
Conservative Approximations of Hybrid Systems�

Andrew K. Martin

Carl-Johan H. Seger

Integrated Systems Design Laboratory

University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada

October 25, 1994

Abstract

Systems that are modeled using both continuous and discrete mathematics are

commonly called hybrid systems. Although much work has been done to develop

frameworks in which both types of systems can be modeled at the same time, this is

often a very di�cult task. Verifying that desired properties hold in such hybrid models

is even more daunting. In this paper we attack the problem from a di�erent direction.

First we make a distinction between two models of the system. A detailed model is

developed as accurately as possible. Ultimately, one must trust in its correctness. An

abstract model, which is typically less detailed, is actually used to verify properties

of the system. The detailed model is typically de�ned in terms of both continuous

and discrete mathematics, whereas the abstract one is typically discrete. We formally

de�ne the concept of conservative approximation, a relationship between models, that

holds with respect to a translation between speci�cation languages. We then progress

by developing a theory that allows us to build a complicated detailed model by com-

bining simple primitives. Simultaneously, we build a conservative approximation by

similarly combining pre-de�ned parameterized approximations of those primitives.

1 Introduction

In our research laboratory we have a computer controlled model train set consisting of

about 35 feet of track, 13 computer controlled switches, three remotely controlled trains

and approximately 60 position sensors. Although it was built to provide a test bed for

designing mixed hardware/software systems, the train set has become a source of many

challenging research questions related to hybrid systems. While some of the problems

encountered are speci�c to our particular model train set, it is clear that others, such as

old sensor data, noise, unreliable sensors and actuators are typical of other real systems

as well.

One particularly challenging problem has been the development of a control system

that guarantees freedom from collisions. Of course, there is a trivial solution to this task:

�This research was supported by a Killam pre-doctoral fellowship, by a postgraduate scholarship and

by operating grant OGPO 109688 from the Natural Sciences and Engineering Research Council of Canada

and by a fellowship from the B. C. Advanced Systems Institute.

1

never move any trains! The challenge, however, is to guarantee collision freedom while

keeping the degree of utilization as high as possible. While working on this problem we

encountered two di�culties. The �rst was formalizing the above problem statement. The

second was verifying that a proposed solution was indeed correct. Partly because of our

circuit veri�cation background, and partly because of the nature of the speci�cation, a

model-checking veri�cation approach seemed natural. However, such an approach would

require a discrete state-machine model of the system.

Although, we could imagine various discrete state machine models of the train system,

it was hard to be convinced that such models were accurate re
ections of the physical

reality. Moreover, we needed some way to rephrase the question \can two trains collide"

into a veri�able property of such a state machine. Many aspects of the system, including

what it means for two trains to collide are much easier to model using continuous mathe-

matics. For example, the current position of an engine is, as a �rst approximation, a linear

function of the speed of the train, its last known location, and the time that has elapsed

since its location was known. On the other hand, any model of the system must also

include the hard-wired digital control logic that is used to interface the computer with the

train set. This control logic is modeled more naturally using discrete structures. While

we needed to model the physical system using a combination of continuous and discrete

mathematics, we had e�cient veri�cation procedures only for discrete state systems.

To capitalize on the strengths of both forms of representation, we have developed a

theory of \conservative approximation." Loosely speaking, a discrete state model is a

conservative approximation of a hybrid system if all veri�able safety properties of the

discrete state model also hold in the hybrid system. One observation we made early in our

e�ort to formalize this idea was that it is not enough merely to establish a correspondence

between the two systems. Of equal importance is the establishment of a correspondence

between the questions we can ask of one system and the questions we can ask of the

other. Intuitively, we need some way of translating our \two trains do not occupy the

same physical space" (which is a more precise statement of no-collision) question, to a

question about the discrete state model of the system. Thus a conservative approximation

must be de�ned in terms of a relationship between the questions, as well as a relationship

between the models.

To prove that one model is a conservative approximation of another with respect to

some question-translation, can be very di�cult and time consuming. If we had to establish

conservative approximation from the basic de�nitions every time we wanted to develop

a model of a system, this approach would not be practical. To address this di�culty,

we develop a calculus that allows us to build up conservative approximations of complex

systems from many simpler approximations.

Section 3 develops a simple hybrid modeling framework. This framework is illus-

trated using a simpli�ed version of our model train-set. The model is built by combining

primitive components, such as integrators, multiplexors, and sampling devices. Section 4

gives a very general de�nition of conservative approximation. In Section 5, we develop

a function that abstracts speci�cations. We then examine some of the primitives that

were used in the train-set model, showing how to construct approximations of them that

are conservative with respect to this function. Moreover, we show how to combine these

primitive approximations to yield a conservative approximation of the entire train system.

Finally, in Section 6, we show how to use the discrete conservative approximation and

conventional model-checking to verify that trains do not collide. The paper introduces a

moderate amount of notation to describe the trace-automata framework. This notation is

2

summarized in Appendix A.

This paper should be seen as the �rst step towards building a practical system that

would allow the user to construct natural and accurate models of physical plants by com-

bining simple, well understood, components. At the same time as the model is constructed,

the system would automatically construct a parameterized �nite state conservative ap-

proximation. Desired properties of the physical system could then be veri�ed against this

approximation.

2 Related Work

The idea of conservative approximation has been presented in other contexts by several

other researchers. Burch [4] constructs conservative approximations based on language

homomorphisms. In his framework, a trace algebra is an algebra with composition and

projection operators satisfying a small set of axioms. A trace is an element in the domain

of such a trace algebra. Veri�cation amounts to showing that the trace-set of an imple-

mentation is contained in the trace-set of a speci�cation. Burch uses homomorphisms

with respect to the operations in his algebras to construct mapping functions u and l
from concrete domains to abstract ones. A veri�cation problem is abstracted by mapping

the speci�cation with u and the implementation with l. The abstraction is conserva-

tive in that a successful concrete veri�cation can be inferred from a successful abstract

veri�cation. Burch calls the pair (u; l) a conservative approximation.

The theory is applied to a variety of trace structures all of which associate varying

amounts of timing information with discrete events. Burch shows how to construct con-

servative approximations from traces in which time is represented by real numbers, to

traces in which time has discrete values. A second-method, based on power-set algebras

over trace algebras, is used to construct conservative approximations from discrete time

traces with explicit simultaneity, to traces with interleaving semantics. In both of these

cases, the behaviour is represented as a sequence of discrete events, with real-valued time-

stamps. Burch does not consider systems involving continuous traces of real time. Nor is

the theory applied to hybrid models with multiple time scales.

Clarke et al. [5] describe an approach to abstraction in the context of �nite-state

transition systems. Programs and their abstractions are modeled as such systems. An

abstraction is de�ned by a surjection from the concrete state-space to the abstract. Spec-

i�cations are given in subsets of the temporal logic CTL. Atomic state formulae in the

logic refer only to the abstract state. The abstraction surjection provides a natural inter-

pretation of such formulae in the concrete domain. Thus the surjection provides both a

translation for models, and a translation for speci�cations. The authors show that such

abstractions are conservative when the speci�cation language is limited to 8CTL�, a sub-

set of CTL with only universal path quanti�cation, and restricted temporal operators. A

class of mappings are identi�ed that de�ne exact abstractions for CTL�. A similar, but

slightly more general approach to state abstraction is also described in [7].

Recently, there has been an increased interest in formalisms for describing the be-

haviour of hybrid systems. Raven et al. model hybrid systems using a real-time interval

temporal logic [10]. Both speci�cations and their re�nements are given as formulae in the

logic. Veri�cation amounts to showing that the re�nement implies its speci�cation. The

logic is de�ned over interpretations in which states are viewed as functions over real-time.

The technique is particularly aimed at expressing duration properties such as \Within any

time period of length T, state S may occur at most c per cent of the time." The logic is

3

inherently undecidable, but some sound deduction rules are given

Alur et al. [1] use hybrid automata to model system behaviour. The state of a hybrid

automaton consists of a location counter, drawn from a �nite set of locations, and a set

of real valued variables. The program counter de�nes the state of a �nite state machine.

Associated with each state is a set of di�erential equations, which govern the behaviour

of the real-valued variables while the �nite-state machine is in that state. Also associated

with each state is a set of exceptions, predicates over the real-valued variables. Progress

can be made by such an automaton in two ways. As time passes, the real-valued variables

change their value according to the active set of di�erential equations. At any time, the

entire state of the machine may change instantly according to a transition relation over

both the location counter and the real-valued variables. To ensure progress, the automaton

must make such an instantaneous transition before the elapse of su�cient time to satisfy

one of the exception predicates.

