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Abstract

Discretized representations of deformable objects, based

upon simple dynamic point-mass systems, rely upon the

propagation of forces between neighbouring elements to

produce a global change in the shape of the surface. At-

tempting to make such a surface rigid produces sti� equa-

tions that are costly to evaluate with any numerical sta-

bility. This paper introduces a new multilevel approach

for controlling the response of a deformable object to ex-

ternal forces. The user speci�es the amount of exibility

or sti�ness of the surface by controlling how the applied

forces propagate through the levels of a multi-resolution

representation of the object. A wide range of surface be-

haviour is possible, and rigid motion is attained without

resort to special numerical methods. This technique is

applied to the displacement constraints method of Gas-

cuel and Gascuel [5] to provide explicit graduated control

of the response of a deformable object to imposed forces.

1 Introduction

The quest for visual realism has been a major driving

force in computer graphics research for many years. This

realism applies to problems in global and local illumina-

tion, as well as problems in specifying geometry of objects

and their interactions with other objects.

Modeling is hard, and modeling the dynamics of objects

that deform and interact with other objects over time is

even harder - doubly so if physical validity and/or real

time interaction is required. In situations such as com-

mercial animation where control is more important than

physical validity, certain simplifying assumptions can be

made to decrease the amount of computation required

while retaining speci�c key features of the model's be-

haviour. Even so, models based upon even simpli�ed
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models of real-world physics are often di�cult to con�g-

ure and the complex dynamics of the interacting compo-

nents makes it di�cult to elicit speci�c behaviours from

the system.

For the purposes of this paper, a local response of a sur-

face to an imposed force is de�ned as one where forces act

upon individual elements of the surface de�nition (such as

point masses) and any global response or overall change in

surface shape arises through the propagation of the reac-

tion of the a�ected elements with adjoining components

of the surface.

This paper explores an new approach to determining

the local and global response of a surface. This technique,

when applied to a local model of surface deformation, en-

dows it with the capacity for global response without the

overhead incurred by the use of a more complex model of

dynamics or a system requiring sti� equations. The goal

of our work is to develop a system speci�cally targeted

for animators where speed and control are the essential

elements of any dynamic model of deformation, and not

physical validity.

For the local model of surface deformation we will use

a technique introduced by Gascuel and Gascuel [5] called

\displacement constraints". This approach uncouples the

constraints connecting components of the surface (in this

case line segments) from the e�ects of any external forces.

First, the dynamic behaviour of each component is deter-

mined based upon the physical properties of the compo-

nent and the laws of rigid body dynamics. This is followed

by an iterative step that attempts to satisfy the geometric

constraints between components. This approach satis�es

our de�nition of local response in that all the calculations

operate on the individual components and any global ef-

fect must arise by propagation of the e�ects between ele-

ments.

Section 2 presents previous research on deformable and

exible modeling. The displacement constraints algo-



rithm itself is discussed in section 3. In section 4, we

present our technique where the degree of local vs. global

response of a surface is controlled by using the original dis-

placement constraints algorithm on each level of a multi-

resolution surface representation and by controlling how

applied forces are propagated between these levels. Con-

clusions are presented in section 5 and future work in

section 6.

2 Related Work

This section presents a brief overview of the body of re-

search dealing with models of deformable surfaces for ani-

mation as they pertain to local and global aspects of shape

control.

In 1987, Demetri Terzopoulos et al. [15] introduced

elastically deformable models to the computer graphics

community in which they use a simpli�ed nonlinear elas-

ticity theory and potential energies of deformation to de-

velop deformable models of elastic curves, surfaces and

solids. Terzopoulos and Witkin [17] developed a hybrid

formulation for deformable models that decomposes an

object into a reference component and a displacement

component. Terzopoulos and Fleischer [13] extend this

work to model inelastic behaviour such as viscoelastic-

ity, plasticity and fracture and in Terzopoulos et al. [16]

further extend this to include simulation of thermal phe-

nomena.

In 1991, Terzopoulos and Metaxas [14] introduce de-

formable superquadrics, used for transforming geomet-

ric primitives and deformations into dynamic models.

This hybrid model supports both local (based on �nite

elements) and global (through shape parameters acting

upon the underlying superquadric shape) deformations.

Metaxas and Terzopoulos [9, 10] present an extension

to [14], which they claim is a more physically valid ap-

proach. This model supports local and global transfor-

mations in a similar manner as in [14]. They extend this

work to include parameterized global deformations such

as tapers and bends.

