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Abstract. This paper presents an e�cient multigrid solver for steady-state Navier-Stokes equations
in 2D on non-staggered grids. The pressure Poisson equation formulation is used, together with a �nite

volume discretization. A discretization of the boundary conditions for pressure and velocities is presented.

An e�cient multigrid algorithm for solving the resulting discrete equations is then developed. The issue of
the numerical treatment of advection is also addressed: a family of stable and accurate di�erence schemes

for the advection-dominated 
ow are presented. This family includes also second order accurate schemes.

1. Introduction. The steady-state incompressible Navier-Stokes equations in two di-

mensions can be written in the following primitive form

� ��u+ (u � r)u+rp = s(1.1)

r � u = 0(1.2)

where u(x) is the velocity �eld at x; p(x) is the kinematic pressure; � � 0 is the kinematic

viscosity; and s(x) is an external force. Here we consider a boundary-value problem for

(1.1)-(1.2) in a domain �
 � 
 [ � with the boundary conditions considered in [4]

u(x) = w on �D(1.3)

� p+ �@un=@n = Fn and �@u�=@n = F� on �N ;(1.4)

where � = �D [ �N , n stands for normal component and outward normal direction, and �

stands for tangential component and tangential direction. If (and only if) � = �D (�N = ;),

then w must satisfy the following solvability condition

Z
�
n �w = 0:(1.5)

There exist several approaches towards discretizing the incompressible Navier-Stokes

equations. E�cient multigrid solvers based on the staggered grid discretization of the

system (1.1),(1.2) were developed, e.g., in [2],[1],[14].

However, there are reasons why a discretization on a non-staggered grid is desirable.

These include simpler procedures, at least conceptually, for local grid re�nement, treatment

of complex geometries and design of good smoothers. Especially in 3-D, this may prove

useful in reducing programmer's headaches considerably. It is well known that an attempt

to discretize the system (1.1),(1.2) on a non-staggered grid using central di�erences to ap-

proximate the pressure derivatives and the continuity equation leads to a discrete system

su�ering from spurious modes in the pressure solution. A possible remedy can be to ap-

proximate pressure derivatives and the continuity equation by one-sided di�erences oriented

in a certain way (see [3]). However, the accuracy in this case will degrade to �rst order.
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We adopt here a Pressure Poisson Equation formulation (PPE) of the Navier-Stokes

equations. The equation for pressure can be obtained by taking a divergence of (1.1) and

applying (1.2) (see, for instance, [5]), yielding

�p = �r � (u � r)u+r � s in 
(1.6)

The obtained system (1.1),(1.6) can be sensibly discretized on a nonstaggered grid. However,

the di�erential order of the system (1.1),(1.6) is higher than that of the primitive system

(1.1),(1.2). Additional boundary conditions should therefore be speci�ed in order to make

the problem well-posed, and it is well-known that a careful speci�cation and discretization

of these additional conditions can be crucial for the performance of the resulting algorithm,

especially in the viscous case.

The boundary conditions for pressure considered in [4] are the following

@p

@n
= n � (��u + s� u � ru) on �D(1.7)

p = �
@un

@n
� Fn on �N :(1.8)

It is shown in [5] that for the case �N = ; and �D = � the corresponding Neumann problem

for p is well-posed (with a unique solution up to an arbitrary additive constant) if w satis�es

the solvability constraint (1.5).

Here we consider directly two cases:

� The viscous case (� > 0), with � = �D (�N = ;). The well-posed problem under

consideration is then (1.1),(1.6),(1.3),(1.7).

� The inviscid case (� = 0), with �D representing the in
ow boundary and �N { the

out
ow boundary.

The high (though �nite) Reynolds number case can be considered under this cate-

gory as well, using the parabolized Navier-Stokes equations (see [11]).

We show how to treat such a coupled system e�ciently, using a multigrid method

applied to a careful discretization scheme.