The authors give a semi-decision procedure for proving that members of a restricted

class of hybrid automata satisfy linear invariants over the real-valued variables. The pro-

cedures, based on computing and minimizing �xed points, are guaranteed to give correct

results if they terminate. Several examples are given for which the procedures do indeed

terminate.

A completely di�erent approach to hybrid system speci�cation [12] and veri�cation [13]

is given by Zhang and Mackworth. They use a formalism called constraint-nets to represent

hybrid systems. Essentially, a constraint net represents the evolution of a system state as

a set of mappings from algebraically de�ned time-structures to variable domains, which

must have certain algebraic properties. These mappings represent the shared inputs and

outputs of a set of transductions, and must be causally related with respect to the time

structures. Semantically, a constraint net is denoted by the least �xed point of a set of

equations. The existence of such a �xed-point is guaranteed by the algebraic properties of

the time-structures and variable domains.

Kurshan and McMillan[6] pursue an approach that is similar to ours in the context

of circuit analysis. They provide a well de�ned connection between analogue models of

example circuits, and the languages accepted by discrete nondeterministic !-automata.

The connection is de�ned by a function called a support map, that maps from continuous

functions of real time to !-sequences of discrete symbols. Analogue properties of real

circuits are modeled as systems of ordinary di�erential equations. A non deterministic

!-automaton is constructed so that the language that it accepts contains at least the

image of every solution to these equations. Speci�cations are given as !-automata in the

discrete domain. A discrete model satis�es a speci�cation if the language that it accepts

is contained in that accepted by the task.

To a large extent the di�erences between the work of Kurshan and McMillan and this

paper are matters of emphasis. For pragmatic reasons, circuit veri�cation is generally

performed using discrete models. However, the connection between these discrete models,

and the analogue properties of the circuits is often unclear. Kurshan and McMillan's work

address speci�cally this problem. They develop a particular method for modeling cir-

cuits as systems of di�erential equations, mapping solutions of such equations to discrete

!-sequences, and constructing !-automata whose languages are (using our terminology)

conservative approximations of the solutions of such equations with respect to this map-

ping. The authors suggest that larger circuits could be handled, by partitioning the system

of di�erential equations, modeling the partitions, and composing the results, but this idea

is not pursued in detail.

4

In contrast, we are interested in exploring a variety of ways in which continuous,

discrete, and hybrid systems can be veri�ed using conservative approximation. We have

developed a very general framework in which such systems can be modeled. The framework

supports decomposition in a very direct way, and much of this paper is devoted to a non-

trivial example of this approach. The approach that we explore in this paper starts with

a hybrid model of the system that is constructed hierarchically from simple components.

Discrete conservative approximations of these components are then combined to form an

approximation of the entire system, which can be veri�ed using standard model checking

techniques.

3 Trace-Automata

Our veri�cation framework has two components: A set of models and a set of speci�cations.

A model is used to represent the predicted behaviour of the system. A speci�cation is

used to represent the desired behaviour. The speci�cations are predicates over the set of

models. Each model provides a context within which a truth value can be assigned to

each speci�cation. We begin by discussing the models, and postpone the discussion of

speci�cations until the end of this section.

We present a set of models called trace automata in which the behaviour of hybrid sys-

tems can be described straightforwardly. The models are similar to the non-deterministic

�nite state automata that are traditional in computer science. Trace-automata are non-

deterministic state-machines with multiple input tapes. While some of these input tapes

contain the conventional �nite-length strings, others contain R-traces which are described

below. The set of behaviours in which the system is capable of engaging is represented by

the language accepted by such an automaton.

Let � be any, possibly in�nite, set. Strings over � can be viewed as partial functions

from the natural numbers to �. If � = fa; b; c; dg, for example, the string hacbdi maps

the number 0 to a, 1 to c, 2 to b and 3 to d. To reinforce this view, we call such strings

N -traces. Formally, an N -trace w of n symbols from the alphabet � is a function from

the naturals less than n to �.

w : N [0; n) 7! �

We denote the set of N -traces of length n by �n.

�n def
= fw : N [0; n) 7! �g

We denote the length, n, of an N -trace, w, from �n by jwj. The symbol � denotes the

single element of �0. We use the notation �N in place of the more traditional notation

�� to represent the set of all �nite-length N -traces over �.

�N def
=

[
n2N

�n

Strings, or N -traces as we call them from now on, are often used to represent the

events that occur in a system over a period of time. Their use is particularly natural

in frameworks for which time is discrete. Given that we are interested in developing a

framework for describing continuous behaviours, it seems natural to extend the above

de�nitions by replacing the naturals N with the non-negative reals R+. We call the

resulting structures R-traces. Just as an N -trace maps from a left-open interval of the

5

naturals to a set �, so an R-trace maps from a left-open interval of the reals. The set of

R-traces of length r over � is de�ned for all positive reals r.

�r def
= fw : R[0; r) 7! �g

�0 remains the singleton set f�g. Finally, we de�ne �R, the set of all R-traces over �.

�R def
=

[
r2R+

�r

Trace concatenation is denoted by juxtaposition. If u 2 �a, and v 2 �b are �-traces

| where � is either the naturals N or the reals R| then their concatenation, uv 2 �a+b,

is the following partial function, illustrated here using lambda notation to bind the formal

parameter.

uv
def
= �x �

(
u(x) if x 2 �[0; a)

v(x� a) if x 2 �[a; a+ b)

Observe that the concatenation operation is closed, associative, and has identity �.

A trace-automata domain D is a triple D = (�;�;�) in which � is a set of distinct

variables. Think of the elements of � as the input tapes. With each variable a 2 �,

� associates a domain of values �a, while � associates a time-domain �a, that must be

either the reals R or the naturals N . Throughout the remainder of this section, we assume

a �xed domain D = (�;�;�).

A labeling W of a set of variables A � � associates each variable a 2 A with a �a valued

�a-trace denoted Wa. We denote the set of all such labelings of A by AD. As an example,

let A consist of the variables \in" and \out." Let �in = R and �in = R, and let �out = N

and �out = N . A labeling W of A might associate the R-trace Win = �x 2 R[0; 3:5) � x2

with \in" and the N -trace Wout = h3; 1; 15i with \out."

The notation for trace concatenation extends naturally to labelings. Let A be a set of

variables. Let U 2 AD and V 2 AD be labelings of A. Then UV 2 AD is a labeling that

associates each variable a 2 A, with the trace concatenation UaVa.

(UV)a
def
= UaVa

We denote the unique labeling of a variable-set A that associates each variable a 2 A with

the empty-trace by �A. For a �xed variable-set A, it is straightforward to show that the

concatenation operator is associative with identity �A, and that the set A
D is closed under

�nite concatenations; hence, the set AD and concatenation form a monoid. However,

not every property of trace concatenation holds for labelings. For example, the identity

uv = vu holds for traces if and only if u = v or one of u or v is the empty-trace �. The same

is not true for labelings. Let u and v be non-empty traces in ��a
a

and ��
b

b
respectively.

Let U and V be labelings of fa; bg such that Ua = u, Ub = �, Va = � and Vb = v. Neither

U nor V are empty labelings, yet UV = (UaVa; UbVb) = (u; v) = (VaUa; Vb; Ub) = V U .

IfW is a labeling of A, and B � A, we denote by W jB the labeling of B that associates

each variable b 2 B with Wb. It should be clear for any such variable-sets A and B, the

restriction jB de�nes a homomorphism fromAD toBD with respect to trace concatenation.

That is, if U and V are both labelings of A and B � A, then (UV)jB = U jBV jB.

A trace-automaton is a quadruple,m = (A(m); S(m); I(m);�(m)), in which A(m) � �

is a set of variables, S(m) is a set of states, I(m) � S(m) is a set of initial states, and

�(m) � A(m)D � S(m) � S(m) is a transition relation. A chain of m of length z is a

6

Table 1: A 1-bit Counter

mc1 2 M(�;�;�)

a 2 � �a �a

q f0; 1g N

r f0; 1g N

A(mc1) = fq; rg

S(mc1) = f0; 1g

I(mc1) = f0g

(W; s; s0) 2 �(mc1)
def
�

(Wq;Wr) s s0

(h0i ; h0i) 0 0

(h1i ; h0i) 0 1

(h0i ; h1i) 1 1

(h1i ; h1i) 1 0

sequence of states s0; s1; :::; sz 2 S(m), and a sequence of labelings w1; w2; :::; wz, of A(m),

such that s0 2 I(m), and such that (wi; si�1; si) 2 �(m) for each 1 � i � z. The following

notation will be used to depict such a chain.

s0
w1�! s1

w2�! � � �
wz�! sz

We say that the labeling W is in L(m), the language accepted by m, if and only if W is

the concatenation of the labelings w1; w2; :::; wz for such a chain. We denote by MD, the

set of all trace-automata over the domain D.

