, then we say that N is uniform .

We shall investigate when a semi-decision network is uniform later.

Chapter 4

Divide and conquer in decision networks

This chapter and the next two chapters constitute the heart of this thesis; they introduce
and study one subclass of decision networks, namely stepwise-decomposable decision
networks (SDDN’s). SDDN'’s are important because they are stepwise-solvable, and as
we shall show in Chapter 8 stepwise-decomposability is the weakest graph-theoretical
criterion that guarantees stepwise-solvability.

This chapter investigates when and how a decision network can be decomposed into
two subnetworks such that the optimal expected value and an optimal policy of the
decision network can be computed by evaluating the two subnetworks. The next two
chapters are concerned with how to evaluate decision networks that can be decomposed
into n — the number of decision nodes — subnetworks such that the optimal expected
values and optimal policies of the decision networks can be computed by evaluating the
n subnetworks.

The organization of this chapter is as follows. Section 4.1 discusses the relationship
between independence in a decision network and separation in.the underlying decision
network skeleton. Section 4.2 defines a concept of decomposability for decision networks,
and Section 4.3 shows that this concept of decomposability implies a divide and conquer
evaluation strategy.

Since manipulation of decision networks gives rise to semi-decision networks and deci-
sion networks are special semi-decision networks, exposition in this chapter will be carried

out in terms of semi-decision networks.

62

Chapter 4. Divide and conquer in decision networks 63

Figure 4.16: The relationships among the sets Y, Y, Y71, X1, Xi1, and 4. The three
sets Y7, Y7; and 7y constitute a partition of ¥ — the set of all the nodes; while X, X;;
and 7y constitute a partion of CUD — the set of all the random and decision nodes.
When the network is smooth at d, there are no arcs going from Xy to 7.

4.1 Separation and independence

The main goal of this chapter is to prove Theorem 4.1, one of the most important theo-
rems in this thesis. In preparation, this section exposes the relationship between graph-
theoretic separation and probabilistic independence in the_ context of decision networks.

Suppose K = (Y, A) is decision network skeleton and d is a decision node in K. Let
Y1(d,K), or simply Y7 be the set of all the nodes that are m-separated from d by 7,4, with
the nodes in my itself excluded. Let Y7;(d,K), or simply Y71 be the set of all the nodes
that are not m-separated from d by m,. We observe that Y7, 74, and Y;; forms a partition
of Y. Let X;(d,K) = Y1(d,K)N(CUD) and X;(d,K) = Y11(d, K)N(CUD).

The relationships among the sets are illustrated in Figure 4.16. In the following, we
shall refer to Y7 as the upstream set of 74, Y1 as the downstream set of 4. We shall also
refer to X as the set of random and decision nodes in the upstream of 74, and X;; as
the set of random and decision nodes in the downstream of 4.

Consider a semi-decision network A" = (Y, A, P, F|S). Let § be a policy of . As
pointed out by Lauritzen et al (1990), m-separation in the skeleton (Y, A) implies con-

ditional independence for Ps(X) — the joint potential over X induced by . Since my

Chapter 4. Divide and conquer in decision networks 64

m-separates X; and X, we have that Ps(X7|X1,7a) = Ps(X1r|ma). Therefore

Ps(Xy,may X11) = Ps(Xr1,7a)Ps(X11|1 X1, 7a)

= Ps(X1,ma)Ps(Xp1|7a). (4.23)

The rest of this section seeks an explicit representation of Ps(Xy,m4) and Ps(Xys|ma)
in terms of conditional probabilities.

A decision network is smooth at the decision node d, if there are no arcs going from
the downstream set Yir of 4 to nodes in my. In other words, arcs between 73 and Yj;
only go from 74 to Y7;.

As an example, consider the decision network skeleton for the further extended oil
wildcatter problem (Figure 2.11). The downstream set of 7o31-_sale—po1icy consists of
oil-sale-policy and oil-sales. There are no arcs from oil-sales to nodes in
Toil-sale-policy- 50, the skeleton is smooth at oil-sale-policy. One the other hand,
the downstream set of mgri11 contains all the nodes except test-cost and the nodes
in mgri11. In particular, the downstream set contains the node seismic-structure.
Because of the arc from seismic-structure to test-result (€ 7ari11), the decision
network skeleton is not smooth at drill.

Let dy, ..., d; be all the decision nodes in X;Umy and dj41, ..., di be all the decision
nodes in X7;. Note that d € {d;41, ..., dx}. For a policy é§ = (61,...,8k), let 6; =
(615...,6;) and 611 = (6j415- .., 6k).

Suppose the semi-decision network N is smooth at d. It follows from Proposition 3.1
that

J
Ps(Xy,mq) = H P(z|rz) H Ps,(d;|mq;). (4.24)

zeCN(Xung) =1

And it follows from Proposition 3.2 that

k
Ps(Xulra)= T Plalrz) [T Ps(dilma,)). (4.25)

rECNX ;g i=7+1

Chapter 4. Divide and conquer in decision networks 65

Those two equations give us the following lemma.

Lemma 4.1 If N is smooth at d, then Ps(Xy,74) only depends on &;, and Ps(Xif|ma)
only depends on 617. From now on, we shall write Ps(Xy,m4) as Ps,(X1,74), and Ps(X1|7q)

as Ps, (Xrr|7a).

4.2 Decomposability of decision networks

Also in preparation for Theorem 4.1, this section introduces a concept of decomposability
for decision networks and shows how to divide a decomposable decision network into two
subnetworks.

A decision network skeleton K=(Y, A) is decomposable at a decision node d if the
number of decision node in Y7;(d, K) is less than the number of decision nodes in K. A
semi-decision network is decomposable at a decision node d if the underlying skeleton is.

When a decision network skeleton K is decomposable and smooth at d, we define
the downstream component of K w.r.t d, denoted by K;(d,K) or simply Ky, to be the
decision network skeleton obtained by restricting K to m;UY; and then removing those
arcs that connect two nodes in 7.

Also, we define the upstream component of K w.r.t d, denoted by K(d,K) or simply
K, to be the decision network skeleton obtained by restricting X to Y;Ur; and then
adding a node v and drawing an arc from each node in 74 to u. The node u is to be used
to store the value of the downstream component, and is thus called the downstream-value
node .

Figure 4.17 shows the downstream and upstream components, w.r.t oil-sale-policy,
of the decision network skeleton in Figure 2.11.

Note that while Y; and Y;; are sets of nodes, K; and K; are decision network skele-

tons. K1 and K; contain the nodes in 74, while Y7 and Y;; do not.

Chapter 4. Divide and conquer in decision networks 66

Let N be a decision network over K, and suppose A (or K) is decomposable and
smooth at d. The downstream component of N w.r.t d, denoted by N;(d,) or simply
by N1, is a semi-decision network over K;;. The value functions for all the value nodes of
N1 remain the same at in M. The conditional probabilities of the random nodes of Ny
that lie outside 7, also remain the same as in A'. The nodes in 74, random or decision,
are viewed in N7 as random nodes whose prior probabilities are missing.

The upstream component of N w.r.t d, denoted by N;(d,N') or simply by N7, is a
semi-decision network over K;. The conditional probabilities of all the random nodes
remain the same as in A/. The values functions of the value nodes other than u also
remain the same as in A. The value function g(7r4) of the downstream-value node u is
the optimal conditional expected value E[N7;|ry] of the downstream component A7;.

Since the decision node d is not in the upstream component N7, the number of decision
nodes in A is less than the number of decision nodes in N. Since the decision nodes
in 74, if any, are treated as random nodes in Ny and since the A/ decomposes at d, the
number of decision nodes in A is also less than the number of decision nodes in N.
Furthermore the number of decision nodes in A plus the number of decision nodes in
N7 equals the number of decision nodes in M.

We shall later define the concepts of downstream and upstream components for the

case when X and NV are not smooth at d.

4.2.1 Properties of upstream and downstream components

This subsection gives several properties of upstream and downstream components of
decomposable decision networks. Those properties will be useful in the proof of Theorem
4.1,

Given a policy 611 = (841, ..., 6k), the downstream component N; is a semi-Bayesian

network. Let Py, .s,,(mq4, X1r) denote the prior joint potential of this semi-Bayesian

Chapter 4. Divide and conquer in decision networks 67

Downstream component

Figure 4.17: Downstream and upstream components: The downstream component is a
semi-decision network, where the prior probabilities for oil-produced and oil-market
are missing. In the upstream component, u is the downstream-value node, whose value
function is the optimal conditional expected value of the downstream component.

network. From the definition of the downstream component, one can see that if A is
smooth at d, then
k
PNnﬁu(ﬂff?XH) = H P($|W3)]___[P5.‘(di|"’rdi))1
zeCNX;; i=5+1

which is the same as the right hand side of equation (4.25). Therefore we have

Lemma 4.2 Suppose a semi-decision network N is decomposable and smooth at decision

node d. Let Ps,,(X1r|mq) be as in Lemma 4.1. Then
Py 611(may X11) = Pry(Xr1ilma). (4.26)

Similarly, given a policy é; = (é1,...,0;), the upstream N is a Bayesian network. Let
Py, 5,(X1,S) denote the joint probability of this Bayesian network. From the definition

of the upstream component, one can see that if A/ is smooth at d, then

Chapter 4. Divide and conquer in decision networks 68

J

PN;.E;(XI-; S) . H P(mlwx) H.P,s.-(d;lﬂ‘d.-),

zeCN(XUmy) =1

which is equal to the right hand side of equation (4.24). Therefore we have

Lemma 4.3 Suppose a semi-decision network N is decomposable and smooth at decision

node d. Let Ps, (X1, mq) be as in Lemma 4.1. Then
P65, (X1,ma) = Po, (X1, ma). (4.27)
The following proposition is especially important to the proof of Theorem 4.1.

Proposition 4.1 Suppose a semi-decision network N is decomposable and smooth at
decision node d. Let Ps,, (Xyr|rq) and Ps,(X,m4) be as in Lemma 4.1. Let Vi and Vg
be the set of value nodes in Ny an Nyp respectively. Then the conditional expected value
of N1 under policy 61 satisfies

Es, [Nulma) = 3 Ps,(Xulwa) Y- po(m), (4.28)

Xrr veVrr
and the expected value of N7 under policy &; satisfies
E N1} = Y. Ps(Xp,ma){ Y to(m) + EWNiijma]}. (4.29)
Xrma veV;

Proof: By definition, we have
Esy,[Nni|ma] = Z Pny151(may Xi1) Z (7).
Xrr veVy;
Thus equation (4.28) follows from equation (4.26).
Again by definition, we have
E5J[N1] = z PNJ,EJ(Xfa"rd){ E o (7o) + E{Nﬂlwd]}'
Xpma vEV;

Thus equation (4.29) follows from equation (4.27). O

Chapter 4. Divide and conquer in decision networks 69

4.3 Divide and conquer

This section shows how decomposability of (semi-)decision networks leads to a divide

and conquer evaluation strategy.

Theorem 4.1 Suppose a (semi-)decision network N is decomposable and smooth at deci-
sion node d. Let N be the downstream component of N w.r.t d, and N be the upstream

component. If N is uniform, then

1. If §%; is an optimal policy for Ni; and &3 is an optimal policy for N, then 6° =4.;

(89,69;) is an optimal policy for N.

2. The optimal expected value E[N]] of the body N is the same as the optimal expected
value E[N] of N.

The theorem divides the task of evaluating a (semi-)decision network A into two sub-
tasks: the task of evaluating the downstream component AN7; and the task of evaluating
the upstream component N/.

Applying the theorem to the decision network in Figure 4.17, we get that optimal
decision functions for oil-sale-policy can be found in the downstream component,
which is much smaller than the original network. The optimal decision functions for all
the other decision nodes can be found in the upstream component, which is also smaller
than the original network. Furthermore, we can repeatedly apply the theorem to the
upstream component.

The following mathematical proof may test the reader’s patience, but it is the key to
understanding the correctness of our later algorithms.

Proof: For any policy § of N/, we have
EsNY = Y. Ps(X1,ma, X11) Y po(my) (By definition)

Xrma, X1 veV

Chapter 4. Divide and conquer in decision networks- 70

= Z PgI(X[, ?'rd)Pgu(anﬂ'd) Z ,u,v(ﬂ‘,,) (By equa.tions 4.23 and Lemma 4.1)

X},ﬂ'd,ij ‘UGV

= 3 Py(Xr,ma){ X mo(m) Y Py (Xurlma) + Y Poyy (Xnrlma) Y- po(mo))
Xyma veV; Xir X1 vEV}y

= Y Py(X1,ma){ D po(mi) + Esy,[Nir|ma]} (By equation 4.28). (4.30)
X,y veVr

Since 6%, is an optimal policy for Ny and Ny is uniform,
Ea;;[NII[TTd] < E&}’,[Nﬂl"rd] = E[Ni1|ma). (4.31)
Noticing that Ps, (X1, 74) is non-negative, we have

EsINT = Y Ps,(Xp,ma){ Y po(my) + Es;, [Nizlwa]} (By equation 4.30)

Xy veVy

< Z Ps,(X1,74){ E po(my) + Esg,[NHth]} (By equation 4.31)
Xpomg veEV]

= Y Ps,(X5,m){ . pu(my) + E[Nir|ma]} (By equation 4.31)
X1,y veV]

= Es,[NM] ' (By equation 4.29)

< Es[Ni] (Optimality of 89)

= Z Pg?(XI, ?rd){ Z ,u,,(?ru] + E[NHI‘JTd]} (By equation 4.29)
X{,ﬂ'd ‘UEVI

= > Pe(Xp,m){) pulm) + Ese [Nulmg]} (Optimality of 67;)
X[,‘ﬂ'd ueV; '

= FEs[N]. (By equation 4.30)

Therefore, §° is indeed an optimal policy for A'. The first statement of the theorem is
proved.

The foregoing derivation has also shown that
Es[N] < Es[N] < Epo[N].
Letting 6 be 8°, we get

Eso[N] = Eg3[Ni).

Therefore E{N] = E[N}]. The proof is completed. O

Chapter 5

Stepwise-decomposable decision networks

This chapter introduces and studies the most important concept of this thesis, namely
stepwise-decomposable decision networks (SDDN). Roughly speaking, a SDDN is a deci-
sion network that can be decomposed into n — the number of decision nodes — subnet-
works such that each subnetwork contains only one decision node and that the original
network can be evaluated through the evaluation of those subnetworks (Section 5.4). A
first reason why SDDN’s are computationally desirable is that the subnetworks may be
substantially smaller than the original network.

A second reason why SDDN’s are computationally desirable is that each of the sub-
networks is a semi-decision network with only one decision node. Single-decision-node
semi-decision networks can be evaluated by enumerating the values of the parents of the
decision node instead of enumerating all the possible policies or decision functions (see
Section 5.5). Suppose that the decision node has n parents and that all the variables are
binary. Then, the parents can assume 2" possible values, while there are 2(2") decision
functions!

The organization of this chapter is as follows. The definition of SDDN’s is given in
Section 5.1, and Section 5.2 shows that smooth SDDN’s are stepwise-solvable. The issue
of testing stepwise-decomposability is addressed in Section 5.3. In Section 5.4, we discuss
how to evaluate a smooth SDDN by using the divide and conquer strategy outlined in
the previous chapter. An algorithm is presented in Section 5.6, which makes use of the

subroutine given in Section 5.5 for evaluating simple semi-decision networks.

71

Chapter 5. Stepwise-decomposable decision networks 72

Non-smooth SDDN’s are treated in the next chapter.

5.1 Definition

This section defines stepwise-decomposable decision networks.

In a decision network skeleton K, a decision node d is a stepwise-decomposability
candidate node or simply an SD candidate node if m; m-separates d from all other
decision nodes and their parents. A decision node is an SD candidate node in a decision
network A if it is an SD candidate node in the skeleton of V.

As an example, consider the decision network skeleton in Figure 2.11). Both oil-sale-policy"
and gas-sale-policy are SD candidate nodes, while drill and test are not. The de-

cision nodes oil-sale-policy and gas-sale-policy are not m-separated from drill

(test) by Tari11 (Ttest)-

Lemma 5.1 Suppose d is an SD candidate in a decision network skeleton K. Then the
downstream set Yi1(d,K) contains only one decision node, which is d itself. So, if K

contains more than one decision node, then it is decomposable at d. O

When d is an SD candidate node in decision network A and A is smooth at d, the
upstream component N; of N w.r.t d is called the body of N w.r.t d, and the downstream
component Ny of N w.r.t d is called the tail of N” w.r.t d. Moreover, the downstream-
value node in N; will be referred to as the tail-value node .

A decision network skeleton K is stepwise-decomposable if either it contains zero or

one decision node, or
1. There exists an SD candidate decision node d, and

2. The body K; of K w.r.t d is stepwise-decomposable.

Chapter 5. Stepwise-decomposable decision networks 73

Figure 5.18: Step by step decomposition of the decision network in Figure 2.11.

A (semi-)decision network is stepwise-decomposable if its underlying skeleton is. The
term “stepwise-decomposable decision network” will be abbreviated to SDDN.

Suppose a decision network N is stepwise-decomposable. If A/ contains more than
one decision node, then it has at least one candidate node d. According to Lemma 5.1, N/
is decomposable at d and it decomposes into a body A and a tail. N is again stepwise-
decomposable. If Nj contains more than one decision node, we can again decompose N
into a body and a tail, an so and so forth, till there is only one decision node left in the
body. In other words, we can decompose an SDDN into a series of subnetworks (tails) in
a step-by-step fashion. This is why the term “stepwise-decomposable” was chosen.

As an example, let A/ be the decision network in Figure 2.11. A is stepwise-
decomposable. The node oil-sale-policy is an S]j candidate node in N, and N

decomposes at oil-sale-policy into a body N and at tail, as shown in Figure 4.17.

Chapter 5. Stepwise-decomposable decision networks 74

The node gas-sale-policy is an SD candidate node in A}, and A; decomposes at
gas-sale-policy into a tail and a body. The body is shown in Figure 5.18 (1), and the
tail Figure 5.18(2). In Figure 5.18 (1), drill is an SD candidate node, and the network
decomposes at drill into a body as shown in Figure 5.18 (3) and a tail as shown in
Figure 5.18 (4).

The decision network skeleton in Figure 3.15 contains two decision nodes, but no SD

candidate nodes. So, it is not stepwise-decomposable.

5.1.1 Another way of recursion

In the definition of decomposability, the number of decision nodes is recursively reduced
by cutting tails that contain a single decision node. Another way to recursively reduce
the number of decision nodes is to replace them one by one with deterministic random

nodes. Let us first prove a lemma.