In 1988, Platt and Barr [11] use mathematical con-

straint methods based on physical constraints and opti-

mization theory to model and animate constrained ex-

ible solids. The reaction constraints guide a exible

solid along a path and prevent these solids from pen-

etrating other polygonal objects. Bara� and Witkin[1]

present a dynamic model for exible bodies where defor-

mations take the form of global deformations of an ob-

ject's rest shape. Objects are deformed by parametric

\space warps" applied to all the points on the object.

In 1992, Szeliski and Tonnesen [12] present a surface

representation based on \oriented particles", where in-

dividual elements have a geometry and react locally to

external forces to create and manipulate elastic surfaces.

House et al. [8] also use particle systems to model exible

materials. More recently, Gascuel [6] presents a model

for deformable objects based on iso-surfaces of potential

�elds.

In 1988, Barzel and Barr [2] present a modeling system

for constraint-based dynamics. This model is similar to

the displacement constraints model. Rigid primitive ob-

jects are linked together by various geometric constraint

mechanisms such as \point-to-point" and \point-to-nail"

constraints. Here, the constraint forces are incorporated

into the dynamic equations of motion, resulting in a sys-

tem of coupled di�erential equations. Another similar

approach was presented by van Overveld [18]. As in [2],

and also with displacement constraints, rigid objects are

connected together by geometric constraints to form a

more complex object. This work di�ers from [2] in that

it makes the assumption that the constraint forces and

the external forces may be uncoupled. Displacement con-

straints also makes this assumption, but the manner in

which the constraints are satis�ed is quite di�erent.

3 Displacement Constraints

Displacement constraints (DC) is a technique introduced

by Gascuel and Gascuel [5] to provide deformables sur-

faces for use in the animation of articulated �gures. DC

uses a simpli�ed dynamic modeling technique that, al-

though using a very simpli�ed model of physics, attempts

to preserve �rst order linear momentum. Constraints,

such as point-to-point, point-to-line and point-to-plane,

are geometric, i.e. displacements, rather than actual

forces, and are solved using an iterative scheme described

in more detail below. By avoiding explicit calculation of

constraint forces and by solving the the constraints sepa-

rately from the equations of motion, DC is presented as

being simpler and more e�cient than coupled dynamic

systems.

Complex objects are de�ned by connecting primitive

rigid objects (typically lines) together. Each primitive ob-

ject has its own mass and tensor of inertia. Several prim-

itive objects are linked together by geometric constraints

(point-to-point, point-to-line, etc.) to form a composite

object. During the initial dynamic step of the calcula-

tions, each primitive object is treated independently and

reacts to external forces according to the physical laws

describing the motion of rigid bodies. Constraints are

enforced by iteratively adjusting the position and orien-
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Figure 1: Steps in one iteration of the Displacement Constraints Algorithm.

tation of each primitive object (in a manner that attempts

to conserve �rst-order linear momentum) until the error

meets a set tolerance or the number of iterations exceeds

some maximum.

3.1 The General Algorithm

For an object composed of many primitive objects, the

new position and orientation of the composite object are

computed using the algorithm in �gure 2.

Step 1: Determine all external forces (gravity, contact

forces, user-applied forces, etc.) acting on each primitive

object.

Step 2: Solve the rigid-body equations of motion for

each primitive object [7] as determined by the physical

characteristics of the primitive object and the applied

forces. Each primitive object is treated independently

from all other objects.

Step 3: The constraints are satis�ed by iteratively dis-

placing (rotating and translating) each primitive object

until the constraints are met (within a set threshold), or

until the maximum number of iterations is reached. The

magnitude of the translation and rotation applied during

one iteration is controlled by the animator.

Step 4: The current linear and angular velocities of

For each time step:

1. Calculate all external forces.

2. Solve the equations of motion.

3. Solve the constraint system.

4. Update the linear and angular velocities.

Figure 2: Original DC Algorithm

each primitive object are calculated with respect to the

change in position and orientation obtained in the previ-

ous time step.

Figure 1 depicts one complete timestep of the DC cal-

culation. Figure 1(a) shows the initial con�guration of

a mesh created by linking line segments with point-to-

point constraints. In �gure 1(b) an upward force (shown

as vertical lines) is applied to a corner of the mesh. Note

that a portion of the force is applied to the center of the

adjacent segments to imbue linear acceleration to the seg-

ment in addition to the angular acceleration induced by

the force applied at the endpoint. The distribution of

the force between the center and end of a line segment

is under the control of the animator. Figure 1(c) shows

the result of solving the equations of motion separately
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Figure 3: Multilevel breakdown of a 9�9 mesh

for each primitive object. Note that at this stage only

two of the segments are a�ected. Figure 1(d) shows the

�nal mesh after several iterations of constraint satisfac-

tion where all the constraints imposed upon the mesh are

within tolerance.