Example 1: A 1-bit binary counter

To illustrate the features of trace-automata, we give several examples. Table 1, which

de�nes a discrete 1-bit binary counter, is an example of a standard tabular notation that

we have adopted. The table begins with a title that names the automaton being described,

in this case mc1, and names the components of the domain to which it belongs. The box

that follows is a partial description of this domain. It gives the value and time-domains

associated with the labels that this automaton will use. For mc1, � associates the value-

domain f0; 1g and � associates the time-domain N with the two variables \q" and \r."

The second box enumerates the variable-set A. This identi�es the input tapes that

the automaton will read, generally the same variables whose domains were given in the

preceding box. The third box gives the state-set S. The automaton mc1 has two states, 0

and 1. The fourth box gives the initial state-set I , in this case the singleton f0g. Finally

the state-transition relation is given, either as a logical expression or, as in this case, in a

tabular form.

The trace-automata formalism does not explicitly formalize the notion of \output."

Instead, the question of which tapes are considered to be \outputs" and which are consid-

ered to be \inputs" is left as a matter of interpretation. In the preceding example, suppose

that we consider the variable q to be an \input," and the variable r to be an \output."

Viewed in this way, we can see that the automata counts (mod 2) the number of ones

7

Table 2: An Edge Detector

medge 2M(�;�;�)

a 2 � �a �a

p f0; 1g N

q f0; 1g N

A(medge) = fp; qg

S(medge) = f0; 1g

I(medge) = f0g

(W; s; s0) 2 �(medge)
def
�

(Wp;Wq) s s0

(h0i ; h0i) 0 0

(h1i ; h1i) 0 1

(h0i ; h0i) 1 0

(h1i ; h0i) 1 1

that appear on its \input." Notice also, that when viewed this way, the automata is a

Moore machine[9]: The next state is a function of the current state and input symbol; the

\output" symbol produced is a function of the current state.

Example 2: An Edge Detector

The second example can be interpreted as an edge-detector. Consider the variable p

to represent the \input" and the variable q to represent the \output." As the machine

operates, the output \q" takes on the value 1 each time the input \p" takes on the value

1 after �rst taking on the value 0. Notice that under this interpretation, the automata is

a Mealy machine[8]: The next state and the \output" symbol are both functions of the

current state and the input symbol.

Example 3: An Integrator

The �rst two examples were discrete; all of the tapes were N -traces. In contrast the

third example is a continuous integrator; all of its tapes are R-traces. It accepts a trace

W if and only if W _x and Wx are the same length, and if the trace Wx could be obtained

by integrating the trace W _x. Although we view the machine as an integrator, and hence

view _x as its \input" and x as its \output," we could equally well see the machine as a

di�erentiator, with \input" x and \output" _x. The formalism itself imposes no notion of

direction or causality.

Example 4: A Switch

The fourth example is a hybrid model; some of its inputs are R-traces, while some { in

this case one { are N -traces. The model describes an analog switch. To understand the

model, the reader should view the parameters i0 and i1 and c as \inputs," while viewing

the parameter o as an \output." On each transition, the switch consumes equal-length

chunks from its two continuous \inputs" i0 and i1, and one symbol from its discrete \input"

c. If the symbol 0 is consumed from c, then the trace consumed from o must equal that

consumed from i0. Conversely, if the symbol 1 is consumed, then the trace consumed from

o must equal that consumed from i1.

8

Table 3: An Integrator

mint 2 M(�;�;�)

a 2 � �a �a

_x R R

x R R

A(mint) = f _x; xg

S(mint) = R

I(mint) = R

(W; s; s0) 2 �(mint)
def
�

jW _xj = jWxj ^

8r 2 [0; jW _xj) �Wx(r) = s +
R
r

0 W _x(t)dt ^

s0 = s+
R jW _xj

0 W _x(t)dt

Table 4: An Analogue Switch

mswitch 2 M(�;�;�)

a 2 � �a �a

i0 R R

i1 R R

o R R

c f0; 1g N

A(mswitch) = fi0; i1; o; cg

S(mswitch) = f0g

I(mswitch) = f0g

(W; s; s0) 2 �(mswitch)
def
�

jWi0
j = jWi1

j ^

(Wc = h0i ^ Wo = Wi0) _ (Wc = h1i ^ Wo = Wi1)

9

Table 5: A transliteration

m= 2 M(�;�;�)

a 2 � �a �a

a R R

b R R

A(m=) = fa; bg

S(m=) = f0g

I(m=) = f0g

(W; s; s0) 2 �(mswitch)
def
� Wa = Wb

Example 5: A Transliteration

Finally, we give an example of a class of machines called transliterations. A transliteration

is an essentially stateless machine that enforces a point-wise relationship between its inputs

traces. Its behaviour does not depend in any way on its history. For example, the machine

m=, presented in Table 5, accepts any labeling W of fa; bg satisfying jWaj = jWbj and

Wa(t) = Wb(t) for all t 2 R[0; jWaj).

We build large models, by composing smaller components. The following four equations

de�ne the composition m1 km2 for any trace-automatam1 and m2 from the same domain.

A(m1 km2)
def
= A(m1) [A(m2)

S(m1km2)
def
= S(m1)� S(m2)

I(m1km2)
def
= I(m1)� I(m2)

(W; (s1; s2); (t1; t2)) 2 �(m1 km2)
def
�

(W jA(m1); s1; t1) 2 �(m1) ^ (W jA(m2); s2; t2) 2 �(m2)

We extend the restriction notation from labelings to automata in the obvious way. If

m is an automaton, and B � A(m), we use the notation mjB to denote the automaton

de�ned as follows:

A(mjB)
def
= B

S(mjB)
def
= S(m)

I(mjB)
def
= I(m)

(W; s; t) 2 �(mjB)
def
� 9W 0 2 AD � (W 0jB = W) ^ (W 0; s; t) 2 �(m)

Proposition 3.1 Suppose m is a trace-automaton and B � A(m). For any labeling W

of A(m), if W 2 L(m), then W jB 2 L(mjB).

We could use the tabular notation from the preceding examples to describe such a

composite automata. For complicated machines, however, this notation becomes hard to

understand. Instead, we shall rely on illustrations that show the structure of a composite

machine. For example, Figure 1 shows the composition of mc1 and medge from Examples 1

10

medgekmc1

medge

p q

mc1

q r

p r

Figure 1: Composition of two trace automata.

and 2 respectively. The machines are represented as boxes with attachment points at the

perimeter for each of their variables. Component machines are drawn nested inside the

box representing their composition. Lines are drawn to indicate \connections" between

components. The obvious renaming | unnecessary in this example | is presumed to take

place, so that variables that are connected by such a line share a unique name. Domain

restriction is indicated by the absence of a line connecting the component variables to the

perimeter of the box representing the composition. In this example, restriction to the set

fp; rg is shown.

To illustrate the use of this formalism, we shall construct a model of a simple hybrid

system. The system models two trains that move in the same direction along a continuous

loop of track. Each train is connected to a central controller. At regular intervals, the

controller measures the position of each train. A train which is too close to the other,

where distance is measured in the direction of travel, is instructed to stop. If it is not too

close to the other, it is instructed to proceed forwards.

The motion of each train can be described using di�erential equations. If the most

recent control action was \go," then the velocity will be governed by Equation 1 below in

which vmax and kgo are �xed positive constants.

_v = kgo(vmax � v) (1)

If the most recent control action was \stop" then the brakes are applied and the velocity

reduces at a constant rate kstop until it reaches zero.

_v =

(
�kstop if v > 0

0 otherwise
(2)

We can use trace-automata to model these equations as illustrated in Figure 2. We

begin by viewing v and _v as independent variables, and de�ne the transliteration corre-

sponding to each equation. For example, we de�ne the transliteration mv1 that accepts

labelings W such that W labels v and _v with equal-length traces satisfying W _v(t) =

kgo(vmax �Wv(t)) for all t 2 [0; jWvj). Similarly, we de�ne the transliteration mv2 that

accepts labelings W satisfying Equation 2. The two transliterations represent the re-

sponse of the trains to the two di�erent control inputs. We can model this dependency by

composing the transliterations with the switch presented in example 4.