Lemma 5.2 Let d be an SD candidate node in a decision network skeleton K. Let K
be the body of K w.r.t d, and let K' be the decision network skeleton obtained from K by
replacing d by a deterministic node. Then K is stepwise-decomposable if and only if K'

1S,

Proof: We prove this lemma by induction on the number of decision nodes in K. When
d is the only decision node in K, both K'; and K’ contain zero decision nodes, and hence
both are stepwise-decomposable.

Suppose the lemma is true for the case of k — 1 decision nodes. Consider the case of
k decision nodes. One can easily verify that a decision node is an SD candidate node in
K if and only if it is an SD candidate node in K'.

Suppose a decision node d' (# d) is a SD candidate node in K (hence in K'). There

are two cases depending on whether or not d is in the downstream set of 74 in K. When

Chapter 5. Stepwise-decomposable decision networks 75

d is in the downstream set of w4, the body of K; w.r.t ' is the same as that of X’; hence
K1 is stepwise-decomposable if and only if K’ is. When d is not in the downstream set
of w4, let K} be the body of K; w.r.t &', and K™ be that of K’. Then K™ is the body of
K3 w.r.t d. By the induction hypothesis, K'* is stepwise-decomposable if and only if K7
is. Therefore, K’ is stepwise-decomposable if and only if K; is. The lemma is proved. O

This lemma leads directly to the following proposition.

Proposition 5.1 A decision network skeleton is stepwise-decomposable if and only if

etther it contains no decision nodes or

1. There exists an SD candidate decision node d, and

2. Ifd is replaced by a deterministic node, the resulting decision network skeleton (with

one less decision node) is stepwise-decomposable.

One can view Proposition 5.1 as an alternative definition of stepwise-decomposability.
The original definition is based an recursive construct that will be used directly in the
algorithms, while the recursive construct of this alternative definition is the same as
that of the definition of stepwise-solvability, which makes it convenient to study the
relationship between stepwise-decomposability and stepwise-solvability, as the reader will

see in the next section.

5.2 Stepwise-decomposability and stepwise-solvability

A decision network is smooth if it is smooth at every decision node.
Theorem 5.1 A smooth decision network is stepwise-solvable if it is stepwise-decomposable.

Proof: Let A/ be a smooth decision network and d be a decision node. Because of
Proposition 5.1, it suffices to show that if d is an SD candidate node, then it is also an

SS candidate node.

Chapter 5. Stepwise-decomposable decision networks 76

Suppose d is an SD candidate node. Let X; be the set of random and decision nodes
in the upstream of mg; let A7 and Np; be respectively the body and tail of N w.r.t d; let
Vi be the set of value nodes Np; let &7 be a policy of N7; and and let é;; be a policy of

N11, i.e a decision function of d. By equation (4.30) we have that

Eg sVl = Y P, (X1, ma){ Y po(mo) + Esy [Nialmal}.

X1.7a veV

Fixing 6, we can rank all the possible policies §;7 of Ny according to the value Es, 5,,)[V].
Since Py, (X1, 7q) is non-negative, this ranking does not depend on the value of 6;. There-
fore d is an SS candidate node. The theorem is proved. O

We shall show later that the theorem is true also for non-smooth decision networks,
and that under “normal” conditions stepwise-éolvability implies stepwise-decomposability
as well (Chapter 8).

The remainder of this chapter is devoted to the following two questions: How can one

test stepwise-decomposability? How can one evaluate a smooth SDDN?

5.3 Testing stepwise-decomposability

In a decision network, we say that a decision node d precedes another decision node d’
if there is a directed path from d to d'. Decision nodes that precede no other decision
nodes are called leaf decision nodes .

We say d weakly precedes another d’ if d' is in the downstream set of m4. Decision
nodes that weakly precede no other decision nodes are called weak leaf decision nodes .
The following lemma follows from the definition of SD candidate node and the definition

of downstream sets.

Lemma 5.3 In a decision network, if node is an SD candidate decision node, then it is

a weak leaf decision node.

Chapter 5. Stepwise-decomposable decision networks 77

Proof: Straightforward. O

Lemma 5.4 Let d and d' be two decision nodes in a decision network. If d precedes d',

then d weakly precedes d'.

Proof: Since d precedes d', there is a directed path from d to d’. No nodes in this path
can be in 74, because otherwise there would be a cycle in the network. Hence, d' is not
m-separated from d by m4. Consequently, d’ is in the downstream set of d. The lemma is
therefore proved. O

Combining the forgoing two lemmas, we get

Proposition 5.2 In a decision network, an SD candidate decision node must be a leaf
decision node. In other words, if a node is not a leaf decision node, then it cannot be a

candidate node.

Proof: Suppose d is a decision node but not a leaf decision node. Then there exists
another decision node d' such that d precedes d'. By Lemma 5.4, d weakly precedes d',
hence d is not a weak leaf decision node. By Lemma 5.3, d cannot be a candidate node.

O
This proposition leads to the following algorithm for testing if a decision network

skeleton is stepwise-decomposable.

Procedure TEST-STEPWISE-DECOMPOSABILITY(X):

e Input: K — a decision network skeleton.

e Output: “YES” or “NO” depending on whether K is stepwise-decomposable.

If there are no decision nodes in K, return “YES”.

Else

Chapter 5. Stepwise-decomposable decision networks 78

1. Find a leaf decision node d of K.
2. Check if d is an SD candidate decision node.

e If d is not, find another leaf decision node d’ and go to 2 with d'. If
there are no more leaf decision nodes, return “NO”.

e If d is an SD candidate decision node, compute the body X; of K
w.r.t d, and recursively call TEST-STEPWISE-DECOMPOSABILITY (K;).

What is the running time of TEST-STEPWISE-DECOMPOSABILITY? Let n be
the total number of nodes in K, k be the number of decision nodes, a be the number of
arcs, e be the number of edges in the moral graph of K. Finding a leaf decision node
takes at most O(a) time. Testing if a decision node is an SD candidate node and the
computation of a body are of the same order complexity as testing the connectivity of
the moral graph of K, which is O(n + €) by either breadth-first search or depth-first
search. In worst case, all the decision nodes are leaf nodes and there is only one SD
candidate node. If the only candidate node is always tested the last, then the complexity
of TEST-STEPWISE-DECOMPOSABILITY is O(k*(n+e+a)) = O(k*(n+e¢)). On the

other hand, if every leaf decision node tested is an SD candidate node, the complexity is

O(k(n + €)).

5.4 Recursive tail cutting

In Section 5.6, we shall give an algorithm for evaluating smooth SDDN’s. In preparation,
this section shows that an optimal policy for a smooth SDDN can be computed by
recursively evaluating tail semi-decision networks, and the next section studies how to

evaluate a tail semi-decision network.

Theorem 5.2 Let N be a SDDN and d be an SD candidate node. Let Ny be the tail
of N w.r.t d, and N be the body. Let &%, be an optimal policy for Ni;, i.e an optimal

Chapter 5. Stepwise-decomposable decision networks 79

decision function of d, and let and &% be an optimal policy for Ni. If N is smooth at d,

then

1. 8° =4c5 (8%,6%;) is an optimal policy for N.
2. The optimal expected value E[N7] of the body N is the same as the optimal expected
value E[N] of N.

The proof is postponed to the end of this section. The theorem implies the following
strategy of evaluating a smooth SDDN N: first compute and evaluate a tail Nj; of N,
then compute and evaluate a tail of V7, and so on so forth. We shall refer to this strategy

as recursive tail cutting .

5.4.1 Simple semi-decision networks

This subsection introduces the concept of simple semi-decision networks. The concept is
important to the proof of Theorem 5.2, as well as to our later algorithms.
A semi-decision network V' = (Y, A, P, F|S) is simple if it contains only one decision

node d and m;=S.
Proposition 5.3 Suppose N is a smooth SDDN and d is an SD candidate. Then

1. The tail Ni1 of N w.r.t d is a simple semi-decision network, and

2. The body N of N w.r.t d is again a smooth SDDN.

Proof: The proof is straightforward. O _
" Suppose N = (Y, A, P, F|S) is a simple semi-decision network. Let 8, be a decision
function of the only decision node d of NV.
The conditional expected value Es,[A|S] depend on S and 6,. Since 6, is a function
from Qs to Q4, £s,[N|S=pB] may depends possible on §4(8) for all B€Qs.

Chapter 5. Stepwise-decomposable decision networks 80

Lemma 5.5 For any value B€Qs, Es,[N|S=p] depends only on the value 64(B) of the
decision function 6, at B, in the sense that fizing 64(B) fires Es5,[N'|S=p], no matter what
the 64(B')’s (B'€Qs, B'#5) are.

The proof is postponed till the end of this section. The implication of this lemma is
that Es,[NV|S=p)] is really a function of 3 and the value 64(8) of é; at B. To make this
more explicit, let 8;(8)=a, then E; [N|S=p] is a function of # and . To signify this
fact, we shall sometimes write Es,[N|S=p] as Es,.5,(8)=o[N|S=P).

The following proposition will also be proved at the end of this section.
Proposition 5.4 Simple semi-decision networks are uniform.
The corollary below follows from Theorem 5.2 and Lemma 5.5

Corollary 5.1 Let N = (Y, A, P, F|S) be a simple semi-decision network and let d be

the only decision node. Then an optimal decision function 85 for d is given by

63(B) = arg mazaeq,Fs5,(8)=alN|S=8]. (5.32)

5.4.2 Proofs

Proof of Theorem 5.2: Because of Theorem 4.1, it suffices to show that Aj; is uni-
form. By Proposition 5.3, the tail Ny is a simple semi-decision network. According to
Proposition 5.4, N7; must be uniform. The theorem is therefore proved. O.
Proof of Lemma 5.5: Since m;=S, we can write Ps,(d|S) for Ps,(d|ry). Let C and V
be the set of random and value nodes respectively. The joint potential Ps,(C,d) is given
by

Po(C,d) = Po,(dIS=B)] P(clr.).

ceC

Chapter 5. Stepwise-decomposable decision networks 81

Therefore

E[NIS=Bl= Y Ps,(dIS=B) [T Plelre) 3 molr). (5.33)

cu{d}-$ ceC vev

The only term that contains é, is Ps,(d|S=f), which only depends on the value of §, at
B according to equation (3.13). Thus, the lemma is proved. O

Proof of Proposition 5.4: Suppose N = (Y, A, P,F|S) is a simple semi-decision
network. Let d be the only decision node. We need to show that for any decision

function 63 of d, if
Es,o[N] = mazs,en, Es,[V], (5.34)

then for any value S€(lg
Es,o[N|S=p) = mazs,Es,en,JN|S=8). (5.35)

For the sake of contradiction, assume there were a decision function &5 that satisfies
(5.34) which did not satisfy (5.35). Then, there must exist another decision function &}

and a value B € Qg such that
EoIN|S=8) < EsyN|S=f).

Construct a new decision function 6} which is the same as 6] at # and which is the
same as 67 at all other values 3’ of 5. By Lemma 5.5, Esn[N[S=p] = Es:[N|S=f], and
Esn|N|S=p"] = Es3[N|S=p'] for any B'€Qs such that #'#B. Hence, we have

EgN] = Y Eg[N|S=p.
B'efls
= Eg;[NlS:ﬁ] 4 Z Eﬁg [lezﬂr]
B'EQs,LB'#£8
> EgN|S=8l+ Y. EsgN|S=p
B'eQs B'#P
= E Ess[N|S=ﬁ’]
B'EQs

= EglN].

Chapter 5. Stepwise-decomposable decision networks 82

A contradiction. Therefore, it must be the case that (5.34) implies (5.35). The proposi-

tion is proved. O

5.5 Evaluating simple semi-decision networks

This section presents an algorithm for evaluating simple semi-decision networks.

Let N = (Y, A,P,F|S) be a simple semi-decision network, and let d be the only
decision node.

Let A be the semi-Bayesian network obtained from A by removing all the value
nodes, and by deleting all the arcs into d and treating d as a root random node without
prior probability. Let P, be the joint potential of Ny, i.e the product of all the conditional
probabilities in N.

For any value node v of N, all its parents—all the nodes in 7,—are in Ay. Thus,

we can compute the marginal potential Py(7,, S, d). We define the evaluation functional
e(d,S) of N by
e(d,S) = Z E Po(myy S, d) po (7). (5.36)
veV 7, —Su{d}

Theorem 5.3 Let N = (Y, A, P, F|S) be a simple semi-decision network; let d be the

only decision node; and let e(d, S) be the evaluation functional of N'. Then

1. An optimal decision function 63 can be found by

65(B) = arg mazyeqpe(d=a,S=p0),Vp € Qs, (5.37)
2. The conditional optimal expected value E[N|S] is given

E[N|S=0] = mazseq, e(d=a, S=B),V € Qs. (5.38)

The proof is postponed to the end of this section.

Chapter 5. Stepwise-decomposable decision networks 83

The theorem suggests the following procedure for evaluating simple semi-decision

networks.

Procedure S-EVALUATE(N):

o Input: N/ — A simple semi-decision network.

e Output: An optimal decision function for the only decision node d, and

the optimal conditional expected value of N.

1. Construct the semi-Bayesian network Np.
2. Compute the marginal potential Po(7,,S,d) for each the value nodes v.
3. Obtain the evaluation functional e(d, S) by equation (5.36).

4. Compute the optimal conditional expected value by equation (5.38) and

an optimal policy by equation (5.37).

Note 1). For those who are familiar with Bayesian network inferences, the clique tree
propagation approach (Jensen et al 1990, Lauritzen and Spiegehalter 1988, and Shafer
and Shenoy 1988) can be used to compute all marginal potentials Py(m,,S,d)’s. All the
marginal potentials can be computed by traversing the clique tree twice. When there is
only one value node, there is only one marginal potential to compute, which can be done
by traversing the clique tree only once.

Note 2). Relating back to the point made in the introduction of the chapter about the
evaluation of single-decision-node semi-decision networks, we see from Equation (5.37)
that S-EVALUATE does indeed evaluate a simple semi-decision network by enumerating
the values of the parents of the only decision node, rather than enumerating all the

decision functions, as the procedure NAIVE would do.

Chapter 5. Stepwise-decomposable decision networks 84

An interesting question is: Can we do the same for (semi-) decision networks with
more than one decision node? The answer is no, unless all the decision nodes have the
same parents. Essentially, what goes on in S-EVALUATE is that for any B€Q,,, we
instantiate the parents 74 of the only decision node d to # and figure out the value for
d that maximizes the expected value of the simple decision network. When there are at
least two decision nodes, say d; and dy, with different parents, we can not do the same
because instantiating the parents of d;, for instance, would mean that all the parents of

d; are observed at the time the decision d; is to be made. This may not be true at all.

Proof of Theorem 5.3: Let 4, be a decision function of d. Let Fs,(X) be the potential

over the set X of all the random and decision nodes of A/ under policy §;. We have

Ps,(X) = Po(X)Ps,(d]S). (5.39)
Therefore, we have
Es, [NV|S] = z Ps,(X) Y po(my) (By definition)
veV
= Z Ps,(d|S)Po(X) Y po(my) (By equation (5.39))
veV
= E Do, (dIS) D Po(X)pu(m)
veV d X -(Su{d})
= L2RANY 3 Po(X)m(m)
veV Ty X —(myuSU{d})
= Z ZP.;d (d|S) ZPO Ty 9y d)py(7,) (Marginal potential)
veV d Ty

From equation (3.13), we see that given S, Ps,(d|S) is the characteristic function
X{d|d=54(s)}(d) of the set {d|d = 64(S)}. Therefore

Es, V1] = 33 Polme, S, 64(S)) pa(m). (5.40)

veV Ty

Chapter 5. Stepwise-decomposable decision networks 85

Hence,
Eﬁd:ﬁd(ﬁ)=a[N|S=ﬂ] = e(d:a, S:ﬂ) (541)

The first item of the theorem follows from Corollary 5.1 and equation (5.41). The

second item follows from the first item. The theorem is proved. O

5.6 The procedure EVALUATE

We are now ready to present our algorithm for evaluating smooth SDDN’s. The correct-

ness of the algorithm is guaranteed by Theorem 5.2 and Proposition 5.3.

Procedure EVALUATE(N):

e Input: /' — a smooth SDDN.

e Output: An optimal policy for and the optimal expected value of NV,
If there are no decision nodes, Call N-EVALUATE(N) to compute the ex-
pected value, and stop.

Else
1. Find an SD candidate decision node d,
2. Compute the tail N7; of N w.r.t d,

3. Call S-EVALUATE(N};) to compute an optimal policy for and the op-

timal conditional expected value E[Nj;|ra] of Ny,
4. Compute the body Ny of N w.r.t d (E[Nyr|m4] is used here), and
5. Recursively call EVALUATE(N).

In EVALUATE, the subroutine N-EVALUATE is a procedure for evaluating decision

networks that contain no decision nodes, which is given below.

Chapter 5. Stepwise-decomposable decision networks 86

Procedure N-EVALUATE(N):

e Input: N/ — a decision network with no decision nodes.

e Output: the optimal expected value of V.

If there are no value nodes in AV, return 0.

Else

1. Let vy, ..., vy be all the value nodes. Compute P(r,,) for all the v;’s.

2. Return
Z Z P(my,)y (73;)-

i=1 Ty

Note that in EVALUATE, there is the subtask of finding an SD candidate node, which
is also in the TEST-STEPWISE-DECOMPOSABILITY. In implementation, one should
avoid doing this twice.

Also note that in N-EVALUATE one can, as in S-EVALUATE, compute the marginal
probabilities P(7,,) by using the clique tree approach. All those marginal probabilities
can be computed by traversing the clique tree only twice. When there is only one value
node, one pass through the clique tree is enough.

Finally, no complexity analysis of EVALUATE is carried out here because a more

general version of EVALUATE will be given in the next chapter.

Chapter 6

Non-Smooth SDDN'’s

The previous chapter has discussed how to evaluate a smooth SDDN. This chapter deals
with non-smooth SDDN’s. We extend the concepts of tail and body to the non-smooth
case in such a way that, as in the smooth case, optimal policies of the tail and optimal
policies of the body together form optimal policies of the original network (Section 6.2),
and thereby obtain a procedure called EVALUATEI] that is very similar to EVALUATE
(Section 6.3). The correctness of EVALUATEL] is proved in Section 6.4. Both the pre-
sentation and the proof of EVALUATEI rely upon the preparatory Section 6.1, which
discusses how to transform a non-smooth SDDN into an equivalent smooth SDDN by a
series of arc reversals.

Several algorithms have been previously developed for evaluating influence diagrams.
Being special SDDN’s, influence diagrams can also be evaluated by EVALUATEIL. Sec-
tion 6.5 compares EVALUATE] with the previous algorithms for evaluating influence

diagrams.