3.2 Local Response

Displacement constraints, as with many techniques in-

volving involving a discretized model, relies upon the

propagation of a localized surface disturbance to neigh-

bouring elements to produce an overall or global e�ect

upon the surface. As demonstrated in �gure 1, an up-

ward force applied to a corner of the mesh does in fact

a�ect the entire surface, but the magnitude of the e�ect

is rapidly reduced away from the site of the disturbance.

This e�ect is even more pronounced with DC because

each sub-component of the object is treated as a com-

pletely independent object during the dynamic phase of

the calculation. There is no notion of imposing upon

the object a global attribute, such as angular velocity,

to cause the entire object to spin about its aggregate cen-

ter of mass. The discrete nature of DC makes it almost

impossible to elicit a global behaviour such as a sti� piece

of paper falling to the ground, or a leaf being blown by

the wind - without some drastic change in the basic for-

mulation.

4 A Multilevel Approach

For an object to respond globally to an external force,

there must exist some mechanism that allows an object

composed of many elements to be treated as a whole

rather than a discretized collection of sub-parts. It is also

not su�cient to have an "all-or-none" global response,

there must also be speci�c control over the solution such

that the behaviour of the surface in response to an ex-

ternal force can range from "very exible" (i.e. behaves

just as it would using the unmodi�ed DC method) to

nearly rigid. By using a multilevel approach inspired by

the numerical multigrid method, the DC technique can

For each time step:

1. Determine forces acting on original mesh.

2. Restriction Phase - For all levels starting at �nest:

(a) Apply the restriction operator to transfer posi-

tions, orientations, masses and forces through

to next coarsest level.

3. For all levels starting at coarsest:

(a) Apply forces and solve using rigid body dynam-

ics.

(b) Satisfy the constraints using Gascuel's method

to determine �nal position, orientation and lin-

ear and angular velocity at this level.

(c) Prolongation Phase: use the prolongation op-

erator to pass the solutions (positions and ori-

entations) to the next �ner level.

Figure 4: DC Algorithm with Multilevel Solution

be directly applied to a multi-resolution model of the sur-

face to control the range of local/global behaviour of a

surface. To distinguish our method from the multigrid

method, we will refer to ours as a multilevel method.

In the basic multigrid method [3], an initial value prob-

lem over a rectilinear mesh is solved by decomposing the

mesh into several levels of decreasing resolution. This pro-

cess is called restriction and is shown in Figure 3. The

equations are solved, starting at the coarsest mesh us-

ing an iterative approach such as Gauss-Seidel, and the

results distributed to the next �ner mesh (called prolon-

gation) to act as the initial approximation for another

application of the iterative equation solver. This process

is repeated for this level and the prolongation step pro-

duces the initial approximation at the next �ner level and

so on until a solution at the original resolution is calcu-

lated. In many situations a multigrid formulation will

converge faster than the same iterative solver applied to

the original mesh.
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Figure 5: Restriction of a center mesh point.

The multilevel method using DC takes a similar ap-

proach, not to improve numerical qualities, but to increase

the control and expand the range of possible behaviours

of the surface. In short, DC applied to the �nest level

mesh exhibits a purely local response (by de�nition), and

the same algorithm applied to the coarsest mesh (i.e. a

rigid body) exhibits a purely global response (by de�ni-

tion). By controlling the application of DC to all lev-

els of a multi-resolution surface representation, the sur-

face will exhibit a response that is neither purely local or

purely global. We assume that the spacing between mesh

points in a particular level is half the spacing between

mesh points in the next coarser level. In other words, we

will be working with meshes of size 2n+1 where n >= 0.

The general multilevel algorithm is given in �gure 4. In

the �rst step, any external forces acting on each line seg-

ment in the original mesh are collected. In the restriction

phase, a restriction operator (described in greater detail

below) transfers positions, orientations, masses and forces

from the present level to the next coarsest mesh and so

on to all levels in the multi-resolution representation of

the surface. In the dynamics phase, starting from the

coarsest mesh, any forces that remain are applied to the

segments in that mesh and standard equations for rigid

body dynamics are applied to each individual segment

(the dynamic phase). From this initial con�guration the

constraints are solved using Gascuel's DC algorithm to

determine the �nal position of all the segments (the con-

straint phase). A prolongation operator (also described

in greater detail below) uses the �nal con�guration to cal-

culate the initial position and orientation of the segments

of the next �ner level. The results of the constraint phase

applied to the �nest resolution mesh produces the �nal

con�guration of the surface for this time step.