So far, our model treats the variables v and _v as if they were independent. Of course

the original equations are only satis�ed when _v is the derivative of v. This requirement

11

is captured by composing the model with the integrator from example 3. Ultimately, the

position p of each train is the integral (modulo the length L of the track) of the train's

velocity. Thus, to complete our model, we compose the automata obtained so far, with a

second integrator. This one is a slight variation on the integrator of Example 3 in that

it integrates modulo the track-length L. Since we are ultimately interested only in the

train's control-input and its position, we restrict the �nal model to the variable-set fc; pg.

mswitch
i0

c o

i1

R
_x x

R
(modL)

_x x

mv2 v

_v

mv1 v

_v

mtrain1

c p

Figure 2: The dynamics of a train.

Having thus modeled the dynamics of a train, we turn our attention towards the

controller. The controller is able to measure the position of each train, but without much

precision. In fact, the best the controller can do is to determine which of 8 equal-length

track sections the train is in at the time the measurement is taken. It alternates between

measuring the positions of the two trains in this way, and sending an instruction, either GO

or STOP, to each one. The instructions are sent simultaneously at a regular �xed interval.

The measurements occur at some indeterminate time between successive instructions.

We use a discrete trace-automaton to model the control algorithm. The algorithm

maintains a single bit of state information for each train, which can have either of the values

GO or STOP. The state resulting from each transition is based on the sampled positions of

the trains. If a train is within one track section of the train in front of it, the resulting

state-bit will be STOP. If the train is not too close, the resulting bit will be GO. The

controller output during each transition is the value of the corresponding state bit at the

start of the transition. In this way, the result of sampling in one time unit, is re
ected in

the control action taken during the next. The position measurement process is modeled

by a pair of hybrid automata, one for each train, as given in Table 6. The entire system

is depicted in Figure 3.

12

Table 6: The sampling process

msample 2 M(�;�;�)

a 2 � �a �a

x R[0; L) R

y N [0; 7] N

A(msample) = fx; yg

S(msample) = f0g

I(msample) = f0g

(W; s; s0) 2 �(msample)
def
�

jWxj = 1 ^ jWy j = 1 ^ 9r 2 [0; 1) �Wy(0) = bWx(r) � 8:0=Lc

One of the main features of a hybrid system is that di�erent models of time are

appropriate for di�erent components. Indeed, reconciling these di�erences is one problem

that makes hybrid systems particularly challenging. The trace-automata formalism does

not attempt to dictate the terms of such a reconciliation. There is nothing in the formalism

that requires the same rate of consumption of traces attached to di�erent variables. The

temporal relationship between happenings of di�erent variables is speci�ed, if at all, by

the automata themselves. For example, consider the \switch" machine of Example 4. The

switch model requires that the R-traces attached to i1, i2 and o are consumed at the

same rate. However, it establishes no relation between this rate, and the rate at which the

discrete control input c is consumed. The idea is that the switch accepts control signals at

whatever rate the controller produces them. In our model, this rate is actually speci�ed

by the \sampler" machine in table 6. The sampler \produces" one control token for each

unit-length chunk of its continuous input traces.

4 Conservative Approximation

We have constructed a model that represents the ways in which the system is capable of

behaving. Ultimately, we shall want to verify that these behaviours are the ones that we

want. A veri�cation domain, V = (M;Q; j=), is a triple in which M is a set of models,

Q is a set of speci�cations, and j=� M�Q is a binary satisfaction relation. When m j= q

holds, we say that the model m satis�es the speci�cation q.

While it may be easy to de�ne the satisfaction relation j=, it will often be quite

intractable to decide whether it holds for a speci�c model and speci�cation. One way

to combat this is to translate the question and the model into a di�erent, more tractable

framework. Let bV = (cM; bQ; bj=) be such a framework. Let 	 : Q 7! bQ be an abstraction

function that translates speci�cations from the complex framework V to the alternate

framework bV .
Suppose we now wish to compare a model m 2 M to an approximation bm 2 cM. Let

G	(m; bm) � Q denote the set of speci�cations on which m and bm agree.

G	(m; bm)
def
�

n
q 2 Q

��� bm bj=	(q) � m j= q
o

That is, a speci�cation q is in G	(m; bm) if and only if both q and 	(q), or neither q nor

13

mcontroli1

i2

c1

c2

mtrain

c p

mtrain

c p

msample

x

y

msample

y

x

Figure 3: The train-system model.

	(q), are satis�ed bym and bm respectively. We can compare the quality of approximationsbm1 and bm2 by comparing their agreement sets. Let bm1 and bm2 be approximations to m

with respect to 	. We say that bm2 is as good an approximation ofm as bm1 if its agreement

set contains the agreement set of bm1.

bm1 �	 bm2
def
� G	(m; bm1) � G	(m; bm2)

We say a model bm is a conservative approximation of anotherm with respect to a trans-

lator 	 if and only if for every speci�cation 	(q) that is satis�ed by bm, the speci�cation

q is satis�ed by m. That is, for every q 2 Q we must have

bm bj=	(q) =) m j= q

The machine bm is conservative because if it satis�es a speci�cation bF , then every related

speci�cation q 2 	�1(bF) must be satis�ed by m. It is an approximation, because it need

not satisfy every speci�cation 	(q) for which m satis�es q.

5 Approximations Between Automata

In the previous section, we gave a very general de�nition of conservative approximation

with respect to an abstraction function 	. Here, we present a practical method for con-

structing such a function for trace-automata speci�cations. Before doing so, however, we

develop a veri�cation domain (MD;QD; j=D) for each trace-automata domain D.

Let D = (�;�;) be a trace automata domain. Let MD be the set of all trace

automata over D. Recall from Section 3 that �D represents the set of all labelings of � in

D. We de�ne QD, the set of speci�cations over the domain D, as QD

def
� 2�

D

, the power

14

set of �D. Each speci�cation F 2 QD is a set of prohibited labelings of �. We think of F

as a \failure set," in that a veri�cation should fail if the model admits any behaviour in

this set. Thus, the satisfaction relation j=D is de�ned as follows:

m j=D F
def
� L(m)\

�
F jA(m)

�
= ;

Thus, we have de�ned a veri�cation framework for the trace-automata domain D. The

models are the trace automata over D. The speci�cations are sets of labelings of � that

represent prohibited evolutions. A model m satis�es a speci�cation F if it does not permit

any behaviour in the failure set.

5.1 Abstracting Speci�cations

Let D = (�;�;�) and bD = (�; b�; b�) be two trace-automata domains, that share the

same variable-set �. Suppose that for each variable a 2 �, we have de�ned an abstraction

function a : �
�a
a

7! b�b�a
a

that maps traces of the variable a in the original domain D to

traces of the same variable in the abstract domain bD. Let A � � be any set of variables.

We combine the functions a, which map from traces to traces, to produce the abstraction

function A : AD 7! A
bD from labelings in AD to labelings in A

bD in the obvious way, so

that (A(W))
a

def
= a(Wa) for each a 2 A. When the set A is clear from the context, as it

almost always will be, we omit the subscript A in A and simply refer to . A function

built in this way is a separable abstraction function. It is separable, in that the traces of

individual variables are abstracted independently. The following property is an obvious

consequence of the way in which is de�ned by combining independent components a.

Proposition 5.1 If A and B are sets of variables, such that B � A, then the following

identity holds for all separable abstraction functions and all labelings W of A.

 (W)jB = (W jB)

Recall that a trace-automata speci�cation for the domain D is a set of labelings in

�D. Thus, by extending the abstraction function from labelings to sets of labelings, we

can de�ne an abstraction function mapping from speci�cations in QD to speci�cations in

QbD. We de�ne the operator � which performs such an extension:

(�)(F) = f (W) jW 2 F g

Throughout the remainder of this paper, we will build conservative approximations

based on two particular abstraction functions that map from real valued R-traces to N -

traces of integer pairs. Let w be an arbitrary real-valued R-trace. If w is empty, then it is

mapped onto the empty-trace. If w is non-empty, we partition it into a sequence of zero or

more traces of length 1, and one non-empty trace of length one or less. Let w0; w1; :::; wk
be this partitioning, so that w = w0w1 � � �wk, jwij = 1 for each i < k, and 0 < jwkj � 1.

Each sub-trace wj is mapped to a pair of integers (lj; uj) such that the interval R[lj; uj] is

the smallest interval with integer bounds that contains the range of wj. That is, we must

have lj � wj(t) � uj for all t 2 R[0; jwj j) and for all 0 � j � k. In this way, we map the

R-trace w to a N -trace of integer-pairs, h bw(1); bw(2); :::; bw(k)i such bw(j) = (lj ; uj) for each

j 2 0; 1; :::; k as illustrated in Figure 4.