6.1 Smoothing non-smooth SDDN’s

An algorithm for evaluating non-smooth SDDN'’s will be given in Section 6.3. In prepara-
tion, this section shows how to transform a non-smooth SDDN into an equivalent smooth

SDDN by a series of arc reversals.

87

Chapter 6. Non-Smooth SDDN’s 88

(1) Before arc reversal (2) After arc reversmal

Figure 6.19: The concept of arc reversal: At the beginning the parent set of ¢; is BUB,
and the parent set of ¢, is BUB,U{c;}. After reversing the arc ¢;—c;, the parent set of
¢ becomes BUB,UB;U{c,} and the parent set of ¢; becomes BUB;UB;. There are no
graphical changes otherwise.

6.1.1 Equivalence between decision networks

Two decision networks are equivalent if
1. They have the same decision nodes, the same policy space, and

2. For each policy, they have the same expected value.

Lemma 6.1 If two decision networks are equivalent, then they have the same optimal

policies and the same optimal expected value. O

Note that a decision node can have the same decision function space in two different
decision networks even when its parents vary from one network to the other. For example,
consider the case where a decision node d has only one parent z in one decision network,
while two parents y; and y, in the other. If the frame of z is the same as the Cartesian
product of the frames of y; and of y,, then d has the same decision function space in
the two networks. This is why, in the foregoing definition of equivalence between two
decision networks, we do not require that a decision node have the same parents in both

networks. This note will be useful in Chapter 9.

6.1.2 Arc reversal

Chapter 6. Non-Smooth SDDN'’s 89

Arc reversal is an operation that transforms one decision network into another differ-
ent but equivalent decision network (Howard and Matheson 1984, Shachter 1986). We
introduce arc reversals at two levels: first the level of skeleton, and then the level of
number.

Let ¢; and ¢; be two random nodes in a decision network skeleton K. Suppose there
is an arc from ¢; to ¢;. When there is no other directed path from ¢; to ¢;, we say that
the arc ¢;—cy is reversible . .

Let B=n,Nn.,, Bi=7, —7c,, and By=n.,—(7,U{c1}). In a decision network skele-
ton, to reverse a reversible arc c;—c, is to delete that arc, draw an arc from ¢; to ¢,
an arc from each node in B, to ¢;, and an arc from each node in B; to ¢;. Figure 6.19
illustrates this concept.

Let K’ be the decision network skeleton resulting from reversing ¢;—c; in K. Let 7,
denote the set of parents of a node z in K'. Then 7, =BUB,UB,U{c;} and 7/, =BUB,UB;.

Let A be a decision network and K be the underlying skeleton. To reverse a reversible
arc ¢;—cy in N is to reverse that arc in the underlying skeleton K, and to set the

conditional probabilities P(c;|7;,) and P(c;|n[,) to be as follows:

P(Cgl‘?l';z)ZP(CllB,Bl,BQ,CQ) =def ZP(Cl.,Cz]B,Bl,Bz), (642)

P(C],Cng,B;,Bg)
P(C2|B1 BIIB2) 4

P(ei|m;,) = P(ce| B, B1, B2) =aes (6.43)

where P(cy, 3| B, By, B2)=P(cy|m¢,) P(ez|me,), and P(ey|we,) and P(cz|n.,) are in turn the
conditional probabilities of ¢; and ¢; in N respectively. In (6.43), P(c;|B, B;, By) may
be zero. When it is the case, P(c1|B, By, B,, ¢2) is defined to be constant 1.

Note that arc reversals at the level of skeleton do not involve numerical computations,
while arc reversals in decision networks do. The following lemma reveals some properties

of arc reversals in decision networks, which will be useful later.

Chapter 6. Non-Smooth SDDN’s 90

Lemma 6.2 Suppose an arc c;—cy in a decision network N is reversible. Let N be the
decision network resulting from reversing c;—c; in N'. Let 7., denote the set of parents

of a node & in N, and let P'(c|x’) denote the conditional probability of a random node
cin N'. Then '
1. For any node z that is not a random node, 7., = 7 ;

2. For any random node c other than ¢; and c;,
x. =m: and P'(c|rl) = Plcln,);

3. And
Plerlme,)P'(ealme,) = Plerlme,) Plealme,)-

Proof: The lemma follows directly from the definition of arc reversal. O

Proposition 6.1 Let N be a decision network. Let N' be the decision network obtained

from N by reversing a reversible arc. Then N and N are equivalent.

Proof: According to Lemma 6.2 (1), A and N’ have the same decision nodes, and that
each decision node has the same parents. So, /' and N’ have the same policy space. By
Lemma 6.2 (2) and (3), we have that Es[N] = Es[N] for any policy é§. The proposition

is thus proved. O

6.1.3 Disturbance nodes, disturbance arcs, and disturbance recipients

Consider a decision network skeleton K. Suppose d is a decision node in K. If K is not
smooth at d, then there are arcs from the downstream set Y7;(d,KX) to nodes in m4. A
disturbance node of d is a node in Yj; from which there is a directed path to at least one

node in mg. The arcs on such a path are called disturbance arcs of d, because they go

Chapter 6. Non-Smooth SDDN'’s 91

Figure 6.20: A non-smooth decision network skeleton.

against the “stream”. The nodes in 7, that are pointed to by disturbance arcs are called
disturbance recipients of d.

As an example, let K be the decision network skeleton in Figure 6.20. The downstream
set Y7r(d2, K) consists of da, ¢ and v,. The node cg is a disturbance node of d,, the arcs

cg—cy4 and cg—cs are disturbance arcs of d;, and ¢4 and ¢s are disturbance recipients of

d,.

Lemma 6.3 Let K be a decision network skeleton and d be an SD candidate decision

node. Let Xpy be the set of random and decision nodes in the downstream set Yi(d, K).

1. For any ce Xy, 7. € X1Umy.

2. For any c,€ X1 and any ¢1€mq, if K contains the arc c;—cy, then c; and c¢; are

both random nodes. So are the ancestors of ¢y in Xyj.

Proof: The first part follows immediately from the definition of downstream set.

We now prove the second part. First \of all, ¢; cannot be a value node since value
nodes have no children and ¢; has the child d. Also since m; does not separate d from ¢,
and ¢, is a parent of ¢;, ¢; can not be decision node either, for this would contradict the
fact that d is an SD candidate node of K. Therefore ¢; must be a random node.

Following a similar line of reasoning, one can show that ¢, and its ancestors in Xj;

are all random nodes. O

Chapter 6. Non-Smooth SDDN'’s 92

Corollary 6.1 Suppose d is an SD candidate decision node of a decision network skele-
ton. Then all the disturbance nodes and disturbance recipients of d are random nodes.

0

6.1.4 Tail-smoothing skeletons

Let d be an SD candidate node in a decision network skeleton K. Suppose K is not
smooth at d. This subsection presents a procedure for smoothing K at d.

A leaf disturbance node of d is a disturbance node of d such that none of its children
are disturbance nodes of d.

Let ¢ be a leaf disturbance node of d. Let c—¢;, c—cy, ..., c—cy be all the distur-
bance arcs emitting from ¢. An disturbance arc c—¢; is the most senior if there is no
other disturbance arc ¢—c; such that ¢; is an ancestor of ¢;.

Since K is acyclic, if there are disturbance arcs emitting from ¢, then one of them must
be the most senior. Since ¢ is a leaf disturbance node of d, the most senior disturbance

arc c—c; is reversible.

Procedure TAIL-SMOOTHING-K(X, d)

e Input: X — an SDDN skeleton,
d — an SD candidate of K.
e Qutput: An SDDN skeleton that is smooth at d.

Whilel there are disturbance nodes of d, find a leaf disturbance node ¢, break

ties arbitrarily.

while2 there are disturbance arcs of d emitting from ¢, pick and

reverse a most senior one, break ties arbitrarily. end-while2

Chapter 6. Non-Smooth SDDN’s 93

Figure 6.21: The application of TAIL-SMOOTHING-K to the decision network skeleton
in Figure 6.20 with the input candidate node being d;: (a) after reversing cg—ca, (b)
after reversing cg—cs.

end-whilel.

As an example, let K be the decision network skeleton in Figure 6.20. Figure 6.21
shows the working of TAIL-SMOOTHING-K(K,d;). The node cg is a leaf disturbance
node of d,. There are two disturbance arcs emitting from cg: cs—c4 and cg—cs, among
which cg—e¢4 is the most senior. So, the arc eg—c4 is first reversed, resulting in the deci-
sion network skeleton in Figure 6.21 (a). The arc cg—cs is reversed thereafter, resulting

in the decision network skeleton in Figure 6.21 (b), which is smooth at d.
Proposition 6.2 The procedure TAIL-SMOOTHING-K terminates and is correct.

A proof can be found at the end of this section.

Let K’ be the output decision network skeleton of TAIL-SMOOTHING-K(K, d). For
any disturbance recipient r of d (in X), the set of parents 7, of in K’ is different from
the set of parents 7, of r in K. In our example, 7, = {dy,c4}, while 7, = {c4,¢6}. The
following lemma gives us some idea about what nodes 7 consists of. The lemma is useful

in presenting EVALUATEL.

Lemma 6.4 Let v, and 7, be as in the previous paragraph and let 74 be the set of parents

ofd in K. Then m,NmyCn.Cmy, and each €, —m, is not a descendent of r in K.

Chapter 6. Non-Smooth SDDN'’s 94

A proof can be found at the end of this section.

6.1.5 Tail smoothing decision networks

The arc reversals in TAIL-SMOOTHING-K are at the level of skeleton. There are no
numerical computations whatsoever. The following algorithm for smooth a decision net-
work at a decision node is the same as TAIL-SMOOTHING-K, except now numerical

computations are involved.

Procedure TAIL-SMOOTHING(N, d)

e Input: ' — an SDDN ,
d — an SD candidate of NV.

e Output: An equivalent SDDN that is smooth at d.

Whilel there are disturbance nodes of d, find a leaf disturbance node ¢, break

_ ties arbitrarily.

while2 there are disturbance arcs of d emitting from ¢, pick and

reverse a most senior one, break ties arbitrarily. end-while2

end-whilel.

As an example, let A be a decision network over the skeleton in Figure 6.20. Consider
the working of TAIL-SMOOTHING(N,d;). As in the case of TAIL-SMOOTHING-K,
the arc cg—cy is first reversed, resulting in a decision network with underlying skeleton
as in Figure 6.21 (a). The conditional probabilities of ¢4 and cg in the resulting network
are as follows:

.P(C.{ld]) — z P(C4|d1, Cﬁ)P(Cﬁ), (644)

cs

Chapter 6. Non-Smooth SDDN'’s 95

S o Plcaldr, co) P(cg)’ (6.45)

P(Cﬁ]dl, 64) =

Then the arc cs—c5 is reversed, resulting in a decision network with underlying skeleton
as in Figure 6.21 (b). The conditional probability of cs in the resulting network is as

follows:

Tee Plcslea, Ce)P(C4|d1,Cﬁ)P(Ce)_

Y., P(calds, cs)P(ce) (6.46)

P(C5rd1,C4) — ZP(C5|C4,C6)P(C6|d1,C4) =

Note that no complexity analysis of TAIL-SMOOTHING is carried out because it

will be used only in proofs, never in evaluation algorithm.

6.1.6 Smoothing non-smooth SDDN’s

This subsection is for the benefit of Chapter 9; it gives an algorithm that smooths non-

smooth SDDN’s.

Procedure SMOOTHING(N)

e Input: N'— an SDDN.

e Output: A smooth SDDN that is equivalent to N.
If N contains no decision node, return V.
Else

1. Find an SD candidate decision node d of N

2. Call TAIL-SMOOTHING(N,d). Let Let A denote the resulting deci-

sion network.

3. In M, treat d as a random node!. (Thus N contains one less decision

nodes than A.) Recursively call SMOOTHING(N).

Chapter 6. Non-Smooth SDDN'’s 96

Figure 6.22: The effects of applying SMOOTHING to the SDDN in Figure 1.7: (a) after
the arc from seismic-structure to test-result is reversed, (b) the final SDDN, which
is smooth.

As an example, consider the SDDN in Figure 1.7. The network is smooth at cil-sale-policy,
so SMOOTHING does nothing in the first recursion. In the second recursion, oil-sale-policy
is treated as a random node, rendering drill an SD candidate node. The SDDN is not
smooth at drill. So TAIL-SMOOTHING will enter its while loops. There is only
one leaf disturbance node of drill, namely seismic-structure. Thus the arc from
seismic-structureto test-resultisreversed, introducing an arc from oil-underground
to test-result and an arc from test to seismic-structure. See Figure 6.22 (a). Now,
oil-underground becomes a leaf disturbance node of drill. The arc from oil-underground
to test-result is reversed, introducing an arc from test to oil-underground. The final
SDDN is shown in Figure 6.22 (b), which is smooth.

Note that no complexity analysis of SMOOTHING is carried out because it will be

used only in proofs, never in evaluation algorithm.

1The decision node d is treated as a random node only within the scope of SMOOTHING. It is treated
again as a decision after the termination of SMOOTHING.

Chapter 6. Non-Smooth SDDN’s 97

Theorem 6.1 The procedure SMOOTH terminates and is correct.

A proof will be provided in the next subsection.

6.1.7 Proofs

Proof of Proposition 6.2: To prove that the procedure TAIL-SMOOTHING-K termi-
nates, we need to show that the proce&ure does not get trapped in the while-loops. The
procedure will eventually exit the inner while-loop, because the number of disturbance
arcs emitting from the leaf disturbance node c is reduced by one during each execution
of the loop.

The procedure will also exit the outer while-loop since reversing all the disturbance
arcs emitting from a leaf disturbance node ¢ does not produce any new disturbance nodes,
and c is no longer a disturbance node thereafter. Therefore the number of disturbance
nodes is reduced by one during each execution of the outer while-loop. Since there are
only a finite number of disturbance nodes, the procedure will eventually leave the outer
while-loop.

TAIL-SMOOTHING-K changes neither the downstream set nor the upstream set of
74. S0, the resulting decision network is also stepwise-decomposable.

Since the procedure exits the outer while-loop only when there are no more distur-
bance nodes of d, the resulting network produced by the procedure is smooth at d. The

proposition is proved. O

Proof of Lemma 6.4: Let 7.(t) be the set of parents of r at time step ¢ during the ex-
ecution of TAIL-SMOOTHING(K, d). We show by induction on ¢ that (1) m.NmyCr,(2),
(2) 7. (t)NY1(K,d) = 0, and (3) each z€(m,(t)N7g)—7, is not a descendant of 7 in K.

At the beginning, 7.(0) = 7,. So (1) and (3) are trivially true. (2) is true because at

Chapter 6. Non-Smooth SDDN'’s 98

least one node in 7, is in Y77(K, d), since r is a disturbance recipient of d. Hence none of
the nodes in 7, can be in the upstream set Y7.

Suppose (1-3) are true at time step t. Consider time step t4+1. Suppose at this time
step, the disturbance arc reversed is c—r'. If r'#r, then =.(t + 1) = m.(t), hence (1-3)
are true. When r’ = r, let z be a node in 7.(t + 1)—,(t). Then z must be parent of ¢
that is not a parent of r. Since the arc c—r is reversible, @ cannot be a descendant of r.
So z does not lead to the violation of (3). Since ¢ is in the downstream set Y;; of 7y,
can only be either in 74 or in Y7;. In both case, z does not lead to the violation of any
of (2). By the definition of arc reversal, 7.(t) — 7, (t + 1) = {c}. Again because c is in
Y11, (1) remains true. In other words, (1-3) are true for the case of ¢t + 1. Consequently,
(1-3) are true for all ¢’s.

At the end of the execution of TAIL-SMOOTHING(K,d), 7.(t) = n.. Since K' is
smooth at d, none of the nodes of 7| are in the downstrea;m set Yyr, hence N7y = 7l.
Consequently, it follows from (1-3) that 7,N7yCn.Cry, and each z€n. — 7, is ancestor

of rin K. O

We prove the correctness of SMOOTHING by induction on the number of decision
nodes. When there are no decision nodes, SMOOTHING is trivially correct. Suppose
SMOOTHING is correct in the case of k—1 decision nodes. Now consider the case of k

decision nodes.
| Let d be an SD candidate node of /. Let N’ be the output network of TAIL-
SMOOTHING(N,d). According to Proposition 6.2, d remains an SD candidate node in
N and N is smooth at d and equivalent to NV.

Treating d as a random node in- N, we let d' be an SD candidate node of A”'. Let
N* be the output network of SMOOTHING(N”). Then N* is equivalent to N’ with d

regarded as a random node. Consequently, N'* is also equivalent to A’ when d is treated

Chapter 6. Non-Smooth SDDN'’s 99

as a decision node.

By the induction hypothesis, N'* is a smooth and stepwise-decomposable when d is
regarded as a random node. By proposition 5.1, what remains to be proved is that when
treated as a decision node, d is an SD candidate node of N'* and N* is smooth at d.

Let N be the output network of TAIL-SMOOTHING(N, d'). Since N’ is smooth
at d, the tail of N/ w.r.t d is not touched in the execution of TAIL-SMOOTHING(N”,
d'). Thus, d is an SD candidate node in /' and N is smooth at d.

Suppose d” becomes an SD candidate node of N’ if both d and d' are treated as ran-
dom nodes. Let N be the output network of TAIL-SMOOTHING(N", d"). Repeating
the argument in previous paragraph, we can show that d is an SD candidate node in N
and N is smooth at d. Continuing the argument, we can eventually show that d is an

SD candidate node in A* and A/* is smooth at d. The theorem is proved. O

6.2 Tail and body

The procedure TAIL-SMOOTHING suggests the following approach for evaluating a non-
smooth SDDN A: Find an SD candidate node d, use TAIL-SMOOTHING to smooth
N at d, decompose A at d into a tail and a body, find an optimal decision function for
d in the tail, and repeat the process for the body. An disadvantage of this approach
is that TAIL-SMOOTHING demands a series of arc reversals, which may be inefficient
(Shenoy 1992, Ndilikilikesha 1991). The motivation behind EVALUATEI] is to avoid arc
reversals. This section paves the way to EVALUATE].

Let N be a decision network and d an SD candidate node in A'. In Sections 5.1
and 4.1, we have defined the concepts of tail (or downstream component) and body (or
upstream component) for the case when A is smooth at d. In this section, we extend

the concepts of tail and body to the case when N is not smooth at d.

Chapter 6. Non-Smooth SDDN'’s 100

Figure 6.23: Tail and body for the non-smooth decision network skeleton in Figure 6.20
[FINAL CHECK]: (a) shows its body w.r.t d; and (b) shows its tail w.r.t d,.

