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Abstract

This paper describes an algorithm to compute, in �(log n) time, a rectangle that is contained in a

convex n-gon, has sides parallel to the coordinate axes, and has maximum area. With a slight modi�cation

it will compute the smallest perimeter. The algorithm uses a tentative prune-and-search approach, even

though this problem does not appear to �t into the functional framework of Kirkpatrick and Snoeyink.

1 Introduction

In this paper, we give a logarithmic-time solution to the following problem: Given the list vertices of a convex

polygon P in counterclockwise (ccw) order, stored in an array or balanced binary search tree, compute the

rectangle R � P with maximum area (or maximum perimeter) whose sides are parallel to the x and y

coordinate axes.

Fischer and H�o�gen [2] solved the maximum area problem by a nested binary search in O(log2 n) time.

To obtain a �(logn) algorithm, we characterize the maximum rectangles, then use the tentative prune-

and-search technique of Kirkpatrick and Snoeyink [4]. In some cases we are able to frame the search for a

rectangle as a problem of computing a �xed-point and apply a theorem of [4]; in others we must use tentative

prune-and-search directly.

In general, the prune-and-search technique for multiple lists looks at local information in O(1) time to

discard a fraction of some list. Tentative prune-and-search can sometimes be used when local information is

insu�cient to determine which fraction to discard. This technique makes tentative decisions that are later

be certi�ed or revoked.

Suppose that P is in general position: no two vertices on the same vertical or horizontal line and no

two boundary edges parallel. (This can be simulated by perturbation methods if necessary [1].) We can

decompose @P , the boundary of P , into four pieces by breaking at the horizontally and vertically extreme

points. We name the pieces A, B, C, and D in counterclockwise order, starting from the southwest.

If a rectangle R � P has only one corner on @P , or has only two corners from the same side of R on

@P , then one can enlarge R by translating a side (�gure 1a). Therefore a rectangle R with maximum area

or perimeter either has two diagonally opposite corners, a and c, on @P , or has three corners a, b, and c,

on @P . These two cases are illustrated in �gure 1b and 1c, and characterized in the next two lemmas. We

denote the slope of a line segment ac by mac.

Lemma 1 Suppose that the maximum area or perimeter rectangle R � P has exactly two corners on @P ,

namely a 2 A and c 2 C. Then P has parallel tangents at a and c with slope m, where m = 1 in the

perimeter case and m = �mac in the area case.

Proof : Fix a at the origin, and consider the curve where c = (x; y) can lie for the rectangle with diagonal

ac to have perimeter or area F . In the perimeter case x+ y = �F=2 is a diamond with sides of slope 1

and �1. In the area case xy = �F is a hyperbola.
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Figure 1: Cases for the maximum area or perimeter rectangle

For the maximum value of F , subject to c lying in P , the curve and P must have a parallel tangent

at c; otherwise, R could be enlarged. In the case of maximum area, if c = (x; y = F=x) then the tangent

to xy = F at c has slope dF=dx = �F=x2, which is �mac.

Fixing c gives a parallel tangent at a.

For a maximum area or perimeter rectangle R with three corners on @P , we can assume, without loss of

generality, that these corners are a 2 A, b 2 B, and c 2 C.

Lemma 2 Suppose the maximum rectangle R � P has three corners on @P , as in �gure 1c. Then there

are tangents at a 2 A, b 2 B, and c 2 C with slopes ma < 0, mb > 0, mc < 0, respectively, that satisfy

�ma � m � �mc > 0, and m = �ma
mc�mb

ma�mb

; where m = 1 if R has maximum perimeter and m = mac if R

has maximum area.

Proof : To make the A, B, and C portions of @P into smooth functions of x, we construct, at each vertex

v of P , a circle tangent to both edges incident to v. The radius of the tangent circle can be made in�nitely

small so that the area of the inscribed rectangle would not be changed by more than an in�nitesimal

amount. We cut this new boundary at its extreme points to form boundary chains A, B, and C on which

a, b, and c lie, respectively.