This mapping is suitable for all the R-traces in the model with the exception of those

representing the position of a train. Recall that trains run on a circular track of length L

15

l
0

w
0

u
0

l
1

w
1

u
1

l
2

w
2

u
2

Figure 4: Abstracting a real-trace by a sequence if integer-pairs

which wraps around so that 0 and L represent the same physical location. For simplicity

we assume that L is an integer. Let x be any real number, greater than 0 but less than

L=2. Our discrete representation of small traces needs to distinguish between the relatively

small motion from L�x to 0+x, passing through 0 but not through L=2, and the relatively

large trip backwards from L�x to 0+x passing through L=2 but not through 0. However,

the function as described so far represents both of these traces by the pair (0; L).

For this reason we will abstract traces representing the position of a train in a slightly

di�erent way. Let S be the closure of the range of w. If there exists real numbers

0 < a < b < L such that S is the union of the intervals [0; a] and [b; L], then we represent

w by the integer pair (dbe ; bac). Note that dbe > bac. On the other hand, if no such

numbers exist then we revert to the established representation (l; u) where l and u are

respectively the greatest and the least integers such that S is contained in the interval

[l; u].

For example let x = 1
2 . Let wj be a short trace representing the forward motion of a

train from 0+ x to L� x. The trace would be abstracted by the pair (0; L). On the other

hand, let wj represent the forward motion of the train from L� x to x. In this case there

exists a = x and b = L � x so that the range of w is the union of [0; a] and [b; L]. Thus,

we abstract the trace wj by the pair (L; 0).

Let � : �D 7! �
bD be the separable abstraction function from labelings inD to labelings

in bD that uses the functions de�ned above to abstract the individual traces. We can build

the corresponding abstraction function for speci�cations using the operator (�). The

result, (��) translates speci�cations in the domain D into speci�cations in the abstract

domain bD.
Having constructed a separable abstraction function, we seek to construct an approx-

imation of the system that is conservative with respect to it. The following theorem

identi�es the conditions under which a trace-automata bm is a conservative approximation

of another m with respect to any separable abstraction function (�).

Theorem 5.2 The automaton bm is a conservative approximation of m under any sepa-

rable abstraction (�) if and only if (W) 2 L(bm) for every W 2 L(m).

Proof: To prove the \if" part assume that (W) 2 L(bm) for all W 2 L(m). We must show

that for any speci�cation F 2 QD, if bm satis�es (�)(F), then m satis�es F . Suppose,

with an eye towards contradiction, that F is a speci�cation that m does not satisfy, yetbm satis�es (�)(F). Then there must be a labeling V of � such that V jA 2 F jA \ L(m).

16

Let V be such a labeling. By assumption, (V jA); hence, by proposition 5.1, (V)jA is in

L(bm). Since V 2 F , we must have (V) 2 (�)(F). Hence (V)jA 2 (�)(F)jA \ L(bm).
But this intersection is supposed to be empty since bm is supposed to satisfy (�)(F). Thus

the sought contradiction is established, and we conclude
� bm j=bD (�)(F)

�
=) (m j=D F).

To prove the \only if" part, assume that bm is a conservative approximation of m under

(�). Let W be an arbitrary labeling in L(m). We must show that (W) 2 L(bm). Let
F be any speci�cation such that qjA = fWg. For example let F = fV g where V is the

labeling of � such that Va = Wa when a 2 A, and Va = � otherwise. Clearly m does not

satisfy F . Since bm is a conservative approximation of m under (�), bm cannot satisfy

(�)(F), hence (V) 2 L(bm) as required. 2

5.2 Approximating Integration

To illustrate the ideas in this section we develop a sequence of progressively better approx-

imations of the integrator from Section 3. Let bm be a trace-automata with integer valued

states: S(m) = Z . Whereas the original integrator accepted labelings associating the

variables x and _x with real-valued R-traces, the approximation will accept labelings asso-

ciating x and _x with N -traces of integer pairs. Let �(m) be the universal state-transition

relation: �(m) = A(m)bD � S(m) � S(m). Clearly, with this transition relation, bm will

accept any labeling, L(bm) = A(bm)
bD. The model bm is a conservative approximation of the

integrator m, but it is the poorest conservative approximation possible, and is not very

useful.

To improve the approximation we make the transition relation smaller. For a start,

we only allow bm to accept input symbols one at a time.

(cW; bs; bs0) 2 �(bm) =) ���cW _x

��� = ���cWx

��� = 1

This constrains the language L(bm) so that it only contains labelings that associate x and

_x with traces of the same length. The machine is still a conservative approximation of

the integrator, since the integrator also accepted only labelings associating x and _x with

traces of equal length, and the abstraction function � preserves this property.

Let W be an arbitrary labeling of fx; _xg. Observe that if the integrator m accepts W

it can do so by means of a chain

s0
W1�! s1

W2�! � � �
W
k�! sk

such that Wk associates x and _x with non-empty traces of length one or less, and each

Wi, for i < k associates x and _x with traces of length exactly 1. That is, Wk matches the

partitioning used by the abstraction function .

Recall that the abstraction function maps each of these sub-traces to a pair of integers.

If bm is to be a conservative approximation of m, we must be sure that it has a chain

bs0 bW1�! bs1 bW2�! � � �
bW
k�! bsk

where cWj = (Wj) for each 1 � j � k. To do this, we de�ne a state abstraction function

� from S(m) to S(bm), and ensure the particular chain in which bsj = �(sj) is a chain of bm.

De�ne �(x) =
j
x+ 1

2

k
, so that intervals from x � 1

2 to x + 1
2 are mapped onto each

integer x. We let the initial state-set I(bm) be the image of I(m) under �. Let (W; s; s0) be

17

any transition in the chain of m. Let (_l; _u) and (l; u) be the single elements of the \input"

trace cW _x and the \output" trace cWx respectively. At the beginning of the transition, the

integral Wx is s. At the end, the integral Wx is s
0. However, knowing the values of Wx at

only these points does not necessarily constrain the intermediate values and hence does

not constrain l and u.

Suppose, however, that _l � 0. Then the integrandW _x, which it abstracts, is everywhere

non-negative. In this case, the integral Wx must increase monotonically, starting with a

minimum value of s and ending with a maximum value of s0. Thus, we can constrain u

and l so that u = ds0e and l = bsc. Similarly, if _u � 0, then u = dse and l = bs0c. A little

algebra allows us to establish the following conditions.

�(s0) � u � �(s0) + 1

�(s)� 1 � l � �(s)
when _l � 0

�(s) � u � �(s) + 1

�(s0)� 1 � l � �(s0)
when _u � 0

If _l < 0 and _u > 0, then the integrand is sometimes greater and sometimes less than

zero so integral will not be monotonic. In this case tight bounds are somewhat more

complicated to derive. It is easily to see, however, that the maximum value of Wx cannot

exceed the sum of the starting value s and the maximum value of W _x. Less obvious

perhaps is that it cannot exceed the ending value s0 less the minimum value of W _x. To see

this suppose that it achieves a value x at some time t such that x > s0 �min(W _x). Then

to go from x to s0 would be impossible, since it would require an rate of change less that

min(W _x). Similarly, the minimum value of Wx must be greater than s + min(W _x) and

s0 � max(W _x). Of course, the maximum value of Wx must be as great as s and s0, both

of which must be less than its minimum value. After some manipulation we can conclude

that the following inequalities hold.

�(s) � u � �(s) + _u+ 1

�(s0) � u � �(s0)� _l + 1

�(s) + _l � 1 � l � �(s)

�(s0)� _u� 1 � l � �(s0)

Thus we can safely restrict the trace cWx associated with a transition from bs to bs0 in the

following ways. bs0 � u � bs0 + 1bs� 1 � l � bs when _l � 0

bs � u � bs+ 1bs0 � 1 � l � bs0 when _u � 0

bs � u � bs + _u+ 1bs0 � u � bs0 � _l+ 1bs+ _l� 1 � l � bsbs0 � _u� 1 � l � bs0
otherwise

Using similar reasoning, we can also restrict the \input" traces cW _x as follows:bs0 � bs � _u if bs0 � bsbs0 � bs � _l if bs0 � bs
18

The result is still a conservative approximation of the continuous integrator. If m has a

transition (W; s; s0), then bm still has a corresponding transition (�(W); �(s); �(s0)).

Note that the model is still too conservative to show that speed of a train changes in

response to acceleration. To see this, observe that a transition from any state bs to itself

is permitted for any input (_l; _u). Thus, if the integrator input represents acceleration,

and the output represents velocity, the conservative approximation cannot show that the

velocity changes, even when the acceleration is large. We cannot prohibit these small

transitions, because they might represent the last labeling Wk in the chain. If the labeling

W has length k+ � for some integer k and � < 1, the length of Wk+1 will be �, which could

be arbitrarily small.