6.2.1 Tail and body at the level of skeleton

When K is smooth at d, there are no disturbance recipients of d. When K is not
smooth at d, some of the nodes in 7y are disturbance recipients. Disturbance recipients
require special attention when extending the definition of tail and body to the non-smooth
case.

Suppose d is an SD candidate node of K. The tail of K w.r.t d, denoted by K(d,K)
or simply by Ky, is the decision network skeleton obtained from K by restricting X onto
Y71Urg and removing all those arcs among nodes in 74 that do not point at disturbance
recipients of d.

As an example, let K be the decision network skeleton in Figure 6.20. Figure 6.23
(b) shows the tail of K w.r.t d;. The restriction of K onto Yj;(d2, K)Ury, contéins the
following three arcs among nodes in 74,: dyj—c3, dy—c¢y, and cq—cs. The arc dj—ecs,
which is removed because c¢3 is not a disturbance recipient of d;. On the other hand, the
arcs dy—c¢y and dgy—cs are retained because both ¢4 and ¢ are disturbance recipients of
ds.

In the definition of tail, why do we need to handle disturbance recipients of a decision
node d in a different manner from other parents of d? Consider, for instance, the dis-

turbance recipient ¢4 of dz in Figure 6.20. The conditional probability P(c4|ds,cs) of c4

Chapter 6. Non-Smooth SDDN’s 101

involves the node cg. Since cg is in the downstream set Y;7(d, K), P(c4|dy,ce) is placed in
the tail (Subsection 6.2.2). Consequently, the arc d;—c4 has to be retained. On the other
hand, c3 is not a disturbance recipient of d;. Its conditional probability P(cs|d;) does
not involve nodes in the downstream set Yjy, is hence placed in the body (see Subsection
6.2.2). So, we delete the arc dy—c3 from the tail.

To extend the concept of body to the non-smooth case, let K’ be the output decision
network skeleton of TAIL-SMOOTHING-K(K, d). Since K’ is smooth at d, its body K}
w.r.t d is defined (Sections 4.1 and 5.1). We define the body of K w.r.t d to simply be
the body K} of K’ w.r.t d, and we denote it by KX(d, K) or simply by K.

As an example, let K be the decision network skeleton in Figure 6.20. Figure 6.21
(b) shows the output decision network skeleton of TAIL-SMOOTHING-K(K, dz), from
which we obtain the body K of K w.r.t d2. Ky is as shown in Figure 6.23 (a).

The reader is encouraged to verify that the general deﬁriitions of tail and body (at the
level of skeleton) given in this subsection are consistent with the corresponding definitions
for the smooth case given Sections 4.1 and 5.1. In doing so, s/he needs to keep in mind

that in the smooth case there are no disturbance recipients.

6.2.2 Tail of decision networks

Having defined tail at the level of skeleton, we can now define tail for decision networks
by providing the necessary numerical information. Suppose d is an SD candidate node
in a decision network A. Let K be the underlying skeleton. The tail of N' w.r.t d,
denoted by N7;(d,) or simply by Ny, is a semi-decision network over K;(d,). The
value functions of all the value nodes in A;; remain the same as in A'. The conditional
probabilities of random nodes outside 74 also remain the same as in A. Since d is an
SD candidate node, Corollary 6.1 assures us that the disturbance recipients of d are all

random nodes. The conditional probabilities of the disturbance recipients of d again

Chapter 6. Non-Smooth SDDN’s 102

remain the same as in A'. The nodes in S =4.s{z€my | = is not disturbance recipient of
d} are all viewed as root random nodes without prior probabilities.

As an example, let N be a decision network over the skeleton shown in Figure 6.20.
Then the tail N;(dz, V) is a semi-decision network over the skeleton shown in Figure 6.23
(b). Ny contains conditional probabilities P(e4|di, cs), P(cs|ca, cs), and P(ce) of random
nodes cq4, cs, and cg, which are respectively the same as the conditional probabilities of
cs, cs, and cg in M. . N also contains a value function p,,(ds,cs) of vg, which is the
same as the value function of v; in A/, The root random node ¢3 does not have prior
probability. The node d; is treated as a root random node without prior probability.

Let X1; be the set of random and decision nodes in the downstream set Y;;(d,). Let
Po(X11,74) be the product of all the conditional probabilities in Nj;. For any subset B of
X1Urg, Po(B) is obtained from Po(X7, 7q) by summing out the variables in X;/Ury—B.

Define the evaluation functional e(d,r4) of Ny as follows:

1
e(d, 7q) = —— Py(my, mq, d)py(my), 6.47
PU(ded) ,_,ez‘v” ru—wzil{d} 0(’)P" () ()

where V;; stands for the set of value nodes in N;.
To continue our example, Y;;(dy, V) = {d3, ¢, v2}. So Xp1 = {d2,¢6}. Po(X11,74,) is

given by

PO(XII';?ng) = PO(d?.: CS;dlch’n C4,C5) - P(Qld],Cﬁ)P(C5'C4, CG)P(CG)-

So, the evaluation functional e of Ny is given by

e Pleslds, %)L(Csh, cg)P(cs) E P(caldy, ce) P(cs|ca, c6) P(ce) pu, (da, co).

C(dg, dl » C3, Cq, CS) =

A note about consistency in the definition of evaluation functional. According to the

note at the end of Section 3.1, when N is smooth at d, Py(X;s,7,) is the conditional

Chapter 6. Non-Smooth SDDN’s 103

probability P(X;;—{d}|r4,d). Thus Py(7r4,d) = Y x,,_(ay P(X11—{d}|m4,d) = 1. Conse-
quently, when A is smooth at d, the definition of evaluation functional given here is the

same as the definition given in Section 5.5.

Theorem 6.2 Suppose d is an SD candidate node in a decision network N'. Let e(d,)
be the evaluation functional of the tail Nij(d,N). The optimal decision functions 85 of

d can be found through

63(B) = arg mazqeqe(d=a, 74=P),YB € Qr,. (6.48)

A proof will be provided in Section 6.4.

6.2.3 Body of decision networks

As in the case of tail, the body of a decision network A v';!.r.t to an SD candidate node
d is obtained from the body of its underlying skeleton w.r.t d by providing the necessary
numerical information. Let K be the skeleton underlying A/. The body of N w.r.t d,
denoted by Ni(d,N') or simply by N, is a semi-decision network over K;(d,X). The
value functions of all the value nodes other than u remain the same as in N'. The value

function p, of the tail-value node u is defined by
tu(Ta=P) = mazqeq,e(d=a,14=P3),Vp € Qy,. (6.49)

The conditional probabilities of random nodes that are not disturbance recipients of
d also remain the same as in N.

What remain to be provided are the conditional probabilities of the disturbance re-
cipients of d. Let us first note that a disturbance recipient of d has different parents in
the body K; from in the original skeleton K. For example, the parents of ¢5 in Figure

6.20 are c4 and cg, while in Figure 6.23 (a) the parents of ¢s are d; and ¢s. For any

Chapter 6. Non-Smooth SDDN'’s 104

disturbance recipient r of d, let 7! be the set of the parents of 7 in K;. In Figure 6.23
(a), for instance, 7. = {di,c4}, while ., = {c4, c6}.

Let N be the output decision network of TAIL-SMOOTHING(N, d), and let r be a
disturbance recipient of d. We want to define the conditional probability P(r|r!) of r in
N7 to be the conditional probability of » in A7, but the sake of computational efficiency
we do not wish to explicitly compute . The following definition resolves our dilemma.

The conditional probability P(r|r!) of r in AN} is defined by

Pﬂ(?’l’._{,?“)

P(‘:‘”l‘ﬂ':) =def Pg_(‘?rj) 3

(6.50)

where Fp is as in the previous subsection.

We shall show in Section 6.4 that P(r|r!) as defined by equation (6.50) is indeed
the conditional probability of r in A”. Here is an example. Recall that ¢; and c¢; are
the only two disturbance recipients of d, in Figure 6.20. Let us compute the conditional

probabilities of ¢4 and ¢5 in Figure 6.23 (a).

PO(Cth dl)
Py(dy)

3¢ Plealdiyc6)Ples) .
Ycoie0 Plealdy, c6)Plcg) gp (caldy, cs)P(ce), (6.51)

I

P(c4|md) = P(cq|dy)

Po(cs, dy,cq) = Zc,, P(Caldqus)P(Ca|C41¢6)P(Cﬁ)
Po(dy, cq) e Plealdr, c6) P(cs) '

A comparison between equations (6.51) and (6.52) with equations (6.44) and (6.46)

P(csf'.frg) = P(csld1,cq) =

(6.52)

reveals that the conditional probabilities of ¢4 and ¢s5 obtained through equation (6.50)
are indeed the same as the conditional probabilities of ¢4 and c5 in N".
According to Lemma 6.4, 7! C 7, for any disturbance recipient r of d. This observa-

tion about 77 leads to the following formula for computing P(r|x}):

Zﬂ-d—wru{r} Pﬂ(ﬂ-d)

Iy —
P(ler) B Zﬂd—ﬂru{r} Pﬂ(ﬂ-d)-

(6.53)

Chapter 6. Non-Smooth SDDN'’s 105

In words, in order compute P(r|r!), we can compute FPo(mg) from Po(Xr, 74) by summing

out the nodes in X;;Ury—74 and obtain P(r|r!) through equation (6.53).

Theorem 6.3 Suppose d is an SD candidate node in a decision network N'. Then the
optimal decision functions for decision nodes other than d are the same in N as in the

body Ni(d, N').

A proof will be provided in Section 6.4.

6.3 The procedure EVALUATE1

Theorems 6.2 and 6.3 lead to the following procedure for evaluating SDDN’s, smooth or

non-smooth.

Procedure EVALUATEL(N):

e Input: A/ — an SDDN, smooth or non-smooth.
e Output: An optimal policy and the optimal expected value of N.
If there are no decision nodes, call N-EVALUATE(N) to compute the ex-

pected value, and stop.

Else

1. Find an SD candidate node d,

2. Compute the tail Ny of N w.r.t d. Let P, denote the product of all the

conditional probabilities in Nj;.

(a) Compute the marginal potentials Po(wy) and Py(ma,d), and the

marginal potential Py(rq,d,m,) for each value node v in N7;.

Chapter 6. Non-Smooth SDDN’s 106

(b) Compute the evaluation functional e(d, 74) by

e(d, mq) = - > Z Po(my, ma, d) o (7). (6.54)

Pﬂ(ﬂ-ds d) vV my—mau{d}
where V;; is the set of value nodes in Np;.

(c) Compute an optimal decision function 63 of d by
85(B) = arg mazqeq, c(d=a, 7a=p), VFEQx,. (6.55)

(d) Compute the body N of N w.r.t d (equation (6.53) is used here).

3. Recursively call EVALUATEL(AG).

What is the running time of EVALUATE1? Let n be the total number of nodes in
N, k be the number of decision nodes, a be the number of arcs, e be the number of edges
in the moral graph of . According to the complexity analysis of TEST-STEPWISE-
DECOMPOSABILITY, the time EVALUATE! spends on finding candidate nodes and
computing tails and bodies is O(k*(n + ¢)).

If we use the clique tree propagation approach to compute the marginal potentials
in step (a), we need only to traverse the clique tree twice. If there are [cliques and the
maximum number of nodes in a clique is ¢, the runing time is O(I\?), where) stands for
the maximum number of values a variable can assume. So, EVALUATEL spends O(kIA?)
time computing marginal potentials.

The time for computing the evaluation functional and optimal decision functions from
the evaluation functional is dominated by the time for computing marginal potentials,
except for the numerical divisions. For each (candidate) node d, the factor Po(7a,d) is
divided from an expression to arrive at the evaluation functional e(7y,d). Numerical

divisions also happen once for each disturbance recipient in the computation of body?.

2This can be avoided via a subtle technical trick.

Chapter 6. Non-Smooth SDDN'’s 107

6.4 Correctness of EVALUATE]1

To prove the correctness of the procedure EVALUATE], it suffices to show that Theorems
6.2 and 6.3 are true.
Proof of Theorem 6.2: Let N’ be output network of TAIL-SMOOTHING(N, d).
Then d is also an SD candidate node of N and N is smooth at d.

Let P} be the product of the conditional probabilities in the tail A'};(d, N'). According

the Theorem 5.3, optimal decision functions 63 for d can be found through
65(B) = arg mazqeq €' (d=a, 14=0),Yp € Qn,, (6.56)
where the evaluation functional €'(d, 74) of N}; is given by

e(,) = Y, 3 Pim,ma,d)ps(m) Ya € 0, VB € Qny, (6.57)

vEV) 1 my—mU{d}
where Vj; stands for the set of value node in N},.
Let Py be the product of all the conditional probabilities in the tail Aj;(d,N). By
Lemma 6.2, we conclude that arc reversals do not change joint probabilities. Hence they
do not change conditional probabilities either. Consequently, for each value node v in

N1 (or in N};) we have

Po(my|ma, d) = Py(my|ma, d).
Since N’ is smooth at d, we have

Py(7y|na,d) = Py(my, x4, d)-
Therefore

Py(7y, e, d) = Po(my|ma, d). (6.58)

Chapter 6. Non-Smooth SDDN’s 108

Consequently,

3]
_—
B

3
G
 —

Il

Z Z Po(my|ma, d)po(7)

vEV my—mqu{d}

= S Y Po(may e ()

Pﬁ(ﬂ-d':d) vEVyr T
= wlia, (6.59)

where e(d, 74) is the evaluation functional of A;. This proves Theorem 6.2. O

Proof of Theorem 6.3: Let A be the output network of TAIL-SMOOTHING(N, d).
Then d is also an SD candidate node of N’ and N’ is smooth at d. Let 7/ be the set
of parents of a node z in V' and let P’(c|r.) be the conditional probability of a random
node ¢ in N,

Let K be the skeleton underlying A'. Recall that in the definition of N7, we executed
TAIL-SMOOTHING-K(K, d). Suppose the ties were broken in the same way in both the
execution of TAIL-SMOOTHING-K(K,d) and the execution TAIL-SMOOTHING(N,
d). Then for any node z in N other than the tail-value node, 7! = 7. In particular, for
any disturbance recipient r of d in N, w! = =/.

Because of Theorem 5.3, it suffices to show that the body N7(d, V') of AV is the same
as the body Nj(d, N') of N'.

First of all, because of equation (6.59) the value function of the tail-value node in N}
is the same as the value function of the tail-value node in ANj.

What remains to be proved is that for any disturbance recipient d of d,
P'(r|x!) = P(r|x]). (6.60)

Let R be the set of all the disturbance recipients of d in N. Let Cj; be the set
of random nodes in the downstream set Yjs(d,N). Consider the product of all the

conditional probabilities of nodes in Cj; U R. According to Lemma 6.2, this product is

Chapter 6. Non-Smooth SDDN’s 109

not changed by the arc reversals in TAIL-SMOOTHING(d, NV). Thus
[1 Pllre)= TI P'lelm).
ceCrUR ceCrjUR
Summing out all the nodes in C}; from both sides of the equation, we get
Po(ma) = [] P'(c|m)).
cER
Thus for any r€ R, we have

Zrd—({r}uﬂ) Po(‘l’l’d)

= I
Z“Td—ﬂ'{. Py(mq) = P(r|r;).

P'(r|m,) =

Theorem 6.3 is therefore proved. O

6.5 Comparison to other approaches

Influence diagrams are special SDDN’s and hence can be evaluated by EVALUATEL.
This section compares EVALUATEL with previous approaches for evaluating influence
diagrams. We identify a list of desirable properties and examine EVALUATE]1 and each

of the previous approaches with regard to those properties.

6.5.1 Desirable properties of evaluation algorithms

A list of desirable properties of algorithms for evaluating influence diagrams is given in

the first row of Table 6.1. Due explanations follow.

Chapter 6. Non-Smooth SDDN'’s

Table 6.1 Comparisons among approachs for evaluating influence diagrams.

facilitating| divide separating | multiple | reversing

arc and BN value arcs

removal conquer | inference | nodes
EVALUATE!1 yes yes yes yes no
Shachter 86 no no no no yes
Ndilikilikesha 92 | no no no no no
Tatman and | no no no yes yes
Shachter 90
Shachter 88 no no yes no no
Shenoy 90 n/a no no no 1no
Shenoy 92 n/a no no yes no

Facilitating the pruning of removable arcs

110

In a decision network, an arc into a decision node is removable if its removal does not

affect the optimal expected value of the network. In Chapter 7, we shall present an

algorithm that prunes from an influence diagram all the removable arcs that can be

graphically identified.

There are a couple of advantages to pruning removable arcs: it results in a simpler

network, and it reduces the sizes of the decision tables. Thus a desirable property for an

evaluation algorithm to possess is to be able to facilitate the pruning of removable arcs.

It will be shown in Chapter 7 that pruning graphically identifiable removable arcs

from influence diagrams results in SDDN’s. Since EVALUATE] is designed for evaluating

SDDN'’s, it facilitates the pruning of removable arcs from influence diagrams.

Chapter 6. Non-Smooth SDDN'’s 111

Divide and conquer

It is desirable to decompose, prior to evaluation, an influence diagram into (overlapping)
portions such that each portion corresponds to a decision node and optimal decision
functions of a decision node can be computed in its corresponding portion. This is an
application of the standard divide and conquer idea.

Suppose the influence diagram to be evaluated has been put through a preprocessing
stage such that removable arcs have been pruned. Let A be the resulting SDDN. The
procedure EVALUATE] evaluates A recursively. At the first step of the recursion,
EVALUATEL finds an SD candidate node d and cuts A into two portions: the tail AVp;
and the body N;. EVALUATEI computes an optimal decision function of d in Ny, and
then repeats the process for the body A;. In this sense, we say that EVALUATE1 works

in a divide and conquer fashion.

Separating Bayesian network inference

When evaluating an influence diagram, it is desirable to separate Bayesian network (BN)
inference from other computations. There have been intensive research on BN inference,
and systems have been built. If an influence diagram evaluation approach can clearly
separate BN inference from other computations, then it can be implemented on top of
any system for BN inference. This is an application of the principle of separation of
concern and the modularity principle. |

EVALUATEI] clearly separates BN inference from other computations; all the BN
inference tasks — the tasks of computing the marginal potentials Po(74), Po(m4,d), and
Po(7a,d, m,) — are collected in step (a). We have been suggesting to use the clique tree
propagation method to compute the marginal potentials. However, other methods can

be used as well.

Chapter 6. Non-Smooth SDDN'’s 112

Arc reversals and numerical divisions

Numerical divisions are slower than additions and multiplications; they should be avoided
when possible. Arc reversal implies numerical divisions; they should also be avoided if
possible.

