
Generalized Ternary Simulation
of Sequential Circuits

by
C-J. H. Seger

J. A. Brzozowski

Technical Report 94-2
January 1994

Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C.

CANADA V6T 124

Generalized Ternary Simulation of Sequential Circuits*

C-J. Seger
Department of Computer Science

University of British Columbia
Vancouver, British Columbia, Canada V6T 1Z4

email: seger@cs.ubc.ca

J. A. Brzozowski
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G 1

email: brzozo@math.uwaterloo.ca

Index Terms: Asynchronous circuits, analysis of behaviors, fundamental mode, ternary simula
tion.

Abstract

Asyu hrouous gat ircuits have been traditioually analyzed using binary models which
a rf' couc pt nally simpl aud 11atural , but. a.re exponential in the 11umber of stat variables. A
·orrunonly us cl binary m thod is the General Multiple-Winner (GMW) model, which can b

appli cl to any ircuit started fo a.uy state. In contra.c;t to this the ternary analysis method
c:all cl t • rnary simulation is polynomial in the number of state variables, but applies only to a
circuit started in a stable state. This method has been in use since 1965. The equivalence of
ternary simulation to the GMW analysis was proved in 1987, for the case of a stable starting
stat . In this paper we present a generalized ternary simulation algorithm applicable to any
state, and we prove that the new algorithm is equival nt to GMW analysis. Th n w algorithm
is used to prove that certain behaviors are not realizable.

1 Introduction

A. yn hronous circwt theory has been d v lop d in the 1950's [11, 12]. The interested reader is
referred to [21J for details cone rning the early developments in asynchronous circuit theory, and
to 15 6, 7J for , dditional motivation and ba kground relevant to the present paper.

Digital ircuits hav been modeled by Boolean algebra since 1938 120]; consequently, binary
methods were naturally the first. to be applied to asynchronous circuits. When several gates are
unstable in a circuit, they are "racing" to their new states. It is normally assumed that any subset
of these gates can change to their new values, i.e., there can be "multiple winners" in a race. One
of the central problems in asynchronous circuit theory is to determine the final "outcome" of races.
The early informal binary "race analysis" model [11, 12] was formalized in 1979 [9] as the "General
Multiple-Winner" (G MW) model. Here "general" refers to the fact that no assumptions are made

"This research was supported by the Information Technology Research Center of Ontario, by the Natural Sciences
a11d E11g111eeri11g Research Council of Canada under Grants No. OGP0000871 and OGP0109688. and by a fellowship
from the Advanced Systems Institute.

1

about the gate delays, except that they are finite. A GMW analysis of a race can be exponential
in the number of gates.

In 1965, Eichelberger introduced a ternary method for the analysis of races and hazards [10],
building on some earlier work [23]. His algorithm, called ternary simulation, assumes a stable initial
state, and is polynomial in the number of gates. Eichelberger established a connection between
ternary simulation and the binary methods, but this was done informally. In 1979 B~zozowski and
Yoeli [9] formulated a conjecture that ternary simulation is, in a certain sense, equivalent to GMW
analysis, provided tha~. all gate and wire delays are taken into account in the GMW model. This
conjecture was settled positively by Brzozowski and Seger in 1987 [4], for the case of a stable initial
state.

In this paper we present a generalized ternary simulation applicable to any state, and we prove
that the new algorithm is equivalent to GMW analysis.

The paper is structured as follows. Section 2 defines the basic network model, and Section 3
describes the GMW analysis method. An introduction to ternary models is the topic of Section 4.
The definition ai1d properties of tl}.e new Algorithm A-the first of the two ternary algorithms-are
then given in S<> tion 5. The se ·ond ternary algorithm, Algorithm B, is then briefly described in
Section 6; this algorithm is unclmuged. Section 7 discusses some applications of th main theorem.
Appendix A gives the proofs of the key results.

2 Network Models

In this section we define a mathematical model of a gate circuit. For additional information
concerning gate circuits the reader should refer to a basic text on logic design, for example [8, 13,
14, 16].

A gate is a physical device intended to implement a Boolean function. It has k 2'. 1 inputs
and one output. If we apply binary signals at the gate inputs, the output value is determined by
the gate type defined by a Boolean function. The two binary values (0 and 1) are realized by two
volt.age levels (low and high). In reality, a gate signal may also have an intermediate value between
high and low; we then assign to this signal a third value <I>.

We now describe the structural properties of a circuit by a directed graph.
A circuit graph is a 5-tuple G = (X,I, 9, W,E), where

• X is a set of input vertices, labeled X 1, X 2, ... , Xn,

• I is a set of -input delay vertices, labeled x1, x2, ... , Xn,

• 9 is a set. of gate vertices, labeled Y1, Y2, ... , Yr,

• W is a set of wire vertices, labeled z1 , z2 , ... , Zp, and

• £ i;;; (XU I U 9 u W) x (I U 9 U W) is a set of edges.

The input vertices are all of indegree 0, and all the wire vertices have indegree and outdegree equal
to 1. The directed graph defined by ((XUIU9UW),t') must be a bipartite graph with the vertex
set separated intu two disjoint subsets I U g and XU W. Note that loops (edges of the form (v, v))
are also excluded.

Given a gate circuit, we obtain its circuit graph as follows. First, there is a vertex (called an
input vertex) for every external input X,, and a {gate) vertex for every gate. For every input v rtex
X; there is an input delay vertex Xi and an edge from Xi to ·, .. For every input i of every gate g

in the circuit there is a wire vertex z, and an edge from vertex 2 to th gate v rt x corresponding

2

tog. If i is connected to an external input Xj, there is an edge from the input delay vertex Xj to
wire vertex :: . Otherwise, if i is ·onnect d to the output of gat g', there is an dge from the gate
ve1tex corresponding to g' to the wire vertex z .

We now turn our attention to the behavior of a circuit. The domain V of a circuit specifies a
set of values for the circuit variables. In this paper we use either the binary domain {O, l}, or the
ternary domain { 0, <I>, 1}.

In order to describe t h behavior of a vertex we associate with it a function, called the vertex
fnn ction. For a gat vertex Yi, the vertex function 1-'i maps a wire-vertex state to V, i.e., 1-'i: vlWI --+
V. This fu n tion is related to t h Boolean fun tion associated with the physical gate at that vertex.
For a wire vertex ::; , t.he v •1tex (unction Zi , Z1: ViI1+191--+ V, provides the value of the input delay
or ate vertex connected to the in omfog edge of the wire vertex. For an input vertex X ;, t he
vcrt.(•x fun r.t,iou, also called X 1, maps a state of the nvironment to V . In contrast to the value
X, supplied by the environment, the input delay variable Xi holds the input value ''seen" by the
circuit..

The vertex functions defined above introduce a distinction between the present value of a vertex
variable and the present value of the "excitation" of that vertex variable, i.e., the value computed
by the vertex function. This permits us to associate a delay with every input, every gate, and every
wire in the circuit .

In order to represent the state of the entire circuit, we need to select a set of state variables (or
state vertices) . We could select all of the vertex variables as state variables, i.e., use the input-,
gate-, and wire-stnl mod •I. For some purposes, the set of state varfables can be smaller; for
example , a gate-state model is frequently used . For a more detailed discussion of the problem of
choosing state variables see [5, 6, 7].