One fairly straightforward way to deal with this exploits non-determinism. An addi-

tional \sink" state ? is introduced, so that S(bm) = Z [f?g. The transition relation is

restricted so that it contains no transitions (cW; bs; bs0) for which bs = ?. Thus, if ? appears

in a chain, it must be the �nal state bsk. A transition (W; s; s0) in the original machine

for which Wx and W _x are shorter than one, are represented by a transition from �(s) to

?. We can now restrict transitions from integer states bs to states bs0, to those satisfying
_l � bs0 � bs � _u. Transitions from any state bs to ? are allowed for any \input" provided

that an integer bs0 exists which satis�es the conditions developed above for the original

approximation.

We have developed a discrete conservative approximation of the continuous integrator.

The approximation is based on functions abstracting the input traces and the state space.

It was constructed incrementally, starting with a complete state-transition relation. As

each constraint was added, we con�rmed that the abstraction functions mapped every

chain of the original integrator to a chain of the approximation. This technique allowed us

to construct simple arguments for correctness, focusing on one issue at a time. While the

result is quite complex, it is the conjunction of conditions, each of which can be understood

independently.

5.3 Composing Conservative Approximations

In Section 3, we de�ned the operations parallel composition and restriction for trace-

automata. Using these operations, we combined a number of such automata to create a

model of the dynamics of our train-set. We have just shown how to develop conservative

approximations for the component automata. Now, we show that such approximations

can be combined to yield an approximation of the entire model.

We begin this rather technical section with some lemmas that establish a relationship

between the language accepted by a composite trace-automata, and the languages accepted

by its components.

Lemma 5.3 If w is in L(m1 km2) then wjA(m1) is in L(m1) and wjA(m2) is in L(m2).

Proof: Follows directly from the de�nitions of language acceptance and automata compo-

sition. 2

Lemma 5.3 says that, when restricted in the obvious ways, any labeling W accepted by

the composition m1 km2 is accepted by the individual components. One might hope that

this implication could be strengthened to equivalence, but in general this is not the case.

To see this, imagine two stateless trace-automatam and n, each of which readN -traces

from an input tape a. Automata m consumes the symbol x from its tape, once symbol at

19

a time:

(T; s; s0) 2 �(m)
def
� Ta = hxi

On the other hand automata n consumes the symbol x from its tape, but insists on

receiving them two at a time:

(T; s; s0) 2 �(m)
def
� Ta = hx; xi

The labeling which associates the trace hx; x; x; xi with a is in the language of both au-

tomata, yet this incompatibility between the rates at which they consume their inputs

prevents the composition m k n from accepting anything but the empty trace. Before

proceeding further, we give a technical de�nition of compatibility:

De�nition 5.4 Compatibility: Let m and n be trace-automata and let C = A(m) \A(n)

be the variables that they have in common. We say that m and n are compatible if and

only if for every pair of labelings, U 2 L(m) and V 2 L(n), such that U jC = V jC, there is

a natural number k, and chains

s0
U1�! s1

U2�! � � �
U
k�! sk

and

t0
V1�! t1

V2�! � � �
V
k�! tk

of length k belonging to m and n respectively such that each UijC = VijC.

Lemma 5.5 let m1 and m2 be compatible trace-automata. Let w be an arbitrary labeling

of A(m1km2). If wjA(m1) 2 L(m1) and wjA(m2) 2 L(m2), then w 2 L(m1 km2).

Proof: Follows directly from the de�nition of compatibility. 2

Theorem 5.6 Composition: If, under the abstraction (�), bm is a conservative approxi-

mation of m, and bn is a conservative approximation of n, and if bm and bn are compatible,

then bmk bn is a conservative approximation of mkn under the same abstraction (�).

Proof: Let W be any labeling in L(m kn). We must show that (W) 2 L(bmk bn). From
Lemma 5.3 we can conclude that W jA(m) 2 L(m) and W jA(n) 2 L(n). Since bm is a

conservative approximation of m under (�), the abstraction (W jA(m)) | hence, by

proposition 5.1, (W)jA(m) | must be in L(bm). Similarly, we must have (W)jA(n) 2

L(bn). Since bm and bn are compatible, we conclude by lemma 5.5 that (W) 2 L(bmk bn) as
required. 2

For example, the train model, shown in Figure 2 consists of the composition of several

machines. Using techniques such as those developed in the last section, one can construct

compatible conservative approximations of each machine independently. We can then form

a conservative approximation of original composition by composing the approximations of

the components.

The original machine involved several restrictions, so that only \interesting" labels

were included in its behaviour. For example, the model is restricted so that the acceler-

ation a of train is not visible. The following theorem allows us to similarly restrict the

approximations.

20

Theorem 5.7 Restriction: If bm is a conservative approximation of m under (�), and

B is any subset of A(m) then bmjB is a conservative approximation of mjB under (�).

Proof: Let V be any labeling of B in L(mjB). By de�nition, there must be a labeling

W in L(m) such that W jB = V . Let W be such a labeling. Since W 2 L(m) and bm
is a conservative approximation of m under (�) we must have (W) 2 L(bm), hence

 (W)jB 2 L(bmjB). Since V = W jB , we can conclude from proposition 5.1 that (V) =

 (W)jB. Thus, (V) 2 L(bmjB) as required. 2

In this way, we can form a conservative approximation of the entire system. We begin by

forming approximations of each component. These approximations components are then

composed. Finally, the set of visible variables are restricted.

The resulting approximation captures the general behaviour of the system. It is,

however, only an approximation; it may be too conservative to yield the veri�cation results

that we want. Suppose we use only independent approximations of the components of our

train model. The resulting model is too conservative to conclude that a train will stop if

the brakes are applied. The best that one can conclude is that the train will slow down

to some minimum speed. The problem is that the state 0 in the integrator representing

velocity, abstracts a range of states in the original model. Doubtless, there are numerous

ways that the abstraction functions could be altered to address the problem with this

speci�c model. We o�er a more generally applicable solution.

The essence of the problem is is that there is a distinct topological feature in the

phase-space of the train dynamics. While the control signal is STOP, there is a �xed point

attractor at v = 0 with a basin of attraction, v > 0. As long as the velocity is positive,

and the control signal remains STOP the train will eventually stop. Correctness depends

on the precise location of this �xed-point. For example, if the attractor were at v = 1
2 ,

the system would not be correct, since trains could not be stopped.

Returning to the original hybrid model, we examine its behaviour close to this �xed-

point. If the velocity of a train is less than kstop at time t, and if the control signal is STOP

from time t to time t+1, then the velocity will be 0 from time t+1 until the control signal

is GO. It is straightforward to build a conservative approximation that captures only this

behaviour. The machine will have input variables for the velocity, (l; u), and the control

signal ctl. The machine will have two states SLOW and FAST which summarize events in

the previous time-period. If the velocity in the previous time-period did not exceed kstop
and the control signal was STOP, then the machine will begin the next time period in state

SLOW. Otherwise, the machine could be in either state. If the machine begins a transition

in state SLOW, and the control signal is STOP, then the velocity upper bound must be 0.

Otherwise, the velocity is unconstrained.

The machine is a conservative approximation of the system. If the system is not close

to the �xed-point (u >= kstop), then its behaviour is not constrained by the model. On

the other hand, if the system is close to the �xed point for a full time unit, (u <= kstop)

then the approximation ensures that the �xed point is reached at the end of the interval.

The following corollary to Theorem 5.6 allows us to compose this conservative approx-

imation of the �xed point, with the more general one obtained from the components.

Corollary 5.8 If m1 and m2 are compatible conservative approximations of m, under the

same abstraction function, then so is their composition.

Proof: The corollary follows from the observation that mkm is identical to m. 2

21

This technique is similar to that which we used to construct the approximation of the in-

tegrator. In that case, we constructed the �nal approximation by combining independent

constraints on the state transition relation. Here, we are composing conservative approx-

imations that were derived independently. The machine that we are approximating, the

velocity control system for a train, is itself a composition. One of the approximations is

derived by composing approximations of the components. The other was derived by hand.

This was possible to do because it needs to capture only a very small, simple part of the

overall behaviour of the system.

5.4 Finite Approximations

So far, our approximations have been discrete, but not �nite. The integrator approxima-

tion, for example, has neither a �nite state-space, nor a �nite input alphabet. However,

it is simple to construct a �nite version. We adjust the state-mapping � and the abstrac-

tion function so that they map onto �nite subsets of, respectively, the integers and the

integer-bounded intervals. For example, we could choose integer values min and max,

and adjust � to map every state with value max or greater onto the state max in the

approximation, and every state with value min or less onto min. Similarly, we map sub-

traces whose value exceeds max onto intervals with upper bounds u = max and traces

with values less than min to intervals with min as their lower bound. The result will be a

model with a �nite next-state relation. Of course the model will be unable to distinguish

between values greater than max. Nor will it be able to distinguish between values less

than min. As a result, it will not be useful for verifying properties which depend upon

such distinctions. In our train model, the values of all traces are bounded, so we merely

have to choose min and max to be outside these bounds.