The procedure EVALUATEL does not require arc reversals. Furthermore, the only
times EVALUATE] does numerical divisions are when computing the evaluating func-
tional e(d,m;) and the conditional probability P(r|r!) of a disturbance recipient r of

some decision node.

Multiple value nodes

When the decision maker’s utility function can be separated into several components
(Tatman and Shachter 1990), it is important to take advantage of the separability by
having multiple value nodes. This may imply substantial speed up of computation.

EVALUATE] is designed for dealing with multiple value nodes.

6.5.2 Other approaches

This subsections examines the approaches by Shachter (1986), Ndilikilikesha (1992), Tat-
man and Shachter (1990), Shachter (1988), Shenoy (1990), Shachter and Peot (1992), and
Shenoy (1992). The approaches by Howard and Matheson (1984), and Cooper (1989)

will be discussed in Chapter 9.

Things that can be said for all

Until now, influence diagrams have always been assumed to be no-forgetting; there have
been no methods for dealing with influence diagrams that violate the no-forgetting con-

straint. Even though several authors (Shachter 1988, Tatman and Shachter 1990, and

Chapter 6. Non-Smooth SDDN'’s 113

Shenoy 1992) have noticed and to some extent made use of the fact that some decision
nodes may be independent of some of their parents, no one has proposed to prune remov-
able arcs at the preprocessing stage. The reason is that pruning arcs from an influence
results leads to the violation of the no-forgetting constraint.

Shenoy (1990) and (1992) proposes a new representation for decision problems, namely
valuation-based systems. In this representation, the issue of removable arcs does not
occur. We will come back to this point later.

Probably because they do not prune removable arcs by preprocessing, none of the
previous approaches work in a divide and conquer fashion. The method by Shenoy
(1990, 1992) does not work in a divide and conquer fashion either. The adoption of a
divide and conquer strategy is the most important advantage of EVALUATE] has over
the previous approaches.

The rest of this subsection examines the previous approaches with regard to the three

remaining properties: separating BN inference, multiple value nodes, and arcs reversals.

Shachter (1986), Ndilikilikesha (1992), and Tatman and Shachter (1990)

Before Shachter (1986), influence diagrams are evaluated in two stages—first transform
them into decision trees, and then evaluate the decision trees (Howard and Matheson
1984). Shachter (1986) shows that influence diagrams can be evaluated without the
transformation into decision trees, and presents an approach that evaluates an influence
diagram by properly applying four operations: barren node removal, arc reversal, random
node removal, and decision node removal.

As shown in the third row of Table 6.1, the approach by Shachter (1986) does not
separate BN inference, does not deal with multiple value nodes, and requires arcs rever-
sals.

By generalizing influence diagram into potential influence diagrams, the approach

Chapter 6. Non-Smooth SDDN’s 114

by Ndilikilikesha (1992) is able to evaluate an influence diagram by using only three
operations: ;ba,rren node removal, random node removal, and decision node removal. The
operation of arc reversal is avoided. However, this approach still does not separate BN
inference and does not deal with multiple value nodes (see the fourth row of Table 6.1).

Tatman and Shachter (1990) generalizes influence diagrams in another direction for
the sake of dealing with multiple value nodes. The evaluation approach is very much like
Shachter (1986), except that it has one miore operation, namely the operation of merging

value nodes. This approach does not separate BN inference, and it requires arc reversals

(see the fifth row of Table 6.1).

Shachter (1988)

Let d be an SD candidate node in an influence diagram J_[, and let v be the only value
node in N. Shachter (1988) and (1990) has noticed that optimal decision functions
6° : Qp, — Qg of d can be obtained through

64(8) = arg mazseq,Evire = B,d = o, (6.61)

for each B € Q,,.
Further in this direction, Shachter and Peot (1992) (first half) proposes a way to scale
the value function p, and change v into a observed random node, denoted by u (see also

Cooper 1989). Formula (6.61) is transformed into
85(B) = arg maz,eq,P(mq = B,d = alu = 1). (6.62)

Thus, this approach separates BN inference.
Even though Shachter (1990) points out the possibility that the conditional expec-
tation E[v|ry = f8,d = a] can be computed in one portion of the original network, the

algorithm proposed by this paper does not work in a divide and conquer fashion. After

Chapter 6. Non-Smooth SDDN’s 115

the optimal decision function for d is computed, the decision node d is replace by a de-
terministic random node characterized by the optimal decision function. The resulting
influence diagram contains one less decision nodes, but has the same number of nodes as
the original network.

Finally, this approach deals with only one single value node. See the sixth row of

Table 6.1.

Shenoy (1990), (1992), and Shachter and Peot (1992)

Shenoy (1990), (1992) propose a new representation for Bayesian decision problems,
namely valuation-based systems. While a decision network consists of an acyclic directed
graph, a set of conditional probabilities, and a set of value functions, a valuation-based
system consists of an (undirected) hypergraph grapil with a precedence relation, a set of
potentials, and a set of valuations. The no-forgetting consfra.int is enforced by requiring
the precedence relation to be transitive.

Influence diagrams can be readily represented as valuation-based systems.

Shenoy (1990) develops an approach for evaluating a valuation-based system by mod-
ifying the clique tree propagation algorithm for BN inference. No arc reversals are re-
quires in this approach. The approach was developed for the case of multiple value nodes.
However, there is an error. The paper concludes that the combination operation is com-
mutative, but it is not. Consequently, the approach works only for the case of one single
value node. Also, the approach does not separate BN inference (see the seventh row of
Table 6.1).

Shachter and Peot (1992) (second half) present an algorithm for evaluating influence
diagrams that is very similar to Shenoy (1990).

Shenoy (1992) proposes a node removal approach for valuation-based systems. This

Chapter 6. Non-Smooth SDDN’s 116

approach deals with multiple value nodes. It requires no arc reversals. However, numer-
ical divisions become necessary when removing a random node that appears in at least
one valuation, but not in all valuations. Thus the approach requires more numerical
divisions than EVALUATEI, when there are at least two value nodes. When a random
node to be removed appears in all the valuations, the valuations are combined into one
single valuation. Thus, the approach makes less use of separability in the utility function
than EVALUATEL.

This approach does not separate BN inference (see the eighth row of Table 6.1).

In a decision network, a decision is presumably to be made based on the values of
the parents of the decision node. When a decision d is independent of a certain parent d,
then the arc c—d is removable (Chapter 7). Thus arises the issue of removable arcs. In
a valuation-based system, on the other hand, the set of variables that a decision depends
upon is not explicitly specified. It is up to the evaluation algorithm to find it out. Thus,
there is no issue of removable arcs here. This is why in Table 6.1 we state the issue of

removable arcs does not apply to Shenoy (1990) and Shenoy (1992).

An overhead of our approach

Our approach has an overhead. Before doing any numerical computation, we need to
identify removable arcs, and figure out the tail and the body. On the other hand, most
previous approaches go directly to numerical computations after little graphical prepro-
cessing.

According to the complexity analysis at the end of Section 6.3, the overhead takes
O(k*(n + ¢)) time. Our believe is that in many case, this overhead may help us cut
down the time O(I\?) for numerical computations, which is usually of higher order than
O(k*(n + ¢)).

As a final note, let us point out the previous algorithms for evaluating influence

Chapter 6. Non-Smooth SDDN’s 117

diagrams can possibly be modified to evaluate SDDN’s.

Chapter 7

Removable arcs and independence for decision nodes

Given a decision network, there are often nodes and arcs that can be harmlessly removed,
in the sense that their removal does not affect the optimal expected value of the network.
It is.a good idea to prune such nodes and arcs at the preprocessing stage because doing
so simplifies the network. It is well known that barren (random and decision) nodes are
removable (Shachter 1986). This chapter addresses the issue of removable arcs in the
setting of SDDN’s.

We begin by establishing the equivalence between removable arcs and independencies
for decision nodes (Section 7.1), which is of fundamental importance to this chapter.
Section 7.2 introduces lonely arcs — a class of removable arcs that can be graphically
identified. In Section 7.3, we show that deleting lonely arcs from an SDDN does not
destroy its stepwise-decomposability. Section 7.4 introduces the concepts of potential
lonely arcs and of potential barren nodes to deal with the interaction between lonely
arcs and barren nodes. Finally, a pruning algorithm is given in Section 7.5. In the
next chapter, we shall show that this algorithm prunes all the removable arcs that are
graphically identifiable.

Before starting the exposition, let us point out that the issue of removable arcs cannot
be addressed in influence diagrams, since deleting arcs from an influence diagram may

lead to the violation of the no-forgetting constraint.

118

Chapter 7. Removable arcs and independence for decision nodes 119

7.1 Removable arcs and conditional independencies for decision nodes

In a decision network, an arc into a decision node is removable if its removal does not
affect the optimal expected value of the network. In a decision network skeleton X, an
arc into a decision node is removable if it is removable in every decision network over K.

A decision table is a decision function represented in the form of a table. In a decision
table of a decision node d, there is one dimension in correspondence to each parent of
d. One particular dimension b is irrelevant to d if fixing the values of all the other
dimensions, no matter which value b takes, the value for d remain the same.

In a decision network, a decision node d i1s independent of one particular parent b
given all the other parents of d if there exists an optimal decision table of d in which the
b-dimension is irrelevant. When it is the case, we shall write I4(d, b|x);), where 7/, stands
for mq—{b}. In a decision network skeleton K, a decision node d is independent of one
particular parent b given all the other parents of d if it is so in every decision network
over K.

The following proposition reveals the relationship between removable arcs and condi-

tional independencies for decision nodes, which is the corner stone of this chapter.

Proposition 7.1 Let N be a decision network, d be a decision node and b a parent of
d. Then the arc b—d is removable if and only if d is independent of b given all the other

parents of d.

Proof: Let dy, d, ..., di be all the decision nodes in N. Suppose d is d;. We shall write
my, for mq,—{b}.

We first show that if b—d; is removable, then I4(d;,blr;). Let N be the decision
network obtained from A by removing the arc b—d;. Since b—d; is removable, E[N] =

E[N).

Chapter 7. Removable arcs and independence for decision nodes 120

Let 6'=(8},...,6}) be a policy for N’. Let ! be the decision function of d; in §'. Then
6; is a mapping §; : 0y —{y,. Construct a policy ¢ for N from & by extending é! to be

the mapping §; : {1, —{lq, such that
bi(ma;) = 6i(7y,).
Then we have
Es[N] = Eg[N'].
Now letting 8’ be an optimal policy of N, we get
Es[N] = Eg[N'] = E[N'] = E[N].

Therefore § is an optimal policy for . Noticing that §; is independent of b, we get
La(d;, blmg,).

We now show that if Iy(d;,b|ry.), then b—d; is removable. Since I4(d;,b|7;.), there
exists an optimal policy § for A such that the decision function §; of d; is independent of
b. Construct a policy §' for N’ as follows: let the decision functions of all decision nodes
other than d; be the same as in 6; and let the decision function & : Q,;‘—bﬂd of d; be

such that
6i(7g,) = bi(ma;)-

This definition is valid because 6;(7y,) is independent of b. It follows from the definition

of §' that Es[N'] = Es[N]. Consequently,
EW'] 2 Ey[N') = BoA] = EIN]

On the other hand, we have shown in the first part of the proof that for any policy ¢’
for N, there is a policy § for A such that Es[N] = Eg[N’]. Hence E[N'] < E[N].
Therefore E[N'] = E[N]. Consequently, the arc b—d; is removable. O

Chapter 7. Removable arcs and independence for decision nodes 121

Figure 7.24: Removable arcs and removable nodes.

7.2 Lonely arcs

This section introduces lonely arcs — a class of removable arcs that can be graphically
identified.

Suppose K is a decision network skeleton. Let d be a decision node in X, and let b
be a parent of d. The arc b—d is said to be accompanied if there exist at least one edge
in the moral graph m(K) of K that connects b and some nodes in the downstream set
Yr1(d,K). When it is the case, we say that such edges accompany the arc b—d. The
arc b—d is lonely if it is not accompanied. In a decision network A, an arc b—d into a
decision d is lonely if it is lonely in the underlying skeleton.

For example, in the decision network skeleton shown in Figure 7.24 (1), the down-
stream set Y7;(ds, K) is the singleton {v,}. Since the arc c;—w; is in K, there is the edge
(c2,v2) in m(K), which accompanies the arc c;—ds. However, the arc c3z—d3 is lonely.

The following two lemmas exhibit some basic properties of lonely arcs.

Lemma 7.1 Suppose K is a decision network skeleton, and d is an SD candidate node

in K. An arc b—d is accompanied if and only if b is

Chapter 7. Removable arcs and independence for decision nodes 122

a parent to a random node in the downstream set Yi1(d,K), or

a parent to a value node in the downstream set Yr1(d,K), or

a disturbance recipient in 74, or

a parent to a disturbance recipient in mq. O

Lemma 7.2 Suppose K is a decision network skeleton. Let d and d' be two different
decision nodes in K. Suppose d' is an SD candidate node. Then an arc b—d is a lonely

arc in K if and only tf it is a lonely arc in the body K;(d',K). O

Theorem 7.1 Suppose K is an SDDN skeleton. If an arc b—d into a decision node d

is lonely, then d is independent of b. Consequently, the arc b—d is removable.

Proof: Let N be a decision network over K. We need to show that d is independent of
bin N.

By Lemma 7.2, we can assume, without losing generality, that d is an SD candidate
node. Let Nj; be the tail of N w.r.t d. Let P, denote the joint potential over the
random and decision nodes in Ny, i.e the product of the conditional probabilities of all
the random nodes in the downstream set Y7;(d,) and of the disturbance recipients in
4.

Since the arc b—d is lonely, by Lemma 7.1 b can be neither a disturbance recipient,
nor a parent to a disturbance recipient in 74, nor a parent to random node in Y7;(d, V).
Thus, P, is independent of b.

Again because b—d is lonely, by Lemma 7.1 b cannot be a parent to any value nodes
in Y77(d,N'). Hence, all the value functions in A7; are independent of b.

Putting those two points together, we get that the evaluation functional e(d, 74) (see
equation (6.47)) is independent of b. According to equation (6.55), the optimal decision

function of d is independent of b. The theorem is proved. D

Chapter 7. Removable arcs and independence for decision nodes 123

In Figure 7.24 (1), the arc c3—ds is lonely, hence removable. The removal of c3—ds
gives us the decision network skeleton in Figure 7.24 (2).

The following corollary is obtained from the proof of Theorem 7.1.

Corollary 7.1 Suppose b—d is a lonely arc in an SDDN N. Let N' be the decision
network obtained from N by removing the arc b—d. Then, N’ and N have the same
optimal decision tables for all the decision nodes other than d. Furthermore, the optimal
decision tables for d in N can be obtained from the optimal decision tables for d in N

by shrinking the irrelevant b-dimension. O

7.3 Pruning lonely arcs and stepwise-solvability
In order to repeatedly apply Theorem 7.1, we need the following theorem.

Theorem 7.2 The decision network skeleton resulted from pruning a lonely arc from an

SDDN skeleton is again stepwise-decomposable.

Proof: Let K be an SDDN skeleton and b—d be a lonely arc. Let K’ be the resulting
skeleton after removing b—d from K. We prove that K’ is stepwise-decomposable by
induction on the number k of decision nodes in K. When k=1, K’ also contains only one
decision node; hence is stepwise-decomposable.

Suppose K’ is stepwise-decomposable if k=m—1. Now consider the case of k=m. Let
d' be a candidate node of K. There are two cases depending on whether d'=d. Let us
first consider the case when d'#d. According to Lemma 7.2, b—d is also a lonely arc
in the body K;(d',K). Let K be the resulting decision network skeleton after removing
b—d from K;. By the induction hypothesis, K} is stepwise-decomposable. It is easy to

see that K} is the body of K}(d,K’). By Lemma 5.2, K' is also stepwise-decomposable.

Chapter 7. Removable arcs and independence for decision nodes 124

Now consider the case when d'=d. Since there are no edges in m(K) that connect b
and nodes in the downstream set Y7;(d,K), the set Y77(d,K’) is the same as Yj;(d,K).
So, d is also a candidate decision node of K'.

The body K%(d,K') is different from the body K(d,K) only in that in K} there
is no arc from b to the tail-value node u, while there is in X';. Since K; 1s stepwise-

decomposable, so must be Kj. By Lemma 5.2, K’ is also stepwise-decomposable. O

7.4 Potential lonely arcs and barren nodes

In a decision network skeleton, a barren node is a random or decision node that does
not have any children. In the following, we shall distinguish decision barren nodes and

random barren nodes. The node c; in Figure 7.24 (2) is a random barren node.

Proposition 7.2 (Shachter 1986) A barren node may be simply removed from a decision

network. If it is a decision node, then any decision function is optimal.

Now we recursively define potential lonely arcs and potential barren nodes. A potential
lonely arc is a lonely arc or an arc that becomes lonely after the removal of some barren
and potential barren nodes, and the removal of some lonely and potential lonely arcs. A
potential barren node is a barren node or a node that becomes barren after the removal
of some lonely and potential lonely arcs, and the removal of some barren and potential
barren nodes.

Going back to our example, after the removal of c3—dj, the the node ¢3 becomes
barren, and hence can be removed. After the removal of ¢3, ¢;—d; becomes lonely. After
the removal of ¢;—d; , c;—d; becomes lonely.

Here is a corollary of Theorem 7.1.

Chapter 7. Removable arcs and independence for decision nodes 125

Corollary 7.2 Suppose K is an SDDN skeleton. If an arc b—d into a decision node
d is a potential lonely arc, then d is independent of b. Consequently, the arc b—d is

removable.

7.5 An algorithm

This section presents the algorithm PRUNE-REMOVABLES, which prunes all the po-

tential lonely arcs and potential barren nodes in an SDDN skeleton.
Procedure PRUNE-REMOVABLES(K)

e Input: £ — an SDDN skeleton.

e Outputs: An SDDN skeleton that does not contain potential arcs and

potential barren nodes.

1. If there is no decision node in K, output K and stop.
2. Else

e Find and remove all the barren nodes;

e Find a candidate node d of X, and compute the downstream set
Yr1(d,K) of m4.

e Find and remove all the lonely arcs among the arcs from 7y to d.
Let K’ be the resulting skeleton.

e In K, treat d as a random node! (thus K’ contains one less decision

node than K) and recursively call PRUNE-REMOVABLES(K).

As an example, consider the SDDN skeleton in Figure 7.24 (1). There are no barren

nodes at the beginning; and dj is the only candidate node. The downstream set K z;(d3, K)

1The node d is treated as a random node only within the scope of PRUNE-REMOVABLES.