The paper is organized as follows: In x2 we describe an e�cient multigrid solver for the

PPE with Neumann boundary conditions. We present a scheme to discretize the pressure

boundary conditions for both inviscid and viscous cases. This is followed in x3 by a de-

scription of accurate and stable discretization schemes for the momentum equations for the

entire range of Reynolds number. In x4 we describe the overall multigrid algorithm for solv-

ing the obtained discrete system of equations and in x5 we present numerical experiments.

All this is followed by a discussion of the current state of the algorithms and possible future

developments.

For the rest of this paper, we restrict the discussion to two space dimensions.

2. Discretization of the PPE and the pressure boundary conditions. At �rst,

consider a Poisson equation

�p = f(x) in 
(2.1)

subject to Neumann boundary conditions

@p

@n
= g(x) on �(2.2)
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Fig. 2.1. Interior control volume.

The following relation between f and g should hold

I
�

@p

@n
ds �

I
�
g ds =

Z Z


f(x; y)dxdy(2.3)

in order to allow for solution existence. We shall refer to (2.3) as the compatibility condition.

Assume 
 to be a rectangular domain so that @p
@n

is either px or py on the boundary.

Recall the discretization of the Poisson equation using a �nite volume approach (see,

e.g. [8]):

At an interior grid point (i; j) consider a volume as shown in Fig.2.1. Integrating

�p = r(rp) and using the divergence theorem gives

h[(px)i+ 1

2
;j � (px)i� 1

2
;j ] + h[(py)i;j+ 1

2

� (py)i;j� 1

2

] = h
2
fi;j

and further using centered di�erences gives the usual formula

�4pi;j + pi+1;j + pi�1;j + pi;j+1 + pi;j�1 = h
2
fi;j

At a boundary point, say (i; 0), consider a volume as shown in Fig.2.2. (Thus, for i not

a boundary the volume is half the one for the interior.) Integration of �p now gives using

(2.1)

h[(px)i+ 1

2
;0 � (px)i� 1

2
;0] + 2h[(py)i; 1

2

� (py)i;0] = h
2
fi;0

or, using (2.2) for (py)i;0,

�4pi;0 + pi+1;0 + pi�1;0 + 2pi;1 = h
2
fi;0 � 2hgi;0:

Considering a corner point we obtain

2h[(px) 1
2
;0 � (px)0;0] + 2h[(py)0; 1

2

� (py)0;0] = h
2
f0;0

or

�4p0;0 + 2p1;0 + 2p0;1 = h
2
f0;0 + 2h(px)0;0 + 2h(py)0;0;

where (px)0;0 and (py)0;0 are again given by (2.2).
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Fig. 2.2. Boundary control volume.

Remark 1 Note that even though the compatibility condition (2.3) holds on the con-

tinuous level, a small-magnitude incompatibility may arise on the discrete level. Therefore,

when solving the discrete equations by an iterative method like Gauss-Seidel one may ob-

serve in general that the residuals do not decrease below a certain level. However, since

the discrete incompatibility is due to the discretization error, the level at which the resid-

uals stop decreasing is at that of the desired accuracy. Alternatively, an adjustment to the

inhomogeneities can be made to ensure discrete compatibility, which allows convergence

of Gauss-Seidel to vanishing residuals, but which does not increase the accuracy of the

obtained solution. 2

A standard multigrid algorithm using, say, red-black Gauss-Seidel relaxation and the

usual bilinear interpolation and its adjoint for prolongation and restriction, respectively,

can now be applied. The obtained e�ciency is comparable to the excellent e�ciency of the

same method for Poisson's equation with Dirichlet boundary conditions.

Turning to the equation for pressure (1.6), we write it in the following form

�p+ 2(vxuy � uxvy) = s
u
x + s

v
y(2.4)

where (su; sv) = s. This can be discretized using the �nite volume approach as follows

� 4pi;j + pi+1;j + pi�1;j + pi;j+1 + pi;j�1

+
1

2
((vi+1;j � vi�1;j)(ui;j+1 � ui;j�1)� (ui+1;j � ui�1;j)(vi;j+1 � vi;j�1))

= h
2((sux)i;j + (svy)i;j)(2.5)

where the derivatives sux and s
v
y can be either computed analytically or approximated by

�nite di�erences.