Notice that slopes of tangents at a, b, and c satisfy ma;mc < 0 and mb > 0. If a rectangle R with

these corners has �ma < �mc, then one can enlarge R by translating ac in the direction that increases

the length of ac while keeping mac �xed (�gure 1c). Thus, for a maximum rectangle, �ma � �mc.

Now, let b = (x; y) and take the derivatives of perimeter and area as functions of x.

d

dx
perim =

d

dx
(cy � by) +

d

dx
(bx � ax):

d

dx
area =

d

dx
((bx � ax)(cy � by))

= (bx � ax)

�
d

dx
(cy � by) +

cy � by

bx � ax

d

dx
(bx � ax)

�
:

If we set k = m = 1 in the perimeter case and k = bx� ax and m = mac = (cy � by)=(bx � ax) in the

area case, then we can write both derivatives in terms of slopes

dF

dx
= k((mc �mb) +m(1�

mb

ma

))
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=
k

ma

(ma(mc +m)) �mb(ma +m)) (1)

Area and perimeter are both smooth functions of x, so the extreme values of F occur at extremes of x

and when dF=dx = 0: The extreme cases, bx = ax or by = cy cannot be solutions of the maximum area

problem (these rectangles have zero area) and can be handled as special cases for the maximumperimeter

problem. Thus, to see when the derivative of F is zero, we can assume that k 6= 0 and ma 6= 0 in 1 and

derive equivalent conditions

ma(m +mc)�mb(m+ma) = 0 (2)

m = �ma

mc�mb

ma�mb

: (3)

Since ma and �mb are both negative, the terms m + mc and m + ma must have opposite signs in a

solution to equation 2 and mac lies between �mc and �ma. If we move b counter-clockwise along B,

then mb and bx � ax increase monotonically, and ma, mc, and mac decrease monotonically. Equation 1

then implies that dF=dx decreases monotonically, and therefore the zero of the derivative is a maximum.

With these characterizations of maximal rectangles there are now two diagonal rectangles and four three-

corner rectangles to test. In the next two sections we show how to locate the rectangle corners on @P|it is

then easy to check that the other corners are inside of P . We'll treat each test independently, but results of,

say, the diagonal tests will indicate which three-corner tests are needed.

2 Computing a two-corner rectangle

In this section we look for chords of polygon P that could be diagonals of a maximum-area or maximum-

perimeter inscribed rectangle|chords that satisfy lemma 1. By casting the search as a �xed-point problem,

we show that there is at most one such chord for each diagonal, and we �nd it in O(logn) time.

Suppose that we consider the SW to NE diagonal, ac. Let A and C be the boundary chains of P on which

a and c can lie. (We can conceptually round the corners again so that every point has a unique tangent, and

also bow the edges in�nitesimally so that every tangent has a unique point of tangency. Then not only are

A and C be continuous trails [3] where a point moving along a line alternates with a line rotating about a

point, they are also di�erentiable.)

Lemma 3 We can �nd the two-corner rectangle with maximum area or perimeter in O(logn) time.

Proof : Let f map a point a 2 A to the point f(a) 2 C such that tangents to P at a and f(a) are parallel.

Let g:C ! A map a point c with tangent to P of slope m to the point a 2 A that is intersected by the

line through c of slope �m. Then a �xed-point of the composition, a = g(f(a)), gives a chord af(a) that

satis�es lemma 1.

If we parameterize A and C counterclockwise, then f is monotone increasing and g is monotone

decreasing. Their composition has a unique �xed-point.

Given an a 2 A and a c 2 C, one can compare f(a) against c and g(c) against a in constant time

by comparing tangents and slopes. If A and C are both reduced to single segments or vertices, then the

computation can be completed by simple algebra. Therefore, by a lemma of Kirkpatrick and Snoeyink [4],

we can compute the �xed-point in O(logn) steps. It is then a simple matter to check if the rectangle R

with this diagonal is indeed inscribed in P .

