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Abstract 

Computed tomography (CT) is a non-destructive evaluation technique that 

reconstructs the cross section of a specimen from x-ray raysum measurements. Whereas 

CT reconstruction is an ill-posed inverse problem that is easily solved, limited-angle CT, 

where raysum data are missing for a range of angles, is more severely ill-posed and more 

difficult to solve. In the limited-angle case, a priori assumptions are necessary to 

constrain the problem. Specimens wider than the x-ray source to sensor spacing require 

limited-angle CT. Furthermore, if the specimen is a sandwich structure, i.e., some core 

material surrounded by load-bearing face sheets, then the face sheets must lie in the null 

space. Components in the null space do not appear in the raysum data and thus confound 

CT reconstruction because there is no basis for interpolation. This thesis proposes a 

novel constraint-based data fusion method for limited-angle CT reconstruction of 

sandwich structures. The method reduces the reliance of limited-angle CT on 

assumptions by using range and ultrasound measurements to constrain the solution. 

Fusion of the data sources results in a problem with a much smaller null space that no 

longer includes the face sheets. The reduction of the null space in a manner consistent 

with the specimen yields a more accurate tomographic reconstruction. Synthetic and real 

data experiments show marked improvement in reconstruction accuracy achieved by 

using the fusion system. 
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Chapter 1 

Introduction 

Non-destructive evaluation (NDE) is the field of endeavour that evaluates the 

structural integrity of an object without destroying the object. Measurements of a 

plethora of physical phenomena, including x-ray radiation, neutron radiation, ultrasound, 

eddy currents, infrared radiation, and fluorescence, indicate the structural integrity of 

NDE specimens. Although often obscured by detail, the ultimate goal of an NDE 

technique is to use such measurements to predict the failure of a specimen and prevent 

expensive or catastrophic failure. 

Radiographs, images produced by projecting x-rays through a specimen onto a 

sensor, are commonplace in NDE. Each pixel in a radiograph is a raysum measurement, 

i.e., the integral of linear attenuation coefficients of the specimen along the ray from the 

x-ray source to the sensor. A single radiograph presents the three-dimensional structure 

of a specimen projected onto a two-dimensional image. Proper inspection requires 

images from multiple viewing angles. For example, in real-time radiography, viewing 

images over continually changing angles hints at the underlying three-dimensional 

structure. 

1 



2 

Computed tomography (CT) is an NDE technique that reconstructs a cross section 

of a specimen from its raysums. Adjacent cross sections combine to form a volumetric 

image, so CT solves the problem of determining three-dimensional structure from 

raysums. The proliferation of CT scanners in medicine, in spite of cost and patient 

exposure to radiation, attests to the diagnostic value of reconstructed cross sections. 

The Radon transform of a cross section is the set of all possible raysums through 

the cross section. CT reconstruction from the continuous Radon transform is an ill-posed 

inverse problem; the solution does not vary continuously with the data. The practical 

problem of reconstruction from a discrete sampling of the Radon transform is also ill­

posed, but the ill-posedness is cw,•• . -::ime by assuming that the reconstruction is band­

limited. 

Often it is not possible to measure raysums over the full range of angles. In such 

cases, reconstruction is more ill-posed* because of the missing data. Techniques that deal 

with this type of limited data are called collectively limited-angle CT and have received 

considerable attention. To compensate for missing data, limited-angle CT methods rely 

on constraints to compute reconstructions. 

Specimens wider than the x-ray source-to-sensor spacing prevent raysum 

measurement at some angles and require limited-angle CT for reconstruction. Normally 

the specimen is part of some mechanical structure and must be rigid in the presence of 

bending moments. For economy of material and weight the structures use a thin load­

bearing material at the outer surfaces with some core between, i.e., a sandwich structure. 

Common examples are /-beams, windsurfers, skis, and aircraft control surfaces. This 

thesis focuses on aircraft control surfaces that use two face sheets (typically aluminum, 

but some modem aircraft use graphite/epoxy composite) to carry loads on either side of 

* We say that a problem is more ill-posed than another if it has a larger null space, i.e., the null space has a 
greater number of dimensions. 



an aluminum honeycomb core. The core provides a rigid separation between the face 

sheets. 

Not only do wide specimens restrict raysum acquisition, but, as this thesis shows, 

limited-angle CT cannot accurately reconstruct the cross section in the presence of face 

sheets. The face sheet structure lies almost entirely within the null space of the limited­

angle Radon transform. In short: 

1. wide specimens require limited-angle CT, 

2. wide specimens are often sandwich structures with face sheets, and 

3. limited-angle CT does not work in the presence of face sheets. 

Typical constraints that make limited-angle CT possible cannot account for the face 

sheets but instead lead to erroneous reconstructions based on general assumptions. 

However, the reliance of limited-angle CT on constraints makes it an excellent candidate 

for constraint-based data fusion. Constraint-based data fusion uses both a priori 

assumptions and data from other sources to constrain the solution of an inverse problem. 

Ultrasound offers a source of additional data that complements the raysums. 

3 

Whereas raysums are oblivious to discontinuities along the rays (the very property that 

prevents them from dealing with the face sheets), ultrasound responds precisely to such 

discontinuities and is capable of measuring the face sheet structure. This thesis proposes 

a novel method for limited-angle CT using data fusion. The method capitalizes on the 

complementary nature of x-rays and ultrasound and is specifically applicable to sandwich 

structures. In the context of this thesis we consider the method as a means of producing 

accurate reconstructions only. For the sake of development, we ignore the ultimate 

application, inspection to predict failure. 

The method fuses laser range data and ultrasound data with raysums to compute 

an accurate reconstruction. Laser range data give the spatial support of the specimen. 

Ultrasound data, combined with range data, segment the reconstruction into exterior, face 

sheet, and interior regions. These data then restrict the null space of the forward operator 



so that it does not include the face sheet structures, leading to accurate reconstructions. 

Data fusion alone cannot guarantee better solutions to inverse problems, but here.~he 

· complementary nature of ultrasound and x-ray yields superior reconstructions. This 

thesis shows that the proposed limited-angle CT system computes accurate 

reconstructions of sandwich structures where an accurate reconstruction is not possible 

otherwise. 

The following system of linear equations combines the raysum data with the 

fusion data: 

4 

where R is the forward raysum operator, xis the cross section image vector, Wis a 

diagonal matrix, y is the ray sum data and x F is a vector of linear attenuation coefficients 

based on the fusion data. An image vector of weights indicating whether or not the linear 

attenuation coefficient for a pixel is known from the fusion data, forms the diagonal of W 

This thesis considers three methods to solve for x from the above equation: 

1. singular value decomposition (SVD), 

2. regularization and conjugate gradient method (R/CG), and 

3. projection onto convex sets (POCS). 

Experimental trials with synthetic and real data apply all three methods to compute 

reconstructions. Synthetic data trials show marked improvement in the reconstructions 

obtained using the fusion data constraints. In addition, the SVD trials show that the 

number of dimensions in the null space ( as indicated by the number of singular values 

equal to zero) decreases by adding the fusion constraints. Real data trials show that the 

proposed fusion method works with real data, and, in general, experimental results 

support the contention that the proposed technique improves reconstruction. 

SVD gives accurate reconstructions from synthetic data, but, because of 

computational limitations, it is only applicable to small problems (smaller than practical 

real data problems). R/CG gives excellent reconstructions from error free synthetic data 



and is fast (allowing application to real data problems). However, in the presence of 

errors in the real data, regularization forces' a tradeoff between image smoothness and 

5 

· fidelity to data, and no degree of compromise is totally acceptable. POCS yields the best 

results of the three numerical methods considered. It produces accurate reconstructions 

from error-free synthetic data, does not force a smoothness compromise in the presence 

of errors in real data, and converges quickly. Each of the numerical methods uses 

different constraints to arrive at a solution, which means the methods solve different 

problems. The results presented here serve only to demonstrate alternative methods for 

reconstruction and do not comprise a proper comparison of the methods. 

This thesis concludes that the complementary nature of x-ray and ultrasound 

allows exploitation of constraint-based data fusion to improve limited-angle CT. This 

complementary nature means the constraints from the ultrasound data are not redundant 

but instead reduce the null space of the problem. In particular, limited-angle CT cannot 

deal with face sheets in sandwich structures. However, the ultrasound can measure the 

face sheets of the structure thus allowing accurate reconstruction when combined with the 

raysum data. 

1.1 Background 

The proposed limited-angle CT method uses constraint-based data fusion as 

described by Clark and Yuille [9]. They describe two types of data fusion systems for 

solving inverse problems. The systems are composed of modules where each module 

takes some sensory data as input and produces as output a solution or set of solutions to 

an inverse problem. The modules may or may not use a priori constraints. 

In the first type of fusion system, the modules operate independently to produce 

solutions. A fusion module then combines these solutions to form a single solution. The 

independent operation of the modules characterizes these weakly-coupled systems. In the 

second type of fusion system, at least one module provides constraints to another. 

Interaction of modules distinguishes these strongly-coupled systems. Implementation of 



the interaction vfa constraints to modules gives the alternative appellation constraint­

based. 
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It is common practice to use a priori assumptions to constrain a module solving 

an inverse problem. The constraints serve to stabilize the solution to an ill-posed or ill­

conditioned inverse problem (e.g., Poggio, Torre and Koch [30] and Bertero, Poggio and 

Torre (51). However, the assumptions may be insufficient or invalid, thereby leading to 

erroneous solutions. In such cases, constraint-based data fusion is useful because it shifts 

reliance from poor assumptions to measurements from other sensory sources. Although 

in general the use of other sensory data to provide constraints does not necessarily 

improve the solutions of inverse problems, if the data sources complement each other, 

i.e., one provides information where the other cannot, then improved results are possible. 

Computed tomography (CT) is an inverse problem in the field of non-destructive 

evaluation (NDE). CT computes a reconstruction of the cross section of a specimen from 

its raysums (line integrals measured by an x-ray system). The cross section is an image 

in which the pixel values are the linear attenuation coefficients of the specimen. The 

complete set of raysums for a cross section is its Radon transform. The Fourier slice 

theorem relates the Radon transform to the Fourier transform. It states that measuring 

raysums is equivalent to sampling in the Fourier domain. Inversion of the continuous 

Radon transform is an ill-posed problem; the solution does not vary continuously with the 

data. In practice, only measurement of the discrete Radon transform is possible. 

Reconstruction from the discrete Radon transform is also ill-posed since the null space is 

non-trivial and consists of high-frequency components. Requiring that the reconstruction 

be band-limited easily handles the ill-posedness. 

Circumstances arise that prevent raysum measurement throughout a full range of 

angles leading to a special variation of the CT problem called limited-angle CT. Limited­

angle CT is ill-posed because the missing raysum data leave the Fourier space under­

sampled. Ill-posedness in the limited-angle case is more severe than for conventional CT 



(i.e., the null space is much larger for limited-angle CT) and it is not easily handled. A 

variety of techniques proposed in the literature perform limited-angle CT. Without 

· exception, they all rely on a priori assumptions to constrain the reconstruction and find a 

unique solution. In cases where a priori assumptions may be erroneous or insufficient, 

limited-angle CT can benefit from constraint-based data fusion by incorporating data 

from a complementary source. 
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Ultrasound is a source of data that complements x-rays very well. X-rays measure 

line integrals and are insensitive to discontinuities along the line of integration. The 

opposite is true for ultrasound which detects discontinuities in a layered system. The 

limited-angle CT system with data fusion proposed in this thesis exploits this property of 

ultrasound to measure the thickness of face sheets in sandwich structures. X-rays cannot 

measure this thickness, so ultrasound, by virtue of its complementary nature to x-rays, 

adds non-redundant data to the problem. 

In summary, CT is an ill-posed inverse problem that relies on band-limiting 

constraints for solution. Limited-angle CT is further ill-posed because of incomplete 

sampling of the Fourier domain and requires additional constraints for solution. 

Situations may arise where a priori assumptions used as constraints for limited-angle CT 

are either erroneous or insufficient. Reliance on constraints for solution suggests the use 

of constraint-based data fusion. Data fusion requires another source of data to 

complement the raysum data. Ultrasound provides such a source because it can measure 

discontinuities that x-rays cannot. 

1.2 Limitations of Limited-Angle CT and Proposed Solution 

The null space of the limited-angle Radon transform is the set of all functions 

with Fourier transforms equal to zero within the region of the Fourier domain sampled by 

the limited-angle Radon transform. Physical structures that lie within this null space 

cannot be reliably reconstructed from the limited-angle raysums. Such structures contain 

long edges at angles beyond those sampled by the raysums. 
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Sandwich structures are commonplace and lie within the null space of the limited­

angle Radon transform. They economize on weight and material by using some thin 

material at the outer surfaces of the structure with some core material sandwiched 

between. The outer surf aces carry the loads due to bending while the core serves 

primarily to separate the two surfaces. Commonplace examples are I-beams, windsurfers, 

skis, and aircraft control surfaces. In aircraft control surfaces, two face sheets (typically 

aluminum but some modem aircraft use graphite/epoxy composite) surround an 

aluminum honeycomb core. Face sheets carry most of the loads in the specimen while 

the honeycomb provides a rigid separation of the face sheets. An x-ray source-to-sensor 

spacing narrower than the face sheet width necessitates limited-angle CT. At the same 

time, the face sheet that necessitates limited-angle methods lies in the null space of the 

limited-angle Radon transform. Thus, the presence of face sheets in a sandwich structure 

confounds accurate CT reconstruction. 

This thesis proposes a constraint-based data fusion system that deals with the 

inability of other limited-angle CT systems to reconstruct sandwich structures accurately. 

The system uses constraints derived from laser range data and ultrasound data to 

constrain the tomographi1:: :·,::;onstruction. Here we consider the system as a means of 

producing accurate reconstrw.::,:)ns only. Further evaluation as a technique for inspection 

and prediction of failure is ignored. 

There are three modules in the system. The first module takes laser range data as 

input and computes a bounding box for the specimen, i.e., the spatial support of the 

specimen. The output of the module is a segmentation of the reconstruction into exterior 

and interior regions. Since the exterior regions must be air (which has zero linear 

attenuation) the segmentation provides a constraint for reconstruction. 

The second module takes ultrasound thickness measurements as input, and, 

constrained by the spatial support data, further segments the reconstruction into exterior, 



interior and face sheet regions. With the known linear attenuation of the face sheet 

material, the segmentation provides another constraint for reconstruction. 

The last module takes limited-angle raysum data as input and, subject to spatial 

support and face sheet constraints, reconstructs a cross-section of the image as output. 

This module computes its output by solving the linear system: 
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where R is the discrete limited-angle raysum operator, x is the cross section image, and y 

is the raysum data. The segmentation of the reconstruction provides a vector of weights 

that forms the diagonal of the diagonal matrix W. A weight of one on the diagonal 

indicates that the corresponding pixel has a known value while a zero indicates unknown. 

x F is a vector of linear attenuation coefficients derived from the constraints. Entries in 

x F that correspond to a weight of one in W have known linear attenuation and other 

entries are arbitrary. 

Let A = [:] and b = [ ~,] to give a generalized version of the above equation: 

Ax=b. 

A is not square and is not full column rank. Solution for x from the above is still an ill­

posed problem; if a solution exists then there is an infinity of solutions. Some a priori 

assumptions are necessary to arrive at a unique solution. However, these assumptions do 

not lead to an erroneous reconstruction because A properly accounts for the face sheets 

due to the fusion constraints. 

1.3 Numerical Methods 

This thesis considers three numerical methods for solving the linear system of 

equations for the proposed limited-angle CT method. These are: 

1. singular value decomposition (SVD), 

2. regularization and conjugate gradient method (R/CG), and 



3. projection onto convex sets (POCS). 

This section introduces the methods which are explained in more detail in Chapte~ 4. 

· Table 4.1 summarizes the comparison of all three methods. 

The first method, SVD, computes the decomposition: 

A=UIVT 

where U, and V are orthogonal and I is diagonal. Given the decomposition, it is 

possible to condition the matrix A and solve for the minimum-norm least squares 

solution, i:, using the pseudo-inverse of I, I+, i.e.: 

i: = vx+uTb. 

SVD has the beneficial property of determining the null space and range of A, and its 

singular values (the square roots of the eigenvalues of AT A). The number of non-zero 

singular values gives the rank (row and column) of AT A. Unfortunately, SVD has 
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O(mn2 + n3
) complexity in time (where m is the number of rows in A, and n is the 

number of columns in A and the number of pixels in the reconstruction) and is too slow to 

apply to large problems. 

The second method, R/CG, combines regularization and the conjugate gradient 

method. The conjugate gradient method (CG) solves the linear system Ax= b by 

minimizing the objective function: 
1 

E=-xT Ax-xTb+c, 
2 

where c is a constant and A is positive definite. For a sparse matrix A, iterations are fast 

and, depending on the condition number of A, CG converges quickly to a solution. A for 

the data fusion system is neither positive definite nor square. Regularization solves this 

problem by creating the new objective function: 

E= [~}-[:axJ 



where .Q makes [::a] full column rank, a is a constant and x0 is some vector to be 

.specified. CG finds x that minimizes Eby solving the new positive definite system of 

equations,: 

(Ar A+ a2.Qr.Q)x = Arb+ a2nrnxo. 

a 2 selects a compromise between the original system of equations and the solution to 

!2x = !lx0 • With a 2 set too small the system is ill-conditioned and CG fails. A larger 

a2 gives a system that is well-conditioned but biases the solution towards .Qx = .Qx.0 • 

There is a variety of options in selection of Q and x0 • In experimental trials 

conducted for this thesis .Q is: 

where D1 and D2 are discrete first derivative operators in the x and y directions 

respectively, and: 
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Thus, a 2 sets the degree of compromise between a solution that conforms to the original 

ill-conditioned and ill-posed problem Ax= b, and a well-conditioned problem with the 

solution biased to be flat. 

The third numerical method, POCS, uses a set of constraints where each 

constraint requires the solution to lie within a convex set. POCS also requires that the 

intersection of the constraint sets be non-empty. Starting from some arbitrary initial 

solution, POCS iterates towards an ultimate solution by sequentially projecting the 

solution onto each of the constraint sets. A non-empty intersection of the sets guarantees 

convergence. POCS subsumes the better known technique called ART (algebraic 

reconstruction technique). Whereas POCS applies to any convex constraint sets, ART is 

POCS using only convex sets that are hyperplanes. For the limited-angle CT problem at 

hand the convex sets are hyperslabs and spheres. In practice, with O as a starting point, 
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POCS finds a solution near the minimum norm solution. This is not guaranteed in 
. 

general for POCS. POCS converges quickly for the problem of interest. So POC~ is a 

fast method ( comparable to CG for this problem), finds a solution like the minimum norm 

solution of SVD, and avoids the smoothing of R/CG. Also, the flexibility of POCS 

allows mixing of 12 and I.,, fits to the data, which is valuable in constraint-based data 

fusion. 

Implementation of POCS for the proposed limited-angle CT data fusion system 

uses three constraint types: 

1. conformity to raysum data, 

2. conformity to fusion data, and 

3. conformity to amplitude limits. 

Previous work implements type 1 constraints, conformity to raysum data, as linear 

equalities, i.e., the convex set is a hyperplane within which the solution must lie. Such a 

constraint restricts the solution severely by requiring it to match the data precisely. In 

this thesis, the type 1 constraints are hyperslabs surrounding a hyperplane, i.e., the 

intersection of two half spaces centred about the hyperplane. Solutions in the hyper plane 

match the data exactly while other solutions in the slab only approximately match the 

data. A constant parameter determines the thickness of the hyperslabs. Type 2 

constraints, conformity to fusion data, are a variation on previously published work using 

full reference images for reconstruction. In this thesis, the constraint does not require a 

full reference image, but instead uses a partial reference image from the fusion data. 

Type 3 constraints, conformity to amplitude limits, are also hyperslabs requiring that 

values in the solution lie between fixed limits. 

1.4 Experimentation and Results 

A series of experimental trials verifies the validity of the proposed limited-angle 

CT data fusion system. Each trial consists of application of one of the three numerical 
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algorithms to some data, to produce a reconstruction for analysis. The algorithm, its 

parameters, and the data uniquely define each trial. 

Experiments use both synthetic and real data. Application of the forward raysum 

operator to a synthetic cross section image generates synthetic raysum data. The 

synthetic cross sections imitate the plexiglass phantom used in the real data trials, which 

itself imitates a graphite/epoxy sandwich structure with honeycomb core. The plexiglass 

phantom has thicker parts than aluminum honeycomb to avoid pushing resolution limits 

of the apparatus. Because SVD can handle only small problems, SVD trials are limited to 

synthetic data based on the low-resolution cross section of Figure 1.1. Synthetic data for 

R/CG and POCS trials are based on the high-resolution image of Figure 1.2. 

Figure 1.1: Synthetic cross section image for SVD trials. 

Figure 1.2: Synthetic cross section image for R/CG and POCS 
trials. 

The plexiglass phantom used as the specimen for real data trials, shown in Figure 

1.3, consists of two plexiglass face sheets (3mm thick) surrounding a core of plexiglass 

members (3 mm thick) perpendicular to the face sheets. Some plexiglass inserts provide 

an anomaly in the structure similar to entrapped water. Chapter 5 describes the data 

acquisition system for the real data trials. It is a modification of an x-ray inspection 



14 

system intended to produce two-dimensional radiographs and is not ideally suited to CT. 

Nevertheless, the data it produces are adequate to show the validity of the method. 

-t-
T 
30 

l 
T 

All dimensions in mm 

Top and bottom face sheets (horizontal components) 

D Simulated honeycomb (vertical compontents) 

~ Simulated entrapped water (defect) 

Figure 1.3: Cross section of plexiglass phantom simulating a 
sandwich structure with graphite/epoxy composite face sheets 

and aluminum honeycomb core. 