At a boundary point which is not a corner point, say (i; 0), integration of �p now gives

h[(px)i+ 1

2
;0 � (px)i� 1

2
;0] + 2h[(py)i; 1

2

� (py)i;0] = 2h2(uxvy � vxuy)i;0 + h
2((sux)i;0 + (svy)i;0)

or

�4pi;0 + pi+1;0 + pi�1;0 + 2pi;1 =

[(ui;1 � ui;0)(vi+1;0 � vi�1;0)� (ui+1;0 � ui�1;0)(vi;1 � vi;0)]

+2 � h(py)i;0 + h
2((sux)i;0 + (svy)i;0)(2.6)

and a similar derivation is carried out for a corner point. The complication, compared to

the simple problem with (2.2), is in deriving appropriate expressions for (py)i;0. To simplify

notation, we assume from now on that s � 0.
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2.1. Pressure boundary conditions: inviscid case. For py we use the momentum

and the continuity equations as in (1.7),

py = �uvx � vvy = �uvx + vux(2.7)

Discretizing this at the point (i; 0) gives

(py)i;0 = �ui;0
vi+1;0 � vi�1;0

2h
+ vi;0

ui+1;0 � ui�1;0

2h
(2.8)

We see that the pressure boundary condition does not depend on the internal velocity values.

Therefore, this case can be reduced to the previously described case of Poisson equation

with Neumann boundary conditions without di�culty.

2.2. Pressure boundary conditions: viscous case. Assume �D = � and consider

the Neumann problem for the PPE (1.6),(1.7). It is easy to see that the compatibility

condition (2.3) is satis�ed in this case provided the continuity equation (1.2) holds.

At the bottom boundary of our rectangular domain, (1.7) reads

py = ��v � uvx � vvy = ��v � uvx + vux(2.9)

Denoting the quantity on the right hand side of (2.8) by (�py)i;0, we now have

(py)i;0 = �

((vx)i+ 1

2
;0 � (vx)i� 1

2
;0) + 2((vy)i; 1

2

� (vy)i;0)

h
+ (�py)i;0

Using the continuity equation we get

(py)i;0 = �

((vx)i+ 1

2
;0 � (vx)i� 1

2
;0) + 2((vy)i; 1

2

+ (ux)i;0)

h
+ (�py)i;0

Discretizing this and substituting into (2.6) gives

�4pi;0 + pi+1;0 + pi�1;0 + 2pi;1 =

[(ui;1 � ui;0)(vi+1;0 � vi�1;0)� (ui+1;0 � ui�1;0)(vi;1 � vi;0)]

+
2�

h
[(vi+1;0 � 2vi;0 + vi�1;0) + 2(vi;1 � vi;0) + (ui+1;0 � ui�1;0)]

+vi;0(ui+1;0 � ui�1;0)� ui;0(vi+1;0 � vi�1;0)(2.10)

Remark 2 Note that while (2.3) holds, discrete compatibility in general holds only up

to discretization error level, and Remark 1 applies. 2

3. Discretization of the momentum equations. We present in this section a dis-

cretization scheme for the homogeneous u-momentum equation only, namely,

� �r
2
u+ uux + vuy + px = 0:(3.1)

The v-momentum equation can be treated in a similar way, and the treatment of force terms

is obvious.
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3.1. A hybrid scheme for the general case. Denote the discrete operator repre-

senting the u-momentum equation by

L
u
h =

ui;j (ui+1;j�ui�1;j )+vi;j(ui;j+1�ui;j�1)
2h

+
pi+1;j�pi�1;j

2h

�

(F
i+ 1

2
;j
�F

i� 1
2
;j
)+(G

i;j+ 1
2

�G
i;j� 1

2

)

h
:

(3.2)