Chapter 7. Removable arcs and independence for decision nodes 126

is the singleton {v,}. One can see that c;—ds is the only lonely arc. After the removal
of ca—ds, the skeleton becomes as shown in Figure 7.24 (2), where c3 is a barren node.
After the removal of c3, we get the skeleton in Figure 7.24 (3). Since d3 is now treated
as a random node, d, becomes a candidate node. The arc ¢;—d; is lonely, and hence is
removed. Thereafter, d; is also treated as a random node, rendering d; a candidate node.
The arc ¢;—d; is lonely and hence remmoved. The final skeleton is shown in Figure 7.24
(4).

Let K’ be the output decision network skeleton of of PRUNE-REMOVABLES(X).
How is K’ related to K in terms of decision tables? Let A ana N’ be decision networks
over K and K’ respectively such that in both /' and N/’ each variable has the same frame,
each random variable has the same conditional probability, and each value node has the
same value functions. By repeatedly applying Corollary T.l, we can conclude that the
optimal decision tables for A can be obtained from those for A/ by deleting irrelevant
dimensions.

Finally, let us consider the complexity of PRUNE-REMOVABLES. Let n be the total
number of nodes in K, k£ be the number of decision nodes, a be the number of arcs, ¢
be the number of edges in the moral graph of X, and p be the maximum number of
parents of a decision node. Finding all the barren nodes takes O(a) time. According
to the complexity analysis of TEST-STEPWISE-DECOMPOSABILITY, finding an SD
candidate node and computing its downstream set takes O(k(n +€)) time. To find lonely
arcs, we need to check, for each node z in 7y, if « is connected to at least one node in the

downstream set Y;7(d, K), which can be done in O(pn) time. So, the total complexity of
PRUNE-REMOVABLE is O(k(k(e + n) + pn)) = O(k*e + k*n + kpn).

Chapter 8

Stepwise-solvability and stepwise-decomposability

We have shown in Section 5.2 that if a smooth decision network is stepwise-decomposable,
then it stepwise-solvable. In this chapter, we go further to prove that if a decision net-
work skeleton, smooth or non-smooth, is stepwise-decomposable, then if it is stepwise-
solvable. More importantly, we show that under “normal” circumstances if a decision net-
work skeleton is stepwise-solvable, then it is stepwise-decomposable (Section 8.8). Thus,
stepwise-decomposability is the weakest graphical criterion that guarantees stepwise-
solvability. .

According to Corollary 7.2, potential lonely arcs are removable. In this chapter, we
also show that potential lonely arcs are all the removable arcs that can be graphically
identified (Section 8.7).

The proof technique is induction on the number of random nodes and on the number
of decision nodes. In order to-do induction on the number of random nodes, we need
three operations on decision network skeletons, namely short-cutting (Section 8.2), root
random node removal (Section 8.3), and arc reversal (Section 8.4). Section 8.5 shows how
those three operations fit together. An induction apparatus on the number of decision
node is given in Section 8.6. Let us begin with the concept of normal decision network

skeletons.

127

Chapter 8. Stepwise-solvability and stepwise-decomposability 128

Figure 8.25: An abnormal decision network skeleton (1), and an normal equivalent skele-
ton (2).

8.1 Normal decision network skeletons

A decision network skeleton K is normal if for any decision node d, there is a directed
path from d to each value node in the downstream set Y;;(d,K) of 74. A decision network
is normal if its underlying skeleton is.

As an example, let K be the decision network skeleton in Figure 8.25 (1). Yir(d:,K)
contains all the nodes except ¢;. In particular, v3€Y7;. But there is no directed path
from d; to v;. So K is abnormal. On the other hand, the decision network skeleton in
Figure 8.25 (2) is normal.

What is the intuition behind this concept of normality? Consider a decision node d
and a value node v in a decision network A/. Given any policy é of NV, let Ps be the joint
probability § induces over all the random and decision nodes of A/. The expected value

Eg[v] of v is given by

Eslv] = Z Pg(my) po(m0),

where pu, stands for the value function of v. According Proposition 3.1, if there is no
directed path from d to v, then d is irrelevant to Ps(m,) and hence to Ej[v]. In other

words, d can influence v only when there exists a directed path from d to v.

Chapter 8. Stepwise-solvability and stepwise-decomposability 129

Intuitively a normal decision network is one where each decision node d can influence
all the value nodes that are not m-separated from d by the parents of d. In other words,
all those value nodes that d can not influence are m-separated from d by .

An abnormal decision network skeleton can be stepwise-solvable even when it is not
stepwise-decomposable. For example, the decision network skeleton in Figure 8.25 (1)
is not stepwise-decomposable. However it is stepwise-solvable. To see this, let A be an
arbitrary decision network over the skeleton. Construct a decision network N’ over the
skeleton in Figure 8.25 (2) such that ¢, has the same frame and conditional probability
as ¢,. For any policy 6, let Ps be the joint probability é induces over all the random and
decision nodes in N, and P} be the joint probability § induces over all the random and

decision nodes in A/. By Proposition 3.1, we have that
Ps(my,) = Ps(es, ¢5) = Pi(es, e3) = Py(m,).

Thus the expected value of v; under é in N is the same as that in A”. By the same
line of reasoning, we can show that the expected value of v, under é in AV is the same as
that in A’. Therefore N' and N are equivalent. Since N’ is stepwise-decomposable, it
is stepwise-solvable. Therefore A is also stepwise-solvable.

The main goal of this chapter is to show that a normal decision skeleton with no
barren nodes and no lonely arcs is stepwise-solvable only if it is stepwise-decomposable.
We also show that a normal SDDN skeleton with no barren nodes contains removable
arcs only if it contains potential lonely arcs.

The reader may ask: what about abnormal decision network skeletons? We conjecture
that abnormal decision network skeletons can always to transformed into “equivalent”
normal skeletons. For example, the decision network skeleton in Figure 8.25 (1) can be
transformed into the one in Figure 8.25 (2). However, we have not been able to precisely

formulate and prove the conjecture.

Chapter 8. Stepwise-solvability and stepwise-decomposability 130

YR YRV
N/ d

FAVEERE AN,
ANVAY AAS

(2)

Figure 8.26: Short-cutting. The random node ¢ in (1) is short-cut, resulting in the
decision network skeleton in (2).

8.2 Short-cutting

This sections introduces the operation of shorting cutting random nodes from a decision
network skeleton. The properties of the operation with regard to induction are exploréd.
Short-cutting is the first of the three operations that are needed to facilitate induction
on the number of random nodes.

Before getting started, however, let us make a note about notation usage in this
chapter. Applying the operation of short-cutting, or any other operation, on a decision
network skeleton K results in another decision network skeleton X’. We shall let 7, and
7. to denote the set of parents of z in K and in K’ respectively. Let A" and N’ be decision
networks over K and K'. We shall denote the conditional probability in N of a random
node ¢ by P(c|r.) and the value function in A of a value node v by g, (7). Similarly, we
use P'(c|r’) and p! (7)) to denote the conditional probability of ¢ and the value function
of v in N respectively.

Let K be a decision network skeleton. Let ¢ be random node in K such that ¢ has
at least one parent. To short-cut c is to delete ¢ from K, and draw an arc from every
parent of ¢ to each child of ¢. Figure 8.26 illustrates this concept. We see that after the

short-cuting, every child of ¢ inherit all the parents of c.

Chapter 8. Stepwise-solvability and stepwise-decomposability 131

The main task of this section is to prove Propositions 8.1 and 8.2, which are con-

structing blocks of our induction mechanism. We first present two lemmas.

Lemma 8.1 Let K be a decision network skeleton and c be a random node in K that
has at least one parent. Let K' be the decision network skeleton obtained from K by

short-cutting c. If ¢ is not a barren node, then for any two nodes x and y in K',

1. There is a directed path PATH! from z to y in K' if and only if there is a directed

path from x to y in K that consists of the same nodes as PATH]I with the possible

addition of the node c.

2. There is a path PATH2 between = and y in the moral graph m(K') if and only if
there is a path between x and y in the moral graph m(K) that consists of the same

nodes as PATH2 with the possible addition of the node c.
Proof: The lemma follows directly from the definition of short-cutting. O

Lemma 8.2 Let K be a decision network skeleton and ¢ be a random node in K that
has at least one parent. Let K' be the decision network skeleton obtained from K by

short-cutting c. Let d be a decision node in K (or equivalently in K').
1. If ¢ is in the upstream set Yi(d,K), then 7, = 74, and Y1;(d,K') = Y;;(d, K).
2. Ifc is in the downstream set Yy1(d,K), then gy = 74, and Yy1(d,K') = Yi1(d, K)—{c}.
3. If cenq, then 7)) = (mq—{c})Un.. Furthermore if none of the parents of ¢ are

Yu(d,}C) 5 then Yu(d,K’) = YI;(d,K:).

Proof: The lemma follows directly from Lemma 8.1 and the fact the the downstream

set Yir(d,K) consists of all the nodes in K that are not m-separated from d by x;. O

Chapter 8. Stepwise-solvability and stepwise-decomposability 132

Proposition 8.1 Let K be a decision network skeleton, and let ¢ be a random node
which has at least one parent. Let K' be the decision network skeleton obtained from K

by short-cutting c.

1. If K does not contain any barren nodes, neither does K'.
2. If K normal, so is K'.
3. If K stepwise-decomposable, so is K'.

4. Suppose K is stepwise-decomposable and contains no barren nodes, and suppose
that if c€ry for some decision node d, then none of the parents of ¢ are in the
downstream set Yii(d,K). Then when K does not contain any lonely arcs, neither

does K'.

Proof: To show item 1, suppose a decision or random node z is not barren in K. Then
it has at least one child y. If y = ¢, then the children of ¢ in X become the parents of z.
Otherwise, y remains a child of z in X'. In either case, z has at least one child; hence K’
contains no barren nodes.

By Lemma 8.2, we have that for any decision node d,
Y1 (d,K') € Yii(d, K). (8.63)

Together with Lemma 8.1, this proves item 2.

To show item 3, we notice that because of equation (8.63), if a decision node d is an
SD candidate decision node of K, then it is also an SD candidate decision node of K'.

First consider the case when c€Yj;(d,K). In this case the body K7(d,K’) of K’ w.r.t
d is the same as the body K;(d,K) of K w.r.t d. If K is stepwise-decomposable, then so
is Ky, and hence K}. By Lemma 5.2, K' is also stepwise-decomposable.

On the other hand, when ¢¢Y;;(d,K), then K} is the same as the resulting decision

network skeleton after short-cutting ¢ from K;. If K is stepwise-decomposable, so is

Chapter 8. Stepwise-solvability and stepwise-decomposability 133

K. Consequently we can assume, as an induction hypothesis, that X} is stepwise-
decomposable. By Lemma 5.2, K’ is also stepwise-decomposable. Item 3 is therefore
proved.

To show item 4, let d be an arbitrary decision node. We need to show that the arcs
from nodes in 7, to d are accompanied in K'. There are three cases:

Case 1). If ceY;(d,K), by Lemma 8.2 we have 7} = n4 and Y;1(d,K’) = Y11(d, K).
Thus, the arcs from nodes in 7/ to d are accompanied in K’ by the same edges as in K.

Case 2). If ceY71(d,K), by Lemma8.2 we have r)), = w4 and Y7;(d,K') = Y71(d, K)—{c}.
Since the arcs from nodes in 7} to d are accompanied in K, and since X contains no barren
nodes, by Lemma 8.1 the arcs from 7/, to d remain accompanied in K.

Case 3). If c€my, 7)) = (mg — {c})Um.. The arcs from node in mz—{c} to d are
accompanied in K and remain accompanied in K'. We need only show that an arc from
a node y€m, to d are not lonely in K'.

Since K contains no lonely arcs and none of the parents of ¢ are in the downstream set
Y11(d,K), either there is an arc ¢c—z to a node z in Y;;(d,K), or there exists a random
node b€m,; and a node z€Y7(d, K) such that the arcs ¢—b and z—b appear in K.

In the first case, the arc y—z appears in K. Hence the edge (y, z) appears in m(K')
which accompanies the arc y—d. In the second case, y—b appears in K, and hence
the edge (y,z) appears in m(K'), which accompanies the arc y—d. This proves that K’

contains no lonely arcs. The proof is complete. O

Proposition 8.2 Let K be a decision network skeleton, let ¢ be a random node which
has at least one parent. Let K' be the decision network skeleton obtained from K by
short-cutting ¢. Then for any decision network N over K, there is a decision network

N over K that is equivalent to N”.

Proof: Given N, construct N as follows. Let all the nodes in N, excluding ¢, have the

Chapter 8. Stepwise-solvability and stepwise-decomposability 134

same frame as the corresponding nodes in A’. Let ¢ be a compound variable consisting

of a copy of each node in .. We set the conditional probability P(c|n.) of ¢ to be

1l He=mx:
P(c|n.) = (8.64)
0 otherwise

For any child of y of ¢, 7, = (m,~{c})Ur.. Noticing (r, = Qrs, we set

P(y|my) = P'(ylmy—{c},7c) = P'(y|m,).

The conditional probabilities of all other random nodes in A are the same as in N".
For any value node v, there are two cases depending on whether c€r,. When cér,,

we have 7, = w.. In this case, we set

po(mo) = po,(m,).

On the other hand, when c€r,, we can assume that 7,Nr, = 0, i.e v has no parents in ..
Because if v has parents in 7., we can always set the value function of v to be independent

of those nodes. Consequently we have 7,=(m,—{c})Ur.. Noticing Q,, = Q. , we set

to(mo) = po(my—{c}, me) = s ().

To show that N and N’ are equivalent, we first notice that they do have the same
policy space. Let é be a policy, and let Ps be the joint probability é induces over all the
random and decision nodes of N, and let P} be the joint probability § induces over all
the random and decision nodes of A”.

Let B be a set of random and decision nodes of N. It follows from the definition of

the conditional probabilities of A that

. { PY(B) if c¢ B -

P{(B—{c},n.) if ceB and BN, =0

Chapter 8. Stepwise-solvability and stepwise-decomposability 135

For any value node v such that c¢m,, we have

Z Ps(my)po(my) = Z Py(r p‘u(ﬂ-

On the other hand, for any value node v such that cen, we have

Z P&(“v)#v(ﬁv) — Z Pg(wu—{c}, WC)#L(WU_{C}? WC)

“U_{C}n”c
= Y Fi(x,)p(m)
Therefore

Es[N] = Es[NV).

That is /' and N’ are equivalent. O

8.3 Root random node removal

This section investigates the operation of removing root random nodes from decision net-
work skeletons. The properties of the operation with regard to induction are of particular
interest. Root random node removal is the second of the three operations that are needed

to facilitate induction on the number of random nodes.

Proposition 8.3 Let K be decision network skeleton, and let ¢ be a root random node,
i.e a random node without parents. Let K' be the decision network skeleton obtained from
K by removing ¢ and the arcs originating from c.

1. If K contains no barren nodes, neither does K'.

2. If K is normal, then so is K'.

3. If K is stepwise-decomposable, then so is K'.

Chapter 8. Stepwise-solvability and stepwise-decomposability 136

4. Suppose K is normal and stepwise-decomposable, and contains no barren nodes.
Suppose that for any decision node d such that c€Yi(d,K), none of the children of

¢ are in mq. Then when K does not contain any lonely arcs, neither does K'.

Proof: The first item is straightforward.

To prove second item, we notice that for any decision node d,
Y (d,K") C Yi1(d,K). _ (8.66)

Together with the fact that ¢ is a root random node, this equation entails item 2.

Because of equation (8.66), an SD candidate decision node d of K is also an SD
candidate decision node for K'. Moreover, when c is not in the downstream set Y;;(d, X),
then the body K7(d,K’) of K’ w.r.t d can be obtained from the body K(d,K) of K w.r.t
d by removing c¢. Hence item 3 can be proved in the same way as the third item of
Proposition 8.1.

To show item 4, let d be an arbitrary decision node. We need to show that the arcs
from nodes in 7 to d are accompanied in X'. There are three cases:

Case 1). If ceY1(d,K), then 7)) = w4 and Y71(d,K') = Y71(d, K). In this case, the arcs
from nodes in 7, to d are accompanied in K’ by the same edges as in K.

Case 2). If c€Y7/(d,K), then 7)) = 74 and Y71(d,K') = Y11(d,K)—{c}. For any z€n),
the arc —d is accompanied in K by, say, the edge (z,y) in m(K). There are two subcases
depending on whether or not y=c.

Case 2.1) y=c. Since ¢ is a root, there must exist another node 2z such that the arcs
z—z and ¢—z appear in K. Since none of the children of ¢ are in 74, z€Y77(d,K). There
are three subsubcases depending on whether z is a random node, a decision node, or a
value node.

Case 2.1.1). z is a random node. Since K contain no barren nodes, there exists a

value node v such that there is directed path from z to v. Since K is normal, there must

Chapter 8. Stepwise-solvability and stepwise-decomposability 137

be a directed path from d to v. Hence z€Y};(d,K’). Therefore in K’ the arc z—d is
accompanied by the edge (z,z) of m(K’).

Case 2.1.2). z is a a value node. Since K is normal, there exists a directed path from
d to v. Hence, z must be in the downstream set Y7;(d,K'). Therefore in K’ the arc z—d
is accompanied by the edge (z, z).

Case 2.1.3). z is a decision node. In this case, there must be at least one value node
in the downstream set Y7;(z,K), because K contains no barren nodes. Since K is normal,
there exists a direct path, say PATH, from d to v. Since K is stepwise-decomposable,
7, m-separated v from d. Therefore z must be in PATH. Consequently z€Yy;(d,K').
Therefore in K’ the arc z—d is accompanied by the edge (z, z).

Case 2.2) y#c. There are again three subsubcases depending on whether y is a random
node, a decision node, or a value node. The proof for this subcase can be carried out in
the same way as in case 2.1), except with z replaced by y.

Case 3). If c€mgy, then 7} = m4—{c}. For any node z€n), the arc z—d is accompanied
in K. Hence either there is an arc connecting z and a node z in the downstream set
Y11(d,K), or there exists another node y€Eny and a node z€Y7/(d, K) such that the arcs
z—y and z—y appear in K.

In the first case, z cannot be ¢. Hence the arc that connects z and z in K is also in
K', hence z—d is accompanied in K'. In the second case, y cannot be ¢ because ¢ is a
root random node; and z cannot be c either because c€my. Hence the arcs z—y and z—y
also appear in K'. Consequently, the arc z—d are also accompanied in K’. The proof is

complete. O

Proposition 8.4 Let K be decision network skeleton, and let ¢ be a root random node.
Let K' be the decision network skeleton obtained from K by removing ¢ and the arcs

originating from c. For any decision network N over K', there is a decision network N

Chapter 8. Stepwise-solvability and stepwise-decomposability 138

over K that is equivalent to A”'.