For each numerical method. the first three trials use synthetic data with varying 

levels of fusion constraints. All methods exhibit a marked improvement in the accuracy 

of reconstruction when using spatial support and face sheet constraints. For SVD the 

error measure improves from 50.7% to 4.8% by using all constraints. Similarly, with 

R/CG the error measure drops from 64.0% to 6.7%, and with POCS the error measure 

drops from 62.6% to 6.0%. Furthermore, SVD trials show the change in the number of 

singularities in the problem. There is a reduction from 148 singularities of 300 singular 

values for raysum data to only 13 singularities for raysum data with spatial support and 

face sheet constraints. The character of the problem changes significantly with the 

constraints in such a way as to improve the accuracy of the reconstruction. Figure 1.4 

shows sample reconstructions for all three numerical methods using all the constraints. 

Real data trials with R/CG and POCS show the validity of the proposed system 

with real data. Although the quality of reconstruction is not on par with the synthetic 



trials, this is largely due to errors in raysum measurements. Superior apparatus should 

lead to reconstructions of sufficient quality for practical application. Figure 1.5 shows 

-reconstructions of the plexiglass phantom for R/CG and POCS. 

(a) 

(b) 

(c) 

Figure 1.4: Reconstructions from synthetic data with range 
and ultrasound constraints for (a) SVD, (b) R/CG, and (c) 

POCS. 
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Errors in the real data emphasize the effects of parameters used in reconstruction. 

A series of real data trials for both R/CG and POCS highlights the effects of the 

parameters. R/CG trials show the compromise selected by the parameter a 2 and POCS 

trials show the effect of changing constraint set size on convergence and reconstruction 

quality. 



(a) 

(b) 

Figure 1.5: Reconstructions of the plexiglass phantom using 
(a) R/CG and (b) POCS. 

1.5 Outline 
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Chapter 2 gives background material for the thesis starting with a review of the 

Clark and Yuille model for constraint-based data fusion. Following that, the chapter 

gives an introduction to computed tomography, pointing out that CT is an ill-posed 

problem that is easily managed. From CT follows the idea of limited-angle CT where 

reconstruction is done from incomplete data. Limited-angle CT is ill-posed to a greater 

degree and must rely on a priori assumptions for constraints, thus making it a good 

candidate for improvement by constraint-based data fusion. Chapter 2 describes 

ultrasound, which complements x-rays well, and, therefore, provides an excellent source 

of additional data for fusion. 

Chapter 3 defines the null space of the limited-angle Radon transform and shows 

that face sheets in a sandwich structure lie mostly within this null space. The result is 

that limited-angle CT cannot reconstruct sandwich structures properly. A novel method 

for limited-angle CT using constraint-based data fusion proposed in the chapter addresses 



this problem and is the focus of this thesis. Chapter 3 describes the method and its data 

sources, ending with the mathematical formulation of the method as a system of linear 

. equations. 
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There are many ways to solve a system of linear equations. Chapter 4 describes 

the three numerical methods used in experimentation for this thesis, including application 

of each method to the proposed limited-angle CT method. A comparison at the end of 

Chapter 4 highlights the strengths and weaknesses of each numerical method. 

Chapter 5 presents the results of experimentation that verify the validity of the 

proposed method. Synthetic data trials show a reduction in null space and a great 

improvement in accuracy of reconstruction with the incorporation of data fusion 

constraints. Real data trials show that the method works in practice and not just with 

error-free synthetic data. Experiments also show the effects of parameters on 

reconstruction quality. 

Chapter 6 summarizes the conclusions of the thesis. It also discusses possibilities 

for further enhancements and variations of the proposed method, and its potential for 

application. 



Chapter 2 

Background 
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As a prelude to the proposal of a novel method for limited-angle CT in Chapter 3, 

this chapter presents relevant background material in four areas: constraint-based data 

fusion, CT, limited-angle CT, and ultrasound. Section 2.1 describes the constraint-based 

approach to data fusion. Constraint-based data fusion, so called because it uses the 

output from some inversion module as constraints for another, reduces or eliminates 

reliance on a priori assumptions for constraints. The value of the fusion emerges when 

the fusion constraints replace invalid assumptions. 

CT is the ill-posed problem of reconstructing the cross section of an object from 

its x-ray raysums. Although the problem is ill-posed, the null space is small, consisting 

of high-frequency oscillations. Assuming a priori that the reconstructed cross section is 

band-limited is a sufficient constraint for reconstruction. Section 2.2 reviews 

conventional CT. 

The shape of an object, or its environment, may prevent acquisition of raysum 

data through the full range of angles required for CT. The ensuing problem of limited­

angle CT (reviewed in Section 2.3) is ill-posed too, but has a much larger null space. A 
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priori assumptions provide constraints beyond those of conventional CT. The reliance of 

limited-angle CT on assumptions that may not always hold suggests that it can benefit 

· from constraint-based data fusion. 

Ultrasound (reviewed in Section 2.4) is a versatile NOE technique providing data 

that are complementary to x-ray raysums. Whereas x-rays are insensitive to 

discontinuities along the path of radiation, ultrasound explicitly detects discontinuities in 

its path. It is this complementary nature that makes ultrasound potentially useful as a 

source of data for fusion with limited-angle CT. 

2.1. Constraint-Based Data Fusion 

As data fusion is a central part of this thesis, it is necessary to consider how to 

implement the data fusion. This thesis adopts the elegant constraint-based approach of 

Clark and Yuille [9], summarized in this section. 

World 

I 
Data Acquisition, 

Acquired Data, 
Measurements, 

Images 

Measurement, Imaging 

.. 
Representation of World 

Computational Vision, 
Inversion 

Figure 2.1: Model of computational vision. 

Figure 2.1 shows a model of computational vision systems. On the left-hand side 

of the figure is a world that is the setting for a task. Some data acquisition process 

acquires measurements of the world. These measurements ( or data) are images for visual 

systems, but they may be raysum data or ultrasound traces for NOE systems. The goal of 

the computational vision system (right-hand side of Figure 2.1) is to invert the acquired 
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data to a representation of the world. Thus, computational vision is the solution of 

inverse problems wh;;re the solution is a representation of the world, suitable for the task 

·at hand. 

Invariably, the inversion problem is ill-posed because it has no unique solution. 

One approach to dealing with this ill-posedness is to create a new problem by applying 

constraints to the original. The constraints restrict the set of solutions so that the 

modified problem is well-posed. Ill-posed problems occur often in computer vision. For 

examples see Poggio, Torre and Koch [30] or Bertero, Poggio and Torre [5]. 

When there i•-: or:>· -:·,,;:, :,,ource of data, a priori assumptions about the nature of 

the world, and coni;equenuy about the nature of the solution, provide constraints. The 

assumptions are a convenient way of restricting solutions in the face of ambiguous data 

and may not always hold. Where assumptions are not valid, data fusion offers an 

alternative. Constraint-based data fusion systems acquire additional data from 

independent sources and use the resulting solutions to constrain the original inverse 

problem. The notion of fusing data from multiple sources as constraints is the essence of 

constraint-based data fusion. It strives to improve the quality of solutions to inverse 

problems by using independent data sources as constraints, without falling prey to 

erroneous a priori assumptions. 

Weakly-Coupled 
Systems 

Data Fusion 
Systems 

Strongly-Coupled 
Systems 

Figure 2.2: : '.lark and Yuille taxonomy of data fusion systems. 
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Clark and Yuille give a taxonomy of data fusion systems (shown in Figure 2.2). 

Fusion systems consist of a set of modules where each module accepts some input data 

-and performs an inversion subject to some constraints. The first division in the taxonomy 

is between weakly-coupled and strongly-coupled systems. Weakly-coupled systems are 

distinguished by their independent modules, i.e., there is no sharing of information 

between modules. Strongly-coupled systems are the opposite; for a system to be 

strongly-coupled at least one module must constrain the output of another. 

There are three classes of weakly-coupled systems, all shown in Figure 2.3. 

Modules in a class I system are stable and produce unique solutions independently. The 

ultimate solution produced by the system is a weighted sum of the solutions from the 

individual modules, with the weights determined by the relative reliability of the 

modules. Solutions from more reliable modules are weighted greater than those from less 

reliable ones. Class II weakly-coupled fusion modules do not produce a unique solution. 

It is the function of the fusion module to combine the module outputs into a unique 

solution (the fusion module may use a priori constraints to help it). An example is the 

measurement of electrical resistance by separate voltage and current measurements. 

Neither measurement yields a unique resistance value, but the combination of the two 

does. In this case the fusion module performs the calculation R = V. Class ill fusion 
I 

combines classes I and II. Modules in a class III system do not produce unique solutions 

so a fusion module combines the module outputs as in a class II system, while solutions 

from the modules are not equally reliable so they are weighted as in class I. 

Figure 2.4 shows schematically feed-forward and recurrent strongly-coupled 

fusion systems. Their common feature is that at least one module constrains the output of 

another module. Feedforward is the simplest of the strongly-coupled systems. The 

system feeds forward the output of one module to provide constraints to a second module. 

Output from the second module is the output of the system. In the recurrent system the 



output from each module feeds back to other modules in the form of constraints. The 

recurrent system is the most complex of the fusion methods. 

Sensor data 

Sensor data 

Sensor data 

Module 1 

Module 2 

Module 1 

az 
Module 2 1----1~ 

Module i 

Class I 

a priori constraints 

1---~f(a ,a) 
I 2 

Class II 

a priori constraints 

Class III 

Fusion 
Module 

Figure 2.3: Classes of weakly-coupled data fusion systems. 
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Module 2 1----.~ output ,__...._ __ ~ output 2 

Feed-forward Recurrent 

Figure 2.4: Strongly-coupled data fusion systems. 

Strongly-coupled fusion is synonymous with constraint-based data fusion. 

Whenever an inversion module relies on a priori assumptions to constrain the solution of 

an inverse problem, constraint-based data fusion can reduce reliance on assumptions. It 

does so by replacing constraining assumptions with constraints derived from other data 

sources. There is, of course, no guarantee that by using fusion the inverse problem will 

become well-conditioned or even well-posed. However, with careful attention to the 

nature of the data and its use as constraints, it is possible to improve the quality of 

solution by avoiding reliance on possibly erroneous a priori assumptions. 

2.2. Computed Tomography 

As x-ray radiation passes through an object the object attenuates it. 

Measurements of the attenuation approximate raysums of the object. Computed 

tomography (CT) is the inverse problem of reconstructing a cross section of an object 

from a set of coplanar raysums. The solution, i.e., the cross section, is a distribution of x­

ray linear attenuation coefficients. 

This section presents the fundamentals of CT starting with a description of x-ray 

absorption and raysum measurement. The basic apparatus for CT illustrates the use of x­

rays to acquire raysum data for reconstruction. These data are a discrete measurement of 



the Radon transform of the object, the basis for CT reconstruction. Inversion of the 

continuous Radon transform is an ill-posed problem because the solution does not.vary 

continuously with the data. In the case of discrete data, reconstruction is ill-posed 

because there is not a unique solution. In both cases the ill-posedness is easily handled 

by assuming that the solution must be band-limited. 

2.2.1. X-ray Absorption 
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Figure 2.5 shows schematically x-ray radiation penetrating an object along a ray. 

The object absorbs some of the radiation, attenuating the intensity of the emerging 

radiation. The following equation models the attenuation process [19]: 
-Jµ(x)dx 

I= I0 e ' (2-1) 

where I0 is the incident radiation intensity, I is the emerging intensity, l is the path of the 

radiation, xis the distance along that path, and µ(x) is the x-ray linear attenuation which 

varies along l. Rearranging Equation (2-1) gives: 

In(.£.)= -J µ(x)dx , (2-2) 
I0 1 

which shows the linear relationship between log attenuation, In(.£.), and linear 
Io 

attenuation. The integral on the right-hand side of Equation (2-2) is called a raysum or 

projection of µ ( x) ( rays um is used for the remainder of this thesis to avoid confusion 

with projections in the POCS method described in Chapter 4) and is the basis of data 

acquisition for CT reconstruction. 

If the linear attenuation function, µ(x), is piece-wise continuous, Equation (2-2) 

becomes: 

(2-3) 

where µi and Lix; are the linear attenuation and the thickness of the i th component of the 

object along the path of radiation. Thus x-ray raysums are linear functions of linear 

attenuation coefficients and a linear system adequately models x-ray absorption. 



Figure 2.5: Schematic of x-ray absorption. 

2.2.2. Basic Apparatus for CT Data Acquisition 

Figure 2.6 shows a schematic of the basic apparatus for a CT data acquisition 

system (22] [34]. The acquisition procedure is: 

1. Collect projection data for one orientation: 

( a) Project a thin beam of radiation (from the source) through the 

.specimen and measure the output intensity (with the sensor). 

(b) Move the source and sensor in a direction perpendicular to the 

direction of the radiation and repeat 1 ( a). 

2. Rotate the specimen and repeat step 1. 

3. Repeat steps 1 and 2 to collect raysums through ,r radians. 

Collimators (not shown in Figure 2.6) confine the x-rays to a thin beam so that raysums 

measure only a thin slice of the specimen. Successive adjacent slices sample the 

specimen in three dimensions if desired. 

The above process measures discrete samples from the Radon transform of the 

specimen. This transform, described in the next section, is fundamental to CT. 
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Sensor I -◄---►► lateral movement of sensor 
(coordinated with source) 

rotational movement 
of specimen 

Source ~-•►► ( coordinated with sensor) I ◄ lateral movement of source 

Figure 2.6: Schematic of basic computed tomography 
apparatus 

2.2.3. The Radon Transform and the Fourier Slice Theorem 
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The Radon transform, first explored by Radon in 1917 [32], is fundamental to CT 

and forms the basis of the Fourier slice theorem. Together, the Radon transform and the 

Fourier slice theorem provide a mathematical basis for understanding CT reconstruction. 

Define a Cartesian coordinate system with its origin at the centre of rotation in 

Figure 2.6. Based on this coordinate system, the Radon transform of a function µ(x,y) , 

[2?p](l,0), is [22]: .. 
[2?p](l, 0) = f µ(l cos 0 + g sin 0, g cos 0 + l sin 0)dg . (2-4) 

where the integral on the right-hand side is a raysum of µ(x,y) along a ray at angle 0 

with the y axis and distance l from the origin. Thus, the Radon transform of an object is 

the set of all its raysums. The apparatus of Figure 2.6 measures a discrete approximation 

of the Radon transform. Measurements are approximate because raysums of Equation (2-



4) have infinitesimal thickness (not possible in practice), and because other practical 

problems in radiography such as scatter and beam hardening confound data acquisition. 
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The Fourier slice theorem (also known as the projection theorem) relates the 

Radon transform to the Fourier transform. A short intuitive explanation of the theorem 

follows; a proof is available from many sources, e.g., [22] or [34]. The separable nature 

of the Fourier transform allows separate computation in x and y directions. Suppose 

computation begins with one-dimensional transforms in they direction, then the zero­

frequency component of the resulting transforms are raysums for rays parallel to the y 

axis. Completion of the transform on the zero frequency data, i.e., raysum data, gives a 

slice of the Fourier transform of the specimen in the x direction. Expressed 

mathematically, the Fourier slice theorem is [22]: 

[ :!12?µ ]( m1, 0) = [ :fx,yµ ]( m1 cos 0, -m1 sin 0), (2-5) 

where :f1 is the one-dimensional Fourier transform operator in /, m1 and 0 are polar 

coordinates of the two-dimensional Fourier space, and :Ft,!/ is the two-dimensional 

Fourier transform operator in Cartesian coordinates. The Fourier slice theorem says that 

measuring a set of parallel raysums of an object is equivalent to sampling a slice of the 

Fourier transform along a line through the origin, perpendicular to the direction of the 

raysums. 

2.2.4. CT Reconstruction 

The Fourier slice theorem allows a short and simple explanation of why CT is 

possible. According to the theorem, step one of the data acquisition procedure samples a 

slice of the specimen in Fourier space. Steps 2 and 3 sample slices through 1r radians, 

thus sampling the entire Fourier space. A complete sampling of the Fourier space means 

that all the data necessary for reconstruction are available. Although tomographic 

reconstruction by assembling the Fourier transforms from raysums is possible, this 

method is not popular. Of the many methods available, the convolution-back projection 
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( or some variant) is most popular, and the work presented here focuses on other methods. 

Nevertheless, the Fourier slice method gives a conceptual model useful for under~tanding 

· how raysums sample a function, and the ill-posed nature of limited-angle CT. 

Inversion of the Radon transform was first shown by Radon [32] and his result 

may be found in more recent literature, e.g. [22] and [34]. The solution to the inverse 

problem exists, but does not depend continuously on the data. Thus CT reconstruction is 

an ill-posed problem. In practice it is not possible to acquire the continuous Radon 

transform, only a finite number of samples, usually distributed uniformly throughout 

(l, 0). The practical problem of tomographic reconstruction from discretely sampled 

raysum data is also ill-posed because there is no unique solution. 

Commonplace use of CT suggests that its ill-posedness can be managed, as shown 

below. The following linear system models rays um acquisition: 

Rx=y (2-6) 

where y is a vector of projection data, x is a vector of linear attenuation coefficients, and 

Risa linear matrix operator that models x-ray raysum acquisition. (i.e. a discrete version 

of the Radon transform operator, !.l(J. Assume that R samples the Radon transform 

uniformly. CT reconstruction is the inverse problem of solving for x given raysum data 

y. 

The matrix R has a non-trivial null space, i.e., the set of vectors, n ,that satisfy 

Rn= 0 is not limited to the zero vector. Fortunately, although the null space is non­

trivial, the non-trivial components of the null space are high-frequency oscillations. 

Assuming that the solution should be band-limited modifies the ill-posed problem into 

one that is well-posed. This is normally a reasonable assumption because it is known a 

priori that the oscillations do not exist or they are not of interest even if they do exist. 

For reconstruction from the continuous transform, the same band-limiting assumption 

yields a well-posed problem by ensuring that the solution varies continuously with the 

data. 
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Figure 2. 7: Example of CT showing' lines of projection on a 
two-by two grid. 
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A small example illustrates the ill-posed behaviour of CT reconstruction from a 

discrete Radon transform. Consider the two-by-two discrete image shown in Figure 2.7. 

Arrows show the sampled raysums which represent a uniform sampling of the Radon 

transform on a two-by-two grid. R for this sampling scheme is: 

R= 

1 1 0 0 

0 0 1 1 

1 0 1 0 

0 1 0 1 

The square roots of the eigenvalues of Rr R are the singular values of R (see Chapter 4 

for a description of singular value decomposition, SVD) and are 2, ✓2, ✓2, and 0. The 

zero singular value indicates that R has a non-trivial null space as expected. 

Suppose we have the following 2 by 2 cross section of a specimen with pixel values: 
1 

1 2 2 
X= = 

1 2 1 

2 

Application of the forward operator, R, to x gives the data: 
3 

3 
y= 

2 

4 



From this value of y, the minimum-norm solution, ·x, (using SVD of R) is: 
1 

A 

X= 
2 

1 

2 

1 2 
= 1 2 
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SVD also gives the vectors in the null-space of R. In this case there is one singular value 

of zero so there is only one dimension in the null space in the direction of: 

-½ 
n= ½ --½ ½ . ½ - ½ -½· 

-½ 
As expected, n is an oscillatory image. The reconstructed image, i:, is accurate because 

the image x is perpendicular to n, :.JY the minimum-norm solution must also be. In this 

case the minimum-norm requirem~ ;.•. selects a band-limited solution by rejecting the 

high-frequency components of the null space. If the original image, x, were to contain 

some component of n, then the minimum-norm solution, i:, would be in error. CT 

reconstruction from a uniform sampling is only feasible if the cross section does not 

contain high-frequency components, or if those high-frequency components exist, they 

are not important. 

2.3. Limited Angle Computed Tomography 

The previous section ~i: · ,, , ·. ;,' : : .·· -:~·T teconstruction is possible from a uniformly 

distributed subset of the continuous Radon cransform. Reconstruction is an ill-posed 

problem which becomes soluble by assuming the solution is band-limited. This section 

presents the more difficult problem of reconstruction from a set of raysums which is 

incomplete not simply because of discrete sampling, but also because raysums are only 

available for a limited range of angles. This problem arises because physical constraints 

imposed on the CT apparatus, either by the specimen or its environment, prevent raysum 

acquisition throughout the required range of - 1C ~ 0 ~ 1C (see Figure 2.8 for examples 
2 2 
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taken from [40]). The name given to this particular problem is limited-angle CT. Figure 

2.8 (a) is important here because it represents the situation with inspection of aircraft 

control surfaces. 

X-ray source,O 

Ii 
/ 

• Dectector 

(a) 

X-ray source,O 

/ 

. ___ I _ ___. 
/ 

• Dectector 

(b) 

Figure 2.8: Example cases for which only limited-angle 
raysums are available: (a) object is very long in one direction, 

and (b) other objects obstruct scanning. 

2.3.1. Ill-Posed Nature of Limited Angle Computed Tomography 

The Fourier slice theorem states that sampling a specimen with raysums is 

equivalent to sampling slices in Fourier space. It is obvious, therefore, that in order to 

sample a specimen completely one must measure raysums through a range of 7r radians, 

i.e. - ,r ~ 0 ~ 7r. As illustrated in Figure 2.8, circumstances arise where projections 
2 2 

cannot be sampled throughout a full range, i.e., -e ~ 0 ~ e, and O < e < 7r, thus 
2 



leaving a portion of the Fourier space unsampled. When the full range of angles is 

available, then the sampled Fourier space covers a disc-shaped region. In the limiJed 

angle case, a portion of the Radon transform is missing and the sampled Fourier spa~e 

covers only the butterfly-shaped region shown in Figure 2.9. 