Assuming that the state variables are somehow selected, we now proceed to analyze the circui t
using these state variables . We asso ·iate with each state vertex two distinct items: the vert x
variable and its exc'itat-ion function defined as follows. We start with the v rtex function. We then
r peat dly remove all dependencies on verti ·es which have not been chosen as state vertices, by
using functional composition_ of the vertex functions.

W use a graph to show the functional dependencies among the state variables. This graph ,
called the network, has two sets of vertices: input excitation vertices and state vertices. There is an
input exci tation vert x for ev ry external input , and a state vertex for every state variable. There
is au r dge from ver tex i to vert x j if the ex it.a t.ion function of vertex j depends1 on th variable
associated with vertex i .

In summary, our formal network model has the form:

N= (V,~,S,[),

where V is the domain, X is the set of input excitation vertices labeled X1 , ... , Xn, S is the set
of state vertices with two sets of labels: state variable labels (s1, .. . , sm) , and the corresponding
excitation function labels (S1 , .•• , Sm), and£ is the set of edges .

3 General Multiple Winner Model

A total state c = a·b of a network is an (n + m)-tuple of values from {O, l}, the first n values
hein~ the input excitations. and the remaining m the variables s1 , . . . , sm. We refer to latter as

1 We use the standard notion of functional dependence: A fun tion / of n variables x1, . . . , xn depends on Xi if
therf' exist two mput n-tuples a= (a1, .. . ,ai-1,a;,a;+1, . . . ,an) and a'= (a1, . .. ,a;-1,a\,a;+1, . . . , a..,) such that
/(a)¥- f(a') .

3

(internal) state variables. To simplify notation, in examples we write tuples without parentheses
and commas; the • is used as a separator to improve readability.

In any total state c = a·b, the set of unstable state variables is

We next define a binary relation Ra on the set { 0, 1} m of internal states of N for a E { 0, 1} n:

For any b E {O. l}m , .
bRab, if U(a·b) = 0, i.e. , the total state a·b is stable,

bRabJC, if U(a·b) =I- 0, and JC is any nonempty subset of U(a·b),

where by bJC we mean b with all the variables in JC complemented. No other pairs of states are
related by Ra. The relation Ra is called the general multiple-winner (GMW) relation [9].

Figure 1: NOR latch.

We depict Ra by a directed graph, drawing an edge from b to b' if bR0 b'. Such an edge indicates
that b' is a possible inunediate successor of b. A loop from b to b indicates that the total state a·b
is stable. The graph is a description of the possible network behaviors under the assumption that
the input excitation remains constant at the value a.

To illustrate these ideas, consider the NOR iatch circuit of Figure 1. If we use the gate-state
uet.work, the excitation functions are:

The graphs of the Ra relations are shown in Figure 2.
In many applications, we are only interested in the "final outcome" of a transition, and not

in the interme~iate states that the network may go through before the final outcome is reached.
Since every graph of R0 (b) is finite, every path from b must eventually reach a cycle. A cycle in the
relation diagram of Ra (b) is transient, if there exists a state variable Si which has the same value
in all the states of the cycle and which is unstable in each state of the cycle. If the delay of each
gat.e is less than oi· equal to D. a network can stay in a transient cycle for at most D units of time.
Let the set of cyclic states reachable from b in the relation diagram of Ra (b) be:

cycl(Ra(b)) = {s E {O, l}m I bR:s and sRts },

where R+ is the transitive closure of R, and R* is the reflexive-and-transitive closure of R. Also
define the set of transient cyclic states:

cycUrans(Ra (b)) = { s I s appears only in transient cycles}.

Next, define the set of non-transient cyclic states to be

4

11 11

/i~
01 10 /"" 01 10

0~ 1/0
QQ ""/ 00

0
(a) Roo (b) Ru

11 11

/ "" / "" 01 10 01 10

""/0 .QO 0"/ OQ

(c) Ro1 (d) R10

Figure 2: Ra relations for the NOR latch: (a) Roo, (b) Rn, (c) Roi, (d) Rio-

cycLnon-trans(Ra (b)) = { s I s appears in a non-transient cycle } .

Now the final outcome of the transition from b is:

o·ut(Ra(b)) = {s I bR:c and cR:s. where c E cycl_non-trans(Ra(b))}.

Each state in out appears in at least one non-transient cycle, or is reachable from a state in a
non-transient. cycle. Informally, a state is in the outcome if the network could be found in that
state at any time arbitrarily long after the start of the transition.

4 Ternary Models

In analyzing the behavior of asynchronous circuits, it is often convenient to work in a ternary, rather
than Boolean, al bra [8, 9, lOJ. We will use the two Boolean values 0 and 1, and a third value
<I>, which represents an "uncertain value", that is neither 0 nor l. In order to improve readability,
ternary variables will be set in boldface type.

We define the "uncertainty" partial order !;;;; on {0, <I>, 1} as follows:

and no other pairs are related by!;;;;. Thus, for s, t E {0, <I>, 1}, the statement s~t is interpreted as
s "has no more uncertainty" than t. When s~t. we will say that s is covered by t or that t covers
s . The partial order is also extended to {0, <I>, l}m, for any m > 1, in the natural way:

5

OR 0 q> 1 AND 0 q> 1 0 q> 1
0 0 q> 1 0 0 0 0 1 q> 0
q> q> q> 1 q> 0 q> q>

1 1 1 1 1 0 q> 1

Figure 3: Ternary OR, AND, and INV.

s~t iff s;~ti for all i, 1 ~ i ~ m,

where s = s1, ... , Sm and t = t1, . . . , tm, are any two elements of {O, '1> , 1 }m. We write set if sCt
and s =/:: t. Thus, for example, 0'1>10c0'1>1'1>, but 0'1>1 and 1'1>1 are not related by [;;.

In the partially ordered set { 0, '1>, 1} m, we define the concept of least upper bound as usual. For
example, lub{0, l} = '1> and lub{<l>0lO, 1110,0100} = '1>4>'1>0.

For any Boolean function f : {O, 1} m -+ {O, 1}, its ternary extension f : {O, '1>, 1 }m --+ {O, '1>, 1}
is defined by

f(t) = lub{f(t) It E {O, l}m and t~t}.

For example, let f be thE> two-argument (inclusive) OR function; then

f(O<l>) = lub{J(00),f(0l)} = lub{0,l} = '1>.

Note that any Boolean function f agrees with its ternary extension f when the argument t is binary.
The reader can verify that the functions defined in Figure 3 are the ternary extensions of the

Boolean functions OR(+), AND (o) and INV C) (inversion or complement). We use the same
symbols for ternary extensions of AND, OR, and INV, as we do for the binary functions.

The following important property, the monotonicity property, is easily verified to hold for the
ternary extension f of any Boolean function f:

s~t implies f(s)[;;f(t) ,

for all s, t E{O, '1>, l}m. This property is interpreted as follows: If input vector t is at least as
uncertain as input vectors, then the gate output f(t) cannot be less uncertain than f(s) .