Proof: Given N', construct A/ as follows. Let all the nodes in N, excluding c, have
the same frames as in N’. Let ¢ take only one value, say 1. For a random node r such
that c¢r,, set the conditional probability of r the same as in A’. If a random node r is
such that c€n,, then 7, = n/U{c}. In this case, set its conditional probability P(r|rs)

as follows:
P(r|m,) = P'(r|r),

where P’(r|r.) stands for the conditional probability of » in A’. This definition is valid
because ¢ takes only one value.
For any value node v such that c¢r,, set the value function of v to be the same as in

N'. If a value node v is such that c€mr,, then 7, = 7/U{c}. In this case, set

() = pio(70,),

where p'(v|7!) stands for the value function of v in A. This definition is valid because
c takes only one value.

We now show that A is equivalent to A”'. For any decision node d such that c¢my,
then 7, = m4; d has the same decision function space in both A and N'. If a decision
node is such that c€ny, then 7, = m4—{c}. Since c only take one value, d still has the
same decision function space in both /' and N’. So, N has the same policy space as N,

It is evident that given a policy 8, Es[N] = Es[N"’]. Therefore, N' and N’ are

equivalent. The proposition is proved. O

8.4 Arc reversal

This section revisits the operation of reversing arcs in decision network skeleton, with an

eye on its induction properties. Arc reversal is the third of the three operations that are

Chapter 8. Stepwise-solvability and stepwise-decomposability 139

needed to facilitate induction on the number of random nodes.

Proposition 8.5 Suppose K is a decision network skeleton. Let b and c¢ be two random
nodes such that the arc c—b appears in K and is reversible. Let K' be the decision network

skeleton obtained from K by reversing the arc c—b.

1. Suppose ¢ has at least two children. Then if K does not contains any barren nodes,

netther does K'.
2. Suppose ¢ is a root. Then if K is normal, so is K'.
3. Suppose c is a root. Then if K is stepwise-decomposable, then so is K'.

4. Suppose ¢ is a root. Then if K does not contains any lonely arcs, neither does K'.

Proof: Item 1 is straightforward.

When c is a root, the moral graph m(K’) of K’ is the same as the moral graph m(X)
of K. Hence, items 3 and 4 follow.

To show item 2, let d be an arbitrary decision node. It follows from m(K’) = m(K)
that Y77(d,K') = Y1(d,K). Let v be a value node in the downstream set Yy;(d,K’) =
Y71(d,K). Since K is normal, there must be a directed path, say PATH1, in K from d to
v. Since c is a root, the arc ¢c—b cannot be in PATH1. Thus PATH1 is also a path in K'.

Therefore K’ is also normal. The proposition is proved. O

Proposition 8.6 Let K be a decision network skeleton, let b and ¢ be two random nodes
such that the arc c—b appears in K and is reversible. Let K' be the decision network

skeleton obtained from K by reversing the arc c—b. If ¢ is a root, then
7, = my—{c} and 7, = {b}Um,.

Furthermore for any decision network N’ over X' such that

Chapter 8. Stepwise-solvability and stepwise-decomposability 140

1. ¢ is a compound variable consisting a copy of each node in 7.,
2. the conditional probability P'(c|x!) is given by

P'(c|7!) = { L g ; (8.67)

0 otherunse

3. and if a value node is a descendent of ¢, then it is also a descendent of b,
there exists an decision network N over K that is equivalent to N”.

Proof: Given N, construct N as follows. Let all the variables have the same frames as
in /. Noticing that ¢ is the compound variable consisting a copy of each node in 7/, we

set

e the conditional probability P(b|m,) = P(blc,n}) of b to be

P(b[c,w{,):{p(bl?rg) 15S (8.68)

0 otherwise

e and the prior probability of ¢ to be the the uniform distributions, i.e P(c) = llTI’

where |c| stands for the number of possible values of c.

The conditional probabilities of all other random nodes are set to be the same as in N’.

For any value node v, m,=x.. If v is not a descendent of ¢, we set

,U.,,.(ﬂ'.u) = #L(W;)s

and if v is a descendent of ¢, we set

po(my) = |e|py (7).

Chapter 8. Stepwise-solvability and stepwise-decomposability 141

To show that A and N’ are equivalent, we first notice that for any decision node d,
mq = 74 hence K and K’ have the same policy space. Let 6 be a policy, and let Ps be the
joint probability § induces over all the random and decision nodes of NV, and let P} be
the joint probability § induces over all the random and decision nodes of . It suffices

to show that for any value node v,

> Pa(m) () = 3 Pi(mo)p,(my). (8.69)

If v is not a descendent of ¢, then it cannot be a descendent of b. By Proposition
3.1, both ¢ and b are irrelevant to Ps(m,), as well as to P{(m4). Hence Ps(mq) = P{(ma).
Consequently equation 8.69 is true.

Now if v is a descendent of ¢, then it is also a descendent of b. Consider Ps(b,c|r})

and Pj(b,c|m;). Noticing that 7/={b}Ur;, we have
Ps(b,c|my) = P(c)P(blc,m})

: {r;ip'(bm) if ¢ = (b))

0 otherwise

and

Pi(b,c|my) = P'(blm)P'(c|b,m})
P'(blmy) if c= (b,m})
0 otherwise

Hence we get

Ps(b, c|my) = — P5(b, c|my).

1
]
Since v is a descendent of both b and ¢, we have

Py(r) = 1 Pi(m).

Chapter 8. Stepwise-solvability and stepwise-decomposability 142

Therefore

Pa(%)lCI#u m) = 30 Pim)i (). (8.70)

Ty

ZPG Wv.uu Wu Z

The proof is completed. O

8.5 Induction on the number of random nodes

is a decision node

This section shows how the three operations discussed in the last three sections fit
together to form an induction strategy on the number of random nodes. This induction
strategy allows us to, in a certain sense, get rid of all the random nodes in the downstream

set Y71(d, K) for any d, as shown by the following proposition.

Proposition 8.7 Let K be a normal SDDN skeleton without barren nodes and without
lonely arcs. Let d, be a decision node in K. Then there exists another decision network

skeleton K' such that

COND1: K’ is normal and stepwise-decomposable, and contains no barren nodes

and no lonely arcs;

e COND2(K): The upstream component K;(d,,K') of K' w.r.t d, is the same as
K(d.,K);

e COND3: In K', there are no random nodes in the downstream set Yii(d,,K') of

T4, and

e COND4(K): For any decision network N over K', there ezits a decision network
N over K that is equivalent to N,

Chapter 8. Stepwise-solvability and stepwise-decomposability 143

Proof: We prove this lemma by induction on the number & of random nodes in the
downstream set Y7;(d,,K) of m4,. When k = 0, the lemma is trivially true. Suppose the
lemma is true for the case of k = m—1. Now consider the case of k = m.

Let d be a decision node in Y7;(d, K) such that there are random nodes in Y;;(d, K),
and that either there are no decision nodes in Y;;(d, K) or for any decision node d'€Yy;(d, K)
there are no random nodes in Y;(d’, K).

Since K contains no barren nodes, there can only be three cases:

1. There exists a random node c in the Y7;(d,K) that has at least one parent; or else

2. There exists a root random node ¢ in Y;;(d,K) whose children are either value

nodes or decision nodes in Y7;(d,K); or else

3. Every a random node in Y7;(d,K) is a root and has at least one child in 7.

Case 1): In this case, we short-cut ¢ from K, resulting in K£*. According to Propo-
sitions 8.1, K~ is also a normal SDDN without barren nodes and lonely arcs.

Since there are only m—1 random node in Yj;(d,K*), there exits, by the induction
hypothesis, a decision network skeleton K’ that satisfies COND1, COND2(K*), COND3,
and COND4(K*).

It is easy to see that K* satisfies COND2(K). By transitivity, X' also satisfies
COND2(K).

To see that X' satisfies COND4(K), let A be a decision network over KX’. Since
K' satisfies COND4(K*), there exist an decision network A* over K* that is equivalent
to N'. Because of Proposition 8.2, there must be a decision network A over K that
is equivalent to A'*. By transitivity, A/ is also equivalent N’. So, K’ also satisfies

COND4(K). Therefore, the lemma is correct in this case.

Chapter 8. Stepwise-solvability and stepwise-decomposability 144

Case 2): In this case, we simply remove ¢ from X, resulting in K*. One can show
that the lemma is also true in this case by using Propositions 8.3 and 8.4 and by following
the same line of reasoning as in Case 1.

Case 3): In this case, let ¢ be a random node in the downstream set Y;;(d,K).
Then c is a roo;, and has at least one child in 7y, Let b€w,; be a child of ¢ such that
(COND5:) there is no other b'eém, that is a child of ¢ and a parent of b. Since K is
stepwise-decomposable, b has to be a random node. Because of CONDS5, the arc ¢—b is
reversible. Reverse the arc c—b in K, resulting in X*. By Propositions 8.5, K* is normal
and stepwise-decomposable, and it contains no barren nodes and no lonely arcs.

There are also m random nodes in Y;;(d,K*). However in Yi;(d,K*) there is a ran-
dom node, namely ¢, that has at least one parent b. According to Case 1), there must
be a decision network skeleton K’ that satisfies COND1, COND2(K*), COND3, and
COND4(K*). |

Since K* satisfies COND2(K), so does K'.

To see that K’ satisfies COND4(K), let N’ be a decision network over K'. Since X'
satisfles COND4(K™*), there exist an decision network A'* over K* that is equivalent to
N'.

From the proof of Proposition 8.2, we can have A'* such that

1. ¢ is a compound variable consisting of a copy of each node in 7, where 77 is the

set of parents of ¢ in K*. Since c is a root in K, 7% = {b}U(m—{c}) = {b}Un].

2. The conditional probability P*(c|r?) = P*(c|b, 7}) is given by

P(clb,7}) = { el (8.71)

0 otherwise

Chapter 8. Stepwise-solvability and stepwise-decomposability 145

Moreover since c€Y;1(d,K) and K is normal, if a value node is a descendent of ¢, then it
must be a descendent of d, and hence b. So Proposition 8.6 applies and gives us that there
is a decision network N over K that is equivalent to A/*, and hence to A/’. Therefore X'

also COND4(K). Thus the lemma is true in this case also. The proof is complete. O

8.6 Induction on the number of decision nodes

This section shows how to carry out induction on the number of decision nodes. First,
let us define two properties of value functions that we will do induction with.

Let N be a decision network whose random and decision variables (nodes) are all
binary. Let A be a subset of nodes of A/. For any value node v of A, its value function

po(7y) is said to have property Q(A) if
® u,(7,) is independent of nodes in m,NA, and

® (y(my) = ¢, (some real number) when all the nodes in 7,—A take the same value,
regardless what this value is. When the nodes in m,—A do not all take the same

value, u,(m,) is strictly smaller than Go-
The value function is said to have property Q,(A)
® u,(m,) is independent of nodes in 7,NA, and

® uy(my) = ¢, (some real number) when all the nodes in m,—A take the value 1.
When there is at least one node in 7,—A that does not take the value 1, p,(m,) is

strictly smaller than g,.

Proposition 8.8 Suppose N is a normal SDDN with no barren nodes and no lonely
arcs. Suppose all the random and decision variables (nodes) of N are binary. Let d be

an SD candidate decision node of N, and let A be a set of nodes in N'. Suppose there are

Chapter 8. Stepwise-solvability and stepwise-decomposability 146

no random nodes in the downstream set Yi1(d,N') of wg. Then if all the value functions

in N have property Q(A) (or Q1(A)), so do all the value functions of the body Ni(d,N').

Proof: Let u be the tail-value node in Aj. It suffices to show that u,(mq) has property
Q(A) (or Q1(A)).

First of all, since there are no barren nodes, there must be at least one value node in
Yi1(d,N). Let vy, ..., vy be all the value nodes in Y;;(d, N).
Let N be the tail of N/ w.r.t d. Since there are no random nodes in Y7;(d,N),

Y11(d, V') consists of only value nodes. So we have

E[Nu|7i’d] (8.72)
= mazq)y poi(To,)- (8.73)

=1

P‘u("’d)

Since all the ., (7.,)’s are independent of nodes in AN7,, so must be p,(74).

Suppose all the value functions in N have property Q(A). Since N is normal, d is
a parent of every v;. Thus when all the nodes in 74— A take the same value, say a, the
value of p,(mq) is 3=y qu;, Which is achieved when d = c.

Now consider the case when there are two nodes z and y in 74 — A such that z take
the value 0 and y takes 1. Since A contains no lonely arcs, and there are no random
nodes in Y77(d, V'), there must be at least one value node, say v;, which is a child of z and
another value node, say v; (may be the same as v;), which is a child of y. Because the
value functions u,, and u,,; have property Q(A), we have that if d = 0, u,,(7,) < ¢u,, and
if d =1, poy,(7y;) < qu;. Therefore, py(mq) < 372, gy, This shows that p, has property
Q(A).

To prove the proposition for Q;(A), suppose all the value functions in A" has property
Q1(A). When all the nodes in 74— A take the value 1, y,(74) = Y%, gu;, which is achieved
when d = 1.

Chapter 8. Stepwise-solvability and stepwise-decomposability 147

Now consider the case when there is one node z€n,, whose value is 0 instead of 1.
There is a value node v; in Y;7(d, V') that is a child of z. Because y,, has property Q1(A),
1;(7y,) < qu,. Hence, py(7a) < T, gy, This shows that p, has property Q1(A4). The

proposition is proved. O

8.6.1 An extension and a corollary

Let d be a decision node in an SDDN N. We can extend the concept of a downstream
component from the case when A is smooth at d to the case when A is not smooth at
d in the same way as we did for the concept of as tail in Section 6.2. Let Nj;(d,N)
stand for the downstream component of AV w.r.t d. As in Section 3.6, we can define the

conditional expected value E[N7i(d,, N)|mq,].

Proposition 8.9 Suppose N is a normal SDDN with no barren nodes and no lonely
arcs. Suppose all the random and decision variables (nodes) of N are binary. Let d, be a
decision node N, and let A be a set of nodes in N'. Suppose there are no random nodes
in the downstream set Yii(d.,N'). Then if all the value functions in N' have property
Q(A) (or Q1(A)), so does the conditional expected value E[Ni;(d.,N)|ra,].

Proof: This proposition can proved by repeatedly use Proposition 8.8. D

Combining Proposition 8.9 and Proposition 8.7, we get the following corollary.

Corollary 8.1 Let K be a normal SDDN skeleton without barren nodes and lonely arcs.

Let d, be a decision node in K. For any subset ACm,,_, there exists a decision network

N over K such that E[Nyi(d,,N)|rq,] has property Q(A) (or Q1(A)).

Proof: Let X' be an SDDN skeleton as in Proposition 8.7. There are no random nodes

in Y77(d,,K'). Construct a decision network N over K’ as follows. Let all the random

Chapter 8. Stepwise-solvability and stepwise-decomposability 148

and decision variables be binary. For any value node v, set

(8.74)

(r) -1 if all the variable in 7,—A take the same value
o (7y) = !
0 otherwise

Then all the value function in N have property Q(A). By Proposition 8.9, E[N7;(d,, N")|x},]
also has property Q(A). According to Proposition 8.7, there is a decision network A over

K that is equivalent to A/’. Since the upstream Component K;(d,,K) of K is the same as
K(d,,K'), mq, = m}y . Thus we have E[N(d,,N)|rq,] = E[Ni(d:N')|r},]. Therefore
E[N11(d.,N')|ra,] has property Q(A).

The Q)1(A) part can be proved in the same way. O

8.7 Lonely arcs and removable arcs

We are now ready to prove a theorem about the relationship between removable arcs and

lonely arcs.

Theorem 8.1 Let K be a normal SDDN skeleton without barren nodes. If K contains

no lonely arcs, then it contains no removable arcs.
Before proving this theorem, let us point out an important implication.

Corollary 8.2 In a normal SDDN skeleton, an arc into a decision node is removable if

and only if it is a potential lonely arc. O

To put the corollary in another way, in a normal SDDN, potential lonely arcs are
all the removable arcs that can be graphically identified without resorting to numerical

computations.

Chapter 8. Stepwise-solvability and stepwise-decomposability 149

Proof of Theorem 8.1: Let d, be a decision node of K. Let ¢ be an arbitrary node in
74,. We need to show that the arc c—d, is not removable.

Because of Proposition 8.7, we can assume that there are no random nodes in the
downstream set Yis(d-, K).

Let A be an SDDN over K. Assume all the random and decision nodes are binary.
Let A = m4,—{c}. For any value node v in NV, set y, to be

(8.75)

() { 1 when all the variables in 7,— A take the same value
Hy Ty) =

0 otherwise

Then the value functions have property Q(A).

We find an SD candidate decision node d, computes its body N;(d,N') w.r.t d. It is
easy to verify that Nj(d,N') is also stepwise-decomposable and normal, and it contains
no barren nodes and no lonely arcs. According to the Proposition 8.8, all the value
functions N have property Q(A).

We then find an SD candidate decision node of A;(d,N'), computes its body, and so
on so forth. Eventually, we will obtain a normal SDDN, denoted by A, in which d. is
an SD candidate, and which contains no barren nodes and no lonely arcs. Furthermore,
all the the value functions in N, have property Q(A).

Since N, contains no lonely arcs, and there are no random nodes in the downstream
set Y7;(d., N), there must be at least one value node v€Yj;(d,,N') that is a child of ¢. In
the mean time, N, is also normal, so this value node v is also a child of d,. All the value
functions of A, have the Q(A) property. Since A = 74, —{c}, all the value functions in
the tail Nyr(d,,N;) depend only on d, or v or both. Therefore when ¢=0, the optimal
decision for d, is 0, and when ¢=1, the optimal decision for d, is 1. Thus d, depends on

¢ and hence the arc ¢—d, is not removable. The theorem is proved. O

Chapter 8. Stepwise-solvability and stepwise-decomposability 150

8.8 Stepwise-solvability and stepwise-decomposability

This section proves the following theorem about the relationship between stepwise-

decomposability and stepwise-solvability.

Theorem 8.2 Suppose K is a normal decision network skeleton with no barren nodes

and no lonely arcs. Then K is stepwise-solvable if and only if it is stepwise-decomposable.

A decision network skeleton in Figure 3.15 is not stepwise-decomposable, hence it is
not stepwise-solvable. Consequently, as we predicted in Section 3.4, with appropriate
probabilities and value functions, optimal policies can be found only by considering the
two decisions simultaneously.