X 

(a) (b) 

Figure 2.9: Effect of limited-angle Radon transform on 
Fourier domain sampling: (a) range of angles sampled 

(shaded region) and (b) effective sampling of Fourier domain 
(shaded region is sampled). 

{JJ X 
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Fourier space sampling illustrates clearly the ill-posed nature of limited-angle CT. 

Ill-posedness occurs because there is no unique solution, but instead of a small null space 

containing only high-frequency oscillations, the null space also contains components 

corresponding to the unsampled Fourier space. Although both the full-range and limited­

angle problems are ill-posed, we say the limited-angle problem is more ill-posed because 

it has a greater number of dimensions in its null space. Davison [10] and later Louis [23] 

use singular value decomposition to explore the ill-conditioned nature of limited-angle 

CT. Louis concludes " ... the limited angle problem is much more ill-posed than the full 

range problem . ... Clearly the algorithms applied in this situation have to be carefully 

designed and it is desirable to use as much a priori knowledge as possible." Louis also 

shows some images which are vectors in the null space of R. These null-space images 

show what types of artifacts may appear in limited-angle CT reconstructions. 
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2.3.2. Reconstruction from Limited-Angle Data 

The Fourier slice theorem shows that limited-angle raysum data do not sample the 

· Fourier space completely. Therefore, any reconstruction method based on limited angle 

data necessarily fills in the unsampled regions of Fourier space. Possibilities for filling in 

are unlimited which is precisely the source of the ill-posedness cited above. A priori 

assumptions can give constraints that lead to a unique solution. Current techniques for 

limited-angle CT fall into these three categories distinguished by the a priori constraints 

that guide the reconstruction to a unique solution and complete the Fourier space: 

1. fill the unsampled Fourier space with zeros, 

2. impose spatial support constraints on the solution, and 

3. extrapolate the sampled Fourier space data. 

The first category, fill with zeros, is the minimum-norm solution. Of all possible values 

for the unsampled region, all zeros contains the least amount of energy and therefore 

must be the minimum-norm solution. The second category, impose spatial support 

constraints is similar. Constraining spatial support does not necessarily determine the 

missing data on its own. One still seeks a minimum-norm solution as in category one, 

but with the additional constraint added. The last category, extrapolate the Fourier space, 

assumes that the available data establish all important trends in the Fourier space, an 

assumption that is not necessarily valid. Examples from all three categories follow. 

Section 2.2.4 showed briefly the minimum-norm solution to a system of equations 

as computed by SVD. Refer to the example in Section 2.2.4. The discrete raysum 

operator for the limited angle case is: 

-[1 1 0 OJ R- . 
0 0 1 1 

with singular values of -ti,, -ti,, 0, and 0. Restricting the angle adds another singular 

value of zero to the problem and increases the number of dimensions in the null space 
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from one to two. Two orthogonal vectors form a basis for the null space, one identical to 

that for the full-range case, i.e.: 

and the other, which is entirely attributable to the limited-angle sampling, is: 

-½ 
½ _-½ ½ 

D2= -½ --½ ½. 
½ 

The new null space component is a step across a vertically oriented edge. If x is: 
1 

1 2 2 
x= = 

1 2 1 

2 

then the raysum data, y, is: 

and the minimum-norm reconstruction, i, is: 

½ 
x= ½ _½ ½ ½-½ ½. 

½ 
Note that the vertical edge present in the original image is missing in the reconstruction 

because the minimum-norm solution omits the portion of x in the null space, i.e., the 

vertical edge. Suppose instead that xis: 
1 

1 1 1 
x= = 

2 2 2 

2 



then the minimum-norm reconstruction is: 
1. 

A 
1 

x= 
1 1 

= 2 2 2 
2 
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The reconstruction is accurate in this case because x is orthogonal to the null space of R. 

The salient point here is that minimum-norm reconstruction works so long as the function 

being reconstructed contains no component in the null space, and the success or failure of 

reconstruction is case-dependent. 

As one might reasonably guess, any reconstruction method intended for full-range 

data can compute the minimum-norm solution by assuming that all the missing raysums 

are zero (Tuy [43]). Consequently, one does not need to use the unwieldy and slow 

singular value decomposition to compute the minimum-norm reconstruction from 

limited-angle data. 

The second category of limited-angle CT uses the often reasonable assumption 

that an object lies within known spatial bounds. This is a common approach to 

improving the quality of limited-angle CT reconstruction. Grtinbaum [16], for example, 

makes the a priori assumption that the specimen is contained within a rectangular region 

of support and linear attenuation values outside that region must be zero. The limited 

spatial support effectively interpolates the Fourier domain, and so there is an implicit 

assumption to justify interpolation that the Fourier space is smooth. Griinbaum gives 

results for synthetic data but there is no indication of the circumstances for which the 

effective interpolation is valid. 

Although the Grtinbaum rectangular region improves upon minimum-norm 

solutions, in some circumstances it is possible to further constrain spatial support. Sato et 

al. [33] employ a triangular region of support to reconstruct a synthetic image of the 

letter 'A' (see Figure 2.10). They perform reconstruction using an iterative method that 

alternates between the Fourier and spatial domains, applying constraints in each: 



36 

triangular support in the spatial domain and a butterfly-shaped region in the Fourier 

space. They provide a proof of convergence, but not a rate of convergence. Thei~ 

method is, in fact, the method of projection onto convex sets (see Chapter 4) which 

guarantees convergence. As is the case for Grilnbaum, examples are for synthetic data 

only. Such tight restrictions on spatial support are useful but not trivial to implement in 

practice. 

Figure 2.10: Triangular region of spatial support from Sato et 
al. [33] method for limited-angle CT reconstruction of the 

letter 'A'. 

Griinbaum and Sato et al.. are just two examples of using spatial support 

restrictions to aid limited angle CT reconstruction. There are more examples in the 

literature, such as Dusaussoy and Abdou [11] and Tam et al. [40]. It is interesting to note 

that Tam's algorithm appears to be identical to that of Sato et al. 

The third category of reconstruction method is interpolation of the Fourier 

domain. Methods in this category extrapolate data in the Fourier domain to fill in the 

unsampled regions. Soumekh [36] models the Fourier domain with a periodic function 

that can be represented by a Fourier series expansion. He then makes the a priori 

assumption that only a finite number of coefficients are necessary to represent the series, 

i.e., coefficients for high frequencies are zero or insignificant. The available Fourier 

space data are sufficient to determine the finite number of coefficients. The truncated 

Fourier series then interpolates to fill in the missing Fourier domain data. Although the 

interpolation by Soumek does not translate into simple assumptions about spatial support, 

it does restrict the class of objects that may be accurately reconstructed. Reconstruction 
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is successful with synthetic examples, but the extrapolation requires that the available 

data establish all important trends. Heiskanen et al. [20] give another example of direct 

·interpolation of raysum data. 

Minimum norm solutions assume that there is no important information in the 

null-space of the raysum operator. Spatial support restrictions and direct extrapolation 

methods assume that the sampled data establish all trends in the specimen, i.e., everything 

you need lies in the range of the limited-angle raysum operator. The common feature 

among all categories is that none can properly reconstruct a function unless the null space 

is either trivial or unimportant. In fact, the following is true for limited-angle CT: 

1. limited-angle CT requires filling in the unsampled Fourier space of a 

function, 

2. there is no universally correct way to fill in the missing data, and 

3. a priori assumptions should guide the reconstruction as much as possible. 

This thesis proposes moving beyond a priori assumptions in limited-angle CT and using 

data from other sources to constrain the reconstruction, i.e., constraint-based data fusion 

for limited-angle CT. Data fusion fills in the missing data correctly, even when a priori 

assumptions for interpolation are not valid. 

2.4. Ultrasound 

The previous section showed that CT reconstruction from limited-angle data is ill­

posed and has a large null space. To reliably reconstruct tomographic images of a 

specimen, limited-angle CT methods rely significantly on a priori assumptions to 

constrain the solution. Constraint-based data fusion avoids reliance on such assumptions 

by using other data sources to provide constraints. Ultrasound is a commonplace NOE 

technique that gives data complementary to x-rays and has the potential to provide 

constraints to limited-angle CT. This section presents some background on ultrasound as 

a prelude to its use in a limited-angle CT data fusion system. 
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2.4.1. Forward Models 

In ultrasonic testing, a transducer transmits a high-frequency sound wave _i_nto the 

surface of a specimen. The sound travels through the specimen unchanged until it 

encounters an interface between materials of different acoustic impedance. At the 

interface some energy is reflected and some is transmitted. Reflections (echoes) at the 

surface contain information about the internal structure of the specimen. Take, for 

example, a single interface between two layers in a layered specimen; the upper and 

lower layers have acoustic impedances z1 and z2 respectively. The amplitude of a 

reflected signal is r, the reflection coefficient for the interface, times the amplitude of the 

incident signal, where r, is given by [24]: 
Z2 -zl r =-=-_..... (2-7) 
Z2 +z1 

A negative value of r indicates a phase reversal. The following expression gives the 

echoed signal: 

y(t) = s(t)*w(t) + r(t), (2-8) 

where y(t) is the echoed signal, s(t) is the impulse response of the material, w(t) is the 

sound wavelet introduced at the surface, and r(t) is noise(* is the convolution operator). 

s(t) contains the desired structural information. It is a train of impulses, each impulse 

corresponding to an interface in the specimen. The magnitude and sign of the impulses 

depends on r for the interface and the attenuation in the path of the sound to and from that 

interface. Equation (2-8) gives a simple, non-parametric (i.e. material parameters are not 

specified), forward model of the ultrasonic process [25]. 

More sophisticated parametric models define the output of an ultrasonic system 

based on material properties. These models fit into two categories: (1) equal time slices 

and (2) variable time slices [25]. The models assume a lossless layered medium like that 

shown in Figure 2.11. m( t) is the signal injected into the specimen and y( t) is the output 



as in Equation (2-8). u/t) and d/t) are the upward and downward traveling signals in 

the / 1 layer. 

L ayer 1 

(a) 

Layerj 

.d ( ~) _ _ __ ..__ _____ ~ _._ _______ ___ r1. 

Layerf+t uJ · ((t) -

(b) 

Figure 2.11: Schematic of a lossless layered ultrasonic 
medium: (a) top layer and (b) internal layers. 

The equal time slice model divides the medium into layers of equal travel time. 

Each layer is a half sample period thick, which makes the two-way travel time equal to 

one sample period per layer. The set of reflection coefficients, r0 ,r1, r2 , ••• ,rn, where n is 
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the number of samples, completely defines the model. The following equations describe 

the ultrasonic system: 

1 
d1+1 (t) = (1 + r)d/t - - ) - r1 u1+1 (t) 2 

u/t + !) = ri d/t-_!_) + (1- r1)u1+1(t), j = 1,2, ... ,n 
2 2 

for internal layers, and 

d1 (t) = (1 + r0 )m(t) - r0 Ui (t) 

y(t) = r0 m(t) + (1- r0 )Ui (t) 

(2-9) 

(2-10) 



for the top surface. 

The variable time slice model divides the specimen into slices correspondi!}g to 

the actual material layers. Reflection coefficients, r0 ,rpr2 , ... ,r", and the travel times, 

-r0 , -r1, -r2 , ••• , -rn, where n is the number of layers in the specimen, completely define the 

model. The following equations describe the ultrasonic system: 
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d/t + -r) = (1 + ri-l )di-t (t) - ri-l u/t) 

u/t + -r) = ri di-l (t) + (1- ri )ui ... i(t) 
(2-11) 

for the internal layers, and 

d0 (t) = m(t) 

y(t) = U1 (t) 
(2-12) 

define the input and output (in this case for a unidirectional sensor just beneath the upper 

surface). Variable time slices have the inherent advantage that the parameters correspond 

directly to the structure of the specimen. 

2.4.2. Ultrasound Inversion 

Both the non-parametric (Equation (2-8)) and the parametric (Equations (2-9) to 

(2-12)) models have corresponding inverse problems reviewed here. 

Non-parametric modeling leads to the inverse problem of ultrasonic 

deconvolution. Equation (2-8) expressed with linear matrix operators is: 

y = Ws+r, (2-13) 

where y is the vector of output data, s is the vector of impulses, and r is an error vector. 

Wis a matrix operator which performs a convolution with the ultrasound wavelet. The 

least-squares approach to solving Equation (2-13) gives the optimization problem of 

minimizing the quadratic norm of the residual, Ws - y, i.e., minimizing the objective 

function E(s) where: 

E(s) = IIWs-yll2. (2-14) 
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Unfortunately Wis not full column rank and the optimization is ill-posed; the solution is 

not unique. One way to deal with the ill-posedness is to modify the problem by 

·regularization. Rather than solve for s from Equation (2-13), solve for s from: 

[:}=[~]- (2-15) 

Solution of Equation (2-15) by least-squares minimizes the objective function: 

E(s) = IIWs-yll2 + .-1-21!Dsll2 
• (2-16) 

D is chosen so that the matrix [:] is full column rank. Minimizing E( s) in (2-16) 

gives the following symmetric positive definite system: 

(W7 W+)}D7 D)s= W7y, (2-17) 

which is essentially the classic Wiener deconvolution (24]. In Wiener deconvolution the 

operator D corresponds to multiplication by the noise spectrum in the frequency domain. 

A more recent method called 11 -norm deconvolution uses 11 norms rather than 12 

and assumes that s(t) contains impulses only (45]. Based on experimentation, 

developers of the 11 -norm method state that the 11 norm gives superior results and is faster 

when compared to the 12-norm, and that the assumption that s(t) contains only impulses 

leads to improved temporal resolution. 

Non-parametric inversion only recovers the impulse response, s(t), and no direct 

structural information. Inversion with a parametric model allows recovery of structural 

information in the form of an acoustic impedance profile. There are two basic methods 

for parametric inversion: direct inversion and optimization. 

The first, direct inversion, solves for the uppermost interface from the first data 

point (Equation (2-10)). It then solves for subsequent layers from subsequent data points 

and solutions to upper layers in top-to-bottom order. There are two major problems with 

direct solution. First, it assumes that the data are deconvolved, i.e., the data are the series 

of impulses s(t) rather than the convolved data y(t). Second, the method is ill-



conditioned. Small errors in a layer propagate to lower layers and grow rapidly in 

amplitude. 
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In the second type of parametric inversion, optimization, one creates an objective 

function: 

E(z) = IIU(z) - Y!i2, (2-18) 

where z is the impedance profile and U(z) is the forward ultrasonic process, and then 

minimizes it among the possible z. U(z) is non-linear so E(z) is non-convex and 

difficult to minimize. The minimum may not be unique and so the optimization is ill­

posed. In spite of these problems, optimization is superior to direct inversion. 

Examples of parametric inversion are given by Goupillaud [15], who uses an 

equal time slice model for ultrasonic inversion and more recently Habibi-Ashrafi and 

Mendel [18], Mendel and Goutsias [26], and Zala and McRae [45] who use a variable 

time slice model. Most current literature on ultrasonic inversion treats the material as 

lossless although in reality t ':: · · -~ case. Usually the specimen absorbs some 

sound energy in a manner anaiogci.4~ to x-;·.,:.:.: :.:hsorption. The absorption coefficient is 

difficult to measure precisely and ultrasonic inversion is extremely sensitive to it. So 

ultrasonic inversion for an absorbing medium is even more complex than for an 

imaginary lossless medium. Zala and Churchill [46] give an excellent review of 

ultrasonic inversion methods as well as the practical problems encountered when the 

medium is not lossless. 

2.4.3. Minimal Ultrasound for Fusion with Computed Tomography 

Ultrasound data complement x-ray data because they measure features that x-rays 

cannot. Whereas raysums are insensitive to discontinuities along the path of radiation, 

ultrasound explicitly detects discontinuities in its path. This complementary nature of x­

ray and ultrasound portends their effective fusion in limited-angle CT. 
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Ultrasound inversion for a layered lossless specimen is difficult but possible. In 

the more realistic situation of an absorptive specimen ultrasonic inversion is tenuous; the 

· solution is extremely sensitive to the absorption coefficient which is generally unknown 

and highly variable. 

Fortunately, CT reconstruction of sandwich specimens by fusion with other data 

sources does not require the full potential of ultrasound. Instead, as shown in Chapter 3, 

only measurements of the face sheets are necessary. As long as the external layer is 

composed of a homogenous slab, thickness measurement only requires identification of 

two reflections in the ultrasound signal: one from the top surface and one from the 

bottom. The two reflections are distinct making their identification easy and thickness 

measurement simple. 

There are several reasons why thickness measurement might not be simple. 

Delaminations in a composite face sheet can prevent detection of bottom surface 

reflections. Face sheets in some regions of a specimen may have multiple layers and so 

the reflection from the bottom must be separated from other reflections. In spite of these 

confounding factors, it is reasonable to assume that ultrasound can provide sufficient 

thickness measurements of the face sheet of a sandwich specimen to allow accurate 

interpolation of thickness data over the entire face sheet. 

2.5 Chapter Summary 

Section 2.1 of this chapter introduced the constraint-based data fusion model of 

Clark and Yuille [9]. Their elegant approach implements fusion by using the output of 

one data inversion module as constraints for another. Constraint-based data fusion 

provides a coherent framework within which to build data fusion systems. 

The basic inverse problem of x-ray raysum inversion is known as CT (computed 

tomography). Conventional CT is ill-posed, but the ill-posedness is easily handled by 

suppressing high-frequency components in the reconstructed solution. Practical 
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considerations often dictate that raysum data cannot be collected over the full range of 

angles in the Radon transform. In these limited-angle cases the inverse problem is_ still 

·ill-posed, but the null space is much larger and reconstruction requires additional 

constraints. Many methods exist to solve limited-angle CT. They all rely on a priori 

assumptions (which may not be valid) to constrain the solution. This reliance portends a 

more-accurate solution from constraint-based data fusion when a priori assumptions are 

not valid. 

In the field of non-destructive evaluation ultrasound is commonplace. It provides 

a source of sensory data that complements x-rays and may provide constraints to limited­

angle CT. Many types of inspection are possible with ultrasound, but the limited-angle 

CT problem of this thesis requires only the ability to measure the thickness of a face sheet 

in a sandwich structure. 

Chapter 3 shows that limited-angle CT fails to sample adequately the face sheet 

structure of a sandwich specimen causing limited-angle CT reconstruction methods 

constrained by generalized a priori assumptions to fail. The chapter then proposes a 

novel system for limited-angle CT that fuses ultrasound data with x-ray data to accurately 

reconstruct sandwich structures. 



Chapter 3 

Limited-Angle Computed Tomography 
for Sandwich Structures Using Data 
Fusion 
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Section 3.1 of this chapter defines the null space of the limited-angle Radon 

transform. The nature of the null space suggests that wide structures with 

correspondingly thin Fourier transforms will lie in the null space and be invisible in 

limited-angle raysum data. Face sheets in sandwich structures have this property. 

Therefore, accurate limited-angle CT reconstruction of sandwich structures is not 

possible because the face sheets are not properly measured and interpolation of the data is 

invalid. 

The limitations of limited-angle CT present an opportunity to use constraint-based 

data fusion to improve reconstruction. Sections 3.2 and 3.3 introduce a novel strongly­

coupled feed-forward fusion system for limited-angle CT. The system exploits the 

complementary nature of x-ray and ultrasound by using the latter to measure face sheet 

features that are otherwise invisible in raysum data. Fusing face sheet measurements into 

reconstruction removes the face sheets from the null space. Thus, the fusion system 
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produces an accurate reconstruction of a sandwich structure where it would otherwise be 

impossible. 

Section 3.2 describes the data acquisition process for the three sources of data: 

range finder, ultrasound, and x-ray. Section 3.3 shows how the fusion system combines 

the multiple data sources, including the mathematical formulation of the applicable 

inverse problem. 

3.1. Null Space of the Limited Angle Radon Transform 

Define the limited-angle Radon transform of the cross section µ(x,y), 

(3-1) 

The limited-angle transform is identical to the Radon transform except that it is defined 

over a limited range of angles only. By definition, a function µn is in the null space of 

the 1{0 if [1{0µn ](l, 0) = 0. Any structure in a specimen that lies in the null space does 

not contribute to the data measured by the transform. In this sense, such structures are 

invisible to data acquisition. It is important, therefore, to know the extent of the null 

space and which structures are contained within it. The remainder of this section defines 

the null space of the limited-angle Radon transform and an important class of structures 

that lie almost entirely within it. 

As stated above, by definition µn E 9{_(1(0 ) if and only if: 

Taking the Fourier transform of Equation (3-2) gives: 

[!fc1{0µn](m1, 0) = 0. 

By the Fourier slice theorem (see Chapter 2, Section 2.2.3): 

[!fc1{0µn](m1, 0) = [!f'1:,yµn](m1 cos 0,-m1 sin 0), 

and 
my 

[!f'l'.,yµn](mx, my)= 0, - e -5 0 -5 e, tan 0 = ro. 
X 

(3-2) 

(3-3) 

(3-4) 

(3-5) 
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The case where mx,my = 0 requires special consideration. The limited-angle transform 

does sample this case, and, as for Equations (3-2) through (3-5): 

[.1',;:,yµn](O,O) = 0. 

Therefore the null-space is: 

9£(a?..0 ) = {µ,(x,y): 

(3-6) 

(3-7) 

In words, the null space is the set of all functions whose Fourier transform is zero within 

the sampled regions of the Fourier domain. 