5 Algorithm A

In ternary simulation we use the domain { 0, '1>, 1}, and we replace the Boolean excitation functions
by their ternary extensions. To distinguish two versions of the same network, one with a binary
and the other with a ternary domain, we denote them by N and N, respectively. Let N =:=
({ 0, 1}, X, S, f) be a binary network, and N = ({ 0, '1>, 1}, X, S , f) its ternary counterpart, called
the ternary extension of N. There are n inputs and m state variables in N and N. State variable
vectors in the ternary domain are denoted by s and the input and vertex excitation function vectors
by X and S . Let a-b be a (binary) total state of N. Our new first algorithm of ternary simulation
is formally defined as follows:

Algorithm A
h := O;
s0 := b;

6

repeat
h := h + l;
sh := lub{ sh-I, S(a·sh-l) };

until sh = sh-l;

In the following, we use A (roman) to denote the name of the algorithm and A (italic) to denote
thP length of the sequence of states that the algorithm produces. Propositions 1 and 2 below are
based on [9] .

Proposition 1 Algorithm. A produces a finite sequence s0 , ..• , sA of states, where A ::::; m. Fur
thermore, this seq-u.ence is monotonically increasing, i.e. ,

s 1' C sh+J, for O ~ h < A.

Proof: First, by the fact that t ~ lub{ t, t'} for any t, t', it follows that

sh~ lub{sh, S(a·sh)} = sh+1, for 0 ~ h < A.

Second, in each step of the algorithm, at least one state variable must become <l>; otherwise the
algorithm terminates. Since there are m state variables, it follows that A cannot exceed m. D

Let N be a network in state b with inputs held constant at a. Define the set of all states
reachable from bin the GMW analysis as: reach(Ra(b)) = {c I bR~c} . In the following, if h > A,
b,v sh we mean sA .

Proposition 2 The least upper bound of the set of all the states reachable in the GMW analysis
of a network N is covered by the result of Algorithm A for N, i.e.,

lubreach(Ra(b)) ~ sA.

Moreover,

b(Ra)h c implies c ~ sh.

Proof: The proof of the second claim is by induction on h. For h = 0, we have b(Ra)0c implies
c = b. But also s0 = b. Hence b(Ra)0 c implies c ~ s0 . Assume now that b(Ra)hc implies c ~ sh,
and suppose that cRad. By definition of Ra, each component di of d has either the value of the
conespouding component. Ci in c or it is equal to the excitation Si(a·c) . Thus d ~ lub{ c, S(a-c)}.
The latter expression is equal to lub{c,S(a-c)}, since the ternary extension S agrees with Son
binary arguments . Using the .induction hypothesis, the monotonicity of S, and the monotonicity of
lub, we find d ~ lub{sh,S(a·sh)} = sh+I_ Thus the second claim holds. By Proposition 1, sA covers
sh for every h;_hence the main claim is established. □

The main result of this section is the following theorem:

Theorem 1 Let N = ({0, 1},X,S,£) be an input-, gate-, and wire-state binary network, and let
N = ({ 0, <l>, 1}, X, S, £) be its ternary counterpart. If N and N are started in total state a-b, then
the res'll.lt sA of Algorithm. A for N is equal to the lub of the set of all the states reachable from the
'initial state ·in the GM W analysis of N, z. e.,

sA = lubreach(Ra(b)).

Proof: By Proposition 2, lubreach(Ra(b)) is covered by the result of Algorithm A for N. It remains
to be shown that the lub of the reachable states of N covers sA. This follows from Corollary 2 in
Appendix A. In the corollary it is shown that, for every vertex j, there is a state s3 E {0, l}m such
that bR~ s3 and sf~ lub{ b1, s~} . This is sufficient to prove the result. 0

7

6 Algorithm B

For completeness, we include a description of Algorithm B which is unchanged, although the proof ·
of Proposition 4 is modified to fit the new definition of outcome. In Algorithm B, we see how much
of the uncertainty introduced by Algorithm A is eventually removed, if the network is started in
the state produced by Algorithm A and the binary input a is applied.

Algorithm B
h := O;
to := sA;

repeat
h := h + 1;
th := S(a•th-l);

until th= th-I;

Proposition 3 Algorithm B produces a finite sequence t 0 , ... , t 8 of states, where B ~ m. Fur
thermore, this sequence is monotonically decreasing, i.e.,

Proof: We first prove by induction on h that th ;i th+l. For the basis, observe that sA =
lub{sA,S(a·sA)}. It follows from the properties of lub that t0 = sA ;;;;i S(a·sA) = t 1 . Now assume
inductively that th ;i th+l. By the monotonicity of S it follows that

th+l = S(a•th) ;;;:J S(a•th+ 1) = th+ 2 ,

and the induction step goes through. In view of this, at least one state variable must change from
<I> to a binary value in each step of the algorithm; otherwise the algorithm terminates. Since there
are m state variables, B cannot exceed m, and the proposition follows. 0

Proposition 4 The least ·upper bound of the set of all the states in the outcome of the GMW
analysis of a network N is covered by the result of Algorithm B for N, i.e.,

lubout(Ra(b)) t;;;; t 8
.

Moreover, for every h ~ 0,

Proof: We prnve the latter claim by induction on h. If h = 0, then th = sA. Since out(Ra(b)) ~
reach(Ra (b)), we have lub out(Ra (b)) t;;;; sA by Theorem 1, and the basis holds. Now suppose that
h > 0 and that th satisfies the claim, but th+I. does not. Then there must exist c E out(Ra(b)) and
a vertex i such that c; ~ (th+1)i. Since Ci E {0, 1}, this can only happen if (th+1)i = Ci, We now
assert that the excitation Si(a·d) is equal to (th+1)i for every stated in out(R0 (b)). Note that

S(a·d) = S(a·d) t;;;; S(a·th) = th+I,

where the inequality follows from the inductive assumption (which implies d t;;;; th) and the mono
tonicity of S. Now, since (th+l)i is binary and covers Si(a·d), it must be equal to Si(a·d), as
claimed. Now consider any non-transient cycle in out(R0 (b)). Since the excitation of the i-th
variable is constant throughout the cycle, the value of the variable must be constant through
out the cycle. Since the cycle is nontransient, that value must be equal to the excitation. Thus
di = (th+l)i = Ci for every state d in the cycle. Since the non-transient cycle was arbitrary, we have

8

shown that di = (th+l)i = Ci for every stated in every non-transient cycle in out(Ra(b)). This,
together with the fact that Si(a·e) = Ci for every state e in out(Ra(b)), implies that every state
d E out(Ra(b)) reachable from a non-transient cycle will also have di = (th+I)i = Ci- However,
these results together imply that di = Ci for every d E out(Ra(b)), contradicting the assumption
that c E out(Ra(b)). Hence, the induction step goes through. The main claim of the proposition
now follows in view of Proposition 3. D

The characterization of the results of Algorithm B is given in the following:

Theorem 2 Let N = ({0, 1 }, X, S, E) be an input-, gate-, and wire-state binary network, and let
N = ({ 0, <I>. 1}, ,..y, S, [) be its ternary co·unterpart. If N and N are started in total state a·b, then
the res·ult t 8 of A lgor-ithm B is eq·ual to the lub of the outcome of the G MW analysis, i.e.,

t 8 = lub out(R,(b)).