6 Veri�cation Using Approximations

In the previous sections, we showed how to construct a discrete conservative approximation

of our system. The resulting approximation is a non-deterministic �nite-state machine,

that reads one symbol from each of its many input tapes during each state-transition.

To demonstrate the feasibility of this approach, we have veri�ed the system described

in this paper. The system is modeled using the Voss [11] veri�cation system. Voss provides

a functional language with built in Ordered Boolean Decision Diagrams[2] (OBDDs). The

language allows the rede�nition of standard in�x operators. We have used this facility

to re-de�ne the standard arithmetic and comparison operators using two's complement

bit-vector arithmetic. The next-state-relations for the various component approximations

can be expressed straightforwardly in this environment. Such relations are essentially sets

of labeled transitions which can be represented using familiar techniques[3]. The source

and destination state-spaces are represented by the set of possible assignments to disjoint

sets of boolean variables. A third set of variables represents the labels. A set of transition

is expressed as a boolean valued function over the union of these three sets.

The Voss system represents such an expression internally using OBDDs. Composing

two machines amounts to computing the boolean conjunction of the next-state relations for

their components. Domain restriction amounts to existentially quantifying the variables

representing the hidden input tapes.

Using this technique, we have built an OBDD representation of the complete system,

with a track length of 256, a maximum velocity of 6, an acceleration, kGO of 1
2 , and

22

kstop of 3. The controller measures positions with an precision of 8 track units | that

is it can determine in which of eight equal length sections a train is located. Using a

suitable variable ordering, we were able to represent the transition relation for the entire

system using less than twelve-thousand OBDD nodes. The Voss code which generates this

representation is included in Appendix B.

We wished to verify that when started at opposite positions on the track, the two

trains would never collide. This amounts to saying that the hybrid model accepts no

traces during which the positions of the two trains are simultaneously equal. We translate

this speci�cation into our discrete framework, using the abstraction function (��). Thus,

in the discrete framework we must verify that the model accepts no traces for which the

ranges (v:l; v:u) of tokens representing the positions of the two trains intersect. Once the

speci�cation has been established, veri�cation is straightforward using standard model

checking techniques.

Both the construction of the model and the veri�cation were done in the most simple-

minded way. For example, the de�nition of the integrator approximation used in the

model is a clause by clause translation of the constraints developed in Section 5.2. The

entire transition relation is constructed by conjoining approximations like this, and then

existentially quantifying out the variables that represent hidden inputs. The veri�cation

was done by chaining forward from the start-state, computing the reachable state-set, and

then checking to ensure that a hazardous transition could not be taken from it. Even

so, with suitable variable orderings, the entire process takes less than 15 minutes on a

Sparc-10 server.

7 Conclusions and Future Work

In this paper, we have presented an approach to the the veri�cation of hybrid systems. We

model the system initially using trace-automata, a framework in which continuous, discrete,

and hybrid systems can be expressed. Subsequently, a discrete conservative approximation

of this model is build in this same framework. The resulting discrete trace automata

is veri�ed against an abstraction of the original hybrid speci�cation using conventional

techniques.

The trace automata formalism has been designed to facilitate our investigation into

techniques for modeling and verifying hybrid systems. In this investigative spirit, the trace-

automata framework is a general as possible. In particular, the formalism allows multiple

time-scales, with no a priori relationship between them. Of course such a relationship

can be established in the context of a particular model. This freedom makes it relatively

easy to construct models with no obvious physical interpretation. A practical modeling

system based on this theory, might well introduce additional restrictions on the way in

which models can be constructed and combined.

As an illustration we have presented a model of a simpli�ed version of the train in our

lab. We then veri�ed that the control mechanism will not allow two trains to collide. The

example system, a simpli�ed version of our model train set, consists of several parts, each

with di�erent behaviours. The trains themselves behave continuously according to the

laws of physics. The controller is essentially discrete. Each part is modeled independently

by a trace automata. The models of the parts are then composed, to form a model of the

complete system.

We introduced a simple speci�cation framework based on sets of prohibited behaviours

which we call failure sets. We then developed an abstraction function, which mapped

23

from failure sets in the continuous domain, to failure sets in a discrete domain. Once this

abstraction function was de�ned, we showed how to construct discrete approximations of

the components in our train model, so that they were conservative with respect to it. This

process was illustrated in some detail, by developing a conservative approximation of an

integrator.

An approximation of the entire system was constructed by performing the same com-

position operations on these primitive approximations that were performed on the origi-

nals. The operations that were used preserve the conservative approximation relationship

for our speci�cation language. Thus, we were able to conclude that the resulting dis-

crete �nite-state automata was a conservative approximation of the original continuous

automata.

In fact, the resulting model was too conservative to obtain the desired veri�cation

result. The control algorithm exploits the precise location of a topological feature in

the phase space. Speci�cally, trains have a �xed-point attractor at v = 0. Put another

way, they eventually stop when the brakes are applied. Our approximation could not

di�erentiate between the condition of being stopped, and moving very slowly. Once this

problem was identi�ed, however, it was trivial to construct a conservative approximation

that captured this behaviour. In doing so, we needed only to concern ourselves with the

local behaviour of the train close to this �xed point. Other behaviours were captured

precisely enough for our veri�cation task by the existing model.

Finally, we were able to use this discrete model to verify that the original model was

collision free. The speci�cation was translated from the original continuous domain to

the discrete domain of the approximation by the abstraction function developed earlier.

Conventional model-checking techniques were used to show that the discrete model sat-

is�ed this abstract speci�cation. Since the discrete model was know to be a conservative

approximation of the original with respect to this abstraction function, we concluded the

original model would not admit collisions.

In principle, the process of composing and connecting the primitive approximations

could have been accomplished automatically. We envision a tool, with a built-in set of

primitive continuous models and their (parameterized) approximations. The user would

construct a model of the system, by composing and connecting these built-in primitives.

The tool would automatically perform the same compositions and connections on the

primitive approximations, producing a conservative approximation of the entire system,

suitable for veri�cation. Identifying a useful set of primitives, and appropriate approxi-

mations of them remains a matter for future research.

For the purpose of illustration, we have limited the expressiveness of our speci�cation

framework. These limitations, however, are more historical than fundamental to the ap-

proach. Indeed developing approximations for other types of speci�cations seems like a

natural way to extend the work. Here it seems likely that one will wish to develop di�erent

approximations for di�erent kinds of questions. For example it may well be best to develop

one approximation that is conservative with respect to safety questions, and another that

is conservative with respect to liveness properties.

We are suggesting an approach to hybrid system veri�cation, which essentially reduces

the problem to that of verifying discrete systems. The latter, has been extensively studied,

and considerable progress has recently been made. One possible objection to this approach

is its failure to exploit the underlying continuity of the physical systems being modeled.

As it stands, this continuity is exploited, if at all, only in the development of primitive

approximations. Whether the continuity of an underlying system can be exploited to

24

simplify the veri�cation of its discrete approximation, remains an intriguing question for

future research.

A A summary of notation

Symbol Meaning Page

jwj The length of trace w. 5

(�;�;�) De�nes a trace-automata domain. � is the set of variables in

the domain, � associates each name a 2 � with a domain of

values �a. � associates each name a 2 � with a time domain,

�a which must be either the reals or the naturals.

6

AD The set of labelings of A in the trace-automata domain D 6

W jB W restricted to B | W is a labeling of some set of variables

A, of which B is a subset. W jB labels each variable in B with

the same trace as W does.

6

A(m) The variable-set of the trace automaton m. 6

S(m) The state-set of the trace automaton m. 6

I(m) The initial states of the trace automaton m: I � S. 6

�(m) The transition relation of trace the automaton m: �(m) �

A(m)D � S(m)� S(m)

6

L(m) The language accepted by m 7

m1 km2 The composition of m1 and m2. 10

mjB The trace automaton m restricted to B. The restriction mjB
accepts a trace W over B if it is the restriction of a trace

accepted by m.

10

M The set of models in a veri�cation domain. 13

Q The set of speci�cations in the veri�cation domain. 13

j= The satisfaction relation in a veri�cation domain | j=�M�Q. 13

	 A generic abstraction function from speci�cations to speci�ca-

tions. Typically 	 would be generated from a function by

applying the � operator.