Here F and G are the viscous 
uxes

Fi� 1

2
;j = F

p

i� 1

2
;j
+ �i� 1

2
;j � F

a

i� 1

2
;j

Gi;j� 1

2

= G
p

i;j� 1

2

+ �i;j� 1

2

�G
a

i;j� 1

2

(3.3)

where F p
; G

p denote the 
uxes due to the physical viscosity

F
p

i� 1

2
;j
= �

ui;j�ui�1;j
h

G
p

i;j� 1

2

= �
ui;j�ui;j�1

h
;

(3.4)

�i� 1

2
;j = maxf0;

jui� 1

2
;j j � 2�=h

jui� 1

2
;j j

g; �i;j� 1

2

= maxf0;
jvi;j� 1

2

j � 2�=h

jvi;j� 1

2

j

g(3.5)

ui� 1

2
;j =

ui;j + ui�1;j

2
; vi� 1

2
;j =

vi;j + vi�1;j

2
;(3.6)

ui;j� 1

2

=
ui;j + ui;j�1

2
; vi;j� 1

2

=
vi;j + vi;j�1

2
;(3.7)

and F
a
; G

a denote the arti�cial viscosity 
uxes. It can be easily shown that (3.2) approx-

imates (3.1) with second order accuracy in the centered case when �i� 1

2
;j ; �i;j� 1

2

= 0. The

case of advection-dominated 
ow (when �i� 1

2
;j > 0 or �i;j� 1

2

> 0) is more di�cult. The

arti�cial viscosity 
uxes should be constructed in such a way that the resulting dicretization

will be stable and accurate. The rest of this section is devoted to this objective.

3.2. Advection dominated 
ow. We now develop several possible ways to discretize

the advection part of the u-momentum equation, considering the pressure derivative as an

inhomogeneity.

3.2.1. Upwind scheme. The simplest way to obtain a stable scheme is to de�ne the

arti�cial viscosity 
uxes F a
i� 1

2
;j
and G

a
i;j� 1

2

in the following way

F
u
i� 1

2
;j
= 1

2 jui� 1

2
;j j(ui;j � ui�1;j)

G
u
i;j� 1

2

= 1
2 jvi;j� 1

2

j(ui;j � ui;j�1):
(3.8)

This choice obviously leads to a �rst order upwind scheme. The advantage of this well-

known scheme is its stability, due to the arti�cial di�usion it introduces, but its accuracy is

low. In addition to its general low order it may have signi�cant cross-stream error. Below

we therefore proceed to update this scheme further by adding terms to it in order to improve

the accuracy without losing the stability.
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3.2.2. Upwind narrow schemes I. A scheme with smaller cross-stream di�usion

(though still �rst order accurate) is given by the following choice of the arti�cial viscosity


uxes

F
N
i� 1

2
;j
= F

u
i� 1

2
;j
+ 1

2s
u
i� 1

2
;j
�i� 1

2
;j jvi� 1

2
;j j(�yu)i� 1

2
;j

G
N

i;j� 1

2

= G
u

i;j� 1

2

+ 1
2s

v

i;j� 1

2

�i;j� 1

2

jui� 1

2
;j j(�xv)i;j� 1

2

;
(3.9)

where

�i� 1

2
;j = min(1;

jui� 1

2
;j j

jvi� 1

2
;j j
) �i;j� 1

2

= min(1;
jvi;j� 1

2

j

jui;j� 1

2

j

);(3.10)

s
u
i� 1

2
;j
= sign(ui� 1

2
;j) s

v
i� 1

2
;j
= sign(vi� 1

2
;j)(3.11)

s
u
i;j� 1

2

= sign(ui;j� 1

2

) s
v
i;j� 1

2

= sign(vi;j� 1

2

)(3.12)

(�yu)i� 1

2
;j =

8<
:

ui�1;j � ui�1;j�(sv
i� 1

2
;j
); if ui� 1

2
;j � 0

ui;j � ui;j�(sv
i� 1

2
;j
); if ui� 1

2
;j < 0

(3.13)

and

(�xv)i;j� 1

2

=

8<
:

vi;j�1 � vi�(su
i;j� 1

2

);j�1; if vi;j� 1

2

� 0

vi;j � vi�(su
i;j� 1

2

);j ; if vi;j� 1

2

< 0
(3.14)

This scheme is very similar to one presented in [9]. It was also presented in [13], where it was

named the N scheme (because of the narrow stencil). A detailed analysis of its properties

is given in [10].