Proof: By Proposition 4, lubout(Ra(b)) is covered by the result of Algorithm B. It remains to be
shown that the lub of all the states in the outcome of N covers t 8 . This follows from Lemma 9
in Appendix A. In the lemma it is shown that there exists a nontransient cycle Z reachable from
the initial state and such that the lub of all the states in Z covers t 8 . This suffices to prove the
theorem. D

An important corollary that follows directly from the construction in the proof is:

Corollary 1 Let N and N be as in Theorem 2, and let t 8 be the result of Algorithm B when N
is started in total state a·b. If t 8 is not binary, then there is a non-transient cycle, reachable from

a·b in the GMW analysis of N, such that every gate and wire vertex j with tf = 4> oscillates.

7 Delay-Insensitive Circuits

A delay-insensitive circuit functions correctly independently of the sizes of the delays in its com
ponents and wires. Consequently, the verification of such a circuit by a GMW analysis requires an
input-, gate-, and wire-state network model. In this section we show that our new ternary simula
tion can be a powerful tool for proving that certain behaviors cannot be realized delay-insensitively.

Traditionally p1 , 12, 15, 21], asynchronous circuits have been operated in fundamental mode,
in which the environment is allowed to change the circuit inputs only if the circuit is stable. More
recent asynchronous design techniques use the input/output mode of operation [2, 3, 17, 22]. In
this mode, the environment does not have to wait. until the circuit has stabilized completely; a new
input can be applied as soon as the circuit has given an appropriate output response. The analysis
of circuits operated in the input/output mode requires the more general form of ternary simulation
developed in this paper. The work below follows closely the ideas of [3]. Lemma 1 is a generalization
of the result of [3], where a more restricted definition of input/output mode-realization was used
along with the original version of Algorithm A.

In order to show that certain behaviors cannot be implemented delay-insensitively by gate
circuits, we first prove that a particular very simple behavior, called A1 , cannot be implemented.
We then use reduction techniques to show that several common behaviors, like that of the C
ELEMENT [19] and the set-reset. latch, cannot be implemented.

The behavior .41 is defined as follows. It has one input X and one output 0, and it is operated
in the input/output mode. The initial ''input/output state" of the behavior is X·O = 0-0, and this
state is stable, in the sense that the output will not change unless the input changes. Once the
input has changed, the behavior reaches the state 1·0; this state is unstable, because the output

9

should (eventually) change to 1, resulting in state l·l. As soon as the output has changed, the
environment is allowed to change the input back to 0. However, the behavior should not change the
output again, i.e., it must remain in state 0-1. This can be summarized by the following transitions:

0-0 E_l l·O i0. l·l E_l 0-1.

Any network N realizing A1 must have the following properties:

P1 If QI = 0-b is a state of N representing the initial state of the behavior, then every state c

(including b) reachable by an Ro-sequence from b must have the output O equal to 0. (The
output cannot change by itself.)

P2 The input is allowed to change in any state 0·c, defined as above, and the state l·d reached
after this input change must be unstable and must have O = 0. (The output cannot change
instantly, because the output wire has a delay.)

P3 In every R 1-sequence starting ·with d and ending with a state in out(R1, d), 0 changes exactly
once. (Exactly one output change is specified in Ai-)

P4 Let f be auy state that can be reached by an R1-sequence from d and that has O = 1. Then the
input is allowed to change again. The state O·f so reached must have O = 1. (Input-output
mode permits an input change as soon as the output changes.)

P,5 Every state g reached from f by an Ro-sequence must have O = 1. (The output should not
change again.)

We now show that no such delay-insensitive design exists.

Lemma 1 The behavior A1 does not have a delay-insensitive input/output-mode realization.

Proof: We show that, if a network N with initial state QI that is a delay-insensitive input/output
mode realization of A 1 existed, then we could construct a network N that would have contradictory
properties.

x
N

0

Figure 4: Network N.

Consider the network N derived from N as shown in Figure 4. Notice that a delay element is
introduced for the input as well as every wire. Since, by assumption, network N also contains a
delay element for each wire, we have an input-, gate- and wire-state network model for N. Let s'
denote the vector of internal state variables of N, except for the output variable which is denoted
by 0.

The initial state of JV is X·J:ss'O = X-xs1s2s3Xs'O = 0-llOOObO. Consider now any .Ro
sequence. Note that, by conditions P1 and P2, the output O of N will not change before X changes
to 1. Note also that, eventually, x, s1, s3, and X will change because the input delay is unstable.

10

In fact, every .Ro-sequence starting in 0-llOOObO can lead to any state of the from OOOlldO, where
d is reachable form c in N by an Ro-sequence. Because of Property P2, all such states must be
unstable. By P3, N eventually reaches a state l·el, for some vector e. Thus we must have an
.Ro-sequence OOOlldO ----,* OOOllel. From P4 and A it now follows that O cannot change any
more, even if X becomes O again; this has to hold for all possible values that s' may reach. Thus,
thP s'-component. of the state of N becomes irrelevant, and we replace it by # from now on. After
0 becomes 1, we have the following .R0-sequence:

OOOllel --+ 00111#1 ----, 00101#1 -+ 00100#1.

In the last state, the variables x, s1 , s 2 , s3, X, and O are stable and will not become unstable again.
It follows that the outcome of the GMW analysis of N started in state O·llOOObO, always yields
states of the form 0·00100#1, i.e.,

h E out(R0 , llOOObO) implies the O component of his 1.

Consequently, even in the presence of arbitrary input, gate and wire delays, the final outcome of
the transit.ion yields O = l. Note that, in the analysis above, N is operated in input/output mode.

Next we show that ternary simulation of N contradicts the conclusion reached above. By
Property P 1 , as long as the input X of N is 0, the excitation of the output delay must be 0. Hence
the output delay is initially stable. Algorithm A produces the following sequence:

0-llOOObO-+ 0·<1>1000#0-+ 0·<1><1>000#0-+ O·<l><l>O<l>O#O----, 0-<l><l>O<l><l>#O,

where the # indicates that we don't know the values of the s' portion of the state. Trivially,
llOOObO R0 llOOObO, and we have shown above that llOOObO R0 OOOllel, i.e., both llOOObO and
OOOllel are reachable from llOOObO (in zero or more steps). Consequently, the output O can take
the values O and 1 in the GMW analysis of the network. By Proposition 2, Algorithm A must
produce O = <I>. Subsequently, 8 2 becomes <I>, and the final result of Algorithm A has the form
O· <l><l><l><I><l>t<I> for some vector t of ternary values.

Applying Algorithm B to state 0-<l><l><l><l><l>t<l>, we find that it. terminates in the third step with
state O·OO<l><l><l>t<l>. Consequently, Algorithm B predicts that O has the value <I>. But then, by The
orem 2, there exists a state in the outcome of the GMW analysis where O = 0. This contradicts
the GMW analysis above. Therefore, the network N with the postulated properties cannot exist,
and we have proved that behavior A1 does not have a delay-insensitive gate realization operated
in the input/output mode. D

Using Lemma 1 we use the arguments of [3] to show that the behavior of the C-ELEMENT
a basic component of delay-insensitive design-does not have a delay-insensitive realization in
input/output mode. The behavior of the C-ELEMENT, with inputs X 1 and X2 and output 0, is
shown in Figure 5, where the entries within the nodes consist of input, internal, and output state.
Whenever the two inputs agree, the output should take on their common value. When the inputs
disagree, the output should retain its current value. The C-ELEMENT has the sub-behavior:

If we ignore the input X 1 and associate X2 with X, we obtain a behavior isomorphic to A1 . Thus
if a delay-insensitive implementation of a C-ELEMENT operated in input/output mode existed,
then so would a delay-insensitive implementation of behavior A1 operated in input/output mode.
In view of Lemma 1, the C-ELEMENT cannot. be realized by a delay-insensitive gate circuit. For
additional results concerning delay-insensitive realizations see [3, 7].