3 Finding a three-corner rectangle

Suppose we want to look for a maximum inscribed rectangle R that has three corners on the boundary of

P : a 2 A, b 2 B and c 2 C. In order to �t in the �xed-point framework, we would need three functions
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whose composition gives a �xed-point. Two functions are natural to de�ne: Let f(a) 2 B have the same

y coordinate as a and let g(b) 2 C have the same x coordinate as b. The third function, however, involves

slopes at all three corners: Let h(a; c) be the point in B with tangent slope determined by lemma 2. If R0

is maximum, f(a0) = b0, g(b0) = c0 and h(a0; c0) = b0 for corners a0 2 A, b0 2 B and c0 2 C, by lemma 2.

Furthermore, the conditions are satis�ed only if R0 is maximum. To see this, notice that dF=dx decreases

monotonically, as proved in lemma 2, and therefore attains zero at most once. It follows that there exist

unique points a0, b0 and c0 that satisfy the given conditions.

We can still use the technique of tentative prune-and-search to �nd a three-corner rectangle with maxi-

mum area or perimeter.

Lemma 4 A maximum three-corner rectangle satisfying lemma 2 can be found in O(logn) time.

Proof : Let R0 be the maximum rectangle that we seek and let a0 2 A, b0 2 B and c0 2 C be the corners

of R0 on the boundary of P . We search for these corners by looking at the positions of (and tangents at)

\middle" vertices in A, B, and C, then using constant-time local computations to discard (or tentatively

discard) half of some list that cannot contain one of the corners of R0.

Let a 2 A, b 2 B, and c 2 C be given. De�ne boolean variables a. (after-a) and /a (before-a): a. is

true i� a0 is at or after a in counter-clockwise order around P . Figure 2 lists conclusions from all tests

using this notation.

From function f we can test if a:y � b:y. If so, as illustrated in �gure 3, either a0 must be below

the line y = a:y or b0 must be above y = b:y, so we can conclude fT = (a. _ b.). If a:y � b:y then

fF = (/a _ /b). Function g gives a similar test: b:x � c:x implies gT = (b. _ c.) and b:x � c:x implies

gF = (/b _ /c).

For function h, consider violations of the three conditions �ma � m � �mc of lemma 2. First,

if �ma < m then m must decrease (impossible for the perimeter problem where m = 1, but possible

for area where m = mac) or �ma must increase. Thus, h1 = (/a _ /c). Second, if m < �mc then

h0 = (a. _ c.). Third, if �ma < �mc, then (/a _ c.).

When this third constraint (�ma � �mc) is violated, then necessarily either the �rst or second is also

violated. If the �rst, then we can conclude that /a. This means that a0 is clockwise of a on A, so we can

discard the counter-clockwise portion of A. If the second, we conclude c.. (Notice that both violations

can occur, allowing us to eliminate half of each of A and C.)

Assume for the moment that these three constraints are satis�ed, but the main constraint of lemma 2

is violated. Suppose that \equality" is replaced by \less than" in equation 3. We can rewrite to obtain

�(m +mc) +mb

�
1�

m

�ma

�
< 0:

If we move a and c counter-clockwise, then m = mac increases and �ma and �mc stay the same or

decrease. Because �mc � m, we know (m+mc) is non-negative and increasing. The term 1�m=(�ma)

is non-negative and decreasing. Thus, to restore equality in 3, we must have mb increase by b moving

counter-clockwise. We can conclude hT = (/a _ b. _ /c). If \equality" in equation 3 becomes \greater

than," then we conclude hF = (a. _ /b_ c.).

Figure 2 displays the tests associated with the functions f , g, and h and their conclusions.
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Figure 2: Tests associated with functions f , g and h. For area m = mac; for perimeter m = 1

By combining tests we can derive further

Values Conclusion

fT gT h1 or hT (b.)

fF gT h1 or hT (/a)

fF gF h1 or hT (/a ^ /b) _ (/b ^ /c) _ (/a ^ /c)

fT gF h1 or hT (/c)

fT gF h0 or hF (a.)

fF gF h0 or hF (/b)

fF gT h0 or hF (c.)

fT gT h0 or hF (a. ^ b.) _ (b. ^ c.) _ (a. ^ c.)