The remainder of this section is to prove Theorem 8.2. In a decision network, a

decision root node is a root node that is also a decision naode.

Lemma 8.3 Suppose K is a normal decision network without barren nodes. Suppose d
is a decision node in K. If there are decision root nodes in the downstream set Yrr(d,K),

then d cannot be an S5 candidate node.

Proof: Let K' be the decision network skeleton obtained from K by replacing with
deterministic nodes those decision nodes that are different from d and have at least one
parent. It suffices to show that (Statementl:) d is not an SS candidate node in X'.

Let 7. be the set of parents of a node z in K'. We show Statementl by induction on
the number k of random nodes, including deterministic nodes, in Y7;(d,KX’). When k = 0,
all the nodes in Y;;(d, K') are either decision root nodes or value nodes; and there exists
at least one decision root node. By the definition of Y7;(d, K’), there must be one decision
root node d’'€Yyy(d,K’) such that d' has a value node child v. Since K is normal, so is
K'. Hence, there exits a directed path from d to v. Because all the nodes in Y7;(d,K’)

are either decision nodes or value nodes, d must be a parent of v.

Chapter 8. Stepwise-solvability and stepwise-decomposability 151

Construct a decision network N’ over X' as follows. Let all the random and decision
variables be binary; let the value functions of the value nodes other than v all be zero;

and set

1 if d=d'
palma) = | (5.76)
0 otherwise

We see that if d’ = 1, the optimal decision for d is d = 1; and if d’ = 0, the optimal
decision for d is d = 0. Therefore the optimal policy for d depends on the policy for d’ .
Consequently d is not an SS candidate node. So, Statementl is true in the case k = 0.

Assume Statementl is true for the case of £ = m—1. Consider the case of k = m.
There are three subcases.

Subcase 1). There is a random node c€Y7;(d,K’) that has at least one parent. In this
case, we can short-cut ¢ from K', resulting in K*. According to Proposition 8.1, K* is
also normal and contains no barren nodes. Since there are only m—1 random nodes in
Y11(d,K*), by the induction hypothesis, d is not an SS candidate node in K*. Through
Proposition 8.2, this implies that d is not an SS candidate node in X’.

Subcase 2). There is random node ¢€Y;;(d,K’) whose children all are value nodes.
In this case, we can simply remove ¢ from K’, resulting in X*. Using Propositions 8.3
and 8.4 and following the same line of reasoning as in Subcase 1), we can show that
Statementl is true in this subcase.

Subcase 3). Every random node c€Y;;(d,K’) is a root, and it has at least one child
in 7. Let b€x), a a child of ¢ such that there is no other &’€} that is a child of c and a
parent of b. By the definition of X', b is a random (maybe deterministic) node. By the

choice of b, the arc c—b is reversible. We reverse the arc c—b in K’ to get K”.

! For later convenience, let us remark that this conclusion follows for any value function p, of v that
has property Q({d,d'}).

Chapter 8. Stepwise-solvability and stepwise-decomposability 152

By Proposition 8.5, K" is also normal and contains no barren nodes. There are m
random nodes in Yjr(d,K"), one of which, namely ¢, has parents. As in Subcase 1),
we short-cut ¢ from K", resulting K*. By the induction hypothesis, there is a decision
network N'* over K* in which the optimal decision function of d depends on the decision
policy of some other decision node d'.

By Proposition 8.2, there exists a decision network N’ over K” that is equivalent to

N*; and by the proof of Proposition 8.2, we conclude that A/ can be such that

. ¢ is a compound variable istin i i
1 pound variable consisting of a copy of each node in 7, where 7" is the

set of parents of ¢ in K”. Since ¢ is a root in K', 7 = {b}U(r;—{c}) = {b}Uny.

2. The conditional probability P”(c|rY) = P"(c|b, n}) is given by

} } 1 ife=n"=(brl
P"(c|b, my) = ; (8.77)

0 otherwise
Moreover, since c€Yyr(d,K') and K’ is normal, if a value node is a descendent of ¢, then
it must be a descendent of d, and hence b. So, Proposition 8.6 applies, and gives us
that there is a decision network A’ over K that is equivalent to N, and hence to N*.
Therefore in A, the optimal decision function of d depends on the decision function of
some other decision node. Consequently, d is not an SS candidate node in K. The proof

is complete. O

Lemma 8.4 Let K be a normal decision network skeleton with no barren nodes. Suppose
d is a decision node in K, and suppose there are no decision root nodes in the downstream
set Yi1(d,K). If there exists at least one decision node, other than d, in Yii(d,K), then

d is not an SS candidate node.

Chapter 8. Stepwise-solvability and stepwise-decomposability 153

Proof: Let d’ # d be a decision node in Y7;(d,K). Let K’ be the decision network
skeleton obtained from K be replacing all the decision nodes other than d and d' by
deterministic nodes. It suffices to show that (Statementl:) d is not an SS candidate node
in K'.

We prove Statementl by induction on the number k of random nodes, including
deterministic nodes, in Y7;(d,K’). When k = 0, Y7;(d,K) consists of d, d', and value
nodes. By the definition of Y;;(d, K), there must exist a value node v that is a child of
d'. Since K is normal, so is K'. Hence, d there is a directed path from d to v. There are
two cases: either d is a parent of v, or d is a parent of d'.

It has been shown in the proof of Lemma 8.3 that when both d and d' are parents
to v, d is not an SS candidate node. Now consider the case when d is a parent of d'.
Construct a decision network A’ over K’ as follows. Let all the random and decision
variables be binary; let the value functions of all the value nodes other than v be zero;

and let

1 ifd=1
,uv(?ru) = (878)
0 otherwise

Noticing d€),, we have that when the decision function §' of d' is such that &'(7%) = d,
the optimal decision for d is d = 1; and when the decision function &’ of d' is such that
§'(mly) = 1—d, the optimal decision for d is d = 0. Therefore, the optimal decision
function for d depends on the decision function of d’ 2. Thus, d is not an SS candidate
node, and Statement]l is true for the case of k£ = 0.

Assume Statement] is true for the case of k = m — 1. We can prove that Statementl
is true for the case of k = m by following the same line of reasoning as in the proof of

Lemma 8.3. There is only one issue that demands special attention. In Subcase 3), we

2 For later convenience, let us remark that this conclusion follows for any value function p, of v that
has property Q;({d'}).

Chapter 8. Stepwise-solvability and stepwise-decomposability 154

need to reverse the arc c—b. This can only be done when ¢ is a random node and not
a deterministic node. Since there are no root decision nodes in Y7;(d,K), there are no
deterministic root nodes in Yj;(d,K’). Thus, ¢ can not be a deterministic node. The

lemma is proved. O

Lemma 8.5 Suppose K is a normal decision network skeleton with no barren nodes. Let
d be a decision node in K. Suppose there are no decision nodes in the downstream set
Y11(d,K). If there is a decision node d'€ry such that at least one of the parents of d' are
in Y71(d,K), then d is not an SS candidate node.

Proof: Let K’ be the decision network skeleton obtained from X be replacing all the
decision nodes other than d and d' by deterministic nodes. It suffices to show that
(Statementl:) d is not an SS candidate node in K'.

We prove Statementl by induction on the number & of random nodes, including
deterministic nodes, in Y;;(d,K') — 7. When k=0, Y7;(d, K') consists of the parents of
d', and value nodes. By the definition of Yj;(d,K’), there must be at least one parent ¢
of d' that has a value node child v. Since K is normal, so is K'. Thus, d must also be a
parent of v.

Construct a decision network N’ over K’ as follows. Let all the random and decision
variables be binary; let the value functions of the value nodes other than v all be ZEro;

and set

1 ifd=c
}Uv(“’u) = (8.79)
0 otherwise

Noticing c€nl, and d'€n), we have that if the decision function &’ for d' is such that
8'(mly) = ¢, then the optimal decision function 8° of d is such that §°(n))) = d'; and if the

decision function &' for d' is such that §'(7},) = 1—c, then the optimal decision function

Chapter 8. Stepwise-solvability and stepwise-decomposability 155

6° of d is such that 6°(r}) = 1—d’. That is, the optimal decision function of d depends
on the decision function of d' . Consequently d is not an SS candidate node in X,
Statement] is true for the case of k£ = 0.

Assume Statement]l is true in the case of ¥k = m—1. We can prove that Statementl
is true in the case of k = m in the same way as in the proof of Lemma 8.3. The lemma

is thus proved. O

Proposition 8.10 Suppose K is a normal decision network skeleton with no barren
nodes. Let d be a decision node in K. If d is an SS candidate node, then it is also

an SD candidate node.

Proof: Since d is an SS candidate node, by Lemmas 8.3 and 8.4, there cannot be decision
nodes in the downstream set Y7;(d,X). By Lemma 8.5, there cannot be decision nodes
which have parents in Y7;(d,K). Therefore, 7; m-separates d from all other decision

nodes and their parents; i.e d is an SD candidate node. O

Corollary 8.3 Let K be a normal decision network skeleton with no barren nodes. Let
d be a decision node in K. Suppose the downstream component Kyi(d,K) is stepwise-
decomposable and contains no lonely arcs. Then in the upstream component K1(d,K), a

decision node s an SD candidate node if it is an SS candidate node.

Proof: One can prove this corollary in the same way as we prove Proposition 8.10. The
only issue that demands special attention is that in Xy, there is a downstream-value node
u. We may not be able to arbitrarily set the value function p, of u; it has to be the
optimal conditional expected value p,=E[N[1|74] of a decision network Ny over Kyr. As

we mentioned in Footnotes 1, 2, and 3, we need only to be able to set u, such that it has

3 For later convenience, let us remark that this conclusion follows for any value function y, of v that
has property Q({d’, c}).

Chapter 8. Stepwise-solvability and stepwise-decomposability 156

property Q({z,y}) for some z,y € w4, or has property @Q:({z}) for some z € 74. Since
K11 is normal and stepwise-decomposable, and contains no barren nodes and lonely arcs,
this is possible according to Corollary 8.1. O

In a decision network skeleton K, a decision node d is a potential SD candidate node
if either it is an SD candidate node, or there exists an SD candidate node d'(# d) such
that d is a potential SD candidate node in the body K;(d’,K). It is easy to see that a
decision network skeletoﬁ is stepwise-decomposable if and only if every decision node is
a potential SD candidate node.

A potential SD candidate node d is the oldest, if there is no other potential SD can-

didate node that is an ancestor of d.

Proof of Theorem 8.2: Let us first show stepwise-decomposability implies stepwise-
solvability. Suppose K is stepwise-decomposable. Let N/ br:: an arbitrary decision network
over K. We need to show that A is stepwise-solvable. Let A" be the output network
of SMOOTHING(N). Then, N’ is a smooth SDDN. According to Theorem 5.1, N is
stepwise-solvable. Since N and N is equivalent, A is also stepwise-solvable.

To prove that stepwise-solvability also implies stepwise-decomposability, it suffices to
show that if there exist decision nodes in K that are not potential SD candidate nodes,
then K is not stepwise-solvable.

For simplicity, let us assume that there is only one oldest potential candidate node d°.
Then none of the decision nodes in the upstream component K(d°, K) are SD candidate
nodes. By Corollary 8.3, none decision nodes in X can be SS candidate nodes. Therefore

K is not stepwise-solvable. The theorem is proved. O

Chapter 9

SDDN’s and Markov decision processes

In the introduction, we have shown how finite stage Markov decision processes (MDP’s)!
can be represented as SDDN’s. This chapter shows that an SDDN can be condensed into
an equivalent MDP.

This practice is interesting for two reasons. Conceptually, it reveals the close rela-
tionships between SDDN’s and MDP’s: MDP’s are special SDDN’s and SDDN'’s can be
condensed into MDP’s.

Computationally, the concept of condensation opens '.up the possibility of parallel
computation in evaluating SDDN’s (Section 9.2); it enables us to exploit the asymmetric
nature of decision problems (Section 9.5); and it also leads to an incremental approach
for computing the values of information (Zhang et al 1993b).

The organization of this chapter is as follows. The concept of sections in smooth
regular SDDN'’s is introduced in Section 9.1. Section 9.2 gives the definition of conden-
sation of smooth regular SDDN’s, and points out the possibility of parallel computation.
Section 9.3 shows that a smooth regular SDDN is equivalent to its condensation. Non-
smooth regular and irregular SDDN’s are treated in Section 9.4. Section 9.5 exploits the
asymmetric nature of decision problems to minimize the number of states of the vari-
ables in condensations. On the basis of condensation, Section 9.6 proposes a two stage
approach for evaluating SDDN’s, which is compared to the approaches by Howard and
Matheson (1984) and Cooper (1989) in Section 9.6.1.

'In this chapter, when talking about Markov decision processes we always mean finite stage Markov
decision processes.

157

Chapter 9. SDDN’s and Markov decision processes 158

9.1 Sections in smooth regular SDDN'’s

The first step toward the concept of condensation is to introduce the concept of sections
for smooth regular SDDN’s. Let A be a smooth regular SDDN. Let di, d;, ..., di be
all the decision nodes. Since A is regular, there is a total ordering among the decision
nodes. Let the total ordering be as indicated by the subscriptions. More explicitly, let us
assume that d; directly precedes di+; in the sense that there is no other decision node d;
such that d; precedes d; and d; precedes d;41. In this case, we also say that d;y; directly
succeeds d;.

For any 1€{1,2,...,k—1}, the section of N from x4, to 74,,,, denoted by N (d;,di41),

is the subnetwork of A that consists of the following nodes:
1. the nodes in 7y, U 7q,,,,

2. the nodes that are in both the downstream set Y;;(d;, N') of 74, and the upstream
set Yr(diy1,N) of w4

+1°

The graphical connections among the nodes remain the same as in the A/ except that
all the arcs among the nodes in 74,U{d;} are removed. The nodes outside m4,U{d;} are
either random nodes or value nodes; their conditional probabilities or value functions
remain the same as in A". The nodes in m4,U{d;} are either decision nodes or random
nodes. There are no conditional probabilities associated with random nodes in 74, U{d;}.

The initial section N'(—, d;) consists of the nodes in 74, and the nodes in the upstream
set Yi(di,N) of m4. It consists of only random and value nodes, whose conditional
probabilities or value functions remain the same as in V.

Value nodes in the initial section do not affect the optimal policies, even though they
do contribute to the optimal expected value. From now on, we shall assume there are

no value nodes in the initial section, with the understanding that they, if any, are taken

Chapter 9. SDDN’s and Markov decision processes 159

(b)

Figure 9.27: A regular SDDN and its sections: t stands for test, d stands for drill,
and s stands for oil-sale-police.
care of by some preprocessing measure.

The terminal section N(dj,—) consists of the nodes in the 74, and the nodes in the
downstream set Y7y(dk, N') of m4,. The graphical connections, the conditional probabili-
ties, and the value functions in the terminal section are specified in the same way as in
the case of ordinary sections.

As an example, consider the decision network in Figure 9.27 (a), which is a repro-

duction of Figure 6.22 (b). The network is smooth, regular and stepwise-decomposable.

Chapter 9. SDDN’s and Markov decision processes 160

upstream of Ta | | downstream of e

Figure 9.28: An abstract view of a smooth regular SDDN. Smoothness is 1nd1cated by
the fact that all the arrows from the 7 s are pointing downstream.

Let us denote this SDDN by A. Let us also denote the variable test by t, drill by d,
oil-sale-policy by s, drill-cost by dc, test-result by tr, oil-produced by op,
and market-information by mi.

There are four sections in"A: N(—,t), MN(t,d), N(d,s), and N (s,—). The initial
section N'(—,t) contains no nodes. All the other sections are shown in Figure 9.27 (b).

At this point, we wish to emphasize that in each section N'(d;,d;4;), all the decision
nodes are in 74,U{d;}. Since N is smooth, in N(d;,d;4;) there are no arcs pointing
toward those decision nodes. Thus, they can be regarded random nodes with no prior
probabilities. Consequently, N'(d;,d;+1) can be viewed as a semi-Bayesian network with

value nodes.

9.1.1 An abstract view of a regular smooth SDDN

The concept of sections provides us with a proper perspective for viewing smooth regular

SDDN’s. A regular smooth SDDN A can be thought of as consisting of a chain sections
N(=,d1), N(d1,d2), ..., N(dk-1,dk), N(dx,—).

Two neighboring sections N(di-1,d;) and N(d;,d;41) share the nodes in 74, which m-
separate the other nodes in N (d;-1, d;) from all the other nodes N (d;, d;41). F1gure 9.28

shows this abstract view of a regular SDDN.

Chapter 9. SDDN’s and Markov decision processes 161

9.1.2 Conditional probabilities in a section

In each section N(d;,di41), one can compute P4 diy)(Tdiys | Ta;, di) — the conditional
probability of the 74,,, given 74 and d; in N(di,diy1). In the initial section N(—,d,),

one can compute Py 4,)(7s,) — the marginal probability 7, in N(—, dy).

Lemma 9.1 Let N be a smooth reqular SDDN and d; and d;y, be two consecutive deci-
sion nodes. For any policy § for N, let Ps denote the joint probability determined by &

over all the decision and random nodes. Then we have
Ps(Tayy |Taiy di) = Prrasdipn)(Tdigs |7di5 di) (9.80)
and
Ps(7d,) = Prn(-,4)(Ta;). (9.81)

Proof: According to Proposition 3.1, all the nodes in the downstream set of 74, are
irrelevant to Ps(my,,,|7q4;,d;). Hence, they can be harmlessly pruned from N. Accord-
ing to Proposition 3.2, all the nodes in the upstream set of 74, are also irrelevant to
Ps(mq,,,|7a;,d;). Hence, they can also be harmlessly pruned from N. After pruning the
nodes in the downstream set of 7y, and those in the upstream set of 74, what is left of
N is exactly N(d;,di+1). The lemma is therefore proved. O

In words, this lemma says that the conditional of probability of 74,,, given 7y, and

d; is independent of the policy é and can be computed locally in the section N (d;, diy1).

9.1.3 The local value function of a section

We now turn to value functions. For a value node v;; in N'(d;,di;1), one can compute

the conditional probability Pp(a; d;s,)(Tu;|7a;, di)-

Chapter 9. SDDN’s and Markov decision processes 162

Lemma 9.2 Let N be a smooth regular SDDN and d; and d;y, be two consecutive deci-
sion nodes. For any policy & for N, let Ps denote the joint probability determined by 6
over all the decision and random nodes. For any value node v;; in the section N'(d;,di1+1),

we have
P5(7rvi; |74 di) = PN(dindi+l)(WUi; |7a;, ds)- (9.82)

Proof: The same as the proof of Lemma 9.1. O
Define a fun