Equation (3-7) illustrates the effect of limiting the range of angles. As e 

decreases the portion of a function (in Fourier space) that must be zero for the function to 

lie in the null space also decreases and the null space becomes larger. A practical 

consequence of a larger null space is that more of the structure of a specimen lies within 

it and is not sampled by the limited-angle Radon transform. Although CT reconstruction 

is ill-posed for both large and small null spaces, reconstruction is more difficult with the 

large null space because more structural information is missing. 

Equation (3-7) also hints at what types of structures lie in the null space. As a 

rule, narrow structures have wide Fourier transforms and wide structures have narrow 

Fourier transforms. One expects, therefore, that a wide structure will lie in the null space, 

provided that it is oriented so that its narrow Fourier transform lies in the unsampled 

region. An example is the face sheets of sandwich structure. It is well known that the 

outer extremities of a structure carry stresses due to bending. Therefore, to achieve 

economy of weight and material, designers often create structures to carry loads in a thin 

outer shell separated by some core material, i.e., a sandwich structure. One example is 

the control surfaces of an airplane. The outer shell, i.e., the face sheets, carries the loads 

while the purpose of the core is to provide a rigid connection between the face sheets. If 

the structure is wide, as is the case for aircraft components, it does not allow acquisition 
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of full range raysum data, and furthermore, the face sheet structure lies almost entirely in 

the limited-angle Radon transform null space. We now show that this is the case. 

The function sr,q,,a,ix,y), shown in Fig!.lre 3.1, represents a hypothetical face 

sheet and is given by: 

sr,q>,a,ix,y) = {a, 
0, 

- d S ( x sin </) + y cos </)) - r S d 
2 2, 

othervilise 

i.e., a rectangular function in the y-axis direction with amplitude a and width d, shifted r 

from the origin in the y-axis direction and rotated by angle </) • The Fourier transform of 

sr,q> ,a.ix,y), [.1..:,.lr,q,,a,d](mx,my), is: 

where 

i.e., the Fourier transform is a sine function along the y axis, phase shifted (for r) and 

rotated by angle </). 

y 

X 

Figure 3.1: Function s,.q,.a.d(x,y); shaded region has value a and zero 
everywhere else. 

Figure 3.2 shows a sandwich structure with two face sheets surrounding some 

core material. The width of the structure restricts the range of angles to - e S 0 S e 

(3-8) 

(3-9) 
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rr 
where e < 2 - <P. Thus, with the exception of the zero-frequency components, the face 

. sheets lie within the null space of the limited-angle Radon transform. The presence of the 

face sheets confounds reconstruction. Their position in the null space eliminates the 

possibility of accurate reconstruction based on general a priori assumptions, so specific 

information about the face sheets is essential. Data fusion solves this problem by 

incorporating face sheet measurements gleaned from other data sources. The remainder 

of this chapter describes a novel data fusion system for limited-angle CT that acquires 

face sheet data and fuses them with raysum data in reconstruction. 

y 

X 

Figure 3.2: Sandwich specimen with face sheets at angle <P. The 
width of the specimen prevents raysum acquisition outside the range 
- e ~ 0 ~ e. Note that e < ( rr/2) - <p, so the face sheets lie almost 

entirely within the limited-angle Radon transform null space. 

3.2. Data Acquisition for Limited-Angle CT Data Fusion System 

Clearly, limited-angle CT for sandwich structures based solely on raysum data is 

not feasible. The face sheets of the sandwich lie in the limited-angle Radon transform 

null space so that the assumptions necessary for interpolation are insufficient. This 

section proposes a novel system for limited-angle CT, starting with a description of the 

data acquisition. The system is based on raysum acquisition with modifications to allow 
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face sheet measurements from range finders and ultrasound. A description of a strongly­

coupled feed-forward data fusion system that combines the data follows in the next 

section. 

3.2.1 Raysum Data Acquisition 

Figure 3.3 shows schematically the raysum data acquisition apparatus for thin 

objects. The apparatus sits on a large C-shaped manipulator (the C-arm) that allows the 

x-ray source (mounted on one end of the C) and the sensor (mounted on the other end of 

the C) to maneuver about a thin specimen. 

Linear array 
x-ray detector 

, l ! 
' ~ : 
\ I I 

\ I I 

~ 
\II 
, , , thin specimen 
\ \ I ,,, 
'" "' • 

x-ray tube 

detector 
electronics 

raysum data 

Figure 3.3: Raysum data acquisition system. 

To acquire an image, the C- arm sweeps the array across an area. A frame buffer 

assembles the image from the lines of data acquired by the array. Image acquisition is 

not important for CT, but a carefully arranged set of raysums is. Figure 3.4 shows, 

looking at the linear array end-on, the C- arm motion during data acquisition. The source­

sensor array scans the specimen along a line as if acquiring an image, but only pixels 

from the centre of the array are used. The projection angle (the angle between vertical 

and the source-sensor plane) is initially zero. Subsequent scans acquire projection data 

for angles in the range -0 S 0 S 0. 



x-ra source 

I \ 
I \ 

I \ 

linear array 

.. 
direction of scan 

(a) 

x-ray source 

I I _____ ....,...,~ 

~ direction of scan 

linear array 

(b) 

Figure 3.4: Scan method for limited-angle raysum acquisition: 
(a) parallel with vertical and (b) at an angle to vertical. 

3.2.2 Range Data 
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An important assumption often used in limited-angle CT is that of limited spatial 

support for the specimen, i.e., the specimen fits into a bounding region. Constraint-based 

data fusion improves solutions of inverse problems by substituting reliance on 

constraining assumptions with reliance on measured data. It is sensible, therefore, to 

measure the bounding shape of the specimen rather than rely on assumptions if possible. 

Fortunately, devices exist that measure precisely the bounding shape of an object. 

An example is a laser range finder, an instrument that measures the distance from the 

instrument to an opaque surface in front of it. It projects a small dot of laser light onto 

the surface of the specimen. The optical system of the range finder detects the dot and 

triangulates its position. By sweeping the dot along a line and triangulating at each 

position, the range finder acquires range data along a line. Whereas the linear array x-ray 

detector collects raysum data along a line, a laser range finder collects range data along a 

line. To collect range data over an area, the range finder sweeps across the area in a 

manner analogous to the linear array x-ray detector when acquiring an image. One 

example of a commercially available laser range finder is the Satum-2000 built by Servo­

Robot [35]. Two range finders mounted on the C-arm apparatus, one beside the x-ray 
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source and the other beside the detector, can measures the bounding region of the 

specimen with a single sweep of the C-arm. Figure 3.5 shows the modified appar~tus for 

· acquisition of raysum and range data. 

x-ray source 

linear array 
x-ray detector 

laser 
range finder 

... 
direction of scan 

laser 
range finder 

Figure 3.5: Scanning method modified to include laser range 
finder for bounding region measurement. 

Laser range finders are not the only method of determining the bounding region, 

but they are available and are accurate. An alternative is stereo vision or a modified 

stereo system. Two video cameras mounted in place of the range finders can acquire a 

sequence of images as the apparatus sweeps across the specimen. From these images it 

should be possible to compute range data, i.e., compute depth from motion where the 

motion is known. This idea is similar to stereo vision but whereas stereo uses only two 

cameras to compute depth, the sweeping motion of the C-arm provides many images. 

3.2.3 Thickness Data 

Measurement of the bounding region of the specimen by a range finder gives the 

position of the outer side of each face sheet. To completely measure the face sheet it is 

also necessary to know the thickness of the face sheet. Ultrasound is well suited for this 

measurement. 

To acquire thickness measurements use a set of ultrasound pulse-echo traces taken 

along the face sheet in the scan direction. Ideally the traces have two reflections, one 

from the outer surface and one from the inner surface. From the position of the two 
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reflections calculate the time for the sound to travel between the two surfaces. Assuming 

that the speed of sound in the face sheet material is known compute the thickness of the 

· face sheet from the speed and travel time. 

Figure 3.6 shows the apparatus for ultrasound data acquisition. Conceptually, the 

ultrasound system sits on the C-arm with the range finders and x-ray system. Practical 

requirements for ultrasound (e.g. water squirters) and x-ray (high-voltage circuits) 

prohibit their coexistence. Therefore, the ultrasound apparatus is separate from the x-ray 

and range apparatus. 

energy in 
couplant 

ultrasound 
energy in 
couplant 

ultrasonic 
transducer 

ultrasonic 
transducer 

... 
direction of scan 

specimen 

Figure 3.6: Apparatus for ultrasound data acquisition. 

It is possible that thickness measurement may fail occasionally. This can occur 

for many reasons, e.g., scattering obstructions, defects within the face sheet, or internal 

structures which confound the reflections. Fortunately, the thickness of the face sheets is 

not rapidly varying and it is a straightforward process to interpolate missing thickness 

values. 

3.3 The Fusion System 

This section introduces a novel data fusion system for limited-angle CT of 

sandwich structures based on the apparatus shown in Section 3.2. Section 3.3.1 shows 



54 

the flow of data which is essentially a feed-forward strongly-coupled data fusion system, 

and Section 3.3.2 shows the mathematical formulation of the relevant inverse proplem. 

3.3.1 Data Flow 

A strongly-coupled feed-forward data fusion system processes the data acquired 

by the apparatus of Section 3.2. Figure 3.7 shows a block diagram of the system. 

input data 

range data Bounding Region -- Computation 

a priori 

assumptions i 
' ultrasound data Face Sheet - Thickness -

Computation 

a priori 
assumptions i i 

raysum data - CT Reconstruction -

map of spatial support 

m ap of spatial support 
nd face sheet values a 

cros 

--

t:= 
reconstructed 

s-section of specimen 

am 
Figure 3.7: Block diagram of strongly-coupled feed-forward data 

fusion system for limited-angle CT of sandwich structures. 

The first module of the system, bounding region computation, takes range data as 

input and produces a map of the spatial support for the specimen. The map segments the 

cross section into exterior regions and regions within the specimen. 

The second module, face sheet thickness computation, takes ultrasound data as 

input and computes a map segmenting the specimen into exterior regions, face sheet 



regions, and interior regions. The ultrasound data, constrained by the known speed of 

sound, give face sheet thickness, and spatial support constraints define the positions of 

·the face sheets. Combined, the face sheet positions and face sheet thickness give a map 

of the face sheet regions. Regions that are not exterior nor in a face sheet must be, by 

default, in the specimen interior. 
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The map of the exterior and face sheet regions constrains the third module, CT 

reconstruction, whose input and output are the raysum data and the re.constructed cross­

section respectively. As shown in Section 3.1, the face sheet structures are invisible to 

limited-angle raysums, and thus confound accurate reconstruction. The complementary 

nature of x-ray and ultrasound data allow the segmentation based on range and ultrasound 

to constrain the reconstruction to overcome this limitation. Whereas with the raysum 

data alone the reconstruction fills the unsampled Fourier space based on invalid a priori 

assumptions, the new constraints restrict the solutions to conform to the face sheets. 

These constraints do not necessarily make the problem well-posed so a priori 

assumptions are still necessary for reconstruction, but these assumptions no longer lead to 

erroneous results. Wide internal structures with edges parallel or near parallel to the face 

sheets are still a problem. In practice though, internal structures are much narrower than 

the face sheets so more of their Fourier transform lies in the sampled Fourier space, 

allowing better interpolation from a priori assumptions. 

3.3.2. Mathematical Formulation 

Acquisition of raysums is represented by the discrete linear system: 

Rx=y, (3-10) 

where x is a vector of linear attenuation coefficients in a specimen and y is a vector of 

raysums. R is a matrix representing the discrete Radon transform. Each raysum 

measurement is given by the inner product: 

(3-11) 
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where Y; is the rh raysum and r; is the rh ~ow of R. The /h element of r;, r;,i , is the 

length of the im ray that passes through the jlh element of x. For limited-angle raysum 

acquisition, only rows corresponding to the raysums that are possible to measure are in R. 

The available raysums determine R and the number of singular values equal to zero. 

From Section 3.1 we know that R has a non-trivial null space containing the face sheet 

structures. Therefore, accurate CT reconstruction based on Equation (3-10) alone is ill­

posed. 

Range data and ultrasound data provide additional constraints so that 

reconstruction recovers the face sheet structure. The range finder gives a bounding 

region for the specimen. This leads to a map of regions inside and outside the specimen 

and the following system of equations: 

where: 

Wx=WxF 

W = diag(w1, w2 , ••• , wi, ... , wN) 

-{I xi outside specimen 
w. - , and 

' 0 xi inside specimen 

{
µair 

XF = 
j 0 

xi outside specimen 

xi inside specimen · 

(3-12) 

The subscript F denotes fusion. µair is the linear attenuation coefficient for air and is 

zero. xF is a partial reference image based on the fusion data. The range finder data 

inversion gives the elements on the diagonal of W. Intermediate values between zero and 

one on the diagonal indicate that a particular element lies across a boundary between 

regions. 

The ultrasound module gives the thickness of the face sheets. Face sheet 

thickness and the location of the outer side of each face sheet determine which elements 

of x are exterior, which are in a face sheet, and which are interior. This gives a new 

matrix W and partial reference image x F where: 



-{1 xi in face sheet or exterior 
wi - 0 xi in specimen interior ' and 

{

µair 

X F1 = ~face sheet 

xi outside specimen 

xi in face sheet 

xi in specimen interior 

µface sheet is the linear attenuation coefficient of the face sheet material. 

Equations (3-10) and (3-12) combine to form the system: 
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[!}=[~J (3-13) 

Solving for x from Equation (3-13) yields a solution that is constrained by Equation (3-

12) and therefore constrained by the range and ultrasound data. Although Equation (3-

12) further constrains the problem, the reconstruction is still ill-posed. The matrix [ ;J 
is not necessarily square and is not full column rank. Equation (3-13) eliminates the face 

sheet structures from the null space of [:], allowing a reconstruction that properly 

accounts for the face sheets. Interior structures with edges parallel or nearly parallel to 

the face sheets are still at least partly in the null space. 

It is possible to weight the fusion data in Equation (3-13) to a greater or lesser 

degree by using other values on the diagonal of W, where a large·weight indicates a 

greater degree of confidence in the constraint. For example, one can choose the weights 

to be the reciprocals of the standard deviations of constraint measurements [3.9) . The 

unitary weights are arbitrary here, but they happen to produce good results using singular 

value decomposition and regularization (see next chapter). Weights in Ware irrelevant to 

the method of projection onto convex sets (also in the next chapter) where the parameters 

that control constraint set size determine the relative weighting of constraints. 

In the context of the data fusion system proposed here, strongly-coupled feed­

forward data fusion consists of: 

1. forming the system of equations, and 



2. solving for x from Equation (3-13). 

It remains to specify a method of solution. Chapter 4 presents and compares three 

possible methods. 

3.4 Chapter Summary 

The null space of the limited-angle Radon transform is the set of all functions 

whose Fourier transform is zero over the region sampled by the transform. This null 

space specifically includes the face sheets of sandwich structures, with the exception of 

the zero-frequency component. Therefore, an important part of a sandwich structure is 

invisible to limited-angle raysums and accurate reconstruction is not possible from 

raysum data alone. 
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A novel limited-angle CT system, proposed in this chapter, uses constraint-based 

data fusion to solve this problem. The system specifies data acquisition methods for 

range data, ultrasound data, and x-ray raysum data. A strongly-coupled feed-forward 

data fusion system cor:~:::,_,•,;s the data from the different sources. 

The range data define: ~ . · :, ;.,:nu ing region for the specimen. Outside that region 

linear attenuation must be zero. Range data also locate one side of each face sheet. 

Ultrasound data give thickness measurements over the face sheet. Thickness 

measurements constrained by the face sheet locations determine which regions of the 

specimen are face sheet. Face sheet regions have a known linear attenuation. A part of 

the specimen that is neithe :· : .... :·,.,: ::· 1·:·: ·: ::,,~-·.mding region nor in the face sheets is, by 

default, in the interior of the specimen. No assumptions are made about linear 

attenuation in the interior. 

The segmentation of the specimen into exterior, face sheet, and interior regions 

gives a set of constraints expressed by the linear system· 

Wx= WxF 
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where Wis a diagonal matrix whose elements indicate whether or not an element of x is 

in a region where linear attenuation is known. xF is a partial reference image based on 

· the fusion data. 

Raysum acquisition is modeled by the linear system: 

Rx=y. 

Range data and ultrasound data constrain the reconstruction from raysums in the 

combined linear system: 

Data fusion in this context consists of building the above system of equations and solving 

for x. The matrix [;] is not square, nor is it full column rank, so the inversion is still ill-

posed. However, the new system reduces the size of the null space so that it no longer 

contains the face sheets. Only internal structures with edges parallel or nearly parallel to 

the face sheets are in the null space. In practice, internal structures are narrow enough 

that limited-angle data should recover them adequately. 

The next chapter shows three numerical methods suitable for solving for x from 

Equation (3-13). 



Chapter 4 

Numerical Methods for Limited-Angle 
Tomography System 
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Chapter 3 introduced a novel method for limited-angle computed tomography that 

exploits data fusion to properly reconstruct a cross section of a specimen with face sheets. 

The method ultimately requires solution of the linear system of equations: 

Ax=b 

where: 

The nature of A dictates that solving for xis an ill-posed problem; if a solution exists, it is 

not unique. 

A plethora of methods exists for solving linear systems. This chapter reviews the 

following three methods suitable for the limited-angle CT fusion problem: 

1. singular value decomposition (SVD), 

2. regularization and the conjugate gradient method (R/CG), and 

3. projection onto convex sets (POCS). 

Note that these are not the only methods possible. 
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A brief description of each method follows, including details of application to the 

problem of interest, and its advantages and disadvantages. Section 4.4 summarizes the 

· methods in tabular form. Results of application of each method to synthetic data, and 

application of R/CG and POCS to real data are in Chapter 5. 

4.1 Singular Value Decomposition 

Strang [38] suggests that singular value decomposition (SVD) " ... is not nearly as 

famous as it should be." Whether or not this is true, SVD is an excellent tool for analysis 

of linear systems. This presentation of SVD, based on Golub and Vanloan [13], Stoer 

and Bulirshch [37], Forsythe, Malcolm and Moler [12], Strang [38], and Press et al. [31], 

focuses on the decomposition itself rather than the algorithm that computes it. 

4.1.1 Properties of the Decomposition 

Start with the generic linear system: 

Ax=b. (4-1) 

We know nothing about A except that it is m x n and m ~ n. For m < n fill A with rows 

of zeros to get m = n. SVD decomposes the matrix A into the product of three matrices: 

A=UEV7
• 

The following tableau elucidates the decomposition: 

u 
A= 

mxm mxn nxn 

U and V are both orthogonal, but the significance of SVD lies in the structure of I : 
0'1 0 

0'2 

I= 0 O' . 
II 

0 

(4-2) 

(4-3) 

(4-4) 
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The values a1 relate to the eigenvalues of AT A; a1 = JI; , where A 1 is the /h 

eigenvalue of AT A. Since AT A is positive semi-definite, A 1 ~ 0 and a1 ~ 0. Because 

the last m - n rows of I are zeros, the last m - n columns of U are unnecessary. 

Ignoring these rows and columns gives the abbreviated decomposition: 

A= 

where: 

u 
mxn 

Rearranging Equation (4-2) gives: 

nxn nxn 

0 

0 

AV= UI, 

from VTV =I. Individual columns in Equation (4-7) are: 

Av1 = a1ur 

Consider Equation ( 4-8) for each of two categories for a1: 

1) a.= O 
J 

1 
A-v. =u.,so a. J J 

J 

u1 e Range(A). 

The following items summarize important aspects of the decomposition: 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

1. If a1 = O for any j then the matrix AT A is singular and the linear system 

of Equation ( 4-1) is under determined, 



2. The null space of A, 9{(A), and its orthogonal complement, 9{.L(A), are 

given by: 

and 

9{(A) = span(vi: ai = 0), and 

9{.L(A) = span(vi: ai -:t 0), 

3. The range of A, Range(A), and its orthogonal complement, Range.L(A) 

are given by: 
Range(A) = span(ui: ai -:t 0), and 

Range.L(A) = span(ui : ai = 0). 
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SVD indicates whether or not a system of equations is under-determined, and it computes 

orthogonal bases for the null space and range of a matrix and their orthogonal 

complements. 

4.1.2 Least-Squares Minimum-Norm Solution 

In addition to finding the null space and range of a matrix, SVD leads directly to 

the least-squares minimum-norm solution of an under-determined linear system. The 

least-squares minimum-norm solution for x, x is: 
(4-9) 

i.e., x is the shortest x that minimizes IIAx - bll2 and is unique. Equation ( 4-9) uses 

V 7 V = I and U 7 U = I, and the pseudo-inverse r1- given by: 

where: 

(j.+ 0 
1 

0 

er+ 
2 

{

O, ai = 0 

a; = _!_, otherwise· 
(jl 

(4-10) 

(4-11) 

Often in practice ai -:t O, but ai is very small. The condition number of A, cond(A), 

where: 
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cond(A) = max(o-1). 
min(o-j ) 

(4-12) 

Uf"'O 

·describes this situation. If min( o-1) is small then cond(A) is large and the matrix is ill-
"'' otO 

conditioned. Either the machine precision or the accuracy of the data determine the 

maximum tolerable condition number. Let e be the limiting precision, then the condition 

number should not exceed¼, i.e.: 

max(o-) 
cond(A) = 1 ~ ¾ 

min(o-; ) e 
(11¢0 

(4-13) 

yields a well-conditioned problem. 