Table 1: Conclusions from combining tests.

conclusions. For example, fT = (a. _ b.) and

h1 = (/a _ /c) imply (b. _ /c). If we also have

gT = (b._ c.), then we know (b.). Table 1 lists

the conclusions from all test combinations. In

six cases, our constant-time tests are su�cient

to discard half of one of the boundary chains A,

B, or C. In the remaining two cases, we can

use Kirkpatrick and Snoeyink's technique [4] of

making tentative discards with the assurance

that we are making at most one mistake. Notice

that these two cases are complements|all test

outcomes are opposite.

Suppose that we have fT , gT , and hF . We can

m c

m a

a

b

c

m b

Figure 3: Tentative discards caused by fT , gT ,

and hF

tentatively discard boundary chains clockwise of a, b,

and c as shown in �gure 3. We can then re�ne the

remaining portions in a round-robin fashion: choos-

ing a middle vertex from what remains of A and re-

evaluating the tests associated with functions f and

h, then of C and re-evaluating g and h, then of B and

re-evaluating f , g, and h.

Re�ning and re-evaluatingA (or C) can change the

outcomes of the two associated tests. One can check in

table 1 that from the new outcomes we can derive one

of three conclusions: (1) we remain in the tentative

case (i.e., no test outcomes change) and extend the

tentative discard on A (or C), (2) we permanently

discard half of what remains of A (or C), or (3) we certify that all previous tentative discards done to

one chain were correct.

Re�ning and re-evaluating B can potentially change all three test outcomes. Thus, two new conclu-

sions could apply, in addition to 1{3 above: (4) the remaining portion of A or C is discarded, and we
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certify that the tentative discards on that chain were in error and that the tentative discards on other

chains were correct, or (5) all three test outcomes change and we are in the opposite tentative case. In

this last case, however, we have tentatively discarded all of A and all of C, clearly making one mistake

on each chain. Therefore, all tentative discards done on B can be certi�ed as correct and those on A and

C revoked.

To evaluate the total cost of the algorithm, we can use the potential function of Kirkpatrick and

Snoeyink [4]. For chain A, let AT denote the number of segments tentatively discarded and AR denote

the number remaining. De�ne the chain potential �A = 2 logAR + 4 log(AR + AT ). Using Iverson's

notation, where a boolean evaluates to 1 or 0 depending on whether it is true or false respectively, the

global potential is the sum of chain potentials plus 5 in tentative mode:

� = �A +�B +�C + 5(AT + BT +CT > 0):

Notice that the initial potential is O(logn) and that � cannot be negative. We can conclude our theorem

by showing that � decreases by a constant at each step.

When there are no tentative discards, we discard half of some chain and decrease � by 6 or tentatively

discard from each chain and decrease � by 1. When portions have been tentatively discarded, we either

extend the discard on the re�ned chain (a permanent discard can be considered tentative for the analysis)

or else certify all tentative discards made to one chain and revoke the rest. In the former case � decreases

by 2. In the latter case, suppose that the certi�ed chain participated in t tentative steps, including the

�rst. Then the potential of the certi�ed list decreases by 4t. The other two chains each gained 2 for every

tentative step that they participated in|since the chains were considered in round robin order, this is at

most t+1 steps each. Since we leave tentative mode, �'s total decrease is at least 4t� 4(t+1)+5 = 1:

4 Conclusion

We have shown how to compute, in �(logn) time, the maximum area or perimeter rectangle that has sides

parallel to the coordinate axes and is inscribed in a convex n-gon. Our algorithm used a tentative prune-

and-search approach, even though this problem did not �t into the �xed-point framework of Kirkpatrick

and Snoeyink [4]. We applied constant-time tests to discover boolean predicates on the locations of corners

of the maximum rectangle. Sometimes predicates combined to eliminate half of a chain that contained a

corner. If we were not so lucky, we could still tentatively eliminate portions of chains in a round robin

fashion, maintaining predicates that implied that we were doing the right thing on at least one of the chains.

The analysis of running time is by a potential argument. It would be interesting to �nd natural classes of

problems that can be solved by maintaining predicates.
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