3.2.3. Upwind narrow schemes II. The compact schemes developed for a scalar

advection equation can be viewed as the regular upwind scheme with some additional �rst

order small terms added in such a way that when grouped together with the �rst order

error terms of the upwind scheme they will cancel each other (at least in part) due to the

original advection equation itself. However, here we deal with the Navier-Stokes system

of di�erential equations. We can use any of these equations to achieve the desired error

cancellation when approximating, say, the �rst momentum equation.

This observation leads to another upwind narrow scheme

F
NC
i� 1

2
;j
= F

u
i� 1

2
;j
+ 1

2 jui� 1

2
;j j(�yv)i� 1

2
;j

G
NC

i;j� 1

2

= G
N

i;j� 1

2

(3.15)

Here the continuity equation (1.2) is used to achieve error cancellation for F -
uxes. This

NC-scheme is simpler than the N-scheme above.
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3.2.4. Zero cross-di�usion schemes. An even better scheme is given by the follow-

ing choice of the arti�cial viscosity 
uxes

F
Z

i� 1

2
;j
= F

N

i� 1

2
;j
�

1
2(1� �i� 1

2
;j)jvi� 1

2
;j j(ui�1;j�sv

i� 1
2
;j
� ui;j�sv

i� 1
2
;j
)

G
Z
i;j� 1

2

= G
N
i;j� 1

2

�
1
2
(1� �i;j� 1

2

)jui;j� 1

2

j(ui�su
i;j� 1

2
;j
� ui�su

i;j� 1
2

;j�1):
(3.16)

This scheme, which was �rst proposed in [7], is called a zero cross-di�usion scheme because

its cross-stream truncation error component is second order small. It can also be obtained

as a particular case of the scheme presented in [12],[13]. A detailed analysis of the family

of zero cross-di�usion schemes is given in [6]. These schemes give a second order accurate

solution for a homogeneous steady-state advection equation.

Again we now recall that the solution sought satis�es not just an advection equation

but the entire Navier-Stokes system. An alternative zero cross-di�usion scheme (using the

correction term based on the continuity equation for F 
uxes) can be given by the following

arti�cial viscosity 
uxes

F
ZC
i� 1

2
;j
= F

NC
i� 1

2
;j

G
ZC
i;j� 1

2

= G
Z
i;j� 1

2

(3.17)

3.2.5. Second order scheme. Each momentum equation can be viewed as a steady

advection equation with inhomogeneity (pressure derivative). Therefore, in order to achieve

a second order accuracy in this case, the scheme (3.16) has to be modi�ed. This can be

done by the following choice of the arti�cial viscosity 
uxes

F
T
i� 1

2
;j
= F

Z
i� 1

2
;j
�

1
2s

u
i� 1

2
;j
�i� 1

2
;j(pi;j � pi�1;j)

G
T
i;j� 1

2

= G
Z
i;j� 1

2

�
1
2s

v
i;j� 1

2

�i;j� 1

2

(�xp)i;j� 1

2

;
(3.18)

where

(�xp)i;j� 1

2

=

8<
:

pi;j � pi�(su
i;j� 1

2

);j; if vi;j� 1

2

< 0

pi;j�1 � pi�(su
i;j� 1

2

);j�1; if vi;j� 1

2

� 0
(3.19)

The second order accuracy of this scheme follows from the fact that the �rst order truncation

error terms vanish when substituting (3.1).

A simpler second order accurate scheme is given by the following ari�cial viscosity 
uxes

F
TC
i� 1

2
;j
= F

NC
i� 1

2
;j

G
TC
i;j� 1

2

= G
T
i;j� 1

2

(3.20)

The second order accuracy of this scheme follows from the fact that the �rst order truncation

error terms vanish when substituting (3.1) and (1.2).

Among the second order schemes the TC-scheme is preferable over the T-scheme be-

cause it is signi�cantly simpler.