SVD provides the opportunity to condition the problem by throwing out any o-1 

that is too small and replacing it with a zero. Consequently, the null space increases to 

include precisely the part of the problem that was ill-conditioned at the cost of a loss of 

range. Redefinition of the pseudo inverse to condition the matrix gives: 

{

o, 0-j < e max( 0-j) 

o-; = -1
-, otherwise 

0-j 

(4-14) 

4.1.3 Application to Limited-Angle CT 

Computation of the tomographic reconstructions proposed in Chapter 3 using 

SVD follows these steps: 

I. build the matrix A = [; l 
2. use a canned SVD algorithm, e.g. svdcmp () from (31], to compute U, V, 

and the diagonal of I. 

3. . set 

for j = 1,2, ... ,n. 

{
o, 

0- -j - o- . 
J 

o-1 < e max( o-1) 

otherwise 
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4. use a canned SVD back-substitution algorithm, e.g. svbksb ( ) from [31], 

to compute the least-squares minimum-norm solution, x, from U, V and I, 

and data b = [ y ]· 
WxF 

Repeat step 4 as needed for different data provided A does not change. 

SVD has O(mn2 + n3
) complexity in time. Current computer technology is too 

slow to tackle CT problems of a practical size with SVD and third-order complexity 

staves off the day when it will. Storage requirements are also exorbitant. In the 

experiments reported in Chapter 5 the image size is 72 x 200 giving n = 14,400. The 

matrix A must contain at least n2 = 207,360,000 elements. Using a 32-bit floating point 

representation for each element, A occupies about 790 Mbytes of memory. SVD requires 

two arrays of this size. Arrays of this size are not practical using current technology and 

this is only a moderately sized problem. Images of n = 200 x 200 = 40,000 are routine in 

CT. 

It may be possible to capitalize on sparsity in A and reduce both computation time 

and storage. Unfortunately, sparsity in A does not translate directly to sparsity in U and 

V. Currently no efficient methods exist for SVD of sparse systems. Should such 

techniques come to fruition, SVD has the advantage that once a decomposition is 

complete, solutions are easily computed for different data vectors b, i.e., do the 

decomposition once to compute U, V and I, taking a long time if necessary, and 

repeatedly solve for any number of different b's quickly. 

To summarize, SVD has the following advantages: 

1. definition of range and null space, 

2. controlled conditioning of the problem, and 

3. well-posedness due to unique least-squares minimum-norm, 

and the following disadvantages: 

1. third-order computational complexity, and 

2. exorbitant storage requirements. 



If one is willing to sacrifice resolution of reconstruction SVD can perform CT 

reconstruction. The resolution will be too low for practical applications, but the 

decomposition gives a useful analysis of the problem. 

4.2 Regularization and Conjugate Gradient Method 

4.2.1 Regularization 

As shown in the previous section, SVD gives a least-squares solution to 

Ax=b, 
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i.e., it minimizes the quadratic objective function E = IIAx - bll2 • The minimum is not 

unique because A has a non-trivial null space, so SVD finds the shortest x that minimizes 

E = IIAx - hf (least-squares minimum-norm solution). 

An alternative is to modify the system so that the least-squares solution is unique 

without the minimum-norm constraint. Tikhonov and Arsenin [41] describe one such 

technique, called regularization, to solve singular and ill-conditioned systems of linear 

algebraic equations. This section examines regularization in the context of the proposed 

limited-angle CT system. 

Begin with the linear system: 

Ax=b. (4-15) 

To have a unique least squares solution it is necessary for A to be full column rank. 

When A is not full column rank, regularization modifies A by adding more rows to give: 

[~}=[:axJ (4-16) 

where a > 0, and n is some matrix. If n is full column rank, then the matrix [ :n] is 
also full column rank and the least squares problem of Equation (4-16) is well-posed. If 

n is nearly full column rank, then it may be sufficient to make [ ~] full column rank. 

To see that this is indeed the regularization proposed by Tikhonov and Arsenin, look at 



the quadratic objective function minimized in the least-squares solution of Equation (4-

16): 
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[A ] [b ] 
2 

E= x-
aQ aQx0 ' 

(4-17) 

which expands to 

(4-18) 

Compare Equation ( 4-18) to Tikhonov and Arsenin's functionals: 

Ma[z,u,A] = IIAz-ull2 
+ allz- z1ll

2
' a> 0, (4-19) 

and 

(4-20) 

The addition of the regularizing functional (the last terms in Equations (4-19) and (4-20)) 

is equivalent to adding more rows to Equation (4-15)"'. 

Now consider the elements of the regularizing functional, a, Q and x0 • If a= 0 

Equation ( 4-16) reduces to the original singular system of equations, Equation ( 4-15). On 

the other hand, if a ➔ 00 Equation (4-16) reduces to: 

ili=Qx0 , 

which is not the problem of interest. So a varies through a continuum. At one end a 

small a gives a problem that is close to the original but is ill-conditioned, while at the 

other end, a large a gives a different problem but one that is well-conditioned**. 

Varying a makes a tradeoff between conditioning and fidelity of solution to the data. 

We now examine two options for selecting Q . The first option is Q = I, the 

identity matrix, which is full column rank, so [:] is also full column rank. This leads to 

the following variations of the problem: 

* Tikhonov and Arsenin use a where I use a2. 
"'* In this case ill-posedness and ill-conditioning are different degrees of the same property. a= 0 gives an 
ill-posed problem, whereas a> 0 but very small gives a well-posed problem that is ill-conditioned. 
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1) If x0 = 0 then jj.Q(x -x0 )112 =Jlxll2 • Regularizing in this case gives a well 

posed problem by biasing the solution towards the origin. 

2) If x0 = x, where x is a vector of x 's and x is the average value of x, then 

jj.Q(x-x0 )jj2 
= llx- xll2

• Regularizing in this case gives a well posed 

problem by biasing toward the mean. This approach appears in the CT 

literature [1] [21] [22]. 

The second option is n = [ :J where Di is a discrete partial derivative in the x-

axis direction in the reconstruction and D2 is a discrete partial derivative in the y-axis 

direction. In this case we consider only x0 = [: ]- The matrix [:] is not full column 

rank but is nearly full column rank. To see this consider the corresponding system of 

partial differential equations: 

for which the solution is: 

dj(x,y) = 0 
ax 

i)J(x,y) = 
0

' 
i)y 

f(x,y) = C, 

where c is a constant. There is only one degree of freedom in the solution, that is the 

selection of the constant. If A can resolve the single degree of freedom in [:] then 

[ ~J is full column rank and least squares solution of Equation (4-16) is well-posed. 

Note that in this case, if a is too large then Equation (4-16) reduces to [:} = [:] and 

Ax = b diminishes from the problem. The single degree of freedom in the solution is not 

resolved and the least-squares problem is ill-conditioned. 

The first option, .Q =I, biases the solution towards x0 • Therefore, when x0 = 0 

the solution is drawn towards a vector of zeros. We know a priori that such a bias is not 
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warranted. Likewise, when x0 = i the solution is biased towards the mean. This bias, 

although more sensible than the previous one, is still not warranted by knowledge of the 

specimen. Values of x are known to be of certain values only and the bias draws 

solutions to some value known not to exist in the specimen (except by chance). Although 

it is possible to use the fusion data to avoid some of this problem by making .Q = I - W, 

the problem still exists for the interior regions of the reconstruction. 

The second option, D = [ ~:] and x0 = [:]. biases the solution to smooth images. 

Although we know that the cross section is not perfectly smooth, it is smooth over most 

local regions, i.e., the specimen is piece-wise constant. Although there is a penalty 

incurred by smoothing local regions containing discontinuities, this option is more 

palatable than the first. Experiments reported in Chapter 5 use the second option for the 

limited-angle CT problem. 

4.2.2 Parameter Selection 

Selecting a value for the parameter a is an important consideration. If a is too 

small then the problem is ill-conditioned, but if a is too large then the solution deviates 

greatly from the data. In general, we want to have a as small as possible while still 

having a well-conditioned problem. Experiments presented in Chapter 5 use a trial-and­

error approach to select a. Since the conjugate gradient method solves the problem 

quickly (see Section 4.2.3), it is reasonable to compute solutions for a range of a. Then 

simply use the smallest value of a for which CG converges to a reasonable solution. A 

reasonable solution is not so smooth that important detail is invisible, but does not have 

confounding artifacts due to ill-conditioning. Admittedly, the process is very subjective. 

Cross validation [13] [14] is an alternative technique for selection of a not 

explored in this thesis. If, for example, .Q = I and x0 = 0 then cross validation selects 

a 2 by minimizing the cross-validation weighted square error [13]: 

2 1~ [ 2 ]
2 

C(a )=-""'wk akxk(a )-bk . 
m k=I 



Paraphrasing Golub and Van Loan (13], minimization of C(a2
) is tantamount to 

choosing a 2 such that the final solution does is not overly dependent on any single 

measurement. Intuitively, cross validation minimizes the sensitivity to the data. Cross 

validation is possible for other n s and x0s; see Bates and Wahba (3] for example. 

Although the trial-and-error method is satisfactory for the work presented in this thesis, 

cross validation may warrant future consideration should selection of the regularization 

parameter become critical, bearing in mind that cross validation has relatively high 

computational costs [3]. 

4.2.3 The Conjugate Gradient Method 
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Having regularized the problem, the resulting symmetric positive definite system 

requires solution. The conjugate gradient method (CG), recommended by Artzy, Elfving, 

and Herman [l] for fast convergence in CT, is one of many possible methods for solving 

the system. This section presents a summary of CG. For more details see Axelsson and 

Barker [2], Press et al.. [31], or Pierre (29]. 

The following steps constitute the CG algorithm for finding the least-squares 

solution of Ax= b, where A. is positive-definite [1] [31]: 

(1) go = ho = b - .. ·, 

(2) Si= Ahi 

(4) 

(5) 

(6) 

(7) 

A- = (gi,h1) 
' (h;,Sr) 

( direct method) 

(indirect method) gi+1 = gi - Aisi 

y. = (gi+l•gi+I) Or r- = ((gi+I -g),gi+I) 
I (gf>gi) I (gi,gi) 

go to step (2) for next iteration. 
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Note that in the context of CG, A is not [;]. instead A = R' R + W'W + a' Q' Q (see 

. Section 4.2.4). Steps (1) and (4) initialize and compute the sequence g0 ,gi,g2 , ... ,gn_,, 

where g; is the negated gradient of Eat X;, i.e., gi = -VE(x;). With initial conditions 

defined in step (1), steps (5) and (6) produce a sequence of mutually A-conjugate vectors 

where the h's are non-trivial. Because the h's are mutually A-conjugate they are 

necessarily linearly independent. Therefore, to minimize E it is sufficient to do n 

separate minimizations along the independent directions h0 ,hph2 , ... ,hn_, (steps (2) and 

(3)). 

Each iteration requires multiplication by the matrix A, which has O(n2
) 

computational complexity. The complete minimization requires n iterations for a net 

complexity of O(n3
). Two factors make O(n3

) pessimistic though. First, often A is 

sparse and multiplication by A can be faster than O(n2
). Second, requiring n iterations is 

a worst case scenario. Axelsson and Barker [2] give the more precise bound: 

where p(e) is the number of iterations required to converge to precision e. TC(A) is the 

spectral condition number of A defined as: 

where Amax and Amin are the maximum and minimum eigenvalues of A. Clustered 

eigenvalues lead to further reductions in the number of iterations. We have no measure 

of the eigenvalues for A, but Davison [10] and Louis [23] show that singular values for R 

are clustered, which leads to clustered eigenvalues for RT R. Results in Chapter 5 

indicate that convergence is much better than the worst case, so it is likely that the 



limited-angle CT problem here benefits from both the condition number and the 

clustering of eigenvalues. 

4.2.4 Application to Limited-Angle CT 
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Application of regularization to the limited-angle CT problem (with data fusion) 

results in the modified system of equations: 

[~J=[:l 
or more precisely: 

R y 

w WxF 
X= 

DI 0 

D2 0 

Minimizing the objective function: 

E = l!Rx-yll2 + IIW(x-xF)ll2 + a2IID1xll2 + a2IID2xll2, 

or equivalently solving the following symmetric positive-definite linear system: 

(RTR+ WTW+a2D/D1 +a2D/D2 )x = RTy+ WTxF. 

finds the least squares solution to Equation ( 4-22). 

To solve the limited-angle data fusion problem by regularization: 

(4-21) 

(4-22) 

(4-23) 

(4-24) 

1. Implement algorithms to compute the forward raysum operator, R, and the 

back projection operator, RT . 

2. Implement algorithms to compute W = WT and D1 T D1 + D2 T D2 (a discrete 

Laplacian operator). 

3. Compute the vector RTy+ WTxF. 

4. Use CG to solve Equation (4-24). 

In summary, the advantages of regularization and CG are that it is fast for limited­

angle CT, and it gives a well-posed and well-conditioned problem. The disadvantage is 

that regularization makes a tradeoff between fidelity of solution to the data and 
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conditioning of the problem. If one is willing to concede fidelity to achieve a well-posed 
. 

and well-conditioned problem, regularization and CG offer a practical approach to 

· limited-angle CT. 

4.3 Projection onto Convex Sets 

Projection onto convex sets (POCS) is a flexible method, able to incorporate a 

variety of constraints. As such it is particularly useful for constraint-based data fusion. 

The following discussion of POCS is based on Bregman [7], Youla and Webb [44], 

Gubin et al. [ 17], and Bauschke and Borwein [ 4]. POCS is used extensively for CT and 

subsumes the method known as ART (algebraic reconstruction technique) [8] [22] [42]. 

See Censor and Herman [8] for a review of projection methods, or Bauschke and 

Borwein [ 4] for a detailed survey. 

4.3.1 General Description of POCS 

POCS assumes a set of m constraints on the domain of A, all of the form: 

(4-25) 

for 1 :::; i :::; m, where C; is a convex set. Combined, the constraints restrict the solution to 

lie in the convex set C0 , i.e.: 
m 

xeC0 =(""\Ci. 
1=! 

(4-26) 

POCS makes the important assumption that C0 is non-empty. Each convex set C; has a 

corresponding projection operator P; of the form: 

{
point in c.- closest to z , z e C; 

P.-z= 
z , otherwise 

(4-27) 

Application of P.- to some point z finds the point in c.- closest to z. Points within c.- are 

fixed points of P;. Let T; = 1 + A;(P; -1) be the relaxed operator corresponding to P;, 

with relaxation coefficient, A;, in the range O:::; A;:::; 2. The relaxed projection operators 

(and the projection operators for A= 1) are non-expansive mappings, i.e.: 

IIT;x - T;yjj:::; llx -YII · 



The non-expansive property leads to the convergence properties of POCS. 

Consider the parallel combination of a set of non-expansive mappings: 
m 

Tpar = I r;T; 
i=I 
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where the ri are weights, 0 :s; ri :s; 1 and L ri = 1. The sequence { xn} = { r;arxo} 

converges weakly to a point in C0 • Furthermore, if x is in Euclidean space then the 

convergence is strong. Note that if the Y; vary between iterations, then Tpar becomes the 

sequential combination of the T;: 

by appropriate selection of the Y;. This property gives flexibility, guaranteeing that the 

method will converge for both parallel and sequential variations, as well as for any other 

allowed values of Y;. For arbitrarr convex constraint sets there is no guarantee of rate of 

convergence. However, for constraints such as hyperslabs, or when the sets overiap (see 

Youla and Webb [44], Theorem 3) then convergence is at a linear rate*, although ·there is 

no way to know the value for {3. For the purposes of this research we set A; = 1 always, 

and select the Y; to give sequential application of the projection operators. Therefore, we 

compute the sequence {xn}={Pnx0 } where P=PmPm_1 ... P1• 

Figure 4.1 illustrates POCS convergence. Two constraints require that the 

solution lie in the intersection of two half planes. Arrows in Figure 4.1 trace the progress 

of { Pnx0 } towards x. Convergence is strong, because x is in two-dimensional Euclidean 

space, and linear, because of the constraint set overlap. 

* By linear convergence we mean llxn - xii :s; a{3n, where O ~ /3 < 1 and a~ 0. In some references 

this is called geometric convergence. 



Figure 4.1: Example of POCS convergence. 

C 2 

3P2 Xo 

-i..Xo 

i'X:o Co 

Figure 4.2: Demonstration of the variability of POCS 
convergence. POCS converges to three distinct but correct 
solutions depending on the order of projection operators. 
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It is tempting to relate the POCS solution to the minimum-norm solution of SVD. 

If x0 = 0 then P0x0 , where P0 is the projection onto the intersection C0 , is the minimum-

norm solution. Despite this temptation, POCS ( as described here) does not compute 

P0x0 but only guarantees that it finds a solution that lies within C0 • Figure 4.2 illustrates 
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this. Each of three paths converges to a point common to three convex sets. Only the 

order of application of the projection operators distinguishes between the paths. E~ch 

path leads to a different but correct solution, but only one solution is P0x0 , and this is by 

coincidence only. The ultimate solution varies with the order of projection operators. If 

the minimum-norm property is essential, then one may use Hildreth's method [8] or 

Bregman's method [7] [8]. 

4.3.2 Constraint Sets for Limited-Angle CT 

Application of POCS to the limited-angle CT problem with data fusion requires 

specification of convex constraints and corresponding projection operators. The 

flexibility of POCS leads to diversity of constraint sets for CT. Three different constraint 

types are sufficient for the problem at hand. These are: 

1. fit to raysum data, 

2. fit to range and ultrasound data, and 

3. amplitude constraints. 

Equation (4-28), below, forms the basis of the first constraint type: 

Rx=y. (4-28) 

Consider each raysum measurement, Y;, independently. Each measurement constrains 

the solution to lie within the hyperplane defined by: 

(ri,x)- Yi = 0, 

where ri is the ;th row of R, and (·,-) denotes an inner product. Form raysum 

measurements there are m hyperplanes each of which is a convex set given by: 

CR;= {x: (r;,x)- Y; = o}, 

(4-29) 

(4-30) 

where the subscript R refers to raysum. ART is the POCS method that uses only this type 

of constraint set. The corresponding projection operator is found in many sources dating 

back to Bregman [7] [8] [27] [28]. The projection operator for CR, is: 
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(4-31) 

The constraints of Equation (4-30) require a precise fit to data. Because it is essential to 

POCS that C0 be non-empty, such precise constraints are too restrictive. Consider 

instead this modified linear constraint, a hyperslab: 

CR; = {x: j(r;,x)-yJ:;; t:R}, (4-32) 

where the allowed margin for error in the fit to raysum data, t:R, determines the thickness 

of the slab. Equation ( 4-32) breaks down into the two intersecting half planes: 

CR;. = {x: (r1,x)- y1 ~ t:R} 

CR,b ={x: y1 - (r1,x)~ t:R} 
(4-33) 

The modified projection operators are: 

{ 

Y1 + t:R -(rl' z) 
p z = z+ ( ) r; , R,. r 1,r1 

z' otherwise 

(4-34) 

and 

(4-35) 

Equations (4-34) and (4-35) are simple variations of Equation (4-31). The modified 

constraint sets allow control over the margin of error, t: R , to vary the size of the sets and 

ensure that C0 is non-empty. 

There are two ways to incorporate the second constraint type, fit to fusion data. 

The first is analogous to the fit to raysum data. Fusion constraints originate from the 

linear equation: 

Wx= WxF, (4-36) 

where W is a diagonal matrix with elements on the diagonal equal to one or zero. Ignore 

all the trivial rows of W because they provide no useful constraints. The remaining rows 

define the convex sets: 



where the subscript F refers to fusion. The corresponding projection operator is: 

e 
Z: Z; = XF; +-L, 

W; 

e 
Z : Z; = X F - _L, 

I w, 

z otherwise 
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(4-37) 

(4-38) 

The projection operator above clips pixel values to lie within a region about the partial 

reference image x F, with the size of the region determined by e F and w;. 

A second approach to fusion constraints originates with Oskoui-Fard and Stark 

[27]. They use a full reference image to constrain limited-angle CT. The concept is 

similar to the fusion problem here. Oskoui-Fard and Stark assume that they have a 

complete reference image, i.e., W = I, and define the convex set: 

c F = { x : llx - x FIi ::;; e F}. (4-39) 

The corresponding projection operator is: 

P,z = {:' +e, ,,:=::II' (4-40) 

otherwise 

Unfortunately, the assumption of a full reference image is not practical and, in the 

limited-angle CT problem at hand, the reference image from the range and ultrasound 

data can only be partial. Redefinition of the constraint set for a partial reference gives: 

(4-41) 

with the corresponding projection operator: 

{ 

W(z- xF) II II 
P (l-W)z+WxF+eF II II' W(z-xF) >eF 

Fz= W(z-xF) 
z otherwise 

(4-42) 

For reasons explained in Section 4.3.3 the latter form of constraint is best for the limited­

angle CT fusion system. 

Amplitude constraints are the third and last constraint type. It is physically 

impossible to have a negative linear attenuation coefficient. Also, one can usually 



79 

determine a maximum allowable linear attenuation based on knowledge of what materials 

are in the object. Therefore, the amplitude of a pixel in a reconstruction must lie b~tween 

a lower and an upper bound, giving the following convex constraint sets: 

CA; ={x:a;S;x;;S;b, O;S;a<b}, 

where the subscript A refers to amplitude. The CA are also hyperslabs. Their 
I 

corresponding projection operator is: 

{

z: z. =a 

PA,z= ::z: =b 

Z; <a 

Z; >b 

otherwise 

(4-43) 

(4-44) 

Amplitude constraints amount to simply clipping the data so that pixel values lie between 

the prescribed upper and lower bounds. 