11

{O}

{O}

Figure 5: Behavior of C-ELEMENT.

We conclude this section with a sketch of a proof that it is impossible to construct a delay
insensitive gate circuit that would act as an arbiter. This result was proved by [1] in a totally
different formalism. A primitive arbiter has two inputs X1 and X2. A 1 on either input represents
a request for a shared resource. The outputs 01 and 02 represent grants for use of the resource.
The essential function in the arbitration process is to ensure that, when X1 and X2 are both 1, only
one of them can be served. The arbiter can grant the resource to X1 by setting 01 = 1, 02 = 0,
or to X 2 by setting 0 1 = 0, 02 = 1. The arbiter is not allowed to always give preference to one of
its inputs but must, in fact, implement the "critical" race above. In view of Theorem 2, ternary
simulation for this situation must yield 0 1 = 02 = <I>. By Corollary 1, however, it is possible for
0 1 and 0 2 to oscillate under suitable delay assumptions. Clearly such a behavior is not allowed
for an arbiter. Consequently, no delay-insensitive gate circuit can realize an arbiter. For additional
details the reader is referred to [7].

Acknowledgement

The authors would like to thank Jo Ebergen of the University of Waterloo for the new definition
of outcome used in this paper and for many useful suggestions concerning this work.

A Proofs of Main Results

Let N and N 1?e input-, gate-, and wire-state networks as in Theorem 1. We require some notation
for referring to the fan-in and fan-out vertices of a given gate vertex i in a network. Let the set of
its fan-in vertices be

o/ = {j \ (j,i) El'}.

Note that O'i n al = 0 if i -=f. j. With a slight abuse of notation, given a vector v of length m and
ai -=f. 0, we write ai (v) to denote the components of the vector corresponding to the fan-in vertices;
thus, if O'l = {CY], a2, ... , O'r}, then ai (V) = Vol, Vo2, ... , Vor. Similarly, let the fan-out vertices of i
be

.H' = {J I (i,j) E £}.

Again, note that (3' n (31 = 0 if i -=f. j. Given a vector v of length m and {Ji -=f. 0, by {Ji (v) we
denote the components of the vector corresponding to the fan-out vertices of vertex i. Finally, if

12

sh, 0 ~ h ~ A denotes the result of Algorithm A after h steps, and vertex sf = <I>, let 'Yj denote

the step in which this vertex changes to <I>, i.e., if sJ- 1 = bj and sj = <I>, then 'Yj = k.
The following technical result concerning binary and t rnary excitations will be needed in

Lemma 2.

Proposition 5 Let N and N be as ·in Theorem 1. and let j be a gate vertex of N with indegree
dj and fan-in set aJ. ff s E {O, <I>, l}"' is s-uch that Sj = bj E {O, l} and l-ub{sj, Sj(a·s)} = <I>, there
ex-£sts cJ E {O. l}di s·u,ch th;t cJl;;;;a1 (s) and Sj(a·s) = bj for every s E {O, l}m such that aJ(s) = cJ.

Proof: We prove the claim by contradiction. Assume that, for all c1 E {O, l}di such that cl!;;;;al(s),
there is some state s E {O, l}m such that c1 = a1 (s) and S1(a·s) = b1. Since S1 depends only on
the vertices in a1 • we can conclude that S1(a·s) = bj implies S1(a·s') = b1 for every s' E {O, It'
such that o,1 (s) = a1 (s'). Altogether, we have that S1(a·s) = b1 for every s E {O, l}m such
that. a 1 (s)l;;;;a1 (s). By the definition of ternary extension, this implies that S1(s) = b1; hence
lub{s1,S1(a·s)} = lub{b1,b1 } = b1, contradicting the assumption that lub{s1,S1(a·s)} = <I>. D

The following is the key lemma required to show that the result of Algorithm A is covered by
t.lw set of states reachable in the GMW analysis.

Lemma 2 Let N and N be as in Theorem 1, and let sh, 0 ~ h :'.S A be the result of Algorithm A
after h steps. Then, for each h, there exists sh E {O, l}m with the following properties:

1. bR~s".

2. ff j is an input delay or gate vertex. then

For the next two properties, let j be a wire vertex in the fan-out set of vertex i and in the fan-in
set of vertex k (i = k zs possible).

3. If sZ = bk E {O, 1}, then

4- If s7 = s?. ~ <I>, then

if sf = bi and sj = b1 ,

if sf = <I> or sJ = <I>.

Proof: We prove the lemma by induction on h. The basis, h = 0, follows trivially since s0 = b E
{O, l}m. Assumli' inductively that the state s" has been reached and that sh satisfies Properties
1-4. We will show how to reach a state sh+1 that satisfies all four prop rties. We do this in two
steps. We first. show that there is a state sh+I reachable from sh in which all input delay and gate
vertices that change to <I> in step h + 1 in Algorithm A are unstable. We then conclude the proof
by showing how sh+I can be reached from sh+I.

It is convenient to introduce the following shorthand. Let c"+ 1 be the set of gate and input
delay vertices that change to <I> in step h + 1, i.e.,

13

ch+l = {j EI u 9 I sJ = bj and sj+ 1 = <I>}.

Now, let sh+l = sJh for every input delay and gate vertex. If j E ch+I, let aj (sh+l) = cJ, where
. J

cJ E {O, l}di is such that cJ~aJ(sh) and Sj(a·s) = bj for alls E {O, l}m such that o,J(s) · = c?.
By Proposition 5 such a cJ is guaranteed to exist. If j ¢ ch+I, let aJ(sh+I) = aJ(sh). Note that
this completely determines sh+ 1. We first claim that every vertex in ch+l is unstable in sh+ 1. To
verify this, consider two cases. First, if j is an input delay vertex, then h must be O and the input
delay excitation function Xj must be bj. Thus input delay vertex j is unstable at h = 0. Since,
by construction, no input delay vertex changes in going from sh to sh+I, input delay vertex j must
st.ill bf' unstable in sh+ 1 . On the other hand, if j is a gate vertex, then a1 (sh+l) = cJ. But d was
chosen so that S1(a•sh+ 1

) = bj. By Property 2 of the induction hypothesis, sj = b1; thus vertex j
is unstable in .sh+l

We now claim that sh R: sh+ 1 . Clearly, the claim holds if sh+ 1 = sh. Hence, assume sh+ 1 -I- sh.
It. is sufficient. to show that each vertex that changes in going from sh to sh+I is unstable in the
total state o.-.,,h. Let j be such a _vertex, i.e., assume s7+1 -I- sj. By construction, it follows that

j must be a wire vertex in the fan-in set of some vertex k E c"+1 and in the fan-out set of some
vertex i . However, a,k(sh+ I) = ck and, by definition, ck~ci(sh). In particular, cj = s_7+ 1~s_7. If

st = b; a11cl 1/ = b1 th~u . by Property 3 of tlie induction hypothesis, sJ = bj, However, sJ = bj

implies that. .i~!+ 1 = bj and thus in this case s'j+1 = sJ. On the other hand, if sf = <I> or sj = <I>

then, again by Property 3 of the induction hypothesis, we have sj = Sj(n.·. "). and thus vertex j is

unstabl<> in the total state o.·sh. Altogether, sj+ 1 is either equal to sj or Sj(a·sh) for 1 ::; i ::; m;
thus s"R:sh+i_