4.1 Restriction

The restriction operator passes the positions, orienta-

tions, masses and forces at level k + 1 in the multi-

resolution representation of the surface to the next coars-

est resolution at level k.

The positions and orientations for the segments in

level k, are obtained directly from the next �ner level k+1
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Figure 7: Prolongation Operator using linear interpolation.
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Figure 8: Prolongation Operator using o�set information.

s1

s2

Figure 6: Adding two cross segments at coarsest

level to enforce rigidity

using the injection method [3]. The endpoints of a seg-

ment in level k are assigned the values of the correspond-

ing mesh points of level k + 1 and these two endpoints

de�ne the segment's orientation. If rk+1 and ck+1 are the

coordinates (row and column) of a mesh point in level k+1

(�ner), then the corresponding coordinates, rk and ck, in

level k (coarser) are de�ned by:

rk = b
rk+1

2
c; ck = b

ck+1

2
c

In the initial con�guration of the mesh, all linear and

angular velocities for all segments in all levels are set to

zero, but note that the linear and angular velocities are

not passed between levels but are retained from the pre-

vious timestep.

The coarsest level (level 0) of the mesh merits special

attention. In Figure 3(d), the mesh is composed of four

connected segments free to move in relationship to each

other as long as the endpoint constraints are met. This

does not correspond with the notion of a single rigid body.

Therefore, we designate this con�guration as level 1, and

create a rigid level 0 by adding two cross segments s1 and

s2 (Figure 6) to ensure that no bending occurs.

The masses are distributed to each segment in level k
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Figure 9: Local Behaviour - 100% of force acts upon the �nest level.

(a) (b) (c) (d)

Figure 10: Global Behaviour - 100% of force acts upon the coarsest level.

(a) (b) (c) (d)

Figure 11: Force distributed equally among levels.
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t=1.0s t=2.0s t=3.0s t=4.0s

t=5.0s t=6.0s t=7.0s t=8.0s

(g) (h)(f)(e)

Figure 12: Flexible mesh bouncing o� oor. 100% of the force acts upon the �nest level.

(a) (b) (c) (d)

t=1.0s t=2.0s t=3.0s t=4.0s

t=5.0s t=6.0s t=7.0s t=8.0s

(g) (h)(f)(e)

Figure 13: Rigid mesh bouncing o� oor. 100% of the force acts upon the coarsest level.



based on a weighted average scheme that maintains the

total mass at each level (i.e. each level has the same total

mass). Currently, the mass of each individual segment

is evenly distributed (the inertia tensor matrix for each

line segment is the identity matrix). Thus, if all segments

in the original mesh are of equal mass, then the mass is

evenly distributed to each segment in all levels.

Applied forces are distributed between levels by assign-

ing some percentage of each force applied to level k + 1

to speci�ed mesh points at level k. Since each level k is

half the resolution of level k + 1, only some of the mesh

points will correspond between levels. If a mesh point in

level k + 1 lies between two mesh points in level k, the

force is evenly distributed among the neighbouring mesh

points of level k as shown �gure 5(a) where the force is

transferred to mesh points, p1, p2, p3 and p4. A portion

of each force is also applied to the center of each seg-

ment, as described in section 3. The forces on the four

segments connecting the mesh points p1, p2, p3 and p4,

act only on the center of gravity of each segment because

equal forces were applied to both endpoints of the seg-

ment. Figure 5(c) shows the state of the coarser level

after the dynamic phase. The �nal con�guration of the

mesh after solving the constraints is shown in �gure 5(d).

In the last example, the original force was divided

equally between levels. However, the animator can choose

to apply any portion of force, from 0% to 100%, to any

particular level, or change the correspondence rule to dis-

tribute the forces to a wider or narrower portion of the

mesh.

4.2 Prolongation

The prolongation operator transfers the solutions (posi-

tions and orientations) from level k to level k+1 and pro-

vides the initial con�guration at level k + 1 for another

round of dynamics and constraint satisfaction.

The prolongation operator is intended to be the exact

adjoint of the restriction operator (i.e. if level k is un-

changed by the dynamic and constraint phases at that

level, the original level k + 1 is restored). However, this

is not the case if linear interpolation, one of the standard

prolongation operators in multigrid formulations [3], is

used. The di�culty arises when a mesh point in level k+1

lies between two mesh points in level k. Figure 7 il-

lustrates this problem. Point p1 in level k + 1 lies be-

tween points p2 and p3 in the lower resolution surface at

level k. After the completion of the dynamic and con-

straint phases at this level, prolongation using linear in-

terpolation will generate p10 at the midpoint between p20

and p30. Thus, interpolation eliminates the kink in the

original mesh on the left side of �gure 7, and in general

will tend to smooth out the surface and inhibit localized

responses.