4.3.3 Constraint and Parameter Selection 

The previous section describes two versions of data fusion constraints. The 

difference between the two is not trivial. To illustrate this, consider the problem: 

• Solve for x from Ax = b by minimizing the objective function 

E=IIAx-blL 
where IHI .. denotes an t norm. This problem is equivalent to the linear programming 

problem: 

• Minimize e subject to the constraints 

l(a;,x)- b;I :s; e, i = 1,2, ... ,m. 

The constraints above are identical to the raysum constraints from the previous section. 

This leads to the following observations: 

1. with the raysum constraints, POCS is solving something like the above 

linear programming problem for Rx = y, and 

2. the optimum value for eR (i.e., eR as small as possible with C0 non­

empty) gives the l .. solution to Rx= y subject, of course, to the other 

constraints in the problem. 
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It is possible to solve the linear programming problem and find an optimal value for eR 

(e.g., Bregman [7]) but it is simpler instead to estimate what eR should be based on the 

accuracy of the data. If the estimate of e R is too large, then POCS may converge to a 

poor solution. On the other hand, if eR is too small, POCS converges to a region of good 

solutions and then oscillates within it. The following summarizes selection of e R : 

1. find the optimal value of e R by solving the linear programming problem, 

2. instead estimate e R based on known accuracy of the data, and 

3. if estimating e R, err on the side of e R too small to keep the ultimate 

solution within a region of good solutions. 

Now consider the fusion data constraints. While the raysum constraints find 

something like an l.,, solution to Rx = y, the fusion data constraints of the form: 

CF= {x: IIW(x-xF)II ~ eF }, 

find an 4 solution to Wx = WxF. As with eR, it is easiest to estimate a value for ·eF 

based on the accuracy of the data, while keeping in mind that it is best to err on the side 

of eF too small. 

The difference between the l.,, and 4 constraints is significant. While the l .. norm 

is sensitive to any deviation in the data, the 4 norm can effectively ignore a large local 

deviation by global averaging. The significance emerges when the different data sources 

are not consistent. An l .. fit to the raysum data forces consideration of all raysum 

measurements without averaging out local deviations. Should the raysum data not agree 

with the partial reference image, an 12 fit allows the reconstruction to deviate locally from 

the reference so long as the global fit remains. This fusion task demonstrates the 

flexibility of POCS in facilitating the combination of l .. and 4 constraints in the same 

problem. 

4.3.4 Application to Limited-Angle CT 

Limited-angle CT reconstruction using POCS follows these steps: 



1. set x0 = 0. 

2. perform an iteration by computing: 

x1 =PAPA ... PA PFPR PR ... PR x0 • 
" n-1 1 m m-1 1 

3. repeat step 2 to compute the series {xn} = { Pnx0 } until convergence. 

Advantages of the POCS method are: 

1. it is fast for the problem at hand, 

2. it incorporates varied constraints easily and blends well with constraint­

based data fusion, and 

3. it has linear convergence under many conditions. 

Disadvantages of the POCS method are: 

1. its solution depends arbitrarily on the order of application of projection 

operators, and 

2. it requires care in the selection of constraint sets. 
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In practice the POCS proves to be fast and versatile making it an excellent choice for CT 

with data fusion. 

4.4 Chapter Summary 

This chapter presents three numerical algorithms to solve the proposed limited­

angle CT problem with data fusion. Table 4.1 below summarizes each of the three 

methods. 

The next chapter shows results from each of the three methods explored here. 

SVD, because of its computational complexity, is restricted to small sample problems. It 

does, however, show exactly what happens to the limited-angle CT problem with the 

proposed data fusion. Regularization with CG and POCS are both adequate for practical 

sized problem. Results in Chapter 5 show that sacrifices in accuracy made by 

regularization to achieve a well-conditioned problem are too great. The ill-posedness of 

the limited-angle problem is not easily handled by regularization when the data are less 
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than ideal. POCS proves to be the winner in spite of its ambiguity about the solution. It 

is important to remember that because each of the numerical methods incorporat~!:l 

different constraints, they are, in essence, solving different problems. 

Method 

Property SVD CG POCS 

Uniqueness minimum norm regularization not unique - solution 
depends on order 
of operators and 
initial conditions 

Conditioning eliminate small use regularizing enlarge constraint sets 
singular values functional to get C0 non-

empty 

Advantages • computes null • fast (for the task at • fast (for the task at 
space and range hand) hand) 

• can condition the • control over • incorporates a wide 
problem conditioning variety of convex 

constraints 
• gives well-posed 

problem • converges at a linear 
rate 

Disadvantages • slow • makes a tradeoff • solution depends on 
between fidelity to order of operators 

• exorbitant storage data and 
conditioning • must ensure C0 is 

non-empty 

Constraints • minimize IIAx - bll2 • Qx = Qxo • amplitude limits 

and llxll2 a$ X; $ b 
• minimize 

[!n}-[:XJ 
Other • projects data onto • projects data onto • projects onto 

range of A 
range of [ ~] 

constraint sets in 
the domain of A 

Table 4.1: Summary of numerical methods considered for 
limited-angle computed tomography with data fusion. 



Chapter 5 

Experimentation and Results 

This chapter presents experimental results that establish the validity of the 

proposed limited-angle CT data fusion system. In addition, the experiments explore the 

capacity of each of the three numerical methods described in Chapter 4 to deal with 

confounding errors in the data. 
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The experiments consist of a series of trials. Each trial applies one of the three 

reconstruction algorithms to some data to produce a reconstructed cross section for 

analysis. The algorithm, its parameters, and the data distinguish trials. Section 5.1 

describes these distinguishing features, including salient features of the algorithm 

implementations and the applicable parameters. The section then describes the sources of 

data, both synthetic and real. Synthetic data trials verify the validity of the proposed 

limited-angle CT system, while the real data trials show practical application of the 

system. Errors in the real data highlight the capacity of each algorithm to deal with 

confounding errors. 
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Section 5.2 presents the trial results organized by algorithm. The first three trials 

for each algorithm compute reconstructions based on varying fusion constraints. lJlese 

trials show a significant improvement in accuracy due to the fusion constraints. SVD 

shows, in addition to improved accuracy, the changing nature of the problem in terms of 

the number of singular values equal to zero. 

Whereas SVD is limited to small problems, regularization combined with the 

conjugate gradient method (R/CG) and POCS can handle large problems and so are 

applied to real data. Trials based on R/CG and POCS, and real data, show the success of 

the proposed limited-angle CT system with real data. They also show the capacity of the 

reconstruction algorithms to cope with erroneous data, and the response to varying 

reconstruction parameters. 

The salient conclusion of the experimentation is that, when fused with limited­

angle CT, constraints based on ultrasound face sheet data improve the accuracy of 

reconstruction. Although measurement errors confound reconstruction of accurate cross 

sections from real data, the limited-angle CT system does, nevertheless, work in practice. 

Of the algorithms used, POCS proves to be superior because it produces accurate 

reconstructions, is less sensitive to its parameters, and does not force a compromise 

between image smoothness and conformity to data. 

5.1 Description of Experiments 

Experimentation presented in this thesis consists of a set of trials where each trial 

involves: 

1. acquisition of some data, 

2. application of a reconstruction algorithm (SVD, R/CG, or POCS) to the 

data, and 

3. analysis of the algorithm output. 

These items uniquely describe any trial: 

1. the algorithm, 
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2. the parameters, and 

3. the data. 

· This section describes these items by showing key features of the implementation of each 

algorithm and the sources of data, both synthetic and real. 

5.1.1 Implementation of Algorithms 

The raysum operator is central to the implementation of each reconstruction 

algorithm. This section starts by describing a compact representation of the raysum 

operator, and then describes the manner in which each implementation uses it. 

Parameters, initial conditions, and stopping conditions for each algorithm are also given. 
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Figure 5.1: Steps to a compact raysum operator: (a) 
hypothetical grid for reconstruction, (b) parallel rays 

perpendicular to upper surface of reconstruction, (c) parallel 
rays at an angle to reconstruction, and (d) set of rays, one at 

each scan angle. 

Raysum Operator 

All three numerical methods for reconstruction require a representation of the 

ray sum operator, R. Each row of the rays um operator is a vector in which each element is 
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the distance an individual ray passes through an element of the reconstruction. The 

matrix required to represent all rows of the raysum operator completely is huge 

·(207,360,000 elements for a 200 pixel by 72 pixel reconstruction). However, most 

elements of each row are zero, i.e., R is sparse, and there are patterns in the operator that 

lead to a compact representation. 

Figure 5.1 (a) shows a hypothetical grid for reconstruction. Elements of the 

raysum operator rows are the distances a particular ray travels through each box in the 

grid. A clipping algorithm (from computer graphics) computes these distances. Figure 

5 .1 (b) shows the set of rays corresponding to a scan across the specimen parallel to 

vertical. A scan at an angle to vertical measures raysums for the set of rays shown in 

Figure 5.1 (c). Rays for a scan at a constant angle are parallel, and parallel raysums are 

identical to each other except that the columns ( of the reconstruction grid) are offset 

corresponding to the motion of the scan. With the exception of the column offsets, the 

set of rays in Figure 5.1 (d), where there is one ray for each scan angle, completely 

describes all rays used in sampling. Therefore, to get a compact representation of the 

raysum operator: 

1. record only one row of the operator for each scan angle, and 

2. record only non-zero elements. 

The compact raysum operator is a list of vectors with one element in the list for each scan 

angle. Each vector is a list of non-zero distances as well as the row and column 

coordinates for the corresponding grid elements. To reconstruct a row of the raysum 

operator quickly from the compact representation: 

1. assume the row consists of all zeros, 

2. select the vector for the appropriate angle from the compact 

representation, 

3. apply the appropriate column offset to the column coordinates of the 

vector, and 



87 

4. put the offset elements of the compact representation into the 

reconstructed row. 

R has one row for each combination of scan angle and column offset, but excludes those 

combinations that produce rays passing beyond the width of the grid. Only SVD requires 

the full raysum operator representation. For other algorithms, the compact representation 

allows quick recovery of the elements needed for computation. 

Implementation of SVD 

SVD requires an explicit representation of the matrix [:] . Implementation of 

the proposed limited-angle CT reconstruction follows these steps: 

1. declare matrices for A, V, and I (note that since I is diagonal only the 

elements on the diagonal are represented), 

2. put rows of R into rows of A from the compact raysum operator as 

described above, 

3. put rows of W into rows of A, 

4. if A has fewer rows than columns add sufficient trivial rows to make A 

5. 

6. 

7. 

8. 

square, 

call SVD subroutine, svdcrnp () [31], 

set non-zero singular values that are too small to zero, i.e., condition the 

matrix, 

create the vector b = [y ], and 
WxF 

compute the reconstruction from the decomposition and b with 

·svbksb () [31]. 

Because svdcrnp ( ) specifically deals with singular matrices it does not require any 

special precautions. 



Implementation of R/CG 

Section 4.2.3 gives the conjugate gradient method for finding the least sql!ares 

· solution to the positive definite system: 

Ax=b. 

Two things are necessary to implement the method: 

1. an algorithm to compute Ax, and 

2. an algorithm to compute b. 

From Equation (4-24) we have: 

Ax =(R7 R+ W7W+a2DtD1 +a2DJD2 )x, and 

b = R7 y + WT X F. 

Break the computation of Ax down into three separate computations: RT Rx, WTWx, 

and (a2DT D1 + a2D{D2 )x. 
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To compute RT Rx, first compute Rx using the compact raysum operator. Rx is 

a column vector, each element of which is the inner product of a row of R and x. 

Computation of the inner products in Rx is straight forward from the compact 

representation of R. 

RT is the back summation operator. The i'h element of the vector RTb is: 

[RTb]. =""' r . . b ., 
I k J,I J 

i.e., [ RTb L, is the weighted sum of all the raysums for rays that pass through the 

corresponding grid element. Computation on this basis is inefficient, but a more efficient 

approach arises from observing that each raysum contributes to a set of grid elements in 

the back summation. That set of elements is the same as the set that contributed to the 

raysum. The weight applied to a raysum for its contribution to an element of the back 

summation is the same as the weight for that element in the original raysum. Thus the 

back summation can be computed in a manner analogous to the raysum. For the 

experimentation here, the vector R7 Rx is computed by a two step process: first Rx and 

then RT (Rx) . The compact raysum operator allows fast computation of both steps. 
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The matrix Wis diagonal so WT = W and WTW = diag(w{, w; , ... , w!). From this 

it is easy compute the vector WTWx. 

a2 D{ D1 + a 2 D[ D2 is a discrete Laplacian operator. Convolution with the kernel 

shown in Figure 5.2 best summarizes its implementation. Should different a 2 for the x 

andy directions be necessary, the more general kernel of Figure 5.3 applies. 

-a2 

-a2 

Figure 5.2: Convolution kernel for Laplacian operator. 

- a 2 
2 

- a 2 
2 

Figure 5.3: Convolution kernel for Laplacian operator with 
different coefficients for x and y directions. 

Using RT Rx, WTWx and (a 2D{D1 + a 2D~D2 )x, compute Ax from: 
Ax= (RTR+ WTW + a 2D{D1 + a 2D[D2 )x 

- RT Rx+ WTWx+(a 2DTD +a2DTD )x · - 1 1 2 2 

Computation of b is similar to Ax; the back summation operator gives RT y and 

the identity WT= W gives WT x . Add these two vectors to get b = RTy + WT xF. 

Initial and stopping conditions are important to an iterative procedure such as CG. 

Although any arbitrary starting condition, x0 , is acceptable, these experiments use 

x0 = WxF (or x 0 = 0 for trials omitting fusion data) to make maximum use of the fusion 

data to avoid unnecessary iterations. Iteration stops when the norm of the residual, 

IIAx - bll , falls below a specified threshold. 
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Implementation of POCS 

POCS computes the sequence {xn} = {rnx0 } where T = Tm,Tm_1, ... ,T1 an4_ 

· T; = 1 + A;(P; -1). There is no known method for determining optimum values for the 

relaxation coefficients Ai, so experiments here use A; = 1 for all i. This reduces to the 

sequence {xn} = {Pnx0 } where P = Pm,Pm-P···,P1 and P; is the projection operator onto 

the th constraint set. 

Three types of projection operators are necessary for the three different types of 

constraints. The first is the raysum constraints. Equations (4-34) and (4-35) give the two 

projection operators required for each row of the raysum operator R. The salient feature 

of these equations is the inner products (r;,z) and (r;,rJ The compact raysum operator 

allows quick computation of these inner products. 

The second constraint type is the data fusion constraint. Experiments presented 

here use Equation ( 4-42) to implement the data fusion constraints. The computation of 

the projection is straightforward; it involves only computing the inner products of vectors 

that are directly available. 

The third, and last, constraint is the amplitude constraint. Its implementation is 

trivial. Simply clip all the elements of the solution to lie within the specified upper and 

lower bounds. 

As with conjugate gradient, it is important to specify starting and stopping 

conditions. Unlike the conjugate gradient method, the starting point for POCS changes 

the ultimate solution. Although POCS does not generally compute the minimum-norm 

solution, these experiments use x0 = 0 in order to arrive at a solution near the minimum-

norm solution. This starting condition does not guarantee such an outcome, but works 

well in practice. POCS iteration does not introduce spurious signals into the solution so 

x0 = 0 is a sensible starting point. Iteration terminates when the norm llx; - X;-ill falls 

below a specified level, i.e., the solution stops moving (or slows sufficiently). Note that 
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unlike the conjugate gradient, this stopping condition does not guarantee that the solution 
. 

is good, just that the solution is not going anywhere. 

5.1.2 Synthetic Data 

This section describes data synthesis for synthetic data trials. Data synthesis starts 

with an arbitrary cross section image as the subject of an experiment. Application of the 

raysum operator to the image yields the raysum data for the trial. The cross section also 

defines the spatial support data and the face sheet data directly. 

Application to aircraft parts provides the initial motivation for this research. 

Accordingly, aircraft parts, in particular sandwich structures with graphite/epoxy 

composite face sheets around aluminum honeycomb core, are the basis for synthetic data. 

Thin aluminum in the honeycomb core pushes the resolution limits of the real data 

acquisition apparatus (described in the next section). To avoid problems with resolution, 

the real-data experiments use a plexiglass phantom. In the phantom, two plexiglass face 

sheets surround a set of vertical plexiglass members simulating honeycomb. All 

plexiglass parts are 3 mm thick which, with a reconstruction resolution of 0.5 mm by 

0.5 mm, translates to 6 pixels thick in the reconstruction. Real honeycomb is thinner than 

1 pixel. Synthetic data in these experiments simulate the conditions of the plexiglass 

phantom. 

Figure 5.4: Synthetic cro~ section image for SVD trials. 

Both time and numerical precision limit the SVD problem size to 10 pixels by 30 

pixels. Figure 5.4 shows the synthetic image for SVD trials. Two parallel face sheets and 



honeycomb are 2 pixels thick. Within the honeycomb cells, two blocks mimic the 

plexiglass inserts of the real phantom. 
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R/CG and POCS trials use 72 pixels by 200 pixels. At the specified resolution of 

0.5 mm by 0.5 mm this corresponds to a cross section 36 mm thick by 100 mm wide. Low 

resolution restricts SVD trials to parallel face sheets, but R/CG and POCS trials have no 

such restriction. Non-parallel face sheets make the trials more interesting and they also 

quell possible doubts that results may rely on parallel face sheets. Figure 5.5 shows the 

synthetic cross section for R/CG and POCS synthetic data trials. Face sheets and vertical 

members are all 6 pixels thick. 

r-
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Figure 5.5: Synthetic cross section image for R/CG and POCS 

trials. 

To conduct synthetic data trials it is necessary to synthesize data corresponding to 

the three data sources. Application of the forward raysum operator gives the synthetic 

raysum data. All synthetic data trials compute raysum data this way using single 

precision floating point arithmetic. CT reconstruction is tolerant of unbiased noise on the 

data, so trials with unbiased noise added are uninformative. In the absence of a better 

model for measurement errors, synthetic data trials use error-free data. 

Range and ultrasound data give a map of regions that have known linear 

attenuation coefficients and the known values. Trials using raysum and spatial support 

data only assume regions external to the specimen are known and have linear attenuation 

coefficients of zero. With the addition of face sheet data, trials assume external and face 

sheet regions have known linear attenuation values: zero for external and linear 

attenuation of plexiglass for face sheets. Figure 5.6 shows the synthetic fusion data as 



images. Values from the image of known regions form the diagonal of W while the 

values of known linear attenuation coefficients form x F • For synthetic trials, the 

· assumed linear attenuation of plexiglass is 0.40 cm-1
• 

(a) 

(b) 

(c) 

(d) 

Figure 5.6: Synthetic fusion data vectors: for spatial support 
data only (a) known region and (b) known linear attenuation, 
and for spatial support and face sheet data (c) known region 

and (d) known linear attenuation. 
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5.1.3 Real Data 

Real data come from measurements of a plexiglass phantom simulating a 

sandwich structure with graphite/epoxy composite face sheets and aluminum honeycomb 

core. As mentioned in the previous section, the thin honeycomb core pushes beyond the 

resolution of the experimental apparatus. So for the sake of experimentation, components 

of the phantom are thicker than what is actually found in real aluminum structures. 

Figure 5.7 shows schematically the cross section of the plexiglass phantom. 

--t-
T 
30 

l 
T 

J\11 dimensions in mm 

■Top and bottom face sheets (horizontal components) 

Simulated honeycomb (vertical components) 

~ Simulated entrapped water (defect) 

Figure 5.7: Cross section of plexiglass phantom simulating a 
sandwich structure with graphite/epoxy composite face sheets 

and aluminum honeycomb core. 

Figure 5.8 shows the apparatus for raysum data acquisition. The apparatus 

originates from a real-time radiography system custom-built by Philips for inspection of 

aircraft control surfaces. The x-ray tube and linear array are mounted on a C-arm 

manipulator system (see section 3.2.1). The x-ray tube on one end of the C-ann projects 

a cone of radiation through the specimen to a sensor on the other end of the ann. The C­

shape allows the source and sensor to maneuver about and inspect various aircraft parts. 
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Figure 5.8: Apparatus for limited-angle CT raysum data 
acquisition system. 
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In the original configuration, the sensor was a real-time x-ray image intensifier 

and a video monitor displayed the radiograph in a shielded control room. The image 

intensifier has since been replaced by a Thompson linear array detector. Whereas the 

intensifier acquires images of an area, the linear array acquires a single line of data. To 

acquire an image the C-arm sweeps the array across an area. A frame buffer assembles 

the acquired lines of data into an image. The array is 1024 elements across with an inter­

element spacing of 0.2 mm and a width of 0.5 mm. Analog to digital converters digitize 

the intensity data to 12 bits but at present the frame buffer uses only the eight most 

significant bits. The frame buffer produces an RS-170 video signal to display images on 

a video monitor. A PC-based video frame grabber acquires digital data by sampling the 

frame buffer RS-170 output. 

The experimental trials use the following procedure to acquire raysum data: 

1. sweep the C-arm across the specimen at a constant angle to the specimen 

and acquire data at 0.5 mm interval spacing, 

2. with the frame buffer, assemble the data into an image, 

3. digitize the image with the PC-based frame grabber, 



4. compute the average of the centre column of the digitized image and the 

two columns adjacent to it (to compensate for anomalies created b)'.: the 

linear array), and 

5. use the data from the averaged column as a set of parallel raysums. 
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In summary, the x-ray tube projects x-rays onto the linear array. The array creates 

an electrical signal from the x-rays and digitizes the signal to twelve bits. Eight bits of 

the twelve go to frame buffer which in turn produces an RS-170 video image. A PC­

based frame grabber digitizes the image. Three adjacent columns of the digitized image 

form a set of parallel raysums. 