We are now ready to construct sh+ 1. If j E ch+l let sJ+I = Sj(a-sh+ 1) and f3J(sh+ 1) =
{3J(S(a·sh+l)). If j (/. ch+1 , let sJ+1 = .sJ+1 and {3J(s1•·+1) = /JJ (sh+l). Note that this uniquely

determines sh+l. We now must v rify that sh+l satisfie. Properties 1-4. First, it follows immedi
ately from the construction that sh+1 R:sh+1. From the fact that sh R!sh+1 and from the induction
1.typot,liesis , it foll w~ t,l at bR;:/1+1 and Property 1 holds. Secondly, by construction, sj+1 = sj· for
(~vmy input d •lay and gate vertex and t.he only gate and input d lay vertices that are changed in
going fron, sh+ 1 to sli+l ar those tha.t change to <I> at step h + 1 in Algorithm A; hence it follows
from the induction hypothesis that Property 2 holds for every gate and input delay vertex in sh+I.

Now, consider any wire vertex j which is in the fan-out set of vertex i and in the fan-in set of
vertex k and for which skh+l = bk If sh+l = sh and sh+l = sh then by the construction s~+l = sh

• "

0

I I J J ' 'I I

and sJ+ 1 = sj. Thus, by the induction hypothesis, Property 3 holds for j. On the other hand, if

i E ch+J, the construction of sh+ 1 ensures that every wire vertex in the fan-out set of gate i will
be uost.abl , sim:c w imultaneously . et its output to its current excitation and change its input.
Hen ·e, Property 3 holds in thL case too. Finally, if s7+ 1 = bi but sJ+1 = <I>, it follows immediately
t.hat h must be O and tha.t thr ·ir ·uit was start. d in a state in which wire vertex j was unstable,
i.e., bj = SJ(a-b). Since neither i nor k is in C1

, it follows thats} = s? = bi and that s3 = sJ = bj.
Since the excitation of wire vertex j is completely determined by the value on gate or input delay
vertex i, it follows that wire vertex j will remain unstable in total state a·sh+l and Property 3
holds.

Finally, consider any wire vertex j such that j E {3i, j E ci, s7+ 1 = sZ+ 1 = <I> and "Ii ~ Tk· There
are two cases to consider. If i E ch+l then, by the construction of sh+I, we have sJ+1 = Sj(a•s"+1).

On the other hand, if i ¢ c1i+1, then k ¢ ch+I, since otherwise "lk > Ti· However, if neither i nor
k is in ch+! then none of i, j, and k changes in going from sh to sh+I . Since j is a wire vertex,
its excitation depends only on the value on vertex i. Consequently, the excitation of vertex j does
not change in going from sh to sh+l. By Property 4 of the induction hypothesis, it follows that

14

D

From this result, we immediately obtain the following:

Corollary 2 Let N and N be as in Theorem 1. Then, for l < J < m, there exists a state
sl E {O,l}m such that bR:s1 and

lub{ bj , s~} ::;J s:.

Proof: If sf = bj, the r esult follows trivially. So assume sf = <I>. If j is an input delay or gate
vertex, then the result follows immediately from Lemma 2, Property 2. So assume j is a wire vertex
between vertices i and k, i.e., (i,j) E £ and (j, k) E £. If vertex j is unstable in the total state a-b,
then we can reach a state in which Sj = bj. Hence, assume wire vertex j is stable in state a·b. The
excitation of wire vertex j is completely determined by the value on vertex i; thus Sj(a·s) = bi for
every s E { 0, 1} 1" such that. Si = bi. Assume vertex j changes to <I> at step r in Algorithm A. This
implie:::, that vertex i must have changed to <I> in step r - l , and thus sf = <I> . By Property 2 of
Lemma 2, this implies that we can reach a state s E {O, l}m such that Si = bi. This means that
Sj(a.·s) = bj; thus we can reach a states in which Sj = bj. □

The proofs of the results below follow closely the general pattern used in [4]. The main difference
is that in [4] Algorithm B was applied to a gate-state network, whereas here we apply it to an input-,
gate-, and wirf'-s t.at e network.

Given the result t 8 of Algorithm B, if tf = <I> , we say that vertex j is indefin ite; otherwise
it is definite. Note that every input delay vertex is definite since we assum that the inputs to
thP circuit are always binary. Let V denote the set of definite vertices and :1 the set of indefinite
vertice8.

Assuming there is at least one indefinite vertex j (i.e., Algorithm B does not yield a binary
result), there must be some other vertex i E ci which is also indefinite. Otherwise, all inputs to
vertex j would be binary and its excitation could not be <I>. Since the network N is finite, we must
have at least one cycle of indefinite vertices; such a cycle will be called indefinite. Note that, since
we are using an input-, gate-, and wire-state network-thus every loop in the network is of length
at least two-there must be at least one gate vertex and one wire vertex in every indefinite cycle.

Eventually we want to show that, if the result of Algorithm B contains at least one <I>, there
exists a non-transient cycle of length 2'.: 2 (i.e., an oscillation) in the graph of the relation Ra for
N such that all indefinite vertices "take part" in the oscillation, i.e., each vertex variable takes on
both values O a.,nd 1 in the cycle. Furthermore, that cycle is reachable from the initial state of N.

The following definitions help to simplify the proofs. A total state a·c of N is compatible with
a-t 8 if c[;;;t 8 . Also, a total state a·c of N is definite stable if all the definite vertices are stable
in that state. Finally, a total state a·c of N is loop unstable if there is at least one unstable wire
vertex in each indefinite cycle of N.

Lemma 3 Let N and N be as in Theorem 1 and let sA E {O, 1 }m be a state derived as in the proof
of Lemma 2. If th is the result of Algorithm B after h steps, 0 ~ h ~ B, then there is a state
th E { 0, 1} m s-uch that:

l. bR:th,

I l. th [;;; t'1
•

III. if tJ = <I> then tJ = sf .

15

Proof: We proceed by induction on h. For the basis, let t0 = sA . Properties I-III follow trivially
from the fact that t 0 = sA, from Proposition 2. and from the assumption that sA satisfies Properties
1-3 of Lemma 2.

Assume inductively that th has been constructed and let

iftj+l E {0, 1}

otherwise .