13

G	(m; bm) The set of speci�cations on which m and bm agree. 13bm1 �	 bm2 The automaton bm2 is as good an approximation as m1 under

the abstraction function 	.

14

F Failure set | A set of prohibited labelings. 15

 A generic separable abstraction function from labelings to

labelings.

15

� The operator that generates a function mapping sets of label-

ings to sets of labelings, from a function mapping labelings

to labelings.

15

� The speci�c separable abstraction function developed for the

train set example.

16

� The state abstraction function that was used to build the inte-

grator approximation.

17

25

B A Discrete Conservative Approximation of the Train

System

//conservative approximation of an integrator

let integrator (s,s') (ldot,udot) (l,u) =

(ldot >= '+0 IMPLIES

u ISBETWEEN (s',s'++) AND

l ISBETWEEN (s--,s)) AND

(udot <= '+0 IMPLIES

u ISBETWEEN (s,s++) AND

l ISBETWEEN (s'--,s')) AND

(udot > '+0 AND ldot < '+0 IMPLIES

u ISBETWEEN (s,s+udot++) AND

u ISBETWEEN (s',(s'-ldot)++) AND

l ISBETWEEN ((s+ldot)--,s) AND

l ISBETWEEN ((s'-udot)--,s')) AND

(sink ~ NOT_SINK IMPLIES

s' - s ISBETWEEN (ldot,udot)) AND

(sink ~ SINK IMPLIES

(s' >= s AND s' - s <= udot) OR

(s' <= s AND ldot <= s' - s));

// A "integrator" for which state and output are "mod m" integers.

let modintegrator L (s,s') (ldot,udot) (l,u) =

(ldot >= '+0) AND (udot <= L) IMPLIES

(s' > s IMPLIES s' - s <= udot) AND

(s' < s IMPLIES s' + L - s <= udot) AND

(s' ~ s IMPLIES udot ~ '+0) AND

u ISBETWEEN (s', s'++ % L) AND

l ISBETWEEN (s-- % L, s);

// conservative approximation of the "GO" differential equation

let difeqnGO (yl,yu) (xl,xu) =

// a = 1/2 (MaxV - v)

let ceilF x = half ((MaxV - x) ++) in

let flrF x = half (MaxV - x) in

(xl ~ xu IMPLIES yl ~ flrF xl AND yu ~ ceilF xu) AND

(xl < xu IMPLIES

yl ISBETWEEN (flrF xu, flrF (xu--)) AND

yu ISBETWEEN (ceilF (xl++), ceilF xl));

// conservative approximation of the "STOP" differential equation

let difeqnSTOP (yl,yu) (xl,xu) =

// v=0 ? a = 0 | a = -k2 MaxV

let a = Kstop in

(yu ~ (choose (xl <= '+0) ('+0) a)) AND

(yl ~ (choose (xu <= '+0) ('+0) a));

26

// conservative approximation of the "switch"

let mSwitch ctl (a1l,a1u) (a2l,a2u) (al,au) =

(ctl ~ STOP IMPLIES a1l ~ al AND a1u ~ au) AND

(ctl ~ GO IMPLIES a2l ~ al AND a2u ~ au);

// conservative approximation of the behaviour near the "fixed point"

let mFixedPoint (fps, fps') ctl (vl,vu) =

(fps' ~ '+1 IMPLIES vu >= (negate Kstop) OR ctl ~ GO) AND

(ctl ~ STOP AND fps ~ '+0 IMPLIES vu ~ '+0);

// Composition of the equations with approximations of

// the switch, integrator, and fixed-point

let mVel vs fps ctl (vl,vu) =

exists [al,au] (

exists [a1l,a1u,a2l,a2u] (

difeqnGO (a2l,a2u) (vl,vu) AND

difeqnSTOP (a1l,a1u) (vl,vu) AND

mSwitch ctl (a1l,a1u) (a2l,a2u) (al,au)) AND

integrator vs (al,au) (vl,vu) AND

mFixedPoint fps ctl (vl,vu));

// composition of the position integrator with mVel

let mPos vs fps ps ctl (vl,vu) (pl,pu) =

exists [vl,vu] (

mVel vs fps ctl (vl,vu) AND

modintegrator L ps (vl,vu) (pl,pu));

// approximation of the control algorithm for train 1

let m1ctl =

let maxp = (L++) / cdiv in

let nsStop = (((c1i ++) % maxp) ~ c2i) OR (c1i ~ c2i) in

(c1' ~ (choose nsStop STOP GO)) AND

(c1o ~ c1);

// approximation of the control algorithm for train 2

let m2ctl =

let maxp = (L++) / cdiv in

let nsStop = (((c2i ++) % maxp) ~ c1i) OR (c2i ~ c1i) in

(c2' ~ (choose nsStop STOP GO)) AND

(c2o ~ c2);

// approximation of the position sampling process

let sample x (xl,xu) =

let xl = xl / cdiv in

let xu = xu / cdiv in

(xl <= xu IMPLIES x ISBETWEEN (xl,xu)) AND

27

(xl > xu IMPLIES (xl <= x) OR (x <= xu));

// approximation of the controller (m1ctl,m2ctl,sample(1) and sample(2))

let cmodel =

exists [c1i,c2i]

(m1ctl AND m2ctl AND

(sample c1i (p1l,p1u)) AND

(sample c2i (p2l,p2u)));

let next_state_relation =

let m1 = exists [c1o]

(cmodel AND

mPos (v1,v1') (fp1,fp1') (p1,p1') c1o (v1l,v1u) (p1l,p1u)) in

exists [c2o]

(m1 AND mPos (v2,v2') (fp2,fp2') (p2,p2') c2o (v2l,v2u) (p2l,p2u));

let initial_state =

(v1 ~ '+0) AND (v2 ~ '+0) AND (p1 ~ '+0) AND (p2 ~ '+128) AND

(c1 ~ GO) AND (c2 ~ GO);

let begin_state_vars = [v1 , fp1 ,p1 ,c1 ,v2 ,fp2 ,p2 ,c2];

let end_state_vars = [v1', fp1',p1',c1',v2',fp2',p2',c2'];

let input_vars = [p2u,p2l,p1u,p1l];

// returns c AND ((xl,xu) intersects (yl,yu))

let intersects (xl,xu) (yl,yu) =

(xl <= xu AND yl <= yu AND yl <= xu AND xl <= yu) OR

(xl > xu AND (yu > xl OR yl < xu)) OR

(yl > yu AND (xu > yl OR xl < yu));

// The hazard_set is a set of states from which an "unsafe" transition

// can occur.

let hazard_set =

let nsr = exists end_state_vars next_state_relation in

exists input_vars (nsr AND (intersects (p1l,p1u) (p2l,p2u)));

References

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algorith-

mic approach to the speci�cation and veri�cation of hybrid systems. In R. Grossman,

A. Nerode, R. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture

Notes in Computer Science, pages 209{229. Springer-Verlag, 1993.

[2] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677{691, August 1986.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142{

170, June 1992.

28

[4] Jerry R. Burch. Trace Algebra for Automatic Veri�cation of Real-Time Concurrent

Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, August

1992.

[5] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and ab-

straction. In Procedings 19th Annual ACM Symposium on Principles of Programming

Languages, January 1992.

[6] R. P. Kurshan and K. L. McMillan. Analysis of digital circuits throught symbolic re-

duction. IEEE Transtactions on Computer-Aided Design, 10(11):1356{1371, Novem-

ber 1991.

[7] Anthony McIsaac. A formalization of abstraction in lambda. In Carl Seger and Je�rey

Joyce, editor, HUG '93 HOL User's Group Workshop, pages 229{240. University of

British Columbia, Department of Computer Science, August 1993.

[8] G. H. Mealy. A method for synthesizing sequential circuits. Bell System Technical

Journal, 34(5), May 1955.

[9] E. F. Moore. Gedanken experiments on sequential machines. In Automata Studies.

Princeton University Press, Princeton, N.J., 1956.

[10] Anders P. Ravn, Hans Rischel, and Kirsten Mark Hansen. Specifying and verify-

ing requirements of real-time systems. IEEE Transatcions on Software Engineering,

19(1):41{55, January 1993.

[11] Carl-Johan H. Seger. Voss | a formal hardware veri�cation system user's guide.

Technical Report 93-45, Department of Computer Science, The University of British

Columbia, 1993.

[12] Ying Zhang and Alan K. Mackworth. Constraint nets: A semantic model for real-

time embedded systems. Technical Report 92-10, University of British Columbia,

Vancouver, B.C., Canada, October 1992.

[13] Ying Zhang and Alan K. Mackworth. Will the robot do the right thing? Technical

Report 92-31, Department of Computer Science, The University of British Columbia,

November 1992.

29