There is a variety of error sources inherent in the apparatus. There is no filtration 

of the x-ray radiation other than that inherent in the manufacture of the tube, so beam 

hardening is a problem. The linear array requires only a fan of radiation, so any excess 

radiation contributes to scatter. 

Raysum measurements are not uniformly sensitive to x-ray intensity 

measurements. Equation (2-3) describes the raysum as a function of intensity. For a 

homogenous specimen Equation (2-3) becomes: 
I 

µt=-ln(1 ), 
0 

where/ is the measured intensity, /0 is the initial intensity, µ is the linear attenuation 

coefficient, and t is the material thickness. The sensitivity of µt to I is: 
d(µt) 1 
""""7n=-1· 

which is a function of /. At / = 225 the sensitivity is -1/225 = -0.0044. A one quantum 

change in/ gives a change in µt of 0.0044. For plexiglass (µ = 0.45 cm-1 at 60 kV) this 

corresponds to a change in material thickness of 0.01 cm. However, at an intensity of 50, 

the sensitivity is -0.02, corresponding to a 0.044 cm change in plexiglass thickness, about 

the resolution of the reconstructions. When / is low, i.e., the specimen is thick, the data 

are more sensitive to intensity errors. The sensitivity of the measurements to a quantum 
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change in intensity can be of the order of the reconstruction resolution. Certainly this 

data acquisition system needs improvement, but it is suitable for verifying the proposed 

· limited-angle CT system. 

The region reconstructed in experiments is 72 rows by 200 columns which, at a 

resolution of0.5 mm by 0.5 mm, corresponds to a specimen 36 mm thick. The plexiglass 

phantom is 36 mm thick so no pixels in the reconstruction are external to the specimen. 

The region of reconstruction matches precisely the spatial support of the specimen and, 

for this experiment only, it is not necessary to acquire range data. 

The design of the phantom allows face sheet thickness measurement directly with 

a micrometer. Therefore, ultrasound measurement is not necessary.* The 3 mm face 

sheet thickness (as measured by the micrometer) translates to 6 pixels. So for real data 

trials, the region of known linear attenuation consists of the top and bottom six rows of 

the reconstruction. The linear attenuation for these rows is that of plexiglass. At the x­

ray tube setting of 60 kV used for these experiments, the linear attenuation coefficient of 

plexiglass is 0.45 cm-1
• 

5.2 Results 

This section presents experimental results. The experiments consist of a series of 

trials wherein each trial involves application of one numerical method to one data set to 

produce a reconstruction. The following three items distinguish trials: 

1. the algorithm, 

2. the parameters for the algorithm, and 

3. the data. 

For each numerical method, there are synthetic data trials followed by real data 

trials. The first three synthetic data trials for each algorithm produce reconstructions 

from: 

* In fact, if one were to use ultrasound to measure face sheet thickness, the micrometer measurements 
would be used to calibrate the ultrasound measurements. 



1. raysum data only, 

2. raysum and spatial support data, and 

3. raysum, spatial support and face sheet data. 

Results of these three trials show the improvement in reconstruction accuracy with the 

incorporation of constraints. 

Real data trials show (for R/CG and POCS): 

1. the success of the proposed limited-angle CT with real data, 

2. the ability of the algorithms to cope with errors in the data, and 

3. the effect of parameters. 
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Real data are more effective than synthetic data for items two and three above. Synthetic 

data lead too easily to good reconstructions for a wide range of parameter values, even 

with Gaussian noise added. However, errors in the real data make the effects of the 

parameters obvious. 

An error measure is essential for comparing the accuracy of the different methods. 

Experimental results presented here use the measure, e, defined by [28]: 

e = llx - xii X 100% 
llxll ' 

where x is the true cross section and x is the reconstructed cross section. 

5.2.1 SVD Trials 

(5-1) 

Limitations of the SVD algorithm restrict SVD experimentation to trials based on 

the low resolution cross section of Figure 5.4. Raysum data for these trials cover seven 

scan angles from -60° to 60° in steps of 20°. Spatial support constraints assume the top 

and bottom rows of the reconstruction are known to be zero. Face sheet constraints 

assume the second and third rows from the top and bottom are known to be plexiglass. 

As for all the synthetic data trials, SVD synthetic data trials give results for 

varying levels of constraints. SVD gives a compelling illustration of the change in the 

reconstruction problem with added constraints by recording: 
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1. the number of raysum rows in A, 

2. the number of spatial support rows in A, 

3. the number of face sheet rows in A, 

4. the number of singular values equal to zero, and 

5. the error measure. 

Figure 5.9 shows the reconstructions for each of the three trials and the corresponding 

absolute error vectors. Grey scales in the images are set to allow direct comparison of the 

reconstructions and the errors, but the maximum and minimum values (listed in the 

caption) differ for each trial. Figure 5.9(g) shows the absolute error vector for trial 3 

rescaled to show more detail. Table 5.1 summarizes the SVD trial results. 

Trial Description Rows of A Number of Error 

Number Singularities Measure 

e(%) 

1 raysums only • 152 raysum 148 50.7 

• 148 trivial 

2 raysums and • 152 raysum 88 31.5 

spatial support • 60 spatial support 

• 88 trivial 

3 raysums, • 152 raysum 13 4.8 

spatial support, and • 60 spatial support 

face sheets • 120 face sheet 

• 0 trivial 

Table 5.1: SVD trial results. 

Results in Table 5.1 show how spatial-support and face-sheet constraints add rows 

to the matrix A. The number of singularities ( singular values equal to zero) in A reflects 

the degree to which the problem is ill-posed. Reliance on raysum data alone is the 

poorest scenario with 148 singularities out of 300 singular values. Spatial support 

constraints improve upon the raysum data, reducing the number of singularities to 88, but 

still leaving the problem ill-posed. Incorporation of face-sheet constraints further reduces 
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the number of singularities to 13. Although the use of data fusion still results in an ill­

posed problem, it markedly reduces the number of singularities and size of the n~l_l space. 

... 

~ ~. '~ ~- fir & 
--

(a) 

(b) 

(c) 

(d) 

Figure 5.9: Reconstructed images for SVD trials: (a) trial 1 
reconstruction (max= 0.48, min= -0.01), (b) trial 1 error vector 

(max= 0..30, min= 0.0), (c) trial 2 reconstruction (max= 0.55, 
min= 0.0), and (d) trial 2 error vector (max= 0.23, min= 0.0). 

Continued on next page . 



(e) 

(f) 

(g) 

Figure 5.9 (continued): Reconstructed images for SVD trials: 
(e) trial 3 reconstruction (max= 0.42, min= -0.04), (t) trial 3 
error vector (max = 0.04, min = 0.0), and (g) rescaled trial 3 

error vector (max = 0.04, min = 0.0). 
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Not only does the data fusion reduce the size of the null space, it imprqves 

accuracy because the reduced null space does not contain the face sheet structure. 

However, even after addition of the fusion constraints the null space is not trivial and it is 

possible to have a specimen with components in the remaining null space. The 

minimum-norm solution would not be accurate because it omits the null-space 

components. Such components would be wide horizontal edges in the interior of the 

specimen. 
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From data that are readily available in trials 1 through 3 it is possible to compute a 

Class I weakly-coupled fusion reconstruction, xw-c, from: 

xw-c = WxF +(1-W)i 

where i is the solution to Rx= y, i.e., the reconstruction in Figure 5.9(a). Intuitively, 

the weekly-coupled reconstruction is the partial reference image pasted onto of the 

unconstrained reconstruction. Figure 5.10 shows this weakly-coupled reconstruction and 

its absolute error vector. The error measure for the reconstruction is 13.9% (versus 4.8% 

for the strongly-coupled reconstruction). Clearly, the strongly-coupled constrained-based 

system produces superior results. 

(a) 

(b) 

Figure 5.10: (a) Weakly-coupled reconstruction using SVD 
(max= 0.48, min= -0.01), and (b) the corresponding absolute 

error vector (max = 0.15, min = 0.0). 

5.2.2 R/CG Trials 

All R/CG trials compute 72 pixel by 200 pixel reconstructions. The first three 

trials use synthetic data based on Figure 5.5, while the remaining trials use real data from 

measurements of the plexiglass phantom of Figure 5. 7. Both synthetic and real data trials 

use raysums for 13 scan angles from-60° to 60° in steps of 10°. 
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Figure 5.11 shows the reconstructions for the first three trials and the 

corresponding absolute error vectors. As for all synthetic data trials, the first three use 

varying levels of constraints. The parameter a 2 is set to a constant value, a 2 = 0.001. 

The stopping condition is IIAx - bll < 0.1. Table 5.2 summarizes the R/CG synthetic data 

trials. 

(a) 

(b) 

(c) 

(d) 

Figure 5.11: Reconstructed images for R/CG synthetic data trials: (a) trial 1 
reconstruction (max= 0.49, min = -0.06), (b) trial 1 error vector (max= 0.40, 
min= 0.0), (c) trial 2 reconstruction (max= 0.55, min= -0.05), and (d) trial 2 

error vector (max = 0.43, min = 0.0). Continued on next page. 



(e) 

(t) 

Figure 5.11 (continued): Reconstructed images for R/CG synthetic 
data trials: (e) trial 3 reconstruction (max= 0.45, min= -0.07), and (f) 

trial 3 error vector. 

Trial Description Regularization Iterations Error 

Number Parameter Measure 
a2 e (%) 

1 raysums only 0.001 10 64.0 

2 raysums and 0.001 12 55.3 

spatial support 

3 raysums, 0.001 13 6.7 

spatial support, and 

face sheets 

Table 5.2: R/CG synthetic data trial results. 
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The images of Figure 5 .11 show subjectively the improvement in accuracy 

attained by incorporating fusion constraints. Error measures in Table 5.2 show this 

improvement quantitatively. As was the case for SVD results, with R/CG too there is a 

great improvement in reconstruction accuracy for trials using data fusion. 
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In trial three, the error measure for R/CG is comparable to that for SYD (6.7% 

versus 4.8%). The small difference is not significant and may be due to the difference in 

· the data and problem size. Figure 5 .11 exhibits an oscillatory pattern in the interior of the 

reconstruction. The reason for its existence is well known. Finite precision means that 

the synthetic data do not precisely match the forward model. Consequently, R/CG uses 

part of the null space of [ ~] (an oscillatory pattern) to match the data. A larger value 

for a 2 prevents this, but at the expense of smoothing the solution. The reconstructions of 

Figure 5 .11 are about optimum, based on trial-and-error selection of a2
• 

Figure 5 .12 shows the reconstruction of the synthetic cross section using weakly­

coupled fusion. The error measure for the weakly-coupled reconstruction is 19.6% 

(versus 6.7% for the strongly coupled reconstruction), which indicates again the 

superiority of the strongly-coupled method. 

(a) 

(b) 

Figure 5.12: (a) Weakly-coupled reconstruction using R/CG (max =· 
0.49, min= -0.05), and (b) the corresponding absolute error vector 

(max= 0.22, min= 0.0). 

The remaining R/CG trials use real data to show: 

1. the success of the method with real data, 
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2. the capacity of R/CG to handle errors in the data, and . 
3. effects of a2 on the quality of reconstruction. 

There are seven real data trials, designated 4(a) through 4(g). Trials 4(a) through 4(f) are 

identical except that the parameter a2 varies from 0.001 to 100.0 in decade steps. Trial 

4(g) reconstructs the image using a different a2 for the x and y directions. All trials use a 

stopping condition of IIAx - bll < 0.1. A smaller tolerance does not significantly affect the 

reconstructions. Figure 5.13 shows the reconstructed images for these trials on the same 

grey scale to allow for easy comparison. Table 5.3 summarizes the results. 

Trial Description Regularization Iterations Maximum Minimum 
Number Parameter ( cm-1

) ( cm-1) 

a2 
4 (a) • real data 0.001 20 0.71 -0.30 

• all constraints 

4(b) • real data 0.01 20 0.71 -0.27 

• all constraints 

4 (c) • real data 0.1 25 0.68 -0.20 

• all constraints 

4 (d) • real data 1.0 40 0.62 -0.17 

• all constraints 

4 (e) • real data 10.0 55 0.50 -0.05 

• all constraints 

4 (f) • real data 100.0 102 0.38 0.12 

• all constraints 

4 (g) • real data a/ =0.001 24 0.68 -0.22 

• all constraints a/ =0.1 

Table 5.3: R/CG real data trial results. 

Reconstructions in Figure 5.13, in particular 5.13(c) and 5.13(g), resemble the 

cross section of the phantom in Figure 5. 7. It is fair to conclude that the proposed fusion 

method for limited-angle computed tomography is successful with real data. One is 
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forced to admit, however, that at least for R/CG, the quality of reconstruction from real 

data is poorer than from synthetic data. 

(a) 

(b) 

(c) 

(d) 

Figure 5.13: Reconstructed images for R/CG real data trials: 
(a) a 2 = 0.001, (b) a 2 = 0.01, (c) a 2 = 0.1, and (d) a 2 = 1.0. 
See Table 5.3 for maxima and minima. Continued on next 

page. 



(e) 

(t) 

(g) 

Figure 5.13 (continued): Reconstructed images for _R/CG real 
data trials: (e) a 2 = 10.0, (f) a 2 = 100.0, and (g) a/= 0.001 

and a/= 0.1. See Table 5.3 for maxima and minima. 

108 

R/CG does not appear to handle errors in the data well. In the syntheti~ case, the 

vector b = [ ~,] is, within the limits of numerical precision, in the range of [ ~ l Such 

is not the case with the real data. Consequently, the errors exaggerate the effects of ill­

conditioning and larger null space components appear in the reconstruction. 

The parameter a 2 does not help deal with errors in this case. It merely allows one 

to select the degree of compromise in the solution. Figure 5.13(a), for example, shows 

one extreme with a 2 = 0.001. The image is sharp, but oscillations are severe as 

indicated by the maximum and minimum image values (they should be 0.45 cm-1 and 
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0.OOcm-1 respectively). At the other extreme, Figure 5.13(t) shows the reconstruction for 

a 2 = 100.0. In this case the solution is so heavily biased towards a flat image that almost 

all structural detail is lost. Certainly this would not work with real honeycomb which is 

much thinner. 

The ill-posed nature of this limited-angle CT problem requires more smoothing in 

they direction than for x, so one can use a different a 2 for each direction. Figure 5.13(g) 

shows the reconstruction for a 1 
2 = 0. 00 I and a 2 

2 = 0.1. It supports the conclusion that 

the proposed method works, but none of the images of Figure 5.13 is particularly 

satisfying. 

Aside from selecting the degree of compromise in the solution, a 2 affects the 

number of iterations required. Smoother reconstructions require more iterations. 

Reasonable solutions like those for trials 4(c) and 4(g) take about 25 iterations and do not 

impose an outrageous computational burden. 

5.2.3 POCS Trials 

There is a total of seven POCS trials. Three synthetic data trials show the 

improvement in reconstruction accuracy due to fusion constraints, and a fourth shows the 

effect of changing the stopping condition. A real data trial shows the success of the 

proposed limited angle CT method with real data. Two more real data trials illustrate the 

effect of altering the parameter e R. 

Figure 5.14 shows the reconstructions for the four POCS synthetic data trials and 

the corresponding absolute error vectors. Because POCS employs amplitude constraints, 

the reconstructions all have a maximum value of 0.40 and a minimum value of 0.0. Table 

5.4 summarizes the results. The first three synthetic data trials do reconstructions based 

on varying degrees of fusion constraints (as done for SVD and R/CG). The fourth trial 

shows the effect of changing the stopping condition for the algorithm. 



(a) 

(b) 

(c) 

(d) 

Figure 5.14: Reconstructed images for POCS synthetic data trials: 
(a) trial l reconstruction, (b) trial 1 error vector (max= 0.4, min= 

0.0), (c) trial 2 reconstruction, and (d) trial 2 error vector (max= 0.4, 
min = 0.0). Continued on next page. 
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Figure 5.14 (continued): Reconstructed images for POCS synthetic 
data trials: ( e) trial 3 reconstruction, (f) trial 3 error vector (max = 

0.22, min = 0.0), (g) trial 4 reconstruction, and (h) trial 4 error \l'ector 
(max= 0.25, min = 0.0). 
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Trial Description Parameters Iterations Error . 
Number Measure . 

e(%) 

1 raysums only eR={),()(}1 13 62.6 

EF={).1 

stop at 

llxi - xi-Ill< 0.1 

2 raysums and eR={),()(}1 33 38.9 

spatial support eF=O.l 

stop at 

llxi - xi-1 II < 0.1 

3 raysums, eR={),()(}1 9 6.0 

spatial support, and eF=O.l 

face sheets stop at 

llxi - xi-111 < 0.1 

4 raysums, eR={),()(}1 146 5.5 

spatial support, and eF={),l 

face sheets stop at 

llxi - xi-I II < 0.001 

Table 5.4: POCS synthetic data trial results. 

Trials 1 through 3 exhibit the same marked improvement in accuracy of 

reconstruction observed for SVD and R/CG. Trial 3 shows that POCS computes a 

reconstruction comparable in accuracy to SVD and R/CG (6.0% for POCS versus 4.8% 

for SVD and 6.7% for R/CG). POCS, however, does not make a compromise towards a 

flat solution, while it is on par with R/CG computationally (i.e., it converges in about the 

same number of iterations with about the same amount of work per iteration). Of the 

three methods, only POCS manages to provide an accurate solution quickly without 

smoothing. 

Only nine iterations are necessary for trial 3. This is not a lot of iterations, which 

compels one to ask whether or not stricter stopping conditions will improve the accuracy 

further. Trial 4 computes a reconstruction based on the stricter stopping condition 
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llxi -xHII < 0.001. The result is a large increase in the number of iterations (from 9 to 

146) as expected, but only a slight improvement in accuracy (6.0% down to 5.5%) .. 

Obviously the stricter stopping condition has not paid off in a significant improvement in 

accuracy. 

Figure 5.15 shows the reconstruction of the synthetic cross section using weakly­

coupled fusion. As is the case for both SVD and R/CG, the weakly-coupled 

reconstruction is poorer than the strongly-coupled one ( error measures of 18.0% versus 

6.0% ), showing the superiority of the strongly-coupled method. 

..... 
. , 

7 I I r-• 
I I I .. • I --.JI --

(a) 

(b) 

Figure 5.15: (a) Weakly-coupled reconstruction using POCS, and ·(b) 
the corresponding absolute error vector (max = 0.24, min = 0.0). 

Figure 5.16 shows the reconstruction for trial 5, based on real data. Parameters 

for the trial are e R = 0.01 and e F = 0.1. With a stopping condition of llxi - xi-I II < 0.1 the 

trial requires 30 iterations. The reconstruction is qualitatively superior to those for R/CG. 

Structural detail is clearly visible and the image is not smoothed. However, there are 

some artifacts visible in the interior of the reconstruction. These artifacts are an 

inevitable consequence of measurement errors. Although practical application requires 



better reconstructions. the POCS method shows that if the errors are reduced. a sharp 

accurate reconstruction is possible. 

Figure 5.16 Reconstructed cross section for POCS real data 
trials. 

114 

Two further trials with POCS and real data show the effect of varying ER. the 

extent to which POCS forces the solution to fit the raysum data. Large ER relaxes the fit 

to data (appropriate for unreliable raysums) while a small ER enforces a tight fit to the 

raysum data. Figure 5.17 shows the reconstructed cross sections from the real data with 

ER= 0.1 and eR = 0.001. Table 5.5 summarizes the results. 

(a) 

(b) 

Figure 5.17: Reconstructed images from POCS real data trial 
6: (a) ER= 0.1, and (b) eR = 0.001. 
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Trial Description Parameters Iterations 

Number 

6 (a) raysums, eR=O.l 7 

spatial support, and 8F=0.1 

face sheets stop at 

llxi -xi-111 < 0.1 

' 6 (b) raysums, .SR=0.001 32 

spatial support, and 8F=0.1 

face sheets stop at 

llxi -xHll<O.l 
Table 5.5: POCS trial 6 (real data) results. 

A large e R enlarges the constraint sets to ensure a non-empty intersection, and 

leads to faster convergence. Table 5.5 indicates that, as expected, POCS converges faster 

towards a solution with e R large. Figure 5 .17 show that the reconstruction is of a. higher 

quality with the small e R • 

Plots of convergence for trial 6 in Figure 5.18 are instructive in understanding the 

effects of eR. There is one plot each for trials 6(a) and 6(b) with two lines in each plot. 

One line in each plot has a value for each integer on the x axis, 1, 2, 3, ... , with 

corresponding y-axis values showing: 

1. change in x from beginning of iteration 1 to after projection onto raysum 

constraints, 

2. change in x from after projection onto raysum constraints to after 

projection onto fusion constraints in iteration 1, 

3. change in x from after projection onto fusion constraints to after projection 

onto amplitude constraints in iteration 1, 

4. same as (1) but for iteration 2, 

5. same as (2) but for iteration 2, 

6. same as (3) but for iteration 2, 

etc. 



The other line in each plot has data points for x-axis values 3, 6, 9, 12, ... , with 

corresponding y-axis values indicating the change in x between full iterations. So_ one 

line shows the movement in x within iterations (sub-iterations) while the other shows 

changes in x for full iterations. 
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Figure 5.18: Plots of convergence for POCS: (a) trial 6(a) -
eR = 0.1 and (b) trial 6(b)- eR = 0.001. 
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The plot for trial 6(a) shows oscillations in sub-iteration movement that quickly 

subside along with movement between full iterations. Trial 6(b ), on the other hand, 
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shows sub-iteration movement that continues while the solution slows between iterations . . 
Plot 6(a) suggest a non-empty intersection of constraints while 6(b) appears to have an 

· empty intersection. In 6(b) the solution jumps around in a regular pattern within an 

iteration while the solution does not move much between iterations. These plots do not 

provide conclusive evidence though that the intersections are non-empty and empty 

respectively. 