Clearly, thR;th+I _ Together with the induction hypothesis Property I, it follows that bR;th+I. For
P roperty II. ('ousider any vertex j. If t;1+1

· = <I> t hen it follows trivially that tJ+l ~t7+1
. Hence

assume that t~•+1 E {O, 1}. By definition of Algorithm B, tJ+1 = Sj(a•th). By the indu t ion

hypothesis Property II and the monotonicity of S, it follows that Sj(a•th)~Sj(a·th) = tJ+1
. But

1 (<i ·th) = Sj(ti •th). :;;incf' the ternary ext.eusion S agrees with S on binary arguments. By con
struction , t~• + I E {0.1} in plies that t1.+I = Sj(a•th) . Thus, it follows that tJ+1~tJ+1

. Since j
Wc;l.tl c1,rbit.rnry, Property II follows, Finally. b the monotonicity of Algorithm B (Proposit ion 3) if
t~ + i = <I> t ll 11 t~' = 4> . Howf'v r. by const,ru ti n. if t1+1 = <I> then tj+ 1 = tj. This, toget,her with

the induction hypothesis Property III, implies that if tj+ 1 = <I> then tj+ 1 = tj = sf and Property

Ill followi:;. Since Properties I-III hold for th-rl, the induction goes through and the lemma follows . 0

Lemma 4 Let t E {O, 1 }m be any state such that t~t8 . Then t is definite stable.

Proof: By Proposition 3, t 8 = S(a-t8). Now consider any definite vertex j. By the definition
it follows that tf E {O, 1} and thus tJ = S1(a•t 8) E {O, l}. However, by the assumption that
t~t 8 . and by the monotonicity of S, it. follows that Sj(a·t)~Sj(a-t 8) = tf E {O, 1} and therefore

S1(a·t) = tf. But S 1(a •t) = S1(a·t) , since the ternary extension S agrees with S on binary argu
ments. Altogether, if t f E { 0, 1} then Sj (a·t) = tf = tf, where the last equality follows from the

fact that t: i;;;;;,tf. 0

Corollary 3 Let t8 be a state derived as in the proof of Lemma 3. Then t8 is definite stable.

Proof: The proof follows immediately from Lemma 4 and Property II of by Lemma 3. □

Lemma 5 Let t 8 be a state derived as in the proof of Lemma 3 . Then t 8 is loop unstable.

Proof: It. is sufficient to prove the claim for each indefinite simple cycle, where a cycle is simple
if it has no repeated vertices except for the first and the last vertex in the cycle. Let C be an
arbitrary indefinite simple cycle in N. Note that C contains only gate and wire vertices, since no
input delay vertex can be indefinite. A gate vertex i in C is said to be terminating if no other
gate vertex in C becomes <I> in Algorithm A after vertex i. Clearly, there must be at least one
terminating vertex in C. Assume vertex i is terminating in C and that it became <I> at step r of
Algorithm A. Since i is in C, one of the wire vertices in (Ji must be the successor vertex to i in C;
assume this is vertex j. We now claim that j is unstable in t 8 . Note first that since i and j are
iu<lefinite vertices, i.e., tf = tf = <I>, by Proper t. , III of Lemma 3, we can conclude tha t. tf = sf
and tf = sf . Furthermor , since j is a wire vertex. its excita ion is completely determined by the

16

value on gate vertex i. Thus, if j is unstable in sA, then it is also be unstable in t8 . Finally, since
i is t.ermina.ting, it. follows that '"Yi ~ 'Y~- for every other gate vert.ex in C. In parti ular, if j E c-i
(k = i i.s possible), then 'Yi~ 'Yk· By Lemma 2 Property 4 it follows that sf= Sj(a·sA). □

The proof now proceeds as follows. Starting with a state s E { 0, 1} m we first exhibit a sequence
of states

where r is the number of indefinite gate vertices, and, for O ~ k ~ r, exactly k indefinite gate vertices
in sk have values complementary to those in s, and the other indefinite gate vertices are the same
as in /:i. Note tha.t. we do not say anything about the indefinite wire vertices. For convenience,
we will say that. k indefinite vertices have been "marked" in this way. By repeating this process
of marking (i.e., complementing) all of the indefinite gate vertices, we show the existence of an
oscillation involving all the indefinite gate vertices. We then show that every indefinite wire vertex
also oscillates in the constructed cycle.

Lemma 6 Let t 8 be the result of Algorithm B and let a·s be any total state compatible with a•t8 ,

definite stable, and loop unstable. Assume that zero or more, but not all, indefinite gate vertices
are marked. As.mme also that every wire vertex between a marked and an unmarked indefinite gate
vertex is unstable. Then there exists at least one unmarked indefinite gate vertex k, s·uch that all
indefinite wire vertices in ak are ·unstable.

Proof: Consider the directed graph G = (V', £'), where

V' = { i E S I tf = <I>}, and

£' = {(i,j)E£JiE9 or Si=Si(a·s)}.

G can be obtained from the network graph by retaining only the indefinite vertices and those edges
between indefinite vertices that are in the fanout set of vertices that are stable in a·s. G has two
important. properties:

1. there is no path from a marked vertex to an unmarked vertex, and

11. there is no cycle in G.

Both properties follow from the construction of G and the assumptions in the lemma.
Now consider a reverse path in G. Start at some unmarked gate vertex k E V' and traverse G

backwards. ffom, (ii) and the fact that G is finite, it follows that a reverse path in G started at
vertex k must stop at some vertex, say j. Note that j must be a gate vertex, and, by (i), must
be unmarked. Furthermore, since each indefinite gate vertex has at least one indefinite wire vertex
in its fan-in set. it follows that all indefinite wire vertices in a1 must be unstable; otherwise the
reverse path would not have stopped at j. □

Lemma 7 Let t 8 be the result of Algorithm B and let a·s be any total state compatible with a-t 8 ,

definite stable, and loop ·unstable. If, for some indefinite gate vertex j, all indefinite vertices in ai
are ·unstable, then there exists a state .~ reachable from s, compatible with t 8 , definite stable and
loop unstable, such that

17

ii. all indefinite wire vertices in (31 are unstable in s.

Proof: We construct s in two steps. First we show that there is a state s reachable from s such
that ."r/1 = S1(a-.s). We then show how to reach s from s.

For <'Vti ry i nput, I lay an I p;a1.e vertex k. let. sk = sk - If k # j, let ci(s) = ak(s). Let
n1 (s) = <J , wl1tm1 c.J E {O. l}d; is sn ·h that cJ~n-J(t 8) and S1(a·c) = b1 for all c E {0 1 l}m such
that, a-'((') = (J. We claim that sucli ('J is guaranteed to exist. Suppose it did not, i.e.; assume that,
for all cJ E {O. l}di such that c1~aJ(t8), there is some state w E {O, l}m such that d = a1(w) and
S1(a·w) = w1. Since S1 depends only on the vertices in a 1

1 we can conclude that S1(a·w) = w1
implies S1(a.·w') = w1 for every w' E {01 l}m such that aJ(w) = aJ(w') . Altogether, we have
that S1(a.·w) = w1 for every w E {O, l}m such that a1(w)~a1(t 8). By the definition of ternary
extension. this implies that S1(a-t 8) = w1. But, by Lemma 3, S(a·t 8) = t 8 ; thus tf = w1 E {O, l} .
This contradicts the assumption that j is an indefinite gate vertex. Hence, our claim that such cJ
exists is true.

It remains to be shown that sR;s. However, this follows from the fact that c7~a1(t 8), the fact
that all indefinite vertices in a J a~·e unstable, and the fact that s is compatible with t 8 .

and

We now are ready to construct i,. For every input and gate vertex i let

if i = j'
otherwise

,J.(.) = { (JJ(S(a.-s))
J.J, s £3'(.s)

if i = j,
otherwise .