Linear interpolation is quite reasonable in a standard

multigrid setting where it simply provides the initial val-

ues for the next round of calculation, but this is not

the case in our intended application for animators where

shape preservation may be crucial.

To alleviate this situation we employ the reference plus

o�set form developed in [4] to represent the surface at

each level. In this formulation the position of p1 is coded

as an o�set vector, h, from the midpoint of segment p2p3

(note that this will not always be a right angle). The re-

striction operator is unchanged, but during prolongation,

(Figure 8) the o�set vector h is used to determine the po-

sition for the new mesh point, p10. This formulation will

preserve shape for any a�ne transformation of level k and

will tend to retain local details during the simulation.

Quaternions are used to update the orientation of the

o�set vectors during the prolongation phase. For exam-

ple, the rotation between segments p2p3 and p20p30 is con-

verted to a quaternion and applied to h to get h
0

. The

cross product of the two line segments de�nes the axis of

rotation, r, and the magnitude of r is set to the angle

between the two segments.

4.3 Example Animations

Figures 9, 10 and 11 contain frames taken from four sep-

arate animations. The error tolerance used when solving

the constraints is set to 0.4% of the length of the smallest

line segment; gravity is turned o� and the animation is

initiated by applying an upward impulse force (for one

timestep) to one corner of the mesh. The initial surfaces

are identical in terms of their physical properties, but

the distribution of the forces between levels is di�erent in

each.

Figure 9 shows the behaviour of the surface when 100%

of the force is applied to the �nest mesh and 0% to all

other levels. This behaviour is equivalent to that calcu-

lated using Gascuel's original DC technique.

Figure 10 shows the behaviour of the surface when

100% of the force is applied to level 0 and 0% to all other

levels. The surface acts as a sti� sheet and after the �rst

time step has constant linear and angular velocity. No

local response is observed.

In �gure 11, the forces are distributed equally between

all levels in the multilevel representation. The behaviour

of the surface is intermediate between that of �gure 9 and

�gure 10.



The �nal three examples (�gures 12, 13 and 14) show

a mesh bouncing o� the oor using di�erent force distri-

butions. The error is set to 0.4% of the length of a line

segment and the only external forces acting on the mesh

are gravity and contact forces from the oor. Simulated

shadows are included for clarity and are shown in white

on the surface of the oor.

In �gure 12, 100% of the forces are applied to the �nest

level. This mesh is very exible and its behaviour is equiv-

alent to that modeled by the original DC algorithm.

In �gure 13, 100% of the forces are distributed to level 0

to produce behaviour characteristic of a rigid surface. Fig-

ure 13(b) shows the mesh colliding with the oor and

�gures 13(c) through (f) show the new angular velocity

(counter clockwise) resulting from the collision. In �g-

ure 13(f), another corner of the mesh collides with the

oor and counteracts the angular velocity.

In �gure 14, the forces are distributed equally to all the

levels of the mesh producing a behaviour that is interme-

diate between that of �gure 12 and �gure 13, with both

local and global characteristics.

5 Conclusions

The displacement constraints method has been extended

using a multilevel representation of the surface where the

distribution of forces within the levels of the surface is

used to control the local/global behaviour of that sur-

face. The reference plus o�set form used for each vertex

in each level of the representation allows surface details to

be retained during any global deformations of the surface.

This technique allows displacement constraints, a sim-

ple local approach to surface deformation, to respond

globally to imposed forces without evaluating or enforcing

some global characteristic of the surface.

6 Future Work

The multilevel technique presented here is independent

of the formulation used to determine the response of any

speci�c level in the representation, and is compatible with

many of the techniques presented in Section 2. Thus dis-

placement constraints could be replaced by a more phys-

ically faithful formulation, or one such as [17] which in-

cludes the modeling of elastic objects. In this latter case,

the reference plus o�set form already encodes the rest-

shape of the surface at all levels in the representation.

One challenge will be to generalize the multilevel ap-

proach to surfaces of arbitrary topology and to surfaces

that can split apart, tear, or break into pieces.



(a) (b) (c) (d)

t=1.0s t=2.0s t=3.0s t=4.0s

t=5.0s t=6.0s t=7.0s t=8.0s

(g) (h)(f)(e)

Figure 14: An intermediate behaviour. The forces are distributed equally among levels.
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