In spite of the apparent empty constraint intersection in trial 6(b ), the 

reconstruction is good. Other than wasted iteration time, there is no penalty for making 

eR too small; the solution just bounces around in a region of good solutions. Iterations 

are fast so it seems wise to select e R to be small. Only when the solution does not 

converge does it make sense to set eR larger. 

5.3 Chapter Summary 

The salient conclusion of this chapter is that data fusion constraints markedly 

improve the accuracy of reconstruction produced by the limited-angle CT system. All 

three reconstruction methods exhibit improved accuracy by including spatial support 

constraints and further improvement by including face sheet constraints. In particular, the 

SVD trials show a decrease in the number of singularities due to the added constraints, 

and a corresponding reduction in the size of the null space. The fusion constraints do not 

arbitrarily reduce the null space, but they reduce the null space in a manner consistent 

with measurements of the specimen. This consistency in the reduction of the null space 

results in the improved accuracy of reconstruction. 

Although the source of real data used here is far from ideal, real data trials serve 

to show that the method is not restricted to synthetic data, but works with real data. In 

particular, POCS gives good reconstructions with the structure and anomalies clearly 

visible. 

R/CG real data trials illustrate the compromises associated with the regularization 

parameter a 2
• A large value of a 2 leads to a smooth reconstruction. A small a 2 does 
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not smooth as much, but conditioning becomes a problem. Selecting a2 proves to be a 

compromise between smoothing errors and conditioning errors. 

POCS gives better reconstructions than R/CG. POCS reconstructions are sharp 

and free of the oscillatory patterns exhibited by R/CG. There is, however, some 

anomalous clutter in the interior of the image due to errors in the data. POCS is also 

relatively insensitive to its parameters. One can make eR too small without degrading the 

reconstruction and suffering only an increase in the number of iterations required. 
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Chapter6 

Conclusions and Discussion 

Section 6.1 of this chapter summarizes the important conclusions of this thesis, 

i.e.: identification of the inability of limited-angle CT to correctly reconstruct sandwich 

structures, and the efficacy of the novel system using data fusion with ultrasound to 

overcome the inability. The section then generalizes the conclusions to cover a broader 

field of application. Section 6.2 extrapolates from the conclusions by discussing 

possibilities for further development with respect to practical application of the limited­

angle CT system, use of CAD models for constraints, other types of constraints, and 

application of fusion to Compton back scatter imaging. 

6.1 Conclusions 

6.1.1 Novel Contributions 

Current limited-angle CT techniques rely on general a priori assumptions to 

constrain reconstruction. This thesis contributes the novel observation that the success or 

failure of reconstruction depends on the validity of these assumptions for the specific 

specimen. It is not sufficient to claim that some limited-angle CT method is successful 

without defining the types of specimens that yield accurate reconstruction. In particular, 
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current methods cannot accurately reconstruct a sandwich structure, as shown in Section 

3 .1. The methods fail because the face sheets of sandwich structures lie almost ei:i!irely in 

·the limited-angle Radon transform null space. Consequently, there is no valid basis for 

interpolation of the data to fill in missing data. This failure of limited-angle CT is 

significant because sandwich structures are commonplace; they carry loads due to 

bending moments economically with respect to weight and material. 

Ultrasound measurements complement x-ray data well. Whereas x-rays are 

insensitive to discontinuities along the direction of the raysum, ultrasound specifically 

locates discontinuities along its path. This thesis describes a novel method for limited­

angle CT that exploits the complementary nature of x-ray and ultrasound by fusing 

ultrasound measurements into the reconstruction process. The method yields accurate 

reconstructions of sandwich structures where conventional limited-angle CT cannot. 

Ultimately, the fusion system requires formation and solution of the system of 

linear equations: 

Raysum data give the equations Rx= y and range and ultrasound data give Wx = WxF, 

where xF is a partial reference image and Wis a diagonal matrix. The partial reference 

image contains the linear attenuation coefficients for the face sheet and exterior regions. 

Weights on the diagonal of W indicate whether or not a pixel in xF is known (i.e., in a 

face sheet or exterior) or unknown (i.e., in the interior). The range and ultrasound 

equations remove the face sheet structures from the null space so that face sheets do not 

confound reconstruction, thus allowing accurate reconstruction where it would otherwise 

be impossible. 

Previous limited-angle CT work has used a full reference image [28], but the use 

of a partial reference image as a constraint set for POCS is novel. Therefore, the mapping 

of the fusion problem here to the constraint set of Equation ( 4-41) is also novel. 



6.1.2 Generalization of Results 

This thesis focuses on a specific problem and a specific type of specimen. 

Despite the narrow focus, the conclusions have a broader implication. The novel CT 

method succeeds because the data fusion focuses directly on the limitations of the 

original problem. One cannot expect that the ad hoc addition of data to an inverse 

problem will improve the solution. Additional constraints that do not focus on 

uncertainty in the original problem are not beneficial. 

121 

For example, suppose that rather than use ultrasound data, the proposed method 

used neutron radiation. Although neutrons have certain properties that complement x -

rays, they are not more sensitive to discontinuities. Since it is the failure of the x-rays to 

locate discontinuities along the rays that confounds reconstruction, one should expect no 

improvement due to fusion with neutron data ( other than the cancellation of unbiased 

errors by redundant measurements). Another example is CT, which is itself a fusion 

problem that fuses a set of two-dimensional radiographs to produce a three-dimensional 

reconstruction. However, as Chapter 2 points out, just fusing views from a few angles is 

not sufficient. A full range of angles is necessary for reconstruction. Data acquired for 

one angle complement well data acquired at a perpendicular angle. This observation has 

implications for computational vision methods that derive scene descriptions from 

multiple images, the opaque version of CT *. It is important to select camera views to 

complement each other, i.e., an image should contain information that the others do not 

have. 

Therefore, a key to success with data fusion is to ensure that additional data 

sources address uncertainty in the original problem. Ultrasound addresses well the 

weaknesses of x-rays, so the fusion method succeeds. 

* The opaque problem differs from CT because opacity provides additional constraints, but leads to a 
correspondence problem instead. 
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6.2 Discussion 

This section presents four areas for further development of work in this thesis. 

First, it considers topics vital to practical application of the proposed limited-angle CT 

method, including improved apparatus and ability to detect anomalies. Second, Section 

6.2.2 discusses the use of CAD models (available for many NDE specimens) as 

constraints. Third is an examination of other possibilities for constraints, specifically 

non-convex ones. Fourth, and last, is a discussion speculating about fusion of Compton 

back scatter data and ultrasound data. 

6.2.1 Practical Application 

The apparatus used in experiments is a patchwork of devices designed for digital 

radiograph acquisition and is not well suited to the more rigorous requirements of CT. 

Although it is sufficient to perform the experiments presented in this thesis, practical 

application of the proposed limited-angle CT method requires improved apparatus. 

Improvements to the apparatus must address sources of error in the data. CT 

tolerates small amounts of unbiased noise by canceling it out. Therefore, the small 

amount of photon noise in the data is not an issue in the experimentation. Should photon 

noise be a problem with a modified apparatus, longer integration times can compensate. 

Scattered radiation is a source of errors related to the specimen and is difficult to model. 

The best approach to elimination of scatter is collimation of the x-ray beam. Collimation 

prevents unnecessary radiation from reaching the specimen and reduces the subsequent 

scattered radiation. Whereas medical systems rely on collimation to reduce patient 

exposure to radiation, conventional radiography does not normally use collimation. The 

apparatus used for experiments in this thesis does not have the collimation that is 

essential for practical application. Chapter 5, Section 5.1.3, shows the sensitivity of 

raysum measurements to radiation intensity. The quantization interval in eight-bit 

intensity data corresponds to a large change in the raysum values. Twelve-bit data can 

improve this sensitivity, provided that the additional bits are significant. A saner 



acquisition process that avoids sending intensity signals through multiple amplifiers, 

digital-to-analogue and analogue-to-digital converters will help to reduce errors in 
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· intensity data and increase the number of significant bits. The linear array scanner is 

excellent at its intended job, acquisition of digital radiographs, but it is not the best device 

for CT. For practical application of the proposed method, a more appropriate x-ray 

sensor is essential. 

This thesis uses the Li norm of the error, e, as a measure of accuracy where: 

e= llx-ill x100% 
llxll . 

x is the true cross section while i is the reconstruction. IHI is an l2 norm. Because the 4 

norm averages the square of the errors over the entire solution, it gives a global measure 

of accuracy. For example, if i is identical to x everywhere except for a large error at one 

sample, the l2 norm will average the error at that sample over the whole image. 

Consequently, the 4 norm indicates a good global match between x and i while ignoring 

the large local error. A greater number of samples averages out large local errors to a 

greater degree. 

A global error measure is well suited to some tasks, e.g., pattern recognition. 

However, for inspection tasks, where small local anomalies are important, an error 

measure sensitive to local errors is better. An C norm of the error has such local 

properties. For the previous example, the large local error determines the maximum error 

yielding a large l.., norm. The l.,, norm of the error is important in identification of 

anomalies because it determines the size of local deviation that is significant. For 

example, if one expects a pixel in a reconstruction to be 0.5 cm-1 but observes instead 

0.51 cm-1
, the difference can only be interpreted to be significant if the reconstruction has 

better than 0.01 cm-1 accuracy in the C sense. In the 4 sense there is no way to know if a 

local deviation is significant. 

Section 4.3.3 of Chapter 4 points out that the POCS constraints lead to a pseudo 

C norm solution. However, minimizing the residual, as POCS does, is not necessarily 
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the same as minimizing the error. The question of how to minimize the local error merits 

consideration. 

The proposed limited-angle CT method has potential for application beyond 

inspection of sandwich structures. Often an outer shell obscures an internal structure just 

as face sheets obscure the interior of a sandwich structure. If such an obscured structure 

also requires limited-angle techniques, fusion with ultrasound will be helpful. The 

ultrasound allows one to mathematically peal away the outer shell so that it does not 

confound reconstruction of the interior. Thus, the method is not limited to control 

surfaces, but also allows inspection of some internal structures in situ that would 

otherwise require disassembly. 

6.2.2 CAD Model as a Source of Constraints 

With the advent of computer-aided design (CAD) it has become commonplace to 

design structures with computers. Consequently, many structures targeted for inspection 

have CAD models available. The question then arises: can CAD models provide a 

substitute for ultrasound data in the proposed limited-angle CT method? In short, the 

answer is yes, depending on two factors. 

First, it is essential that face sheet data from the CAD model register precisely 

with the raysum data. This is not a trivial concern, but such registration is within the 

realm of current technology. 

Second, one must consider the effects of errors in the CAD model, i.e., 

discrepancies between the CAD model and the true structure. Such errors may arise from 

manufacture or from changes in the structure during service. The success of the method 

then depends upon the ability of the range and raysum data to correct the model. The null 

space of the limited-angle Radon transform provides a guide to determining what errors 

are correctable. Raysum data cannot correct errors that are wide and thin, like the face 

sheets, while they can correct narrow ones. Therefore, small local variations in the face 



sheet data should not be a problem. A global error in face sheet thickness or a wide 

anomaly in the face sheet will confound reconstruction. 
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POCS provides an advantage here. The mixture of Li and l.o fits allowed by 

POCS means that raysum data can make local corrections to the CAD data. While the L.. 

fit forces a degree of local conformity to the raysum data, some local errors in the CAD 

model are tolerable, provided that they are not so large that they affect the global fit. 

Substitution of ultrasound data with a CAD model offers important benefits. 

Elimination of ultrasound allows simultaneous acquisition of all the data, and thus 

contributes a major time savings. Also, some structures may be difficult to test with 

ultrasound. In such cases the CAD model makes it easier to carry out a limited-angle CT 

inspection. 

6.2.3 More Sophisticated Constraints 

The proposed limited-angle CT method relies primarily on the data for solution 

but also uses some a priori assumptions. Solution by R/CG assumes a smooth solution 

(with dubious success) and POCS assumes fixed amplitude limits for the solution. The 

numerical methods examined require either a convex objective function (for CG) or 

convex constraint sets (for POCS). However, there are other legitimate assumptions that 

merit consideration and do not fit directly into CG or POCS. Two assumptions about 

graphite/epoxy and aluminum honeycomb sandwiches not considered in the previous 

chapters are: 

1. a finite set of materials in the specimen, and 

2. vertical continuity in the honeycomb. 

Assumption one is reasonable because one usually knows exactly what materials are 

possible in the specimen. In the case of the plexiglass phantom, only plexiglass and air 

are possible while in a graphite/epoxy and aluminum honeycomb sandwich, only 

graphite/epoxy, aluminum, and air are possible. One can also allow for the existence of 

materials in typical anomalies such as water or oxidization products. A finite set of 
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possible materials leads to non-convex constraints in both CG and POCS. Assumption 

two is reasonable because, with the exception of anomalies, a material in the interior has 

identical material above and below it. Vertical continuity leads to convex constraints.and 

is not special, but it has the potential to improve reconstruction for thin honeycomb by 

reflecting known honeycomb properties in the constraints. Here we focus on the more 

difficult problem of implementation of the non-convex constraints. 

In the context of R/CG, constraining the solution to consist of a finite set of 

materials requires that the objective function contain local minima at positions 

corresponding to allowed materials. With many local minima, the objective function is 

non-convex and CG is not guaranteed to find the global minimum, or even a close 

approximation. One method for minimizing such non-convex objective functions is the 

graduated non-convexity algorithm (GNC) [6] described as follows: 

(1) create a new objective function with a parameter, say a, such that as 

a ➔ co the function is convex, and as a ➔ 0 the function becomes the 

original non-convex function, 

(2) set a large and solve the effectively convex minimization, 

(3) reduce a and solve the locally convex minimization at the previous 

minimum, 

(4) repeat step (3) until a is sufficiently small. 

GNC performs a non-convex minimization by successively minimizing the locally 

convex objective function for decreasing values of a. 

Realizing that GNC only ever needs to minimize a locally convex objective 

function suggests a simplification. Restrict the problem to minimizing the following 

quadratic objective function: 
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where all variables and parameters are as described in Chapter 4. The following 

procedure performs a minimization akin to GNC but only solves linear systems: 

(1) minimize E with a large, i.e., biased heavily towards a smooth solution 

andignoring Xp, 
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(2) if a pixel in the solution is near one of the allowed material values, assume 

that the pixel is that material and modify W and x F accordingly, 

(3) reduce a and repeat the minimization, 

(4) repeat steps (2) and (3) until a is sufficiently small. 

The procedure starts by finding a very smooth solution. As the smoothness constraint 

relaxes, the solution migrates towards one that contains only allowed values. 

Consideration of only one material value for each pixel avoids non-convexity, leads to a 

fast linear algorithm, and arrives at essentially the same solution as GNC. Figure 6.1 

shows a reconstruction of the plexiglass phantom using the above method assuming that 

the solution contains only air(µ= Ocm-1
) and plexiglass (µ = 0.45cm-1 

). The 

reconstruction is the result of the eleven quadratic optimizations summarized in Table 

6.1. No attempt is made to find an optimal schedule for reducing a. 

Figure 6.1: Reconstruction from successive R/CG iterations 
incorporating the assumption that pixels are either air 

(µ = Ocm-1
) or plexiglass ( µ = 0.45cm-1

). 



Optimization a2 1 Number of 
Number - Iterations a2 

1 8 1/8 57 
2 4 1/4 42 
3 2 1/2 27 
4 1 1 12 
5 1/2 2 10 
6 1/4 4 13 
7 1/8 8 29 
8 1/16 16 65 
9 1/32 32 111 
10 1/64 64 74 
11 1/128 128 5 

Table 6.1: Summary of successive minimizations used to 
produce reconstruction in Figure 6.1. 
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POCS can also solve the non-convex problem. Define the constraint set CM. as: 
I 

CM, ={x:lxi-xml:s;eM,xm eAf}, 

where Af is the set of allowed values in the solution. CM, is a potentially non-convex set 

consisting of regions about solutions containing allowed values, with the parameter e M 

determining the size of the regions. If e M is large the regions overlap and CM, is convex, 

but if e M is small the regions do not overlap and CM, is non-convex. The corresponding 

zi > xm + eM, xm minimizes lzi -xlxe!M 
zi < xm -eM, xm minimizes lzi -xlxeM. 
otherwise 

POCS finds a solution in a manner analogous to GNC by varying eM as follows: 

(1) start with eM large and perform the reconstruction starting from x = 0, 

(2) reduce eM and repeat the reconstruction starting from the previous 

solution, 

(3) repeat step (2) until eM is sufficiently small. 

The method works because the constraint set CM, is always locally convex, i.e., once the 

projection operator has determined which material a pixel matches best, it considers only 

that material. As e M diminishes it may be necessary to increase the parameter e R to 

ensure that the intersection of constraints is non-empty. Figure 6.2 shows a 



129 

reconstruction based on the above method using eR = 0.1, eF = 0.1, and 
1 1 1 · 

e M = 1, 
2 

, 
4 

, ... , -
5

, stopping when llx; - X;_1 II < 0.1. Note that with the assumption of a 
12 . 

finite set of materials the amplitude constraint is redundant and therefore it is omitted. 

Table 6.2 summarizes the iterations in the reconstruction. 

Figure 6.2: Reconstruction from successive POCS iterations 
incorporating the assumption that pixels are either air 

( µ = 0cm-1
) or plexiglass ( µ = 0. 45cm-1 ~ 

POCS Solution E,M Number of 

Number Iterations 
1 1 1 
2 1/2 1 
3 1/4 1 
4 1/8 4 
5 1/16 9 
6 1/32 9 
7 1/64 4 
8 1/128 2 
9 1/256 2 
10 1/512 2 

Table 6.2: Summary of successive POCS applications used to 
produce reconstruction in Figure 6.2. 

In summary, it is possible to incorporate non-convex constraints in the 

reconstruction process. Figures 6.1 and 6.2 show the results of using such constraints 

with R/CG and POCS respectively. It is not clear from this evidence that assuming a 

finite set of possible materials improves the accuracy of reconstruction. More accurate 

measurements using superior apparatus may be necessary to gain a real benefit from such 

constraints. 
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6.2.4 Compton Scatter and Ultrasound Fusion 

This section speculates about the potential for application of data fusion t~ 

· Compton back scatter imaging and ultrasound. Figure 6.3 shows schematically a 

Compton back scatter imaging system. An x-ray source projects a collimated beam into 

the specimen. As the specimen absorbs the x-rays, it emits scattered radiation along the 

beam. Compton effect scattering radiates in all directions, including back towards the 

source. An x-ray pin-hole camera directs radiation from varying depths in the specimen 

to an array of sensors producing intensity signals related to the amount of scatter 

originating at each depth. Philips COMSCAN, a commercial version of the apparatus, 

scans the specimen over two dimensions to produce a volumetric image. The method 

potentially offers high contrast images of anomalies not visible to conventional 

radiography*, and requires access to only one side of the specimen. See Chapter _2 for a 

description of ultrasound. 

At present, there are no algorithms for solving the inverse problem posed by back 

scatter imaging. Instead, commercial devices, such as COMSCAN, simply scale the raw 

intensity data to produce an image. The inverse problem is difficult for two reasons: 

1. linear attenuation varies greatly depending on position in the path from 

source to sensor because: 

a. the spectral content of the incident radiation is different from the 

scattered radiation, and 

b. beam hardening changes the spectral content of both incident and 

scattered radiation, 

and 

2. radiation intensity diminishes with depth into the specimen, so noise and 

sensitivity increase. 

* Theoretically, the contrast for a void in a homogenous specimen is infinite, but in practice spatial 
resolution limits contrast. 



A possible approach to solving the inverse problem is to reconstruct the specimen one 

layer at a time, starting from the top and working down. The top layer is easily 

·reconstructed because there is only air above it. Subsequent layers depend only on 

attenuation values for layers above so a downward step-wise procedure can work. 

Compton scatter emitted 
along the path of rad~~tion 

Spec~men , 

Figure 5.3: Apparatus for Compton back scatter imaging. 
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For ideal lossless media, ultrasound inversion is tractable, but in reality, materials 

are not lossless and ultrasound inversion is difficult. Losses confound ultrasound 

inversion in two ways: 

1. losses are inconsistent and unknown, and 

2. losses cause signal strength to diminish with depth and reduce accuracy. 

For example, the effects of losses can make it difficult to distinguish between the normal 

reflection from an interface deep in the specimen and the reflection off of an air gap in 

the interface (an anomaly). 

Both back scatter and ultrasound inversion can operate independently. However, 

they are both prone to errors with increasing depth in the specimen. The two methods do 
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not complement each other as in the proposed CT method, but their fusion may still be 

beneficial. For example, a strongly-coupled recurrent fusion system can combine !he 

layer-by-layer back scatter reconstruction with a similar ultrasound algorithm. As the 

reconstruction proceeds downwards, the algorithm must decide what material ( or what 

interface in the ultrasound model) to put in the reconstruction. When both back scatter 

and ultrasound data concur the algorithm proceeds in a straight-forward manner. When 

one has ambiguous data the other can suggest the correct interpretation. For example, 

when ultrasound cannot determine if an interface has an air gap in it, it can assume there 

is no air gap if the back scatter data do not indicate a drop in scattered radiation. 

Likewise, a drop in scattered radiation deep in the specimen may be due to a small void 

or just a random variation in the data. If it is a void, however, there should be a 

corresponding reflection in the ultrasound data. 

It is not certain that such a fusion system will lead to a superior inspection 

technique. Nevertheless, if the system works, it will constitute an important contribution 

toNDE. 
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