Clearly, .sR~s and thus sR~s. By construction, s1 = S1(a·s) = s1, and Property (i) holds. On the
other hand, the construction of s ensures that every wire vertex in the fan-out set of gate j will be
unstable. since we simultaneously set their outputs tu their current excitations and change their
inputs . Thus Property (ii) follows. If gate vertex j is indefinite, then each wire vertex in /31 is also
indefinite. Consequently, it is straightforward to verify that s is definite stable, loop unstable, and
compatible with t 8 . □

Lemma 8 Let t 8 be the result of Algorithm B and let a-s be any total state compatible with a-t 8 ,

definite stable. and loop ·unstable. Assume there are r indefinite gate vertices. Then, for each
k, 0 ~ k ~ r , there is a state sk E {O, l}m with k vertices marked such that sR~sk and a,sk is
compatible with a-t 8 • definite stable, loop ·unstable, and every wire vertex between a marked and an
·unmarked indefinite gate vertex is unstable.

Proof: We proceed by induction on the number of indefinite gate vertices which have been marked,
i.e., complemented. For the basis, k = 0, let s0 = s and the claim follows trivially. Now assume
inductively that the claim holds for k ~ 0. By Lemma 6, it follows that there exists an unmarked
indefinite gate vertex j such that all indefinite gate vertices in a1 are unstable in a·sk. But Lemma 7
guarantees the existence of a state sk+1, such that sk R;sk+1 and a,sk+1 is compatible with a-t 8 ,

definite stable, and loop unstable. Furthermore, gate vertex j is complemented, and all the indef
inite win=- vertices in 31 are unstable in a·sk+l _ Now mark vertex j, and note that all indefinite
wire vertices between marked and unmarked indefinite gate vertices are still unstable. Hence, the
inrluction step goes through and the lemma follows. D

18

Corollary 4 Let t 8 be the result of Algorithm B and let a-s be any total state compatible with
a•t 8 , definite stable, and loop unstable. Then there is a state s reachable from s and such that
a,·s is compatible with a-t8 , definite stable, loop unstable, and all indefinite gate vertices have
complementary values in s and s.

Proof: This follows immediately from Lemma 8 for k equal to the number of indefinite gate ver
tices □

We are now ready to state and prove the main result of this section:

Lemma 9 Let N and N be as in Theorem 2. Then there exists a non-transient cycle Z which is
reachable from the initial state b such that

lub{ 8 I s E Z} ~ t 8
.

Proof: By Lemmas 3 and 5, and-Corollary 3, it follows that a-t8 is compatible with a-t 8 , definite
stable, and loop unstable. Hence, Corollary 4 can be applied. Since Corollary 4 can be applied any
number of times and t?ere is only a finite number of possible states, there must exist a cycle in the
Ra graph. By the construction of Corollary 4 it follows that each indefinite gate vertex oscillates.
By the construction in Lemmas 7 and 8, it is also easy to see that every indefinite wire vertex in the
fanout sets of the indefinite gate vertices also oscillates. However, a wire vertex j in the fan-out set
/3' of some gate vertex i is indefinite if and only if gate vertex j is indefinite. Hence, every indefinite
vertex is oscillating. Since all definite vertices are stable, it follows that the cycle is non-transient. 0

References

[l] J. H. Anderson and M. G. Gouda. A new explanation of the glitch phenomenon. Acta
Informatica, 28:297- 309, 1991.

[2] .J. A. Brzozowski and J. C. Eberg n . Recent developments in the design of asynchronous
circuits. In J. Demetrovics J. Csirik and F. G · cseg, editors, Proceedings of Fundamentals
of Computation Theory, Lecture Notes in Computer Science, pages 78-94, Berlin, Germany,
August 1989. Springer-Verlag.

[3] J. A. Brzozowski and J. C. Eb rgen. On the delay-sensitivity of gate networks. IEEE Trans
actions on Computers, 41(11):1349-1360, November 1992.

[4] J . A. Br.zozowski and C-J. H. Seger. A charact -•rization of ternary simulation of gate networks.
IEEE Transactions on Comp·nters, C-36(11):1318-1327, Novemb r 1987.

[5] J. A. Brzozowski and C-J. H. Seger. Advances in asynchronous circuit theory part I: Gate
and unbounded inertial delay models. Bulletin of the European Association of Theoretical
Comp·uter Science, 1990(42):198-249, October 1990.

[6] J. A. Brzozowski and C-J. H. Seger. Advances in asynchronous circuit theory part II: Bounded
inertial delay models, MOS circuits, design techniques. Bulletin of the European Association
of Theoretical Computer Science, 1991(43):199-263, February 1991.

[7] J. A. Brzozowski and C-J. H. Seger. Asynchronous Circuits. Springer-Verlag, to appear, 1994.

19

[8] J. A. Brzozowski and M. Yoeli. Digital Networks. Prentice-Hall, Inc., Englewood Cliffs, New
.Jersey, U.S.A., 1976.

[9] .J. A. Brzozowski and M. Yoeli. On a ternary model of gate networks. IEEE Transactions on
Computers, C-28(3):178-184, March 1979.

[10] E. B. Eichelberger. Hazard detection in combinational and sequential switching circuits. IBM
Journal of Research and Development, 9:90-99, 1965.

[11] D. A. Huffman. The synthesis of sequential switching circuits. IRE Transactions on Electronic
Computers, 257(3):161-190, March 1954.

[12] D. A. Huffman. The synthesis of sequential switching circuits. IRE Transactions on Electronic
Com.vu.ters, 257(4):275-303, April 1954.

[13\ Z. Kohavi. Switching and Finite Automata Theory, Second Edition. McGraw-Hill Book Com
pany, New York, New York, U.S.A., 1978.

[14] M. M. Mano. Digital Design, Second Edition. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, U.S.A., 1991.

[15] E. J. McCluskey. Fundamental mode and pulse mode sequential circuits. In C. M. Popplewell,
editor, Proceedings of the IFIP Congress 62, pages 725-730, Amsterdam, The Netherlands,
1963. IFIP, North-Holland Publishing Company.

[16j E. J. McCluskey. Logic Des-ign Principles. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
U.S.A .. 1986.

[17] C. E. Molnar, T. P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive modules.
In H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on VLSI, pages 67-86,
Rockville, Maryland, U.S.A., 1985. Computer Science Press.

[18] M. Mukaidono. Regular ternary logic functions-ternary logic functions suitable for treating
ambiguity. In Proceedings of the 13th Annual Symposium on Multiple- Valued Logic, pages
286-291, Los Angeles, California, U.S.A., May 1983. IEEE, Computer Society Press.

[19] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceedings of n
Internat·ional Symposium on the Theory of Switching, Annals of the Computation Labora
tory of Harvard University, pages 204-243, Cambridge, Massachusetts, U.S.A., 1959. Harvard
University, Harvard University Press.

[20] C. E. Shannon. A symbolic analysis of relay and switching circuits. AIEE Trans., 57:713-723,
1938.

[21] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-lnterscience, New York, New
York, U.S.A., 1969.

[22] M. Yoeli and I. Reicher. Synthesis of delay-insensitive circuits based on marked graphs. Tech
nical Report 543. Department of Computer Science, Technion, Haifa, Israel, 1989.

[23] M. Yoeli and S. Rinon. Application of ternary algebra to the study of static hazards. Journal
of the ACM, 11(1):84-97, June 1964.

20