Note that all of the schemes presented in this section are nonconservative. This is

because the scheme (3.2) is nonconservative, approximating the di�erential equation (3.1),

which is written in nonconservative (quasilinear) form (as is (1.1)). It is possible to gen-

eralize the construction presented here so that the resulting scheme will be conservative.

However, this is not our concern here (see x6).
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4. Multigrid algorithm for the steady state, incompressible Navier-Stokes

equations. The multigrid algorithm implemented in order to e�ciently solve the discrete

system of equations developed in the previous two sections is a relatively standard one (see,

e.g., [1]). It employs a Gauss-Seidel relaxation for a smoother, with red-black ordering. (An

exception is for high Reynolds number in case that the 
ow direction is known. In such

a case an ordering that goes with the 
ow is preferable.) A bilinear prolongation and its

adjoint full-weight restriction are used for grid transfers. This is embedded in a FAS-FMG

setting.

At interior grid points the three unknowns corresponding to each grid point are relaxed

simultaneously. At a point next to �D the three unknowns together with the pressure

unknown at the closest boundary point are relaxed simultaneously (i.e. a 4 � 4 system is

inverted). At a point next to a corner of �D a 6 � 6 system of equations is solved for the

three unknowns at the interior grid point plus three pressure values at the corner and its

neighboring corner grid points.

5. Numerical experiments. All the numerical experiments presented here were per-

formed on the square domain 
 = f(x; y) : 0 � x � 2; 0 � y � 2g. We use 5 levels (grids),

where the meshspacing of grid k is hk = 21�k, k = 1; : : : ; 5.

5.1. Viscous case. Here we consider the case where the Dirichlet boundary conditions

for velocities are given on the entire boundary � (i.e. �D = �).

Example 1 First we consider the following problem

s = 0 and � = 1;(5.1)

with the velocity boundary conditions

u = x+ 2

v = 2� y
(5.2)

The solution of this problem is given by (5.2) together with

p = �x(
x

2
+ 2)� y(

y

2
� 2):(5.3)

It is easy to see that this solution satis�es the discrete approximation of the momen-

tum equations (see x3) and the pressure Poisson equation with Neumann-type boundary

conditions (see x2) exactly. Therefore the discrete compatibility condition is also satis�ed.

The purpose of this example was to test the e�ciency of our multigrid algorithm for

viscous problems, and indeed a reduction of residuals by a factor of 8� 10 per V (2; 1) cycle

was observed in this case. 2

Example 2

Still assuming (5.1), let the velocity boundary conditions be given by

u = sin x � sin y

v = cos x � cos y
(5.4)

It can be seen that (5.4) together with

p = �

1

2
(cos2 y + sin

2
x)(5.5)
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provide the solution to the problem.

The main purpose of this example is to verify the accuracy of the algorithm. Here, after

an initial rapid reduction of residuals comparable to the previous example, this reduction

slows down to a halt at the discretization error level (recall Remarks 1 and 2). Table 5.1

presents the solution errors on each grid obtained after the residuals no longer decrease

meaningfully. We can conclude that the second order accuracy is achieved even though the

Level L1 error norm

u v p

2 :291 � 10�2 :814 � 10�3 :130 � 101

3 :211 � 10�3 :110 � 10�3 :235

4 :290 � 10�4 :281 � 10�4 :450 � 10�1

5 :650 � 10�5 :709 � 10�5 :944 � 10�2

Table 5.1

Solution errors

residuals do not vanish. This is similar to what is observed when solving Poisson's equation

with inhomogeneous Neumann boundary conditions: since the compatibility condition is

obeyed on the continuous level, the only source of the discrete incompatibility is the dis-

cretization error. Note that this phenomenon of non-vanishing residuals occurs only for the

Neumann problem, i.e. in our context only when � = �D.

Note that in Table 5.1 not only the velocity errors but also the pressure errors appear

to be second order. We have also observed second order accuracy in the discrete divergence,

i.e. in the obtained approximation for (1.2). 2

Our colleague Brian Wetton has performed additional calculations with our scheme for a

channel 
ow (periodic boundary conditions in x, Dirichlet conditions in y), obtaining similar

conclusions about the second order of the method in velocity, divergence and pressure.

5.2. Large Reynolds numbers . Here we consider the inviscid limit of the momen-

tum equations (1.1) supplemented by the pressure equation (1.6).

Example 3 Consider the following problem

s = 0 and � ! 0;(5.6)

with the velocity boundary conditions on the in
ow part of the boundary

�D = f0 � x � 2; y = 0g [ fx = 0; 0 � y � 2g

u = e
y

v = e
x(5.7)

and the Dirichlet boundary conditions for pressure given on the out
ow part of the domain

�N = fx = 2; 0 � y � 2g [ f0 � x � 2; y = 2g

p = �e
x+y(5.8)

It is easy to see then that the solution to this problem is also given by (5.7), (5.8).

The L1 error in the u-velocity component on di�erent grid levels obtained using di�erent

schemes to solve this problem is presented in Table 5.2. The �rst column corresponds to the

10



regular upwind scheme. The second and third columns correspond to the narrow NC and

zero cross-di�usion scheme ZC, respectively. It seems from these results that neither the

NC nor the ZC schemes have any advantages over the simple upwind scheme. However,

we should remember that this is an \arti�cial" problem. The usual feature of the realistic

high Reynolds number 
ow is that the velocity �eld is smoother in the streamwize direction

than in the cross-stream direction. Use of the NC and ZC schemes can be advantageous

in this case. The last column corresponds to the TC scheme, which clearly demonstrates

second order convergence for this problem.

The multigrid e�ciency for the inviscid problem deteriorates compared to the low

Reynolds number case. This is because only a fraction of the desirable correction in the

characteristic components ( .5 for a �rst order scheme and .25 for a second order scheme)

can be obtained from the coarse grid in this case (see [1],[14]). We do not address this issue

here.

6. Discussion and future work. An e�cient and accurate multigrid solver for the

steady-state incompressible Navier-Stokes equations on non-staggered grids based on the

pressure Poisson equation (PPE) formulation of the Navier-Stokes system was constructed.

The entire range of Reynolds numbers can be handled in this way. This is possible due to

the following two developments:

1. An appropriate discretization and an e�cient treatment of the pressure boundary

conditions have been developed.

2. A family of discretization schemes for the advection-dominated 
ow has been con-

structed.

Preliminary numerical results reported here con�rm that the resulting solver is capable of

producing second order accurate solutions for the entire range of Reynolds number. The e�-

ciency of the developed solver for the viscous case is comparable to the typical multigrid e�-

ciency for the Poisson equation. The e�ciency of the algorithm for the advection-dominated


ow is worse, being the same as the multigrid e�ciency for the advection equation. An im-

provement in this case can be achieved by incorporating in the algorithm the techniques

developed in [14].

Another issue left for future implementation is that of complex geometries. The dis-

cretization procedure developed here is easy to generalize to a boundary segment which is

not aligned with the grid. We use the continuity equation to replace normal �rst derivatives

at the boundary by tangential ones, which are then approximated using the given velocity

boundary values. The second derivative normal to the boundary, which appears in the vis-

cous case, is replaced by a di�erence quotient of �rst normal derivatives near the boundary

and at the boundary. Only the �rst derivative near the boundary is further discretized

in the normal direction. Local averages are now used to express everything in terms of

gridpoint values.

While the methodology presented here has been applied for the steady state case, a

time-dependent Navier-Stokes solver can be developed based on it (cf. [4]). An analysis of

the method and its implementation in this context are planned for the near future.

AcknowledgementsWe have bene�tted from a number of discussions with Dr. B. Wetton.
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Level Di�erence scheme

upwind NC ZC TC

2 :517 :580 :570 :310

3 :232 :250 :252 :910 � 10�1

4 :998 � 10�1 :105 :106 :233 � 10�1

5 :453 � 10�1 :465 � 10�1 :483 � 10�1 :583 � 10�2

Table 5.2

L1 error in u-velocity.
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